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eSPRESSO: topological clustering 
of single‑cell transcriptomics data to reveal 
informative genes for spatio–temporal 
architectures of cells
Tomoya Mori1, Toshiro Takase2, Kuan‑Chun Lan3, Junko Yamane3, Cantas Alev4, Azuma Kimura3, Kenji Osafune3, 
Jun K. Yamashita3, Tatsuya Akutsu1, Hiroaki Kitano5,6,7,8,9 and Wataru Fujibuchi3* 

Abstract 

Background:  Bioinformatics capability to analyze spatio–temporal dynamics of gene 
expression is essential in understanding animal development. Animal cells are spatially 
organized as functional tissues where cellular gene expression data contain informa‑
tion that governs morphogenesis during the developmental process. Although several 
computational tissue reconstruction methods using transcriptomics data have been 
proposed, those methods have been ineffective in arranging cells in their correct posi‑
tions in tissues or organs unless spatial information is explicitly provided.

Results:  This study demonstrates stochastic self-organizing map clustering with 
Markov chain Monte Carlo calculations for optimizing informative genes effectively 
reconstruct any spatio–temporal topology of cells from their transcriptome profiles 
with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial 
REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spa‑
tio–temporal tissue reconstruction capability, as confirmed by using human embryonic 
heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high 
reproducibility (average max. accuracy = 92.0%), while revealing topologically informa‑
tive genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for tempo‑
ral analysis of human pancreatic organoids to infer rational developmental trajectories 
with several candidate ‘temporal’ discriminator genes responsible for various cell type 
differentiations.

Conclusions:  eSPRESSO provides a novel strategy for analyzing mechanisms underly‑
ing the spatio–temporal formation of cellular organizations.

Keywords:  Spatio–temporal tissue reconstruction, Cellular organization, Spatial 
discriminator gene, Self-organizing map clustering, Markov chain Monte Carlo 
optimization, Developmental trajectory
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Background
Analysis of biological functions and disease mechanisms based on high-throughput 
single-cell RNA-sequencing (scRNA-seq) is becoming a widely accepted and 
fundamental technique in cell biology [1–3]. In particular, methods for high-throughput, 
spatially resolved scRNA-seq have been developed and are attracting attention as novel 
analytics in this field. Single-molecule fluorescence in situ hybridization (FISH) [4] has 
been widely used for quantitating transcript numbers at single-cell resolution while 
preserving 3D locations of cells, often within the context of a diseased tissue of interest. 
Highly multiplexed methods such as seqFISH [5] or MERFISH [6] have been employed 
to measure the transcripts for over 10,000 genes of target cells in 3D locations. High-
resolution, 2D-grid primer-based RNA sequencing of tissues fixed on a glass plate has 
also been developed for mapping transcript abundance and drawing spatial cellular 
location maps after reconstructing 3D images using multiple 2D maps [7]. However, 
these methods are still in their infancy and require further improvement in terms of 
practical costs and convenience for whole-organ research.

Alternatively, several computational methods for reconstructing 3D tissues by 
estimating the spatial positions of individual cells using gene expression data obtained 
by scRNA-seq have been reported [8–14]. These methods can be roughly divided into 
two approaches: the landmark approach and the ab  initio approach. The landmark 
approach estimates the 3D position of each cell on the basis of gene expression profiles 
while using the spatial information of marker genes obtained by other experiments 
such as in  situ hybridization [8–10]. Conversely, the ab  initio approach assigns each 
cell to a 3D space according to the principal component score calculated from gene 
expression profiles without using spatial reference information [11–14]. Although 
current principal component analysis (PCA)-based methods may be insufficient for 3D 
reconstruction, an ab  initio approach that does not depend on the spatial information 
of marker genes is promising and desired for 3D reconstruction. Other methods for the 
reconstruction of spatial relationships of cells from non-spatial scRNA-seq data have 
been developed, including novoSpaRc [15], SpaOTsc [16], ScoMap [17], and CSOmap 
[18], which have provided new biological insights into spatial gene expression patterns 
and spatially informative genes within tissue. However, although these methods are able 
to project cell data to a 2D or 3D pseudo space or reference map, the reproducibility 
of real tissue structure is not thoroughly discussed. Advanced experimental techniques 
for the simultaneous acquisition of gene expression profiles and cell locations have also 
been developed and become widely used, such as 10x Visium, Slide-seq [19, 20], HDST 
[21], and Stereo-seq [22]. Accordingly, several spatial transcriptome analysis methods 
that use the output of the aforementioned techniques have been proposed, including 
SpaGCN [23], Squidpy [24], and Spatial-ID [25]. However, most of them are aimed 
at the segmentation of tissue and the detection of spatially informative genes, not at 
reconstruction.

Previously, we reported a novel 3D reconstruction method using SPRESSO (SPatial 
REconstruction by Stochastic Self-Organizing Map) [26], which features gene selections 
based on gene sets from Gene Ontology (GO) [27, 28]. The method yielded high success 
rates of 3D reconstructions of mouse gastrula stage embryos and demonstrated a 
remarkable ability to identify spatial discriminator genes (SDGs) that contribute to 
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differentiation and tissue morphogenesis. This method, however, was preliminary and 
simply projected four domains of mouse gastrula to only a cubic structure, and thus 
was inapplicable to more complicated tissue structures of organs such as the heart or 
pancreas.

In this work, we remove the limitations of structural presentations by introducing 
graph-based self-organizing map (SOM) clustering for the reconstruction of any 
topology of cell domains in tissues, as long as they can be drawn as network diagrams 
or graphs. The basic concept of the graph-based SOM clustering was reported in 1990 
by Kohonen et  al. [29] who introduced a Kohonen map in 1982 [30] as an artificial 
neural network and a computationally convenient abstraction building on the biological 
models of neuronal systems [31] or morphogenesis models by Turing [32]. Many useful 
topological structures other than square grids, such as hexagonal grids, toroidal grids 
whose opposite ends are seamlessly connected [33], have been introduced. However, 
graph-network representation is the simplest and most abstract yet comprehensive 
method for describing the relationships between cell domains in tissues. Here, we 
applied graph-based SOM clustering to various types of mouse and human organs to 
reconstruct or infer cellular organizations while revealing informative SDGs that can be 
ranked using novel virtual knockout (VKO) analysis. Furthermore, we extended graph-
based SOM clustering to temporal analysis to elucidate the cell lineage trajectories of 
human pancreatic organoids. We used uniform manifold approximation and projection 
(UMAP) [34] to visually confirm topologies and draw new insights from the resultant 
topologies of cell domains.

Results
All the datasets used in this paper are summarized in Table 1.

Topological clustering of gene expression data by graph‑based SOM with gene set 

optimization

Inspired by the original Kohonen SOM learning theory [30], we extended our pre-
viously developed method, SPRESSO [26], to graph-based eSPRESSO (enhanced-
SPRESSO) topological clustering, which is theoretically applicable to any cell-to-cell 
relationships of tissues or organs if they are represented as a graph structure. The 
basic algorithm for topological clustering of cells is a combinatorial optimization to 
find the best gene sets to reproduce known structures, or a topological guidelines 
for learning the gene expression vectors of cells, as schematically shown in Fig.  1a. 
Given the original topology of cell domains, we can calculate the accuracy of topology 
reproducibility by counting the correct and incorrect edges between cells, either con-
nected or unconnected, after a learning process. We can also calculate the clustering 
performance without considering the topology of the cell domains using the adjusted 
Rand index (ARI). As an integrated score of these two metrics, we calculate the clus-
tering score defined by the weighted sum of the accuracy and ARI, where we set equal 
weights. We used the Markov chain Monte Carlo (MCMC) [35] method to optimize 
the best gene sets to attain the maximum topological clustering score. The evaluation 
and optimization processes require a known topological structure, which makes the 
method not fully unsupervised. However, the purpose of eSPRESSO is not simply to 
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search for marker genes of known domains, but also to search for the best gene sets 
that reconstruct the adjacency relationship between the domains. Therefore, graph-
based SOM learning considers tissue topology to detect spatially contributing genes 
showing expression gradients across neighboring cell domain networks. We previ-
ously tuned the SOM learning performance by introducing a stochastic-learning ver-
sion of SOM, or stochastic-SOM [26], which enhances learning efficiency in the later 
phase where the extent of learning ability usually decreases monotonically. In prelimi-
nary implementations with mouse gastrula embryo (E7.0), which use the same dataset 
as that in SPRESSO [26], eSPRESSO showed perfect reproducibility, i.e., the average 
of the maximum scores of ten runs was 2.00 (accuracy: 1.00 + ARI: 1.00) (Table  1). 
Furthermore, the 87 consensus SDGs that were found three or more times in the ten 
runs suggest biologically interesting genes that contribute to embryonic development, 

Table 1  Datasets and performances of 3D structure reconstructions (score = accuracy + ARI)

Data 
name

References #Domains #Cells #Initial 
genes

#Consensus 
SDGs (≥ 3) 
of max 
scores

Average 
of max 
scores

Average 
max 
accuracy

Average 
max ARI

Mouse 
embryo 
(E7.0)

Peng, 
Guangdun, 
et al. [57]

4 41
(sections)

129 87 2.00 1.00 1.00

Mouse 
embryo 
(E7.5)

Peng, 
Guangdun, 
et al. [36]

7 83
(sections)

295 36 1.93 0.98 0.95

Mouse 
brain 
(ALM)

Tasic, 
Bosiljka, 
et al. [39]

3 3809 1363 61 2.00 1.00 1.00

Mouse 
brain 
(VISp)

4 7049 2377 10 2.00 1.00 1.00

Mouse 
heart 
(E7.75)

de Soysa, T. 
Yvanka, et al. 
[41]

4 1259 908 19 1.99 1.00 0.99

Mouse 
heart 
(E8.25)

7 3331 1609 39 1.86 0.96 0.90

Mouse 
heart 
(E9.25)

7 3911 1699 20 1.79 0.94 0.85

Mouse 
liver

Halpern, 
Keren Bahar, 
et al. [10]

9 1415 223 66 1.30 0.82 0.48

Human 
heart 
(PCW 
4.5–5)

Asp, 
Michaela, 
et al. [40]

8 238 
(spots)

64 43 1.23 0.75 0.48

Human 
heart 
(PCW 6.5)

8 1515 
(spots)

529 77 1.40 0.85 0.56

Human 
heart 
(PCW 9)

7 1358 
(spots)

193 70 1.50 0.86 0.64

Human 
pancreas 
organoid 
(S3-S6)

Veres, 
Adrian, et al. 
[47]

18 20,205 469 83 1.15 0.76 0.39
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such as “cell adhesion”, “cell differentiation”, or “nervous system development”, by GO 
enrichment analysis (Additional file 1: Fig. S1).

We first tested the ability of eSPRESSO with mouse E7.5 gastrula embryo [36], whose 
topological structures are too complicated to be handled or reproduced by our previous 
SPRESSO, by generating a graph structure of seven cell domains (Ect1, Ect2, Ect3, PS, 
MA, MP, E1-E2-E3) derived from domain-to-domain contact relationships in the 

Fig. 1  eSPRESSO analysis for graph-based SOM clustering to detect spatial discriminator genes (SDGs). a 
Schema of the algorithm. eSPRESSO performs SOM clustering using MCMC algorithm with gene expression 
data based on graph representation of topology among cell or tissue types. A, anterior; P, posterior; L1, 
anterior left lateral; R1, anterior right lateral; L2, posterior left lateral; R2, posterior right lateral; MA, anterior 
mesoderm; MP, posterior mesoderm; EA, anterior endoderm, EP, posterior endoderm; Ect1–3, ectoderm; 
PS, primitive streak; E1–3 (En), endoderm; rep.1–8, replica. b Optimization of SDGs by replica exchange to 
increase cell or tissue type clustering accuracy while preserving topological consistency defined by weighted 
ARI + accuracy score. c A topological distance map of cells or tissues for the original (lower left) and resultant 
(upper right) clusters. d Gene expression heatmap for the optimized SDGs. e 3D reconstruction of cell or 
tissue types with SDGs using UMAP
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original paper (Fig. 1a). We optimized the gene set to maximize topology reproducibility 
by 1000 steps of MCMC calculations. To enhance the efficient optimization and stable 
reproducibility, we performed replica exchange [37] based on eight parallel MCMC 
processes (Fig.  1b). In this study, we conducted ten runs of clustering, each of which 
randomly downsampled ten (or all if only fewer cells existed) cells from each of the 
domains, to calculate scores. We used gene expression data from 64 sections. The 
average of the maximum scores of ten runs was 1.93 (accuracy: 0.98 + ARI: 0.95) after 
the MCMC optimization, and the topological distance map which shows the shortest 
path distances of samples for the original (lower triangle) and reconstructed (upper 
triangle) structures is shown (Fig.  1c). A heatmap of gene expression data for the 
optimized 36 consensus SDGs that were found three or more times in the ten runs is 
also shown (Fig.  1d). The final topological clustering result for the 83 sections using 
SDGs was confirmed visually by UMAP (Fig. 1e and Additional file 2: Movie S1).

Reconstruction of simple layer and complicated structures by eSPRESSO

To evaluate the performance of eSPRESSO, we applied the method to a one-dimensional 
layer and complicated topological structures of the cell domains. We first tried to recon-
struct mouse liver lobule structure data, where nine layers of cell domains or tissues 
from a concentric circle exist, as provided by Halpern et al. [10] (Fig. 2a–d). eSPRESSO 
reconstructed the relationships of 90 cells that are randomly selected from each of the 
nine domains, and the average of the maximum scores of ten runs was 1.30 (accuracy: 
0.82 + ARI: 0.48). The 66 resultant consensus SDGs that were found three or more times 
in the ten runs represent many known liver-specific genes such as cytochrome P450 
(Cyp2f2, Cyp2e1, Cyp2a12, and Cyp2d9), fibrinogen alpha chain (Fga), and hepato-
cyte growth factor activator (Hgfac), and GO enrichment analysis provided the candi-
dates for layer-dependent functions of the liver lobules (Fig. 2c, d and Additional file 3: 
Table S1). Ten differentially expressed genes, Cdh1, Cyp2e1, Cyp2f2, Gas2, Glul, Gst3, 
Npr2, Pck1, Por, and Sds, between periportal and perivenous hepatocytes previously 
reported by Braeuning et  al. [38] overlap with our consensus SDGs but many others 
are also found in eSPRESSO results. This was probably due to the difference between 
the differentially expressed genes in the two hepatocyte regions in their study and the 
gradiently expressed genes across the nine layers in our topological clustering. Indeed, 
the visual projection by UMAP clustering of all 1415 cells using the consensus SDGs 
indicated that there were clear layer structures although it did not reproduce the circu-
lar structure with this layer topology (Fig. 2b and Additional file 4: Movie S2). We also 
tested the topology reproducibility of the layer structures using scRNA-seq data from 
two areas in the mouse brain neocortex: ALM (anterior lateral motor cortex) and VISp 
(primary visual cortex), which have three and four layers, respectively [39]. Both showed 
perfect reproducibility, namely, the average of the maximum scores of ten runs was 2.00 
(accuracy: 1.00 + ARI: 1.00) (Table 1).

Next, we attempted to reconstruct complicated topological structures using 
eSPRESSO. As an example of organs with complicated tissue structures, we used 
spatial transcriptomics data of the human developmental heart [40]. We first 
reconstructed eight domain (TVM, CVM, Epi, CBIC, MMV, AMV, OTLV, and AM) 
structures for embryonic heart at postconceptional week (PCW) 4.5–5 or 6, and 
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seven domain (the same domains as above except CBIC) structures for that at PCW 
9 with the average of the maximum scores of ten runs being 1.23–1.50 (accuracy: 
0.75–0.86 and ARI: 0.48–0.64) (Table  1). For PCW 9 embryonic heart analysis, we 
prepared two topological guidelines, dense and sparse network models (Additional 
file 1: Fig. S2). All of the seven domains were connected either directly or indirectly 
in the dense network, whereas two separated domain clusters (TVM–CVM–Epi–
AM–OTLV and AMV–MMV) were generated in the sparse network (enclosed by 
red rectangles in Fig.  2e). Because of the uncertainty of the complicated domain 
relationships in the dense network model, we adopted the sparse network model for 
eSPRESSO for the 3D reconstruction of the embryonic heart structure. Surprisingly, 
the resultant UMAP view of all 1358 spots suggests that the two separated domains 

Fig. 2  Examples of eSPRESSO analysis in mouse liver lobule a–d and PCW 9 human developmental heart 
e–h. a, e Graph representation of topology of cells or tissues and a topological distance map of cells for the 
original (lower left) and resultant (upper right) clusters. We adopted sparse network topology for human 
developmental heart because of uncertainty. b, f 3D reconstruction of cells with SDGs using UMAP. c, g Gene 
expression heatmap for the optimized SDGs. d, h GO mapping of SDGs in Biological Process. The p-values 
determined by hypergeometric distribution statistics are shown on top of bars
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should be connected, which resembles the original PCW 9 embryonic heart data [40], 
where the small domain cluster (AMV–MMV) is appropriately located between the 
OTLV and the other domains (Fig. 2e, f and Additional file 4: Movie S2). This result 
indicates that eSPRESSO may be useful for reconstructing the spatial relationships of 
cells, even with limited topological information. Furthermore, the 70 consensus SDGs 
that were found three or more times in ten runs may suggest biologically interesting 
genes that contribute to the self-organization of the embryonic heart, such as “heart 
development” or “cell adhesion”, by GO enrichment analysis (Fig. 2g, h and Additional 
file 5: Table S2).

Application to virtual knockout experiment

One of the most promising applications of eSPRESSO is in silico VKO experiments 
because real knockout experiments in human or animal studies may result in lethality or 
evoke ethical problems. The development of the mouse heart is characterized by the spa-
tially and temporally controlled expansion and differentiation of cardiogenic progenitor 
cells into an initially single primitive heart tube, from which the complex organ structure 
of the heart arises. We used scRNA-seq data of mouse embryonic heart (E9.25) [41], 
which represent the pseudo-circular structure of seven domains, of which five project 
from the anterior and posterior second heart fields (AHF and pSHF) (Fig. 3a). We per-
formed ten runs of eSPRESSO clustering and reconstructed the topology with a high 
average maximum score of 1.79 (accuracy: 0.94 + ARI: 0.85). (Table 1). The visual projec-
tion by UMAP clustering of all 3331 cells using the 20 consensus SDGs with the same 
frequency as above shows a circular representation of tissue domains, which is consist-
ent with the original structure (Fig.  3b and Additional file  6: Movie S3). The consen-
sus SDGs include novel as well as known genes in mouse heart development or cardiac 
diseases, such as PICALM interacting mitotic regulator (Fam64a) [42], four and a half 
LIM domain protein 1 (Fhl1) [43], and others (Fig. 3c, d, Table 2 and Additional file 7: 
Table S3).

To understand the topological importance of SDGs, we performed VKO 
experiments with eSPRESSO topological reconstruction by deleting genes one by 
one. For each VKO, we ran topological clustering 100 times with different random 
seeds and calculated the mean score (Table  2). Among the 20 SDGs, desmin (Des), 
prothymosin alpha (Ptma), and cyclin D2 (Ccnd2) are the most influential genes for 
mouse heart structure, as indicated in the literature [44–46], which decreases the 
normal mean score of 1.143 to 1.05, 1.07, and 1.08, respectively. The visual inspection 
by UMAP clustering for individual VKO experiments (Des−, Ptma−, or Ccnd2−) 
reveals that the reconstructed topologies had lower domain clustering resolutions 
with the same plotting parameters as normal SDGs (Fig.  3e and Additional file  6: 
Movie S3). We then performed multiple VKO experiments by deleting Des and 
Ptma, which dramatically decreased the mean score to 0.92. We further performed 
multiple VKO experiments by deleting all three genes, Des, Ptma, and Ccnd2, but 
the mean score did not decrease further; rather, it slightly increased to 0.97 (Table 2). 
The UMAP by multiple VKO experiments was indeed aberrant compared with 
that of normal SDGs, where the domains become unclear and fused (Fig.  3f, g and 
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Additional file  6: Movie S3), indicating that the three genes may be vital to cardiac 
development. Indeed, the gene expression distribution of the three genes clearly and 
spatially indicates that the genes are reversely and complementarily up-regulated 
across cardiac regions; Des and Ptma are mainly up-regulated in the OFT and pSHF 
domains, respectively, and down-regulated vice versa, whereas Ccnd2 is mainly 
up-regulated in the LV and the pSHF domains but down-regulated in the middle 
of both, that is, in the Atrial domain (Fig.  3h and Additional file 8: Movie S4). This 
tendency of the gene expression gradient was also confirmed in the reconstructed 
model of mouse developmental heart by novoSpaRc [15], namely Des and Ptma 
showed opposite gene expression patterns, and the expression region of Ccnd2 
overlaps with that of Des and Ptma (Additional file 1: Fig. S3).

Fig. 3  Virtual knockout (VKO) analysis for mouse developmental heart in eSPRESSO. a Graph representation 
of topology of cells or tissues and a topological distance map of cells for the original (lower left) and resultant 
(upper right) clusters. b 3D reconstruction of cells with SDGs using UMAP. c Gene expression heatmap for the 
optimized SDGs. d GO mapping of SDGs in Biological Process. The p-values determined by hypergeometric 
distribution statistics are shown on top of bars. e–g 3D reconstruction of cells with VKO analysis by e single 
gene KO: Des– (left), Ptma– (center), or Ccnd2– (right); f double gene KO: Des–Ptma–; and g triple gene KO: 
Des–Ptma–Ccnd2–. h Gene expression gradients in reconstructed 3D structure for VKO genes
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Developmental analysis of human pancreatic organoids by eSPRESSO

One of the powerful characteristics of eSPRESSO is demonstrated by the analysis 
of organs during the developmental processes. We used scRNA-seq data of human 
pancreatic organoids from stages 3, 4, 5, and 6 by Veres et al. [47], and attempted to 
reconstruct developmental or temporal structures using cells from all stages. We first 
combined data from all four stages to generate a coarse topological guideline of ten 
cell types (PDX1+, NKX6-1+, NEUROG3+, SC-α, SST+HHEX+, FEVhighISLlow, SC-β, 
SC-EC, CHGA+FOXJ1+, and Exocrine) on the basis of the developmental model pro-
posed in Figure 5 in the original paper [47] (Fig. 4a). The eSPRESSO clustering result 
showed very low topology reproducibility, namely, the average of the maximum scores 
of ten runs is 1.15 (accuracy: 0.76 + ARI: 0.39) (Table  1). In this case, the accuracy, 
which indicates topological relevance, may be sufficient, although not perfect, the 
ARI is unexpectedly low, which implies poor clustering results (Fig. 4b and Additional 
file 9: Movie S5). This is probably due to the data incongruity problem because many 
of the cells are assigned to the same cell type for different stages (such as SC-α and 
SST+HHEX+ in stages 4, 5, and 6; and SC- β, SC-EC, SST+HHEX+, CHGA+FOXJ1+, 
and Exocrine in stages 5 and 6) by the original paper. There are 83 consensus tem-
poral discriminator genes (TDGs), including pancreas-specific genes such as insulin 
(INS) and insulin gene enhancer protein ISL-1 (ISL1) [48] (Fig. 4c, d and Additional 

Table 2  Virtual knockout genes and performances of 3D structure reconstructions by running 
topological clustering 100 times (score = accuracy + ARI)

VKO gene Frequency Max score Max 
accuracy

Max ARI Mean score Mean 
accuracy

Mean ARI

noKO NA 1.470 0.828 0.657 1.143 0.721 0.422

Fam64a 3 1.55 0.86 0.70 1.15 0.72 0.43

Kras 3 1.49 0.83 0.66 1.15 0.72 0.42

Ptp4a1 3 1.49 0.83 0.66 1.15 0.72 0.42

Ghitm 5 1.49 0.83 0.66 1.14 0.72 0.42

Bcam 3 1.49 0.83 0.66 1.14 0.72 0.42

Ptplb 3 1.49 0.83 0.67 1.14 0.72 0.42

Tmem246 4 1.48 0.82 0.66 1.14 0.72 0.42

Snrpg 3 1.44 0.81 0.63 1.14 0.72 0.42

Rtn4 3 1.49 0.83 0.66 1.14 0.72 0.42

Tipin 3 1.57 0.86 0.71 1.14 0.72 0.42

Ptgr2 4 1.49 0.83 0.66 1.14 0.72 0.42

Rcor2 3 1.47 0.82 0.66 1.14 0.72 0.42

Mrpl20 3 1.47 0.82 0.65 1.14 0.72 0.42

Prkcdbp 3 1.44 0.81 0.65 1.13 0.72 0.42

Fhl1 4 1.49 0.83 0.66 1.13 0.72 0.41

Cdkn1c 5 1.36 0.81 0.60 1.12 0.72 0.41

3632451O06Rik 4 1.53 0.84 0.69 1.11 0.71 0.40

Ccnd2 5 1.41 0.80 0.62 1.08 0.71 0.37

Ptma 3 1.36 0.79 0.60 1.07 0.70 0.37

Des 3 1.39 0.80 0.60 1.05 0.69 0.36

Des:Ptma 3:3 1.22 0.76 0.46 0.92 0.66 0.25

Des:Ptma:Ccnd2 3:3:5 1.24 0.77 0.49 0.97 0.67 0.30
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file  10: Table  S4). The VKO analysis indicated that proglucagon (GCG​), ISL1, and 
somatostatin (SST) were the most influential genes for pancreas development (Addi-
tional file 11: Table S5). Indeed, GCG​ is expressed in alpha cells [49], ISL1 is involved 
in embryogenesis of the islets of Langerhans [50], and SST proteins are produced in 
delta cells [51] (Fig. 4f and Additional file 9: Movie S5). In the reconstructed model of 
the human developmental pancreas using novoSpaRc, no significant differences were 
observed in the gene expression patterns of GCG​, ISL1, and SST. In addition, subtle 

Fig. 4  Application of eSPRESSO to detect temporal discriminator genes (TDGs) in human developmental 
pancreas. a Graph representation of cell type differentiation model and a topological distance map of cells 
for the original (lower left) and resultant (upper right) clusters. b 3D temporal reconstruction of cells with 
TDGs using UMAP for cell types. c Gene expression heatmap for the optimized TDGs. d GO mapping of TDGs 
in Biological Process. The p-values determined by hypergeometric distribution statistics are shown on top of 
bars. e Derived differentiation relationships of cell types from b by graphical lasso based on covariances of 
gene expressions among cell types. f Gene expression gradients in reconstructed temporal structure for the 
top three most important genes in VKO analysis
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gene expression gradients, as shown by eSPRESSO were not observed using novo-
SpaRc (Additional file 1: Fig. S4).

Although the task was highly challenging, we devised a method for inferring a 
possible developmental model from the eSPRESSO results. We used consensus TDGs 
to generate a gene expression matrix for all the cells (83 genes by 20,205 cells). We then 
reduced the matrix to the original 18 cell domains or types (separated by individual 
stages) by taking the average within each cell domain. Using this reduced matrix, we 
inferred a sparse graphical Gaussian model (GGM) of cell type network based on gene 
expression covariance matrix using EBICglasso in qgraph package in R [52]. Considering 
the directions of the developmental stages, we further reduced the original 18 cell type 
network into a ten cell type developmental model by aggregating the same cell type from 
different stages if they have 0.2 or more partial correlations (Fig. 4e and Additional file 1: 
Fig. S5). Interestingly, the resultant developmental model was significantly different from 
the original model. For example, NEUROG3+ cells are precursors of SC-β and SC-EC 
in the coarse guideline model, but these cells are also the precursors of SC-α in the 
inferred model. Similarly, NKX6-1+ cells are the precursors of NEUROG3+ cells in both 
the coarse and inferred models, but they are also the precursors of Exocrine cells in the 
inferred model. These results were attributed to the actual gene expression gradients of 
the 83 TDGs. Indeed, a review paper on human pancreatic development indicated that 
NEUROG3+ cells can be the precursors of both SC-α and SC- β and that NKX6-1+ cells 
can be the precursors of duct (exocrine) cells [53]. Interestingly, however, scRNA-seq 
analysis using Pdx-1-GFP or other gene transgenic mouse lines to trace the pancreatic 
lineage revealed two α-cell generation pathways that directly generate α -cells from 
early Pdx-1+ cells, called the first wave, in addition to the known late α—and β-lineage 
differentiation [54].

Discussion and conclusions
We developed a computational method that combines cell clustering using stochastic-
SOM under topological constraints and gene set optimization using MCMC 
calculations. In general, the reproducibility of the known topology of cell domains is 
successful (Table  1), and this method may innovatively add more information to the 
existing clustering method by finding spatio–temporally distributed discriminator genes 
(SDGs or TDGs). The S(T)DGs identified by eSPRESSO showed large overlaps with the 
cluster biomarkers selected by Seurat [55], and all of the S(T)DGs were contained in 
the cluster biomarkers in some cases (Additional file  1: Fig. S6). Because the number 
of Seurat’s marker genes in the default settings is much higher than the number of 
S(T)DGs, the results make sense. As expected, most of the S(T)DGs were found to be 
statistically significant in Seurat with the adjusted p-values calculated by the Wilcoxon 
rank sum test between one domain and the other domains. (Additional file 1: Fig. S6). 
However, some genes did not show sufficient statistical significance, meaning that 
eSPRESSO was able to identify gene sets that were difficult to obtain by differentially 
expressed gene analysis with a simple statistical test. In addition, eSPRESSO was able to 
infer the developmental architecture of cell trajectories even with limited knowledge or 
coarse topological guidelines of the developmental model. Using in silico VKO analysis 
with eSPRESSO, it may be also useful to investigate the effects of individual genes on the 
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topological structure, which may be difficult or impossible to accomplish in some cases 
in real experiments.

As mentioned in the background, direct experimental methods for the 3D 
reconstruction of tissues such as highly multiplexed FISH or direct spatially resolved 
transcriptomics have been proposed [5–7]. The primary purpose of these methods 
is to map or reconstruct cellular locations using gene expression data. Although these 
methods can contribute to detecting differentially expressed genes among distinct tissue 
or cell domains, they do not consider tissue topology, and thus, may miss the detection 
of spatially contributing genes that show expression gradients across neighboring cell 
domain networks. eSPRESSO may complement existing spatial transcriptomics methods 
by detecting gradiently or globally expressed genes that contribute to cell domain 
network organizations in a spatio–temporal manner. We would like to emphasize here 
that ARI may be high, but accuracy may be low for unstructured or complex tissues, 
but the results of human heart (PCW 9) analysis also show that eSPRESSO is effective 
in reconstructing the spatial relationship between domains even when the topology 
information is limited. To investigate the topological limitation of eSPRESSO, we 
performed computational experiments using synthetic single-cell datasets generated by 
the dyngen package [56]. Owing to the high calculation cost, we tested five of 14 dyngen 
single-cell transcription factor network models: linear, cycle, bifurcating, branching, and 
disconnected backbones [56], and generated their cellular topology graphs (Additional 
file  1: Figs. S7–10). eSPRESSO was able to reproduce the input topologies with near-
perfect accuracy (i.e., the mean values of maximum accuracies and maximum ARIs 
were higher than 0.99 and 0.97, respectively) with SDGs of various expression gradient 
patterns regardless of the input topology graphs (Additional file  1: Figs. S9 and S10). 
Furthermore, when we created ten modified graphs for each dataset by randomly 
reversing the presence or absence of edges for each vertex pair, we observed that 
eSPRESSO is robust in general, that is, the mean maximum scores were higher than 
1.85 for a low input cellular topology misspecification rate of 10% for all backbone 
configuration, and higher than 1.90 even for a high input misspecification rate of 50% 
except for bifurcating or branching backbone configuration (Additional file 1: Fig. S10).

eSPRESSO also has several benefits in the analysis of human organ development, 
where many genes give rise to homozygous lethality in knockout experiments. Although 
animal studies have presented evidence of candidate lethal genes in humans, it is 
not possible to reproduce gene knockout organs in humans because of ethical and 
technical reasons. Human organoids derived from the induced pluripotent stem (iPS) or 
embryonic stem (ES) cells show promise as an alternative approach for mimicking gene 
knockout organs in the human body. However, the occurrence of abnormalities is often 
stochastic and affected by other internal or environmental factors, and a large number 
of repeated experiments are sometimes required to reproduce the phenotypes [57]. In 
contrast, although our in silico VKO method is still in the preliminary stage, it does not 
require any fine-tuned protocols and reproduces the same results with a low calculation 
cost. In addition, such virtual experiments are possible not only for VKO experiments 
but also for virtual knock-in (VKI) experiments, and both are a promising alternative 
to costly in vitro and in vivo experiments, because the experiments can be performed 
regardless of the number or combination of knock-in and knock-out genes.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Page 14 of 27Mori et al. BMC Bioinformatics          (2023) 24:252 

SOM learning, first proposed by Kohonen and colleagues [30], is an established 
method in the field of clustering. They introduced graph-based SOM clustering, but this 
method has few biological applications [29]. The original SOM learning monotonically 
decreases the learning regions and efficiency, which causes problems in the clustering 
resolution in the later phase. We found that efficient scheduling for learning is necessary 
for practical application to current single-cell transcriptomics datasets. We introduced 
stochastic-SOM, which has similar behavior to the Gibbs sampling approach where 
SOM clustering is continued by random sampling even in the late learning phase. This 
improvement dramatically enhanced the clustering resolution and enabled efficient 
implementation of graph-based SOM clustering.

Finally, we would like to stress that our current algorithms and analysis pipeline 
reported herein are still primitive and limited, and many improvements are necessary. 
First, there are cases in which certain difficulties remain in the creation of topology 
graphs. For a one-dimensional layered structure, such as a mouse brain (ALM and 
VISp), or a relatively simple tissue structure, such as a mouse embryo, it is possible to 
easily create a topology graph based on general biological knowledge. However, it is 
sometimes difficult to accurately represent complex topological structures, such as 
the heart, in graphs. In fact, for the human heart dataset, we created a dense model 
that considers all indefinite adjacency relations as connected and a sparse model that 
considers those as not connected. In addition, graph resolution was not determined by 
itself, but depended on the purpose of the user’s analysis. As an example guideline for 
automatic determination, it may be possible to use the clustering results from Louvain’s 
method [58].

Second, the extraction of initial gene candidates is solely dependent on the Random 
Forest algorithm that detects feature genes by the Boruta package in R and may miss 
important SDGs or TDGs that overlap categories or cell domains in distant branches or 
leaves. Although the input genes to Boruta were selected on the basis of the frequency 
of nonzero expression in all cells and the standard deviation in the computational 
experiments, we observed no significant change in the structure reconstruction 
performance in our datasets even when highly variable genes selected simply by Seurat 
were used as the input genes to Boruta (Additional file 1: Fig. S11 and Additional file 12: 
Table  S6). The replica exchange MCMC calculation is also a suboptimal approach, 
although it enhances combinatorial optimization to allow quick convergence to the 
global optimum, which sometimes fails to find the best gene set to reproduce the 
topology using SOM clustering. Furthermore, the selected feature gene sets differ 
across runs. Therefore, in the computational experiments, genes detected as SDGs three 
or more times in ten runs were used as consensus SDGs in subsequent analyses. This 
experimental approach has contributed to improving the reliability of SDGs even for 
single-cell and mini-bulk data, which are often noisy.

Third, it is difficult for eSPRESSO to determine whether the differences in gene 
expression patterns in SDGs are due to spatial distributions or cell type differences. To 
address this limitation, a more effective algorithm that detects hierarchical relationships 
of gene expression profiles should be developed. Furthermore, the computation time in 
this study ranged from 1 to 10 days on 2.60 GHz E5-2670 Intel Xeon CPU, depending 
on the amount and complexity of data. We expect that more efficient and fine-grained 
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algorithms for finding the global optimum in an acceptably short time may replace the 
modules in our pipeline in the future.

Methods
Data collection and preprocessing

To confirm the performance of eSPRESSO, 14 datasets of human and mouse 
transcriptomes were collected from seven papers [10, 36, 39–41, 47, 59]. Each dataset 
was used as a log10-transformed expression profile, and genes whose expression values 
are greater than 1.0 in at least two samples and whose standard deviations across all 
samples are greater than 0.05 were extracted. Adjacent matrices of spatial domains were 
constructed on the basis of original papers and biological knowledge by the authors of 
this paper.

Mm embryo (E7.0)

Peng et al. collected transcriptome profiles of embryo sections by laser microdissection 
[59]. We downloaded and used E1 dataset from GEO (GSE65924) [60], which is one of 
the triplicates of single embryos. The dataset contains 41 sections (~ 20 cells per sample) 
with four spatial domains (d1: anterior, d2: lateral-distal, d3: lateral-proximal, and d4: 
posterior). The expression values were saved as fragments per kilobase of exon per 
million mapped reads (FPKM).

Mm embryo (E7.5)

Peng et al. collected transcriptome profiles of embryo sections at various developmental 
stages by laser microdissection [36]. We downloaded reference samples of E7.5 from 
GEO (GSE120963). The dataset contains 83 sections (20–40 cells per sample) with nine 
spatial domains (Ect1–3: ectoderm, PS: primitive streak, MA: anterior mesoderm, MP: 
posterior mesoderm, E1–3: endoderm). To simplify the domain structure, we integrated 
E1–3 into En as a single domain. The expression values were saved as FPKM.

Mm brain (ALM and VISp)

Tasic et al. collected transcriptome profiles of two regions of adult mouse cortex: anterior 
lateral motor cortex (ALM) and primary visual cortex (VISp) [39]. We downloaded 
exon count datasets of ALM and VISp from GEO (GSE115746), respectively. For both 
datasets, we extracted 3809 and 7049 single cells belonging to clusters with distinct layer 
numbers (L2/3, L4, L5, L6, and L6b), respectively, where the L6b cells were merged to 
the L6 cluster. ALM consists of three spatial domains of L2/3, L5, and L6, whereas VISp 
consists of four spatial domains of L2/3 to L6. The expression values were saved as raw 
count data and transformed into counts per million mapped reads (CPM) values when 
analyzed.

Mm heart (E7.75, E8.25, and E9.25)

de Soysa et al. collected transcriptome profiles of mouse heart at three developmental 
stages: E7.75, E8.25, and E9.25 [41]. We downloaded source data of all developmental 
stages from the supplementary files of the original paper. In addition, we requested the 
expression profiles of sinus venosus (SV) and atria at E9.25 to the authors of the original 
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paper for integration with the downloadable E9.25 data. For E7.75 data, the anterior 
heart field (AHF), the left ventricle (LV), atria (Atrial), and the posterior second heart 
field (pSHF) of wild type were extracted and the total number of single cells was 1259. 
For E8.25 and E9.25 data, 3331 and 3911 single cells of AHF, the SHF-derived outflow 
tract (OFT), the right ventricle (RV), LV, atria (Atrial), SV, and pSHF were extracted, 
respectively. The expression values were saved as log-transformed unique molecular 
identifier (UMI) counts.

Mm liver

Halpern et  al. collected transcriptome profiles of mouse liver and estimated their 
lobule coordinates by a panel of zonated landmark genes [10]. The authors provided 
a single-cell gene expression profile and a posterior probability matrix showing the 
probabilities of being the original layer for each single cell, and they can be downloaded 
as supplementary files of the original paper. In order to simplify the input data, we 
determined the layer that gives the maximum probability as the original layer for each 
single cell. This dataset consists of 1415 single cells with nine domains (layers 1–9). 
The expression values were saved as raw UMI counts and transformed into CPM when 
analyzed.

Hs pancreas organoid (S3–S6)

Veres et  al. collected transcriptome profiles of human pancreas at four differentiation 
stages [47]. We downloaded the preprocessed gene expression profile of Protocol x1 
from four stages 3–6 (S3–S6) from GEO (GSE114412), where profiles of replications 
were removed. Dataset S3 consists of 5955 single cells of PDX1+ progenitors (pdx1). 
For dataset S4, the expression profiles consist of 5273 single cells with five domains: 
NKX6-1+ progenitors (nkx61), NEUROG3+ progenitors (neurog3), SC-α (sc_alpha), 
SST+HHEX+ (sst_hhex), and FEVhighISLlow (fev_high_isl_low). Datasets S5 and S6 
consist of 3926 and 5051 single cells from six domains: SC-β (sc_beta), SC-α (sc-alpha), 
SC-EC (sc-ec), CHGA+FOXJ1+ (chga_foxj1), SST+HHEX+, and Non-endocrine (exo). 
These datasets were merged into one dataset of 20,205 single cells with complementing 
missing gene expression values from raw count data provided by GEO (GSE114412). 
The expression values of these datasets were saved as UMI counts and transformed into 
CPM when analyzed.

Hs heart (PCW 4.5–5, PCW 6.5, and PCW 9)

Asp et al. collected transcriptome profiles of human heart at three developmental stages in 
the first trimester: post-conception weeks (PCWs) 4.5–5, 6.5, and 9 [40]. Each expression 
profile and the corresponding metadata are downloadable from a data repository (https://​
www.​spati​alres​earch.​org). The spatial transcriptome data of PCW 4.5–5, PCW 6.5, 
and PCW 9 consist of 238, 1515, and 1358 spots of tissue sections. The PCW 4.5–5 and 
PCW 6.5 data cover eight domains: compact ventricular myocardium (CVM), trabecular 
ventricular myocardium (TVM), atrial myocardium (AM), outflow tract and large vessels 
(OTLV), atrioventricular mesenchyme and valves (AMV), mediastinal mesenchyme 
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and vessels (MMV), cavities with blood and immune cells (CBIC), and epicardium (Epi), 
whereas the PCW 9 data cover seven domains (the same domains as above except CBIC).

Overview of eSPRESSO

Our previously reported SPRESSO [26], which is a 3D reconstruction method using SOM 
clustering and GO-based feature gene selection, has achieved a high success rate in the 3D 
reconstruction of mouse gastrula structure and shown a remarkable ability to identify SDGs 
that contribute to differentiation and tissue morphogenesis. However, it projects the mouse 
gastrula structure into a simple cubic structure composed of four domains and is therefore 
inapplicable to more complex tissues. In addition, whereas the feature gene selection using 
GO has enabled us to search feature genes on the basis of their functions, it is difficult to 
expand the search space to combinations of GOs from the perspective of computation time 
because more than 40,000 GOs have been defined.

eSPRESSO is able to overcome the limitations of SPRESSO through the introduction of 
graph-based SOM clustering and gene set optimization by the MCMC framework. The 
graph-based SOM clustering enables the reconstruction of any topology of cell domains 
in tissues, as long as they can be drawn as network diagrams or graphs, thereby greatly 
expanding the applicability of eSPRESSO. Meanwhile, the gene set optimization by the 
MCMC framework enables more flexible search for feature gene sets that is not restricted 
to the definitions of GOs while limiting the search space to promising areas by combining 
with Boruta, a feature gene selection method. Details of graph-based SOM clustering and 
gene set optimization by the MCMC framework are described in the following sections.

Stochastic self‑organizing map (stochastic‑SOM) clustering

The self-organizing map (SOM) is an unsupervised clustering method proposed by 
Kohonen [30]. In general, SOM projects input high-dimensional data onto a limited 
number of output classes or units, so that different units with similar centroid vec-
tors are placed close to each other in a mapping layer that is usually given in a 2D plane. 
Let X = (x1, x2, . . . , xn) be a set of input samples with the p-dimensional vectors, i.e., 
xj = xj1, xj2, . . . , xjp  

(

j = 1, 2, . . . , n
)

 . The mapping layer consists of k units, and their 

centroid vectors mi =
(

mi1,mi2, . . . ,mip

)

 (i = 1, 2, . . . , k) are randomly initialized and 
assigned to each unit. The similarity between input sample j and all units i is defined by 
the Euclidean distance. First, the SOM algorithm finds the unit c with the highest similarity 
according to the following equation as the best matching unit (BMU).

where �·� denotes the Euclidean distance, or norm of a vector, and t is time step. The 
centroid vector mi(t) of all units of the mapping layer at time t is updated by the 
following equations.

c = arg min
i∈{1,...,k}

{∥

∥xj −mi(t)
∥

∥

}

,

mi(t + 1) = mi(t)+ hci(t)
(

xj −mi(t)
)

,
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where hci(t) is a neighborhood function that determines how much mi(t) receives the 
learning influence of xj when it is updated. α(t) and σ(t) are the learning rate parameter 
and a function defining the radius of the neighboring region, respectively. In addition, rc 
and ri are the position vectors in the mapping layer of units c and i . The SOM algorithm 
repeats updates of mi until the learning step t reaches T , which is given as a parameter 
for all input samples j.

In the general SOM clustering, its result is affected by the order in which the samples 
are input. To eliminate this effect, the batch-learning SOM was also proposed [30]. In the 
batch-learning SOM, mi(t) is updated only after all samples are given by the following 
equations.

The general SOM learning often converges to local minima in early steps if the number 
of units in the mapping layer is extremely small. In order to increase the possibility of 
escaping from the local minima and reaching the global maxima, a stochastic-SOM 
that introduces a random variable into the neighborhood function has been proposed, 
which makes the learning converge gradually [26]. The neighborhood function of the 
stochastic-SOM is

where rnd[0.5, 1) is a function that generates uniform random values of at least 0.5 and 
less than 1.0.

Graph‑based stochastic‑SOM clustering

A graph G = (V ,E) is a pair of finite non-empty set V  and finite set E ⊆ V × V  . The 
elements u, v ∈ V  of graph G are called vertices, and the elements e = {u, v} ∈ E 
are called edges. The sets of vertices and edges of graph G are denoted as V (G) 
and E(G) , and their numbers are denoted as |V (G)| and |E(G)| , respectively. A 
path on G is a non-empty graph P(G) = (V ,E) , where V =

{

vi, vi+1, . . . , vj
}

 and 
E =

{

{vi, vi+1}, {vi+1, vi+2}, . . . ,
{

vj−1, vj
}}

 , and all vk values are distinct. The distance 
dG(u, v) between two vertices u and v on G is given by the length (i.e., the number of 
edges) of the shortest path between u and v . Graph G is often represented by square 
matrix A(G) =

[

aij
](

i, j = 1, 2, . . . , |V (G)|
)

 that shows the adjacency between vertices; 
this matrix is called an adjacency matrix, where aij = 1 if 

{

vi, vj
}

∈ E(G), otherwise 
aij = 0 for the vertices vi and vj corresponding to i and j , respectively. Note that aij = 0 
when i and j are identical because self-loops are not assumed.

hci(t) = α(t)exp

(

−
∥

∥rc − r
2
i

∥

∥

2σ 2(t)

)

,

cj(t) = arg min
i∈{1,...,k}

{∥

∥xj −mi(t)
∥

∥

}

,

mi(t + 1) =
∑n

j=1 hcj(t)i(t)xj
∑n

j=1 hcj(t)i(t)
.

hci(t) = exp

(

−
rnd[0.5, 1) ·

∥

∥rc − r
2
i

∥

∥

2σ 2(t)

)

,
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To improve the performance of stochastic-SOM, we newly propose graph-based SOM 
(graph-SOM) clustering. In the graph-SOM, the mapping layer is given by graph G 
represented by the adjacency matrix A(G) . Although in the general SOM, the distance 
between units i and j in the mapping layer is computed by the Euclidean distance 
∥

∥ri − r j

∥

∥ between the corresponding position vectors ri and r j , each unit corresponds to 
a vertex on G and the distance between the units is given by distance dG

(

vi, vj
)

 between 
the vertices vi and vj on G in the graph-SOM. Therefore, the neighborhood function 
hci(t) at time t of the stochastic graph-SOM is given by the following equation.

Evaluation of graph‑SOM clustering results

The clustering result of the stochastic graph-SOM is evaluated on the basis of two 
criteria: prediction accuracy ( Accuracy ) and adjusted Rand index (ARI). The score 
function is defined by the following equation:

where a is a constant parameter that adjusts the weight of ARI for Accuracy and a = 1.0 
is employed as the default setting of eSPRESSO.

Prediction accuracy: accuracy

For a pair of cell samples ci and cj , let di and dj be the true domains to which they belong, 
and let d̂i and d̂j be the domains to which they are estimated to belong by the stochastic 
graph-SOM. Here, assuming that sxy is an element of the adjacency matrix A(G) 
corresponding to the input graph G , the prediction score sij for a pair 

{

ci, cj
}

 is given by 
the following equation

Therefore, the prediction accuracy Accuracy for all cell sample pairs is defined by the 
following equation

where n is the total number of cell samples.

Adjusted Rand index (ARI)

The adjusted Rand index (ARI) measures the similarity between two clustering results 
[61]. Let X = {X1,X2, . . . ,Xm} and Y = {Y1,Y2, . . . ,Ym} be families of sets of cell sam-
ples, where m is the number of domains. The overlap of cell samples between Xi and Yj is 

hci(t) = exp

(

− rnd[0.5, 1) · dG(vc, vi)2
2σ 2(t)

)

.

Score = Accuracy+ a · ARI ,

sij =







1
�

adidj = a
d̂id̂j

�

0
�

adidj �= a
d̂id̂j

� .

Accuracy =
∑

(

n
2

)

i,j sij
(

n
2

) ,
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denoted by nij
(

=
∣

∣Xi ∩ Yj

∣

∣

)

 . The number of cell samples belonging to Xi (resp. Yj ) can be 

represented by using nij as ai =
m
∑

j=1

nij (resp. bj =
m
∑

i=1

nij ). Therefore, ARI can be defined 

by the following equation:

where n is the total number of cell samples. Here, assuming that X  and Y are the true 
family of domains and the family of domains estimated by the stochastic graph-SOM, 
respectively, the similarity between the true domain classification and the estimated 
domain classification can be computed by ARI.

Optimization of cluster allocation of graph‑SOM

When applying eSPRESSO to tissues whose topological structure is unstructured or 
complex, Graph-SOM results often have high ARI and low prediction accuracy because 
ARI itself calculates the clustering accuracy without considering the cell-to-cell adja-
cency between the clusters. Therefore, eSPRESSO introduces an operation to optimize 
the allocation of clusters to the vertices on graph-SOM by swapping the allocation while 
preserving the members of each cluster. The swapping operation occurs on the basis of 
the simulated annealing (SA) strategy [62]. A pair of clusters i and j is selected to be 
swapped according to the selection probability pi,j , which is weighted by the post-swap-
ping accuracy computed in advance.

where zi,j = acci,j−µ

σ
 , and µ and σ are the mean value and the standard deviation of the 

accuracy acci,j for the case that clusters i and j are swapped. m is the number of clusters 
and c is a constant parameter defined by c =

√
m/2 . Once a pair of swap candidates is 

selected, whether or not the swap is adopted is determined according to the following 
adoption probability pSA based on the SA strategy.

where �f  is the difference in accuracy before and after the cluster swapping (i.e., 
abefore − aafter ). Tt is a temperature parameter at the t-th learning step, which exponen-
tially decreases from 1.0 to 0.001. Finally, when clusters i and j are swapped, the centroid 
vectors of the corresponding vertices on the graph-SOM are also swapped.

Optimization of gene set by Markov chain Monte Carlo (MCMC) framework

In order to obtain the spatial discriminator genes (SDGs), eSPRESSO employs Random 
Forest-based feature gene selection method Boruta [63] and replica exchange Markov 
chain Monte Carlo-based gene set optimization.

ARI(X ,Y) =

∑

i,j

(

nij
2

)

−
[

∑

i

(

ai
2

)

∑

j

(

bj
2

)]

/

(

n
2

)

1
2

[

∑

i

(

ai
2

)

+
∑

j

(

bj
2

)]

−
[

∑

i

(

ai
2

)

∑

j

(

bj
2

)]

/

(

n
2

) ,

pi,j =
(

exp
(

zi,j
))c

∑m−1
k=1

∑m
l=k+1

(

exp
(

zk ,l
))c ,

pSA =
{

1
(

�f ≤ 0
)

exp
(

−�f
Tt

)

(�f > 0)
,
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Feature gene selection by Boruta

Kursa and Rudnicki proposed the Boruta method for a Random Forest-based 
algorithm for feature selection [63]. One of the properties of Boruta is to classify 
features into three classes: confirmed, tentative, and rejected, rather than order them. 
In eSPRESSO clustering, we selected from 64 to 2377 confirmed and tentative genes 
as features for each dataset by increasing the value of parameter `maxRuns` in the 
Boruta package of programming language R.

Replica exchange MCMC optimization

After obtaining the feature genes by Boruta, eSPRESSO searches for the optimum 
combination of the feature genes by the replica exchange MCMC framework and 
then outputs the SDGs. The replica exchange MCMC is an extended algorithm of 
MCMC for improving sampling efficiency [37]. In a general simulated annealing 
(SA) algorithm [62], which is one of the optimization algorithms based on MCMC 
sampling, there is only one temperature parameter that determines whether to adopt 
or reject the newly obtained sample, and the probability of being adopted is relatively 
high even for samples with a large energy difference when the temperature is high. 
However, it is difficult to get out of the local minima at a low temperature. As a result, 
the probability of being rejected increases and sampling efficiency decreases. In the 
replica exchange MCMC, multiple systems called replicas with different parameters 
are simulated at the same time, and the states of the replicas are exchanged between 
different temperatures according to the following exchange probability:

where Ek and Tk are the energy and the temperature of replica k , respectively. By 
updating the variables of each replica at their respective temperatures and moving 
on the temperature axis at the same time, its long-term behavior can be regarded as a 
random walk.

In eSPRESSO, sampling in each replica is done by the following MCMC sampling 
algorithm.

(Step 1)	� Let G be an empty set and initialize the score of G with negative infinity and 
let Gb be the feature gene set obtained by Boruta.

(Step 2)	� Select n′ genes from Gb at uniformly random (i.e., according to equal 
probability) and let G′ be the set of n′ genes.

(Step 3)	� Repeat the following procedures T  times.

	 i.	 Generate candidate gene sets G =
{

G
1
cand

,G2
cand

, . . . ,GN

cand

}

 by Gi
cand = G′ ∪

{

gi
}

  

and Gj
cand = G′ \

{

gj

}

 for all gi ∈ Gb \ G′ and all gj ∈ G′.

	 ii.	 Remove gene sets Gi
cand , which are already sampled.

	 iii.	 If G is an empty set, replace gene gj ∈ G′ with another gene gk ∈ Gb \
{

gj
}

 and 
add them to G.

p = min

(

1, exp

(

(

Ei − Ej
)

(

1

Ti
− 1

Tj

)))

,
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	 iv.	 For all Gi
cand , execute the stochastic graph-SOM clustering and compute the 

scores of the clustering results (see the Section Evaluation of graph-SOM clustering 
results for more details).

	 v.	 Define selection probability pi for Gi
cand by

where zi = si−µ
σ

 , and µ and σ are the mean value and the standard deviation of the 

scores si of Gi
cand , respectively. c is a constant parameter and c =

√|G|/2 is employed 
in the computational experiments in this paper.

	 vi.	 Determine whether to adopt or reject Gx
cand according to the adoption probabil-

ity pSA of the SA strategy.

Note that eSPRESSO handles the maximization problem for the score s , so that the 
difference �f  is defined by �f = −(sx − s) , where sx and s are the scores of Gx

cand and 
G , respectively.

	 vii.	 Update G′ by Gx
cand if adopted, and update also G by Gx

cand if the score of Gx
cand is 

larger than that of G.

(Step 4)	� Output G as the optimized gene set.

Gene Ontology (GO) analysis

eSPRESSO generates (sub-)optimal gene sets for topological clustering. We repeated 
eSPRESSO clustering with different random seeds and determined consensus spatial 
or temporal discriminator genes that are found three or more times in ten runs. Then, 
we used biomaRt package [64] in R-4.0.5 to count the numbers of consensus genes and 
all genes assigned to each GO term in “Biological process” and “Molecular function” 
categories. Using phyper function in R, we calculated p-values on the basis of the 
hypergeometric distribution model.

Virtual knockout analysis

To analyze the dependencies of the spatial or temporal discriminator genes, we per-
formed eSPRESSO clustering 100 times with different seeds for the same data by remov-
ing genes in a combinatorial manner, and calculated the mean score. We ranked the 
genes according to the decrease of the mean score to find the most to least influential 
genes for clustering.

Glasso for sparse developmental network estimation

Once we obtained a gene by cell domain matrix by averaging the gene expression 
of consensus gene sets, we inferred a sparse graphical Gaussian model (GGM) of cell 

pi =
(exp(zi))

c

∑N
i=1 (exp(zi))

c
,

pSA =
{

1
(

�f ≤ 0
)

exp
(

−�f
Tt

)

(�f > 0)
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domain network based on gene expression covariance matrix using EBICglasso with 
gamma = 0.5 and nlambda = 1000 in qgraph package [65] in R.

Reconstruction of spatial arrangement by novoSpaRc

To compare the gene expression gradients in models reconstructed by eSPRESSO with 
those obtained by another approach, we reconstructed the mouse developmental heart 
and human developmental pancreas by novoSpaRc [15]. We employed a circle shape 
as a target space with the same number of locations as the number of cell samples 
and reconstructed the tissues using `reconstruct` function with alpha_linear = 0 and 
epsilon = 5e−3, where the human developmental pancreas data were downsampled to 
5000 cells in advance.

Cluster biomarker detection by Seurat

eSPRESSO identifies SDGs or TDGs by graph-based SOM clustering and MCMC 
optimization. As an alternative approach, differential gene expression analysis acquires 
domain-specifically expressed genes without considering the adjacency between 
domains. To compare S(T)DGs and such domain-specifically expressed genes, we 
performed cluster biomarker detection by Seurat [55] using the `FindMarkers` function 
for all datasets. For each dataset, biomarkers with adjusted p-values less than 0.05 and 
log2-fold change greater than 0.25 were collected from each domain. Venn diagrams 
comparing the consensus S(T)DGs identified by eSPRESSO and the cluster biomarkers 
identified by Seurat were generated by the `VennDiagram` package in R. Furthermore, to 
clarify the statistical significance of those S(T)DGs when comparing between domains, 
we performed enrichment analysis of S(T)DGs for the gene lists ranked according to 
the adjusted p-values obtained by the Wilcoxon rank sum test between one domain and 
the other domains for each dataset by using the `fgseaMultilevel` and `plotEnrichment` 
functions in `fgsea` package in R.

Synthetic single‑cell datasets and topology graphs

In order to evaluate the performance of eSPRESSO, we performed additional 
computational experiments using synthetic single-cell datasets. Although eSPRESSO 
requires a set of a gene expression data and a topology graph of cell domains, as far 
as we know, there is no method to artificially create a topology graph on the basis of 
real single-cell dataset. Therefore, first, we created synthetic single-cell datasets by 
using `dyngen` in R package [56] with a standard procedure (i.e., applying `initialise_
model` and `generate_dataset` functions), which can simulate biological data for 14 
predefined transcription factor network models including linear, cycle, bifurcating, 
branching, and disconnected backbones configurations, and then generated the topology 
graphs of cells based on the Pearson correlation coefficients of these gene expression 
data. When generating the topology graphs, we first identified cell clusters by Louvain’s 
clustering [58] for each synthetic single-cell dataset after standard preprocessing by 
Seurat (i.e., applying `NormalizeData`, `FindVariableFeatures`, `ScaleData`, `RunPCA`, 
`FindNeighbors`, and `FindClusters` functions). Finally, we generated the topology 
graphs of cells using the Pearson correlation coefficients of the centroids of identified 
clusters, where the clustering cutoff was set between 0.70 and 0.85 so that the resulting 
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topology graphs hold consistency, i.e., disconnected for disconnected dataset and 
connected for the other datasets.

Impact of misspecification of input topology

In order to clarify the impact of input topology misspecification on the prediction accu-
racy and the ARI, we performed randomization using the synthetic topology graphs. We 
selected five datasets derived from typical dyngen models with linear, cycle, bifurcating, 
branching, and disconnected backbones from the 14 synthetic datasets created in the pre-
vious section. Then, we created ten modified disconnected graphs for disconnected and 
ten connected graphs for the other datasets by reversing the presence or absence of edges 
for each vertex pair according to the randomization probability p , which takes a value 
of 0.1, 0.2, or 0.5. When applying eSPRESSO, we calculated the prediction accuracy and 
the ARI for each synthetic dataset by using the modified topology instead of the original 
topology together with the synthetic expression count matrix as input.

Abbreviations
ARI	� Adjusted Rand index
BMU	� Best matching unit
CPM	� Counts per million mapped reads
ES	� Embryonic stem
FISH	� Fluorescence in situ hybridization
FPKM	� Fragments per kilobase of exon per million mapped reads
GEO	� Gene Expression Omnibus
GGM	� Graphical Gaussian model
GO	� Gene Ontology
iPS	� Induced pluripotent stem
MCMC	� Markov chain Monte Carlo
PCA	� Principal component analysis
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scRNA-seq	� Single-cell RNA-sequencing
SDG	� Spatial discriminator gene
SOM	� Self-organizing map
TDG	� Temporal discriminator gene
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UMI	� Unique molecular identifier
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Additional file 1 Fig. S1. GO mapping of SDGs in Biological Process for mouse E7.0 gastrula embryo. The p-values 
determined on the basis of hypergeometric distribution statistics are shown on top of bars. Fig. S2. Topology graphs 
for 12 datasets used as input for eSPRESSO clustering in this study. Fig. S3. Gene expression gradients in recon‑
structed models by eSPRESSO (upper) and novoSpaRc (lower) for the top three important genes in VKO analysis of 
mouse developmental heart. Fig. S4. Gene expression gradients in reconstructed models by eSPRESSO (upper) and 
novoSpaRc (lower) for the top three important genes in VKO analysis of the human developmental pancreas. Fig. 
S5. GGM raw result by glasso for original 18 cell types at individual stages (left) and induced developmental model 
by reduced 10 cell types (right). Fig. S6. Venn diagrams representing consensus S(T)DGs identified by eSPRESSO and 
cluster biomarkers identified by Seurat, and enrichment plots of the S(T)DGs for the gene lists ranked according to 
the adjusted p-values obtained by the Wilcoxon rank sum test between one domain and the other domains. P.adj 
and NES denote adjusted p-value and normalized enrichment score, respectively. Fig. S7 Synthetic single-cell data‑
set created from a dyngen model with linear backbone of transcription factor module configuration, and a topology 
graph generated from the dataset. a Module network of linear backbone generated by dyngen. b Transcription 
factor and target gene regulatory network generated by dyngen. c UMAP of 1,000 cells of the synthetic dataset. 
Numbers in the legend are the cluster numbers identified by the Louvain method. d Topology graph generated 
from the synthetic dataset. Vertex labels indicate domain names corresponding to the cluster numbers in (c). Fig. S8. 
Topology graphs generated from synthetic single-cell datasets of predefined 14 backbones by dyngen. The dyngen 
parameters for generating each dataset are indicated by Seed, random seed; #TF, the number of transcription factors; 
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#Targets, the number of target genes; and #HK, the number of housekeeping genes. Thresholds indicate the cut-off 
values for generating topology graphs from the correlation networks of identified domains. Fig. S9 Expression 
gradients of SDGs identified by eSPRESSO on topology graphs generated from the synthetic datasets. Vertex colors 
indicate gene expression levels (Z-score) of the cluster centroids. Fig. S10. Impact of misspecification of input topol‑
ogy. Each plot shows the mean values of maximum scores (= accuracy + ARI), maximum accuracies, and maximum 
ARIs, respectively, and 95% confidence intervals for ten experiments with increasing randomization probability. Fig. 
S11. Venn diagrams representing input genes to Boruta selected on the basis of the frequency of nonzero expres‑
sion in all cells as well as the standard deviation (eSPRESSO) and highly variable genes by Seurat (Seurat).

Additional file 2 Movie S1. The final topological clustering result for the 83 sections using 36 consensus SDGs for 
mouse E7.5 gastrula embryo.

Additional file 3 Table S1. 66 consensus SDGs for E9.5 mouse liver and their GO enrichment analysis.

Additional file 4 Movie S2. The final topological clustering result for 1,415 cells with 66 consensus SDGs for mouse 
liver lobule structure data (left), and 1,358 spots with 70 consensus SDGs for PCW 9 human embryonic heart data 
(right).

Additional file 5 Table S2. 70 consensus SDGs for PCW 9 human heart and their GO enrichment analysis.

Additional file 6 Movie S3. The final topological clustering result for the 3,331 single-cells using 20 consensus 
SDGs for mouse E9.25 embryonic heart (top left). Topological clustering results for individual VKO experiments (Des−, 
Ptma−, or Ccnd2−) and multiple VKO experiments (Des−Ptma−, and Des−Ptma−Ccnd2−) are also shown.

Additional file 7 Table S3. 20 consensus SDGs for E9.25 mouse heart and their GO enrichment analysis.

Additional file 8 Movie S4. The gene expression distribution of Des, Ptma and Ccnd2 genes. Des and Ptma are 
mainly up-regulated in OFT and pSHF domains, respectively, and down-regulated vice versa, whereas Ccnd2 is 
mainly up-regulated in LV and pSHF domains but down-regulated in the middle of both, i.e., in Atrial domain.

Additional file 9 Movie S5. The final topological clustering result for the 20,205 single-cells using 83 consensus 
TDGs for 10 cell types in human developmental pancreas organoids (s3–s6). The gene expression distribution of the 
three most influential genes (GCG​, ISL1, and SST) revealed by VKO analysis.

Additional file 10 Table S4. 83 consensus TDGs for s3–s6 human developmental pancreas organoids and their GO 
enrichment analysis.

Additional file 11 Table S5. Virtual knockout genes and performances of pancreas developmental topology recon‑
structions by running topological clustering 100 times (score = accuracy + ARI).

Additional file 12 Table S6. Datasets and performances of 3D structure reconstructions with highly variable genes 
selected by Seurat (score = accuracy + ARI).
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