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Small scale desalination technologies: A comprehensive review 

Hamed Kariman, Abdellah Shafieian, Mehdi Khiadani * 

School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth 6027, WA, Australia   

H I G H L I G H T S  

• Small-scale desalination system comprehensively reviewed. 
• Cost of water production in large and small desalination systems was compared. 
• The technological usage of small-scale desalination technologies was compared. 
• Challenges and future perspectives of small-scale desalination systems were highlighted.  
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A B S T R A C T   

In recent decades, problems related to fresh water has become a very important issue for humans. Small-scale 
desalination (SSD) systems, besides large-scale desalination (LSD) systems, fulfil an important role in meeting 
freshwater demand by eliminating the cost of transmission and have the advantage of treating water on-site. In 
this study, for the first time, a comprehensive review of previous studies has been carried out on SSD systems 
(less than 25 m3/d water production). These systems are powered using renewable, non-renewable or hybrid 
sources of energy, incorporating different treatment technologies such as: reverse osmosis (RO); electro dialysis 
(ED); capacitive deionization (CDI); membrane desalination (MD); humidification–dehumidification processes 
(HDH); multi-effect desalination (MED); and hybrid technologies, including a combination of RO-UF, RO-ED and 
RO-MED. The advantages and drawbacks of the systems that operate using fossil fuels and renewable energy (RE) 
systems have been studied, considering membrane, evaporation and salinity features. Among these, solar-based 
desalination systems are the most popular. Accordingly, numerous studies on RO, ED, MD, HDH and MED 
technologies for solar-SSD systems have been compared in terms of their freshwater productivity, energy con-
sumption and cost of produced water. Attention has also been paid to SSD systems powered via wind, 
geothermal, tidal and hybrid energies. It has been determined that the RO system holds the largest market share 
in both non-renewable (25 %) and renewable energy (40 %) systems. In addition, a comparison of low-cost SSD 
and LSD systems shows that SSD systems are economically competitive with LSD systems. The outlook for the 
future shows that the use of SSD systems powered using non-renewable energy is likely to decrease, except in 
areas where energy costs are very low. In addition, the use of solar-SSD systems is likely to increase, where 
systems that operate solely on wind or geothermal energy will be replaced by hybrid renewable energy systems.   

1. Introduction 

About 97 % of available water on earth is saline, whereby it is not 
suitable for domestic and agricultural consumption [1–8]. One of the 
most important reasons for decreases and scarcity of freshwater re-
sources is the world's growing population and its increased demand for 
freshwater [9]. It was estimated that by 2014, about 40 % of the world's 
population would experience freshwater shortage, with this amount to 
be at 25.3 % (2 billion people) in 2020 [10], and in 2022 it reached to 

about 27.5 % (2.2 billion people) [11]. With advancements in technol-
ogy, saline water in seas and oceans are being considered as essential 
sources for meeting current freshwater demand [12]. Many methods and 
technologies have been proposed to solve global water difficulties, 
including: water recycling and reuse, in addition to implementing 
advanced wastewater treatment technologies [13]; rainwater harvest-
ing, collecting and storing rainwater for later usage [14]; use of efficient 
irrigation techniques like drip irrigation and precision agriculture [15]; 
utilizing smart water management technologies like sensors, data 
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analytics and remote monitoring [16]; raising awareness about the 
importance of water conservation through education [17]; and desali-
nation systems, where among all these techniques, desalination is one of 
the most important and efficient methods [18]. According to the Inter-
national Desalination Association (IDA), the number of desalination 
plants around the world totals approximately 18,436 units, providing 
approximately 92.5 million m3/d of fresh water for the populations that 
live around them [19–24]. 

While there are different types of desalination systems overall, they 
are generally divided into thermal and membrane systems. Dominant 
thermal systems can then be divided into multi-effect desalination 
(MED), multi-stage flash (MSF), humidification–dehumidification pro-
cesses (HDH) and vapor compression (VC). Membrane processes systems 
can be divided into reverse osmosis (RO), electro dialysis (ED), mem-
brane desalination (MD) and capacitive deionization (CDI) [25–30]. 
Additionally, there are other types of desalination systems, such as 
freezing desalination (FD) [31–33], hydrate formation [34,35], forward 
osmosis (FO), adsorption desalination (AD) and pressure reverse 
osmosis (PRO), which are not yet sufficiently developed and are in initial 
stages of research [36–38]. 

Large-scale desalination (LSD) systems have developed considerably 
in recent decades, accounting for a large portion of the global market, 
and for global freshwater production capacity. In contrast, SSD systems 
represent a smaller share of the global market [39]. Additionally, 
household and agricultural uses, along with industrial uses, represent a 
very high share of usage [40]. The domestic and agriculture sectors 

require a large amount of fresh water, whereby they should be given 
more attention. In addition to this, human water consumption remains 
lowest when compared to animals and irrigation sectors. Further, the 
recommended salt concentration for irrigation is the lowest (500 mg/l) 
as compared to others [39,41,42]. 

In terms of freshwater productivity, desalination systems can be 
divided into three categories, large-scale desalination (LSD) systems, 
medium-scale desalination (MSD) systems and small-scale desalination 
(SSD) systems. Systems with a freshwater production rate of less than 25 
m3/d fit into the category of SSD systems [43–46]. LSD plants have 
many environmental issues, and also require a high amount of energy for 
transportation and distribution. The high demand of the domestic and 
agricultural sectors, the environmental problems of LSD plants, and the 
energy required to transfer and distribute fresh water to residential areas 
have led to considerations for SSD freshwater production systems being 
deployed to residential and rural communities. Within these systems, 
effluent and domestic grey water can also be treated and used. In 
addition, these systems are reliable, simple to operate, and can be 
located in isolated communities without requiring high labour costs 
[44,45,47,48]. The water production rate of SSD systems can vary be-
tween a few l/d to several m3/d. Factors that influence the choice of SSD 
systems include technical and social considerations, as well as the 
number of consumers and economic considerations. Factors influencing 
the cost of SSD systems include initial purchase, operational and 
maintenance costs, which are quite different from LSD systems [49–51]. 
The main technologies of SSD systems include reverse osmosis (RO), 
membrane desalination (MD), humidification-dehumidification (HDH), 
electro dialysis (ED), multi effect distillation (MED), and Capacitive 
deionization (CDI) [52–62]. 

Desalination is an intensive energy process that depends on the 
quality of water resources. Table 1 shows the amount of energy that is 
needed to convert salted water to distilled water [63,64]. Surface waters 
with 0.37 kWh/m3 need the least amount of energy, while seawater with 
2.58–8.5 kWh/m3 needs the highest amount of energy [63,64]. 

Statistics show that only 1 % of desalination systems are powered by 

Table 1 
Energy requirement for treating different water sources [63,64].  

Water source Energy (kWh/m3) 

Surface water (lake or river) 0.37 
Groundwater 0.48 
Wastewater treatment 0.62–0.87 
Wastewater reuse 1.0–2.5 
Seawater 2.58–9  

Fig. 1. The schematic of a mobile RO-SSD system - reproduced from [82].  
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renewable energy (RE). Effective reasons for the use of RE in LSD sys-
tems include reduced energy costs, less dependency on fossil fuels and 
reduced environmental pollution. In addition, the cost of fuel transfer, 
risks, and uncertainties to deliver fuel to remote areas have led to sig-
nificant improvements in the design and use of SSD systems that depend 
on RE [39,53,65–70]. 

The main purpose of this study is to extensively review and compare 
SSD systems in terms of technologies, energy sources, rates and costs of 
water production. This study will also cover advantages and drawbacks, 
target population, and climate conditions for each system of operation. 
To the authors' knowledge, no review to date has been conducted to 
analyze and compare SSD systems regarding their technologies, energy 
sources, production rates and cost of water production. SSD systems are 
divided into two categories: non-renewable and renewable, determined 
in terms of their energy source. There are many types of SSD systems, 
but some are currently in their research phase, whereby limited exper-
imental results are available. Accordingly, the main focus of this review 
is on well-known systems that are popular and have been developed and 
used experimentally or practically. Therefore, various evaporative and 
membrane SSD systems that widely use fossil fuels, electricity or 
renewable energy, such as solar, wind, geothermal, tidal and hybrid 
energies have been reviewed and compared in this study. These systems 
are also compared with LSD in terms of their cost of water production. 
Finally, the future of SSD systems has been explored, whereby tech-
nologies that may emerge in future have also been discussed. 

2. Small-scale desalination systems powered by non-renewable 
energy 

There are many SSD systems that use fossil fuels, such as gas, gaso-
line and electricity, to convert saline water to fresh water. In this section, 
several types of these systems are studied and compared in terms of their 
technology, energy consumption and water production. 

2.1. Reverse osmosis (RO) based systems powered by non-renewable 
energy 

RO desalination is a water purification process that removes salt and 
other impurities from seawater or brackish water, converting it into 
freshwater suitable for drinking or industrial use. The process relies on a 
pump to overcome natural osmotic pressure and force water through a 
semi-permeable membrane, allowing water molecules to pass through 
while blocking larger ions, molecules and contaminants [71]. RO sys-
tems possess some advantages and disadvantages, On the one hand, RO 
systems can efficiently remove salts, minerals and impurities, resulting 
in the production of high-quality, potable water that is safe for drinking 
and various applications and small-scale sizes. Further, RO systems are 
suitable for a diverse range of water sources, such as seawater, brackish 
water and wastewater, and can be easily scaled to meet varying water 
demands, making them adaptable for small-scale applications. On the 
other hand, RO systems have several disadvantages, which include: 
generating concentrated brine as a by-product, posing challenges in 
terms of proper disposal and potential environmental impacts. Further, 
the semi-permeable membranes utilized in RO can become fouled by 
organic matter, minerals and other substances, whereby they require 
regular maintenance, cleaning and replacement, which in turn leads to 
additional costs [42,72]. 

Li et al. have introduced a RO-SSD system to purify water in a lab-
oratory model using electricity to power their system. The results of 
using this laboratory system showed that this system was able to pro-
duce 0.3 l/d of fresh water with 0.5 cm2 membrane area [73,74]. Gar-
ofalo et al. have successfully manufactured a membrane with a length of 
30 cm for use in a vacuum membrane desalination unit, which showed a 
best performance able of producing 1800 l/d of distilled water. In 
addition, scanning electron microscope (SEM), X-ray diffractometry 
(XRD), analyzes showed no structural changes after prolonged exposure 
to saline solutions [75,76]. 

RO-SSD systems have been used in parts of Tunisia, where one of 

Fig. 2. The schematic of the FLERO system for a sample house - reproduced from [85].  

Table 2 
The prominent RO-SSD systems and their features.  

Ref. System technology. Production (l/d). Energy consumption. (kWh/m3) Membrane Area (m2) Cost of fresh Water production. ($/m3) 

(Mohamed et al., 2005 [78]) RO  2200  3.7 1.27 3.92 
(Li et al., 2018 [82]) RO  4608  9.13 12 4.5 
(Lee et al., 2019 [83]) RO  15,840  0.5 2.5 – 
(Choi et al., 2019 [85]) RO  8800  0.1 2.6 0.477 
(Mansour et al., 2020 [88]) RO  2400  0.937 2.8 – 
(Song et al., 2022 [89]) RO  6000  3.62 – –  
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these systems powered with electricity has been shown to produce 100 
l/d of fresh water with a unit recovery rate of 25 % The salt rejection in 
this system was more than 75 % for monovalent ions, and 95 % for 
divalent ions [77]. Mohamed et al. Have introduced an RO-SSD unit in 
Athens that produced 2200 l/d of fresh water using battery and elec-
tricity, with an energy consumption of 3.7 kWh/m3 [78]. Katz et al. have 
applied a modified membrane bioreactor (MBR) treatment as a pre- 
treatment unit for RO-SSD systems, concluding that the MBR chemical 
coagulation process could technically be considered a pre-treatment 
process for household effluents before applying RO-SSD systems for 
producing soft effluents with low organic matter and nutrient content. 
This RO-SSD system produced approximately 650 l/d of fresh water and 
removed 99 % of phosphate content [79]. Researchers at the University 
of California, Los Angeles, have developed a portable RO-SSD elec-
tricity-powered system that can produce 23,000 l/d of freshwater [80]. 
Gao et al. have proposed an RO-SSD electricity-powered system that can 
be directly integrated with an ultrafiltration (UF) pre-treatment unit. 
Their system had a 50 m2 UF membrane area, where the benefits of this 
design included the elimination of the need for an intermediate UF filter 
tank and reverse wash pump, increasing the system's operational flexi-
bility. Accordingly, this system was able to produce approximately 75.5 
l/d of fresh water [81]. 

Rising water consumption in India, especially in the coastal areas of 
the country, has led to the proposal of a fuel-powered RO-SSD system 
able to produce 4608 l/d of fresh water, consuming 8 kWh/m3 of energy. 
Further, this system had a 12 m2 membrane surface area. The schematic 
of this mobile RO-SSD system is presented in Fig. 1 [82]. 

Lee et al. have examined a flexible RO-SSD system using a pressure 
booster pump and partial concentrated recycling, with a focus on 

operational flexibility and specific energy consumption. They performed 
operational analysis, combined with experimental evaluation using a 
small-scale helical wound system. The amount of freshwater production 
in this system was 15,600 l/d [83]. Further to this, they also tested a 
semi-batch RO-SSD system through process modelling and a small-scale 
screw pilot with a single-pass RO-SSD system. The system had a 2.5 m2 

active membrane surface and 99.5 % salt rejection, producing 15,840 l/ 
d of fresh water, whereby its energy usage was 0.5 kWh/m3 [84]. Choi 
et al. have studied the feasibility of water treatment with a small com-
munity resource using a new portable RO unit to remove nitrate and 
reduce salinity. Their system had 2.6 m2 of membrane surface area with 
a water production rate of 8800 l/d, salt rejection of 99 % and energy 

Fig. 3. The schematic of ED-SSD system - reproduced from [95].  

Table 3 
The prominent ED-SSD systems and their features.  

Ref. System 
technology. 

Production 
(l/d). 

Energy 
consumption. 
(kWh/m3) 

Effective 
surface 
area. (m2) 

(Sadrzadeh and 
Mohammadi, 
2008 [101]) 

ED  2160 – 1.56 

(Pilat. 2003 
[98]) 

ED  3600 2.5 – 

(Ortiz et al., 
2005 [99]) 

ED  18,000 0.84 4.4 

(Banasiak et al., 
2007 [100]) 

ED  4320 – 7.28  

Fig. 4. The schematic of the CDI-SSD system - reproduced from [72].  
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consumption of 0.1 kWh/m3. The schematic of the FLERO system for a 
sample house is shown in Fig. 2 [85]. 

Walha et al. have reported the possibility of producing drinking 
water from saline water using NF, RO and ED processes in the southern 
part of Tunisia. Two water samples were analyzed, and the results were 
reported. The NF process was insufficient to obtain drinking water from 
one of the samples due to the leakage of the TDS. The RO process was 
efficient, where it drastically reduced the mineral content of the raw 
water (80 % rejection). After purification, the obtained permeable water 
had a low TDS value, within the WHO requirement. The final fresh water 
obtained from both samples had a good level of TDS [86]. 

Thampy et al. have explored an RO-SSD system with freshwater 
production and energy consumption rates of 182 l/d and 7.8 kWh/m3, 
respectively. Their system was then combined with an ED system, which 
was able to produce 1220 l/d with an energy consumption of 9 kWh/m3 

[87]. Mansour et al. have also enhanced the efficiency RO-SSD systems 
with an Energy Recovery System. The water production of their system 
was 2.4 m3/d, the membrane active area in this system was 2.8 m2, and 
the energy consumption of this system after recovery was 0.937 kWh/ 
m3 [88]. Song et al. have introduced an SSD-RO system with a three- 
piston pump energy recovery device, whereby this system had 6000 l/ 
d of water production and 3.62 kWh/m3 of energy consumption [89]. 

A comparison of the most noticeable RO-SSD in terms of freshwater 
production, energy consumption and other features is reported in 
Table 2. 

As shown in Table 2. among the studied RO-SSD systems, the system 
presented by Lee et al. had the highest freshwater production rate, at 
15,840 l/d [83]. Additionally, the system developed by Choi et al. had 
the lowest energy consumption and the lowest cost of water production, 
at 0.1 kWh/m3 and 0.477 $/m3, respectively [85]. 

2.2. Electrodialysis (ED) based systems powered by non-renewable energy 

ED is another freshwater production system that utilizes different 
structures. The ED desalination system consists of a series of ion- 
selective membranes, typically made of synthetic materials. These 
membranes have selective permeability, allowing either positive ions 
(cations) or negative ions (anions) to pass through, while blocking 
opposite charged ions. When an electric field is applied across the cell 
stack, positive ions are attracted to the negative electrode (cathode) and 
negative ions are attracted to the positive electrode (anode). As a result, 
cations move through the cation-exchange membranes towards the 
cathode, and anions move through the anion-exchange membranes to-
wards the anode. As the water flows through the electrodialysis cells, the 
ions are effectively removed from the water, leaving behind purified 
water with reduced salt content in the product stream [90]. The asym-
metrical design requires a pressure of 2–3 bar, while the primary particle 
purification cartridge system can be operated by approximately 0.3–1 
bar pressure. Therefore, pumps are not required for electrodialysis sys-
tems in order to boost pressure under normal household conditions 
[45,91,92]. This technique provides various advantages, where firstly, 
ED desalination typically consumes less energy compared to other 
desalination technologies, making it more environmentally friendly. 

Secondly, ED systems can be easily adjusted to meet different water 
demands, making them suitable for a wide range of applications and 
small-scale sizes. Lastly, unlike other desalination methods, ED does not 
experience membrane fouling issues, reducing the frequency of cleaning 
required. However, this technique does have some disadvantages, where 
the ED desalination process can be intricate, requiring precise control of 
electrical currents and ion-selective membranes. Further, despite lower 
fouling concerns, ED systems still require regular maintenance and the 
initial capital costs can be relatively high [93,94]. The schematic of the 
ED-SSD system is shown in Fig. 3 [95]. 

Nayar et al. have tested an ED system that could produce 288 l/d of 
fresh water with a recovery rate of 80 %. The cost of their system was 
estimated to be $270, which is low compared to an RO system [96]. 

In order to enhance research and development in the market for SSD 
systems, Pilat et al. has assessed an ED-SSD system and found for a 
freshwater production rate of 1200 l/d, the required energy was 
1.2–2.5kWh/m3 [97]. In another study, the authors increased the water 
productivity of their system to 3600 l/d with an energy consumption of 
approximately 2.5 kWh/m3 [98]. Due to issues of water scarcity in 
southeastern Spain, Ortiz et al. have identified an ED-SSD system with 
an active membrane area of 550 cm2 and a total effective area of 4.4 m2. 
The freshwater production of this system was 18,000 l/d, with an energy 
consumption of 0.84 kWh/m3 [99]. To show the ability of ED-SSD sys-
tems compared with RO-SSD and other types of SSD systems, Banasiak 
et al. have investigated an ED-SSD model with an effective membrane 
area of 7.28 m2, where it produced 156 l/d with a recovery rate of 90 % 
[100]. Further, Sadrzadeh and Mohammadi have performed laboratory 
analysis of an ED-SSD system with an active membrane area of 1.56 m2, 
where they were able to produce 2160 l/d of distilled water with a re-
covery rate of 84 % [101]. 

The ED-SSD system has also been used to address freshwater 
shortage problems in Australia. Accordingly, a system was applied with 
7 cation exchange membranes and 6 anion exchange membranes, each 
one having a 58 cm2 surface area, and producing a water production rate 

Table 4 
CDI-SSD systems and their features.  

Ref. Electrode area 
(cm2) 

Energy consumption. (kWh/ 
m3) 

Production (l/ 
d) 

Applied voltage 
(V) 

Removal efficiency 
(%) 

Electrode materials 

(Tsouris et al., 2011 
[112]) 

110 – 115  1.2  35 Mesoporous carbon 

(Chang et al., 2011 [113]) 13 – –  1.2  34 Activated carbon- 
TiO2 

(Haro et al., 2011 [114]) – – –  1  20 Carbon xerogel 
(Jung et al., 2007 [115]) 128 – 1150  1.5  6.3 Nano‑carbon aerogel 
(Liang et al.,2013 [111]) 31 – 23  1.2  90 Activated carbon fiber 
(Lee et al., 2019 [116]) 400 0.12 15  1.2  92 Activated carbon fiber  

Table 5 
Energy requirement of membrane-based SSD systems.  

Ref. Energy requirement 
(kWh/m3) 

Desalination technology 

(Metcalf and Eddy, 2014 
[117]) 

0.46–0.65 Reverse osmosis (RO) with 
energy recovery. 

(Metcalf and Eddy, 2014 
[117]) 

1.10–2.20 Electro dialysis (ED) 

(Farmer et al., 1997 [118]) 0.137 Capacitive deionization 
(CDI) 

(Welgemoed and 
Schutte,2005 [119]) 

0.390 Capacitive deionization 
(CDI) 

(García-Quismondo et al., 
2014 [120]) 

0.1 Capacitive deionization 
(CDI) 

(Yu et al., 2016 [121]) 0.34 Capacitive deionization 
(CDI) 

(Lee et al., 2019 [116]) 0.32 Capacitive deionization 
(CDI) 

(Długołe˛cki and van der 
Wal, 2013 [122]) 

0.26 Membrane capacitive 
deionization (MCDI)  
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of 4320 l/d. The recovery rate of this system was 94.9 % [102]. Shah 
et al. have analyzed an ED-SSD system with a freshwater production rate 
of 15 l/h and a recovery rate of 90 %. Their system also had an energy 
consumption of 2.5 kJ/l and an active membrane surface of 85 cm2. The 
cost of water production in their system was 0.17 $/m3 [95]. 

Prominent ED-SSD systems are reported in Table 3, comparing 
freshwater production, energy consumption and other features. 

As shown in Table 3, the system developed by Ortiz et al. had the 
highest freshwater production rate of 18,000 l/d and the lowest energy 
consumption rate of 0.84 kWh/m3 [99]. 

2.3. Capacitive deionization (CDI) based systems powered by non- 
renewable energy 

Capacitive deionization (CDI) is a potential method for removing salt 
from an aqueous solution using a two-layer electric device called a flow 
capacitor. In this technique, when the electrode is electrically charged 
by an external power supply, positively or negatively charged particles, 
such as anions and cations, are attracted to the electrical double layer at 
the solution-electrode interface. Once the electrode is saturated, it can 
be easily regenerated by eliminating the potential difference between 
the electrodes. In these systems, solutions are passed through a number 
of carbon aerogel electrodes, each with a very high specific surface area 
and a very low electrical resistance. After polarization, the non-reducing 

and non-oxidizable ions are removed from the electrolyte by an imposed 
electric field, and are stored in dual electrical layers formed at electrode 
surfaces. Lastly, the effluent from the cell is treated with a stream of 
purified water. This process is also able to remove other types of im-
purities at the same time. For example, dissolved heavy metals and 
suspended colloids can be removed by electrical deposition and elec-
trophoresis, respectively. CDI carbon aerogel has several potential ad-
vantages over other conventional technologies. Unlike ion exchange, no 
acid, base or saline solution is needed to rebuild the system. Recon-
struction is done by electrically draining the cell so that no secondary 
waste is generated. Unlike thermal processes such as evaporation, CDI 
carbon aerogels are much more energy efficient than RO or ED systems, 
since no high-pressure membrane or pump is required. However, 
compared to other SSD systems such as RO or ED, these systems have 
lower water recovery and higher electrode discharge time, whereby low 
recovery rate increases the cost of water desalination and causes more 
environmental pollution. The schematic of a CDI-SSD system is pre-
sented in Fig. 4 [27,103–108]. 

Wang et al. have distilled various saltwater solutions using the CDI 
method, with a system operating at 1.2 V and the amount of water 
produced was 2880 l/d [109]. 

The cations in saline water that enter the cell through the spacer 
channel are adsorbed to the negatively charged porous carbon electrode 
(cathode). Simultaneously, the anions are absorbed into the anode 
[110]. Several CDI-SSD systems were examined in several studies and 
their results were compared. Their comparison considering different 
influencing factors is presented in Table 4 [111]. 

As shown in Table 4, systems with activated carbon fiber electrodes 
have higher salt removal efficiency. 

Table 5 compares the energy consumption for several membrane- 
based SSD systems including RO, ED and CDI. Overall, CDI systems 
consumed less energy than ED and RO systems. 

2.4. Membrane desalination (MD) based systems powered by non- 
renewable energy 

Membrane distillation (MD) is a developing membrane technology 
that relies on vapor pressure difference across a porous hydrophobic 
membrane. Due to this characteristic, only volatile vapor molecules can 
pass through the membrane, while the feed liquid that directly touches 
the membrane must be prevented from entering the dry pores of the 
hydrophobic membranes. The main types of membrane desalination 
systems are Direct Contact Membrane Distillation (DCMD), Air Gap 
Membrane Distillation (AGMD), Vacuum Membrane Distillation (VMD), 

Fig. 5. (A) MD-SSD desalination technique, (B) DCMD, (C) SGMD, (D), VMD, and (E) AGMD [141].  

Table 6 
The most efficient MD-SSD systems.  

Ref System 
technology 

Production 
(l/d) 

Energy 
consumption 
(kWh/m3) 

Membrane 
area size 
(m2) 

(Criscuoli et al., 
2013 [137]) 

VMD  3000  130  5 

(Mohamed et al., 
2017 [139]) 

VMD  1200  700  6.4 

(Jia et al., 2021 
[140]) 

VMD  8000  748  65.6 

(Duong et al., 
2015 [143]) 

DCMD  1800  2000  5 

(Woldemariam 
et al., 2016 
[145]) 

AGMD  720  875  4.6 

(Kyu Lee et al., 
2020 [147]) 

AGMD  10,000  182  155.5 

(Elsheniti et al., 
2023 [141]) 

SGMD  411  11  1.17  
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and Sweep Gas Membrane Distillation (SGMD) [123–125]. DCMD sys-
tems involve a hydrophobic membrane for direct contact with hot saline 
water, allowing water vapor to pass through and leaving impurities 
behind [126]. AGMD systems are similar to DCMD systems but add an 
air gap to improve heat and mass transfer control [127]. VMD systems 
uses a vacuum on the permeate side to draw water vapor through the 
membrane, where they are suitable for various feedwater salinities 
[128]. SGMD systems employ a sweep gas to carry away water vapor, 
enhancing efficiency for high salinity applications [129]. MD systems 
provide a multitude of benefits, encompassing superior water quality 
aimed at efficiently eradicating salts, minerals and impurities. This 
endeavor leads to the creation of exceptional potable water. Addition-
ally, MD systems exhibit remarkable versatility, as they can be adeptly 
tailored to accommodate diverse water sources, such as seawater, 
brackish water and wastewater. This adaptability renders MD systems 
highly suitable for effectively mitigating varied water scarcity scenarios 
[130,131]. 

Nevertheless, this approach does possess a number of drawbacks, 
encompassing energy intensity, which in turn leads to the substantial 
consumption of significant energy quantities and results in elevated 
operational expenses. Furthermore, the approach is marked by 
complexity, demanding meticulous management of diverse operational 
parameters. Initial capital costs also pose a challenge, possibly entailing 
substantial upfront financial investments. Additionally, the generation 
of concentrated brine as a byproduct involves requirements of proper 
disposal to avert potential environmental repercussions [132,133]. To 
delve into MD-SSD systems, a comprehensive analysis of several 
research studies was undertaken. For instance, Elmarghany et al. have 
devised a laboratory-based MD-SSD system possessing the capacity to 
generate 11 l/d of water. This system employed a membrane area of 
0.02 m2 and incurred an energy consumption of 1037 kW h/m3 [134]. 
Zhao et al. have conducted an inquiry into a multi-stage VMD-SSD 
system. Their particular configuration encompassed a membrane area of 
5 m2 and exhibited the capacity to yield 1000 l/d, accompanied by a 
GOR of 1.6 [135]. Criscuoli et al. have reported a VMD-SSD system with 
the capability to generate 54 l/d of water, utilizing a membrane area of 
0.18 m2 [136]. Continuing their investigation, the authors subsequently 
introduced an additional VMD-SSD system with the capability to 
generate 3000 l/d of water, employing a membrane area of 5 m2, 

yielding an energy consumption of 130 kW h/m3 [137]. Naidu et al. 
have introduced a VMD-SSD system exhibiting the capacity to yield 60 l/ 
d of water and utilizing a membrane area of 0.16 m2 [138]. In another 
research study, Mohamed et al. introduced a VMD-SSD system with the 
ability to produce 1200 l/d of water, with a membrane area of 6.4 m2 

and energy consumption of 700 kW h/m3 [139]. Jia et al. have pre-
sented a VMD-SSD system on a larger scale and with enhanced capacity, 
where their system demonstrated the potential to manufacture 8000 l/ 
d of water, utilizing a membrane area of 65.6 m2, alongside an energy 
consumption of 748 kW h/m3 [140]. Elsheniti et al. have introduced an 
SGMD-SSD system with the capacity to generate 411 l/d of water. This 
system incorporated a membrane area of 1.17 m2 and involved an en-
ergy consumption of 11 kWh/m3, whereby the cost of water production 
in this system was 1.3 $/m3 [141]. The schematic of all the configura-
tions of MD-SSD systems is shown in Fig. 5 [141]. 

Song et al. have reported on a DCMD-SSD system encompassing a 
membrane area of 0.66 m2, yielding 871 l/d of water production [142]. 
Duong et al. have developed a high-capacity DCMD-SSD system capable 
of producing 1800 l/d of water, with a membrane area of 0.5 m2 and an 
energy consumption of 2000 kWh/m3 [143]. Mabrouk et al. have re-
ported an additional DCMD-SSD system demonstrating the capability to 

Fig. 6. The schematic of HDH packed-bed cross-flow [163].  

Table 7 
The most efficient HDH-SSD systems.  

Ref System 
technology 

Production 
(l/d) 

Energy 
consumption 

Features 

Ref 
(kW) 

(kWh/ 
m3) 

(Agouz, 
(2010) 
[160]) 

HDH  197  5.8  706  • Cost of water 
production 
was 115 
$/m3 

(Narayan 
et al., 
(2013) 
[161]) 

CAOW- 
HDH  

700  12.7  435  • The GOR in 
this system 
was about 4 

(Sharqawy 
et al., 
(2014) 
[162]) 

HDH  240  2.98  298  • The GOR in 
this system 
was about 
2.19  
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280 l/d of water, employing a membrane area of 0.09 m2 [144]. Wol-
demariam et al. have investigated a AGMD-SSD system that has the 
ability to produce 720 l/d of water with a membrane area of 4.6 m2 and 
an energy consumption of 875 kWh/m3, reporting the cost of water 
production with this system to be 34.5 $/m3 [145]. 

Khalifa and Alawad have introduced a laboratory-grade AGMD-SSD 
system showcasing the potential to generate 12 l/d of water. Their 
system encompassed a membrane area of 0.007 m2 and incurred an 
energy consumption of 10 kWh/m3 [146]. Kyu Lee et al. have presented 
an AGMD-SSD system with a greater production capacity, yielding 
10,000 l/d of water. Their system featured a membrane area of 155.5 m2 

and incurred an energy consumption of 182 kWh/m3 [147]. Pawar et al. 
have introduced an additional AGMD-SSD system with the ability to 
generate 1497 l/d of water, utilizing a membrane area of 26 m2 [148]. 
The most efficient MD-SSD systems are summarized in Table 6. 

As depicted in Table 6, the system introduced by Kyu Lee et al. ex-
hibits the largest membrane surface area and the highest production 
rate, reaching 155.5 m2 and 10,000 l/d, respectively [147]. Further to 
this, the reporting system detailed by Elsheniti et al. presents the most 
economical energy consumption figure, measuring at a value of 11 kWh/ 
m3 [141]. 

2.5. Humidification-dehumidification (HDH) based systems powered by 
non-renewable energy 

The humidification–dehumidification process (HDH) is an inter-
esting desalination process, one that can be used for decentralized 
desalination purposes. This technique has various advantages such as 
flexibility in capacity, medium installation cost, simplicity, possibility of 
using low thermal energy and the possibility of limited production. The 
thermodynamic cycle used in HDH systems is similar to the natural rain 
cycle, where water vapor is evaporated from saline water into air (which 
acts as a carrier gas) and condenses once the humid air cools. There are 
two main components of this system, a humidifier and a dehumidifier, in 
which air and water experience a similar cycle. A direct-contact dehu-
midifier is used for direct contact to humidify the carrier gas stream, 
whereas an indirect dehumidifier dehumidifies water from humid air. 
Between the two components, a heater, which may heat the air or water, 

is added to guide the process. Various studies have shown that the 
amount of water production, the difference in vapor content, and the 
moisture efficiency of the system are strongly dependent on the tem-
perature of the saline water in the evaporator chamber, the headwater 
difference and the air velocity [26,149–154]. Further to this, HDH sys-
tems are generally divided into two categories: closed-air open water 
(CAOW) and closed-water open air (CWOA), whereby each is divided 
into air-heated and water-heated subsets. The air cycle in these systems 
can be natural or via a mechanical device [155–157]. Eslamimanesh 
et al. have created a cost analysis of an HDH-SSD system and an RO-SSD 
system, concluding that: 1) the HDH process is a simple and inexpensive 
technology, suitable when some equipment such as membranes are not 
available; 2) RO-SSD units are more suitable for domestic use than HDH- 
SSD units due to the low space occupied by the equipment; 3) it is more 
convenient to use an HDH-SSD device when there is no energy cost; 4) 
for laboratory purposes where the properties of freshwater such as TDS 
are very important, it is better to use the RO method in which these 
properties can be controlled by carefully selecting the membranes; and 
5) for industrial use, the choice of process depends on the economic 
study of the target capacity [158]. 

Amer et al. have studied an HDH-SSD system and concluded the 
water production rate to be 139 l/d at 85 C0 using wooden slats and 
forced air circulation [159]. Agouz has reported an HDH-SSD system 
that consumes 706 kWh/m3 of electricity, and following economic 
assessment, reported that the system could produce 197 l/d of fresh 
water at a cost of 115 $/m3 [160]. Narayan et al. have built an HDH-SSD 
system that produced 700 l/d of fresh water using 435 kWh/m3 energy 
to heat the water [161]. 

Sharqawy et al. have assessed and evaluated the production of fresh 
water and energy consumption of an HDH-SSD system using two 
different methods: water-heated and air-heated methods. Their results 
showed that the amount of freshwater production in both systems was 
240 l/d, but that the amount of energy consumption in the water-heated 
system and the air-heated system were 334 kWh/m3 and 298 kWh/m3, 
respectively, so the air-heated system had a higher gain output ratio 
(GOR) of 2.19 [162]. They also explored an HDH packed-bed cross-flow 
system and showed that it produced about 189 l/d water with an energy 
consumption of 1015 kWh/m3 [163]. Soomro et al. have investigated an 

Table 8 
The outstanding MED-SSD systems.  

Ref System technology Production (l/d) Energy consumption Features 

Ref (kW) (kWh/m3) 

(Renaudin et al., (2005) [172]) MED  950 12 303  • The system had six stages and a vacuum pump 
(Kariman et al., (2020) [167]) MED  500 13 624  • It was a vacuum-circular system with a brine-tank 
(Kariman et al., (2020) [174]) MED  2200 1.5 16  • It was a mechanical vapor recompression circulation system. 
(Aly et al., (2022) [176]) MED  25,000 – 4.8  • The cost of water production is 0.46 $/m3. 
(Karambasti et al., (2022) [175]) MED  19,920 2.5 3  • The cost of water production is 1.6 $/m3.  

Fig. 7. The schematic of PVRO-SSD system - reproduced from [180].  
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HDH-SSD system that could produce 6.5 l/d of water, where the heat 
exchange area of the dehumidifier was 7.06 m2 [164]. The schematic of 
HDH packed-bed cross-flow is shown in Fig. 6 [163]. 

Tow et al. have examined a bubble column (BC) of HDH-SSD sys-
tems, and developed a model that can be used to predict the perfor-
mance of each stage using a multi-stage dehumidifier to design and 
optimize HDH-SSD systems [165]. Khan et al. have demonstrated a 
BC_HDH system, with results showing that this system could produce 11 
l/d fresh water by consuming approximately 2618 kWh/m3 of energy 
[166]. The most efficient HDH-SSD systems are summarized in Table 7. 

Table 7 shows that the system introduced by Narayan et al. has the 
highest production with 700 l/d of fresh water and 435 kWh/m3 energy 
consumption and GOR of 4 [161]. In contrast, the system introduced by 
Sharqawy et al., has the lowest energy consumption at 298 kWh/m3 

with 240 l/d of fresh water [162]. 

2.6. Multi-effect desalination systems (MED) based systems powered by 
non-renewable energy 

In multistage evaporative desalination (MED) systems, water un-
dergoes evaporation through various mechanisms within the evaporator 
chamber. After passing through different effects and releasing its heat, 
the water condenses back into a liquid and exits the system as distilled 
water. Simultaneously, the remaining portion of the feed water within 
the evaporators is separated from the system as brine. Pumps are 
responsible for circulating the feed water, brine and distilled water 
throughout the process [167]. MED systems have some advantages and 

disadvantages, where on the one hand, these systems can be easier to 
install and manage in locations with limited space or resources. Further, 
these systems have fewer moving parts compared to some other desa-
lination methods, which can lead to lower maintenance requirements. 
Additionally, these systems can produce high-quality, potable water due 
to the distillation process, effectively removing impurities, salts and 
contaminants. Lastly, MED systems can operate with a variety of heat 
sources, including electricity, solar energy, geothermal energy, or waste 
heat from industrial processes. On the other hand, MED systems still 
require a heat source, which can make them dependent on a stable en-
ergy supply. This might be challenging in areas with unreliable or 
insufficient energy infrastructure. Additionally, despite their simplicity, 
MED systems can still involve substantial initial capital investments, 
especially when integrating with renewable energy sources or special-
ized materials [168–170]. 

Kafi et al. have introduced a new system of SSD called Easy MED, 
consisting of a combination of simple “human-sized” stem cells. The 
plates, frames and grids that make up each cell were easily constructed 
and transported. Their initial system could produce 350 l/d of fresh 
water by consuming 925 kWh/m3 of electricity [171], after which 
Renaudin et al. combined the cells in parallel and in series to reduce the 
amount of energy wasted in the system by increasing the capacity and 
thermal efficiency of the system. With this modification, they could 
increase the product water to 950 l/d while consuming 303 kWh/m3 of 
energy [172]. 

Following the research on Easy MED systems, Kariman et al. 
improved the previous systems by adding brine tanks to these systems. 

Table 9 
Solar RO-SSD systems.  

Ref Production (l/d) Energy consumption Cost of water production ($/m3) Features 

Ref (kWh/m3 

(Herold et al. (1998) [181])  1000 4.8 kW 115 16  • Solar collector area: 39 m2 

(Tzen et al., (1998) [182])  3720 60 kWh 16 32.84  • Recovery ratio: 23 %  
• Unit cost: 53530 $ 

(Herold et al., (2000) [183])  3000 4.8 kW 38 –  • Recovery ratio: 98 %  
• Solar collector area: 45m2 

(Al Suleimani et al. (2000) [184])  5000 3.25 kW 15.6 6.52  • Solar collector area: 
23.2 m2  

• Water production cost: 6.52 $/m3 

(Joyce et al., (2000) [185])  500 150 W 7.2 5.47  • Recovery ratio: 94 %  
• Membrane area: 0.3 m2 

(Ahmad et al., (2001) [186])  3420 5.2kWh 1.5 3.73  • Recovery ratio: 50 %  
• solar collector area: 22 m2 

(Thomson and Infield, (2002) [187])  3000 2.4 kW 19.2 2.26  • Recovery ratio: 60 %  
• Unit cost: 28701 $ 

(Richards et al., (2002) [188])  1000 1.7 kW 40.8 –  • This system was NF-RO  
• Recovery ratio: 95 % 

(Thomson et al., (2002) [189])  3680 3.5 kWh/m3 3.5 –  • membrane area: 0.8 m2  

• system efficiency: 93 % 
(Tzen et al., (2004) [190])  1040 4.86 kW 112 26.04  • Recovery ratio: 15 %  

• solar collector area: 36 m2 

(Joseph and Renganarayanan (2004) [191])  8.5 1 kW 2823 9  • solar collector area: 2 m2  

• water production cost: 76.95 $/m3 

(Mohamed et al. (2005) [192])  1700 3.3 kWh/m3 3.3 4.17  • Recovery ratio: 99 %  
• Water production cost: 3.94 $/m3 

(Bouguecha et al., (2005) [193])  16 0.9 kW 1350 80.39  • Recovery ratio: 30 %  
• Solar collector efficiency: 39 % 

(Mohamed et al., (2007) [194])  350 4.6 kWh/m3 4.6 8.83  • solar collector area: 
7.2 m2  

• Solar collector efficiency: 8.8 % 
(Dallas et al., (2008) [195])  400 0.12 kW 7.2 –  • Recovery energy: 16 % 
(Bilton et al., (2010) [180])  300 0.16 kW 12.8 5  • Recovery ratio: 40 %  

• Solar collector area: 
44 m2 

(Banat et al., (2012) [196])  500 0.43 kW 20.6 –  • Recovery ratio: 38 % 
(Penate et al., (2014) [197])  16,000 10.5 kW 15.75 –  • Recovery ratio: 70 % 
(Wright et al., (2015) [198])  1600 0.5 kW 7.5 –  • Recovery ratio: 92 % 
(Alghoul et al., (2016) [199])  5100 1.1 kWh/m3 1.1 –  • membrane area: 0.1 m2 

(Ayou et al., 2022) [200]  11,600 2.3 kWh/m3 2.3 9  • Membrane area 2.2 m2  

• Solar collector area: 43 m2  
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They increased freshwater production in a single Easy MED cell to 500 l/ 
d, consuming 624 kWh/m3 of energy. The brine tank in this system 
helped with temperature recovery and maximum use of inlet feed water 
[167,173]. These authors also introduced a circulation evaporative 
desalination system that operates under vacuum pressure, and analyzed 
and optimized the system. As a result, it was observed that this system 
could produce 2200 l/d consuming 16.36 kWh/m3 kWh of energy [174]. 
Karambasti et al. optimized a MED-SSD system that had 19,920 l/d of 
water production and energy consumption of 3 kWh/m3 and coupled it 
with a power Stirling engine, using the flue gas as the heating source to 
produce fresh water. Further, the cost of after production in this system 
was 1.6 $/m3 [175]. Aly et al. have reported on a MED system boasting 

an expanded capacity that was capable of generating 25,000 l/d of 
water. This system's energy consumption measured at 4.8 kWh/m3, 
whereby their economic analysis revealed a water production cost of 
0.46 $/m3 [176]. 

A summary of some outstanding MED-SSD systems is given in 
Table 8. Among the MED-SSD systems, the one by Karambasti et al. with 
produced water of 19,920 l/d and energy consumption of 3 kWh/m3, 
had the lowest energy consumption [172]. Further, the system intro-
duced by Aly et al. had the highest water production at 25000 l/d [176]. 

Fig. 8. The diagram of solar ED-SSD system - reproduced from [207].  

Fig. 9. Schematic of solar MD-SSD system - reproduced from [208].  
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3. Small-scale desalination (SSD) systems powered by renewable 
energy (RE) 

Some countries have large conventional energy sources, such as oil 
and gas, while others have energy problems related to fossil fuel imports, 
environmental constraints and rising fossil fuel prices. These are the 
main limitations of technologies that use fossil fuels [177]. In areas 
without access to electricity and other fossil fuels, shortages of drinking 
water are a major problem due to issues with access to energy for 
powering desalination systems. In these areas, SSD systems powered by 
RE can be very suitable for treating water from wells or other water 
sources. It is important to note here that the use of RE to meet the energy 

needs of varied systems in these areas helps to maintain a clean and 
healthy environment [178,179]. In this section, SSD systems that are 
powered by different sources of RE are reviewed. 

3.1. Solar (thermal and PV) SSD systems 

One suitable method for obtaining fresh water via SSDs is the use of 
combined PVRO-SSD systems. The schematic of a PVRO-SSD system is 
shown in Fig. 7 [180]. This system can provide 10,000 l/d of water 
employing 2.8 m2 of membrane area and 4 kWh/m3 energy consump-
tion [180]. 

In Table 9, previous studies on the use of solar RO-SSD systems are 

Table 10 
Solar MD-SSD systems.  

Ref Technologies type Production (l/d) Energy consumption (kWh/m3) Cost of water production ($/m3) Membrane area (m2) 

(Hogan et al. (1991) [209]) DCMD  50 – 13.76 1.8 
(Banat et al., (2006) [210]) DCMD  120 300 – 10 
(Banat et al., (2007) [211]) DCMD  500 69 18 – 
(Chafidz et al., (2014) [212] VMD  99.9 129 – 0.15 
(Ma et al., (2018) [213]) VMD  5.6 239 – 0.7 
(Andrés-Mañas et al., (2018) [214]) VMD  1305 200 – 6.4 
(Andrés-Mañas et al., (2020) [215]) VMD  193 17 – 6.4 
(Shafieian et al., (2020) [216]) DCMD  80 600 – 0.21 
(Chang et al., (2022) [217]) VMD  10 4084 421 0.085 
(Choi et al., (2022) [218]) DCMD  1100 959 5.65 5.94 
(ElKasaby et al., (2023) [219]) VMD  170 195 14.7 0.5 
(Baaqeel et al., (2020) [220]) DCMD  500 5280 – 16.8  

Table 11 
HDH-SSD systems powered by solar energy.  

Ref Production (l/ 
d) 

Energy consumption Cost of water Production 
($/m3) 

Features 

Ref (kWh/ 
m3) 

(Younis et al., (1989) [224])  9800 90.9 kW  222 –  • The system was a CWOA-HDH 
(A1-Hallaj et al., (1998) [225])  10 2 kW  4800 –  • The system was a CAOW-HDH  

• Total solar collector area: 2 m2 

(Vlachogiannis et al., (1999) 
[226])  

2.88 70 kW/m3  583 –  • The system was a mechanical vapor compression HDH 

(Muller-Holst et al., 1990 [227])  2000 220 kWh/ 
m3  

220 12.45  • This system was a 24-h continuous operation system 

(Dai et al., (2000) [228])  800 1.6 kW  48 –  • Thermal efficiency of system was 80 % 
(Fath et al., (2002) [229])  8 1.6 kW  4800 –  • Solar water heater area: 2 m2  

• Solar air heater area: 2 m2 

(Nafey et al., (2004) [230])  10 14 kWh  1400 –  • Solar water heater area: 2 m2  

• Solar air heater area: 0.5 m2 

(Al-Enezi et al., (2005) [231])  6 5 kWh/m3  5 –  • Thermal efficiency of system was 92 % 
(Yamalı et al., (2006) [232])  10 0.8 kW  1920 –  • The system was a CWOA-HDH 
(Yuan et al., (2006) [233])  43 8 kW  4465 –  • Total solar collector area: 

10 m2 

(Orfi et al., (2006) [234])  80 1.86 kW  558 –  • Solar water heater area: 2 m2  

• Solar air heater area: 2 m2 

(Muller-Holst, (2007) [235])  500 120 kWh/ 
m3  

120 10.04  • Total solar collector area: 
140 m2 

(Yamalı et al., (2008) [236])  2160 1 kW  11 –  • The system was a CWOA-HDH 
(Zhani et al., (2010) [237])  20 10.8 kW  12,960 90.58  • Solar water heater area: 12 m2  

• Solar air heater area: 16 m2 

(Hermosillo et al., (2011) [238])  12.8 1 kW  1875 –  • Thermal efficiency of system was 60–80 % 
(Yuan et al., (2011) [239])  1200 55 kW  1100 3.03  • Solar water heater area: 12 m2  

• Solar air heater area: 100 m2 

(Antar et al., (2012) [240])  6 4 kW  16,000 –  • The system was a CAOW-HDH 
(Chang et al., (2014) [241])  440 4 kW  218 4.42  • The GOR was 2.1 
(Ghazal et al., (2014) [242])  6 0.7 kW  2800 –  • The system was a BC-HDH 
(Yıldırım et al., (2014) [243])  33 0.9 kW  654 –  • The system was a CWOA-HDH 
(Behnam et al., (2016) [244])  74.4 10 kW  3225 28  • This system was a BC-HDH 
(Zubair et al., (2017) [245])  80 6 kW  1800 38.1  • The system was a CAOW-HDH  

• The GOR was 1.93 
(Aburub et al., (2017) [246])  92 2 kW  521 –  • The GOR was 1.3 
(Mahmoud et al., (2019) [247])  100 0.8 kW  192 –  • Phase changed materials (PCM) were used in this 

system  
• Total solar collector area:2.4m2 

(Patel et al., (2019) [248])  13 3.5 kW  6461 29.44  • The system was a BC-HDH  
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reported and compared in terms of freshwater production, energy con-
sumption and other influencing parameters. 

As can be seen in Table 9, solar RO-SSD systems can provide a wide 
range of freshwater production. The system with the most water pro-
duction belongs to Penate et al. producing 16,000 l/d [197]. Ayou et al. 
have analyzed a PVRO-SSD system in Madura Island with 11,600 l/d of 
water production and 2.3 kWh/m3 of energy consumption. Further, this 
system had 2.2 m2 of effective membrane area, whereby economic 
analysis revealed that the cost of water production in this system was 9 
$/m3 [200]. Additionally, the solar RO-SSD system proposed by Alghoul 
et al. had the lowest energy consumption of 1.1 kWh/m3, with water 
production of 5100 l/d, which is very suitable for areas with low energy 
access [199]. In addition, the solar RO-SSD system proposed by Thom-
son et al. had a minimum production cost of 2.26 $/m3 of freshwater 
[187]. 

Solar desalination of water can be reliably achieved using an elec-
trodialysis process that works with photovoltaic cells. This method can 
be effective because electrodialysis requires a D.C. power supply as the 
driving force to remove salt ions. The possibility of using solar energy in 
ED systems and the advantages of this system have been examined, 

where the results show that solar energy can be a good alternative to 
non-renewable energy [201–204]. In this regard, Al Madani has inves-
tigated solar ED-SSD systems in Bahrain, with four photovoltaic modules 
used in the proposed system. Results show that this system could pro-
duce 568 l/d of freshwater consuming 5.57 kWh/m3 of energy [205]. Xu 
et al. have presented a solar ED-SSD system featuring a total effective 
surface of 0.04 m2 and a solar cell surface of 0.64 m2, capable of pro-
ducing 59 l/d of water [206]. 

Ortiz et al. have studied a solar ED-SSD system that runs on solar 
energy, with an active membrane area of 500 cm2 per cell, and a total 
effective surface area of 3.5 m2. The number of solar modules in this 
system was 8, and the amount of energy consumption was 1.69 kWh/m3. 
Further, the amount of water production in this system was 6000 l/d. 
The cost per unit volume of produced water in this system was 0.36 
$/m3. A working diagram of this solar ED-SSD system is presented in 
Fig. 8 [207]. 

The integration of solar energy and MD systems presents a viable 
choice for SSD systems. Therefore, a related schematic of a solar MD-SSD 
is shown in Fig. 9 [208]. This system could provide 72 l/d of water 
production, employing 0.2 m2 of membrane area and 2400 kWh/m3 of 

Fig. 10. The schematic of solar HDH-SSD system [242].  

Table 12 
solar MED-SSD systems.  

Ref Production (l/ 
d) 

Energy consumption Cost of water production 
($/m3) 

Features 

Ref (kWh/ 
m3) 

(Rahim et al., (1992) [254])  40 1.4 kWh  35 –  • This system had a fan-condenser for condensing the water 
vapor 

(Muller et al., (1998) [255])  437 120 kWh/ 
m3  

120 30.12  • This system was a 24-h continuous operation system  
• Total solar collector area: 8.5 m2 

(Bouchekimaa et al., (2000) 
[256])  

64 6 kW  2250 –  • The maximum system efficiency was 45 % 

(Fath et al., (2005) [257])  10,000 50 kWh  5 4.12  • A complex system for producing water, food, electrical power 
and salts  

• Total solar collector area: 72 m2 

(Ben Amara et al., (2004) 
[258])  

160 13.1 kW  1965 –  • Total solar collector area: 5 m2  

• The maximum collector efficiency was 53 % 
(Schwarzer et al. (2003) [259])  43 7.2 kWh  167 –  • Total solar collector area: 4 m2  

• This system had six stages 
(Bouguecha et al., (2005) 

[193])  
7.5 0.8 kW  2560 49.82  • The maximum collector efficiency was 39 % 

(Muller et al., (2007) [235])  500 120 kWh/ 
m3  

120 8.17  • Total solar collector area: 8 m2 

(Auti, (2012) [260])  20 3.5 kW  4200 –  • Total solar collector area: 4.15 m2 

(Sapre et al., (2013) [261])  9 0.8 kW  2133 –  • Total solar collector area: 0.6 m2 

(Auti et al., (2017) [262])  11 0.83 kW  1810 –  • Total solar collector area: 0.6 m2  
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energy consumption [208]. 
In Table 10, previous studies on the use of solar MD-SSD systems are 

reported and compared in terms of types of technologies, water pro-
duction, energy consumption and other influential parameters. 

As can be seen from Table 10, solar MD-SSD systems cover a wide 
range of freshwater production. The system that has the most water 
production is the solar VMD-SSD system belonging to Andrés-Mañas 
et al., producing 1305 l/d with 6.4 m2 membrane surface area and 200 
kWh/m3 energy consumption [214]. The system with the lowest energy 
consumption also belongs to Andrés-Mañas et al., with 17 kWh/m3 of 
energy consumption and 193 l/d of water production [215]. In addition 
to this, among systems that reported the cost of water production, the 
system introduced by Choi et al. had the lowest amount of cost of water 
production, measured at 5.65 $/m3 [218]. 

HDH-SSD systems operated by solar energy are uniquely suited to 
providing water and electricity in remote areas, where solar energy 
conditions are good but there is a shortage of water and electricity 
infrastructure [221–223]. Previous studies on HDH-SSD systems oper-
ated by solar energy are reported in Table 11. 

The results in Table 11 show that the amount of freshwater pro-
duction in HDH-SSD systems is very low in many cases, where these are 
only suitable for laboratory systems [225,226,229,230,233,237, 
240,242,243,248], although some systems produced more than 1000 l/ 
d and could supply fresh water for several homes [224,227,236,239]. 

The schematic of solar HDH-SSD systems is shown in Fig. 10 [242]. 
MED systems powered by solar energy can produce a good amount of 

fresh water with low initial capital requirements, low operating costs 
and low emissions. The development of these systems is very suitable for 
arid regions and countries with more limited facilities [249–253]. 
Suitable MED-SSD systems operating on solar energy are presented and 
compared in Table 12. 

In Table 12, the system developed by Fath et al. is depicted, pro-
ducing 10,000 l/d of fresh water at a cost of 4.12 $/m3, featuring as one 
of the suitable systems in this category [257]. In addition to this, the 
system introduced by Muller et al. could be appropriate for freshwater 
production of 437–500 l/d [235,255]. 

Some solar SSD technologies can be combined to achieve higher 
volume and quality of freshwater. In this regard, Schafer et al. have 
investigated a hybrid solar RO-UF-SSD system, building a laboratory 
model of this system in Australia that produced 712 l/d of fresh water 
and consumed 5.5 kWh/m3 [263]. They also improved their system in 
terms of energy production and consumption. In another study, the 
authors were able to produce 1000 l/d by consuming 5 kWh/m3 of en-
ergy [264]. Finally, they introduced a hybrid RO-UF-SSD system that 
could produce 2000 l/d of fresh water with a consumption of 1.2 kWh/ 
m3 [265]. Bales et al. have introduced an MCDI-SSD system that pro-
duced 8000 l/d if it works 8 h/d, whereby the energy consumption of 
this system was 1.28 kWh/m3 [266]. 

Table 13 
Wind-powered SSD systems.  

Ref Production (l/d) Wind speed (m/s) Energy consumption Cost of water production ($/m3) 

Ref (kW) (kWh/m3) 

(Petersen et al., (1979) [270])  6000 7  6  24 – 
(Petersen et al., (1981) [271])  9000 9  6  16 – 
(Robinson et al., (1991) [272])  213 3.2  0.15  17 11 
(Maurel et al. (1991) [273])  12,000 5  4  8 – 
(Habali et al., (1994) [274])  22,000 5–20  24  26 2.37 
(Neris et al., (1995) [275])  20,000 4–22  34  41 – 
(Infield, (1997) [276])  1120 3–25  3  64 – 
(Liu et al., (2002) [277])  18,720 5–9  1.2  1.53 – 
(Miranda et al., (2003) [278])  10,000 10  2.2  5.28 – 
(Gökçek et al., (2016) [279])  24,000 5–25  6  6 2.96–6.47  

Fig. 11. The schematic of a wind RO-SSD system [279].  
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3.2. Wind powered SSD systems 

Wind energy can significantly reduce the cost of freshwater pro-
duction using RO desalination plants [267,268]. Accordingly, to pro-
duce 1.5 l/d of fresh water on a sunny and cloudy day by wind energy, a 
wind speed of approximately 6 m/s is required [269]. A number of 
studied wind-powered SSD systems are presented in Table 13. 

Most of wind powered SSD systems are RO-based systems. As can be 
seen in Table 13, these systems can be used in areas where wind speed 
ranges between 3 and 25 m/s. Accordingly, the freshwater productivity, 
energy consumption and cost of these systems indicate that, subject to 
the availability of wind, these systems can be a good option for SSD use. 
However, wind energy also possesses certain drawbacks, encompassing 
issues such as blade noise, visual aesthetics and environmental concerns 
related to bird and bat collisions [270–279]. The schematic of a wind 
SSD-RO system is shown in Fig. 11 [279]. 

3.3. Geothermal-powered SSD system 

Geothermal energy has many advantages over other renewable en-
ergy sources, whereby the amount of this energy can be stable. Solar and 
wind energy are sometimes unavailable, they require more technically 
sophisticated collection devices and are usually more expensive energy 
storage devices. In comparison, geothermal energy does not require 
complex systems and storage tools, but also has disadvantages, such as 
high exploration costs, high investment risk and high installation costs if 
new geothermal reservoirs are targeted. These high costs are normally 
offset by the free source of geothermal heat generation. The cost of 
providing heat from geothermal energy is generally less than the cost of 
solar energy; therefore, it can be very beneficial in areas where adequate 
geothermal resources are available [280–285]. Bourouni et al. have 
proposed a geothermal MED-SSD system that could produce 576 l/ 
d with 1.44 kWh/m3 of consumed energy. Further, their study showed 
that the cost of producing fresh water in this system was 1.20 $/m3 

[286]. Additionally, Mohammad et al. have studied another geothermal 
evaporation-SSD system, the schematic of which is shown in Fig. 6. This 

Fig. 12. The schematic of the Tidal RO-SSD system - reproduced from [295].  

Fig. 13. The schematic of SSD system combined with solar-wind-diesel generator energy [308].  
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system can produce 24 l/d [287]. 
To solve problems of fresh water in Mexico, Gutiérrez and Espíndola 

have applied the possibility of using geothermal energy to desalinate 
water in some parts of the country. They surveyed geothermal MED-SSD 
system for these areas, and they were able to desalinate approximately 
20,000 l/d of fresh water. The geothermal well in their proposed design 
could also produce 16.8 kWh/m2 of energy [288]. 

3.4. Tidal-powered SSD systems 

Along with growing use of renewable energy for water desalination, 
tidal energy is also being considered, whereby this energy can provide 
fresh water for many areas at a low cost, especially coastal areas expe-
riencing water shortages [289,290]. To make good use of this energy, 
higher height of waves and their shorter duration leads to better source 
of available energy [291,292]. In terms of the environmental aspects of 
using this type of energy, it is very important to know areas with envi-
ronmental constraints, such as the existence of protected species, re-
serves or marine/terrestrial habitats [293]. In order to use tidal energy 
to desalinate water off the coast of India, an RO-SSD system was 
modeled and simulated using MATLAB and experimented on a labora-
tory scale model for this purpose. The production capacity of this system 
was 14,400 l/d, which consumed about 8 kWh/m3 of energy [294]. The 
cost-benefit of using RO technology along with tidal energy for pro-
ducing fresh water was investigated by Ling et al. In their system, the 
cost of producing fresh water was 0.6 $/m3, which was less than the cost 
of the original system without tidal energy. In turn, this system could 
produce 22,700 l/d of fresh water [295]. In addition, Suchithra et al. 
have investigated a tidal RO-UF-SSD system producing 2400 l/d using 
about 8.36 kWh/m3 [296]. Evaporative technologies have also been 
used within tidal SSD plants for decades, whereby Kumar et al. have 
proposed an evaporation system capable of producing 480 l/d. The 
quality of freshwater produced by this system was very good [297]. The 
schematic of a RO-SSD system powered by tidal energy is presented in 

Fig. 12 [295]. 

3.5. SSD systems powered by hybrid renewable energies 

It is also possible to combine several RE sources to desalinate water 
in arid areas. By combining RE sources, the cost of electricity generation 
for desalination systems can be reduced [298]. Further, the productivity 

Fig. 14. Distribution of SSD technologies powered by non-RE.  

Fig. 15. Percentage distribution of technologies among SSD systems powered 
by RE. 
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of fresh water of the system can also be improved this way, but the 
system needs to supply energy from the grid in the absence of renewable 
energy [299–302]. In order to prove the positive effect of RE composi-
tion on the productivity of desalination systems, studies have been 
conducted by a number of researchers. For example, Weiner et al. have 
described the process of designing, installing and operating an RO-SSD 
system powered by photovoltaic and wind energy. For their system, a 
battery for energy storage and a diesel generator for the required times 
were installed. The lifespan of this system was 15 years, producing 3000 
l/d of fresh water and using approximately 3.3 kWh/m3 of energy when 
powered by wind energy alone, whereby the maximum product capacity 
of the systems when using combined wind and solar energy was 9000 l/ 
d with 5 kWh/m3 energy being consumed [303]. Setiawan et al. have 
examined a mini-grade RO system powered by combined solar-wind- 
diesel energy, with results showing this combined system to be 
capable of supplying electricity 24 h a day, producing 5000 l/d with a 
consumption of 12 kWh/m3. [304]. To solve the problem of freshwater 
shortage in Mediterranean countries such as Greece, an RO-SSD system 
that works with solar and wind energy was evaluated, whereby it was 
observed that this system can produce 5800 l/d of fresh water with a 
consumption of 6.3 kWh/m3 energy. The cost of freshwater production 
for this system was 5.88 $/m3 [305]. Mokheimer et al. have described a 
combined solar-wind RO-SSD system, where their experimental system 
could produce 5000 l/d, in addition to 4.8 kWh/m3 of energy at a cost of 
3.8 $/m3 of fresh water [306]. 

In another study, Mousa et al. have investigated the economics of 
optimizing a solar-wind system combined with a RO-SSD system. The 
cost of fresh water in their combined system was 1.21$/m3 [307]. 
Further to this, an RO-SSD combined with wind-photovoltaic-diesel- 
battery energy in Turkey and Bozcaada Island was studied via HOMER 
software. The amount of freshwater production in this system was 
24,000 l/d, with results of economic analysis showing that the combi-
nation of a diesel generator of 8.9 kW, 20 kW of solar energy and 10 kW 
of wind energy, at an energy cost of 0.308 $/kWh, could produce 
freshwater production at a cost of 2.2 $/m3. The schematic of an SSD 
system combined with solar-wind-diesel generator energy is shown in 
Fig. 13 [308]. 

4. Discussion 

SSD systems that run on traditional fossil fuels and electricity can be 
used in areas where energy costs are low, whereby these resources are 
easily accessible. However, in recent years, the use of this type of system 
has decreased and replaced by renewable energy-powered systems 
[82,85]. Among these technologies, membrane systems such as RO, ED, 
MD and CDI can be very effective options because their energy con-
sumption is normal and appropriate, as presented in Table 5. CDI sys-
tems consume less energy (0.1–0.4 kWh/m3) than other membrane 
systems (0.46–2.2 kWh/m3) [102,107,116,309]. Further, evaporative 
systems that operate with non-renewable energies require more energy 
than membrane systems due to their need to overcome the latent energy 
of water evaporation. Therefore, these systems are more suitable in 
areas where energy costs are not high, as they have a very good pro-
duction rate. Additionally, they are simple and do not require complex 
systems or membrane costs. However, these systems require more space 
than membrane systems, whereby this could be an important consid-
eration where a residential area has limited space [161,163]. To achieve 
higher system efficiency and reduce energy consumption, several 
desalination technologies can be combined, whereby more production 
or higher production quality can be achieved. Suitable technologies for 
these combined systems include RO technology, which can be combined 
with ED, UF and even evaporative systems [265]. The percentage dis-
tribution of SSD systems that are powered by non-renewable energy is 
presented in Fig. 14. 

As depicted in Fig. 14, RO systems represent the largest share at 25 
%. Additionally, both HDH and ED systems exhibit equal proportions, 
each contributing 13 % to the overall distribution. Furthermore, MD, 
CDI and MED systems represent shares of 21 %, 18 % and 10 %, 
respectively. In areas where access to fossil fuels is not feasible or 
transportation of fuels is costly, the use of SSD systems that operate on 
RE is recommended [178,179,310]. Among SSD systems that are pow-
ered by renewable energy, SSD solar-based systems have the largest 
share, where reasons for this could include: 1) access to renewable en-
ergies, 2) receiving an appropriate amount of energy (if combined with 
the battery system, they can be suitable for RO, ED, MD, HDH and MED) 
and 3) suitable n to power ED systems as they need DC current and do 
not need to have a current converter [196,207,242,257,311–313]. 

SSDs powered by wind can only be used in areas where the wind 
speed ranges between 3 and 25 m/s. These systems can be suitable if 
combined with batteries, where to date, these have only been studied for 
RO systems because the ability to overcome the latent evaporation en-
ergy by wind-powered systems is not possible. Due to some of these 
disadvantages, research on wind powered SSDs has decreased signifi-
cantly in the last two decades [277,278]. 

SSDs powered by geothermal systems can also be suitable for use in 
areas with good sources of geothermal energy. Unlike other REs such as 
solar and wind, they are permanent and steady and do not require 
complex technology, but the cost of drilling and creating conditions for 
operation are high. However, not much research has been done on them 
to date, where this type of energy has been used for evaporative systems 
because the cost of heat supply in this type of energy is less than solar 
energy [281,282]. 

To meet needs for fresh water in coastal areas, tidal energy can 
reliably supply the necessary energy for desalination systems. However, 
due to the damage they may cause to the surrounding environment, it is 
very important to pay attention to the impact that they can have on 
animals, plant species and the surrounding environment in general. RO 
technology is commonly used with this source of energy for SSD systems 
[295,314]. 

The use of renewable energy to produce fresh water on an SSD has its 
drawbacks, as solar and wind energy cannot supply energy permanently 
and require a storage system, or they cannot provide enough energy for 
water to evaporate. Hence, these systems sometimes require an addi-
tional fossil-powered energy source, such as electric heaters or diesel 

Fig. 16. Percentage distribution of SSD technologies comprise of powered by 
renewable and non-renewable energies. 
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generators. For these reasons, and in order to increase system efficiency 
and reduce dependency on fossil fuels and reduce the cost of water 
production, several types of renewable energy sources can be used in 
hybrid modes for SSD systems [315,316]. 

Laboratory systems with very low water production are more com-
mon among thermal SSD systems (HDH and MED) than membrane SSD 
systems (RO, ED, MD and CDI). In order to more accurately identify and 
compare SSD systems within this study, the unit of energy consumed for 
all systems was converted to kWh/m3, whereby it was concluded that 
evaporative systems have more kWh/m3 than other systems. Accord-
ingly, they need more energy and are more suitable for areas where 

access to energy is feasible and economical. The percentage distribution 
of technologies among SSD systems powered by RE is shown in Fig. 15. 

It is apparent from Fig. 15 that RO systems encompass nearly 40 % of 
the total array of technologies. Subsequently, HDH, MED and MD sys-
tems secure subsequent positions, accounting for 25 %, 15 % and 13 %, 
respectively. Furthermore, this figure illustrates that both ED and CDI 
systems make modest contributions, nearly on par with the values of 
hybrid systems and other technologies. 

Fig. 16 shows the percentage distribution of SSD technologies within 
the comprehensive collection of RE and non-RE systems investigated in 
this research. 

Fig. 17. Water production cost in SSD systems with various technologies.  

Fig. 18. Water production cost in SSD and LSD systems with various technologies.  
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From Fig. 16, it is evident that RO systems have the highest popu-
larity among SSD systems, representing a substantial share of 34 %, 
following by HDH, MD and MED systems that account for 20 %, 16 % 
and 13 %, respectively. In contrast, CDI, ED and other combined systems 
show relatively modest participation, with a less significant share of SSD 
systems. One reason for the popularity of RO systems among SSD sys-
tems could be that this technology emerges as a versatile and effective 
solution for water treatment across various applications and small-scale 
sizes. Accordingly, its efficiency in purifying water, its compact design, 
its adaptability to different water sources, its adaptability to integrating 
with different REs, and its cost-effectiveness make it an appealing choice 
for SSD systems. The technology's minimal environmental impact, low 
chemical usage and established maintenance procedures further 
contribute to its viability [42,72,200]. 

Given that the technologies and structures of SSD systems powered 
by non-RE and RE differ significantly, it is not feasible to provide a 
comprehensive comparison between them in terms of technology, en-
ergy consumption and energy sources. However, comparing their water 
production costs can be highly beneficial and practical for assessing SSD 
systems overall. Water production costs in some SSD systems with 
various technologies are compared in Fig. 17. 

As shown in Fig. 17, the water production cost in the SSD systems 
driven by non-renewable energy is the lowest compared to other systems 
[85,95], and among RE-SSD systems, tidal, geothermal and hybrid 
power systems can compete with the SSD systems driven by non- 
renewable sources [286,295,307]. Further, SSD systems that are pow-
ered by just one type of RE have a higher water production cost than 
others, where thermal-SSD systems (MED, HDH) that are driven by solar 
energy have the highest water production cost [239,241,259]. 

To compare SSD and LSD systems, the water production cost in 
several SSD and LSD systems have been compared in Fig. 18 [317,318]. 

As shown in Fig. 18, among SSD thermal systems, SSD-geothermal- 
MED systems can compete with LSD evaporation systems, and SSD 
membrane systems have water production costs almost equal to their 
similar technologies in LSD systems. Furthermore, SSD systems that are 
powered by electricity have the lowest water production cost. 

An important and influential parameter in the economic analysis of 
LSD systems and centralized systems is the cost of transferring water to 
residential areas, where this can increase the cost of water production 
overall. Therefore, if LSD systems are to be accurately compared with 
SSD systems, this important parameter must be considered. In this way, 
LSD and SSD systems can be better compared. For example, to reduce the 
water transfer cost to residential areas where fossil fuels are cheap and 
energy is easy to access, also in coastal areas where tidal energy is 
available or areas with good wind and solar energy potential, SSD sys-
tems can be utilized. 

5. Challenges and future perspectives 

The challenges and future perspectives of SSD systems can be sum-
marized as.  

• Insufficient research has been conducted on quantifying the energy 
waste along transmission routes of fresh water from LSD (Large-Scale 
Desalination) systems to residential areas. Conducting research in 
this area is crucial as it can highlight the significance of SSD (Small- 
Scale Desalination) systems. Additionally, comparing the energy ef-
ficiency of SSD and LSD systems would be beneficial in providing 
valuable insights. These research endeavors would shed light on the 
energy-saving potential of SSD systems and help identify the most 
efficient water transmission methods.  

• Considering the advantages of SSD systems over LSD systems, such as 
the capability to distribute scattered water without energy loss 
during transmission and to supply fresh water to remote and hard-to- 
reach regions, it is anticipated that the use of SSD systems will in-
crease in the future.  

• In addition, among the SSD systems that source their energy from 
fossil fuels, membrane systems are projected to have a larger market 
share in the future when compared to thermal SSD systems, due to 
their superior efficiency and lower energy consumption.  

• It is expected that in the coming years, due to less production of fossil 
fuels and the high level of pollution that this source of energy can 
cause to the environment, the use of SSD systems powered by this 
source of energy will decrease.  

• Among renewable energy-powered systems, solar SSD systems are 
expected to have the largest share. Further to this, among solar SSD 
systems, solar RO-SSD systems are predicted to have largest share 
due to their higher efficiency and lower energy consumption 
compared to solar thermal-SSD systems.  

• Limited research has been conducted on combined desalination 
technologies involving SSD systems. These integrated approaches, 
such as MED-RO-SSD and RO-ED-SSD, have the potential to enhance 
the productivity and efficiency of SSD systems. Further investigation 
is warranted to explore the research opportunities associated with 
these systems.  

• Insufficient research has been conducted on the integration of hybrid 
renewable energies with SSD systems. Promising combinations, such 
as solar-wind-SSD, solar-geothermal-SSD, tidal-wind-SSD, and 
others, have not been adequately explored. Conducting future 
research on these systems holds significant potential for improving 
efficiency and reducing reliance on fossil fuels, thus benefiting sus-
tainable energy efforts.  

• Finally, investigating the potential environmental effects of SSD 
systems and their overall scattered production is of paramount 
importance in the future. This research will provide valuable insights 
into the sustainability and ecological implications of such systems, 
filling an important knowledge gap. 
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