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Abstract

Semantic segmentation plays a crucial role in computer vision by providing com-

prehensive scene understanding through the precise labeling of each pixel in an

image. While deep convolutional neural networks (DCNNs) have demonstrated

remarkable performance in tasks like image classification and object detection,

they often lack contextual details and background understanding, making seman-

tic segmentation essential. However, existing semantic segmentation models are

typically unsuitable for resource-constrained mobile devices due to their large

architecture. This creates a demand for efficient real-time segmentation models

in applications such as autonomous cars, robotics, medical imaging, agriculture,

and surveillance. To address the challenge of achieving high accuracy while main-

taining efficiency in lightweight semantic segmentation, this thesis introduces a

series of novel model design techniques that tackle issues including scalability,

parameter reduction, semantic gap reduction, object shape capture, boundary

preservation, gradient preservation, and memory footprint optimization. These

advancements pave the way for practical and resource-efficient semantic segmen-

tation models, enabling their deployment on resource-constrained devices.

Firstly, to address scalability and large size issues, this thesis employs a com-

pound scaling technique for designing an end-to-end segmentation model. The

literature demonstrates that the performance of DCNNs is highly influenced by

the model’s width, depth, and input resolution. Therefore, instead of solely

scaling the model’s depth, the compound scaling technique uniformly scales all

dimensions to achieve better semantic results. In addition, a family of efficient
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segmentation models called ESPNets is introduced. The thesis also highlights

the benefits of incorporating a feature pooling module on top of the encoder.

While the proposed ESPNet achieves competitive accuracy, it exhibits slightly

lower efficiency in real-time environments due to its 7.6 million parameters. To

enhance efficiency, the thesis designs a lightweight backbone with fewer than 1

million parameters. The resulting segmentation model, named FANet, not only

improves model accuracy compared to ESPNet but also significantly enhances

efficiency.

Secondly, to address the challenge of large semantic gaps and capture ob-

jects with varied geometrical shapes in complex scenes, this thesis introduces

several techniques. The proposed FANet model modifies the bi-directional fea-

ture pyramid network (Bi-FPN) to reduce semantic gaps and enhance the feature

hierarchy. Building upon this, a novel model named M2FANet is introduced

with an optimized feature fusion module (FFM) consisting of skip connections.

Additionally, a feature scaling module (FSM) is deployed at the decoder side to

improve receptive fields for capturing objects of different sizes. However, the ex-

isting FSM contributes a large number of parameters and FLOPs, resulting in

moderately higher memory usage. To address this issue, the thesis introduces op-

timized scaling techniques, including a new FSM design and Feature Refinement

(FR) at the decoder end. Furthermore, a new bottleneck block called short-term

dense bottleneck (SDB) is introduced to enhance the encoder’s capturing ability,

providing a significantly larger field-of-view compared to the existing bottleneck

blocks. Segmentation models incorporating SDB blocks demonstrate exceptional

performance across various datasets while maintaining high efficiency.

Thirdly, to tackle the issue of boundary degeneration effect, the thesis in-

troduces a novel knowledge-sharing technique among multiple branches of the

encoder. A shared two-branch encoder design is presented, where both deep and

shallow branches contribute to learning at different stages. Additionally, a con-

text mining module is introduced for coarse-to-fine refinement of the shared fea-
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ture map. Leveraging this innovative knowledge sharing architecture, an efficient

structural crack detection technique named SC-CrackSeg is developed specifi-

cally for real-time applications. This technique outperforms existing models and

achieves an impressive frame rate, leading to superior results.

Finally, to tackle the issue of gradient vanishing in the encoder, this the-

sis introduces a novel design called the shared-branch multiple sub-encoders de-

sign. This design filters the shared semantic feature maps through multiple sub-

encoders. The top global feature map of each sub-encoder is passed to the next

sub-encoder, enabling coarse-to-fine refinement, while the lateral connections at

the same stages in multiple sub-encoders preserve the gradients. Moreover, for

accurate object localization and improved semantic representation, a hybrid path

attention mechanism is introduced at the decoder side. Building upon these

innovations, an efficient model called SFRSeg is presented, which achieves state-

of-the-art performance on various indoor and outdoor datasets in both structured

and unstructured environments.

The novel techniques developed in this thesis have made significant contri-

butions to the research progress on lightweight semantic segmentation. These

advancements enable the development and deployment of practical models for

resource-constrained applications. These models exhibit lower memory footprints

and lower power consumption while achieving competitive segmentation perfor-

mance.
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Chapter 1

Introduction

In the modern era, digital scene understanding is an important research topic

in the field of computer vision. To analyze and comprehend a visual scene, it

requires interpreting and extracting meaningful information from the images or

videos for gaining a deeper understanding of the objects, relationships, and con-

text present in the scene. A complete scene understanding typically involves

several tasks, including object recognition, object detection, region identification,

semantic segmentation, depth estimation, and spatial understanding. Hence, the

ultimate goal of automated scene understanding is to make the machine intelli-

gent enough for comprehending and interpreting the visual scenes in a way that is

similar to how humans perceive and understand their environment. For achieving

this goal, deep Convolutional Neural Networks (CNNs) have played an important

role.

This thesis primarily focuses on real-time semantic segmentation models for

resource-constrained applications. However, in this section, for the benefit of

the readers, a comprehensive discussion about two other computer vision tasks,

namely image classification and object detection, is provided. By doing so, readers

will gain a clear understanding of the application of deep CNNs in the field of

image classification and object detection for scene understanding. They will also

become aware of the limitations of these tasks, which further emphasizes the need

1



for semantic segmentation to achieve better scene understanding.

Hence, this chapter begins by discussing the background, including the ar-

chitecture and limitations of image classification, object detection, and semantic

segmentation tasks. It then provides a detailed explanation of the necessity of se-

mantic segmentation for resource-constrained applications. Subsequently, a thor-

ough literature review, identification of research gaps, formulation of the problem

statement, presentation of the proposed research, and an in-depth explanation of

the experimental setup are provided.

1.1 Background

1.1.1 Image classification

Image classification is a fundamental task in computer vision for recognizing the

object in the scene. By studying the visual features of the object in the scene,

machine accurately identifies the object and assigns a label or class to the image.

For understanding the visual features by the machine, deep CNNs have shown a

revolutionized way of artificially fusing the intelligence into the machine. It has

become the state-of-the-art approach for achieving high accuracy in this domain.

It extracts meaningful features from images and learn hierarchical representations

that capture both low-level and high-level visual patterns.

Purpose

The main objectives of image classification are:

• Object Recognition: It enables the identification and recognition of ob-

jects or patterns within images. It allows computers to understand and

interpret the visual content present in an image, which is essential for scene

understanding.

• Content Organization: It facilitates the organization and categorization

of large collections of images. By automatically assigning labels to images,

2



they can be grouped, sorted, and indexed based on their content, making

it easier to search and retrieve specific images from a database.

• Visual Search: It plays a crucial role in visual search engines. By cate-

gorizing images into different classes, users can perform searches based on

visual similarity. For example, searching for“dogs” would retrieve images

that have been classified as dogs, even if they were not explicitly tagged

with the word “dog.”

• Autonomous Systems: It is vital for enabling autonomous systems, such

as self-driving cars and drones, to perceive and understand the visual infor-

mation in their surroundings. By classifying objects and scenes in real-time,

these systems can make informed decisions and navigate their environments

safely.

• Medical Diagnosis: It is extensively used in medical imaging for the

detection and diagnosis of diseases. By classifying medical images such

as X-rays, and MRIs healthcare professionals can identify abnormalities,

tumors, or specific medical conditions, aiding in accurate diagnosis and

treatment planning.

Overall, image classification is a fundamental building block in computer vision

and has broad applications across various domains. It enables machines to un-

derstand and interpret visual information, opening doors to numerous innovative

solutions and advancements.

Architecture

DCNNs are mainly used for image classification due to their effectiveness in cap-

turing complex visual features and learning hierarchical representations from im-

ages. LeNet-5 LeCun et al. (1998) was one of the pioneering CNN architectures for

image classification. It has shown a revolutionary approach of designing DCNN

by staging several convolutional and pooling layers followed by fully connected
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Figure 1.1: An illustration of deep convolutional neural architecture (Pyramidal
shape).

layers. Followed by this novel approach, several other models such as VGGNet Si-

monyan & Zisserman (2014), ResNet Targ et al. (2016), Xception Chollet (2017),

and EfficientNet Tan & Le (2019) are introduced which have shown an outstand-

ing performance growth in this domain. The general architecture of deep CNN

models is displayed in Figure 1.1. It consists of several convolution layers, max

pooling layers which filter the input image and gradually downsamples the spatial

dimensions of the image while increasing the number of channels of the feature

map. Thus, it creates a rich global feature map with lowest spatial dimensions.

The classification head consists of flatten, dense and softmax layer which trans-

forms the global feature into a suitable format and based on the classification

score, it assigns a class or label to the image.

Limitation

While image classification is a powerful technique for categorizing individual im-

ages into specific classes or labels, it has certain limitations when it comes to scene

understanding, which involves a deeper understanding of the context and seman-

tic relationships within a scene. Some of the limitations of image classification
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for scene understanding are:

• Lack of Contextual Information: Image classification algorithms typi-

cally focus on analyzing individual images in isolation, without considering

the broader context or relationships with other objects within a scene. This

limitation makes it challenging to understand the overall scene and the in-

teractions between different elements.

• Inability to Capture Spatial Relationships: Image classification algo-

rithms often treat images as a collection of independent pixels or regions,

neglecting the spatial relationships between objects. Understanding scene

semantics and structure requires capturing the spatial arrangement, rela-

tive positions, and interactions between objects, which image classification

alone cannot accomplish.

• Limited Semantic Understanding: Image classification is primarily

concerned with assigning a single label or class to an image. However, scene

understanding requires a more fine-grained and detailed understanding of

the different objects, their attributes, and their semantic relationships. Im-

age classification may overlook these nuances and fail to capture the richness

of scene semantics.

• Difficulty in Handling Ambiguity: Images can contain ambiguous or

complex scenes where objects or regions may have multiple interpretations

or belong to multiple classes. Image classification algorithms may struggle

to handle such ambiguity and may assign incorrect labels or struggle with

uncertain cases, leading to reduced scene understanding accuracy.

1.1.2 Object detection

Identifying an object in a scene can be be achieved by image classification. How-

ever, positioning the objects in the scene can not be done by image classification.

Thus, for localizing a object in a scene, Object detection task is introduced in
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computer vision. It aims to locate and classify objects of interest within an image

or a video. Unlike image classification that assigns a single label to the entire im-

age, object detection goes a step further by identifying and localizing individual

objects within the scene. It provides both the class or category of the object and

the precise bounding box coordinates that enclose the object.

Purpose

The purpose of object detection is to enable machines to identify and locate ob-

jects of interest within images or videos. Object detection serves as a fundamental

building block for many applications and tasks, including:

• Object localization: Object detection provides precise information about

the location and extent of objects within an image or video. This is crucial

for tasks that require accurate object positioning, such as robotic manipu-

lation, augmented reality, and autonomous navigation systems.

• Object recognition and classification: Object detection allows for the

recognition and classification of objects into different categories or classes.

It provides information about the type or identity of objects present in a

scene. This is useful in applications like visual search, content-based image

retrieval, and inventory management.

• Scene understanding: Object detection contributes to a better under-

standing of visual scenes by identifying and analyzing the objects within

them. It helps in extracting meaningful information about the composition,

layout, and interactions of objects, leading to higher-level scene understand-

ing and analysis.

• Video analysis and surveillance: Object detection techniques play a

crucial role in video analysis and surveillance systems. They enable the

identification and tracking of objects over time, allowing for applications

like video-based security monitoring, activity recognition, and abnormal

event detection.
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• Autonomous driving: Object detection is essential for autonomous driv-

ing systems as it enables the detection and tracking of pedestrians, vehicles,

and other objects on the road. It provides the necessary information for

making real-time decisions and ensuring safe navigation in complex traffic

environments.

Overall, the purpose of object detection techniques is to enable machines to per-

ceive and understand the visual world by detecting and localizing objects, facil-

itating tasks that require object recognition, scene understanding, tracking, and

decision-making based on visual information.

Architecture

Object detection techniques typically involve the following steps:

• Region proposal: In this step, potential object regions or bounding box

proposals are generated based on the presence of objects in different ar-

eas of the image. This is done using algorithms such as Selective Search,

EdgeBoxes, or Region Proposal Networks (RPNs).

• Feature extraction: Convolutional Neural Networks (CNNs) are com-

monly used to extract meaningful features from the proposed regions. The

CNN model is typically pre-trained on a large dataset (e.g., ImageNet Deng

et al. (2009)) and can capture hierarchical representations of visual features.

• Object classification: The extracted features from each proposed region

are fed into a classifier, such as a softmax classifier, to determine the class

or category of the object within that region. This step involves assigning

a class label to each proposed region, indicating the presence of a specific

object category.

• Bounding box refinement: The initially proposed bounding boxes are re-

fined to better fit the object’s precise location within the region. Techniques
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Figure 1.2: An illustration of general architecture of object detection model

such as bounding box regression or non-maximum suppression (NMS) are

commonly employed to refine the bounding box coordinates and remove

duplicate or overlapping detections.

Over the years, several object detection models such as R-CNN Girshick et al.

(2014), Faster R-CNN Ren et al. (2015), YOLO Redmon et al. (2016), Efficient-

Det Tan et al. (2020) have been proposed. These techniques have enabled a

wide range of applications, including autonomous driving, surveillance systems,

object tracking, and augmented reality. They provide a more comprehensive un-

derstanding of visual scenes by identifying and localizing objects within them.

Limitation

Object detection techniques have made significant advancements in the field of

machine learning, but they still have some limitations. Here are a few common

limitations of object detection:

• Accuracy and precision: Object detection algorithms may have limita-

tions in accurately detecting and localizing objects, especially in complex

scenes, cluttered backgrounds, or when objects are occluded or have similar

appearances. Achieving high accuracy and precision remains a challenge,

particularly for small or partially visible objects.
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• Scale and variability: Object detection models may struggle to handle

objects at different scales and viewpoints. Detecting objects at extreme

scales (very small or very large) or dealing with significant variations in

object appearance, pose, illumination, or occlusion can pose challenges for

detection algorithms.

• Semantic understanding: Object detection focuses on identifying and

localizing objects in an image but may not capture higher-level semantic

understanding. While detecting objects is an important step, it may not

provide sufficient context or understanding of the relationships between

objects, their interactions, or the overall scene semantics.

• Limited contextual information: Object detection algorithms often op-

erate on individual frames or images and may not leverage contextual infor-

mation from neighboring frames or wider temporal context. Incorporating

richer contextual information could improve object detection performance

and robustness in complex scenarios.

1.1.3 Semantic segmentation

Even though for better scene understanding, object detection techniques have

shown an outstanding performance, but they still fail to provide higher level

semantic details such as the relationships between objects, their interactions, or

the overall scene semantics. Thus, there is a need for a new computer vision

technique which can provides such details.

Semantic segmentation is a computer vision task that involves classifying and

labeling each pixel in an image with its corresponding semantic category. In

other words, it aims to partition an image into multiple regions or segments by

clustering the pixels of having similar features and assign a class label to each

segment. As it is a pixel-wise classification task which involves considering the

characteristics of neighboring pixels before assigning a class label to each pixel, so
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it allows for a comprehensive analysis of the overall semantics of a scene, leading

to a better understanding of complex scenes.

Purpose

The main purposes of semantic segmentation include:

• Scene understanding: Semantic segmentation provides a fine-grained

analysis of an image, allowing for a better understanding of the objects,

boundaries, and relationships within a scene. This information is crucial

for tasks such as scene understanding, object recognition, and contextual

understanding.

• Object localization: Semantic segmentation can be used to precisely lo-

calize objects within an image. By assigning class labels to individual pixels,

it enables the delineation of object boundaries, making it easier to detect

and locate specific objects of interest.

• Image parsing: Semantic segmentation aids in parsing an image into its

constituent parts or regions, providing a higher level of understanding be-

yond simple object detection. It allows for the identification and extraction

of specific regions based on their semantic meaning.

• Augmented reality and virtual reality: Semantic segmentation con-

tributes to realistic and immersive experiences in augmented reality and

virtual reality applications. By segmenting the scene into different objects

and regions, it enables realistic virtual object placement and interaction

with the real-world environment.

• Visual perception for autonomous systems: In applications such as

autonomous driving, and robotics, semantic segmentation plays a vital role

in the perception pipeline. It helps autonomous systems understand the

surrounding environment by segmenting the scene into categories such as
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road, pedestrians, vehicles, and obstacles and navigates them through com-

plex scenes.

• Medical imaging: Semantic segmentation is extensively used in medi-

cal imaging for tasks such as tumor detection, organ segmentation, and

anomaly identification. It assists healthcare professionals in accurate diag-

nosis, treatment planning, and monitoring of diseases.

• Other applications: In recent days, semantic segmentation technique is

utilized for designing various applications such as plant diseases detection,

crack detection on road and building, and urban planning and geo-spatial

analysis from aerial or satellite imagery.

Overall, the purpose of semantic segmentation is to provide a detailed under-

standing of an image at a pixel level, enabling various applications in computer

vision, artificial intelligence, and other domains where precise scene understand-

ing is required.

Architecture

Traditional approaches to semantic segmentation involved using handcrafted fea-

tures and algorithms, such as graph cuts, random forests, or conditional random

fields. However, with the advancements in deep learning, convolutional neural

networks (CNNs) have become the dominant method for semantic segmentation.

Deep learning-based semantic segmentation models typically employ an encoder-

decoder architecture. The encoder network, often based on pre-trained CNNs like

VGG Simonyan & Zisserman (2014), ResNet Targ et al. (2016), MobileNet San-

dler et al. (2018), or EfficientNet Tan & Le (2019) extracts high-level features

from the input image. The decoder network then upsamples these features to

generate a dense pixel-wise prediction map, which represents the class labels for

each pixel in the input image. Basically, the encoder convolves the input image

and creates a pyramidal shape feature hierarchy whereas the decoder deconvolves

11



Conv + BN + ReLU Max pooling SoftmaxFully connected

1024 x 1024 x 3

512 x 512 32

256 x 256 x 64

128 x 128 x 128

64 x 64 x 256

32 x 32 x 512

16 x 16 x 1024

0.2 
0.1 
0.7

Softmax score

Cat 
Dog 
Bird

Classification
head

Clasification head is replaced by decoder

64 x 64 x 256

32 x 32 x 512

128 x 128 x 128
256 x 256 x 64

512 x 512 32

1024 x 1024 x 19

Flatten Upsample

Encoder Decoder

Figure 1.3: An illustration of general architecture of semantic segmentation model

the global feature maps and creates an inverted pyramidal shape feature hier-

archy. The layered architecture of the encoder-decoder network is displayed in

Figure 1.3. It can be seen that a series of convolution and max pooling layers are

used to filter and downsample the input image at the encoder side. The top layers

of an image classification model which consists of a flatten, a dense, and a soft-

max layer, are replaced by a decoder network for generating a dense pixel-wise

prediction map in order to achieve semantic segmentation of the input image.

This revolutionized approach of replacing the top layers of an existing DCNN is

introduced by FCN Long et al. (2015). Later on, several models such as U-Net

Ronneberger et al. (2015), SegNet Badrinarayanan et al. (2017), PSPNet Zhao

et al. (2017) and DeepLab Chen et al. (2017) were introduced following the same

novel approach. These models have shown an performance in this domain.

Limitation and challenges

While semantic segmentation provides better semantic details of a complex scene,

it still has several limitations and challenges that researchers and practitioners

continue to address. Some of the key limitations and issues of semantic segmen-

tation include:

• Fine-grained object boundaries: Semantic segmentation algorithms

may struggle to accurately delineate fine-grained object boundaries. Due to

the nature of pixel-level classification, objects with intricate shapes or re-
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gions with ambiguous boundaries can be challenging to segment accurately.

• Occlusion handling: Occlusions, where one object partially obscures an-

other, pose challenges for semantic segmentation. Algorithms may struggle

to correctly segment objects that are occluded or only partially visible in

the image.

• Scale and resolution variations: Semantic segmentation models trained

on a specific resolution may have difficulty handling images with different

scales or resolutions. Scaling up or down an image can affect the model’s

ability to capture fine details or maintain spatial relationships accurately.

• Computational complexity: Semantic segmentation, particularly with

deep learning models, can be computationally expensive and resource-intensive.

Training and inference can require significant computational power and

memory, limiting real-time performance on resource-constrained devices or

in scenarios with strict latency requirements.

• Limited generalization: Semantic segmentation models trained on one

dataset or domain may struggle to generalize well to unseen or different

datasets or domains. Models often exhibit a bias towards the characteristics

of the training data, leading to reduced performance on new and diverse

data.

• Class imbalance: In many semantic segmentation datasets, there can be

a significant class imbalance, where certain classes are over-represented or

underrepresented. This class imbalance can bias the learning process and

result in poor performance for minority classes.

• Availability of limited datasets Generating pixel-level annotations for

training data can be laborious, time-consuming, and expensive. The process

often requires manual annotation by human experts, and the subjective
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interpretation of semantic classes can introduce annotation inconsistencies

and errors.

• Real-time performance: Achieving real-time semantic segmentation in

applications such as autonomous driving or robotics can be challenging.

Balancing accuracy and speed is crucial, as real-time systems require fast

and efficient segmentation algorithms to process high-resolution images or

video streams in real-time.

Researchers are actively working on addressing these limitations and developing

new techniques to improve the accuracy, efficiency, and robustness of semantic

segmentation methods. The field continues to evolve with advancements in deep

learning architectures, data augmentation techniques, and the integration of ad-

ditional contextual information to overcome these challenges.

1.1.4 Resource-constrained applications

As semantic segmentation provides rich contextual details about the scene, it

usually requires a large model as discussed previously. These large models usu-

ally have large memory footprints, high computational cost, and consequently

large energy consumption. In many practical situations, however, there are con-

straints on memory, computational power and low energy usage requirements,

such as mobile, IoT and edge devices. Likewise, some other situations may re-

quire the processing of multiple video streams for a fixed computational resource.

As such, there is a real need for specialised semantic models that can perform

well whilst meeting these constraints and provide real-time performance with de-

sirable accuracy. Some applications that could benefit from lightweight semantic

segmentation models include

• Mobile Augmented Reality: Augmented reality (AR) Zhang et al.

(2020); Tanzi et al. (2021) applications on mobile devices often require real-

time semantic segmentation for tasks such as object detection and scene
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understanding. Lightweight semantic segmentation models enable efficient

inference on mobile devices, allowing AR applications to run smoothly and

provide interactive and responsive user experiences.

• Robotics Navigation: Robotics navigation refers to the process by which

robots autonomously navigate and move in their environment. It involves

perceiving and understanding the surroundings, planning a path or trajec-

tory, and executing the necessary actions to reach a desired location or

perform a specific task. Semantic segmentation Kim & Seok (2018) en-

ables robots to navigate and interact with their environment effectively. By

segmenting objects and obstacles in real-time, robots can plan their move-

ments, avoid collisions, and perform tasks more efficiently in dynamic and

cluttered environments. For instance, a blind patient with wheelchair as-

sistance can navigate efficiently in an indoor environment with the help of

real-time semantic segmentation model.

• Smart Surveillance Systems: Processing videos in a real-time envi-

ronment is always a challenging task, particularly for surveillance systems

Lai et al. (2021); Abdullah & Jalal (2023) that analyze live video streams

from multiple feeds for object detection, tracking, and anomaly detection.

These systems can benefit from a lightweight real-time semantic segmenta-

tion model. A lightweight segmentation model enables real-time processing

and efficient utilization of computational resources, enabling the surveil-

lance system to operate continuously without overwhelming the available

hardware.

• Medical Image Analysis: Medical imaging tasks, such as tumor seg-

mentation Zheng et al. (2022), organ localization Cai & Wang (2023), and

tissue classification Progga & Shatabda (2023), often require semantic seg-

mentation models to extract detailed information from images. In resource-

constrained healthcare settings, lightweight models are essential for efficient
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processing on devices with limited computational power, enabling faster di-

agnoses and treatment planning.

• Environmental Monitoring: Resource-constrained applications in envi-

ronmental monitoring, such as remote sensing or satellite imagery analysis

Wu et al. (2019a); Yang & Tang (2021); Khan et al. (2022), often require se-

mantic segmentation models to identify land cover types, monitor changes,

and detect anomalies. Lightweight models enable processing on edge de-

vices or in remote locations with limited connectivity, facilitating timely and

cost-effective analysis of environmental data. In modern-day applications,

unmanned aerial vehicles (UAVs) Stache et al. (2023) are widely utilized for

various tasks such as identifying agricultural lands, residential areas, com-

mercial zones, and streets for urban planning. Similarly, in the agriculture

field, low altitude flying drones Revanasiddappa et al. (2020) are employed

for plant detection. However, these devices often have limited hardware

capabilities. The integration of a lightweight semantic segmentation model

can empower these embedded devices to efficiently perform detection and

segmentation tasks.

• Structural Monitoring: Structural monitoring Nayyeri & Zhou (2021),

such as building or road crack detection Choi & Cha (2019), often requires

a real-time detection technique that efficiently detects cracks and notifies

the authorities if further maintenance is required. A lightweight semantic

segmentation model embedded in a resource-constrained mobile device can

effectively accomplish this in a real-time environment.

The aforementioned applications highlight the significant demand for develop-

ing real-time semantic segmentation models. While numerous scene segmentation

models exist, it is important to note that many of these models are not suitable for

resource-constrained applications. The Figure 1.4 shows the plot of existing mod-

els’ validation mIoU on Cityscapes Cordts et al. (2016) dataset against frame per
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Figure 1.4: Cityscapes validation mIoU Vs frame per second (FPS) of existing
offline and real-time models. The varying sizes of the dots define the different
numbers of parameters of the models.

second (FPS). The red dot defines the existing offline scene segmentation models

and the blue dot defines real-time semantic segmentation models. The size of each

dots illustrates the size of the models. Generally offline models have more than

30 million parameters, whereas real-time semantic segmentation models have 0.4

to 16 million parameters. As offline model focuses on improving accuracy than

efficiency, hence most of the offline models do not present their FPS count in

the literature. The thesis presented four offline models in the plot and it can be

clearly seen that the state-of-the-art offline models such as DeepLabV3+ Chen

et al. (2018), PSPNet Zhao et al. (2017) not even process 1 frames per second. In

comparison to offline models, existing real-time models can process more number

of frames. However, in order to achieve a desirable trade-off between model’s
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accuracy and efficiency, a continuous research work has been carried out in the

field of semantic segmentation.

The thesis also focusing on developing on real-time semantic segmentation

model which is suitable for resource constrained mobile devices and can han-

dle high resolution input images with less computational cost. The key reasons

for developing real-time semantic segmentation models for resource constrained

applications are:

• Computational Efficiency: Resource-constrained applications often op-

erate on devices with limited computational power, such as mobile devices

or embedded systems. Very large neural network models require significant

computational resources, making them impractical for deployment on such

constrained devices. Developing specific models allows for the optimization

of computational efficiency, ensuring that the models can run smoothly

within the given constraints.

• Memory Footprint: In addition to computational efficiency, the mem-

ory footprint of a model is a critical consideration for resource-constrained

applications. Large neural network models tend to have a high number of

parameters, which increases their memory requirements. On devices with

limited memory, it becomes necessary to develop models that are compact

and can fit within the available memory constraints while maintaining ac-

ceptable performance levels.

• Latency and Real-Time Processing: Some applications, such as real-

time processing or edge computing scenarios, require low latency and fast

inference times. Very large neural network models often have complex ar-

chitectures that introduce higher computational and memory requirements,

leading to increased inference times. Specific models can be designed with

optimized architectures that minimize latency and enable real-time process-

ing, meeting the needs of resource-constrained applications.
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• Energy Efficiency: Energy consumption is a critical concern for devices

that run on batteries or have limited power sources. Large neural network

models with high computational requirements can quickly drain the device’s

battery or exceed the available power budget. Developing specific models

allows for the design of energy-efficient architectures and algorithms, reduc-

ing the computational load and prolonging the device’s battery life.

• Adaptability to Task Requirements: Resource-constrained applica-

tions often have specific requirements and constraints unique to their use

cases. By developing specific models, researchers and engineers can tailor

the model architecture, size, and complexity to best suit the application’s

needs. This customization allows for efficient use of available resources and

ensures that the model performs optimally in the specific context, without

unnecessary overhead from a large, general-purpose model.

In essence, creating specialized models tailored for resource-constrained applica-

tions offers advantages such as enhanced computational efficiency, reduced mem-

ory usage, minimized latency, improved energy efficiency, and adaptability to

the specific needs of the application. These factors play a vital role in ensuring

successful deployment and optimal performance in limited environments.

1.2 Literature review - Existing approaches for

semantic segmentation

1.2.1 Conceptual foundation

Semantic segmentation is an important active research topic in the field of com-

puter vision. Before the success of convolutional neural networks, the best ways

of classifying the pixels independently were handcrafted feature-based methods

such as graph cuts Freedman & Zhang (2005), Ramdom forests Shotton et al.

(2008), Conditional Random Fields Plath et al. (2009). These methods often re-

quire expert domain knowledge and extensive manual feature engineering. They
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rely on the design of appropriate features and the development of algorithms to

extract and process these features effectively. While these methods were widely

used in the past, the advent of deep learning and CNNs has significantly surpassed

their performance, allowing for more accurate and end-to-end learning-based ap-

proaches for semantic segmentation.

In semantic segmentation, deep CNNs are firstly utilized by FCN Long et al.

(2015). It has shown a revolutionary approach to deploying a deep CNN as

an encoder of segmentation model. It adopted the contemporary classification

models VGGNet Simonyan & Zisserman (2014) and GoogLeNet Szegedy et al.

(2015) as feature extractor and replaced the top fully connected layers of the

CNN by a convolution layer to generate a spatial map and then the spatial map is

given to the decoder network in order to produce a segmentation output. Thus, an

encoder-decoder architecture is designed. The general architecture of an encoder-

decoder network can be seen in Figure 1.3. Following this novel design, later on

several semantic segmentation models are introduced. The literature review on

semantic segmentation using deep CNNs is designed based on the Figure 1.5. All

the existing deep CNN based semantic segmentation models follow one of these

network architectures.

1.2.2 One-branch encoder design

The most popular approach of designing a semantic segmentation model is to

adopt an existing deep image classification model as an encoder and relying on

the extracted deep feature maps by the encoder, design a decoder for generating a

dense semantic map for pixel labelling. Most of the existing segmentation models

which have adopted an existing deep CNN model as feature extractor, are follow-

ing one-branch encoder design. The generale layout of the one-branch encoder

design can be seen in Figure 1.5. The pioneer semantic segmentation model, FCN

Long et al. (2015) also followed one-branch encoder design. It adopted VGGNet

Simonyan & Zisserman (2014) or GoogLeNet Szegedy et al. (2015) as an encoder
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Figure 1.5: Different existing architectures used for semantic segmentation. (a)
One branch encoder design, (b) One branch encoder using feature scaling tech-
nique, (c) Multi-branch encoder design, (d) Two-branch encoder design, (e)
Encoder-decoder design with attention mechanism, (f) Feature reuse at encoder.

and replaces the fully connected layers by a convolution decoder. Followed by

this design, a model called U-Net Ronneberger et al. (2015) was introduced for

biomedical image segmentation. Along with a convolution path for capturing

contextual details, it deployed a symmetric deconvolution path that enables pre-

cise objects localization. This symmetry helps in capturing both local and global

context information for accurate segmentation. It also deployed skip connections

from encoder to decoder to preserve the spatial details. Following this symmet-

rical architecture, another model named SegNet Badrinarayanan et al. (2017)

is designed. It uses convolutional layers in the encoder for down-sampling and

stores the max-pooling indices for each pooling operation. In the decoder, it uses

upsampling layers that utilize the stored indices to efficiently reconstruct the seg-

mentation map. Unlike, U-Net Ronneberger et al. (2015), it did not utilize skip

connections which makes SegNet computationally efficient than U-Net.

1.2.3 One-branch encoder using feature scaling technique

Relying on encoder-decoder architecture later on different variants of DeepLab

models Chen et al. (2017, 2018), PSPNet Zhao et al. (2017), DenseASPP Yang
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et al. (2018) were introduced which proposed a new feature scaling technique for

capturing rich contextual details at various scales from the deep global feature

maps. DeepLabV3+ Chen et al. (2018) proposed Atrous Spatial Pyramid Pool-

ing (ASPP) module which uses dilated convolution branches with higher dilation

rates to have an effective receptive field of various sizes. It enables the model to

capture both local and global context, leading to improved segmentation accuracy.

The model demonstrated state-of-the-art performance in semantic segmentation

due to its’ large backbone (ResNet-101 Wu et al. (2019b) or Xception Chollet

(2017)) and ASPP module. Motivated by the feature scaling technique, litera-

ture Yang et al. (2018) introduced another semantic segmentation model named

DenseASPP. It is built upon on DenseNet Huang et al. (2017) classification model.

It deploys ASPP on top of the DenseNet backbone for capturing multi-scale con-

textual information. The dense architecture facilitates feature reuse and enhances

gradient flow, which leads to improved feature representation. It does not explic-

itly include a separate decoder module like DeepLabV3+. Other feature scaling

technique such as Pyramid Pooling Module (PPM) is introduced by PSPNet

Zhao et al. (2017). Instead of dilated convolution branches, it deploys multiple

image pooling branches with different pool sizes. Thus, it provides various sizes

of receptive field for better capturing of contextual details.

1.2.4 Multi-branch encoder design

Figure 1.5(c) depicts the multi-branch encoder design. The reason behind of this

approach is to reduce the computational power and improve model’s performance.

Processing high resolution input images through a deep CNN such as ResNet-

101 Wu et al. (2019b) generates a large computer overhead. Moreover, as the

input image passes through a deep encoder, it loses the local spatial details,

but produces rich contextual feature maps. However, for better semantic output,

local information such as textures, boundary details are important. Keeping these

thing in mind, a model called RefineNet Lin et al. (2017a) is introduced. The core
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idea of this model is to deploy a deep branch for low resolution input images and

employ multiple parallel shallow branches for varied higher resolution images. In

this way, deep branch will not create large computer overhead and at the same

time, multiple shallow branches extract local spatial details and fuse it with the

deep feature map at the end of the encoder pipeline. Thus, model’s performance

is enhanced. Even though, this modle is designed to reduce the computational

cost, but due to the deployment of ResNet-101 or ResNet-152 deep CNN model

as the deep branch, model still produces a large computer overhead.

All these models, discussed above are basically offline semantic segmentation

models due to their large backbone, large number of parameters, large FLOPs

and large memory usage. However, growing demand of developing real-time ap-

plications in this domain has shown the need for resource friendly semantic seg-

mentation model. To fulfill the needs, the literature Zhao et al. (2018) introduced

an optimized multi-branch semantic segmentation model name ICNet. It reduced

the number of parameters to 6.7 million and achieved a good balance between

speed and accuracy. In order to reduce the model size further and makes the

model more resource friendly, different multi-branch models such as ContextNet

Poudel et al. (2018), and SwiftNet Orsic et al. (2019) were introduced. Among

these, ContextNet is the smallest model, having only 1.1 million parameters. It

deploys only two branches: one deep and one shallow branch. ContextNet is

more resource friendly among the multi-branch models. However, in terms of

accuracy, SwiftNet, which has more than 12 million parameters, produces bet-

ter results among the multi-branch models. All these models are designed based

on multi-branch approach where all branches are independently extracting the

feature maps at various scales.

There are some shallow semantic networks such as ENet Paszke et al. (2016),

CGNet Wu et al. (2020) which have only one-branch at the encoder. These

models have very less parameters (around 0.5 million). However, due to the

shallow architecture, the accuracy of these models dropped dramatically.
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1.2.5 Two-branch encoder design

Among all the aforementioned models designed based on multi-branch encoder

design, ContextNet Poudel et al. (2018) has utilized only two branches, one for

deep global feature maps and another for shallow feature maps. This model

optimized the design of multi-branch encoder. However, model still accepts two

different sizes of input which increases the training time. For on-the-fly data

augmentation techniques during the training process, input of both sizes need to

be processed separately which causes the increase of time during the training.

To overcome this issue, researchers proposed a new designed called two-branch

design where the shallow branch, parallel to the main branch or deep branch, is

created after initial few stages. In this design, model accepts the input at one

resolution. Hence, all the data processing operations can be done only on one

resolution input images, causes less training time. This designed can be seen

in Figure 1.5(d). Following this approach, several models such as Fast-SCNN

Poudel et al. (2019), BiSeNetV1 Yu et al. (2018), and BiSeNetV2 Yu et al. (2021)

were introduced. Among these models, Fast-SCNN is the smallest two-branch

segmentation model which has 1.1 million parameters. BiSeNet proposes two

paths: Spatial Path (SP) which is a shallow branch designed for affluent spatial

details and Context Path (CP) which is a deep branch, consisting of Xception

Chollet (2017) deep CNN network and a global average pooling layer on top of

the CNN, designed for contextual granularity. With ResNet18 Wu et al. (2019b),

the baseline BiSeNet has 49.0 million parameters and with Xception39 Chollet

(2017), it has 5.8 million parameters. Recently a new model called STDC Fan

et al. (2021) is introduced which inherits the context path (CP) of the BiSeNet and

excludes the spatial path (SP) in their backbone design. It introduced a detailed

guidance technique which generates the ground-truth of the boundaries of each

object in the scenes from the actual semantic segmentation ground-truth and

provide this additional spatial details at the third stage of the context path. Thus,

it fulfills the need of spatial details. This additional pre-processing operation is
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only required during training. Relying on BiSeNet context path, it proposed two

backbones: STDC1 and STDC2. STDC1 backbone has 8.4 million parameters,

whereas STDC2 backbone has 12.5 million parameters. However, their end-to-

end segmentation models have 12.0 and 16.1 million parameters, respectively. In

comparison to BiSeNetV1 Yu et al. (2018) and BiSeNetV2 using Yu et al. (2021)

Xception39 Chollet (2017) as backbone, both STDC versions have 2 to 3 times

more parameters. As the model size is increased, hence the accuracy is improved

by 4% to 7%. Moreover, the additional boundary knowledge also helps to improve

the model’s performance.

1.2.6 Encoder-decoder design with attention mechanism

Like feature scaling technique, attention mechanism is one of the useful tech-

niques used by the computer vision researchers to improve the performance of

the semantic segmentation model by focusing on important regions or features

of an input image. It allows the model to allocate more computational resources

and attention to regions that are semantically rich and contribute more to the

segmentation task. Relying on attention module, several deep CNN models are

designed for image classification. For example, MobileNetV3 Howard et al. (2019)

uses squeeze-and-excitation (SE) module inside each inverted residual block for

focusing on re-calibrating channel-wise feature responses. It consists of two main

operations: squeeze and excitation. The squeeze operation globally aggregates

spatial information by applying global average pooling over the input feature

maps. The excitation operation then models channel dependencies by learning

channel-wise weights using fully connected layers. This allows the model to adap-

tively emphasize informative channels and suppress less relevant ones. Likewise,

Convolutional Block Attention Module (CBAM), proposed by the literature Woo

et al. (2018), combines both channel attention and spatial attention mechanisms

in order to capture inter-dependencies between different channels and finds the re-

lationships between different spatial locations in the feature maps. CBAM shows
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slightly better performance than SE when it is deployed with MobileNet Sandler

et al. (2018) image classification model.

Motivated by these attention mechanisms, researchers started exploring dif-

ferent attention modules in the domain of semantic segmentation. Literature Fu

et al. (2019) introduced an offline segmentation model called Dual Attention Net-

work (DANet). Like, CABM, it consists of two attention modules: the Position

Attention Module (PAM) and the Channel Attention Module (CAM). The PAM

captures long-range dependencies by modeling the relationships between different

positions in the feature maps. The CAM re-calibrates the importance of different

feature channels. Relying on ResNet-101 Wu et al. (2019b) backbone and the

proposed attention modules, DANet generates better results than existing offline

segmentation models. Generally, attention module is deployed on top of the en-

coder to filter out the noises from the global feature maps. This general layout

can be seen in Figure 1.5. However, it can be deployed in each building block of

the encoder like SE and CBAM.

Relying on another attention module called Obejct-Contextual Representa-

tions (OCR), the literature Yuan et al. (2020) introduced an improved version

of HRNet Sun et al. (2019) for image segmentation. The module OCR focuses

on two main aspects: intra-object context and inter-object context. The intra-

object context refers to the contextual information within individual objects and

The inter-object context deals with the relationships and dependencies between

multiple objects in an image. Thus, relying on a large HRNet backbone, OCR

produces state-of-the-art performance on various public datasets. However, due

to large number of parameters (> 79 million), model’s efficiency is dropped. The

literature Choi et al. (2020) proposed another attention module called Height-

driven Attention Networks (HANet) which is used as a general add-on module

to semantic segmentation for urban-scene images. It adopts DeepLabV3+ as a

baseline and add HANet at five different stages. The proposed HANet atten-

tion module extracts height-wise contextual information from the input feature
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map and then computes height-driven attention weights and use it as an atten-

tion vector to guide the input feature map. Based on HANet attention module,

two semantic models were proposed: MobileNetV2 + HANet and ResNet-101

+ HANet. The mobileNet version has 15.4 million parameters, whereas ResNet

version has 65.4 million parameters.

All the aforementioned models using attention mechanism are offline model

due to their large network architecture. However, there are some shallow models

which focus on real-time semantic performance with adequate accuracy. Model

like DANet Li et al. (2019) deployed a simple yet effective Fully Connected (FC)

attention module on top of the encoder branch to enhance feature representations

and improve the accuracy of segmentation predictions. It also proposed two

models: DFANet-A and DFANet-B using two different Xception Chollet (2017)

backbones. The number of parameters of these two versions ranges from 4.8 to

7.8 million.

1.2.7 Feature reuse at encoder

All aforementioned semantic segmentation models follow a pyramidal shape to

obtain global features with high-level semantics. However, due to deep network

architecture, the rich global feature maps lack the local spatial details. This

phenomena mainly observed in one-branch encoder design where a large CNN

is used as an encoder. To mitigate this issue, the literature Li et al. (2019)

introduced a concept of reusing the feature maps at the encoder side. For reusing

the high-level features extracted from the backbone, successive encoder branches

are added which accepts the high-level features from the predecessor branch. The

depth of the model is increased in the successive branch. Thus, a Deep Feature

Aggregation Network Li et al. (2019) is introduced for image segmentation. This

feature reuse design can be seen in Figure 1.5(f).
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1.2.8 Transformer based design

Transformer-based models have gained significant attention in natural language

processing (NLP) tasks, but they have also been adapted for computer vision

tasks, including semantic segmentation. The Vision Transformer (ViT)Dosovitskiy

et al. (2020) introduced a CNN free transformer architecture for image recognition

where input images are processed as sequences of patch tokens. After observing

the excellent performance of ViT in image classification domain, SETR Zheng

et al. (2021) introduced a transformer-based image segmentation model which

uses ViT as backbone and a standard CNN as decoder. SETR divides the input

image into a grid of fixed-size patches and applies a stacked hierarchical struc-

ture of transformers to capture both local and global context. The model uses

self-attention to model dependencies between patches and generate segmentation

predictions. Recently, a new model called Segmenter Strudel et al. (2021) is

introduced which is a fully transformer-based encoder-decoder architecture. It

deploys a variant of ViT Dosovitskiy et al. (2020) as an encoder to get the output

embedding corresponding to image patches and uses a point-wise linear mapping

or a mask transformer for obtaining class labels from these embeddings.

All the aforementioned models are very large and produce heavy computa-

tional cost which hampers their performance in resource constrained mobile de-

vices. To address this issue, a mobile-friendly transformer-based model called

Token Pyramid Vision Transformer (TopFormer) Zhang et al. (2022) is intro-

duced which takes Tokens from various scales as input to produce scale-aware

semantic features using ViT, then injects it into the corresponding tokens to aug-

ment the representation. The top variant of the TopFormer model has around 5.1

million parameter which is much less than the other transformer-based model.

The performance of transformer-based models relies on large datasets.

These transformer-based models demonstrate promising results in semantic

segmentation tasks by leveraging the self-attention mechanism to capture contex-

tual dependencies and spatial relationships effectively. However, it’s important
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to note that the performance of transformer-based architecture relies on large

datasets.

1.3 Summary of literature review

In summary, most existing semantic segmentation models utilize a pre-trained

deep CNN image classification model as the encoder of their network. The ResNet

Targ et al. (2016) architecture is one of the most popular CNN architectures, with

ResNet-101 Wu et al. (2019b) being a commonly used variant. Deep variants of

ResNet are primarily used for offline image segmentation, while smaller variants

like ResNet-18 and ResNet-34 are employed for real-time computation. The Mo-

bileNet Sandler et al. (2018) image classification model is also commonly used

for real-time computation due to its smaller memory footprint compared to the

smaller variants of ResNet.

Various techniques such as feature scaling Zhao et al. (2017); Chen et al.

(2018); Yang et al. (2018), feature fusion, feature attention Fu et al. (2019);

Yuan et al. (2020); Choi et al. (2020); Li et al. (2019), and pre/post-processing

methods Fan et al. (2021) are employed to enhance the performance of semantic

segmentation models. These techniques aim to improve the model’s ability to

capture spatial and contextual information and refine segmentation results. Ad-

ditionally, transformer-based architectures, which have achieved state-of-the-art

performance in natural language processing tasks, have been introduced in the

image segmentation field. Transformers process images by dividing them into

smaller patches or tokens and utilize self-attention mechanisms to capture global

context and model long-range dependencies. However, transformers are compu-

tationally more expensive compared to CNNs. Therefore, the choice between

these models depends on the specific requirements of the task and the available

computational resources.

Table 1.1 provides a summary of existing deep and shallow segmentation mod-

els designed based on different approaches. It is evident that the majority of the
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existing semantic segmentation models employ a pre-trained deep CNN as an en-

coder, trained on large datasets. The offline models have more than 29.5 million

parameters, resulting in high computational costs. In contrast, real-time models

have a parameter range of 0.4 to 16.0 million. Due to the relatively shallower

network architecture of the deep branch, most real-time models adopt a multi-

branch or two-branch design approach. Some of the existing real-time scene

segmentation models achieve better accuracy. However, it’s important to note

that these models still have a large number of parameters, which can affect the

overall performance of the model in resource-constrained embedded devices. That

is why ongoing research is focused on developing real-time semantic segmentation

models for resource-constrained applications.

Table 1.1: Summary of the literature review

Type Model Design approach Backbone
Parameters
(Million)

O
ffl
in
e

FCN (Long et al. (2015)) One-branch VGGNet 134
U-Net (Ronneberger et al. (2015)) One-branch VGGNet >138

SegNet (Badrinarayanan et al. (2017)) One-branch VGGNet 29.5

DeepLab (Chen et al. (2017))
One-branch with
feature scaling

VGGNet 134.0

DeepLabV3+ (Chen et al. (2018))
One-branch with
feature scaling

Xception 54.6

PSPNet (Zhao et al. (2017))
One-branch with
feature scaling

ResNet 250.8

RefineNet (Lin et al. (2017a)) Multi-branch ResNet 68.2

DANet (Fu et al. (2019))
One-branch with
dual attention

ResNet 46.0

HRNet (Sun et al. (2019)) One-branch HRNet 65.9
OCR (Yuan et al. (2020)) One-branch HRNet >76.4

HANet (Choi et al. (2020))
One-branch with

height-driven attention
ResNet 65.4

SETR (Zheng et al. (2021)) Transformer-based ViT 97.6
Segmenter (Strudel et al. (2021)) Transformer-based ViT >307

R
eal-tim

e

ENet (Paszke et al. (2016)) One-branch Xception 0.4
ICNet (Zhao et al. (2018)) Multi-branch ResNet 6.4

ContextNet (Poudel et al. (2018)) Multi-branch Own backbone 1.1
BiSeNetV1 (Yu et al. (2018)) Two-branch Xception 5.8
SwiftNet (Orsic et al. (2019)) Multi-branch ResNet 12.9

Fast-SCNN (Poudel et al. (2019)) Two-branch Own backbone 1.2

DFANet (Li et al. (2019))
Feature reuse and

FC attention
ResNet 8.4

CGNet (Wu et al. (2020)) One-branch Xception 0.5
BiSeNetV2 (Yu et al. (2021)) Two-branch Xception 5.2
MGSeg (He et al. (2021)) One-branch with hybrid attention ResNet 13.3
STDC (Fan et al. (2021)) Two-branch BiseNet 16.0

TopFormer (Zhang et al. (2022)) Transformer-based ViT 5.1
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1.4 Identification of research gaps in semantic

segmentation

From Table 1.1, it is evident that deep CNNs have been extensively used in

semantic segmentation models to extract meaningful information and improve

the quality of segmentation results. In recent years, transformer-based designs

have gained popularity in this field. However, they have not surpassed the per-

formance of deep CNNs and require larger datasets and more computational

resources. Overall, CNN-based models still outperform transformer-based ap-

proaches in terms of both accuracy and efficiency. However, there is still room

for improvement in existing deep CNN-based models.

Most existing segmentation models rely on large, deep CNN architectures,

which result in high computational overhead and make them unsuitable for real-

time computation. While deep CNNs enhance model accuracy, they also increase

the memory footprint and reduce efficiency. On the other hand, shallow models

optimize the pipeline and reduce the number of parameters, making them suit-

able for real-time performance on mobile devices. However, their performance is

significantly lower compared to deep CNN-based models.

To achieve the desirable trade-off between accuracy and efficiency, this thesis

investigates the architectures of existing offline and real-time semantic segmen-

tation models and identifies the following research gaps:

• Lack of architectural control: From Table 1.1, it can be clearly seen that

most existing models employ pre-trained deep CNN models as encoders.

While this provides a performance boost, it limits architectural modifica-

tions and optimizations when utilizing the weights of each layer. Moreover,

deep CNNs are designed for image classification tasks where contextual de-

tails are important for identifying objects in a scene. They do not provide

rich spatial details. In semantic segmentation models, both contextual de-

tails and spatial local details are required for accurate object localization
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with precise object boundaries. Therefore, employing a deep CNN may not

be beneficial for resource-constrained semantic applications.

• Lack of fine-grained detail: Many segmentation models struggle to cap-

ture fine-grained details due to down-sampling operations in the encoder

stage. This can result in the loss of spatial information and produce coarse

segmentation boundaries.

• Difficulty in handling object scale variations: Semantic segmentation

models may encounter difficulties in accurately segmenting objects with

varying scales. Objects that are smaller or larger than the distribution of

the training set pose challenges for proper segmentation.

• Ambiguity in object boundaries: Semantic segmentation models often

face challenges in accurately delineating object boundaries, especially when

boundaries are ambiguous or poorly defined. This can lead to leakage or

incorrect segmentation in regions with unclear boundaries.

• Class imbalance and rare classes: Imbalanced class distribution can

impact the performance of segmentation models, particularly for rare or

underrepresented classes. Models tend to favor majority classes, resulting

in inadequate segmentation for less frequent classes.

• Limited contextual reasoning: Some segmentation models have limi-

tations in capturing long-range dependencies and contextual information

across the entire image. This can affect the model’s ability to understand

global context and make accurate segmentation predictions.

• High computational and memory requirements: Table 1.1 highlights

that many existing scene segmentation models have a large number of pa-

rameters, leading to a significant memory footprint. These models require

substantial memory resources for training and inference.

32



Addressing these research gaps is an active area of research, and ongoing ad-

vancements aim to improve the performance and robustness of semantic segmen-

tation models. Techniques such as dilated convolutions, attention mechanisms,

multi-scale processing, and data augmentation strategies are being explored to

tackle these challenges and enhance the capabilities of semantic segmentation

models.

1.5 Problem statement

From the literature review, it is evident that existing semantic segmentation mod-

els have several architectural issues that hinder them from achieving the sensible

trade-off between model accuracy and efficiency. While these models may achieve

outstanding results due to their large network architecture, their efficiency sig-

nificantly drops in real-time environments. On the other hand, existing shallow

scene segmentation models improve efficiency but suffer from a substantial drop

in accuracy. Additionally, these models often struggle to capture long-range de-

pendencies and accurately segment objects with varied geometrical shapes and

boundary details.

To address these research gaps, this thesis presents several novel backbone

architectures that are resource-friendly and capable of handling high-resolution

input images (e.g., 1024× 2048) in real-time environments. These novel designs

provide larger receptive fields than existing architectures, enabling them to cap-

ture spatial and contextual details and long-range dependencies more effectively.

These designs also reduce the number of parameters and floating-point opera-

tions, resulting in a smaller memory footprint and lower power consumption.

Furthermore, this thesis introduces techniques such as knowledge sharing,

feature refinement, context mining modules, and hybrid path attention semantic

aggregation methods for improved semantic representation and precise object

localization. These methods enhance the overall performance of the models and

bridge the gap between accuracy and efficiency. Importantly, they do not generate
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large numbers of parameters or require a significant memory footprint, making

them suitable for real-time performance.

1.6 Proposed research

1.6.1 Research questions

In this thesis, the following research questions are designed:

1. How can this thesis design a real-time semantic segmentation model for

resource-constrained applications that can handle high-resolution input im-

ages with less computational cost?

2. How can this thesis address model scalability across all dimensions to im-

prove the model’s performance?

3. How can this thesis improve the model’s performance to extract fine-grained

details, capture long-range dependencies, and recognize objects of varied

geometrical shapes?

4. How can this thesis address existing issues such as occlusion, rare classes,

large semantic gaps, and gradient vanishing?

5. How can this thesis achieve a sensible trade-off between the model’s accu-

racy and efficiency?

1.6.2 Research objectives

Main objective:

The main objective of this thesis is to develop real-time semantic segmentation

models and applications that enhance scene understanding. These models and

applications are designed to minimize memory consumption and power usage

while simultaneously improving model accuracy and efficiency.
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Sub-objectives:

In order to achieve the main objective, the following sub-objectives need to be

addressed:

• Model scalability: To achieve a balance between model accuracy and

efficiency, a proper scaling technique is required across all dimensions of

the model. Publication 1 demonstrates the effectiveness of a compound

scaling technique for extending the segmentation model uniformly along

the depth, width, and input resolution, leading to improved performance.

However, for real-time scene segmentation, expanding at a higher rate can

reduce efficiency.

• Optimized backbone architecture: The overall performance of a se-

mantic segmentation model heavily relies on the backbone network. While

a deep backbone helps extract more contextual details, it also reduces effi-

ciency. Therefore, an optimized backbone architecture with effective tech-

niques is required to capture both spatial and contextual details. Publica-

tion 2 emphasizes the importance of designing a lightweight and resource-

friendly backbone and feature aggregation unit for better semantic results.

• Handling object scale variations: Existing segmentation models often

struggle to identify and locate objects of various shapes in complex scenes

due to a lack of receptive field sizes throughout the feature hierarchy. Ad-

dressing this issue requires feature scaling techniques at different scales.

Publications 3 and 5 introduce optimized scaling methods to handle object

scale variations and localize objects of various shapes while considering the

computational efficiency.

• Achieving fine-grained object boundaries: Local spatial information,

such as object boundaries, patterns, and textures, plays a vital role in

achieving better semantic results. Deep CNNs can provide contextual de-

tails, but the spatial details are often lost due to their deep architecture.
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Publications 4 and 6 highlight the importance of an additional shallow

branch for collecting spatial details from the feature maps. These publica-

tions also emphasize knowledge sharing between deep and shallow branches

to enhance the entire feature hierarchy and address the issue of object

boundaries.

• Improving the feature hierarchy at the encoder and addressing

gradient vanishing: Gradient vanishing is a common issue observed in

existing image segmentation models. To address this issue and improve

the feature hierarchy at the encoder, publications 8 and 9 demonstrate

the importance of deploying multiple sub-encoders for feature reuses. This

approach helps mitigate the gradient vanishing problem and enhances the

model’s performance.

• Class imbalance and rare classes: Many segmentation datasets suffer

from class imbalance, where the class distribution is not uniform, leading to

models overlooking objects belonging to rare classes. Addressing this issue

requires feature reuses through multiple sub-encoders to ensure that objects

from rare classes have a higher chance of detection. Publications 8 and 9

emphasize the importance of feature reuses and its impact on the gradient

vanishing issue. Additionally, various techniques such as data augmentation

methods, stochastic gradient descent (SGD) optimization, and weighted loss

functions (Publication 6) are employed across all publications to address the

class imbalance issue.

• Addressing limited contextual reasoning: Capturing long-range de-

pendencies and contextual information across the entire scene is challenging

for many models due to limited field-of-view. Publication 7 introduces a

novel architecture that utilizes filtering the input feature map with various

sizes of receptive fields, enabling the model to capture long-range depen-

dencies and contextual details in complex scenes.
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Figure 1.6: Layered architectures of ResNet, MobileNetV2, and MobileNetV3
residual blocks.

• Reducing computational cost and memory footprint: Most existing

semantic models are not suitable for resource-constrained embedded de-

vices due to high computational costs and large memory requirements. Op-

timizing the entire segmentation model pipeline becomes crucial to reduce

computational costs and memory requirements without sacrificing accuracy.

All publications in this thesis propose optimized model architectures, with

parameter counts ranging from 1.2 to 2.7 million, significantly lower than

existing semantic models, to address this challenge.

1.6.3 Research methodology

In order to achieve the objectives, this thesis developed several optimized architec-

tures that can be deployed for various computer vision tasks. The foundation of

each backbone relies on MobileNetV2 Sandler et al. (2018) inverted mobile resid-

ual blocks (MBConv). The MBConv block is designed for efficient deployment on

resource-constrained devices such as mobile phones and embedded systems, where

computational efficiency is crucial. It aims to strike a balance between model size

and computational efficiency. Compared to the ResNet Targ et al. (2016) residual

block, MBConv produces fewer parameters and FLOPs, drastically reducing the

computational overhead.

Unlike the ResNet residual block, the MBConv block first expands the feature
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map along the channel. Then, using a depth-wise convolution layer (DwConv),

it filters the feature map along the depth. Finally, using a projection layer (1× 1

Conv), it squeezes back the output channel of the feature map. MobileNetV3

Howard et al. (2019) introduces a new attention mechanism called the squeeze-

and-excite block, placed between the DwConv and projection layer. This mech-

anism flattens the feature map into a one-dimensional vector using one pooling

layer and two dense fully connected (FC) layers. However, dense layers contribute

a large number of parameters and FLOPs in each MBConv block, which reduces

the model’s efficiency. Hence, except for publication 1, this thesis did not use the

squeeze-and-excite block inside each MBConv block. The layered architecture of

ResNet, MobileNetV2, and MobileNetV3 residual blocks can be seen in Figure

1.6.

The research methodology of each publication is summarized in Chapter 2.

Additionally, this thesis provides each published paper in the appendix and

demonstrates the methodology of each paper.

1.7 Evaluation approach

1.7.1 Datasets

To evaluate the performance of the proposed models and methods, this thesis

utilized several publicly available benchmarks designed for various computer vi-

sion tasks. The primary focus of this dissertation is on complex urban street

scenes captured in both structured and unstructured environments. These scenes

are inherently more complex compared to indoor scenes due to the presence of

diverse objects with different geometrical shapes. Furthermore, segmenting out-

door scenes poses additional challenges due to varying atmospheric conditions,

environments, and geographic factors.

In addition to the urban street scene datasets, this study also incorporates

one indoor scene dataset, as well as several building and road crack segmenta-
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tion datasets. These datasets contribute to a comprehensive evaluation of the

proposed models across different scenarios and challenges.

The full details of each dataset used in this thesis are provided below:

Cityscapes dataset

Cityscapes Cordts et al. (2016) is a widely utilized dataset for semantic segmen-

tation, which involves categorizing objects in urban street scene images. The

dataset offers images with a resolution of 1024× 2048, where objects are divided

into 35 classes and grouped into 8 categories. In line with the established prac-

tices for Cityscapes, we employed 19 classes for pixel annotations. The dataset

comprises approximately 5,000 meticulously annotated images. Out of these,

2,975 images were used for training, 500 for validation, and the remaining 1,525

for testing. However, annotations for the test set were not provided with the

dataset. To assess the proposed model’s performance on the test set, model’s

test predictions are submitted to the Cityscapes online evaluation server, and

the results were subsequently published. In addition to fine-tune dataset, it also

provides additional 20,000 coarsely annotated images.

BDD100K dataset

BDD100K Yu et al. (2020) is a newly created dataset that caters to the increasing

needs of the autonomous car industry. It stands out as the most extensive collec-

tion of driving videos, comprising 100,000 videos. In comparison to Cityscapes,

this dataset presents greater challenges due to its diverse content. It offers 8,000

meticulously annotated images at the pixel level, with 7,000 designated for train-

ing purposes and 1,000 for validation. The class labeling system in this dataset

aligns with that of Cityscapes, and further details can be found on our Github

repository. Each image in the dataset possesses dimensions of 720 × 1280 pix-

els. However, due to tensor size compatibility, 768 × 1280 resolution is used for

training.
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KITTI dataset

Compared to Cityscapes Cordts et al. (2016) and BDD100K Yu et al. (2020),

KITTI Alhaija et al. (2018) is a small dataset comprising of 200 urban street scene

images with dense semantic information. It also provides an additional set of 200

stereo images without annotations for testing purposes. Each image of the dataset

has size of 375×1242 resolution, but for training, 384×1280 resolution is used for

better feature size compatibility. Similar to Cityscapes dataset, KITTI provides

a test evaluation server. The test set results of all the proposed models which

are trained by KITTI are submitted to the online evaluation server and results

are published on KITTI leader board. It’s worth noting that both KITTI and

BDD100K datasets are compatible with the Cityscapes dataset, as they utilize

the same class labeling system consisting of 19 classes.

CamVid dataset

CamVid Brostow et al. (2009) is a compact dataset primarily intended for ob-

ject detection in autonomous driving vehicles. The dataset consists of images

extracted from a recorded video, where human operators assigned a class color

to each object in the frames. It comprises a total of 267 images for training,

101 for validation, and 233 for testing. For evaluating performance, the present

study focuses on 11 classes (excluding the “void” class) out of the 32 available

in the dataset. Due to its limited size, models trained on this dataset often face

challenges in fully learning the underlying patterns.

IDD and IDD-lite datasets

All aforementioned datasets primarily focus on urban street scenes captured in

western countries, specifically Europe or the USA. These environments have well-

structured road conditions and fewer variations in the objects present. However,

these well-defined traffic environments do not accurately represent the road con-

ditions in Asian countries where road condition is not structured in proper way.

40



To evaluate the performance of the proposed model in unstructured road con-

ditions, this thesis also explored the IDD-lite dataset (Indian Driving Dataset

lite version) Mishra et al. (2020). This dataset comprises 1,404 urban and rural

training images, 204 validation samples, and 404 test samples, each with a reso-

lution of 227× 320. The dataset classifies objects into seven categories: drivable,

non-drivable, living things, vehicles, roadside objects, far objects, and sky.

Additionally, Indian driving dataset also provides a large dataset containing

two parts: part 1 and part 2. Together, it contains approximately 14,027 training

samples and 2,036 validation samples. This dataset offers a variety of labels,

including label1 with 7 classes, label2 with 16 classes, label3 with 26 classes,

and label4 with 30 classes. Furthermore, it includes Cityscapes with 19 classes

labeling. However, for the evaluation of the model’s performance on IDD, this

thesis only used 7 classes, similar to IDD-lite. It’s worth noting that the class

labeling in the Cityscapes dataset is compatible with both IDD and IDD-lite.

The resolution of input image of this dataset is 1080× 1920.

Indoor object dataset

To analyze indoor scenes, we employed the Indoor Object dataset developed by

Mohamed et al. (2022). This dataset is specifically designed for indoor naviga-

tion, with a focus on assisting wheelchair users and service robots. The dataset

organizes the entire object space into nine distinct classes, which are particularly

valuable for gaining a comprehensive understanding of indoor environments. For

further information and specific details, readers are encouraged to refer to our

supplementary materials.

Crack datasets

For crack segmentation task, this thesis utilizes the crack segmentation dataset

sourced from the Kaggle data science community. This dataset, which consists

of approximately 11,200 images, comes with detailed annotations for crack seg-
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mentation. It combines 12 separate crack segmentation datasets, namely Zhang

et al. (2016); Yang et al. (2019); Eisenbach et al. (2017); Shi et al. (2016); Amhaz

et al. (2016); Zou et al. (2012), into a unified dataset. The thesis considers this

particular dataset to be highly challenging due to its diverse range of crack types

found on various surfaces such as roads, pavements, walls, buildings, and concrete

structures. The dimensions of all images in the dataset are 448 × 448 × 3. We

divide the entire dataset into two subsets: a training set comprising 9,505 images

and a test set containing 1,695 images. It is worth noting that many existing

crack detection models are trained using private datasets that are not publicly

accessible.

System configuration

For conducting experiments with relatively low-resolution input images, such as

KITTI, IDD-lite, and Crack datasets, a computerized system equipped with dual

Nvidia GeForce RTX 2080Ti GPUs, each having 11GB of memory, is used. This

system provides the necessary computational resources for processing the data

efficiently.

To handle higher-resolution images, such as Cityscapes and BDD100K, a sys-

tem equipped with three NVIDIA Titan RTX GPUs, each having 24 GB of

memory, is employed. This setup allows for effective processing of the larger and

more computationally demanding images.

All scripts are written in the Python language. The deep learning model is

developed using the TensorFlow 2.1.0 and Keras 2.3.1 deep learning software

packages. These frameworks provide essential tools for building and training the

model, as well as writing the necessary training and evaluating scripts.

To leverage the parallel processing capabilities of the GPUs and accelerate

computationally intensive tasks, CUDA 10.2 is employed. CUDA is a parallel com-

puting platform that enables efficient utilization of the GPUs for deep learning

tasks.
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For facilitating distributed training of deep learning models across multiple

GPUs, the Horovod 19.5.0 library is utilized. Horovod provides a framework for

distributed training, allowing efficient utilization of multiple GPUs and acceler-

ating the training process.

For measuring frame per second (FPS), this thesis utilized TensorRT engine

which converts the TensorFlow into TRT-based model. This is a common ap-

proach for measuring the FPS of real-time semantic segmentation models.

Performance measurement metrics

The primary performance measurement metric for semantic segmentation is the

mean Intersection Over Union (mIoU) metric, as outlined by Everingham et al.

(2015). It stands as a popular choice for evaluating the localization accuracy of

objects within a scene. The metric calculates the extent of overlap between the

ground truth class and the predicted class, with a visual representation of IoU

shown in Figure 1.7. In the context of binary segmentation masks, this metric

is computed using a confusion matrix that contains the counts of true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN), as

illustrated in Figure 1.8 for a two-class scenario.

For multi-class semantic segmentation challenges, the mean IoU (mIoU) is
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computed for each class. Evaluation servers like Cityscapes Cordts et al. (2016)

and KITTI Alhaija et al. (2018) provide class-based and category-based mIoU.

Furthermore, they calculate the instance-level intersection-over-union metric (iIoU)

to gauge the representation of individual instances within the labeling. The for-

mulas for IoU and iIoU are shown in Equations 1.1 and 1.2.

IoU =
TP

TP + FP + FN
(1.1)

iIoU =
iTP

iTP + FP + iFN
(1.2)

In contrast to the conventional IoU measure, iTP and iFN are computed by

factoring in the contribution of each pixel, weighted by the ratio of the class’s

average instance size to the size of the corresponding ground truth instance.

To evaluate model efficiency, metrics such as model parameters, Floating Point

Operations (FLOPs), and Frames Per Second (FPS) are employed. These metrics

provide insights into the computational cost and real-time performance of the

model.

For tasks related to crack detection and segmentation, various performance

metrics come into play, including F1 score, precision, recall, and accuracy. Much

like IoU, these metrics are also calculated based on the confusion matrix, with

44



their respective formulae depicted in Equations 1.3, 1.4, 1.5, and 1.6.

Precision =
TP

TP + FP
(1.3)

Recall =
TP

TP + FN
(1.4)

Accuracy =
TP + TN

TP + TN + FP + FN
(1.5)

F1score =
2TP

2TP + FP + FN
(1.6)

1.7.2 Research contributions

Main Contribution:

The main contribution of this thesis is to design real-time semantic segmentation

models for resource-constrained mobile devices. This is achieved through the

novel design of lightweight backbone networks and the implementation of opti-

mized feature refinement and feature fusion strategies. These strategies aim to

strike the sensible balance between model accuracy and model efficiency.

Sub-contributions:

The thesis comprises nine research articles, each addressing different sub-objectives

to achieve the main objective. The contributions of all the peer-reviewed research

articles are:

• Publication 1 has demonstrated that improved semantic performance can

be achieved by uniformly scaling the model in all dimensions. By employ-

ing compound scaling techniques, it introduced a family of semantic seg-

mentation models that produce better results than many existing semantic

segmentation models.

• Publication 2 introduced a highly lightweight scene parsing model called

FANet, which was designed from scratch using MBConv blocks from Mo-

bileNet Sandler et al. (2018). By incorporating a modified design of a
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bi-directional feature pyramid network in the decoder, this model improved

the entire feature hierarchy, enhancing object localization accuracy and pro-

viding rich contextual details.

• Publication 3 introduces an efficient feature scaling module for scale-variant

objects in the scene and a feature fusion module for reducing the larger

semantic gap among the local and global feature maps.

• For real-time structural crack detection and semantic performance, Publi-

cation 4 introduces a novel shared two-branch backbone design in which

the shallow and deep branches share their knowledge, ultimately enhancing

the overall performance of the proposed model. It also presents a context

mining module aimed at filtering out noisy data from the shared feature

maps. The performance of the proposed SCMNet is evaluated using vari-

ous structural crack datasets, and it outperforms existing models to achieve

the best results.

• Inspired by the neck architecture of object detection techniques, Publica-

tion 5 proposed a Multi-level Multi-path Feature Aggregation Network that

effectively captures both fine-grained details and high-level semantics from

the feature maps, resulting in improved real-time semantic performance.

Thanks to its multi-level multi-path feature aggregation technique, com-

plex scenes with various shapes of objects can be segmented efficiently.

• Publication 6 introduces an efficient real-time structural crack detection

and segmentation architecture called SC-CrackSeg. The proposed archi-

tecture has achieved state-of-the-art performance on various crack datasets

compared to existing models.

• Publication 7 introduces a novel dense bottleneck design called the Short-

term Dense Bottleneck (SDB) design, which offers a range of receptive fields

for capturing various geometrical shapes within complex scenes and en-
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hances the model’s semantic performance. It also presents feature refine-

ment and semantic aggregation modules for context mining and assimila-

tion.

• To reduce the backbone size of a semantic segmentation model and enhance

real-time performance, Publication 8 proposed a novel architecture called

the Shared Feature Reuse (SFR) network. This network filters the interme-

diate and deep feature maps through multiple sub-encoders to address the

gradient vanishing issue. To narrow the semantic gap among the feature

maps, it deploys the Knowledge Sharing Block (KSB), which fuses feature

maps from the same level of various sub-encoders and then filters out noise

from the shared feature maps. The article demonstrates an effective ap-

proach to designing semantic segmentation models for resource-constrained

embedded devices.

• Inspired by the feature reuse design proposed in Publication 8, Publication

9 introduces the Multi-encoder Context Aggregation Network (MCANet)

for analyzing both structured and unstructured urban street scenes. This

network introduces a Local and Global Context Aggregation (LGCA) mod-

ule at the decoder end, which fuses spatial and global feature maps through

multiple paths in both directions to achieve accurate object localization and

improved semantic representation. The proposed MCANet is evaluated

using five datasets and demonstrates state-of-the-art performance among

existing real-time semantic segmentation models across various datasets.

Additional details on each publication’s contributions can be found in Chapter 2.

1.7.3 Research outcomes

The thesis has published nine research articles in top-ranked journals and con-

ferences. Each publication addresses different sub-objectives in order to fulfill

the main objective. Novel backbone architectures are introduced that are effi-

cient in real-time environments and produce impressive results. The concept of
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knowledge sharing among different branches of the encoder and context mining

of the shared feature map is introduced, improving the entire feature hierarchy

across all branches. The thesis also presents the concept of feature reusing and

re-processing by multiple sub-encoders, which helps capture long-range depen-

dencies and contextual information from complex scenes. Lateral connections

among the sub-encoders are utilized to address gradient vanishing issues. Such

novel backbone architectures can be deployed for various computer vision tasks.

To achieve better coarse-to-fine refinement of shallow and deep features, sev-

eral optimized feature scaling and feature refinement methods are introduced.

These methods effectively filter out noise from the feature maps and generate

impressive semantic results. Other techniques such as feature fusion, hybrid path

attention, and feature aggregation are also introduced to enable accurate object

localization. With these novel designs, the thesis successfully achieves a sensible

trade-off between model accuracy and efficiency.

1.8 Thesis structure

The thesis consists of three chapters, followed by all the published articles.

• Chapter 1: In this chapter, the thesis begins by discussing image classi-

fication and object detection tasks and their limitations. Based on these

limitations, the chapter then introduces semantic segmentation tasks. A

comprehensive literature review of various existing semantic architectures,

methods, and techniques is provided. The chapter also highlights the ex-

isting research gap, presents the problem statement, proposed research,

experimental details, research contributions, and the outcomes of the re-

search.

• Chapter 2: This chapter provides a summary of all the published articles,

including the research work conducted, and presents the overall contribu-

tions of the thesis.
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Figure 1.9: Thesis structure

• Chapter 3: This chapter offers an overall conclusions of the research

methodologies employed, along with the future scope of the research.

The aforementioned chapters are followed by the published articles, represented

by the final versions authored by the researchers. The graphical layout of the

thesis structure can be seen in the Figure 1.9.
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Chapter 2

Summary of publications and

contributions

This chapter shows a summary of the eight published research papers as part

of this thesis. All publications collectively contribute to addressing the research

objectives of the thesis. They are summarised in this chapter, followed by the

overall contribution of the thesis.

2.1 Publication 1: Efficient Segmentation Pyra-

mid Network

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A., Dunstan, J. (2020). “Efficient Segmen-

tation Pyramid Network”. In: ICONIP 2020. vol 1332. Springer, Cham.

https://doi.org/10.1007/978-3-030-63820-7-44.
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2.1.1 Abstract

Designing an efficient semantic segmentation model for resource-constrained mo-

bile devices is a challenging task for computer vision researchers. A popular

approach for designing a segmentation model is to use an existing deep con-

volutional neural network (DCNN) as an encoder and design a deconvolution

network to generate semantic output. To improve accuracy, a deep DCNN is of-

ten deployed as the encoder, with an increased depth for the backbone. However,

literature shows that scaling the model in one dimension while neglecting other

dimensions does not significantly enhance the model’s performance. Addition-

ally, deploying more convolutional layers increases the number of parameters and

floating-point operations (FLOPs), resulting in a large memory footprint.

To address these challenges, a new semantic segmentation model called Effi-

cient Segmentation Pyramid Network (ESPNet) is introduced for real-time com-

putation. By leveraging the compound scaling technique and the EfficientNet

model Tan & Le (2019), the ESPNet model uniformly scales the model along the

depth, width, and input resolution, thereby generating a family of scene parsing

models. The study also demonstrates that by incorporating lateral connections

from the early stages of the encoder and employing a simple feature fusion tech-

nique, it is possible to restrict the model depth and width while achieving better

accuracy with a smaller backbone size compared to a larger one. The final ESP-

Net model yields competitive results on a public benchmark.

2.1.2 Approach

Due to the growing demand for developing autonomous applications, real-time

scene parsing has become a key research area in machine learning. Most exist-

ing semantic segmentation models utilize either VGG-16 Simonyan & Zisserman

(2014), ResNet deep variants Targ et al. (2016), or Xception Chollet (2017) neu-

ral networks as encoders. These deep convolutional neural networks (DCNNs)

produce impressive semantic results and are well-suited for offline computation.
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However, for real-time computation, a mobile-friendly DCNN model is required.

The EfficientNet model Tan & Le (2019) is a DCNN network constructed

by leveraging the residual bottleneck blocks of MobileNet Sandler et al. (2018).

These blocks have an optimized architecture that makes them more resource-

friendly compared to other residual blocks. Inspired by this efficient design, this

paper chooses to utilize EfficientNet as the feature extractor of the model.

2.1.3 Methodology and findings

The two main objectives of this paper are as follows: 1) uniformly scaling the

model along all dimensions to improve the accuracy of the model, and 2) de-

signing an efficient segmentation model for resource-constrained mobile devices.

To achieve the first goal, this study employs a compound scaling method that

uniformly scales the network’s width, depth, and input resolution. The following

equations illustrate the technique, where α, β, and γ are constants determined

through a small grid search, and ϕ is a user-specified coefficient that determines

the depth, width, and input resolution of the model.

depth : d = αϕ, (2.1)

width : w = βϕ, (2.2)

inputresolution : r = γϕ, (2.3)

α× β2 × γ2 ≈ 2, whereα ≥ 1, β ≥ 1, γ ≥ 1 (2.4)

Based on this technique, a family of ESPNet models is developed. Table 2.1

illustrates the structure of the ESPNet family. As observed, with the increase in

the depth and width coefficients, the model size expands, and the parameters of

the ESPNet-S0 model reach 11.6 million (M). To ensure a compact and practical

model design for mobile devices, this paper introduces only three extended ver-

sions of the segmentation model. For better feature refinement of the top global

feature map, The proposed model deploys a feature pooling module on top of the

encoder.
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Table 2.1: The family of ESPNet
Model Input size Width coefficient depth coefficient Parameter (M)

ESPNet-S0 512× 512 1 1 7.6
ESPNet-S1 640× 640 1 1.1 10.1
ESPNet-S2 768× 768 1.1 1.2 11.6

Figure 2.1: Complete architecture of the final ESPNet (this figure is derived from
the literature Singha et al. (2020b).)

To accomplish the second objective, this paper demonstrates the effectiveness

of incorporating a lateral connection from the early stage of the encoder to the

decoder and fusing the shallow feature with the refined global feature map to

enhance semantic representation. Building upon this idea, the base ESPNet-

S0 achieves superior semantic results compared to ESPNet-S2. Consequently,

the final ESPNet model is introduced. The complete architecture of the final

ESPNet model is depicted in Figure 2.1.

The key findings of this study are:

• Scaling uniformly along all dimensions is required for better semantic re-

sults.

• Lateral connections from the encoder to the decoder enhance model perfor-

mance.

• Fusing global and shallow features at the decoder improves the semantic

54



representation.

• Deploying feature scaling techniques on top of the decoder provides better

coarse-to-fine refinement of the global feature map.

2.1.4 Contributions

The key contributions of this paper are:

• Relying on the compound scaling technique, the paper presented a family

of semantic segmentation models.

• A pyramid pooling module is utilized for filtering the global feature map at

different scales, which helps improve the model’s performance.

• A simple yet effective feature fusion and classifier unit are introduced. To

reduce model parameters and FLOPs, a depth-wise separable convolution

(DSConv) layer is utilized in the feature fusion and classifier unit.

• To restrict the depth and width of the model, a lateral connection is intro-

duced, which effectively improves model performance. Based on this, the

paper presented the final ESPNet, which has 7.6 million parameters and

6.5 billion FLOPs at a 512× 512 input resolution.

• An extensive experiment has been conducted to evaluate the model’s per-

formance on public benchmarks. The proposed final ESPNet achieves a

competitive result (60.8% mIoU) on the Cityscapes Cordts et al. (2016)

validation set.

• Several existing offline and real-time models are also replicated and trained

under the same system configuration to ensure a fair comparison. The com-

parative results demonstrate that the proposed final ESPNet outperforms

numerous existing models.

• An official public GitHub repository is created, and the design of the pro-

posed model is uploaded.
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2.2 Publication 2: FANet: Feature Aggregation

Network for Semantic Segmentation

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A., “FANet: Feature Aggregation Net-

work for Semantic Segmentation,” In: Proc. DICTA, Melbourne, Australia,

2020, pp. 1-8, doi: 10.1109/DICTA51227.2020.9363370.

2.2.1 Abstract

Existing semantic segmentation models heavily rely on deep convolutional neural

networks (DCNNs), resulting in large overall model architectures. However, such

large networks are not suitable for real-time computation, posing a challenge

for resource-constrained mobile devices. Additionally, the lack of control over

the architectural design of a pre-trained backbone network makes it difficult to

optimize the entire pipeline of a semantic segmentation model.

To address these issues and achieve real-time semantic performance, this pa-

per introduces a lightweight semantic segmentation model specifically designed

for resource-constrained mobile devices. The proposed model consists of only

1.1 million parameters and 5.8G floating-point operations (FLOPs), enabling it

to handle high-resolution input images in real-time environments. The model

design leverages the residual blocks of MobileNetV2, which provides an efficient

backbone for feature extraction. To enhance precise object localization, a multi-

scale feature fusion module is introduced on top of the backbone. This module

processes global features through multiple paths, ensuring accurate object local-

ization. The performance of the proposed model is evaluated using two publicly

available benchmarks, and the results clearly demonstrate the superior perfor-

mance of the proposed model compared to many existing models.

56



2.2.2 Approach

Model optimization and accuracy are crucial factors for achieving real-time se-

mantic performance. While existing semantic segmentation models often achieve

high accuracy, their efficiency in real-time environments is often poor. For exam-

ple, the ESPNet model produces competitive results on the Cityscapes dataset

Cordts et al. (2016), but its efficiency is compromised due to its 7.6 million pa-

rameters. Additionally, these models heavily rely on existing deep convolutional

neural network (DCNN) models.

To address these challenges, this paper adopts a different approach by de-

signing an optimized encoder from scratch to build a lightweight backbone. By

utilizing inverted residual bottleneck blocks from MobileNetV2 Sandler et al.

(2018), this paper introduces a lightweight backbone with less than 1 million

parameters.

To improve context assimilation and object localization, this paper explores

different existing feature fusion techniques and aims to design an optimized and

efficient technique.

2.2.3 Methodology and findings

The encoder of the proposed FANet model is designed by utilizing mobile resid-

ual blocks (MBConv). The encoder consists of nine blocks with an expansion

ratio of six. These blocks first expand the channels of the input feature map

by the expansion ratio and then squeeze it back to the original input size. This

squeeze and excitation technique enhances the scale of view along the channels

and improves the model’s performance.

The paper also introduces a down-sampling technique at the early stage of

the encoder to reduce the spatial dimensions of the input image by a factor of

23 before passing it to the MBConv block. This downsampling operation helps

in reducing the spatial dimensions, resulting in fewer parameters and floating-

point operations (FLOPs) for the MBConv blocks. To achieve this, one standard
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Figure 2.2: Complete architecture of FANet (this figure is derived from the liter-
ature Singha et al. (2020b).)

convolution (Conv) layer and two depth-wise separable convolution (DSConv)

layers are employed. The DSConv layer generates fewer parameters and FLOPs

compared to the standard Conv layer.

The decoder design of the proposed FANet is both simple and effective.

It consists of two parts: the feature fusion module and the classifier. Taking

inspiration from the design of the bi-directional feature pyramid network (Bi-

FPN), a modified version of Bi-FPN is introduced by incorporating an additional

top-down path and a few skip connections. The design of this modified Bi-FPN

is illustrated in Figure 2.2.

In the proposed decoder, the extracted features from different stages of the

encoder are passed through multiple paths. This process enhances the entire

feature hierarchy by propagating accurate localization signals in both directions.

The inclusion of skip connections also helps in preserving semantic details. The

final top-down path assimilates contextual details and generates a rich semantic

map, which is then passed through the classifier head to produce the final output.

The key findings of this study are:

• Building an encoder is necessary for an optimized real-time semantic seg-

mentation model.

58



• Down-sampling at early stages of the encoder reduces model parameters

and FLOPs.

• Deploying the DSConv layer in the down-sample and classifier module re-

duces model parameters and FLOPs.

• Multi-scale feature fusion enhances the entire feature hierarchy.

• Adding a few layers in the classifier is useful for better refinement of the

final feature map.

2.2.4 Contributions

The key contributions of this paper are:

• A lightweight and efficient semantic backbone is proposed by relying on

MBConv blocks of MobileNet Sandler et al. (2018).

• An early-stage down-sampling technique is introduced in the encoder to

optimize computational overhead.

• DSConv is utilized instead of standard Conv at various stages of the pipeline

to reduce model parameters and FLOPs.

• A modified design of Bi-FPN is introduced, improving the entire feature

hierarchy through accurate object localization and rich context assimilation.

• The proposed feature aggregation network (FANet) has only 1.1 million

parameters and 5.8G FLOPs.

• The performance of the model is evaluated on two publicly available bench-

marks: Cityscapes Cordts et al. (2016) and CamVid Brostow et al. (2009).

FANet achieves 65.9% and 57.8% class mIoU on Cityscapes and CamVid

validation sets, respectively.
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• Several existing offline and real-time models are reproduced and trained un-

der the same system configuration for a fair comparison. The comparative

results demonstrate that FANet outperforms many existing models.

• An official public GitHub repository is created, and the project details,

including the design of the proposed model, are uploaded.

2.3 Publication 3: A Lightweight Multi-scale

Feature Fusion Network for Real-Time Se-

mantic Segmentation

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A., Gedeon, T. (2021). “A Lightweight

Multi-scale Feature Fusion Network for Real-Time Semantic Segmenta-

tion”. In: Proc. ICONIP 2021. vol 13109. Springer, Cham.

https://doi.org/10.1007/978-3-030-92270-2-17.

2.3.1 Abstract

Relying on existing Deep Convolutional Neural Networks (DCNNs), the semantic

segmentation model retrieves local and deep feature maps and simply passes them

through a series of upsample layers at the decoder to generate the segmented

output. However, this approach causes a boundary degeneration effect in the

output. Moreover, the large semantic gap among the feature maps introduces

a noisy effect in the predictions. To overcome these issues, the journal focuses

on designing efficient feature scaling and feature fusion modules, which provide

a better dense pixel-level representation and improved region identification by

alleviating the gap among the feature maps.

60



Building upon a new feature scaling and feature fusion technique, the the-

sis proposes a novel architecture called Feature Scaling Feature Fusion Network

(FSFFNet), which achieves a 71.8% call mIoU on the Cityscapes validation set

while having only 1.3M parameters.

2.3.2 Approach

The primary objective of this study is to improve model accuracy without sac-

rificing the model’s efficiency. To achieve this, the study decided to design the

encoder from scratch. Mobile residual blocks from MobileNet Sandler et al. (2018)

were chosen as they generate fewer parameters and FLOPs, making them suit-

able for the encoder design. Additionally, a feature scaling and feature fusion

technique is deployed on top of the encoder to enhance coarse-to-fine refinement

and improve semantic representation. Finally, a simple classifier is employed to

label each pixel based on its softmax score.

2.3.3 Methodology and findings

The complete architecture of the model is exhibited in Figure 2.3. It shows that

the whole pipeline has three main parts: the encoder, intermediate stage, and

decoder. The encoder consists of one 3 × 3 Convolution layer and 14 mobile

inverted residual blocks (MBConv). Two different types of MBConv blocks are

used: MBConv1, which refers to a residual block with an expansion ratio of 1,

and MBConv6, which defines a residual block with a 6 expansion ratio. When

the input is received by the MBConv block, it first expands the channel of the

input by the expansion ratio and then squeezes the channel, effectively filtering

out noise from the input feature map. Except for the first block, all MBConv

blocks have an expansion ratio of 6.

The intermediate stage demonstrates the multi-scaling technique, which is

crucial for complex scene analysis. It consists of one feature scaling module

(FSM) and two pooling layers. Motivated by the design of the Atrous Spatial

Pyramid Pooling technique (ASPP) Chen et al. (2018), this paper proposes an
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Figure 2.3: Complete architecture of FSFFNet (this figure is derived from the
literature Singha et al. (2021c).)

optimized FSM with the following changes:

• The standard convolution (Conv) layers of ASPP are replaced by depth-wise

separable convolution (DSConv) layers to reduce memory usage. DSConv

produces three times fewer parameters and FLOPs compared to a Conv

layer.

• Instead of five branches, the proposed FSM uses four parallel branches:

three dilated DSConv branches and one image pooling branch.

• Based on the ablation study, the best dilation rates of (8, 16, 24) are used

for an input size of 1024× 2048, whereas ASPP uses (6, 12, 18, 24).

• The number of channels inside the FSM is reduced to one-fourth of the

channels in the input tensor, reducing the model’s parameters and making

it more efficient.

The two pooling layers are used to down-sample the spatial dimensions of the

feature map without introducing any parameters. Thus, the proposed model

creates seven stages in the entire feature hierarchy.

In the decoder, a multi-scale feature fusion module (FFM) is deployed, which

takes five feature maps from the last five stages of the encoder and fuses them

together. The final feature map from the FSM is successively fused with the
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shallow feature maps at the second and first stages of the encoder. This allows

for the aggregation of deep, intermediate, and shallow features for better contex-

tualization.

The key findings of this study are:

• At the initial stage, down-sampling can be done using MBConv1 as it does

not contribute too many parameters due to a lower number of channels and

an expansion ratio of 1.

• Dilated separable convolution is more efficient than standard convolution.

• In the multi-feature scaling, higher dilation rates provide a better receptive

field for capturing objects in complex scenes.

• The choice of dilation rates in the feature scaling module depends on the

model size and input resolution. In this study, dilation rates of 8, 16, 24

produced better results for an input resolution of 1024× 2048.

• For higher-resolution input images, such as 1024 × 2048, the model can

down-sample the input image up to 25 to 27 times. Additional stages can

be created using pooling operations instead of deploying MBConv blocks.

Pooling operations do not contribute any parameters. These additional

stages create a very low-resolution output with rich contextual details.

However, there is a risk of losing spatial details. To address this issue,

an extensive feature fusion technique is required.

2.3.4 Contributions

The key contributions of this paper are:

• A simple lightweight backbone is designed by staging 14 MBConv blocks.

• An intermediate stage is introduced on top of the encoder, adding two

additional stages to the entire feature hierarchy.
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• An optimized and efficient FSM module is introduced, inspired by ASPP.

• A multi-scale FFM is introduced, motivated by the feature fusion technique

in FANet Singha et al. (2020a), which aggregates deep, intermediate, and

shallow features for improved semantic representation.

• The model’s performance is evaluated on two publicly available benchmarks:

Cityscapes Cordts et al. (2016) and BDD100K Yu et al. (2020). BDD100K

is considered the most challenging dataset due to its diverse nature.

• The proposed model achieves 69.4% and 71.8% class mIoU on the Cityscapes

test and validation sets, respectively.

• The proposed model achieves state-of-the-art performance on the BDD100K

validation set (55.2%) among real-time models.

• An official public GitHub repository is created, and the project details,

including the design of the proposed model, are uploaded.

2.4 Publication 4: SCMNet: Shared Context

Mining Network for Real-time Semantic Seg-

mentation

Bibliographic reference:

Singha, T., Bergemann, M., Pham, DS., Krishna, A., “SCMNet: Shared Con-

text Mining Network for Real-time Semantic Segmentation,” In: Proc.

DICTA, Gold Coast, Australia, 2021, pp. 1-8, doi: 10.1109/DICTA52665.2021.9647401.
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2.4.1 Abstract

Different backbone architectures, such as one-branch, multi-branch, and two-

branch designs, have been adopted in designing segmentation models. The multi-

branch design is particularly introduced to reduce computer overhead and make

the model suitable for real-time computation while improving performance. In

the multi-branch and two-branch approaches, there is a dedicated deep branch

and one or more shallow branches. However, despite fusing shallow and deep fea-

tures from their respective branches at the decoder side, a boundary degeneration

effect can be observed in the output, as all these branches learn independently

throughout the training process.

To address this issue, this paper introduces a novel design called knowledge

shared two-branch design for the encoder. Firstly, a shallow branch, parallel to

the deep branch, is introduced on the encoder side. Then, both branches share

their learning at different stages of the encoder. After each sharing point, a

context mining module (CMM) is introduced for better coarse-to-fine refinement

of the shared feature map. This improves the entire feature hierarchy in both

branches, which is then passed to the decoder for better semantic representation.

A deep shallow feature fusion module (DS-FFM) is deployed on top of the shared

two-branch encoder for precise object localization. Relying on this novel shared

branches design, the proposed model achieves state-of-the-art performance on the

CamVid dataset while having only 1.2 million parameters.

2.4.2 Approach

To improve the entire feature hierarchy in the encoder, this paper studies dif-

ferent network architectures used for designing a lightweight encoder. In order

to optimize computer overhead without sacrificing the model’s performance, a

multi-branch design is introduced. In this design, a dedicated deep branch is

utilized to extract contextual details from low-resolution input images. Keeping

the low resolution input at this branch helps reduce overhead. However, relying
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solely on the deep branch for model performance would be insufficient due to the

reduced input resolution. Therefore, multiple shallow branches are introduced,

each taking inputs at different higher resolutions to capture boundary and texture

details at different scales. Despite the shallow design of the multiple branches, the

overall model still produces a large number of parameters and FLOPs, resulting

in a large memory footprint.

Later, the multi-branch design is replaced with a two-branch design to improve

model efficiency. However, a drop in model accuracy is observed, which could

be attributed to the independent design of the deep and shallow branches in

the encoder. If both branches share their knowledge at different stages in the

encoder, it can enhance the entire coarse-to-fine refinement process. Knowledge

from the other branch can serve as additional information for each branch. For

example, the model often struggles to assign the correct class to pixels belonging

to the boundaries of objects in the scene. Therefore, if the shallow branch shares

shallow features with the deep branch, the semantic representation of the deep

feature map can be improved.

Based on this hypothesis, this paper adopts a shared two-branch design ap-

proach for the backbone.

2.4.3 Methodology and findings

The design of the shared two-branch encoder can be seen in Figure 2.4. The deep

branch of the proposed backbone is designed by utilizing one standard convolution

(Conv) layer and 11 mobile inverted residual (MBConv) blocks. In contrast, the

shallow branch has a very shallow design, consisting of one Conv layer and 4

depth-wise separable convolution (DSConv) layers. Each layer down-samples the

input by a factor of 2, resulting in 5 stages to maintain similar spatial dimensions

between the two channels. Since the input size of the deep branch is half that

of the shallow branch, the deep branch creates 4 stages in the entire feature

hierarchy.

Figure 2.4 illustrates that features from both branches are shared at three
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Figure 2.4: Complete architecture of SCMNet (this figure is derived from the
literature Singha et al. (2021a).)

stages and pass through the context mining module (CMM). The shared knowl-

edge can introduce noise and negatively influence the performance of the other

branch. Therefore, deploying the CMM is necessary for better refinement of the

shared feature map. The CMM takes the shared feature map and processes it

through four parallel branches. The output of each branch is then concatenated

for coarse-to-fine refinement. The CMM design includes one point-wise Conv,

one dilated DSConv, and two image pooling branches with different pool sizes.

At the decoder side, a deep shallow feature fusion module is introduced, which

takes 3 deep, 1 intermediate, and 3 shallow features from the encoder. Deep

features contain rich contextual details of the entire objects, while shallow features

capture boundary and texture details. The intermediate feature helps bridge the

gap between deep and shallow features by fusing the top-down and bottom-up

signals at the intermediate stage of the deep shallow feature fusion module (DS-

FFM).

The key findings of this study are as follows:

• Knowledge sharing between the deep and shallow branches improves the

entire feature hierarchy in both branches.

• Shared knowledge can introduce some noise in both branches, which can be

addressed by providing a better coarse-to-fine refinement process.
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• The depth of the deep branch can be reduced due to the presence of the

shallow branch and shared feature maps.

• Extensive feature fusion among the shallow and deep feature maps is re-

quired to reduce the semantic gaps between deep and shallow feature maps.

• The size of the input image has a significant influence on the model’s per-

formance.

2.4.4 Contributions

The key contributions of this paper are as follows:

• Introduction of a novel shared two-branch backbone, where both branches

share their knowledge for improved semantic representation.

• Deployment of a new module called the context mining module to filter out

noise from the shared feature maps.

• Optimization of the design of the deep branch to reduce computational

overhead, leveraging the presence of the shallow branch and shared feature

map.

• Introduction of a deep shallow feature fusion module at the decoder, pro-

viding guidance for fusion and enabling precise object localization.

• Introduction of an efficient semantic segmentation model called the Shared

Context Mining Network (SCMNet) with 1.2 million parameters.

• Evaluation of the model’s performance on three publicly available bench-

marks: Cityscapes Cordts et al. (2016), BDD100K Yu et al. (2020), and

CamVid Brostow et al. (2009).

• State-of-the-art performance achieved by SCMNet on CamVid validation

(78.6%) and test (71.3%) sets among existing real-time models.
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• Creation of an official public GitHub repository and uploading of project

details, including the design of the proposed model.

2.5 Publication 5: Urban Street Scene Analysis

Using Lightweight Multi-level Multi-path Fea-

ture Aggregation Network

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A.. “Urban Street Scene Analysis Us-

ing Lightweight Multi-level Multi-path Feature Aggregation Network”.

Multiagent and Grid Systems, vol. 17, no. 3, pp. 249-271, 2021. DOI: 10.3233/MGS-

210353

2.5.1 Abstract

Urban street scene analysis is an important problem in computer vision due to

its complexity. The presence of numerous small objects such as traffic lights,

traffic signs, poles, and distant objects makes it challenging for a Deep Convolu-

tional Network (DCNN) to accurately identify and localize these objects in the

output. Often, the model overlooks small and distant objects due to the pres-

ence of larger objects in the scene. To address this issue, this paper proposes a

novel model called M2FANet, which incorporates a lightweight backbone, a neck

section similar to an object detection model, and a segmentation head for pixel

classification.

The neck section is primarily responsible for fusing or integrating features

from different levels of the backbone. The proposed neck aims to enhance the

representational power of the model by combining features with varying levels

of spatial information and abstraction. It bridges the gap between low-level and
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high-level features from different resolutions, enabling the model to capture both

fine-grained details and high-level semantics, which are crucial for accurate object

detection. This paper refers to this method as Multi-level Multi-path Feature

Fusion (M2-FF).

Utilizing the M2-FF method, the proposed M2FANet model achieves a class

mIoU of 68.3% on the Cityscapes test set while utilizing only 1.3 million param-

eters.

2.5.2 Approach

Traditionally, an encoder-decoder design is used for semantic segmentation, as

can be seen in Figure 2.5(a). The encoder extracts rich contextual details, and

the decoder deconvolves the extracted features through a series of convolution

and upsample layers. In addition to this, a multi-branch and feature reuse design

is often employed for designing the backbone.

In object detection, a neck section is utilized between the backbone and the

detection head to bridge the gap between low-level and high-level features of the

encoder. There are several existing neck architectures such as FPN Lin et al.

(2017b) and PAN Liu et al. (2018). Motivated by the neck architecture used in

object detection, this paper firstly introduces this neck architecture in semantic

segmentation and proposes an optimized design neck architecture called M2-FF.

The layout of M2-FF can be seen in Figure 2.5. This paper adopt one-branch

approach to design the backbone architecture.

2.5.3 Methodology and findings

The complete architecture of the proposed model M2FANet consists of four parts:

the encoder, the neck section, multi-feature scaling, and the segmentation head,

as depicted in Figure 2.6. The encoder comprises a 3 × 3 Convolution layer

followed by 15 residual blocks (MBConv) from MobileNet Sandler et al. (2018).

Since the aim of this paper is to design a real-time segmentation model capable

of handling high-resolution input images, the proposed backbone has an output

70



Figure 2.5: Different approaches. From left to right: (a) One-branch encoder, (b)
Multi-branch encoder, (c) Feature reuse in sub-encoder (d) M2-FF. (this figure
is derived from the literature Singha et al. (2021b).)

stride of 27. This means that for an input image size of 1024× 2048, the output

tensor at the top of the encoder will have a size of 8× 16× 128. The maximum

number of channels at the end of the encoder is 128.

To address semantic gaps among the feature maps at different stages of the

encoder, a neck section is employed. The design of the neck section is inspired

by PAN Liu et al. (2018) and can be observed in Figure 2.6. It is referred to as

the Multi-level Multi-path Feature Fusion (M2-FF) method as it aggregates or

fuses feature maps from different resolutions. It utilizes two top-down and one

bottom-up paths to capture both fine-grained details and high-level semantics,

which are crucial for precise object localization. To mitigate the issue of gradient

vanishing, a lateral connection is established at each level from the encoder to

the last path of the M2-FF.

This paper adopts the Atrous Spatial Pyramid Pooling (ASPP) Chen et al.

(2018) with several modifications on top of the neck architecture. The following

modifications are made:

• Instead of five branches, four branches are used.

• Dilated separable branches (DSConv) are used instead of dilated convolu-

tion branches to reduce model parameters.

• The point-wise convolution branch is employed to reduce the number of

channels in the input feature map by one-fourth. This reduced number of
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Figure 2.6: Complete architecture of M2FANet (this figure is derived from the
literature Singha et al. (2021b)).

channels is utilized across all branches, resulting in a significant reduction

in parameters and floating-point operations (FLOPs).

• The projection layer after the concatenation operation is removed.

Thus, with the help of the feature scaling method, the noisy pixels in the rich

semantic feature map from the M2-FA module are removed. Generally, the fea-

ture scaling technique is applied immediately after the encoder to refine the deep

global feature map at low spatial dimensions. However, in this paper, it is de-

ployed after the neck section, where the global and local features are already

aggregated, and the final feature map after M2-FF attains a higher spatial reso-

lution. Consequently, a higher dilation rate can be used in the dilated branches

of the feature scaling methods. The output of the feature scaling module is then

bilinearly upsampled and fused with the shallow feature before being passed to

the segmentation head.

The paper follows a simple design for the segmentation head, which consists

of two separable convolutions, one standard convolution, one upsampling, and

one softmax layer.

The key findings of this study are as follows:

• For a semantic segmentation model, having a maximum of 128 channels at
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the end of the encoder is sufficient for capturing semantic details, especially

when the model is built using MBConv blocks.

• The utilization of a neck architecture is beneficial for bridging the gap be-

tween low-level and high-level features at different scales from the encoder.

• The inclusion of lateral connections at each level of M2-FF effectively ad-

dresses the issue of gradient vanishing.

• In the feature scaling technique, deploying a higher dilation rate in branches

that operate on feature maps with higher spatial dimensions can be advan-

tageous for achieving better field-of-views.

• When employing multiple parallel branches in the feature scaling technique

for filtering the input, reducing the number of channels in each branch can

improve efficiency without sacrificing accuracy, as long as the outputs of

each branch are concatenated at the end.

2.5.4 Contributions

The key contributions of this paper are as follows:

• Introducing a lightweight backbone design based on a single branch ap-

proach.

• Introducing a novel neck architecture called M2-FF, inspired by the neck

architecture used in object detection models. M2-FF effectively captures

both fine-grained details and high-level semantics from the feature maps.

• Optimizing the design of the ASPP feature scaling technique and applying

it on top of the neck architecture to filter out noise.

• Proposing a lightweight segmentation model called M2FANet, capable of

efficiently handling high-resolution input images in real-time environments,

with a parameter count of 1.3 million.
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• Evaluating the proposed M2FANet using two publicly available bench-

marks: Cityscapes Cordts et al. (2016) and CamVid Brostow et al. (2009).

The results demonstrate competitive performance compared to existing

real-time semantic segmentation models with less than 2 million param-

eters.

2.6 Publication 6: SC-CrackSeg: A Real-time

Shared Feature Pyramid Network for Crack

Detection and Segmentation

Bibliographic reference:

Singha, T., Bergemann, M., Pham, DS., Krishna, A., “SC-CrackSeg: A Real-

time Shared Feature Pyramid Network for Crack Detection and Seg-

mentation,” In: Proc. DICTA, Sydney, Australia, 2022, pp. 1-8,

doi: 10.1109/DICTA56598.2022.10034629.

2.6.1 Abstract

Regular monitoring of the condition of existing buildings, roads, and pavements

is necessary for maintenance processes. Specifically, detecting structural cracks is

crucial for avoiding significant damage and providing a safer environment. How-

ever, due to a lack of human and other resources, regular monitoring becomes

challenging. Therefore, there is a need for an automated monitoring system. With

advancements in computer vision, structural crack detection and segmentation

can be automated using machine learning techniques. Since such applications

run in real-time environments without sophisticated hardware support, design-

ing an efficient and resource-friendly crack segmentation model is a challenging

task. Several existing models have been designed for crack detection; however,
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their large backbones result in poor efficiency in real-time environments. To

achieve both efficiency and improved detection accuracy, this paper introduces a

lightweight crack detection and segmentation model called SC-CrackSeg, capable

of processing over 200 frames per second at an input resolution of 448 × 448.

The proposed model’s performance is evaluated on different crack datasets, and

the results demonstrate that SC-CrackSeg achieves better accuracy and efficiency

compared to existing models.

2.6.2 Approach

There are several existing deep learning methods for detecting structural cracks.

Similar to object detection, these methods can detect the presence of cracks in

an input image and identify them using bounding boxes in the output. However,

these techniques do not provide information about the thickness of the cracks.

Semantic segmentation can be used to address this limitation. Segmentation not

only detects cracks but also segments them in the scene, allowing for a more

detailed analysis. Therefore, based on the segmented output, an automated ap-

plication can be developed to raise a flag when the thickness of the segmented

crack exceeds a certain threshold value. Building on this idea, this paper aims to

develop a crack segmentation model suitable for real-time applications.

Inspired by the concept of knowledge sharing between the deep and shallow

branches introduced in Singha et al. (2021a), this paper deploys a shared-branch

encoder to extract spatial and contextual details of the cracks from the scene.

2.6.3 Methodology and findings

The complete pipeline of the proposed model is displayed in Figure 2.7. Motivated

by the shared two-branch backbone of SCMNet Singha et al. (2021a), this paper

introduces a similar shared backbone design with the following modifications:

• Instead of taking inputs of two different resolutions at the encoder, the

proposed model’s encoder accepts a single-resolution input image. The

shallow branch is created after the first stage of the encoder.
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Figure 2.7: Complete architecture of SC-CrackSeg (this figure is derived from the
literature Singha et al. (2022).)

• The context mining module after each shared point is replaced by a shared

context refinement module (CRM).

The shared CRM first takes the shallow and deep feature maps from their re-

spective branches and fuses them together. It then passes the shared feature map

through four parallel branches: one point-wise convolution and three dilated sep-

arable convolution branches with higher dilation rates. Since the image pooling

layers in CMM Singha et al. (2021a) do not have any learnable parameters, they

are replaced by dilated branches. Once the filtering through the four branches

is complete, the output of each branch is concatenated together to capture fine

semantic details. To avoid gradient vanishing issues, a skip connection is also in-

troduced at the end. As a result, the shared CRM provides a better coarse-to-fine

refinement process.

At the decoder end, a semantic aggregation (SA) module is introduced, which

aggregates the shared feature maps at various stages of the encoder. Before

aggregating the shared feature maps, they pass through a channel reduction (CR)

module and a CRM module. The CR module ensures that the feature maps have

the same channel dimension, while the SA module ensures they have the same

spatial dimensions before being fused together. Finally, the fused feature map
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passes through the classifier, generating the segmented crack in the output.

The key findings of this study are:

• Segmenting cracks provides more contextual details compared to simply

detecting them.

• Although there are only two classes (crack and background), the pixels

near the crack have different class IDs, resulting in noisy pixels that can

negatively impact the model’s performance.

• Avoiding noisy pixels improves the model’s performance.

• The number of pixels belonging to the crack class is much fewer than the

background class pixels, leading to a class imbalance problem in the dataset.

• Since the dataset combines 12 different crack datasets, the annotations of

cracks are not uniform across all datasets, which can influence the model’s

performance.

• Models generally struggle to segment very thin cracks, which is a common

phenomenon observed across all models.

2.6.4 Contributions

The key contributions of this paper are:

• Introducing a new and efficient structural crack segmentation architecture

called SC-CrackSeg.

• Deploying several techniques to improve efficiency during training and in-

ference time, such as channel reduction, supplying a single resolution input

image to the encoder, and creating a shallow branch at the intermediate

stage.

• Introducing a new module called CRM for context mining and feature scal-

ing, aimed at keeping the design simple.
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• Deploying a simple yet efficient semantic aggregation module at the decoder

to reduce computer overhead and achieve better semantic representation.

• Introducing a void class to label noisy pixels, in addition to the crack and

background classes. The void class assigns a label of 255 to noisy pixels,

and it is not used during training.

• Exploring different loss functions, including per-pixel class-weighted loss,

Focal Tsverky loss, and categorical cross-entropy.

• Measuring performance using various metrics such as mIoU, F1 score, pre-

cision, and recall to demonstrate the model’s performance and versatility

on publicly available combined datasets.

• Reproducing different existing crack segmentation models and training them

under the same system configuration for a fair comparison.

• The proposed model achieved state-of-the-art performance (mIoU: 77.04%,

F1 score: 85.34%, Precision: 88.59%, Recall: 82.32%) compared to existing

models.

2.7 Publication 7: SDBNet: Lightweight Real-

time Semantic Segmentation Using Short-

term Dense Bottleneck

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A., “SDBNet: Lightweight Real-time Se-

mantic Segmentation Using Short-term Dense Bottleneck,” In: Proc.

DICTA, Sydney, Australia, 2022, pp. 1-8, doi: 10.1109/DICTA56598.2022.10034634.

78



2.7.1 Abstract

Designing an efficient backbone for a semantic segmentation model is crucial

to achieve better semantic results. Adopting a pre-trained backbone, such as a

deep convolutional neural network (DCNN), designed for image classification may

not produce the desired segmented result due to the lack of task-specific design.

Furthermore, most existing DCNN models do not provide a sufficiently large

receptive field to capture objects of varied geometrical shapes in complex scenes.

It has often been observed that tiny or distant objects in a complex scene are

overlooked due to the presence of larger objects. To address this issue, this paper

proposes a novel architecture called Short-term Dense Bottleneck (SDB) block,

which provides two to three times larger field-of-view than existing bottleneck

blocks. Building upon this, an efficient real-time semantic segmentation model

named SDBNet is designed to better contextualize varied geometrical objects in

complex scenes. At the decoder, simple yet effective feature refinement (FR)

and semantic aggregation (SA) modules are introduced to fine-tune the semantic

information and accurately position objects. The proposed SDBNet is evaluated

on three publicly available benchmarks, and it achieves improved results on these

datasets.

2.7.2 Approach

It has been observed that existing models struggle to detect and localize tiny or

distant objects in complex scenes. Due to the presence of large objects in the

scene, existing models often fail to detect them. Popular deep convolutional neu-

ral networks (DCNNs) are primarily designed for image classification and may not

capture all the necessary contextual details for semantic segmentation. Moreover,

the residual blocks of existing DCNNs provide a limited number of field-of-views,

leading to missing details from the scene. To address this limitation, this study

proposes a dense bottleneck architecture that increases the number of receptive

fields in the bottleneck block. This architecture enhances the model’s ability to
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capture more contextual information and reduces the semantic gaps among the

feature maps.

2.7.3 Methodology and findings

The paper proposes two types of SDB blocks: SDB1 with a stride of 1 and SDB2

with a stride of 2. The deep branch consists of 2 Convolution blocks and 6

SDB blocks. The Convolution blocks are part of the down-sampling technique,

which down-samples the input image by four and creates the first 2 stages. The

remaining three stages contain all the SDB blocks, with 2 blocks in each stage.

Each SDB block consists of 3 mobile inverted residual blocks (MBConv) Sandler

et al. (2018) with three different expansion ratios 2, 3, 4. Therefore, each SDB

block introduces three different channel dimensions to the feature map. In SDB2,

the spatial dimensions of the input feature are down-sampled by 2 in the first

MBConv block, then by 4 in the second MBConv block, and finally upsampled by

2 and processed by the third MBConv block, while maintaining the same spatial

dimensions. This design provides a larger number of field-of-views compared to

existing models. In SDB1, the spatial dimensions do not change as the feature

map passes through the three MBConv blocks, but excitations and squeezes occur

along the channel dimension in each MBConv block. Dense skip connections are

added from the input to the output of each SDB1 block, reducing the semantic

gap and addressing the gradient vanishing issue.

A shallow branch is also deployed in parallel with the deep branch to provide

local spatial details of regions to the deep branch. Three ShallowX blocks are

used to design the shallow branch.

At the decoder side, 3 FR modules, 2 SA modules, a series of upsampling

layers, and one classifier are deployed. The FR modules refine two deep features

and one shallow feature, while the SA modules aggregate feature maps from

various stages. The complete pipeline of the proposed SDBNet model can be

seen in Figure 2.8.

The key findings of this study are:
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Figure 2.8: Complete architecture of SDBNet (this figure is derived from the
literature Singha et al. (2022).)

• Existing models face challenges in detecting tiny or distant objects in com-

plex scenes.

• The bottleneck architecture used in existing models provides a limited num-

ber of field-of-views, which leads to the omission of contextual details for

tiny objects in complex scenes.

• The proposed dense architecture with an increased number of receptive

fields can effectively capture objects with various geometrical shapes.

• Using multiple smaller expansion ratios, rather than a single specific ratio,

can enhance the receptive field along the channel dimensions and reduce

the model’s parameters and computational requirements (FLOPs).

• Dense addition operation is found to be more efficient than dense concate-

nation operation.

2.7.4 Contributions

The key contributions of this paper are:

• Introduction of a novel dense bottleneck block called SDB, designed to

capture objects of different shapes in complex scenes.
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• Utilization of multiple expansion ratios 2,3,4 within each SDB module to

improve field-of-view along the channel dimensions.

• Development of a carefully designed shallow branch that serves as an at-

tention vector, providing local spatial guidance to the deep branch.

• Introduction of the context refinement module (CRM) for context mining

and feature scaling, contributing to the simplicity of the overall design.

• Deployment of an efficient feature refinement module at the decoder to filter

out noisy pixels from the semantic feature maps.

• Implementation of an optimized semantic aggregation module at the de-

coder, which fuses deep and shallow refined feature maps for improved se-

mantic results.

• Evaluation of the proposed SDBNet model on various datasets, achieving

performance metrics of 70.8% on Cityscapes, 73.2% on CamVid, and 51.8%

on KITTI test sets. The model also achieves high processing speed, handling

98 frames per second at an input resolution of 512× 1024.

• Submission and publication of the model’s test results on Cityscapes and

KITTI datasets on their respective servers.

• Creation of an official public GitHub repository containing the project de-

tails, including the design of the proposed model.

2.8 Publication 8: A real-time semantic seg-

mentation model using iteratively shared fea-

tures in multiple sub-encoders

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A., “A real-time semantic segmentation
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model using iteratively shared features in multiple sub-encoders”, Pat-

tern Recognition, Volume 140, 2023, 109557, ISSN 0031-3203,

https://doi.org/10.1016/j.patcog.2023.109557.

2.8.1 Abstract

Gradient vanishing is a common issue in Deep Convolutional Neural Networks

(DCNNs) where gradients propagated through the network during training be-

come very small or even vanish as they pass through numerous layers. This can

have a significant impact on the learning process and the overall performance of

the model. While various techniques have been proposed to address this issue,

such as weight initialization, normalization techniques, skip connections, and the

use of activation functions with less prone vanishing gradients, the performance

of the models is still affected.

One of the main reasons for this issue is the deep single-branch network de-

sign. To mitigate gradient vanishing, this paper proposes an efficient Shared

Feature Reuse Segmentation (SFRSeg) model specifically designed for resource-

constrained applications. The model incorporates a shared-branch design that

improves the entire feature hierarchy by sharing spatial and contextual details

in both deep and shallow branches. Additionally, multiple sub-encoders with a

gradual increase in the number of layers in the top stages are deployed in the en-

coder. These sub-encoders reprocess the rich semantic feature maps, and lateral

connections from the same stage of the previous sub-encoder are introduced to the

successive sub-encoders. By reusing features in multiple sub-encoders and incor-

porating lateral connections, the proposed model mitigates the gradient vanishing

issue.

Furthermore, the paper introduces a Hybrid Path Attention Semantic Aggre-

gation (HPA-SA) on top of this novel backbone. Leveraging this design, the pro-

posed model achieves state-of-the-art performance on the Cityscapes and CamVid

datasets, surpassing existing models with less than 2 million parameters.
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2.8.2 Approach

Existing semantic segmentation models often rely on popular deep convolutional

neural networks (DCNNs), which have shown outstanding results in image clas-

sification tasks. However, these DCNNs may not produce optimal semantic seg-

mentation results. One of the main reasons is that these image classification

models primarily focus on capturing contextual details while often disregarding

local information. However, for accurate object localization, local information

plays a crucial role as it captures fine-grained details and spatial relationships

between neighboring pixels. Therefore, to complement the global feature maps,

this paper adopts a shared-branch encoder approach where the shallow branch

serves as a source of local details.

In DCNNs, back-propagation is typically used to update the network’s weights

by computing gradients with respect to the loss function. However, a common is-

sue arises when the gradients diminish significantly as they propagate backwards

through a deep network. This problem is often observed in existing models due

to the lack of sufficient skip connections and the reusability of feature maps in the

entire encoder design. To address this issue, this paper introduces a design with

multiple sub-encoders. By deploying multiple sub-encoders, the model can repro-

cess the feature maps, facilitating better gradient flow and preserving valuable

information throughout the network.

By combining the shared-branch approach with the multiple sub-encoders

design, this paper presents a novel approach called Shared Feature Reuse (SFR).

This approach aims to improve the overall performance of semantic segmentation

models by incorporating local information through the shared-branch encoder and

mitigating gradient vanishing issues through the use of multiple sub-encoders.

2.8.3 Methodology and findings

The complete pipeline of the proposed SFRSeg model can be observed in Figure

2.9. The diagram illustrates that the first sub-encoder consists of both a deep
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Figure 2.9: Complete architecture of SFRSeg (this figure is derived from the
literature Singha et al. (2023a).)

and a shallow branch, which share their knowledge through a Knowledge Sharing

Block (KSB). The deep branch in each sub-encoder is designed using staging mo-

bile residual (MBConv) blocks Sandler et al. (2018). Notably, the entire encoder

incorporates only one shallow branch, which is deployed in the first sub-encoder

and comprises three separable convolution layers.

To enhance the context mining process and filter out noise from the shared

feature maps, a new design is introduced within each KSB. This context mining

design is inspired by DenseASPP Yang et al. (2018) and is referred to as the

Cascading Context Mining (CCM) module, given the cascading architecture. It

is worth noting that the proposed CCM module is significantly smaller in size

compared to ASPP Chen et al. (2018) and DenseASPP Yang et al. (2018), being

22 and 130 times smaller, respectively.

To overcome the issue of gradient vanishing in the first sub-encoder, the num-

ber of layers in the top stages is reduced. The first sub-encoder consists of 6

stages with fewer layers. The output of the first sub-encoder is then passed to

the second sub-encoder, which starts at the third stage and processes the input
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feature map through subsequent stages. To mitigate the gradient vanishing prob-

lem, skip connections are deployed from the same stages of the first sub-encoder

to the second sub-encoder.

Similarly, the third and fourth sub-encoders are designed, and the output of

the previous sub-encoder is processed by the next sub-encoder. This overall en-

coder design effectively addresses several existing issues, particularly the gradient

vanishing problem.

The key findings of this study are as follows:

• The deep network architecture of existing models leads to the issue of gra-

dient vanishing.

• Reusing rich semantic features in multiple sub-encoders improves the model’s

accuracy.

• Filtering semantic feature maps through multiple sub-encoders reduces the

problem of gradient vanishing.

• Lateral connections from the same stages of the previous sub-encoder to

the successive sub-encoder also mitigate the issue of gradient vanishing.

• A sequential and cascaded design for context mining is more effective than

a parallel-branch design.

• Boundary degeneration can be observed in the feature map as the output

of the previous sub-encoder is scaled up by a large scale, but this can be

addressed by a series of layers.

2.8.4 Contributions

The key contributions of this paper are:

• Introducing a novel architecture called Shared Feature Reuse (SFR) to ad-

dress the gradient vanishing problem in the encoder design.

86



• Introducing Cascading Context Mining (CCM) as a more efficient method

for filtering out noise from shared feature maps compared to existing mining

methods.

• Carefully designing each sub-encoder to overcome the gradient vanishing is-

sue without compromising model performance. Deep features are processed

more times than shallow feature maps to capture more contextual details.

• Introducing a Feature Reuse Block (FRB) to address the boundary degen-

eration effect that occurs when the output of each sub-encoder is scaled

up.

• Deploying Hybrid Path Attention Semantic Aggregation (HPA-SA) on top

of the encoder to guide the propagation of semantic signals in a hybrid

direction.

• Employing methods such as separable convolution filters and channel re-

duction to keep the model’s parameters and FLOPs low.

• Achieving a balance between model accuracy and efficiency. The proposed

model, SFRSeg, achieves 70.6%, 74.7%, and 49.3% on the Cityscapes,

CamVid, and KITTI test sets respectively, while having only 1.6 million

parameters.

• SFRSeg can process 194 frames per second at a resolution of 512 × 1024,

outperforming existing models in terms of speed.

• Evaluating the proposed model on the Indoor Object dataset, demonstrat-

ing impressive results with greater efficiency.

• Creating an official public GitHub repository and uploading project details,

including the design of the proposed model.
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2.9 Publication 9: Multi-encoder Context Ag-

gregation Network for Structured and Un-

structured Urban Street Scene Analysis

Bibliographic reference:

Singha, T., Pham, DS., Krishna, A., “Multi-encoder Context Aggregation

Network for Structured and Unstructured Urban Street Scene Anal-

ysis,” in IEEE Access, vol. 11, pp. 66227-66244, 2023. doi: 10.1109/AC-

CESS.2023.3289968.

2.9.1 Abstract

Capturing the long-range dependencies and rich contextual details from a com-

plex scene is a difficult task in semantic segmentation. Most of the existing models

struggles to capture that due to their deep single branch encoder design. More-

over, rare class objects are often missed out by the model due to the presence of

over occurred classes objects in the scenes. To address these issues, this paper

introduces a multiple sub-encoders design for feature extraction where the deep

feature maps are re-filtered multiple times by multiple sub-encoders. The novelty

of this design lies in reusing the deep feature maps by successively increasing

number of layers at the deeper stages in successive sub-encoders. At decoder

end, it deploys a comprehensive Local and Global Context Aggregation (LGCA)

module which accepts contextually rich feature maps from the different stages of

the sub-encoders and significantly enhances the semantic representation by fus-

ing these feature maps. Combining these novel designs, this paper introduced an

efficient semantic segmentation model called Multi-encoder Context Aggregation

Network (MCANet) for resource constrained mobile devices. Among the exist-

ing real-time models with less than 3 million parameters, the proposed model

achieved sate-of-the-art performance on various datasets without ImageNet Deng
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et al. (2009) pre-trained weights.

2.9.2 Approach

Existing models often suffer from the gradient vanishing issue and overlook tiny,

far, and rare class objects in the scene while producing the semantic output. Gra-

dient vanishing occurs due to their deep network architecture, and lack of feature

re-usability can be the cause of overlooking tiny and far objects in the scene. In

order to resolve these issues, this paper follows the approach of feature re-usability

in the entire pipeline by introducing multiple sub-encoders design at the encoder

and a multi-paths bi-directional decoder design. Deep features from the first

sub-encoder are reprocessed by the successive sub-encoders to achieve the best

refined global feature maps. Later on, these feature maps pass through multiple

paths of the decoder for feature aggregation and accurate object localization.

2.9.3 Methodology and findings

The complete architecture of the proposed MCANet can be seen in Figure 2.10.

To target resource-constrained mobile devices, the study carefully designs the

multi-encoder and multi-path decoder. Empirically, it has been proven that Mo-

bileNetV2 Sandler et al. (2018) inverted residual blocks (MBConv) are more

efficient than any other existing residual blocks. Hence, relying on its optimized

layered architecture, this study designed the encoder architecture. It consists of

four sub-encoders for feature reuses. The first sub-encoder has six stages, which

consist of one standard convolution layer and 11 MBConv blocks. At each stage,

the image size is bilinearly down-sampled. The second sub-encoder has three

(fourth, fifth, and sixth) stages for reprocessing the last three stages’ deep fea-

ture maps. Note that the number of layers in the fourth stage has increased.

The third sub-encoder has two (fifth and sixth) stages, where the number of lay-

ers in the fifth stage has increased. The fourth sub-encoder has only the last

(sixth) stage, which has more layers than the previous sub-encoders. In this way,

the deep feature maps in the entire feature hierarchy are filtered more times as
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Figure 2.10: Complete architecture of MCANet (this figure is derived from the
literature Singha et al. (2023b).)

they contain more contextual details. The paper also introduces several lateral

connections among the same stages of all sub-encoders to address the gradient

vanishing issue. Thus, the feature re-usability network is designed.

Since local spatial feature maps are important to localize the objects in the

scene, this paper proposes a novel design for a feature fusion method called Local

and Global Context Aggregation (LGCA). The design of LGCA can be seen in

Figure 2.10. It has three paths: two top-down and one bottom-up. It takes

features from the second to seventh stages of the encoder for feature fusion.

Features from the fourth to seventh stages are contextually rich features; hence,

these can be identified as deep features, whereas features at the second and third

stages mainly contain local spatial details required to localize the objects in the

scene. Thus, these features are aggregated through multiple paths for better

semantic representation. The key findings of this study are as follows:

• Tiny, far, and rare classes objects are often overlooked by the existing mod-

els due to their deep single branch encoder design.

• Feature re-usability can improve the model’s performance on rare classes

objects.
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• Increasing the number of layers in deep stages of successive sub-encoders

enhances the deep feature quality.

• Lateral connections between the sub-encoders at the same stages mitigate

the issue of gradient vanishing.

• For better context assimilation and precise object localization, fusing fea-

tures through multiple paths is necessary.

• Spatial details are required for accurate object localization in the scene.

2.9.4 Contributions

The main contributions of this paper are as follows:

• The paper proposes a novel backbone architecture that incorporates multi-

ple sub-encoders designed specifically for optimal feature scaling. Addition-

ally, we control the number of model parameters by reducing the number

of stages in each successive sub-encoder.

• The paper introduces an effective multi-stage module for local and global

feature aggregation at the decoder. This module combines feature maps at

different levels generated by our proposed backbone network.

• Leveraging the novel backbone architecture and efficient multi-stage feature

aggregation module, the paper presents an efficient semantic segmentation

model called Multi-encoder Context Aggregation Network (MCANet). This

model achieves a sensible balance between accuracy and efficiency, making

it well-suited for resource-constrained mobile devices.

• Finally, the study conducts comprehensive experiments in both structured

and unstructured environments with varying numbers of classes. Our re-

sults demonstrate the superior performance of our model compared to ex-

isting real-time semantic segmentation models with fewer than 3 million

(M) parameters.
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2.10 Contributions of the thesis

This thesis aims to address several issues present in existing methods for complex

scene understanding. These issues include:

• Large computational cost due to the large size of the network

• Model scalability issue

• Inability to capture objects of varied geometrical shapes in a complex scene

• Boundary degeneration effect

• Large semantic gaps among the feature maps in the entire pipeline

• Gradient vanishing issue

• Inability to capture rare classes objects in complex scenes

• Poor latency and infeasible for resource constrained applications

• Inability to maintain a balance between model accuracy and model effi-

ciency

To address these issues, the thesis proposes several novel architectures and

methods that can be utilized for computer vision tasks to improve scene under-

standing. These designs and methods are evaluated using various publicly avail-

able benchmarks. The thesis includes the publication of nine research articles

that tackle these issues.

In summary, Publication 1 demonstrates that different dimensions of the deep

convolutional network are not independent, and scaling the network along the

depth may not substantially improve model performance. Hence, a compound

scaling technique is relied upon to propose a family of scene segmentation models

and address the issue of model scalability.

Publication 2 emphasizes the importance of building a lightweight backbone

from scratch instead of using pre-trained deep CNNs. This approach optimizes
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the end-to-end network architecture and provides control over the architectural

design.

Publication 3 illustrates the importance of feature scaling and feature fusion

techniques in the entire semantic pipeline. These techniques enhance the capture

of objects of various geometric sizes and enable accurate region identification.

Publication 4 introduces the novel concept of knowledge sharing among the

deep and shallow branches to improve the feature hierarchy in the entire encoder.

A method called the context mining module is also introduced to filter out noise

from the shared knowledge.

Based on this shared knowledge backbone, Publication 6 designs techniques

for structural crack detection and segmentation, efficiently detecting building and

road cracks from high-resolution input images.

Publication 5 demonstrates that the neck section of object detection tech-

niques can be utilized in semantic segmentation to reduce semantic gaps among

the feature maps of the encoder. This improves the overall quality of the feature

hierarchy.

Publication 7 shows the importance of various sizes of receptive fields in the

encoder for capturing long-range dependencies and rich contextual details. A

novel short-term dense bottleneck design is introduced, providing three to four

times more receptive fields than existing bottleneck blocks. This dense bottleneck

can be used for designing CNNs related to various vision tasks.

Publications 8 and 9 highlight the importance of feature re-usability in ad-

dressing rare classes objects and gradient vanishing issues. They introduce a

novel architecture called multiple sub-encoders for feature re-usability and fea-

ture extraction. Publication 8 also incorporates the concept of knowledge sharing

using a knowledge shared block for building the encoder and employs a hybrid

path attention mechanism to alleviate semantic gaps among the feature maps

and improve overall semantic representation.

Publication 9 demonstrates that successive increases in the number of layers in
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Figure 2.11: Cityscapes validation mIoU (%) Vs Model Size

the deep stages of the successive sub-encoders enhance the quality of deep feature

maps. Aggregating spatial and global feature maps through multiple paths in

both directions improves signal flow and enables better object representation in

the semantic output.

To compare the performance of all the proposed models with existing real-time

semantic segmentation models, two scatter plots were generated and displayed

in Figures 2.11 and 2.12. The first plot in Figure 2.11 illustrates the model’s

validation mIoU on the Cityscapes dataset Cordts et al. (2016) against the model

size. The proposed models are represented by magenta color dots, while the

existing real-time models are represented by blue color dots. The size of each dot

corresponds to the size of the model.

It is evident that, in comparison to the existing real-time models, all the

proposed models (except ESPNet Singha et al. (2020b)) are significantly smaller
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and still achieve competitive results, despite having fewer parameters. ESPNet

Singha et al. (2020b) utilizes the EfficientNet Tan & Le (2019) B0 backbone,

which results in a higher number of parameters compared to the other proposed

models.

The second plot in Figure 2.12 showcases the model’s Cityscapes validation

mIoU against FPS. It demonstrates that most of the proposed models exhibit

significantly higher efficiency compared to existing real-time semantic segmenta-

tion models. Among them, the proposed MCANet Singha et al. (2023b) stands

out with its state-of-the-art performance. MCANet achieves a Cityscapes vali-

dation mIoU of 74.8% while having only 2.7 million parameters. Additionally,

it can process 269 frames per second at an input resolution of 512 × 1024. It is

important to note that the FPS count of some of the proposed models may vary

with the literature as different TRT-based engines are used.
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When compared to all existing real-time models, MCANet achieves the most

sensible trade-off between the model’s accuracy and efficiency, making it an out-

standing choice for practical applications.
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Chapter 3

Conclusions, limitations and

future research

3.1 Conclusions

Balancing the accuracy and efficiency of semantic segmentation models is crucial

in various real-time applications, where computational resources are limited, and

rapid decision-making is essential. Some of these applications are:

• Video Surveillance: For security and surveillance systems, real-time se-

mantic segmentation plays a pivotal role in identifying objects and activ-

ities. Surveillance cameras continuously capture video data, and to ef-

ficiently analyze this continuous stream without overburdening computa-

tional resources, it’s imperative to employ an efficient semantic segmenta-

tion model.

In some scenarios, such as aerial surveillance using drones, the use of em-

bedded devices is common. These devices typically have limited GPU sup-

port and face power supply constraints. Consequently, running a resource-

intensive, memory-hungry, and power-demanding large model becomes in-

feasible on these embedded devices. Thus, the deployment of a lightweight

model with minimal computational overhead becomes a necessity in such
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contexts. This ensures that the surveillance system can effectively operate

within the constraints of these devices.

• Robotics: Robots are increasingly integrated into various settings, includ-

ing manufacturing, warehouses, and even homes, where they heavily rely

on semantic segmentation for effective navigation and interaction with their

surroundings. To underscore the importance of this technology, consider its

application in assisting blind individuals using wheelchairs to navigate in-

door environments.

In this scenario, efficient object detection and segmentation techniques play

a crucial role. These techniques enable the robotic wheelchair to identify ob-

stacles, pathways, and objects in real-time, facilitating safe and autonomous

navigation for the user. It’s a prime example of where the balance between

efficiency and accuracy is paramount. While real-time processing ensures

timely responses to dynamic environments, the accuracy of the semantic

segmentation is vital to ensure the safety and reliability of the robotic sys-

tem, ultimately enhancing the user’s mobility and independence.

• Augmented Reality: In augmented reality applications, such as inter-

active gaming or navigation assistance, real-time object detection is essen-

tial. However, achieving optimal performance on mobile devices presents a

unique challenge. It’s crucial to strike the perfect balance between accuracy

and efficiency to provide users with a seamless experience.

For instance, consider a mobile augmented reality game where users ex-

plore a virtual world overlaid on their surroundings through their smart-

phone camera. To accurately detect and interact with virtual objects in

real time, the segmentation model must be efficient. Excessive computa-

tional demands can result in lag, detracting from the immersive experience.

Therefore, finding the best trade-off between accuracy and efficiency is vital

to ensure that the augmented reality game runs smoothly and provides an

98



engaging user experience on mobile devices.

• Structural monitoring system: Continuously employing semantic seg-

mentation on data collected from sensors, drones, or cameras serves as a

powerful tool for real-time structural health monitoring. This technology

can be exemplified in the context of bridge inspections.

Consider a scenario where cameras and sensors are mounted on a bridge to

monitor its structural integrity. Semantic segmentation algorithms analyze

the real-time data to identify any anomalies or structural issues, such as

cracks, corrosion, or deformation. If the system detects deviations from the

norm, it can promptly trigger alerts for maintenance or inspection. This

proactive approach to structural health monitoring helps ensure the safety

and longevity of critical infrastructure.

• Monitoring system for agriculture: In the realm of precision agricul-

ture, drones equipped with high-resolution cameras and real-time segmen-

tation models have emerged as valuable tools. These technologies can be

exemplified in the context of monitoring crop health and identifying pest

infestations.

Imagine a vast agricultural field where drones equipped with advanced cam-

eras fly over the crops. Real-time segmentation models meticulously process

the data, distinguishing between healthy and distressed plants and detect-

ing signs of potential pest infestations. The crux of the matter lies in ac-

curately identifying distressed plants within the real-time environment. A

precise model is indispensable for making informed decisions regarding the

timing and location of treatments. With access to this real-time informa-

tion, farmers can optimize their interventions, reduce the need for excessive

pesticide use, and ultimately boost crop yields while conserving valuable

resources.

In these applications, achieving the delicate balance between accuracy and effi-
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ciency is paramount to ensure that models provide valuable and timely insights

without straining the available computing resources. However, the challenge lies

in the sheer number of parameters present in existing semantic segmentation mod-

els, making their deployment on resource-constrained mobile devices a formidable

task. Take, for example, NVIDIA Jetson devices, recognized for their AI capabil-

ities and compact form factors, which are frequently employed in such scenarios.

Among the Jetson devices, the Jetson Nano stands out as the most resource-

constrained. To successfully deploy a semantic segmentation model built using

deep learning frameworks like TensorFlow, PyTorch, or ONNX on the Jetson

platform, it necessitates the optimization of the model through the TensorRT

engine. A prime illustration of this is the DeepLabV3+ model with the Xception

backbone, whose size can span from 100 MB to 150 MB contingent upon factors

like input image size, precision mode, and structural optimization. This model

comprises over 50 million parameters, rendering it impractical for utilization on

resource-constrained devices. However, post-optimization with the TensorRT en-

gine, the size of the DeepLabV3+ model can be efficiently reduced to a range of

60 MB to 100 MB.

Such optimization endeavors can yield significant advantages, accelerating

model inference and diminishing computational demands for real-time perfor-

mance. Nonetheless, even with optimization, running on real-time devices like

the NVIDIA Jetson Nano remains a challenge. Typically, models with smaller

footprints, such as those based on the MobileNet architecture, boasting a Ten-

sorRT model size of around 10-15 MB and fewer than 3 million parameters, can

efficiently operate on the Jetson Nano.

To accomplish this objective, the thesis introduces a range of pioneering con-

cepts, optimized backbone architectures, and efficient methodologies aimed at

crafting real-time semantic segmentation models specifically tailored for resource-

constrained mobile applications. Remarkably, all of the proposed architectures

boast an impressively low parameter count, with each containing fewer than 3

100



million parameters. What’s more, following TensorRT optimization, these mod-

els exhibit a compact size range spanning from 7 MB to 15 MB. This remarkable

reduction in model size renders them exceptionally well-suited for deployment on

devices like the Jetson Nano.

These architectural innovations serve a dual purpose: they not only bridge the

performance divide that often separates real-time and offline semantic segmen-

tation models but also bolster the overall efficiency of these models for real-time

computational tasks. This makes the proposed architectures ideal for resource-

constrained applications where minimal hardware resources are available to sup-

port segmentation tasks. Furthermore, it’s worth noting that these innovative

architectures and methods extend their applicability to various computer vision

tasks, including object detection, instance segmentation, and panoptic segmen-

tation.

The thesis presents various novel backbone designs, including the shared

knowledge two-branch design for feature extraction, feature re-usability design

by deploying multiple sub-encoders, short-term dense bottleneck design, and en-

coder with neck design. These innovative CNN architectures effectively address

several issues present in existing semantic segmentation models. These issues in-

clude the inability to capture long-range dependencies, large semantic gaps among

feature maps, gradient vanishing, and the inability to capture tiny, distant, and

rare classes of objects. The proposed architectures efficiently address these is-

sues. Additionally, due to the optimized network architectures, all these feature

extractors produce fewer parameters and FLOPs, significantly reducing the com-

putational cost. This makes these architectures feasible for resource-constrained

mobile devices.

The proposed methods, such as context mining, feature refinement, spatial

and contextual feature aggregation, semantic aggregation, and Hybrid path at-

tention modules, address several other issues, including noise filtering, context

assimilation, boundary degeneration, and precise region and object localization.
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These methods have a smaller memory footprint and can be deployed on any

CNN network. However, as the main objective of this thesis is to reduce model

architecture without sacrificing performance, we tested the performance of these

modules only with the proposed network architectures.

All the proposed segmentation models, except ESPNet Singha et al. (2020b),

have their own optimized novel backbones designed from scratch. As a result,

these models have a parameter range of 1.2 to 2.7 million and 2.9G to 7.8G FLOPs

at a resolution of 512×1024, indicating lower computational costs. Only ESPNet

Singha et al. (2020b) incorporates the EfficientNet Tan & Le (2019) B0 backbone,

which adds 5.6 million parameters. Thus, the complete ESPNet pipeline has a

total of 7.6 million parameters.

The proposed models can process more than 100 frames per second at a res-

olution of 512× 1024. In particular, FANet, SFRSeg, and MCANet demonstrate

outstanding efficiency by processing around 200 or more frames per second. The

proposed model MCANet achieves state-of-the-art results on Cityscapes Cordts

et al. (2016) (73.4%), CamVid Brostow et al. (2009) (80.2%), BDD100K Yu et al.

(2020) (58.8%), KITTI Alhaija et al. (2018) (58.5%), and IDD-lite Mishra et al.

(2020) (73.8%) among the existing real-time semantic segmentation models with

less than 3 million parameters. Thus, the thesis demonstrates achieving a sensible

trade-off between the accuracy and efficiency of the model.

This thesis also proposes an efficient method for detecting and segmenting

structural cracks, which achieves state-of-the-art performance on various publicly

available crack datasets. It can process 220 frames per second at a resolution of

448×448, demonstrating its high efficiency in real-time environments. Thanks to

the optimized and efficient network architecture, this crack detection method can

be easily implemented in real-time embedded devices for monitoring the structural

condition of buildings or roads.

The test results of the proposed models, evaluated using the Cityscapes Cordts

et al. (2016) and KITTI Alhaija et al. (2018) datasets, have been published on

102



the test evaluation server.

An official GitHub repository has been created for each research paper, making

it publicly available for reusability.

3.2 Limitations and future work

3.2.1 Limitations

Even though all the proposed architectures and methods improved segmentation

model’s performance for resource-constrained mobile devices, there are several

limitations that hinder the model’s performance. These limitations are:

• Performance gap: Due to the increasing demand for developing resource-

constrained applications in various fields, the thesis has focused on design-

ing real-time semantic segmentation models which can handle high res-

olution input images with greater efficacy and efficiency. These models

are designed to cater to application-specific requirements, where real-time

performance with good accuracy is essential. It substantially reduces the

performance gap between the offline and real-time segmentation models.

However, still certain percentage of performance gap can be observed. For

instance, DeepLabV3+ Chen et al. (2018) has 54.6 million parameters and

it produces 79.6% mIou on Cityscapes validation set. In comparison, the

proposed model MCANet generates 74.8% validation mIoU while having

only 2.7 million parameters. the proposed model is 20 times smaller than

DeepLabV3+. Hence, it would not be possible to attain the same result

with a small model such as MCANet. However, the existing performance

gap can be reduced further with the new emerging techniques such as do-

main adaption Yang et al. (2020), teacher-student and semi-supervised de-

sign Xiao et al. (2022); Baldeon Calisto (2022). This thesis did not explore

these techniques extensively.

• Lack of pre-trained knowledge: Most of the existing semantic segmenta-
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tion models are pre-trained on datasets such as ImageNetDeng et al. (2009)

or other publicly available datasets or synthetic datasets. This pre-trained

knowledge boosts the model’s performance. However, all the proposed mod-

els in this thesis are designed from scratch and are not pre-trained on any

datasets. Pre-training the proposed models with the ImageNet dataset can

improve model’s accuracy by 1% to 2%.

• Limited generalization: Semantic segmentation models may struggle

with generalization to unseen or novel classes. If the model has not been

trained on examples of specific classes, it may have difficulty accurately

segmenting them or distinguishing them from similar-looking classes. This

observation has been noticed while using the IDD-lite dataset, where some

images taken in rural environments are completely different from urban

street scenes, leading the model to misclassify cart-tracks as roads.

• Limited occlusion handling: The proposed models relatively perform

well than the existing real-time semantic segmentation models. However,

it has been observed that the segmentation models may not effectively

handle changes in lighting conditions, viewpoint variations, or occlusions.

These factors can introduce challenges in accurately segmenting objects

under different circumstances, leading to decreased performance and relia-

bility in real-world scenarios. This phenomenon has been observed in the

BDD100K dataset, which contains images taken in various lighting condi-

tions and weather conditions. For instance, the number of images taken

at night under low lighting conditions is relatively low. As a result, the

models have limited exposure to such scenarios during the training process.

Consequently, they may struggle to accurately segment scenes captured at

night or from different viewpoints. New techniques such as Domain adapta-

tion Yang et al. (2020), semi-supervised Xiao et al. (2022); Baldeon Calisto

(2022) can be beneficial in addressing issues like limited occlusion and im-

proving generalization.
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• Slight squarish boundaries: Semantic segmentation algorithms can en-

counter difficulties in accurately delineating fine-grained object boundaries.

Due to the nature of pixel-level classification, objects with intricate shapes

or regions with ambiguous boundaries pose challenges for precise segmen-

tation. In some proposed models, slightly squared boundaries have been

observed in the segmented output. This is attributed to the aggressive

upsampling (by a factor of 22 or 23) at the end of the decoder, which sig-

nificantly improves model efficiency but can lead to squared boundaries.

To address this issue, pre-processing or post-processing techniques can be

applied during the training process. These techniques include boundary

detail analysis, scaling and clipping, and post-processing filtering. It is

important to note that these pre/post-processing tasks do not affect the

model’s efficiency during the inference time. Some existing models utilize

these techniques to enhance performance, but this thesis did not explore

them extensively.

3.2.2 Future work

Addressing these aforementioned limitations is an active area of research, and

several advancements can be made in the future to improve the robustness, effi-

ciency, and generalization capabilities of semantic segmentation models.

The immediate future work, which would be conducted to address the squar-

ish boundary issue, is to generate the boundary ground truth of all objects from

the original semantic ground truth and fuse this boundary detail into the main

pipeline as additional information to improve the model’s overall performance.

In this case, along with the main loss function, a boundary loss function needs

to be evaluated during the training process. The boundary ground truth can

be seen in Figure 3.1. Figure 3.1(b) shows the original colored ground truth

provided by the dataset, and Figure 3.1(c) displays the newly generated bound-

ary details, which can be used during training as additional information. Other
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(a) (b) (c)

Figure 3.1: Boundary annotation

pre/post-processing techniques will also be explored in the future to assess their

effectiveness in computer vision tasks.

The thesis references several pieces of literature He et al. (2019); Liu et al.

(2019); Park & Heo (2020) that have implemented a technique known as knowl-

edge distillation for reducing a model’s parameters while maintaining its per-

formance. This technique involves training a smaller model, referred to as the

student, to emulate the behavior of a larger model, the teacher. Throughout

training, the student assimilates the teacher’s knowledge and predictions, guided

by a distillation loss rooted in the similarity between their outputs. This method-

ology proves advantageous for crafting lightweight models well-suited for resource-

constrained environments, such as edge devices like the NVIDIA Jetson Nano.

Nonetheless, it’s important to acknowledge that this technique carries several

limitations. These include the potential loss of fine-grained information, a heavy

reliance on the teacher model, restricted generalization, sensitivity to hyperpa-

rameters, the complexity of the training process, and computational resource

intensiveness. Furthermore, existing models developed through this technique

often maintain a considerable number of parameters. For example, in the work

by Park & Heo (2020), the DeepLabV3+ model Chen et al. (2018) with Xcep-

tion as an encoder serves as the teacher model, while the student model employs

MobileNetV2 Sandler et al. (2018), containing 2.3 million parameters. Through

knowledge distillation, the student model achieves test accuracy of 64.7% and

60.7% on the Cityscapes Cordts et al. (2016) and CamVid Brostow et al. (2009)

datasets, respectively. Despite these results, a significant performance gap be-

tween offline and real-time semantic segmentation models persists.
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Looking ahead, the thesis will delve deeper into this technique by integrating

one of the proposed models as the student model. Given that many existing

semantic segmentation models struggle to generalize effectively to unseen or out-

of-distribution data, the future research work will concentrate on enhancing the

models’ generalization capabilities. This will involve the incorporation of domain

adaptation techniques, domain randomization, or the utilization of few-shot learn-

ing approaches to enable the models to adapt to new domains, even when limited

labeled data is available.

Furthermore, in the future, the thesis can explore the deployment of multiple

models in a distributed fashion, with their outputs combined using techniques

like model averaging or weighted averaging. This ensemble approach often leads

to enhanced segmentation performance. However, it’s important to note that this

approach can be resource-intensive and may increase inference time. Given that

the primary objectives of the thesis revolve around striking a balance between

model accuracy and efficiency, this particular approach is not explored in the

thesis.

While the thesis primarily focuses on pixel-level labeling for outdoor scenes,

there is a growing need for fine-grained segmentation. This entails segmenting ob-

jects at a more detailed level, capturing object parts and fine-grained structures.

Instance-level segmentation, which involves detecting and segmenting individual

instances of objects, will also continue to be an important research direction. Ad-

ditionally, panoptic segmentation provides a holistic understanding of a scene by

incorporating both semantic and instance-level information. This enables various

applications such as object counting, tracking, and further analysis at the indi-

vidual object level, contributing to a more detailed scene understanding. Thus,

panoptic segmentation will be an important research direction for the future.

For further performance improvement of semantic segmentation models, inte-

grating information from multiple modalities, such as RGB images, depth data, or

point clouds, can be beneficial. Therefore, future research will explore techniques
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for effectively fusing multi-modal data and leveraging sensor fusion to improve

segmentation accuracy and handle challenging scenarios.

Currently, semantic segmentation models heavily rely on pixel-level anno-

tations for training. Future research will explore weakly supervised learning ap-

proaches that can learn from coarser annotations like image-level labels or bound-

ing boxes. Additionally, unsupervised or self-supervised learning techniques will

be investigated to leverage unlabeled data for training semantic segmentation

models.

Semantic segmentation models often lack transparency, making it challenging

to understand their decision-making processes. Future research will focus on

developing interpretable and explainable models that can provide insights into

how the model arrives at its segmentation predictions. This will enable better

trust, debugging, and accountability in critical applications.
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Abstract. Extensive growth in the field of robotics and autonomous
industries, the demand for efficient image segmentation is increasing
rapidly. Whilst existing methods have been shown to achieve outstanding
results on challenging data sets, they cannot scale the model properly
for real-world computational constraints applications due to a fixed large
backbone network. We propose a novel architecture for semantic scene
segmentation suitable for resource-constrained applications. Specifically,
we make use of the global contextual prior by using a pyramid pooling
technique on top of the backbone network. We also employ the recently
proposed EfficientNet network to make our model efficiently scalable for
computational constraints. We show that our newly proposed model -
Efficient Segmentation Pyramid Network (ESPNet) - outperforms many
existing scene segmentation models and produces 88.5% pixel accuracy
on validation and 80.9% on training set of the Cityscapes benchmark.

Keywords: Scene segmentation · Pyramid pooling · EfficientNet

1 Introduction

Semantic segmentation is a process to label each pixel of an input image [1,2]
with a class. To improve the performance, a common approach is to increase the
size of the backbone network [7,18,19] such as from ResNet-18 to ResNet-200.
However, all these deep convolutional neural networks (DCNNs) have balanced
only one of these dimensions- depth, width and image resolution. Recently, a
family of models, called EfficientNet has been proposed in [18] by exploiting an
effective compound scaling technique to balance all the dimensions and optimise
the architecture for a given computational constraint. Inspired by this, we use
EfficientNet’s B0 network as a feature extractor to develop an efficient scalable
segmentation model for real-time computation. We also employ the pyramid
pooling module (PPM) [5,22] to extract region-based global information from
the feature map. Finally, we use a classifier module at the output stage.

We propose two models for semantic segmentation targetting real-time
embedded devices, namely Base ESPNet and Final ESPNet, the latter includes
an additional shallow branch to preserve the local context of the input. They
both have comparably less parameters than many offline (e.g. DeepLab [2] and
PSPNet [22]) and real-time segmentation models (e.g. SegNet [1]) and also pro-
duce better results on the Cityscapes data set [4].

c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1332, pp. 386–393, 2020.
https://doi.org/10.1007/978-3-030-63820-7_44
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2 Related Work

Semantic segmentation typically follows an encoder and decoder design. Exist-
ing DCNNs, such as VGG [17], ResNet [6,19], or MobileNet [14] are used as
the backbone network. To perform semantic segmentation, the fully connected
layer of DCNN is replaced by a convolution layer, for example in Fully Con-
volution Network (FCN) [16], UNet [13], SegNet [1], Bayesian Segnet [9], and
Deeplapv3+ [3]. Further improvement can also be made with techniques to
encode and manage global context, such as the pooling module (PPM) [22],
atrous spatial pyramid pooling (ASPP) [16] and Xiphoid Spatial Pyramid Pool-
ing [15]. Recently, semantic segmentation research has started to address real-
time low-resource constraints, such as ENet [10], ICNet [21] and ContextNet [11].
Many methods trades real-time inference speed for lower segmentation quality.
To address this, DSMRSeg [20] introduced a dual-stage feature pyramid net-
work with multi-range context aggregation module to achieve high speed with
high accuracy, although this model does not accept high-resolution input images.
FAST-SCNN [12] was proposed to handle high resolution. Whilst it is promising
for resource-constrained applications, its accuracy is lower than state-of-the-arts.

Fig. 1. Complete architecture of ESPNet

3 Proposed Methods

We propose the following two models- Base ESPNet and Final ESPNet. Our
Base ESPNet is inspired by the encoder-decoder with skip connections [13,16].
In Final ESPNet, we introduce a new feature fusion module (FFM) after PPM
to fuse local and global context. The detail is described next.
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3.1 Network Architecture

The overall architecture of ESPNet is shown in Fig. 1 and consists of:

Backbone Network. We focus on MobileNet [7,14] to address resource con-
strained applications. We also adopt EfficientNet B0 [18] as our backbone net-
work as it optimizes both accuracy and FLOPS. Its optimization objective is of
the form ACC(m)×[FLOPS(m)/T ]w where w = −0.07 is a hyper-parameter to
control the trade-off between accuracy ACC and FLOPS for model m. Figure 2
and Table 1 show the layer architecture of different MBConv blocks in Efficient-
Net B0.

Table 1. Stages of ESPNet

Stage (i) Operators Resolution Channels Layers

1 Conv, 3 × 3 256 × 256 32 1

2 MBConv1, k3 × 3 256 × 256 16 1

3 MBConv6, k3 × 3 128 × 128 24 2

4 MBConv6, k5 × 5 64 × 64 40 2

5 MBConv6, k3 × 3 32 × 32 80 3

6 MBConv6, k5 × 5 32 × 32 112 3

7 MBConv6, k5 × 5 16 × 16 192 4

8 MBConv6, k3 × 3 16 × 16 320 1

9 PPM 16 × 16 1600 1

10 FFM∗ 128 × 128 128 1

11 Classifier 512 × 512 20 1

∗FFM is absent in base ESPNet.

The operations and connections
of each block are determined
by a per-block sub search space
which involves the following: 1)
Convolution operation: regular
conv (Conv), depth-wise conv
(DwConv), and mobile inverted
bottleneck conv [14]; 2) Convo-
lution kernel size: 3 × 3, 5× 5; 3)
Squeeze-and-excitation [8] ratio
SERatio: 0, 0.25; 4) Skip oper-
ation: pooling, identity residual,
or no skip; 5) Output filter size
Fi; and 6) Number of layers per block Ni. Convolution operation, kernel size,
SERatio, skip operation and Fi determine the architecture of a layer whereas Ni

controls the repetition of a layer inside the block. For example, Fig. 2 shows that
each layer of block 4 has an inverted bottleneck 3× 3 convolution and an iden-
tity residual skip path. The same layer is repeated N4 times inside block 4. In
the proposed models, two types of MBConv blocks of different layer architecture
(MBConv1 and MBconv6) are used. We also introduce squeeze-and-excitation
optimization each MBConv block to improve channel inter-dependencies at
almost no computational cost. The filter size of each block is defined as {0.75,
1.0, 1.20, 1.25} of the size of filter in each block of MobileNetV2.

Fig. 2. Different Layers architecture of MBConv blocks
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Shallow Branch. Inspired by down-to-sample technique in [12], we have intro-
duced one shallow branch to our final ESPNet. The main motivation is to pre-
serve the low-level features at high resolution. To ensure this, we establish this
shallow connection after the stage 3 (Table 1) where image resolution becomes
just a quarter of the original input size. As shown subsequently, this branch
helps to improve the performance over the baseline model. Figure 1 shows the
presence of this branch in final ESPNet.

Pyramid Pooling Module (PPM). The global contextual information is a
key to successful semantic segmentation [5,11,22]. Therefore, a global scene-level
reception is required by a deep network before sending the final feature map to
the classifier module. We introduce PPM, which empirically proves to be an
effective global contextual receptor. To reduce the loss of contextual information
between different regions, our model separates the feature map into different sub-
regions and forms pooled representation for different locations. After pooling,
the feature maps of different sizes are fed into 1 × 1 convolution layer to reduce
the dimension of context representation to 1/N of the original one where N
represents the level size of pyramid. Then by re-sizing all low-dimension feature
maps, we concatenate all to get the final global feature map (Fig. 1).

Feature Fusion Module. This section fuses the global and local feature maps
to produce the final feature map. But due to lower size of global feature map,
we use upsample method to scale up the resolution and then convolve both the
features before final fusion. We adopt a simple addition technique like ICNet [21]
and ContextNet [11] for fusion. Figure 1 shows the layer architecture of FFM.

Classifier. To assign a class to each pixel of an image, we design a classifier
with two depth-wise separable convolutions (DSConv), one convolution (Conv),
one upsampling and one softmax layer. DSConv not only convolves the input
along all dimensions, but also reduces computational cost by reducing number of
operations in convolution process. Here, we use 20 classes (including background)
of the Cityscapes data set. Therefore, to generate a final output of 20 channels,
we use one Conv layer followed a batch normalization and dropout layer. At last,
we use softmax activation to generate final output of size 512 × 512 × 20.

4 Experiment

Cityscapes Data Set. It is a large dataset for semantic understanding of urban
street scenes. It consists of about 5000 fine and 20000 coarse annotated images.
We used only the fine annotated images. Only the annotations for the training
and validation sets are provided. We followed the standard split of the dataset.

Implementation. We conducted our experiments using a desktop computer
with two Nvidia GeForce RTX 2080Ti GPU cards, each with 11GB GPU RAM.
For parallel computing platform, we used CUDA 10.2. We developed our models
based on tensorflow version 2.1 and keras 2.3.1. We also use the horovod

framework to implement data-parallel distributed training. We set a batch size
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of 4 and use stochastic gradient decent (SGD) as the model optimizer with a
momentum of 0.9. Inspired by [2,7,22], we use the ‘poly’ learning rate scheme
which computes the current learning rate (LRcurrent) as LRcurrent = LRbase ×
(1− iter/maxiter)power where iter defines current iteration and maxiter defines
maximum number of iterations in each epoch. We set LRbase to 0.045 and power

to 0.9. This allow us to determine the optimal learning rate.
To overcome the limited training data, we apply various data augmentation

techniques, such as random horizontal/vertical flip, random crop, re-sizing of
image and many more. We use cross-entropy to calculate the model loss. Due to
the limited size of physical memory of GPU cards, we use an input image size
of 512 × 512 for training. Other existing models are also trained under the same
configuration.

Fig. 3. Plot of model accuracy and loss

Model Evaluation. In this section, we study the performance of ESPNets on
the Cityscapes data set. We consider both pixel-wise accuracy (Pi. Acc.) and
mean of class-wise intersection over union (mIoU) on validation set. Figure 3
shows the performance of base and final ESPNet.

Table 2. Segmentation performance evaluation

Model Input
Size

Pi.
Acc.

mIoU Number
of param-
eters (in
Million)

Number
of
FLOPS
(in
Billion)

Train
time per
epoch (in
Sec.)

Separable UNet 512 × 512 83% 29.5% 0.35 3.4 197

Bayesian SegNet 512 × 512 86.2% 49.4% 29.5 170.6 170

DeepLabV3+ 512 × 512 72.9% 29.6% 37.7 33.4 53

FAST-SCNN 512 × 512 83.3% 43.3% 1.78 1.2 50

Base ESPNet S0 512 × 512 86.4% 55.1% 7.56 6.0 108

Base ESPNet S1 640 × 640 87.3% 58.3% 10.1 10.9 165

Base ESPNet S2 768 × 768 88.4% 59.5% 11.6 16.9 227

Final ESPNet 512 × 512 88.5% 60.8% 7.59 6.5 109
∗All models are trained for 500 epochs under same system configuration.
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Table 2 shows the quantitative performance of ESPNets after training all
models for 500 epochs (no further improvement was observed for 1000 epochs).
Here, we achieve 87.2% Pi. Acc. using base model and 88.5% Pi. Acc. using final
model on the validation set. It clearly reflects that shallow branch in final model
improves model performance by 1.3%. Likewise, the final model also achieves
60.8% val. mIoU which is 5.3% more than the base model mIoU. Table 2 also
suggests that both proposed models provide the best overall balance between
prediction time and segmentation accuracy. Whilst they are approximately as
fast as FAST-SCNN, the performance in terms of mIoU is considerably superior.
Note that offline training time is less critical in real-time applications.

For qualitative assessment, we generate the models’ prediction on the valida-
tion and test set and show the prediction in Fig. 4. It can be seen that the edges
of different objects such as car, bicycle, person, sidewalk are more accurately seg-
mented by final ESPNet compared to baseline ESPNet. Even small tiny objects
such as traffic signals are rightly detected by the final ESPNet whereas, base
ESPNet misses few traffic signals.

Model Scaling. Our proposed model can be scaled up efficiently to adapt
different resource constraints due to the scaling properties of EfficientNet. Doing
so, we generate base ESPNet S0, S1 and S2 models which can tackle various input
resolutions. Table 2 shows that S2 achieved 4.4% improvement on val. mIoU over
S0 at the cost of 35% more FLOPS. Further scaling requires additional hardware
resources and computational cost.

Performance Comparison. We compare the performance of some existing
off-line and real-time segmentation models with ESPNets. To have a meaningful
comparison among all, we trained FAST-SCNN, DeepLabV3+, Separable Unet,
Bayesian SegNet under the same system configuration using 512 × 512px size of
input. Note that the results in Table 2 are obtained after 500 epochs. Due to large
size of parameters and FLOPS, DeepLabV3+ and Bayesian SegNet are used as
off-line model whereas other models in Table 2 can be used for real-time compu-
tation. We replaced all standard Conv of UNet by DSConv layers to reduce com-
putational cost, but performance of the model is still low. Comparably, FAST-
SCNN performs better at full resolution whilst having less parameters. But if
we compare FAST-SCNN’s performance with our model under same configura-
tion and input resolution, then both ESPNets perform better. For qualitative
assessment, all models’ prediction is shown in Fig. 5. The last two columns show
the prediction by the proposed models. It can be seen that large objects such as
road, vegetation, sky are segmented by both Separable UNet and DeepLabV3+.
However, they fail to identify tiny objects such as pole, traffic lights whereas
these tiny objects are not overlooked by FAST-SCNN and proposed ESPNets.
Bayesian SegNet Identifies few tiny objects but fails to detect all and also unable
to reconstruct few classes (e.g. sky). All these objects are correctly segmented
by the ESPNets and FAST-SCNN. A closer inspection reveals that the segmen-
tation quality of final ESPNet is better than that of FAST-SCNN: the edges of
the objects are nicely segmented by final ESPNet and the appearance of tiny
objects are generally sharper in the image.
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Fig. 4. Prediction by base and final ESPNet on validation (1st row) and test set (2nd
row-no ground truth for test set)

Fig. 5. Prediction by all models on validation set

5 Conclusion

We have proposed efficient semantic segmentation models that provide the best
overall balance for resource-constrained applications. Addition of a global pyra-
mid prior provides rich contextual information whereas a shallow branch enriches
the model performance by providing a local context. We have shown that the
performance of ESPNets outperforms other competitive segmentation models.
In future, we are planning to evaluate our models on other public benchmarks.
Our implementation is available at https://github.com/tanmaysingha/ESPNet.

Acknowledgement. The authors would like to acknowledge Pawsey supercomputing
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Abstract—Due to the rapid development in robotics and
autonomous industries, optimization and accuracy have become
an important factor in the field of computer vision. It becomes
a challenging task for the researchers to design an efficient,
optimized model with high accuracy in the field of object
detection and semantic segmentation. Some existing off-line scene
segmentation methods have shown an outstanding result on
different datasets at the cost of a large number of parameters
and operations, whereas some well-known real-time semantic
segmentation techniques have reduced the number of parameters
and operations in demand for resource-constrained applications,
but model accuracy is compromised. We propose a novel ap-
proach for scene segmentation suitable for resource-constrained
embedded devices by keeping a right balance between model
architecture and model performance. Exploiting the multi-scale
feature fusion technique with accurate localization augmentation,
we introduce a fast feature aggregation network, a real-time scene
segmentation model capable of handling high-resolution input
image (1024 × 2048 px). Relying on an efficient embedded vision
backbone network, our feature pyramid network outperforms
many existing off-line and real-time pixel-wise deep convolution
neural networks (CNNs) and produces 89.7% pixel accuracy and
65.9% mean intersection over union (mIoU) on the Cityscapes
benchmark validation dataset whilst having only 1.1M parame-
ters and 5.8B FLOPS.

Index Terms—Semantic segmentation, BiFPN, MobileNet.

I. INTRODUCTION

Semantic segmentation is one of the most challenging tasks
in computer vision. It aims to assign a class/label to each
pixel of an input image. These classes/labels are defined by the
training set and could be anything such as car, building, people,
bicycle, train, and many more. By clustering parts of the image
together based on same object of interest, it identifies regions
of different objects in the scene. Thus, it opens the door for
developing numerous real-time applications specially in the
field of autonomous driving, robotics, virtual reality and video
surveillance.

Over the decade, innumerable CNN models [1], [2], [3]
have been proposed to generate a segmentation map for
an entire image in a single forward pass. Due to the high

Fig. 1. Number of parameters vs cityscapes mIoU- Our model generates
less parameters compare to others and produces better accuracy than ENet
and SegNet. It also generates lesser FLOPs than all models (see Table VI)

robustness to variance in scale and handling capability of rich
semantics, CNNs are widely used for object detection, instance
and scene segmentation. To meet the growing demand of
multi-scale testing, it becomes essential to improve prediction
accuracy of these models [4], [5]. To address this, feature
pyramid network (FPN) was introduced in [6]. It utilizes an
in-network feature hierarchy architecture and introduces a top-
down pathway to achieve multi-scale feature fusion. Many
object detection and instance segmentation models adopt FPN
to achieve high accuracy. Later on, PANet [7] was introduced
to enhance the entire feature hierarchy of FPN. It resolves
the issue of localizing the signals in the lower layers of
FPN by introducing a bottom-up path augmentation. Inspired
by these two approaches, recently Google Brain has come
up a new technique, called Bi-directional Feature Pyramid
Network (Bi-FPN) for object detection [8]. It optimizes PANet
feature fusion approach and introduces few skip connections to
enhance feature maps’ quality at different levels. These multi-
scale techniques are vastly used for object detection, but not
for semantic segmentation. Inspired by these multi-scale fusion
approaches, we introduce a modified Bi-FPN technique in our
proposed scene segmentation model. This modified design also
eliminates the need for global contextual prior, thus optimizing
the overall model architecture.

To generate rich semantic features for multi-scale feature fu-
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Fig. 2. Complete architecture of FANet

sion in scene segmentation, we need an efficient and optimized
feature extractor. Many segmentation models use ResNet as
a backbone due to its high scalable nature. It can be scaled
up from ResNet-18 to ResNet-200 [9] to improve model
performance, but the number of parameters and FLOPS also
increase with the model size. Various segmentation models
such as DeepLabV3+ [2], EfficientNets [10], Fast-SCNN [11]
use MobileNetV2 [12] as feature extractor due to its high
scalabilty and optimized features. Inspired by MobileNetV2
and FAST-SCNN, we use mobile inverted residual bottleneck
blocks to design the backbone network of our model. We
also use depth-wise convolution (DsConv) to optimize the
number of operations and parameters of convolution layers,
thus we strike a right balance between the model architecture
and model performance. Hence, we design and propose an
optimized scene segmentation model for resource-constrained
computer vision devices.

II. RELATED WORK

Semantic segmentation models typically follow an encoder-
decoder architecture. In the encoder stage, a deep CNN typi-
cally computes a feature hierarchy layer by layer and develops
an inherent multi-scale pyramid shape, whereas at the decoder
end, high-semantic feature map is up-sampled and fused with
the previous layer feature map through lateral connections
to recover higher spatial dimensions. After extracting spatial
details, model predicts the class for each pixel to complete the
segmentation process. Different networks such as VGG [13],
ResNet [9], Xception [14], or MobileNet [15] are often used
as the encoder.

The Fully Convolutional Network (FCN) [16] has shown a
revolutionary approach for all modern CNNs by adopting an
encoder-decoder architecture. It replaces the fully connected
layers from the top of the encoder by convolution one to gen-
erate a spatial map instead of classification scores. Based on
this foundation, several models such as UNet [17], RefineNet
[18], DeepLabV3+ [19] are then developed by exploiting the
lateral connection between the low-level feature maps across
resolutions and semantic levels. Inheriting the benefits of
multi-scale features fusion, several other approaches (PSP-
Net [20], DeepLab [2], ParseNet [21]) are also developed

by utilizing a pyramid pooling module (PPM) [20] or an
atrous spatial pyramid module [22] as a global contextual
prior. All these techniques have shown that multi-scale feature
fusion plays an important role in improving the prediction.
However, fusing different feature maps of different spatial
dimensions often introduces a large semantic gap caused by
different depths of layers. To address this issue, FPN [6] and
PANet [7] were introduced for fusing semantic features of all
semantic labels. In contrast to these top-down and bottom-
up approaches, the Google Brain team introduced another
multi-scale feature fusion technique, called NAS-FPN [23]
by leveraging the neural architecture search for automatic
design of feature network topology. But due to long search
time and unpredictable network architecture, this technique
is not suitable for embedded devices. Recently, another ef-
ficient, scalable object detection model, named EfficientDet
[8] has been introduced by the Google Brain team, based on
a new feature-fusion technique, called Bi-directional Feature
Pyramid Network (Bi-FPN). Bi-FPN is an optimized version
of PANet and it produces better results compared to existing
multi-scale feature fusion techniques.

Since, the demand for high-performing real-time methods
is increasing rapidly, so several research works have been
conducted in the field of semantic segmentation to target
resource-constrained embedded devices. SegNet [1] is one of
the pioneering models targeting real-time computation. Later
on, ENet [24], ICNet [25], ContextNet [26], BiSeNet [27]
were introduced to improve the performance in a real-time
environment. All these models generate moderate results but
still could not process high-resolution images quickly enough
due to their large number of FLOPS and parameters. By
keeping a balance between model size and model performance,
FAST-SCNN [11] attempted to address this issue. It can
process high-resolution input images quickly in real time
and produces better segmentation results. Later on, another
model, called DFANet [28] is introduced for real-time scene
segmentation. Though the model claims to achieve 70.3%
mIoU on Cityscapes test set, but it has more than 6 times
parameters and FLOPS compared to FAST-SCNN and cannot
process full resolution of Cityscapes images.

Therefore, inspired by the simple design of FAST-SCNN,
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we develop a new model by exploiting optimized architecture
of the residual block of MobileNetV2. To reduce the large
semantic gap between the spatial dimensions of low-feature
map and global feature map, we also incorporate a new multi-
scale feature fusion approach. We detail our approach in the
next section.

III. PROPOSED METHODS

In this section, we propose an optimized and efficient net-
work for semantic segmentation, call FANet, capable of han-
dling high-resolution images and producing a quality output
at a lower computational cost than many existing alternatives
.

A. Network Architecture
The overall architecture of the proposed model is shown in

Fig.2. In the following subsections, we discuss the backbone
network, the modified Bi-FPN and classifier module in detail.

1) Backbone Network: Since our main focus is to design
an optimized model capable of handling full-resolution images
with higher accuracy in real time, we decide to employ the
MobileNetV2 architecture [12]. Specifically, we use three
bottleneck blocks, each repeating three times. Similar to the
residual block, each bottleneck block contains an input fol-
lowed by several bottlenecks, then followed by expansion. The
expansion ratio, ratio between the size of the input bottleneck
and the inner size, is 6. The basic implementation structure
of MBConv6 is demonstrated in Table I. Here, h, w, c and c′

denote the spatial dimensions of tensors, t defines the expan-
sion ratio and s defines the stride. Note that we use ReLU
non-linearity in the first two layers because of its robustness.
However, we do not use it after the last layer to prevent
non-linearities from destroying meaningful information. We
provide the similar layered architecture to each MBConv6
block to make our design uniform and simple. Based on the
size of the filter in each block of MobileNetV2, we set the
filter size of each MBConv6 block. Table II shows that we
use 64 channels for first bottleneck block, 96 for second and
128 for third block.

TABLE I
BOTTLENECK RESIDUAL BLOCK

Input Operator Output
h×w×c 1×1 Conv,1/1, Relu h×w×tc
h×w×tc 3×3 DwConv, 3/s, Relu h/s×w/s×tc

h/s×w/s×tc 1×1 Conv,1/1, - h/s×w/s×c′

Inspired by FAST-SCNN, we introduce three layers at the
beginning of the residual blocks to down sample the input. The
first layer is a standard convolution layer (Conv) and remain-
ing two layers are depth-wise separable convolution layers
(DSConv). Although, DSConv optimizes number of operations
and parameters, we employ Conv at the first stage due to less
channels (only three) of the input image which makes the
use of DSConv insignificant. As the low-dimensional input

subspace produces rich semantic features, we introduce two
max-pooling layers on top of residual blocks to reduce the
spatial dimensions of feature map and create two additional
stages for multi-scale feature fusion. Note that adding these
down-sampling layers does not increase computational cost.

TABLE II
LAYER ARCHITECTURE OF BACKBONE NETWORK

Stage (i) Input Operators Layers (n) Output
1 1024×2048×3 Conv, k3×3 1 512×1024×32
2 512×1024×32 DSConv, k3×3 1 256×512×48
3 256×512×48 DSConv, k3×3 1 128×256×64
4 128×256×64 MBConv6, k3×3 3 64×128×64
- 64×128×64 MBConv6, k3×3 3 32×64×96
- 32×64×96 MBConv6, k3×3 3 32×64×128
5 32×64×128 Conv, k1×1 1 32×64×64
6 32×64×64 MaxPooling 1 16×32×64
7 16×32×64 MaxPooling 1 8×16×64

The feature maps of the same spatial sizes produced by
different layers fall under the same stage. Thus, we generate
seven stages in backbone network and it reflects in Fig.2. Note
that the original input size should be divisible by 27. We use
semantic features of P3, P4, P5, P6, P7 levels for feature
fusion. A complete description of our multi-scale feature
fusion technique is given in the next sub-section.

2) Modified Bi-FPN: Fig. 3 shows the design of different
features scaling techniques. FPN (a) introduces the concept
of multi-scale feature fusion by setting a top-down pathway,
whereas PANet (b) suggests an additional bottom-up path
augmentation for preserving the local context. By exploiting
neural architecture search, recently a new model, called NAS-
FPN (c), is introduced for object detection. Although it opti-
mizes a large number of operations, it is difficult to interpret
the feature network due to long neural network search time.
More recently, EfficientDet introduces Bi-FPN (d) technique
for object detection which optimizes several cross-connections
of PANet and introduces lateral connections between the input
to output node if they are at the same level. Thus, it improves
network performance. Inspired by this approach, we design
a modified version of Bi-FPN technique (e). We introduce a
new top-down path augmentation for feature aggregation and
produce final semantic features at the finest level. We also
employ few lateral connections between the input to output
node at same label to enhance the model performance.

Formally, given a list of semantic features F in = (F in
l1

,
F in

l2
,. . . , F in

li
) generated by different layer stages(P3 to P7),

our aim is to find a transformation f that can effectively map
different features at different semantic levels and produce a
rich multi-scale semantic features F out = (F out

l1
, F out

l2
,. . . ,

F out
li

) at all labels. Finally, all contextual feature maps at
different labels will be aggregated to generate final global
feature map at the finest level: FFout = F in

l1
+
∑

f(F out). Fig.
2 shows a graphical representation of our multi-scale feature
fusion technique. Features from P3 to P7 stages are taken
for feature fusion. First, a top-down approach is employed to
fuse global features with local features. Secondly, a bottom-
up path augmentation technique is implemented to localize
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P7

P6

P5

P4

P3

d) BiFPN
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c) NAS-FPNb) PANet

P7

P6
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P4

P3

P7

P6
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e) Modified BiFPN

P7

P6

P5

P4

P3P3

Fig. 3. Design of different feature networks. a) Feature Pyramid network - introduces a top-down pathway for multiscale feature fusion; b)Path Aggregation
Network introduces a bottom-up pathway for better localisation; c) Neural Architecture Search FPN uses neural search to find out irregular feature network
topology; d) Bidirectional FPN optimises PANet and introduces skip connection; d) Modified BFPN introduces an additional top-down pathway and two
lateral connections for feature aggregation and better prediction

each objects of the scene and generate a list of contextual
feature maps at different labels(F out

l3
, F out

l4
, F out

l5
, F out

l6
and

F out
l7

). The size of each feature map in each successive stage
is reduced to 1/2 of its previous stage size. For example, at
P3, the feature size is 128 × 256px whereas, at stage P4,
the size is 64 × 128px. Once the rich contextual features are
generated, we generate the final aggregated feature map at the
finest level through a top-down path augmentation.

F out
l7 = Conv(F out

l7 ) (1)

F out
l6 = Conv(F out

l6 + Upsample(F out
l7 ) + Upsample(F in

l7 ))
(2)

F out
l5 = Conv(F out

l5 + Upsample(F out
l6 )) (3)

F out
l4 = Conv(F out

l4 + Upsample(F out
l5 )) (4)

F out
l3 = Conv(F in

l3 + F out
l3 + Upsample(F out

l4 )) (5)

3) Classifier module: The purpose of adding this module
on top of the model is to assign a class to each pixel of feature
map. To keep the model design simple, we use only two
depth-wise separable convolutions, one standard convolution,
one Upsample and one softmax layer. Depth-wise separable
convolution layer convolves the feature map along all dimen-
sions by optimizing the number of parameters and FLOPs,
whereas Upsample layer recovers the spatial dimensions of
feature map without increasing computational cost. Finally,
by using softmax activation, a multinomial logistic regression
function, our model assigns a class to individual pixel. Thus,
segmented output is predicted by the model. In this research,
we use 19 classes (excluding background) out of 30 classes
of the Cityscapes dataset.

IV. EXPERIMENT

We trained the proposed FAST-FANet model with the
Cityscapes training set and evaluated its performance on the
validation and test sets. We also compared model performance
with few off-line (DeepLabV3+, Bayesian SegNet) and real-
time (FAST-SCNN) segmentation models under same config-
uration. Details are given in the following.

Fig. 4. Finding optimal learning rate

A. Implementation Details
To conduct this experiment, we use a dual Nvidia GeForce

RTX 2080Ti GPUs system, each GPU has 11GB of mem-
ory. To exploit the parallel processing power of GPUs, we
use CUDA 10.2. Our proposed model is developed us-
ing tensorflow 2.1.0 and keras 2.3.1. To utilize both
GPUs in data-parallel distributed training environment, we
employ the horovod framework [29]. It takes a single-GPU
tensorflow program and trains it on multiple GPUs. For
instance, in this research, horovod divides the whole training
set into two sets and runs the training script on individual set
in each GPU. Thus, it boosts the run-time performance by
effectively utilizing all resources. We use stochastic gradient
decent (SGD) as the model optimizer with 0.9 momentum.

Inspired by [2], [15], [20], we use ‘poly’ learning rate by
setting 0.045 as base value and 0.9 as power. To find out the
optimal learning rate in each epoch during training the model,
we train our model for 5 epochs using polynomial scheduler
and plot model loss against learning rate. Thus, we set upper
and lower bound of learning rate for training. Fig. 3 illustrates
the plot of learning rate vs model loss as an example. To
calculate model loss, we use categorical cross-entropy.

Following the suggestion by MobileNetV2, we use 0.00004
as l2 regularization for top layers of the model except depth-
wise convolution. To avoid overfitting due to limited data, we
apply various data augmentation techniques such as random
horizontal flip, vertical flips, random crop, resizing and ad-
justing brightness, saturation and contrast of images. We also
use a dropout layer just before the softmax layer. It also can
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Fig. 5. Plot of model accuracy and loss against epoch

regulate model over-fitting issue and can improve validation
accuracy. After training the model several times with different
dropout rates, we noticed that a dropout rate less than 0.2
cannot address the overfitting issue whilst a value more than
0.6 value causes underfitting. Therefore, we set the average of
these two values as dropout rate.

B. Dataset
We used Cityscapes [30] for evaluation. It is a large-scale

dataset, mainly used for object detection, instance and seman-
tic segmentation. It provides annotated data for 30 classes
grouped into 8 categories. The dataset consists of around 5000
fine annotated images and 20000 coarse annotated ones.

In the experiments, we used only fine annotated images and
considered only 19 classes for pixel annotations. The whole
dataset is divided into three parts- training set (2,975 images),
validation set (500 images) and test set 1,525 images). The
labels for the training set and validation set are given by
Cityscapes whereas the test labels are not provided by the
benchmark. However, the prediction on the test set can be
submitted to the Cityscapes server for evaluation.

We also used the CamVid dataset [31] for performance
evaluation. This dataset is mainly designed for object detection
in automated driving vehicle. The images of this dataset were
generated from a recorded video, then annotated frames were
created by assigning a class colour to each object of the frame
by human operators. This dataset contains 267 images for
training, 101 for validation and 233 for testing. Out of 32
classes, we used 12 classes (including void) for performance
evaluation. Due to the small size of the dataset, models were
under-learned. We used data augmentation to address this
issue.

C. Model Evaluation
In this section, we illustrate the performance of FANet on

the Cityscapes dataset for semantic segmentation. Pixel accu-
racy (Pi. Acc.), Class mean Intersection Over Union (mIoU)
and category mIoU on validation and test sets are measured.
We train our proposed model with different input resolutions
for 1000 epochs. Fig. 5 shows the model accuracy and loss
against the number of epochs on training and validation sets. It
demonstrates that the model reached its saturation point after
800-900 epochs and obtained 89.7% pixel accuracy on the
validation dataset which is much better than many existing
models. Model also achieves 65.9% mIoU on validation set.

We also performed an ablation study to verify our model’s
performance. We used FPN, BiFPN and modified BiFPN with
our light-weighted backbone network and documented model
performance in Table V. It can be observed that additional
feature aggregation path and few lateral connections of the
modified BiFPN technique enhance model’s performance by
0.9%. Proposed FANet with modified BiFPN has a total of
1.1M parameters and 5.8B FLOPs which are comparably
lesser than many existing real-time scene segmentation mod-
els. We also evaluated our model performance in terms of
class-wise prediction accuracy at different input resolutions
and presented the results in Table III as ready reference. From
Tables III and IV, it is observed that the model prediction
accuracy is almost 90% in most of the object categories such
as flat, construction, nature, sky and vehicle, whereas in object
and human categories, the model performance is lower due to
the tiny size of the objects in these categories. For motor-
cycle and truck, performance is less than 50% due to the
lack of training data available in these two classes. The same
phenomenon is also observed with other models. The results
for category-wise mIoU on the validation set are exhibited
in Table IV: our model achieves 83.6% accuracy which is
better than many real-time scene segmentation models such
as SegNet, ENet and ContextNet.

D. Performance Comparison
To compare FANet performance with other existing models,

we train few off-line and real-time segmentation models under
same configuration with full input resolution and 4 batch size.
Due to the hardware limitation, we could not set higher batch
size for the experiment. Results of comparison on validation
set are displayed in Table V. Due to large size of FLOPS,
separable UNet, deepLab and Bayes-segnet are used as off-line
segmentation model, where as FAST-SCNN is used as real-
time computational model. As per the literature, FAST-SCNN
produces 68.6% validation accuracy, but our experiment has
achieved at most 63.3% accuracy on cityscaapes validation
set and 63% on test set. We could not verify our FAST-
SCNN implementation due to the unavailability of official
GitHub implementation. But to our understanding, we have
achieved best performance of FAST-SCNN compared to all
available unofficial GitHub implementations. Therefore, our
experiment shows that proposed model has achieved better
accuracy (65.9%) than the FAST-SCNN. Based on other
parameters such as FLOPS, number of parameters, model size,
our proposed model out performs other models. We have also
calculated inference time for all the models for 500 validation
images and Table V shows that FANet takes less time to
predict all the images. Hence, we can conclude that overall
FANet performs well in real-time environment.

We have also compared the prediction on the test set as
evaluated by the Cityscapes server. The result of comparison
is displayed in Table VI. To compare overall performance of
all models, we calculated FLOPS and number of parameters
of each model listed in the Table VI. From this table, it
can be observed that DeepLab and PSPNet produce best
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TABLE III
FANET PERFORMANCE ON VALIDATION SET AT DIFFERENT INPUT RESOLUTIONS

Input Size Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
1024×2048 96.2 75.1 89.3 52.7 47.3 47.0 53.5 64.6 89.8 55.2 92.5 70.2 45.6 90.9 47.0 70.4 61.5 38.8 65.2 65.9
768×1536 95.5 73.6 88.2 42.5 41.1 45.6 49.8 61.3 89.7 53.3 90.8 68.5 41.2 89.6 43.5 63.9 48.2 35.5 62.8 62.3
512×1024 95.4 71.8 87.1 34.9 36.8 44.2 43.6 58.0 89.4 56.5 90.8 66.7 38.3 88.1 41.5 55.8 41.4 32.1 61.9 59.7

TABLE IV
CATEGORY-WISE FANET PERFORMANCE ON CITYSCAPES VALIDATION DATASET

Input size Flat Construction Object Nature Sky Human Vehicle mIoU
1024×2048 96.7 89.4 55.6 90.1 92.5 71.5 89.2 83.6
768×1536 96.1 88.5 52.8 89.7 90.8 70.4 87.6 82.3
512×1024 96.1 87.7 50.6 89.3 90.8 68.9 86.5 81.4

TABLE V
PERFORMANCE EVALUATION OF DIFFERENT ON CITYSCAPES VALIDATION SET

Model Class mIoU Category mIoU
Number of
parameters
(in Million)

Number of
FLOPS

(in Billion)

Run-time
per epoch

Inference
time for

validation set (sec.)
Model Size (MB)

Separable UNet 29.6% 62.3% 0.35 27 754 129 3.1
Bayes-SegNet 56.8% 77.2% 29.5 2720 672 214 225.4

DeepLab 58.2% 79.3% 37.9 1575 728 123 90.2
FAST-SCNN 63.3% 82.2% 1.2 7.7 258 120 9.4

FANet (with FPN) 62.6% 81.3% 1.2 5.9 247 117 9.5
FANet (with BiFPN) 65.0% 82.5% 1.1 5.8 241 113 9.4

FANet (with modified BiFPN) 65.9% 83.6% 1.1 5.8 241 113 9.4
∗All models are trained with input of size 1024×2048×3 and batch size 4.

TABLE VI
PERFORMANCE EVALUATION OF DIFFERENT MODELS ON CITYSCAPES TEST SET

Model Class mIoU Category mIoU
Number of
parameters
(in Million)

Number of
FLOPS

(in Billion)
DeepLabV3+ [19] 82% 91.6% 37.7 267

DeepLabV2 [2] 70.4% 86.4% 37.9 1575
PSPNet [20] 81.2% 90.6% 65.5 516

SegNet extended [1] 56.1% 79.8% 29.5 1365
ENet [24] 58.3% 80.4% 0.4 19
ICNet [25] 69.5% – 6.7 30

FAST-SCNN [11] 68% 84.7% 1.2 7.7
FANet 64.1% 83.1% 1.1 5.8

∗empty cell means that data is missing on evaluation server.

accuracy on test set, but at the cost of large FLOPS and
parameters. Due to the large size of backbone network, these
models are suitable for off-line segmentation. For real-time
scene segmentation, we need an optimized and efficient model
which can work fast in real-time environment and requires
less memory footprint. Among all the models, ENet has much
less parameters. However, it has 19B FLOPS due to its multi-
branch approach which slows down model performance and
it also produces low prediction accuracy. On the other hand,
ICNet generates a better accuracy (69.5%) among all the
real-time segmentation models, but it has 30B FLOPS and
6.7M parameters. Compared to all other models, our proposed
FANet has less parameters (1.1M) and FLOPS (5.8B) and also
produces 64.1% class mIoU on the test set.

We also evaluated our proposed model on the CamVid
dataset. For a comprehensive analysis, we compared our model
performance with some existing real-time segmentation mod-
els. The results are readily shown in Table VII. Models with

TABLE VII
EVALUATION RESULTS ON VALIDATION SET OF CAMVID DATASET

Model input size Class mean IoU Pi. Acc.
SegNet* [1] 360×480 55.6% –
Enet* [24] 360×480 51.3% –

FAST-SCNN [11] 512×1024 57.5% 86.9%
FANet 512×1024 57.8% 87.1%

∗empty cell means missing value in literature.

* sign are not trained by us. The results for these models are
extracted from the literature. It is shown that FANet produces
better class mIoU and Pi. accuracy on the CamVid validation
set. It also demonstrates that FAST-SCNN performance is al-
most similar to FANet on CamVid dataset. A same observation
is also made made after analyzing the predicted images by
these two models. For qualitative assessment, we compare
the prediction on the Cityscapes validation set and present it
in Fig. 6. The second column shows the ground-truth of the
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Fig. 6. All models (mentioned in table III) prediction on Cityscapes validation set

Fig. 7. Prediction samples by FAST-SCNN and FANet on Cityscapes validation set

Fig. 8. FANet predictions on CamVid Validation Set
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original images. It can be clearly identified that quality of
the predicted images by FANet is better than other models.
Especially, the edges of objects are more properly segmented
and most of the tinny objects (traffic sign, traffic lights) are
identified more clearly. We also observed that the quality of
predicted images of FAST-SCNN is better compared to other
models. We separately compared FANet’s performance with
FAST-SCNN and exhibit their prediction in Fig. 7. Though the
quality of images by both models are almost similar but it can
be observed that FAST-SCNN occasionally assigned incorrect
labels to some pixels. This could be due to a large semantic gap
between the local feature and global feature maps. In FANet,
this gap is reduced by the multi-scale feature fusion technique
which produces better predicted images overall.

Fig. 8 also shows predicted images by FAST-SCNN and
FANet on CamVid dataset which appear almost same. How-
ever, the prediction quality by both models are not satisfactory
due to the lack of training images which is an inherent issue
with this dataset.

V. CONCLUSION

We have proposed an efficient and optimized semantic
segmentation model which can handle high-resolution input
images and can quickly produce output in real time with low
computational cost. Due to its optimized structure and the
ability to capture contextual information by a new feature scal-
ing technique, it outperforms many existing real-time semantic
segmentation models. We also demonstrate that our multi-scale
feature fusion technique reduces the semantic gap between
global feature and local feature and also substitutes the need
for global contextual prior. In the future, we plan to evaluate
FANet performance on COCO dataset. Our implementation of
FANet is available at https://github.com/tanmaysingha/FANet.
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Abstract. Recently, semantic segmentation has become an emerging
research area in computer vision due to a strong demand for autonomous
vehicles, robotics, video surveillance, and medical image processing. To
address this demand, several real-time semantic segmentation models
have been introduced. Relying on existing Deep Convolution Neural net-
works (DCNNs), these models extract contextual features from the input
image and construct the output at the decoder end by simply fusing
deep features with shallow features which causes a large semantic gap.
However, this large gap causes boundary degeneration and noisy feature
effects in the output. To address this issue, we propose a novel architec-
ture, called Feature Scaling Feature Fusion Network (FSFFNet) which
alleviates the gap by successively fusing features at consecutive levels in
multiple directions. For better dense pixel-level representation, we also
employ a feature scaling technique which helps the model assimilate more
contextual information from the global features and improves model
performance. Our proposed model achieves 71.8% validation accuracy
(mIoU) on the Cityscapes dataset whilst having only 1.3M parameters.

Keywords: Semantic segmentation · Feature scaling · Feature fusion ·
Deep learning · Deep neural networks · Real-time applications

1 Introduction

Semantic scene segmentation is an important task in many applications such as
medical image processing, autonomous vehicles, and damage detection. Previous
studies [5,7–9,17] have shown the wide application of Deep Convolutional Neu-
ral Networks (DCNNs) in different computer vision tasks. However, semantic
segmentation is still a challenging task, partly due to objects of various scales
in a complex scene. Whilst filters of varying sizes can be used to create mul-
tiple receptive fields to process these objects, they can lead to an exponential
growth of parameters and computational cost. To address this issue, PSPNet

c© Springer Nature Switzerland AG 2021
T. Mantoro et al. (Eds.): ICONIP 2021, LNCS 13109, pp. 193–205, 2021.
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[22] introduced a Pyramid Pooling Method (PPM) in which multiple parallel
pooling branches with different pool sizes and strides are deployed in order to
capture multi-scale contextual information from the scene. Although, multiple
pooling branches create receptive fields of different sizes, the pooling operation
causes a loss of neighboring information of each object in the scene. To address
this problem, the authors of [2] presented a new approach, called Atrous Spatial
Pyramid Pooling (ASPP). It uses multiple dilated convolution branches with dif-
ferent dilation rates for multiple receptive fields. A higher dilation rate enlarges
the field of view without contributing any extra parameters and GFLOPs. How-
ever, it uses dilated convolutions which are sensitive to input image resolution.
Moreover, getting a trade-off between dilation rates and input size is a chal-
lenging task in ASPP. Similar to feature scaling, object positioning is also an
important factor for better scene representation. The literature has shown that
global features, produced by the encoder, are highly sensitive to the entire objects
whereas local features mainly focus on the boundaries and edges of the object
[2,22]. Therefore, fusing local feature with rich global feature is essential for accu-
rate object localization. Existing off-line [2,3,22] and real-time [9,11–13,16,21]
semantic segmentation models mainly focus on feature extraction and contex-
tual representation. For object localization, deep features at low resolution are
simply fused with shallow features at higher resolution, creating a large semantic
gap between the feature maps. This gap produces semantic inconsistency due
to the background noisy features. The study [10] also shows that the fusing of
global and local features directly is less effective. Therefore, our work introduces
an optimised multi-stage feature fusion module at the decoder side for better
object localization. Our key contributions are as follows:

– We design a lightweight backbone using MobileNetV2 residual blocks, capable
of handling high-resolution input images in real-time environments;

– We introduce a multi-scale Feature Scaling Module (FSM), inspired by [2],
and obtain the best trade-off between input size and dilation rates;

– We introduce a multi-stage Feature Fusion Module (FFM) to bridge the
semantic gap and improve semantic performance; and

– The proposed model produces state-of-the-art results on Cityscapes among
all the real-time models having less than 5 million parameters.

2 Related Work

Traditionally, a semantic segmentation design typically follows an image pyramid
structure, which is inefficient for real-time applications as it increases training
and inference time. Later on, [5,9,20] introduce an encoder-decoder architec-
ture which involves both a pyramid structure to create semantic features and
upsampling layers to produce segmentation. However, many of these models, for
example DeepLab [1,2], PSPNet [22], HANet [3], are not suitable for real-time
applications as they use a large encoder, such as ResNet [18].

To address real-time requirements, several approaches (Bayesian SegNet [5],
ENet [11], ICNet [21], BiSeNet [20], DFANet [6]) have been proposed using a sim-
pler variant of ResNet, but their parameters and GFLOP counts of these models
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are still high. More recent models such as ContextNet [12], FAST-SCNN [13],
FANet [15], ESPNet [16] have achieved further reduction by using MobileNet
bottleneck residual block (MBConv) whilst still maintaining good segmentation
performance.

Feature Scaling. Using multiple scales is necessary for better contextual repre-
sentation in semantic segmentation [2,4,22]. There are three notable approaches
to feature scaling: 1)PPM [22] achieves better contextualization but lacks fine
details and is still expensive; 2) DMNet [4] provides a dynamic scaling whilst
being expensive at high resolutions; and 3) ASPP [2] provides a robust scaling
and more controllability through varying dilation rates.

Feature Fusion. Traditionally, high-level features are upsampled and then fused
with lower-level features in the deconvolution process [7]. Many offline [2,3] and
some real-time [6,9,12,13,21] semantic segmentation models skipped the inter-
mediate stages and upsampled semantic features directly by between 23 to 25

times, which causes a large semantic gap while fusing features and loses object
localization. To address this issue, PAN [8] has introduced a new bottom-up path
for accurate signal propagation from lower layers to higher layers for instance
segmentation, and this bi-directional propagation has been utilised in FANet [15]
and DSMRSeg [19].

Fig. 1. Complete architecture of the proposed model

3 Proposed Method

Figure 1 displays the complete pipeline of our proposed model. Our work
addresses the above challenges by appropriately using multi-scale feature repre-
sentation and multi-stage feature fusion together with a slim backbone.

3.1 Network Architecture

Encoder. In our design, we exploit MobileNetV2 bottleneck residual blocks
(MBConv) to design the backbone of our proposed model as they are much
more efficient than other residual blocks. The layer architecture of the encoder
network is shown in Table 1. Two types of MBConv blocks are used- MBConv1
with expansion ratio 1 and MBConv6 with expansion ratio 6.
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While passing through a typical bottleneck architecture, the channel c of
the feature gets expanded based on the expansion ratio t and becomes tc. To
reduce the complexity, we employ a Depth-wise Convolution (DwConv) layer at
the expansion stage. The layout of the bottleneck residual block is exhibited in
Table 2. Variables h,w denote the spatial dimensions of input feature map and s
represents stride. ReLU non-linearity is deployed in the first two layers, however
it is skipped at the last stage of each MBConv block to preserve meaningful
information of the input feature map.

Table 1. Layer architecture of encoder

Stage (i) Input Operators Stride Layers (n) Output

1 1024 × 2048 × 3 Conv, k3 × 3 2 1 512 × 1024 × 32

2 512 × 1024 × 32 MBConv1, k3 × 3 2 1 256 × 512 × 24

256 × 512 × 24 MBConv6, k3 × 3 1 2 256 × 512 × 32

3 256 × 512 × 32 MBConv6, k3 × 3 2 3 128 × 256 × 48

128 × 256 × 48 MBConv6, k3 × 3 1 2 128 × 256 × 64

4 128 × 256 × 64 MBConv6, k3 × 3 2 3 64 × 128 × 96

64 × 128 × 96 MBConv6, k3 × 3 1 2 64 × 128 × 128

5 64 × 128 × 128 MBConv6, k3 × 3 2 1 32 × 64 × 160

Table 2. Bottleneck residual block

Input Operator Output

h×w×c 1 × 1 Conv,1/1, Relu h×w×tc

h×w×tc 3 × 3 DwConv, 3/s, Relu h/s×w/s×tc

h/s×w/s×tc 1 × 1 Conv,1/1, - h/s×w/s×c′

We employ 14 MBConv blocks to design the backbone. The filter size of
each block is controlled by a tunable hyper-parameter, called width multiplier.
Following the suggestion in [14], the width multiplier is set between 0.35 and
0.5 to obtain a better trade-off between the model’s accuracy and performance.
The encoder processes the input through 5 stages, each stage reduces the input
feature by half. It is suggested in [2] that an output stride of 23 or 24 is optimal
for an input of 512× 512px. As we target a higher resolution (1204× 2048), we
have found that an output stride of 25 provides a better trade-off between model
accuracy and performance whilst not overlooking small objects. The complete
layout of each stage is displayed in Table 1.

Intermediate Stage. This stage addresses multi-scale representation, which is
crucial for complex scene analysis [2,4,22]. Motivated by ASPP [2], we develop
a Feature Scaling Module (FSM) targeting real-time applications. Our FSM
employs three scaling branches with different dilation rates and one feature
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pooling branch. In contrast to ASPP, we use Depth-wise Separable Convolu-
tion (DsConv) in each branch. The dilation rate in each branch is sensitive to
the input size. At smaller dilation rates, the size of the receptive field is small
and it takes more number of operations to filter the input, whereas a higher
dilation rate enlarges model’s field-of-view whilst potentially causing artifacts.
To obtain the best trade-off among the dilation rates and input sizes, we con-
ducted an ablation study which shows that a dilation rate of {8,16,24} gives the
best result for input of size 1024 × 2048. The layout of each branch is shown in
Table 3. At the end of FSM, we concatenate all four branches with the input
feature. After FSM, we deploy two successive MaxPooling layers to create two
additional stages for feature fusion. The MaxPooling layer does not contribute
any parameters, hence the model’s real-time performance is not hampered.

Table 3. Layer architecture of FSM

Branch Input Operator Filter Dilation
rate

Output

Dilated branch 1 h × w × c DsConv, Bn, f 3 × 3 r1 h × w × c′

Dilated branch 2 h × w × c DsConv, BN, f 3 × 3 r2 h × w × c′

Dilated branch 3 h × w × c DsConv, BN, f 3 × 3 r3 h × w × c′

Feature pooling h × w × c AveragePooling2D Conv,
BN, f UpSampling2D

1 × 1 - h × w × c′

Decoder. The proposed decoder has two modules: multi-stage feature fusion
(FFM) and classifier. FFM is required for identifying the region and localizing
the objects in the scene. In a pyramid encoder design, neurons at top levels
strongly respond to entire objects while neurons at lower level more likely capture
local texture and patterns. Motivated by this idea, we introduce an effective
multi-stage feature fusion module at the decoder side. It takes five rich semantic
features from five different levels and fuses it through three different paths. The
operation of FFM is illustrated in Fig. 2.

Fig. 2. Multi-stage Feature Fusion Module: (a) Features F3-F7 generated by encoder,
(b) Top-down path for feature fusion, (c) Bottom-up path for object localization, (d)
Top-down path for better contextual assimilation. Dotted lines mean skip connections
from the encoder.
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Traditionally, a high-level rich semantic feature map Fi (Ci × Hi × Wi) is up-
sampled and fused with the former low-level features Fi−1 (Ci−1 × Hi−1 × Wi−1)
[5,7] to regenerate the scene. This one direction (top-down) FFM may lead to
localization issues in the scene. Moreover, each upsampling method contributes
to the loss of neighboring information. This phenomenon clearly manifests the
necessity of deploying another bottom-up path for accurate object localization
in the entire feature hierarchy and also the need for lateral connections in the
encoder to prevent the loss of neighboring details. For that reason, we introduce
a new bottom-up path where local feature maps are fused with global features
in order to achieve better localization. Finally, we introduce another top-down
path for better contextual assimilation using some skip connections from the
different stages of the encoder (dotted lines in Fig. 2).

Finally, we deploy a simple, yet effective classifier consisting of two DsConv,
one point-wise Conv, one Upsampling and one softmax layer. The activation
function softmax is used to assign a class to each pixel of the image. We also use
one Dropout layer to avoid overfitting.

4 Experiment

4.1 Datasets

Cityscapes. It is a large-scale data set for semantic understanding of urban
street scenes. It provides 5,000 fine-tune and 20,000 coarse annotated images.
The fine-tune images are divided into three parts: a training set with 2,975
images, a validation set with 500 images, and a test set with 1,525 images, all
at 1024 × 2048. This data set has 33 classes, 19 of which are used for training.

BDD100K. It is a recent data set developed to meet the growing demand in
the field of autonomous car industry. It is the largest driving video dataset with
100K videos. Compared to Cityscapes, it is more challenging due to its diverse
nature. It provides 8,000 fine-grained, pixel-level annotations, 7,000 of which are
used for training and 1,000 for validation. The class labelling of this benchmark
is compatible with Cityscapes (see our Github for further detail). Each image in
this dataset has 720 × 1280 pixels.

4.2 Implementation Details

All our experiments are conducted in a dual Nvidia TITAN RTX GPUs sys-
tem, each GPU having 24 GB of memory. Our environment includes CUDA 10.2,
tensorflow 2.1.0, keras 2.3.1., and Horovod. For training, we set a batch size
of 2 for full input resolution and 4 for low input resolution. For model optimizer,
we employ stochastic gradient decent (SGD) with a momentum of 0.9. Following
[13,22], we use the ‘poly’ learning rate policy which computes the current learn-
ing rate (LRcurrent) in each epoch as LRcurrent = LRbase×(1−iter/maxiter)power,
where iter defines current iteration and maxiter defines maximum number of
iterations in each epoch. We set LRbase to 0.045 and power to 0.9.

145



A Lightweight Multi-scale Feature Fusion Network 199

To overcome the limited samples of the data sets, we implement several data
augmentation techniques, such as random horizontal flip, random crop, resizing
of image, adjust the brightness of images. We also employ few regularization
techniques such as �2 regularization and Dropout in the classifier module. We
set the �2 regularization hyper-parameter to 0.00004 and dropout rate to 0.35.
We utilize the categorical cross-entropy function for the model loss.

4.3 Ablation Study

At the initial stage, without using any FSM and FFM modules, we evaluated
model performance on the Cityscapes data set. In the next stage, we deployed
the FSM module on top of the backbone and reported the results. Table 4 clearly
displays that the use of FSM module enhances model performance. We exploit
different feature-scaling techniques. In the final stage, we introduce one multi-
stage feature fusion module on top of FSM to exploit the benefits of FFM. We
also report the model’s performance by utilizing other existing feature fusion
module and compare the results with our designs. Table 4 demonstrates that
with the use of our FSM and FFM modules, the proposed model produces better
results on the Cityscapes validation set. To get a best trade-off between dilation
rate and input size, we also trained our model with different rates. It was shown in
[2] that ASPP performed better at dilation rates {6,12,18,24}, whereas this study
shows that our model attains best performance at dilation rates {8,16,24} for

Table 4. Segmentation performance evaluation

Backbone FSM FFM mIoU (%) Number of parameters
(Million)

GFLOPs

14MBConv – – 60.3 1.11 50.9

14MBConv PPM – 63.2 1.32 53.4

14MBConv ASPP – 64.1 1.73 53.9

14MBConv Ours – 64.6 1.21 51.3

14MBConv Ours FPN 66.4 1.25 50.3

14MBConv Ours PAN 67.2 1.36 49.4

14MBConv Ours Bi-FPN 67.9 1.27 48.7

14MBConv Ours Ours 68.3 1.29 50.8

Table 5. Segmentation performance evaluation

Input size output stride Global feature size Dilation rates mIoU (%)

1024 × 2048 32 32 × 64 4,8,12 67.4

1024 × 2048 32 32 × 64 6,12,18 68

1024 × 2048 32 32 × 64 8,16,24 68.3

1024 × 2048 32 32 × 64 12,24,36 67.9
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an input at 1024× 2048. The difference is because the proposed model handles
higher resolution input than [2]. As the stride is fixed, the size of the global
feature map is large for higher input resolution. Therefore, larger dilation rates
are required for better receptive fields. However, it is noted that the model
performance drops when the dilation rate is beyond 8,16,24. Table 5 displays the
performance at different rates. To reduce the training time in the ablation study,
we only used the fine-tune set and stopped at epoch 500, which is suitable for
its purpose. In the main experiments, we use all relevant sets and extend the
number of epochs to 1000.

4.4 Model Evaluation

Model performance on Cityscapes. This section demonstrates model perfor-
mance on Cityscapes dataset and compares its performance with other existing
off-line and real-time semantic segmentation models. Table 6 reports its per-
formance over 19 classes of Cityscapes validation and test sets. All classes of
Cityscapes dataset are divided into 7 categories. Table 7 displays model perfor-
mance on each category of Cityscapes dataset. The class-based result demon-
strates that our model attains an accuracy of above 90% for 5 classes. Similarly,
its accuracy is more than 90% in 5 categories.

Table 6. Class-wise FSFFNetperformance on Cityscapes validation and test sets

Dataset Road S. walk Build. Wall Fence Pole T.light T.sign Veg. Terrain

Validation set 96.4 77.7 90.6 57.0 52.1 58.3 63.5 72.7 91.0 62.2

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU

93.2 75.9 51.2 93.3 67.8 79.1 64.0 47.5 70.8 71.8

Dataset Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain

Test set 97.4 78.5 90.7 41.8 46.1 57.8 65.3 68.5 92.0 63.9

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU

94.4 79.2 56.9 93.9 55.4 65.7 54.4 50.4 65.8 69.4

Table 7. Category-wise FSFFNetperformance on Cityscapes validation and test set

Dataset Flat Construction Object Nature Sky Human Vehicle mIoU

Validation set 96.0 90.3 65.0 91.4 93.2 77.9 91.2 86.4

Test set 96.8 91.5 64.1 94.4 90.2 79.8 92.7 87.1
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Table 8. Performance evaluation of different models on Cityscapes validation set

Type Model Input Size Class

mIoU(%)

Category

mIoU(%)

Parameters

(Million)

GFLOPs

Off-line DeepLabV3+ [2] 1024 × 2048 64.5 82.6 54.8 344.9

PSPNet [22] 713 × 713 81.2 91.2 250.8 516

HANet [3] 768 × 768 80.9 - 65.4 2138.02

Real-time Bayesian SegNet* [5] 1024 × 2048 63 82.1 30 2729.2

BiseNet [20] 360 × 640 69 - 5.8 2.9

ContextNet* [12] 1024 × 2048 60.4 81.5 1.0 37.5

DFANet-B [6] 360 × 640 68.4 - 4.9 2.1

FAST-SCNN* [13] 1024 × 2048 63.3 82.2 1.2 14.9

FANet* [15] 1024 × 2024 65.9 83.6 1.1 11.4

ICNet [21] 1024 × 2048 67.7 - 6.68 58.5

Real-time FSFFNet* 1024×2048 71.8 86.4 1.3 50.8

We also trained some existing semantic segmentation models under the same
system configuration and presented results in Table 8. Models trained by us are
marked with ‘*’ sign in Table 8. Results of other models in Table 8 are obtained
from either the literature or Cityscapes leaderboard. Note that the authors of
DeeplabV3+ [2] deployed a new Xception (X-65) model on top of DeepLab pre-
vious version [1] to make a deeper encoder for semantic segmentation. However,
we only used X-65 as feature extractor. We also replaced standard Conv layers
of DeepLab and Bayesian SegNet [5] by DsConv layers to make the models com-
putationally efficient in our system. We also incorporated ASPP on top of X-65
as a dense feature extractor.

Without utilizing image-level features, we attained 64.5% validation mean
Intersection over Union (mIoU) on Cityscapes validation set. Among other
trained models, we achieved 63.3% and 60.5% mIoU for FAST-SCNN [13] and
ContextNet [12] respectively. They are different from the original claim of 68.6%
and 65.9% mIoU on the validation set. We conjecture that the existing models
might have been pre-trained with other datasets or some post-processing tech-
niques might have used to boost their performance. In this study, we trained
the model with the fine-tune set first, then followed by the coarse set. After
that, we again trained the model with the fine-tune set. Table 8 clearly demon-
strates that among all the real-time scene segmentation models, our proposed
model produces the best validation accuracy (71.8%) on Cityscapes while hav-
ing only 1.3 million parameters. Similar observation can be drawn from Table 9.
Our proposed model achieves 69.3% test accuracy, setting a new state-of-the-art
result among the existing real-time semantic segmentation models having less
than 5 million parameters. While comparing model parameter and GFLOPs, we
noticed that existing models reported their GFLOPs count at lower input reso-
lution. With the increase of input resolution, GFLOPs increases exponentially.
Therefore, comparing GFLOPs at different input resolutions is not an appro-
priate approach. We can compare model parameters as it does not depend on
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Table 9. Performance evaluation of different models on Cityscapes test set

Model Input size Class
mIoU
(%)

Category
mIoU (%)

parameters
(Million)

GFLOPs

ENet [11] 360 × 640 58.3 80.4 0.4 3.8

ICNet [21] 1024 × 2048 69.5 - 6.68 -

FCN 8S [9] 512 × 1024 65.3 85.7 57 -

BiseNet [20] 360 × 640 68.4 - 5.8 2.9

ContextNet [12] 1024 × 2048 66.1 82.8 1.0 37.5

DFANet-B [6] 360 × 640 67.1 - 4.9 2.1

FAST-SCNN [13] 1024 × 2048 68.0 84.7 1.2 14.9

FANet [15] 1024 × 2048 64.1 83.1 1.1 11.4

FSFFNet 1024×2048 69.4 87.1 1.3 50.8

Table 10. Performance evaluation on validation set of BDD100K dataset

Type Model Input size Parameters

(Million)

(%)

GFLOPs Class

mIoU (%)

Off-line HANet (MobileNetV2) [3] 608 × 608 14.8 142.7 58.9

HANet (ResNet-101) 608 × 608 64.2 2137.8 64.8

Real-time ContextNet* 768 × 1280 1.0 37.5 44.5

FAST-SCNN* 768 × 1280 1.2 14.9 47.9

FANet* 768 × 1280 1.1 11.4 50.0

FSFFNet* 768×1280 1.3 50.8 55.2

input size. Compared to previous state-of-the-art performance by ICNet [21],
FSFFNetis 5 times smaller, however it produces similar test accuracy and more
than 3% higher validation accuracy.

Model Performance on BDD100K. We also trained our model with the
BDD100K dataset and presented the results in Table 10. From the literature, we
found only one off-line model (HANet [3]) evaluated on BDD100K. The remain-
ing models presented in Table 10 were trained by us under the same settings. As
HANet [3] is an off-line model, it was expected to have better accuracy than our
proposed real-time model.

To better see the effect of large models, we implemented a shallow variant of
HANet which uses MobileNetV2 [14] as the backbone instead, and it produced
58.9% mIoU on BDD100K validation set. Our method (55.2%) is only few per-
cent behind this variant whilst having 11 times smaller number of parameters.
Compared to other models reported in Table 10, our proposed model FSFFNet-
consistently achieves a better segmentation accuracy.
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Fig. 3. Cityscapes val. set: (a) RGB input, (b) Color annotation, (c) DeepLabV3, (d)
Bayesian SegNet, (e) ContextNet, (f) FAST-SCNN, (g) FANet, (h) FSFFNet

Fig. 4. Output by FSFFNeton Cityscapes test set

Fig. 5. Output by different models on BDD100K validation set: (a) RGB, (b) Colored
Annotation, (c) ContextNet, (d) FAST-SCNN, (e) FANet, (f) FSFFNet

Qualitative Performance Analysis. We present samples of the output gener-
ated by all trained models in Figs. 3, 4, 5, 6. It can be clearly seen that the quality
of the output generated by FSFFNetis better than the other models: boundary
degeneration, overlapping classes, noisy feature effects can be observed in the
output generated by other models whereas in FSFFNet, sharp boundaries of
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Fig. 6. Output by FSFFNeton BDD100K test set

each object and the presence of tiny objects clearly demonstrate performance
superiority in semantic segmentation. Due to the complex nature of BDD100K,
noisy feature effects, wrong classification can be observed in the output gener-
ated by all models. However, inline with the quantitative results, the segmented
images by FSFFNetare much better than others.

5 Conclusion

This study presents a computationally efficient real-time semantic segmentation
model based on a light-weighted backbone, capable of handling high-resolution
input images. The performance of the model is evaluated by two publicly avail-
able benchmarks and the results clearly demonstrate that our proposed model
sets a new state-of-the-art results on Cityscapes benchmark in real-time semantic
segmentation. Our feature fusion module helps reduce the semantic gap between
the features, whereas our feature scaling module assimilates more contextual
information for better scene representation. In the future, we plan to extend the
model for indoor scene analysis. The implementation of our proposed model is
publicly available at https://github.com/tanmaysingha/FSFFNet.
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Abstract—Different architectures have been adopted for real-
time scene segmentation. A popular design is the multi-branch
approach in which multiple independent branches are deployed
at the encoder side to filter input images at different resolutions.
The main purpose is to reduce the computational cost and
handle high resolution. However, independent branches do not
contribute in the learning process. To address this issue, we
introduce a novel approach in which two branches at the encoder
share their knowledge whilst generating the global feature map.
At each sharing point, the shared features will go through a
new effective feature scaling module, called the Context Mining
Module (CMM), which will refine the shared knowledge before
passing it to the next stage. Finally, we introduce a new multi-
directional feature fusion module which fuses deep contextual
features with shallow features successively with accurate object
localization. Our novel scene parsing model, termed SCMNet,
produces 66.5% validation mIoU on the Cityscapes dataset and
78.6% on the Camvid dataset whilst having only 1.2 million pa-
rameters. Furthermore, the proposed model can efficiently handle
higher resolution input images whilst having low computational
cost. Our proposed model produces state-of-the-art results on
Camvid.

Index Terms—semantic segmentation, multi-branch, feature
fusion, real-time models, DCNNs

I. INTRODUCTION

Semantic Segmentation is a key task in computer vision.
It involves assigning pixel-wise labels to identify objects and
their boundaries in an image. It is a preliminary step in many
modern machine learning applications, such as computational
photography, autonomous vehicles, robotics and video surveil-
lance. Notably, many of these practical applications requires
real-time scene segmentation which is a very challenging.

For the past decade, Deep Convolutional Neural Networks
(DCNNs) have consistently achieved state-of-the-art perfor-
mance in computer vision tasks [1]–[5]. Different neural
architectures such as image cascading, single branch pyramid
and multi-branch pyramid layout have been deployed for better
scene parsing. Multi-branch structures which extract features
from input of different resolutions have been especially suc-
cessful [2], [6]. Whilst these models achieve top accuracy,
they do not meet the real-time performance requirement -
annotation times are often upwards of one second even on
costly accelerated hardware [2], [7], [8]. Therefore, various
models have been developed in recent years focusing on
real-time segmentation [9]–[11]. These models attempt to

minimise memory usage by reducing the number of layers
in the deep branch. The efficiency of handling high-resolution
input images is also improved by introducing multiple shallow
branches at the encoder.

Several models have effectively utilized multiple branches at
the backbone [12]–[15]. Instead of accepting inputs of various
sizes from multiple branches, they take a single input from one
branch and create an intermediate shallow branch parallel to
deep branch via down-sampling. Whilst this approach is more
computationally efficient, it often leads to a drop in accuracy.

Recently, it has been shown that feature scaling at the
intermediate stage of encoder enhances model performance
[1], [7]. PSPNet [8] introduced Pyramid Pooling Module
(PPM) and DeepLab [7] proposed Atrous Spatial Pyramid
Pooling (ASPP), both scale deep features at different rates.
Additionally, ASPP provides a large receptive field which
enhances the performance. Building upon these techniques,
few real-time scene parsing models [16], [17] have been
presented with promising results.

To achieve real-time performance, all existing models di-
rectly upsample the global feature map by 23 to 24 times
without having proper feature fusion at the intermediate stage
[9]–[11], [14]. However, it was shown that intermediate feature
fusion is essential when upsampling global features [18]. It
also reduces boundary degeneration effects.

To address all the issues above, we propose a novel shared-
branch approach for real-time scene segmentation. Our key
contributions are as follows:

• A novel shared-branch backbone in which both deep
and shallow branches share their knowledge at three
intermediate stages;

• A new yet effective Context Mining Module (CMM)
which extracts more contextual information deep feature
maps and better feature refinement;

• A new multi-directional Deep Shallow Feature Fusion
Module (DS-FFM) for better context assimilation and
accurate object localization;

We evaluate our proposed model over three publicly avail-
able benchmarks. It produces competitive results (66.5% on
Cityscapes, 78.6% on Camvid and 51.2% on BDD100K)
whilst having only 1.2 million parameters.
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Fig. 1. Complete architecture of SCMNet

II. RELATED WORK

A. Multi-branch architectures

The multi-branch encoder architecture was first proposed
for semantic segmentation by RefineNet [2] and BiSeNet [6].
These structures split the encoder into multiple paths, each
with different resolutions. Lower-resolution paths are made
deeper to extract rich contextual information, while higher-
resolution, shallower paths extract fine boundary and spatial
details. The branches are then merged at the decoder end
to create a final feature map with both deep global feature
map at low resolution and shallow local feature map at high
resolution. Motivated by this approach, later on, few models
such as ICNet [10] and ContextNet [9] were introduced. By
keeping less number of layers in all branches, these models
improved model efficiency. However, independent parallel
branches at encoder do not contribute to knowledge sharing.

To address this, FAST-SCNN [14], FANet [15], DDRNet
[12] introduced a dual-branch approach in which an inter-
mediate shallow branch is created after few initial layers of
the main branch. However, this approach introduces a large
semantic gap between shallow and deep features due to lack
of proper feature fusion technique at decoder end.

B. Feature scaling and feature fusion modules

Several additional modules have been proposed in recent
years. For instance, PPM [8], and ASPP [7] are feature scaling
modules which provide different field of views for a pixel.
Thus, they enhance the probability of assigning the right class
to each pixel. Inspired by this approach, several real-time
semantic segmentation models [9], [14], [16], [17] adopted
these scaling techniques and have shown the improvements
in model performance. PPM comprises of four image-pooling
branches whereas ASPP employs four dilated and one point-
wise convolution branches. Due to higher dilation rates, ASPP
provides larger receptive field compare to PPM and also
consumes less memory.

Like feature scaling, feature fusion module also plays an
important for context engrossment and region localization.
Literature [15], [18] have shown that by introducing top-
down and bottom-up augmented paths in decoder architecture,
accurate object localization can be achieved. Top-down path
ensures contextual engrossment by fusing deep features with

shallow features whereas bottom-up path enhances object
localization by fusing shallow features with deep features.

III. PROPOSED METHOD

In this section, we demonstrate the complete pipeline of
our proposed model. In contrast to existing independent multi-
branch encoder designs, we introduce a shared multi-branch
encoder architecture for better refinement of local and global
information. The overall architecture of the proposed SCM-
Netis shown in Figure 1.

A. Shared multi-branch encoder

Our proposed model has two branches at the encoder side.
The low input resolution deep branch is employed for extract-
ing rich contextual information, whereas the high resolution
shallow branch is used to assimilate local features such as
textures, patterns, and object boundaries. Traditionally, these
two branches work independently at the encoder side. Then,
at the decoder end, rich contextual feature maps from the top
of the encoder are fused with high resolution local feature
maps from the shallow branches to produce the segmented
output. However, this independent approach at the encoder
side does not help the model gain spatial details of the scene.
Moreover, a lack of synchronization between the branches at
the encoder side increases the semantic gap between local and
global feature maps. To reduce the semantic gap and improve
the model’s spatial knowledge, information sharing between
the branches at the encoder side is required. At three stages,
our deep and shallow branch share information and propagate
it to the next stage (see Figure 1).

The complete layout of the shallow and deep branches
are displayed in Table I and II respectively. Our shallow
branch accepts a higher resolution (1024×2048) input images,
whereas the deep branch handles a lower size (512×1024)
input. Table I shows that the shallow branch consists of one
standard convolution and four successive depth-wise separable
convolution layers. While passing through each layer, the input
image is filtered by a 3×3 kernel and reduced to half of the
previous layer’s size. At the end of the shallow branch, the
model produces a feature map which is 25 times smaller.

We design our deep branch using 11 MBConv blocks of
MobileNetV2 [19]. Due to its deep nature, we make the
branch’s initial input size half the original input’s resolution. It
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has four stages and each stage reduces the image dimensions
by half. Traditionally, semantic segmentation models employ
few initial convolution layers for down-sampling the input
image before it passes through the deep residual blocks.
However, in our proposed deep branch, input size is already
reduced by half. Therefore, instead of multiple convolution
layers, we employ only one with a stride of 2. After passing
through the proposed deep branch, the contextual feature map
will have a size of 32×64×160, similar to the final feature
map generated by the shallow branch.

Figure 1 displays that both branches share the details at 3
stages. We utilize simple addition of tensors for efficiency.
Shallow feature Fh∗w∗c

Si
will be mapped with deep feature

Fh∗w∗c
Di

at the ith stage

Sh×w×c
i = Fh×w×c

Si

⊕
Fh×w×c

Di
(1)

where
⊕

denotes the weighted-addition operation. To preserve
non-linearity, the ReLU activation function is deployed after
each addition. Thus, both branches enhance the knowledge by
sharing it and propagating it to themselves. In our ablation
study, we will show that the performance is improved with
this shared design compared to a non-sharing approach. Our
proposed encoder produces 3 shared feature maps which will
be exploited in the feature fusion stage.

We place one max pooling layer on top of the encoder to
create an additional stage for our feature fusion module and
this will be discussed later.

TABLE I
LAYER ARCHITECTURE OF SHALLOW BRANCH OF ENCODER

Stage Input Operators Layers (n) stride Output
1 1024×2048×3 Conv, k3×3 1 2 512×1024×24
2 512×1024×24 DSConv, k3×3 1 2 256×512×32
3 256×512×32 DSConv, k3×3 1 2 128×256×48
4 128×256×48 DSConv, k3×3 1 2 64×128×96
5 64×128×96 DSConv, k3×3 1 2 32×64×160

TABLE II
LAYER ARCHITECTURE OF DEEP BRANCH OF ENCODER

Stage Input Operators Layers (n) stride Output
1 512×1024×3 Conv, k3×3 1 2 256×512×32
2 256×512×32 MBConv1, k3×3 1 2 128×256×32

128×256×32 MBConv6, k3×3 2 1 128×256×48
2 128×256×48 MBConv6, k3×3 3 2 64×128×64

64×128×64 MBConv6, k3×3 1 1 64×128×96
3 64×128×96 MBConv6, k3×3 3 2 32×64×128

32×64×128 MBConv6, k3×3 1 1 32×64×160

1) MBConv block: The literature has shown that for mobile
devices, MobileNet’s [19] bottleneck residual block (MBConv)
is more efficient than other residual blocks such as ResNet
[5] and Xception [20]. Motivated by this, we design our deep
branch by utilizing 11 MBConv blocks of MobileNetV2. Two
types of MBConv blocks are used. A block with an expansion
ratio 1 is denoted by MBConv1, whereas MBConv6 expands
the width of the input by 6 times when input passes through
the bottleneck section of the block. The basic implementation
structure of MBConv is demonstrated in Table III. Here,
h, w, c and c′ denote the spatial dimensions of tensors, t

defines the expansion ratio and s defines the stride. ReLU
activation functions are used after every layer except the
final one to prevent non-linearities from destroying meaningful
information.

The layered architecture to each MBConv block is the same.
The filter size of each block is controlled by a tunable hyper-
parameter, called width multiplier. Inspired by MobileNetV2
[19], we set {32, 48, 64, 96, 160} as the channel size of
respective MBConv blocks in the deep and shallow branches.

TABLE III
BOTTLENECK RESIDUAL BLOCK

Input Operator Output
h×w×c 1×1 Conv,1/1, ReLU h×w×tc
h×w×tc 3×3 DwConv, 3/s, ReLU h/s×w/s×tc

h/s×w/s×tc 1×1 Conv,1/1, - h/s×w/s×c′

2) Context mining module: In a pyramid encoder design,
global features at lower resolutions strongly respond to entire
objects while shallow features at higher resolutions more
likely assimilate local texture and patterns. Traditionally, a
feature scaling Module (FSM) is utilized on top of the encoder
to extract rich contextual information from the last stage
global feature. After filtering features at different scales, it
passes through feature fusion module (FFM) to combine global
context with the shallow details. In contrast, we introduce
a new module, the Context Mining Module (CMM), which
mines contextual details from the shared feature maps of the
encoder network. After every fusion of shallow and deep
branch features, we deploy CMM to filter features at different
scale and mine more contextual details.

Figure 2 illustrates CMM. It has four parallel branches - one
point-wise convolution branch, one dilated depth-wise feature
scaling branch, and two feature pooling branches. Among
feature pooling branches, one is the coarsest label which pools
the feature map by its size and generates the coarsest feature
of 1×1×c for a given feature map (x) of h×w×c size where
h, w define spatial dimensions of input tensor and c denotes
the channel dimension respectively. We employ a point-wise
convolution after pooling to maintain the weight of the global
features and reduce the input channel from c to c′. We then
directly up-sample the coarsest features to get the same spatial
output dimensions as the original input feature. Other pooling
branch has similar layer architecture, but with a pool size of (2,
2) which generates a fine feature map. Thus, the global features
are scaled at coarsest and finest labels via image pooling.
Similarly, a point-wise convolution branch is employed to filter
each pixel by a 1×1 kernel and produce finest label feature
of the input. On the other hand, dilated branch scales input
feature along the depth of the feature with higher dilation rate
(r). It enlarges the field of view of filters to incorporate a
larger context. In all four branches, the depth of the feature
map is reduced to one-fourth of input feature map so that after
concatenating all four outputs, the final feature map will have
same dimensions of the input feature map (h×w× c ). Thus,
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Fig. 2. Proposed context mining module

mining features at last three stages of encoder design presents
a better context of the scene.

3) Feature fusion module: The final contextual feature map
generated by the encoder network is 26 times smaller than
the original input. Therefore, the final feature map must be
scaled up to the original input size. In existing real-time
semantic segmentation models, researchers usually upsample
the feature map by 8 times using a bilinear upsampling layer
to reduce inference time. However, this approach compromises
the model’s performance. To overcome this, we introduce an
effective Deep Shallow Feature Fusion Module (DS-FFM)
which provides better localization of each object and also
reduces the large semantic gap among the feature maps.

The layout of DS-FFM is displayed in Figure 3. There are
3 deep shared features, 2 shallow features and 1 intermediate
feature in this module. Deep shared features contain contextual
details of entire objects whereas shallow features apprehend
boundary and texture details of each object in the scene. The
intermediate feature (F3) is used to fuse deep and shallow fea-
tures together at the intermediate stage. The proposed DS-FFM
fuses features in two directions. In first path, feature F6 is
upsampled top-down and feature F1 is down-sampled bottom-
up to fuse with intermediate feature F3. To improve the entire
feature hierarchy with accurate propagation of local features,
bottom-up path augmentation is introduced. It provides better
object localization in the entire scene. Therefore, after fusing
features at stage 3, the feature is still down-sampled until
stage 6 through the bottom-up path. Finally, we introduce the
final top-down path with few lateral connections to aggregate
features and produce the final feature output.

For fusing features, we use standard weighted-addition
operations. For instance, feature Fh×w×c

4 will be upsampled
and feature Fh×w×c

2 will be down-sampled before fusing with
feature Fh×w×c

3 .

F out
3 = Fh×w×c

3

⊕
Upsampling2D(Fh×w×c

4 )
⊕

maxPooling2D(Fh×w×c
2 ).

(2)

After every addition operation, a feature passes through a
separable convolution block for refinement. Each separable
block contains one depth-wise separable convolution, batch-
normalization and ReLU layer.
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Fig. 3. Proposed deep shallow feature fusion module

4) Classifier module: This module is employed to assign a
class to each pixel of an input image. It contains two depth-
wise separable convolutions, one standard convolution, and
one upsampling layer. We also use a dropout layer before the
final prediction to reduce overfitting. The softmax activation
function is used to predict each pixel’s class, and thus the final
output.

IV. EXPERIMENT

A. Datasets

Cityscapes Cityscapes [21] is the most popular benchmark
which provides around 5,000 fine annotated images, with an
additional 20,000 coarse annotations. Objects are classified
into 33 classes and 8 categories. However, the proposed study
only considers 19 classes for pixel annotations. The whole
fine-tune dataset is divided into three parts - training set
(2,975 images), validation set (500 images) and test set (1,525
images). Model performance is evaluated on validation set
using fine-tune training set.

BDD100K This is the largest driving video dataset with
100K videos. It provides fine-grained, pixel-level annotations
for 7K images which can be used for semantic or instance
segmentation. Class labelling of this benchmark is compatible
with Cityscapes labelling. Therefore, the same object class
annotations (19 classes) are used to evaluate the proposed
model’s performance on this dataset.

CamVid is a smaller dataset [22]. The images were gen-
erated from a recorded video, then annotated frame-by-frame
by human operators. This dataset contains only 267 images
for training, 101 for validation and 233 for testing. Out of
32 classes, current studies uses 11 classes (excluding void
class) for performance evaluation. To measure test accuracy,
we combine training and validation set together.

B. Implementation details

To conduct this experiment, we used a dual Nvidia TITAN
RTX GPU system where each GPU has 11GB of memory. Our
training environment includes Python 3.7, tensorflow
2.1.0, keras 2.3.1, CUDA 10.2, and horovod. CUDA is
used for exploiting the parallel processing power of GPUs
and for data-parallelism in a distributed environment, we
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employ the horovod framework [23]. It takes a single-
GPU tensorflow program and trains model on multiple
GPUs. Thus, it boosts the run-time performance by effectively
utilizing both the GPUs. For model optimization, we used
stochastic gradient decent (SGD) with a momentum of 0.9.

TABLE IV
RESULT OF ABLATION STUDY

Two-branch encoder CMM DS-FFM Val. mIoU (%)
Independent branches - - 54.0

Shared branches - - 58.7
Shared branches X - 63.5
Shared branches X X 66.5

We utilized the ‘poly’ learning rate function with the
base value of 0.045 and the power of 0.9. The literature
has shown the effectiveness of using a polynomial learning
rate for finding the optimal learning rate at each epoch of
training [1], [8], [24]. To calculate the model loss, we used
the categorical cross-entropy. We employed on-the-fly data
augmentation techniques such as random horizontal flipping,
vertical flipping, resizing, cropping, adjusting brightness, satu-
ration, and contrast of the input to overcome the limited data.
We also exploited `2 and dropout regularizers to overcome
model overfitting. We applied `2 regularizer with the hyper-
parameter value being 0.00004 at top layers of the model
except depth-wise convolution layers. A dropout layer is
positioned before the final softmax layer. We achieved the best
model performance with dropout rate between 0.3 and 0.4.

C. Ablation study

To best design our model, we conducted a series of ablation
studies. Initially, we deployed two independent branches at the
encoder side and measured model performance without CMM
and DS-FFM. In the next stage, we shared the knowledge of
both branches in the backbone network. It was observed that
sharing the details across the branches boosted model perfor-
mance by 4.7%. This motivates us to design a shared multi-
branch encoder for semantic segmentation. In later stages, we
deployed CMM and DS-FFM one by one and have shown
model performance in Table IV.

D. Model evaluation

To evaluate the proposed model’s performance, we mea-
sured validation set mean Intersection over Union (mIoU) of
the model on each dataset and present the results here. We also
present model parameters, GFLOPs, pixel accuracy, and each
class’ and category’s IoU. The proposed model’s performance
is compared with some existing offline and real-time semantic
segmentation models. Some existing semantic segmentation
models were implemented based on the information provided
in the literature and they were trained under the same system
configuration. For other existing models, their results are
obtained directly from the literature and/or official dataset
leader-boards. We note that most of the existing models were

pre-trained on the ImageNet dataset whereas our proposed
model was not. The number of epochs is 1000.

Table V displays class-wise model performance on the
Cityscapes validation set at two different input resolutions.
Out of the 19 classes, the model performs exceptionally well
in 5 categories (Road, Sidewalk, Vegetation, Sky, Car) where
it produces almost 90% and above class accuracy at full and
half input resolutions. At full input resolution, our proposed
model achieves 66.5% mIoU, much better than many existing
semantic segmentation models. Table V also demonstrates that
its performance is enhanced with increased input resolution.
The 19 classes of Cityscapes are divided into 7 categories
and the corresponding category-based accuracy is exhibited in
Table VI. Out of all categories, its performance is below 80%
in 2 categories (object and human). The classes in the object
and human categories make up less than 1% of the whole
dataset, causing poor model performance on those categories
and classes. Overall, its performance would be improved if the
model could be trained more with less frequent classes such
as motorcycle, rider, traffic light, train, bus, and truck.

E. Performance comparison on Cityscapes

To compare our proposed model’s performance with exist-
ing models, we present the results of various offline and real-
time scene parsing models in Table VII. Models marked with
the * sign were trained by us under the same system con-
figuration, whereas the remaining models’ performance was
extracted from the literature. In DeepLab [7], authors deployed
a new Xception (X-65) model on top of DeepLab’s previous
version [1] to produce a large backbone for feature extraction.
However, due to hardware constraints, we could employ only
X-65 as an encoder. We also replaced the standard Conv layer
of Deeplab and Bayesian SegNet models with DsConv layers
to make the models computationally efficient in our hardware
system. We present the results obtained from our experiment.
Among all offline models, HANet [25] produces the state-of-
the-art results and ICNet produces a very competitive perfor-
mance (67.7%). However, we note importantly ICNet is almost
5 times larger than SCMNetand it also requires more GFLOPs.
In terms of model size, ContextNet [9], FAST-SCNN [14],
FANet [15] and the proposed SCMNethave a similar number
of parameters (1-1.2 Million). Among these, the proposed
model produces the best results in our experiments.

F. Performance comparison on BDD100K

Compared to Cityscapes, BDD100K [29] is more due to
the diverse nature of input images. We were unable to find
any real-time scene segmentation models trained on this
benchmark. We could identified one offline model (HANet
[25]) trained on BDD100K. We trained existing real-time
scene parsing models along with the proposed model on
BDD100K and present the results in Table VIII. It clearly
illustrates that the proposed SCMNetproduces better accuracy
(51.2%) than other real-time models. Compared to HANet,
SCMNetperforms less competitively, mainly because HANet
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TABLE V
CLASS-WISE SCMNETPERFORMANCE ON CITYSCAPES VALIDATION SETS AT DIFFERENT INPUT RESOLUTIONS

Input size Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain
1024×2048 96.7 75.9 90.2 53.1 50.3 47.5 54.2 65.1 90.4 54.5

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
91.9 70.7 46.6 90.7 48.7 70.5 60.8 41.2 64.7 66.5

Input Size Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain
512×1024 95.8 71.9 87.5 36.0 38.4 46.2 45.8 59.7 90.0 53.7

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
91.5 67.2 42.5 90.1 44.2 56.9 42.7 34.5 60.3 60.8

TABLE VI
CATEGORY-WISE SCMNETPERFORMANCE ON CITYSCAPES VALIDATION SET

Input size Flat Construction Object Nature Sky Human Vehicle mIoU
1024×2048 96.5 90.0 56.7 90.6 91.9 73.2 90.4 84.2
512×1024 95.2 88.3 53.9 90.4 91.4 70.1 87.3 82.4

TABLE VII
PERFORMANCE EVALUATION OF DIFFERENT MODELS ON CITYSCAPES VALIDATION SET

Type Model Input Size Class
mIoU(%)

Category
mIoU(%)

Parameters
(Million) GFLOPs

Off-line DeepLabV3+ (X-65)* [7] 1024 × 2048 64.5 82.6 54.8 344.9
DeepLab+LargeFOV [1] 1024 × 2048 63.1 81.2 20.5 -

HANet [25] 768 × 768 80.3 - 65.4 2138.02
Real-time Bayesian SegNet* [26] 1024 × 2048 63 82.1 30 2729.2

ContextNet* [9] 1024 × 2048 60.4 81.5 1.0 37.5
ESPNet [16] 512 × 512 60.8 - 7.59 13.2

FAST-SCNN* [14] 1024 × 2048 63.3 82.2 1.2 14.9
FANet* [15] 1024 × 2024 65.9 83.6 1.1 11.4
ICNet [10] 1024 × 2048 67.7 - 6.68 58.5

TwoColumn [27] 512 × 1024 65.3 - - 57.2
Real-time SCMNet* 1024×2048 66.5 84.2 1.2 38.3

TABLE VIII
PERFORMANCE EVALUATION ON VALIDATION SET OF BDD100K DATASET

Type Model Input size
Parameters
(Million)

(%)
GFLOPs Class

mIoU (%)

Off-line HANet (MobileNetV2) [25] 608×608 14.8 142.7 58.9
Real-time ContextNet* [9] 768×1280 1.0 37.5 44.5

FAST-SCNN* [14] 768×1280 1.2 14.9 47.9
SCMNet* 768×1280 1.2 38.3 51.2

TABLE IX
PERFORMANCE EVALUATION ON CAMVID VALIDATION AND TEST SETS

Model Input size
Parameters
(Million)

(%)

Val. class
mIoU (%)

Test class
mIoU (%)

DeepLab [1] - 262.1 - 61.6
PSPNet [8] - 250.8 - 69.1
SegNet [28] 360×480 29.5 - 60.1
ENet [11] 360×480 0.4 - 60.3
ICNet [10] 720×960 6.68 - 67.5
BiseNet [6] 720×960 49.0 - 68.7

FAST-SCNN* [14] 640×896 1.2 73.3 65.8
ContextNet* [9] 640×896 1.0 69.6 61.9

SCMNet* 640×896 1.2 78.6 71.3

is an offline model being 12 times larger than our proposed
model.

G. Performance comparison on Camvid

Table IX clearly displays that our proposed model achieves
the state-of-the-art result on Camvid [22] validation and test
sets. Out-of 32 classes, we trained our model with 11 classes.
We also trained FAST-SCNN [14] and ContextNet [9] under
same system configuration and presented validation and test
mIoU in the table. The test results of other models are obtained
from the literature. After 1000 epochs, our proposed model
generates 78.6% validation and 71.3% test mIoU, which sets
a new record. Furthermore, our model has less parameters and
GFLOPs compare to the other models, and this makes our
model more efficient than others.

H. Qualitative performance analysis

For qualitative assessment, this section presents selected
output images from several models in Figures 4, 5, 6, 7. It can
be clearly seen that the quality of the proposed SCMNetoutput
is much better than the output generated by other models.
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Fig. 4. All models prediction on Cityscapes validation set. (a) RGB input, (b) Colored annotation, (c) Single channel annotation with 19 classes, (d) bayesian
SegNet, (d) DeepLab, (e) ContextNet, (f) FAST-SCNN, (g) FANet, (h) SCMNet

Fig. 5. Output by SCMNetusing Cityscapes test set samples

Fig. 6. All models prediction on BDD100K validation set. (a) RGB input, (b) Colored annotation, (c) Single channel annotation with 11 classes, (d) ContextNet,
(e) FAST-SCNN, (f) SCMNet

More boundary degeneration, noisy feature effects and over-
lapping classes can be observed in other models’ output. Due
to the diverse nature of the BDD100K dataset, the quality of
the output by all models is not as good as Cityscapes, however
the boundary degeneration problem is better addressed by
the proposed model compared to ContextNet and FAST-
SCNN. Similar observations can be made on the Camvid
outputs (Figure 7). Some classes, such as traffic sign and
wall, are misclassified by ContextNet and FAST-SCNN, while
the proposed SCMNetassigned the classes correctly. Hence, in
line with the quantitative results, our qualitative analysis also
indicates performance superiority of SCMNetin the field of
real-time scene parsing.

V. CONCLUSION

We proposed an efficient and optimized shared-branch se-
mantic segmentation model capable of handling high resolu-
tion input images. Positioning our proposed CMM at three
different locations in encoder refines more the contextual
details of feature map before it propagates to next level
and the proposed multi-directional DS-FFM provide accurate
object localization in the entire scene. Due to the shared
branches at encoder side, our proposed backbone enhances
the entire feature hierarchy by propagating rich contextual
information from bottom to top. The proposed model is tested
over three publicly available benchmarks and the outcomes
of our experiments clearly demonstrate the advantages of
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Fig. 7. All models prediction on Camvid validation set. (a) RGB input, (b) Colored annotation, (c) Single channel annotation with 11 classes, (d) FAST-SCNN,
(e) ContextNet, (f) SCMNet

SCMNetover several existing real-time scene parsing models.
Our proposed model produced the state-of-the-art result on
Camvid dataset among all existing real-time semantic segmen-
tation models. Presently, we evaluated our model with outdoor
scenes, especially urban street scenes. However, in future we
plan to test the proposed model for indoor scene analysis. The
implementation of our proposed model is publicly available at
https://github.com/tanmaysingha/SCMNet.
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Urban Street Scene Analysis Using
Lightweight Multi-level Multi-path Feature
Aggregation Network
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Abstract. Urban street scene analysis is an important problem in computer vision with many off-line models achieving out-
standing semantic segmentation results. However, it is an ongoing challenge for the research community to develop and optimize
the deep neural architecture with real-time low computing requirements whilst maintaining good performance. Balancing be-
tween model complexity and performance has been a major hurdle with many models dropping too much accuracy for a slight
reduction in model size and unable to handle high-resolution input images. The study aims to address this issue with a novel
model, named M2FANet, that provides a much better balance between model’s efficiency and accuracy for scene segmentation
than other alternatives. The proposed optimised backbone helps to increase model’s efficiency whereas, suggested Multi-level
Multi-path (M2) feature aggregation approach enhances model’s performance in the real-time environment. By exploiting
multi-feature scaling technique, M2FANet produces state-of-the-art results in resource-constrained situations by handling full
input resolution. On the Cityscapes benchmark data set, the proposed model produces 68.5% and 68.3% class accuracy on
validation and test sets respectively, whilst having only 1.3 million parameters. Compared with all real-time models of less than
5 million parameters, the proposed model is the most competitive in both performance and real-time capability.

Keywords: DCNN, Semantic Segmentation, encoder-decoder, feature map, dilated convolution

1. Introduction

Semantic scene segmentation is an important task in scene analysis wherein each pixel of an input
image is assigned a class label. These labels or classes could include a wide range of objects, such as
people, car, table, building, train, etc. depending on the data sets. This study focuses on urban street
images which contain objects relevant to outdoor street scenes, such as traffic light, traffic sign, car,
train, rider, etc.

Over the last decade, extensive research has been conducted in this field and it has been shown that in
robotics, video surveillance and autonomous car driving industries, semantic segmentation plays a key
role. It helps the machine segment an image automatically, but how efficiently and accurately machine
can perform this task, is always a critical question.
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Fig. 1. Number of parameters vs Class mIoU on Cityscapes test set- Proposed M2FANet sets a new state-of-the-art perfor-
mance among semantic segmentation models of having less than 5M parameters.

Previous studies have shown that deep convolution neural networks (DCNNs) are widely used in var-
ious domains such as classification [1], [2], object detection [3], instance and semantic segmentation
[4], [5], [6], [7]. Due to their high robust nature and handling capability of rich semantic features, they
often produce promising results on various publicly available benchmarks [8], [9], mostly under an of-
fline setting with very expensive GPU computing clusters. However, achieving a good performance in
a real-time environment, especially for resource-constrained devices, is still a big challenge for all re-
searchers. Over the decade, several real-time semantic segmentation models [10], [11], [12], [13] have
been developed to address semantic segmentation for computer vision embedded devices, but the in-
ability of handling high-resolution input images hampers model performance. High-resolution input
demands large resources if the model is too deep. To maintain a balance between model complexity and
input resolution, the authors of [14], [12], [11] introduce a multi-branch approach in which the deep
branch is used for capturing rich contextual information whereas the shallow branch is responsible for
retaining boundaries/edges details. Nevertheless, mutually independent branches hardly contribute to
the learning ability of the model and also the addition of the shallow branch with high-resolution input
image slows down its performance. To speed up the inference speed, some studies [10], [4] prune the
redundant channels from the model architecture. Such approach boosts inference speed of the model by
costing model’s performance.

For semantic segmentation, rich contextual details along spatial and channel dimensions are important.
These contextual information can be extracted by a series of convolution layers. The common approach
is to adopt a popular DCNN model as a feature extractor to extract details from the input. Many seg-
mentation models use ResNet [15] as a backbone due to its high scalability and robustness. To improve
prediction accuracy, several variants of ResNet model are proposed [16], [17]. However, with the in-
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crease in depth and width of the model, the number of parameters and floating point operations (FLOPs)
also increase drastically which makes the model incapable of handling high-resolution input in real-time
environments. Various off-line segmentation models, such as OCR [18], DeepLab (all variants), [19],
[20], use ResNet in the encoder as a feature extractor. However, for real-time execution, any model will
need a light-weighted backbone to reduce the computational cost. The MobileNet architecture [21], [22]
fulfills this requirement, thus it is suitable for embedded devices having low hardware specifications.
Due to the optimised structure of residual blocks of MobileNet, it always results in less parameters and
FLOPs, hence less memory usage. For that reason, many real-time scene segmentation models, such as
ContextNet [14], FAST-SCNN [23], FANet [24], have adopted MobileNet residual blocks. Even in the
field of image classification [2] and object detection [3], MobileNet is also widely used. Inspired by
the optimized and robust design of MobileNet’s architecture, current research designs a light-weighted
backbone network by assembling a series of residual bottleneck blocks found in MobileNet [21]. It will
help the proposed semantic segmentation model to achieve the desired balance for real-time applications
using resource-constrained devices.

Traditionally, an encoder-decoder design is employed in semantic segmentation in which rich contex-
tual feature maps are extracted by the encoder and a series of upsampling layers are used in the decoder
to reconstruct the scene and produce the output of the same size as the input. When using upsampling
layers, a model can lose certain rich contextual details due to large semantic gap between levels. To
reduce this semantic gap and localize the contextual information better, this research proposes a new
technique, called Multi-level Multi-path Feature Fusion (M2-FF) method for semantic segmentation.
This technique is discussed in detail subsequently. In pursuit of better contextual representation, this

Fig. 2. Different approaches. From left to right: (a) One-branch encoder, (b) Multi-branch encoder, (c) Feature reuse in sub-
-encoder (d) M2-FF decoder. This approach uses semantic features at different levels from encoder network and progressively
map them in the multiple paths at decoder end. Dotted arrows (green color) in the last path defines the presence of feature
aggregation path in which features from encoder will be mapped with the features at current path by skip connections.

study exploits different feature scaling techniques such as Pyramid Pooling Module (PPM) [25] and
Atrous Spatial Pyramid Pooling (ASPP) module [20]. Due to the optimized design and usage of dilated
convolutions, ASPP performance is better than PPM and it also provides better object localization facil-
ity by maximizing the size of the receptive field. In ablation study section, the details about the model’s
performance using both PPM and ASPP are discussed.

The complete architecture of the proposed model is presented in Figure 3. The key points of the
proposed study are as follows:
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• This research presents an optimized light-weighted backbone to extract rich contextual details from
high-resolution input images suitable for resource-constrained real-time semantic scene segmenta-
tion applications.

• It also introduces a new, yet effective, feature aggregation technique (M2-FF) at the decoder end for
better region localization and context engrossment.

• It shows a better way to maximize the receptive field for capturing the contextual details from the
feature map without adding any extra parameters.

• The proposed model is tested and evaluated on two different publicly available benchmarks on
urban street scenes.

• The results of the study clearly state that compared to the existing semantic segmentation models of
less than 5 million parameters, the proposed model achieves state-of-the-art results on Cityscapes
[9] dataset (Figure 1). The number of parameters and GFLOPs of other competitive real-time
models are at least five times higher than the proposed model which makes the proposed model
(M2FANet) superior than the existing real-time scene segmentation models for resource constrained
embedded devices.

2. Related Work

Semantic scene segmentation models typically follow a pyramid architecture. In the encoder stage, a
deep CNN typically computes a feature hierarchy layer by layer and develops an inherent multi-scale
pyramid shape. At the decoder end, the high-semantic feature map is up-sampled and fused with the
previous layers’ feature maps through lateral connections to recover higher spatial dimensions. Once
spatial details are completely extracted, the model will predict the class label for each pixel to com-
plete the segmentation process. Different networks, such as VGG [7], ResNet [15], Xception [26], and
MobileNet [21], are often used as a feature extractor in the encoder end.

2.1. Off-line Segmentation

Most existing semantic scene segmentation models are off-line models due to their deep architec-
tural design. For example, Deeplab [19], [20], PSPNet [25], OCR [18], [27] use deep ResNet101 [16]
network as an encoder which has a large number of parameters and GFLOPs. Other DCNNs, such as
ResNet other variants[15], [16], MobileNet [21], [22] and Xception [26], are used for image classifica-
tion, typically with a fully connected layers added on top of the encoder to produce classification output.
Inspired by the outstanding performance of such DCNN models in image classification, Fully Convolu-
tional Network (FCN) [6] was the first one to utilize a deep neural network for semantic segmentation.
It replaces the fully connected layers from the top of the DCNN by a convolution layer to generate a
spatial map and feeds it to the decoder circuit in order to produce segementation output. Based on this
foundation, several models, such as UNet [28], SharpMask [29], RefineNet [30], DeepLab [19], are then
developed by introducing lateral connections between the low-level feature maps across resolutions and
semantic levels. Inheriting the benefits of feature scaling technique at different scales, several other ap-
proaches such as PSPNet [25], DeepLabV3+ [20] , ParseNet [31] are also developed in off-line semantic
segmentation field.
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2.2. Real-time Segmentation:

Due to the growing demand of designing real-time applications in the field of classification [32], clus-
tering [33], segmentation [5], [10] and object detection [3], considerable researches have been conducted
to optimize the existing off-line models and to produce acceptable real-time performance on resource-
constrained devices. SegNet [4] was one of the pioneering models targeting real-time computation by
introducing a small architecture. Later on, ENet [10] proposed an extremely efficient framework by re-
ducing the number of down-sampling operations and introducing high dilation rate in bottleneck blocks.
It helps the model reduce the number of parameters and GFLOPs drastically; however, the accuracy of
this model is severely compromised. Few more studies, such as ICNet [11], ContextNet [14], BiSeNet
[12], GUN [34], were developed to improve the real-time performance. All these models introduced
multi-branch approach in which only the deep branch was used for feature extraction, and other branches
were employed to capture resolution and boundary details. However, independent branches did not con-
tribute in the learning ability of the model.

By considering the drawback of the independent branches, FAST-SCNN [23] introduced a new tech-
nique, called Down-Sampling. Instead of using a completely separate branch from the beginning, it
deployed a down-sampling module at the initial stage of the pipeline. This module reduced the input
resolution to a quarter of the original input size. After this module, it created two branches - a deep
branch for feature extraction and a shallow branch for preserving texture and pattern details. This ap-
proach reduced the computational cost and enhances the performance. However, due to less depth of the
shallow branch and large semantic gaps between local and global features, this model lacks the ability
to retain boundaries information.

In contrast to these approaches, DFANet [35] introduces the concept of sub-networks in the encoder.
Traditionally, an encoder follows pyramid structure in which a stack of convolution layers processes an
input image and reduces its spatial dimensions as the input reaches to the end. This low resolution high
semantic feature map is used as an input for decode. However, in contrast to this traditional approach,
DFANet [35] uses this semantic feature as an input for next sub-encoder network and thus the process
is repeated for the third sub-network. Layers at the same level but in different sub-encoders share their
gradient information among themselves. This approach produced new state-of-the-art results in real-time
scene segmentation. However, it still has as many as 7.8 million parameters and large GFLOPs due to
multiple sub-networks at the encoder end.

Figure 2 shows the architectural difference of these different approaches. Figure 2(c) clearly shows
that [35] upsamples a rich semantic feature map of first encoder by a large factor and reuses it in the
next sub-encoder. Upsampling the feature map by a large factor causes a loss in spatial details. Hence,
it sets lateral connections from the same level of at different sub-encoders to overcome this loss. This
approach shows the flow of feature maps in one direction (top to down) which fuses global features with
next lower-level local features by ignoring accurate localization signals through the bottom-up path.
This leads to a large semantic gap at the decoder. To reduce this large semantic gap between the spatial
dimensions of the local feature map and global feature map, this study develops a new technique, called
M2-FF, in the decoder side. The far right diagram (d) of Figure 2 illustrates the proposed approach.

This approach is inspired by FPN [36] which introduces a multi-level feature fusion technique. By
adding a top-down path and lateral connections among layers at same level, it tries to reduce the se-
mantic gap between semantic feature maps of different levels. Later on, PAN [37] shows that adding
a top-down path reduces semantic gap but introduces a localization issue unfortunately. To boost the
localization capability of the entire feature hierarchy, [37] proposes another path from bottom to top

167



6 Multi-level Multi-path Feature Aggregation Network

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

to fuse local features with global features. By adopting this technique, an efficient, scalable object de-
tection model, named EfficientDet [3], has recently been introduced by the Google Brain team. Both
studies [37][3] have shown that the addition of a bottom-up path provides better object localization and
context accumulation in the feature maps. Motivated by this approach, current study introduces a novel
Multi-level Multi-path feature fusion approach at the decoder end in this work.

Fig. 3. Complete pipeline of M2FANet

3. Proposed Method

In this section, the complete architecture of the proposed model is discussed. By exploiting dilated
convolution, depth-wise separable convolution (DsConv), feature scaling and multi-stage feature fusion
techniques, this study significantly extends the preliminary research [24] without drastic a increase of
parameters and computational cost.

3.1. Network Architecture

The overall architecture of the proposed M2FANet model is shown in Figure 3. In what follows,
the detail of every component of the model, including the backbone network, M2-FF, ASPP, classifier
module, dilated convolution, depth-wise separable convolution, and non-linearity functions is addressed.

3.1.1. Encoder Network
Since the main focus of this research is to design an optimized scene segmentation model for resource-

constrained devices, it employs the mobile residual bottleneck block (MBConv) of MobileNetV2 [22].
In the preliminary investigation FANet [24], a down-sampling module is deployed at the beginning of
the network to reduce the input resolution to 1/8 of the original input size before passing the tensor to
residual blocks. However, in the proposed design, it is replaced by MBConv blocks with less channels.
Utilization of down-sampling module generates less parameters and GFLOPs. It mainly controls the
input resolution and boundary details by not contributing much for holding the spatial details from the
input scene. On the other hand, it has shown that deploying MBConv of different expansion ratios at the
initial stage preserves more contextual and spatial details due to its squeeze and excitation architecture
[22]. Although MBConv block generates more parameters and GFLOPs compare to the down-sample
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module, it still has less channels at the initial stage and hence controls the increase of model parameters
and GFLOPs.

The proposed study uses two types of bottleneck residual block of MobileNetV2 [22]- MBConv1
and MBConv6, which are named based on their expansion ratio. It is the ratio between the size of the
input bottleneck and the inner size, and is either 1 or 6. Each block contains an input followed by sev-
eral bottlenecks, then followed by an expansion. To reduce the number of parameters, Depth-wise Conv
(DwConv) layer is deployed at the expansion stage. Table 1 displays the structure of an MBConv block.
Here, h,w, c and c′ denote the spatial dimensions of tensors, t denotes the expansion ratio, and s denotes
the stride. Non-linearity activation is deployed in the first two layers as as suggested in [22]. However,
to retain meaningful information, it is skipped after the last layer of each MBConv. The filter size of the
first block is 24 and it is progressively increased in the successive blocks. It is shown in [22] that the use
of width multipliers from 0.35 to 1.25 for all resolutions generally produces a better performance. Based
on this strategy, the proposed study uses multipliers between 0.35 and 0.5 to set the number of channels
in the successive MBConv blocks. It avoids higher values of the width multiplier to control model width
and make it computationally efficient for real-time applications. To exploit the architectural advantage

Table 1
Bottleneck residual block

Input Operator Output
h×w×c 1×1 Conv,1/1, Relu h×w×tc
h×w×tc 3×3 DwConv, 3/s, Relu h/s×w/s×tc
h/s×w/s×tc 1×1 Conv,1/1, - h/s×w/s×c′

of [38], this research uses a squeeze and excitation module in each residual bottleneck block and test
the model’s performance. In the result section, it compares the performance of MobileNetV2 and Mo-
bileNetV3 residual blocks. Previous publications [39], [38] demonstrate that the addition of the squeeze
and excitation module in the bottleneck architecture improves performance; however, the complete ar-
chitecture of the network totally depends on Network Architecture Search (NAS) [40], which makes
network design unpredictable. It also requires high CPU/GPU power to leverage neural architecture
search for automatically predicting feature network design. To keep the proposed network design sim-
ple, predictable and usable for real-time computation, the final proposed model uses MBConv blocks
of MobileNetV2. Experimental results also confirm that the inverted residual block of MobileNetV2
performs better than MobileNetV3 blocks. Moreover, the addition of squeeze and excitation module
of MobileNetV3 results in a large number of parameters and GFLOPs, which makes the model more
difficult to run in a real-time environment.

The layer architecture of the backbone network is displayed in Table 2. It clearly displays that an input
image passes through maximum seven stages in the encoder side to produce a global feature map. For an
input image of 1024×2048, the final feature map at encoder end will be 8×16, which may lose contextual
details due its low resolution. To address this issue, an effective technique, called Multi-level Multi-
path feature fusion is introduced which fuses features of last five stages in the multiple paths. Previous
work [20] suggests that an output stride of 24 in encoder would be the best for semantic segmentation.
However, with 24 output stride and a full resolution input, real-time computation would be prohibitive.
A global feature map of high resolution (64×128 px for 24 stride) leads to a high consumption of
memory, making model infeasible to run in resource constrained devices. The work in [20] proposes a
very deep off-line semantic segmentation model which can only handle 513×513 px input, whereas the
proposed model accepts input of up to 1024×2048 px. Therefore, to reduce the computational cost and
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Table 2
Layer architecture of backbone network

Stage (i) Input Operators Layers (n) stride(s) Output
1 1024×2048×3 Conv, k3×3 1 2 512×1024×32

2 512×1024×32 MBConv1, k3×3 1 2 256×512×24
256×512×24 MBConv6, k3×3 2 1 256×512×32

3 256×512×32 MBConv6, k3×3 3 2 128×256×48

4 128×256×48 MBConv6, k3×3 3 2 64×128×64

5 64×128×64 MBConv6, k3×3 3 2 32×64×96

6 32×64×96 MBConv6, k3×3 2 2 16×32×128

7 16×32×128 MBConv6, k3×3 1 2 8×16×160

enable the model to run in a resource-constrained computer vision system such as embedded devices, the
proposed method uses maximum 27 stride in the encoder side for high resolution input. Most of the real-
time scene segmentation models with high input resolution, has a large output stride. The benchmark
Cityscapes dataset [9] provides images of 1024×2048 px, whereas CamVid [41] supplies comparably
low- resolution images. To handle low resolution datasets, stride can be reduced up to 25.

3.1.2. Multi-level Multi-path feature fusion
The literature has shown that fusing features at different levels helps the model combine rich contex-

tual information with spatial details and reconstruct the image. Higher-level neurons strongly respond
to entire objects while low-level neurons more likely capture local texture and patterns which stimulates
the necessity of adding a top-down path to propagate rich semantic features from high to low level and
enrich all features at different levels with sensible classification knowledge.

Traditionally, a high-level rich semantic feature map Fi (Ci×Hi×Wi) is up-sampled and mapped with
the former low-level features Fi−1 (Ci−1×Hi−1×Wi−1) [4], [28], [36] to regenerate the scene. Such up-
sampling and mapping process will continue as long as the final prediction of the original input size is
not produced. After every upsampling, the model loses certain gradient information. Moreover, one di-
rection propagation does not ensure the localization of each object in the scene. This phenomena clearly
manifests the need of another bottom-top path to enable the localization capability of the entire feature
hierarchy. By adding a bottom-up path augmentation, PAN[37] preserves the local context. Inspired by
the path augmentation techniques presented in [36] and [37], a new feature aggregation technique, called
Multi-level Multi-path feature fusion is introduced at the decoder end. The design of this module is also
influenced by the design of a technique known as BiFPN, which is used in [3] for object detection. The
backbone network of the proposed model produces semantic feature maps at multiple stages. In each
stage, the input will be convolved to reduce its size by half. For M2-FF, feature maps from the third
stage (S3) to the seventh stage (S7) are used. The complete structure of the feature fusion module is
shown in Figure 4. Different from [37][3], the proposed method introduces another top-down path to
aggregate rich semantic feature maps of M2-FF with the feature maps generated by the encoder through
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Fig. 4. Design of Multi-level Multi-path Feature Fusion module at decoder. a) Top-down path for multi-scale feature fusion
(blue arrows), b) Bottom-up path for better localization (green arrows), c) Top-down path for better feature aggregation with
the help of skip connections (red arrows) from backbone. There are lateral connections (black arrows) among the layers at same
levels.

lateral connections. This helps the suggested model to retain gradient information from the previous
layers.

Formally, given a list of semantic features F in = (F in
l3 , F in

l4 ,. . . , F in
li ) generated by different stages (S3 to

S7) in the encoder stage, the aim is to find a transformation f that can effectively map different features
at different semantic levels and produce rich semantic feature maps Fout = (Fout

l3 , Fout
l4 ,. . . , Fout

li ) at all
levels. In the first top-down path, coarse features from the top level (S7) will be up-sampled by factor of
2 and then mapped with the former stage features. Here, simple add function is utilized to map coarse
features of two consecutive levels. Thus, this top-down path generates features (N in

l7 , N in
l6 ,N in

l5 ,N in
l4 ,N in

l3 ) for
the next path. In the later path, it starts from the bottom layer (S3) and gradually down-samples features
by a factor of 2 before it gets mapped with next higher level feature maps. Thus, this bottom-up path
creates features (Min

l3 , Min
l4 ,Min

l5 ,Min
l6 ,Min

l7). Finally, feature aggregation path aggregates these features in
top-down direction and also maps with features (F in

l7 , F in
l6 ,F in

l5 , F in
l4 , F in

l3) generated by encoder network.
Hence, M2-FF produces the output as follows:

Fout
l7 = DsConv(Min

l7), (1)

Fout
l6 = DsConv(F in

l6) + DsConv(Min
l6) + DsConv(U psample(Fout

l7 )), (2)

Fout
l5 = DsConv(F in

l5) + DsConv(Min
l5) + DsConv(U psample(Fout

l6 )), (3)

Fout
l4 = DsConv(F in

l4) + DsConv(Min
l4) + DsConv(U psample(Fout

l5 )), (4)

Fout
l3 = DsConv(F in

l3) + DsConv(Min
l3) + DsConv(U psample(Fout

l4 )). (5)
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To reduce number of operations and number of parameters, the standard convolution layer is replaced
by depth-wise separable convolution layer.

3.1.3. Atrous Spatial Pyramid Pooling
ASPP, introduced by[20], is a powerful tool to explicitly control the spatial dimensions of semantic

feature maps produced by DCNNs. It also enhances the ability of DCNNs to handle both large and small
objects efficiently by providing a robust mechanism to control the field-of-view of filters in convolution
layers.

A dataset usually contains objects of different classes with various sizes. Although DCNNs have
shown astonishing capability of classifying an arbitrary region of scene by employing a small kernel,
typically 3×3, less frequent and small objects are always overlooked by the presence of large objects in
the scene. To overcome this issue, the authors of [19], [20] have shown that objects of an arbitrary scale
can be precisely classified by resampling convolutional features with different sampling rates. Motivated
by this approach, this study adopts dilated convolution technique with different dilation rates. Formally,
an ASPP layer with dilation rate r introduces (r − 1) zeros between two consecutive values of the filter
in order to enlarge t times the kernel size of a k × k filter to ke = k + (k − 1) · (r − 1) without increasing
parameters or GFLOPs. Thus, it provides the best trade-off between small field-of-view and large field-
of-view. For an input feature map x, each location i on the output feature map y will be sampled by ASPP
as follows:

y[i] =

K∑

k=0

x[i + r × k]w[k] (6)

where the dilation rate r determines the stride with which it convolves the input feature. The filter’s
field-of-view will be adaptively updated by changing the dilation rate. In this study, ASPP module uses
multiple parallel dilated convolution branches with three different dilation rates: 6, 12, and 18. The
features extracted from multi-path multi-scale feature fusion module are further processed separately in
each atrous branch and then concatenated to each other to produce the final result. Figure 3 demonstrates
the whole process of the ASPP module.

Typically, ASPP is deployed on top of the encoder network to control the spatial resolution of the
resulting feature maps if the output stride of encoder is 24. In the proposed model output stride is 27

which means rich semantic feature map with low spatial dimensions. Engrossing rich contextual details
with the help of ASPP will be effective if the feature map size is eight to sixteenth times smaller than the
original input. High dilation rate at the dilated branch of ASPP helps creating a large receptive field for
better localization of small and large objects in the scene. Moreover, it also reduces number of operations
drastically in the convolution process. Hence, by looking at the motivation factors of utilizing ASPP, it
is deployed on top of the M2-FF module. M2-FF generates final aggregated feature map of 128×256
px which is eight times smaller than the original input. Moreover, high dilation rates (6, 12, and 18) at
different branches of feature scaling module process the input quickly with less GFLOPs.

3.2. Classifier module

This is the last module of the whole pipeline. Features produced by the ASPP module are upsampled
by a factor of 4 and then simply mapped with the second level (S2) features (F in

li ) of the encoder through
lateral connections. To avoid the loss of semantic details, every upsample layer is followed by one
DwConv layer and a point-wise standard convolution (1×1 Conv). Two 3×3 DsConv layers are exploited
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in the classifier module to refine the feature maps, followed by one more upsample layer to produce an
output of the same size as the input. Finally, proposed model employs the softmax activation function
to assign a class label to every individual pixel. This study uses 19 classes for Cityscapes and 11 classes
for CamVid.

3.2.1. Depth-wise Separable Convolution
To achieve the target of designing an efficient scene segmentation model for resource-constrained de-

vices, this study replaces the standard Conv layer by DsConv in many places. In the feature aggregation
module, after fusing features of two consecutive levels, it deploys a separable convolution block in which
a depth-wise separable convolution is performed, followed by a batch-normalization layer. DsConv fac-
torizes a standard convolution into two stages - a depth-wise convolution (DwConv) and a point-wise
convolution (1×1 Conv). It reduces a large number of parameters and GFLOPs. Proposed study also
uses dilated depth-wise convolution as it is support by TensorFlow DsConv layer [42]. It uses different
dilation rates to increase the size of receptive field.

3.2.2. Nonlinearities
The selection of the activation function in DCNN models has a significant impact on model prediction.

It helps the model preserve non-linearity while passing knowledge from one layer to the next layer. The
most widely used non-linearity function is Rectified Linear Unit (ReLU) due to its strong convergence
rate during gradient descent optimization. Although, other activation functions such as Sigmoid, Tanh
are smoother than ReLU, but they have not been as popular as ReLU. Recently, the Google Brain team
has proposed a new activation, called swish [43]. Unlike ReLU, swish is smooth and non-monotonic.
Empirically, [43] has shown that swish boosts MobileNet [21] performance on ImageNet [44] dataset
by 2.2% over ReLU and concludes that for light-weight model, swish is the best activation function. It
also comes with non-zero cost in real-time environment. Motivated by [43], [2], [3], the proposed study
employs swish non-linearity after every convolution layer. It is defined as:

swish(x) = x · σ(x), (7)

where σ(x) defines sigmoid activation function.

4. Experiment

To evaluate the proposed model in urban street scene analysis, extensive experiments are carried out
on two different benchmark datasets: Cityscapes [9], CamVid [8]. Experimental results clearly illustrate
that the proposed model outperforms many existing semantic segmentation models which have less than
5 million parameters. In the following subsections, this paper first discusses the datasets and implemen-
tation details, followed by a series of ablation studies on the Cityscapes benchmark dataset. Finally, it
compares the proposed model with some existing off-line and real-time segmentation models and re-
port the results on both validation and test sets. Consistent with previous work, this study reports model
parameters, GFLOPs, class and category meanIoU.

4.1. Datasets

Cityscapes For urban street scene analysis, Cityscapes [9] is the most popular choice for researchers. It
is a large-scale dataset, mainly used for object detection, instance, semantic and panoptic segmentation.
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Fig. 5. Finding optimal learning rate

It provides annotated data for more than 30 classes grouped into 8 categories. The dataset consists of
around 5,000 fine annotated images and 20,000 coarse annotated ones.

The proposed study mainly used fine-tune images and considered only 19 classes for pixel anno-
tations. The whole dataset is divided into three parts- training set (2,975 images), validation set (500
images) and test set (1,525 images). The labels for the training set and validation set are supplied by the
benchmark whereas the labels for test set are not provided. However, test set predictions are submitted
to the Cityscapes evaluation server and the results are discussed in the results section.

CamVid It is a small dataset [8], mainly designed for object detection in automated driving vehicle.
The images of this dataset were generated from a recorded video, then annotated frames were created
by assigning a class colour to each object of the frame by human operators. This dataset contains only
267 images for training, 101 for validation and 233 for testing. Out of 32 classes, current study uses 11
classes (excluding void) for performance evaluation. Due to the small size of the dataset, models were
usually under-learned.

4.2. Implementation Details

To conduct this experiment, this study uses a dual Nvidia GeForce RTX 2080Ti GPUs system, each
GPU has 11GB of memory. To exploit the parallel processing power of GPUs, it uses CUDA 10.2.
The proposed model is developed using tensorflow 2.1.0 and keras 2.3.1. To utilize both GPUs
in data-parallel distributed training environment, it employs the horovod framework [42]. Horovod
takes a single-GPU tensorflow program and trains it on multiple GPUs. For instance, in this research,
horovod divides the whole training set into two sets and runs the training script on individual set in
each GPU. Thus, it boosts the run-time performance by effectively utilizing all resources. Stochastic
gradient decent (SGD) is used as model optimizer with a momentum of 0.9.

Inspired by [19, 21, 25], the proposed study uses the ‘poly’ learning rate by setting 0.045 as the base
value and 0.9 as the power. To find out the optimal learning rate in each epoch during training the model,
model is trained for 5 epochs using a polynomial scheduler and the corresponding losses against different
learning rates are plotted. Thus, the upper and lower bound of learning rate for training are set. Figure 5
illustrates the plot of learning rate vs model loss as an example. To calculate model loss, the categorical
cross entropy loss function is exploited.
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Following the suggestion by MobileNetV2, the proposed model uses l2 regularization with value
0.00004 for top layers except depth-wise convolution layer. To avoid model over-fitting due to lim-
ited data, various data augmentation techniques such as random horizontal flip, vertical flip, random
crop, resizing and adjusting brightness, saturation and contrast of images are applied. Finally, a dropout
layer is deployed before the final classification in the training process. Adding dropout layer helps to
regulate model over-fitting issue and also improve validation accuracy. After training the model several
times with different dropout rates, it has been noticed that a dropout rate less than 0.2 cannot address the
over-fitting issue whilst a value more than 0.6 value causes under-fitting. Therefore, taking the average
of these two values as the dropout rate would be beneficial for model prediction.

4.3. Ablation study

Previous study [24] has shown the effectiveness of using modified design of BiFPN for region lo-
calization and context aggregation. Taking that as a starting point for this study, the design of FANet
is updated for the better scene segmentation. Table 3 shows the evaluation of the proposed M2FANet
model. Clearly, it produces better results than the existing real-time scene segmentation models having
less than 5 million parameters.

Table 3
Results of ablation study on Cityscapes validation set

Method Backbone
Feature fusion

module
Feature scaling

method
Mean IoU

(%)
Parameters
(Million)

FANet 9 MBConv6 FPN - 62.6 1.2
FANet 9 MBConv6 BiFPN - 65 1.1
FANet 9 MBConv6 Modified BiFPN - 65.9 1.1
M2FANet MobileNetV2 M2-FF* ASPP 67.7 2.7
M2FANet MobileNetV3* M2-FF* ASPP 3.7 67.5
M2FANet 15 MBConv6 M2-FF* - 67.4 1.25
M2FANet 15 MBConv6 M2-FF* PPM 68.0 1.37
M2FANet 15 MBConv6 M2-FF* ASPP 68.5 1.28
∗In MobileNetV3, it uses MBConv blocks with squeeze and excitation blocks. This study redesigns

the architecture of the modified BiFPN design and proposes a new design: M2-FF.

The first three rows of Table 3 show the preliminary result of FANet already presented in [24]. From
the forth row, it shows the additional results obtained from the ablation study using the proposed model.
At the initial stage, the backbone of FANet is replaced by an ImageNet pre-trained MobileNetV2 model
and performance is measured on Cityscapes validation set. MobileNetV2 [22] has 12 MBConv blocks
with increasing channel sizes (16 to 320). The literature shows that increasing the depth and width of the
model will likely enhance the performance. However, it also increases model parameters and number
of operations. Specifically, MobilenetV2 has more than 2.6M parameters, and this increases model’s
overall parameters and GFLOPs. Similarly, the fifth row of Table 3 shows that the use of MobileNetV3
[38] as feature extractor of the new design supplements model performance, but at the cost of a drastic
increase in computation. Moreover, the addition of squeeze and excitation modules in residual blocks
of MobileNetV3 is determined by Neural Architecture Search (NAS) [39] which makes model structure
unpredictable. Therefore, optimizing the backbone architecture is really difficult for MobileNetV3.
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The above observation motivates this study to stick with MBConv blocks of MobileNetV2. The depth
and width of the FANet model is modified by increasing the number of residual blocks and width mul-
tiplier. The proposed model replaces down-sampling module of FANet by three MBConv blocks of
different expansion ratios and last two MaxPooling layers of FANet model are also replaced by three
MBConv blocks. Table 3 clearly illustrates that due to the addition of new blocks, the number of parame-
ters is increased by 0.2M; however, the model’s performance is boosted by 2.6%. To control the number
of parameters of MBConv blocks, the proposed design uses the width multiplier between 0.35 and 0.5 to
increase model’s width. Table 3 also shows that without using any feature scaling technique, M2FANet
enhances the performance by 1.5% compare to FANet. However, empirically it has been proved that
feature scaling at different branches with different scaling rates can further escalate the model’s perfor-
mance.

This study explores two powerful feature scaling techniques: PPM [25] and ASPP [20]. It is noticeable
from Table 3 that both techniques boost the performance by a recognised percentage. Compare to PPM,
utilizing ASPP at the decoder side is more effective due to its design and the presence of dilated con-
volution branches. In PPM, features are processed by four ImagePooling branches with different rates
whereas in ASPP, one ImagePooling branch, one 1x1 Convolution, and three 3x3 dilated convolution
branches process the features with different dilated rates. Such an architecture provides a large receptive
field for localization and context assimilation. The design of ASPP can be visualized in Figure 3. By ex-
ploiting all these techniques, the current study finally extends the design of FANet with a new backbone,
M2-FF and ASPP modules, and produces 68.5% mean IoU on the Cityscapes validation set.

4.4. Model Evaluation

This section presents the performance of the proposed model on the Cityscapes dataset and compares
model’s performance with other existing off-line and real-time scene segmentation models. It presents
model parameters, GFLOPs, pixel accuracy, Class and category mean Intersection Over Union (mIoU)
on validation and test sets. It also demonstrates inference time and FPS (frame per second) of the mod-
els which are trained under the same system configuration. This study did not pre-train the model with
ImageNet [44] dataset. Note that the domain of ImageNet dataset is different from urban street scenes.
Due to this different domain knowledge, this study focuses urban street scene benchmarks and trains

Table 4
Model performance on Cityscapes Fine-tune and Coarse datasets

Model Input Dataset
Class

MeanIoU (%)
Category

MeanIoU(%)
FANet [24] 512×1024 Fine-Tune only 59.7 81.4
M2FANet 512×1024 Fine-Tune only 62.3 83.6
M2FANet 512×1024 Fine-Tune + Coarse 62.6 83.8

the model with related domain knowledge datasets. Cityscapes [9] provides 5,000 fine-tune and 20,000
coarse annotated images for training the model. The current study reports both results of fine-tune and
fine-tune with weakly annotated data (Table 4) at 512×1024 px. Due to hardware limitation, the pro-
posed model could not be trained with fine-tune and coarse datasets together at full input resolution. It
is evident from Table 4 that the performance is slightly improved by 0.3% due to the additional coarse
dataset. It is expected that the performance could be further improved by 0.5-1% on the validation and
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test sets if the model is trained with both coarse and fine-tune datasets together at full resolution. This
study aims to address this in the future.

It also trains the proposed M2FANet on the fine-tune datasets at different input resolutions and present
the results in Table 5. At 512×1024 px input resolution, the feature extractor extracts feature maps of
4×8 px, which is very small. Therefore, study suggests not to use input image smaller than this size.
Basically, the proposed model targets high-resolution input (1024×2048) for real-time computation. For
small resolution input, it can replace stride by 1 in last two blocks on encoder network. However, little
modification is also required in the M2-FF design. Table 5 illustrates accuracy of M2FANet for each
class at different input resolutions. In the top 5 classes (road, sky, vegetation, building, car), the model’s
accuracy is more than 90%, and its accuracy is less than 50% only in four classes (wall, fence, rider and
motorcycle). Due to uneven class distribution in the dataset, the accuracy among all classes varies like
many other methods. For instance, motorcycle class has less than 0.1% pixel in whole dataset which
causes low prediction accuracy (33.4%) for this class. Table 5 also illustrates that its performance is also
improved at higher input resolutions.

Table 5
Class-wise M2FANet performance on validation set at different input resolutions

Input Size Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain
1024×2048 94.9 76.6 90.1 45.7 48.5 55.8 58.9 70.3 90.7 56.1

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
93.3 74.2 47.8 92.1 69.1 73.6 61.8 33.6 68.1 68.5

Input Size Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain
768×1536 94.7 74.1 88.2 43.5 45.1 48.6 53.9 68.3 90.2 53.3

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
90.8 74.5 46.2 90.4 50.5 68.9 48.2 36.5 66.8 64.9

Input Size Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain
512×1024 94.2 73.7 87.6 34.2 41.8 54.3 50.9 66.2 90.4 52.2

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
89.4 73.4 44.6 90.2 37.7 61.0 34.7 38.2 68.6 62.3

Table 6
Category-wise M2FANet performance on Cityscapes validation dataset

Input size Flat Construction Object Nature Sky Human Vehicle mIoU
1024×2048 94.7 89.6 62.4 91.0 93.3 75.5 90.3 85.3

768×1536 94.4 88.5 60.3 90.7 90.8 75.6 88.6 84.1

512×1024 94.5 87.7 59.7 90.4 89.4 75.8 88.1 83.7

Table 6 displays the category-wise model performance at different input resolutions. In the Cityscapes
dataset, all classes are distributed into seven categories: flat, construction, object, nature, sky, human, and
vehicle. The proposed model’s performance is outstanding in five categories (flat, construction, nature,
sky and vehicle) across all resolutions. , However, the object category has a low accuracy (59.7-62.4%)
across all input sizes, possibly due to asymmetrical class distribution and tinny shape of traffic sign,
traffic light and pole.
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4.5. Performance Comparison on Cityscapes

4.5.1. Results on Validation Set
To compare the proposed model with other existing models, this study trained one off-line model

(DeepLab) and three real-time segmentation models (SegNet, ContextNet, FAST-SCNN) under same
system configuration. Results of comparison on the validation set are displayed in Table 7. Models
marked with the sign * are trained during this study where either public code is available or sufficient
implementation details are known. For other models, results are extracted from the literature. Due to a
large number of parameters and GFLOPs, standard convolution layers of DeepLab and Segnet are re-
placed by DsConv layers. For DeepLab, instead of using ResNet101 or VGG-16, a pre-trained Xception
model is used as a backbone. This study also incorporated ASPP on top of the encoder as a dense feature
extractor. Due to the large size of DeepLab, this study could not train the model at full input resolution. It
trained Deeplab with 512×1024 px input and achieved 58.2% validation mean IoU. However in [19], the
authors claimed 62.97% accuracy using VGG-16 and large field of view. Similarly, this study achieved

Table 7
Performance evaluation of different models on cityscapes validation set

Type Model Input Size
Parameters
(Million)

GFLOPs
Class

meanIoU
(%)

Category
meanIoU

(%)

Pixel
Accuracy

(%)
Off-line PSPNet [25] 713 × 713 250.8 516 81.2 - -

HANet [27] 768 × 768 65.4 2138.0 80.3 - -
OCR [18] 769 × 769 10.5 340 81.2 - -
DeepLab* [19] 512 × 1024 37.9 845.9 58.2 87.7 88.6

Real-time SegNet* [4] 512 × 1024 29.5 680.4 56.8 77.2 87.3
ContextNet* [14] 512 × 1024 1.0 9.3 54.2 78.3 87.3
FAST-SCNN* [23] 1024 × 2048 1.2 14.9 63.3 82.2 89.4
ENet [31] 1024 × 2048 0.4 3.8 58.3 - -
ICNet [11] 1024 × 2048 6.68 58.5 67.7 - -
DFANet-B [35] 1024 × 1024 4.7 31.3 58.2 - -
FANet* [24] 1024 × 2024 1.1 11.4 65.9 83.6 89.6

Real-time M2FANet* 1024×2048 1.3 37.3 68.5 85.3 90.2
∗Models marked with * sign are trained by us and empty cell means that data are not found in literature.

Table 8
Efficiency comparison of all trained models

Model Input size
Inference
time (sec.)

FPS
Model

size (MB)
DeepLab 512 × 1024 0.35 2.9 90.2
SegNet 512 × 1024 0.76 1.3 225.4
ContextNet 512 × 1024 0.09 11.1 8.8
FAST-SCNN 512 × 1024 0.11 9.1 9.4
FANet 512 × 1024 0.1 10.0 9.4
M2FANet 512 × 1024 0.11 9.1 11

56.8% and 54.2% class accuracy for SegNet [4], ContextNet [14] respectively with 512×1024 px input

178



Multi-level Multi-path Feature Aggregation Network 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

size. It trained FAST-SCNN [23] model with full input resolution for 1000 epochs with fine-tune dataset
of Cityscapes. Table 7 clearly depicts that FASt-SCNN [23] produces better results among the existing
models listed in the table, although its performance is lagged by 5-6% compared to the proposed model.
This study did not achieve the result claimed by [23]. The implementation of FAST-SCNN by this study
is consistent with the information provided in the paper. The implementation of all compared models
presented here is readily available on the official GitHub repository. To enable a fair comparison based
on the models only, this research did not use any post-processing techniques.

It is noticeable from Table 7 that the proposed M2FANet generates better segmentation results on
Cityscapes validation set among all the listed models. Although, ICNet [11] produces an accuracy
(67.7%) very close to M2FANet, it has much higher GFLOPs and model parameters than the proposed
one. This makes the proposed M2FANet superior than other real-time scene segmentation alternatives.
This study achieves 68.5% mean IoU on the Cityscapes validation set without using any post process-
ing techniques. In [35], the authors claimed around 70% class accuracy on Cityscapes validation set;
however, the number of parameters is 6 times higher than M2FANet and thus it is not as efficient as the
proposed model. Moreover, after studying [35] architecture, it is observed that this model has a much
higher GFLOPs than the proposed model. To have a reasonable comparison, current work compares the
proposed model performance with DFANet-B variant which has 4.8 million parameters. Table 7 shows
that the proposed model performs much better while having less parameters and GFLOPs. This study
also found that the authors of [35] claimed much smaller GFLOPs of their best model. However, the
current study suggests that it is not possible to have low GFLOPs count with large number of parameters
(7.8 million). It calculated the GFLOPs count and reported in Table 79. In off-line scene segmentation
model, PSPNet [25], HANet [27], [18] achieve outstanding results (above 81%) due to its deep neural
architecture.

The current work also presents the inference time and the rate in terms of FPS (frame per second) of
the models which are trained under the same system configuration. It is often the case in the literature that
such comparison of inference time and FPS is based on different hardware, which makes it less insightful
as these indicators can vary significantly. It also depends on the size of input image and different hyper-
parameters of the model. Therefore, comparing the inference time of different models ran in different
hardware platforms with different input resolutions does not provide a clear picture model’s superiority
in terms of efficiency. Therefore, to present a balanced comparison, this study measures the inference
time of all the trained models under the same system configuration and with similar input size. The
results are reported in Table 8. It demonstrates that ContextNet [14] is quite efficient overall among all
the trained models. It is understandable as ContextNet has the least number of parameters among all the
listed models in Table 8. It can process on an average 11 frames per second where as the proposed model
can process 9.1 frames per second. The inference time is measured using a single Nvidia GeForce RTX
2080Ti GPU system with the same input size. Table 8 also presents model size which is the size of the
model after completing the whole training process.

4.5.2. Results on test set
To compare with other existing models, this study exhibits the test set results in Table 9. The results

of other models are extracted from their original papers and Cityscapes leader-board. It displays that
all off-line and real-time semantic segmentation models except ContextNet [14], FAST-SCNN [23],
ENet [10], have at least four times higher number of parameters and GFLOPs than the proposed model.
In addition, they all achieved a lower prediction accuracy network than M2FANet did. Table 9 also
demonstrates that very few existing real-time models can handle full-resolution input images. Among
all listed models, ICNet [11] produced 69.5% class accuracy on full-resolution test images of Cityscapes,
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Table 9
Performance evaluation of different models on cityscapes test set

Model Input size
Class

meanIoU
(%)

Category
meanIoU

(%)

Number of
parameters
(in Million)

GFLOPs

DeepLabV3+ [20] 512 × 1024 82 91.6 54.8 344.9
DeepLabV2 [19] 512 × 1024 70.4 86.4 37.9 845.9
PSPNet [25] 713 × 713 81.2 90.6 65.5 516
BiSeNet [12] 768 × 1536 74.7 - 5.8 14.8
SegNet extended [4] 360 × 640 56.1 79.8 29.5 286
ENet [10] 360 × 640 58.3 80.4 0.4 3.8
ICNet [11] 1024 × 2048 69.5 - 6.68
FCN 8S [6] 512 × 1024 65.3 85.7 57 136.2
SQ [45] 1024 × 2048 59.8 84.3 - -
CRFasRNN [46] 512 × 1024 62.5 82.7 - -
ESPNet [13] 512 × 1024 60.3 82.2 0.4 -
ContextNet [14] 1024 × 2048 66.1 82.8 1.0 18.4
DFANet-B [35] 1024 × 1024 67.1 - 4.9 31.3
FAST-SCNN [23] 1024 × 2048 63.0 84.7 1.2 14.9
FANet [24] 1024×2048 64.1 83.1 1.1 11.4
M2FANet 1024×2048 68.3 86.6 1.3 37.3
∗Empty cell means that data are not found in literature.

whereas the proposed model generates 68.3% accuracy. However, it is distinctly noticeable that ICNet
has almost 5 times higher number of parameters than M2FANet. This makes ICNet less favourable for
real-time applications. The proposed M2FANet has less parameters and less GFLOPs compared to most
models.

Table 9 also presents GFLOPs count of all the models. It is noticeable that instead of counting GFLOPs
at full input resolution, most of the models report their GFLOPs count at low input resolution. As
GFLOPs count depends on input size, it is expected that the GFLOPs count will be lower in this setting.
This study reports 37.3 GFLOPs count of the proposed model with 1024×2048 input resolution, whereas
most of the models reported it at low resolution. ENet [10] has the lowest GFLOPs count, however it is
reported at 360×640 input resolution.

4.6. Performance Comparison on CamVid

Current research also evaluates M2FANet on the CamVid dataset. Table10 shows the class accuracy
and pixel accuracy of M2FANet and other compared models on this dataset. It is clearly evident that
M2FANet outperforms the other models: it achieves 60.0% class accuracy despite of having small num-
ber of training images. To have a fair and reproducible comparison between the different models based
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Table 10
Performance evaluation on validation set of CamVid dataset

Model Input
Class

MeanIoU (%)
Pixel

Accuracy(%)
SegNet 360×480 55.6 -
ENet 360×480 51.3 -
DFANet-B 720×960 59.3 -
FAST-SCNN* 512×1024 57.5 86.9
FANet* 512×1024 57.8 87.1
M2FANet* 640×896 60.0 88.7
∗empty cell means that results are not found in the literature.

Models marked with * sign are trained by this study.

Fig. 6. Output by different models using Cityscapes validation image

on their core architecture, the present study did not use any data augmentation techniques and any other
similar datasets in this experiment. Of course, one would expect an increase in performance should any
other techniques are used. For example, some literature achieved such improvement by many extras,
one of which was additional 3,000 training images from other datasets outside CamVid. However, these
results are difficult to reproduce due to the lack of details in these papers. For completeness, this study
quotes the original figure from previous publications for those models which are not trained by the cur-
rent study. It is expected that the proposed model will definitely achieve even better performance when
trained with these extra images from related data with similar annotations.

4.7. Qualitative performance comparison

For qualitative assessment, this section presents output images from selected models in Figures 6, 7,
8.

4.7.1. Prediction on Cityscapes benchmark
Figure 6 shows segmented output produced by different models on the validation set of Cityscapes

benchmark. The first image is the RGB input followed by ground truth, colour code and predicted outputs
by different models. It clearly displays that the output image quality generated by M2FANet is much
better than other models and this has been already verified by the quantitative results in Table 7. Similar
observation can be drawn from Figure 7. The first row shows RGB test images from Cityscapes, whereas
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Fig. 7. Output by M2FANet using Cityscapes test images

Fig. 8. Output by FAST-SCNN, FANet and M2FANet using CamVid test image

second row displays segmented output by M2FANet. It is observed that the proposed model is capable of
identifying and localizing every objects in the scene whilst not overlooking tinny objects such as traffic
light, traffic sign, and pole.

4.7.2. Prediction on CamVid benchmark
Figure 8 exhibits the output produced by FAST-SCNN, FANet and the proposed M2FANet on selected

images from CamVid validation set. In contrast to Cityscapes, here models are trained with 12 classes
(including background class) on this dataset. It is distinctly visible that output by M2FANet is much bet-
ter than the output generated by FAST-SCNN and FANet. Especially, boundaries of every class are much
smoother in the proposed model output compared to others. Though the current study notes that Camvid
is much smaller than other scene segmentation datasets and this generally reduces the performance of
any models, an observation that has also been established in previous works. Again, one may address
this limitation by using extra images from other datasets or using data augmentation techniques, which
will benefit all models. However, the focus of the current research is on a fair comparison between the
models and thus this direction could be pursued elsewhere.
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5. Conclusion

This study presented a light semantic scene segmentation model, named M2FANet for resource-
constrained devices, capable of handling high-resolution input images in the real-time environment.
The goal of this research was to develop a model that achieves the best performance among models
with low computational requirements, which is defined as having less than 5 million parameters. The
optimized backbone network and proposed multi-level multi-path feature aggregation module at decoder
efficiently produce a new state-of-the-art results compare to existing models in the same category. Cur-
rent research also demonstrates the usefulness of feature scaling and feature fusion techniques for better
localization and contextual engrossment. The proposed model is evaluated on two public scene segmen-
tation benchmarks. The results show that the proposed model is suitable for urban street scene analysis
in real-time mode. In the future, this study plans to extend the proposed model for indoor scene analysis
and expand the evaluation on other public benchmark datasets. For reproducing the results presented in
this work, this study has made the implementation of the proposed model and selected models on the
official Github repository https://github.com/tanmaysingha/M2FANet.

References

[1] Y. Liu, L. Ji, R. Huang, T. Ming, C. Gao and J. Zhang, An attention-gated convolutional neural network for sentence
classification, Intelligent Data Analysis 23(5) (2019), 1091–1107.

[2] M. Tan and Q.V. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, arXiv preprint
arXiv:1905.11946 (2019).

[3] M. Tan, R. Pang and Q.V. Le, EfficientDet: Scalable and Efficient Object Detection, ArXiv abs/1911.09070 (2019).
[4] V. Badrinarayanan, A. Kendall and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image

segmentation, IEEE transactions on pattern analysis and machine intelligence 39(12) (2017), 2481–2495.
[5] R. Lalchhanhima, G. Saha, M.V. Nunsanga and D. Kandar, Synthetic aperture radar image segmentation using supervised

artificial neural network, Multiagent and Grid Systems 16(4) (2020), 397–408.
[6] J. Long, E. Shelhamer and T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
[7] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint

arXiv:1409.1556 (2014).
[8] G.J. Brostow, J. Fauqueur and R. Cipolla, Semantic object classes in video: A high-definition ground truth database,

Pattern Recognition Letters 30(2) (2009), 88–97.
[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth and B. Schiele, The

Cityscapes Dataset for Semantic Urban Scene Understanding, in: Proc. CVPR, 2016.
[10] A. Paszke, A. Chaurasia, S. Kim and E. Culurciello, Enet: A deep neural network architecture for real-time semantic

segmentation, arXiv preprint arXiv:1606.02147 (2016).
[11] H. Zhao, X. Qi, X. Shen, J. Shi and J. Jia, Icnet for real-time semantic segmentation on high-resolution images, in:

Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 405–420.
[12] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu and N. Sang, Bisenet: Bilateral segmentation network for real-time semantic

segmentation, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 325–341.
[13] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro and H. Hajishirzi, Espnet: Efficient spatial pyramid of dilated convolutions

for semantic segmentation, in: Proceedings of the european conference on computer vision (ECCV), 2018, pp. 552–568.
[14] R.P. Poudel, U. Bonde, S. Liwicki and C. Zach, Contextnet: Exploring context and detail for semantic segmentation in

real-time, arXiv preprint arXiv:1805.04554 (2018).
[15] S. Targ, D. Almeida and K. Lyman, Resnet in resnet: Generalizing residual architectures, arXiv preprint arXiv:1603.08029

(2016).
[16] Z. Wu, C. Shen and A. Van Den Hengel, Wider or deeper: Revisiting the resnet model for visual recognition, Pattern

Recognition 90 (2019), 119–133.
[17] X. Zhang, Z. Li, C. Change Loy and D. Lin, Polynet: A pursuit of structural diversity in very deep networks, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 718–726.
[18] Y. Yuan, X. Chen and J. Wang, Object-contextual representations for semantic segmentation, arXiv preprint

arXiv:1909.11065 (2019).

183



22 Multi-level Multi-path Feature Aggregation Network

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[19] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A.L. Yuille, Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs, IEEE transactions on pattern analysis and machine
intelligence 40(4) (2017), 834–848.

[20] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, Encoder-Decoder with Atrous Separable Convolution for
Semantic Image Segmentation, in: Proc. ICCV, 2018.

[21] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, Mobilenets: Efficient
convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861 (2017).

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks,
in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510–4520.

[23] R.P. Poudel, S. Liwicki and R. Cipolla, Fast-scnn: fast semantic segmentation network, arXiv preprint arXiv:1902.04502
(2019).

[24] T. Singha, D. Pham and A. Krishna, FANet: Feature Aggregation Network for Semantic Segmentation, in: Proceedings
of The International Conference on Digital Image Computing: Techniques and Applications, DICTA 2020, Melbourne,
Australia, November 29 - December 2, 2020, IEEE, 2020, pp. 1–8. doi:10.1109/DICTA51227.2020.9363370.

[25] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, Pyramid scene parsing network, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2881–2890.

[26] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 1251–1258.

[27] S. Choi, J.T. Kim and J. Choo, Cars Can’t Fly Up in the Sky: Improving Urban-Scene Segmentation via Height-Driven
Attention Networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 9373–9383.

[28] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: Interna-
tional Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241.

[29] P.O. Pinheiro, T.-Y. Lin, R. Collobert and P. Dollár, Learning to refine object segments, in: European Conference on
Computer Vision, Springer, 2016, pp. 75–91.

[30] G. Lin, A. Milan, C. Shen and I. Reid, Refinenet: Multi-path refinement networks for high-resolution semantic segmenta-
tion, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1925–1934.

[31] W. Liu, A. Rabinovich and A.C. Berg, Parsenet: Looking wider to see better, arXiv preprint arXiv:1506.04579 (2015).
[32] P.K. Mallick, S.H. Ryu, S.K. Satapathy, S. Mishra, G.N. Nguyen and P. Tiwari, Brain MRI image classification for cancer

detection using deep wavelet autoencoder-based deep neural network, IEEE Access 7 (2019), 46278–46287.
[33] R. Callister, M. Lazarescu and D.-S. Pham, RobustRepStream: Robust stream clustering using self-controlled connectivity

graph, Intelligent Data Analysis 24(4) (2020), 799–830.
[34] H. Zhang, H. Zhang, C. Wang and J. Xie, Co-occurrent features in semantic segmentation, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 548–557.
[35] H. Li, P. Xiong, H. Fan and J. Sun, Dfanet: Deep feature aggregation for real-time semantic segmentation, in: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9522–9531.
[36] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, Feature pyramid networks for object detection, in:

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
[37] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, Path aggregation network for instance segmentation, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.
[38] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan et al., Searching

for mobilenetv3, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324.
[39] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze and H. Adam, Netadapt: Platform-aware neural

network adaptation for mobile applications, in: Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 285–300.

[40] G. Ghiasi, T.-Y. Lin and Q.V. Le, Nas-fpn: Learning scalable feature pyramid architecture for object detection, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 7036–7045.

[41] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[42] A. Sergeev and M. Del Balso, Horovod: fast and easy distributed deep learning in TensorFlow, arXiv preprint
arXiv:1802.05799 (2018).

[43] P. Ramachandran, B. Zoph and Q.V. Le, Searching for activation functions, arXiv preprint arXiv:1710.05941 (2017).
[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: 2009

IEEE conference on computer vision and pattern recognition, Ieee, 2009, pp. 248–255.
[45] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Friedmann, P. Schuberth, A. Mayr, M. Heusel, M. Hofmarcher,

M. Widrich et al., Speeding up semantic segmentation for autonomous driving, in: MLITS, NIPS Workshop, Vol. 2, 2016.

184



Multi-level Multi-path Feature Aggregation Network 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[46] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang and P.H. Torr, Conditional random fields
as recurrent neural networks, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1529–
1537.

Mr. Tanmay Singha is currently a PhD research scholar in the field of Com-
puting at Curtin University, Australia. He has double Master’s Degrees- Master
of Technology in Information Technology and Master of Computer Applica-
tions from University of Calcutta, India. Before joining at Curtin University, he
served nine years as a lecturer in the department of IT at Royal University of
Bhutan, Bhutan. His current research interest focuses on computer vision tasks
such as semantic and instance segmentation, object detection, scene graph gen-
eration, indoor and outdoor scene analysis, human pose estimation, facial land-
mark detection and medical image processing using deep neural networks. He

has presented and published several scientific research papers in reputed conferences.
Dr. Aneesh Krishna is currently an Associate Professor with the School

of Electrical Engineering, Computing and Mathematical Sciences, Curtin Uni-
versity, Australia. He holds a PhD in computer science from the University of
Wollongong, Australia. He was a lecturer in software engineering at the School
of Computer Science and Software Engineering, University of Wollongong,
Australia (from February 2006 - June 2009). His research interests include AI
for software engineering, model-driven development/evolution, requirements
engineering, agent systems, formal methods, data mining, computer vision,
machine learning, bioinformatics and renewable energy systems. He has pub-

lished more than 130 articles in reputed journals and international conferences. His research is (or has
been) funded by the Australian Research Council (ARC), and various Australian government agencies
(like NSW State Emergency Service) as well as companies such as Woodside Energy, Amristar Solu-
tions, Autism West Incorporated, BW Solar Australia, Western Australia Dementia Training Center and
Andrew Corporation. He serves as an assessor (Ozreader) for the ARC. He has been on the organising
committee, served as invited technical program committee member of many conferences and workshop
in the areas related to his research.

Dr. Duc-Son Pham received the PhD degree from Curtin University of
Technology in 2005. He is currently a Senior Lecturer with the Discipline of
Computing, Curtin University, Perth, Western Australia. His current research
interests include sparse learning theory, large-scale data mining, convex opti-
mization, and advanced deep learning with applications to computer vision and
image processing. He is a Senior Member of the IEEE. He is a recipient of the
Young Author Best Paper Award 2010 for a publication in IEEE Transactions
on Signal Processing.

185



.6 Publication 6

186



SC-CrackSeg: A Real-time Shared Feature Pyramid
Network for Crack Detection and Segmentation

Tanmay Singha, Moritz Bergemann, Duc-Son Pham, and Aneesh Krishna
School of Electrical Engineering, Computing and Mathematical Sciences

Curtin University, Perth, Western Australia
tanmay.singha@postgrad.curtin.edu.au, moritz.bergemann@student.curtin.edu.au,

dspham@ieee.org, a.krishna@curtin.edu.au

Abstract—Detecting cracks is important in a number of civil
engineering applications. Recent advances in computer vision
have enabled automatic crack detection and fine-grained seg-
mentation using deep learning. However, the models used in
previous work are often large and are therefore mainly suitable
for offline structure monitoring where images taken from a site
are analysed later by a powerful computer. In this work, we
address the segmentation problem in an online setting, which
permits the use of mobile inspection devices such as drones with
limited computing power to monitor structures independently
in real-time. We propose SC-CrackSeg, which has a very small
number of parameters and can provide very high segmentation
accuracy. Our main contribution is a multi-branch information-
sharing architecture that efficiently manages global perspective
while maintaining the fine and high-resolution details key in crack
detection. SC-CrackSeg extends a previously proposed model but
optimized specifically for this application: reduction to a single-
input, a more efficient context mining module, and a simpler
feature fusion module. We evaluate SC-CrackSeg on large crack
detection data sets and the results show that our proposed model
is competitive against the existing methods.

Index Terms—semantic segmentation, crack detection, multi-
branch, feature fusion, real-time models

I. INTRODUCTION

Crack segmentation is a growing area of research that
applies semantic segmentation, the pixel-wise classification
of images, to the identification of structural cracks. This
process helps automate the labour-intensive task of structural
crack identification while providing significantly more detail
compared to pure classification or object detection approaches.
Fully convolutional neural networks (FCNs) [21] have been
most successful in this task. As compared to traditional com-
puter vision approaches, FCNs are far more agnostic to dataset
feature distributions as they do not rely on specifically crafted
feature extractors [20]. Therefore, many approaches have
applied existing semantic segmentation architectures [10] [8]
to crack segmentation. There are some key issues specific to
the crack segmentation task, however. The fine and thin nature
of cracks means features must be maintained at high resolution
to avoid the loss of crack boundaries, and the small proportion
of input image pixels that actually contain cracks results in
class imbalance (as seen in Figure 1). These problems have
been addressed in existing approaches by maintaining high
feature resolutions in separate model ”branches” [20] [22], and

(a) Original crack image (b) Crack label

Fig. 1: Crack image and corresponding segmentation mask
from the CFD dataset [28]. Note the white ‘crack’ class only
makes up ∼ 1.5% of pixels in the mask.

by applying specialised losses that encourage classification of
the minority class [31] [20].

Computational efficiency is also valuable for crack segmen-
tation due to the large scale of image data that may need to be
scanned for cracks, and as real-world approaches would likely
require segmentation to be performed on resource-constrained
embedded devices, such as those attached to a UAV [18].
Many approaches still suffer from the high computational cost
of pixel-wise segmentation [23], though methods focusing on
efficiency have been introduced [9] [17].

We have identified the use of a separate branch for maintain-
ing high-resolution features as similar to the approach of many
low-resource semantic segmentation architectures [33] [25].
Particularly, the maintaining of key features at high resolution
via repeated upsampling from a lower-resolution branch (as
applied in MR-CrackNet [22]) is similar to the information
sharing scheme applied in SCMNet [29]. In SCMNet, deep
(low-resolution) and shallow (high-resolution) features are
repeatedly merged and feature-extracted before being fed back
into their respective branches, maintaining both global and
local features while permitting both to learn from one another.
We posit applying this approach to the crack segmentation task
would allow for the efficient learning of high-resolution crack
features while retaining the computational efficiency such
approaches often struggle to achieve. Therefore, we propose a
modified version of SCMNet optimised for the crack segmen-
tation task. We move from a two-input model to a single-input
model to improve efficiency and simplicity of implementation.
We modify SCMNet’s Context Mining Module (CMM) by
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eliminating its image pooling components which contribute
to boundary degeneration - especially significant with crack
segmentation’s fine boundaries and shapes. We also deploy a
simplified feature fusion module, inspired by BiSeNet [33], to
aggregate the final features extracted from the two branches.

In summary, our key contributions are as follows:
• We introduce SC-CrackSeg, a new efficient crack seg-

mentation architecture, inspired by SCMNet [29].
• We demonstrate SC-CrackSeg’s performance and versa-

tility on a publicly available combined crack dataset.
• We confirm SC-CrackSeg’s state-of-the-art performance

via direct comparison against existing architectures.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation is a fundamental research area in
computer vision. Early approaches such as ENet [23], ESPNet
[30] focused on lowering the resolution of features within
the model, though this particularly affected the segmentation
quality of fine boundaries. Recent approaches have improved
the performance by denoting different components of the
segmentation task to different branches of the model ICNet
[35]. BiSeNet [33] identified two such branches, one deep
and one shallow, as being most efficient. ContextNet [25]
maintains this overall architecture while introducing depthwise
separable convolutions [16] and bottleneck residual blocks
[27] for the high (shallow) and low (deep) resolution branches
respectively. SCMNet [29] proposes that the deep and shallow
branches each produce valuable information the other may
exploit, and enables this by introducing repeated information
sharing between the branches.

B. Crack Segmentation

Crack detection has been a growing area of research in
recent years [14]. Zhang et al. [34] proposed an early CNN for
performing crack detection on a dataset of 500 crack images.
While many approaches initially focused on object detection
and classification, the majority of recent studies apply semantic
segmentation [14] due to the additional valuable information
provided on crack shape and size. Initial approaches applied
existing state-of-the-art segmentation networks or backbones
to crack detection, such as U-Net [10] and SegNet [8].

There are two unique issues in crack segmentation compared
to many other segmentation tasks. First, the thin and fine-
grained nature of cracks means especially dense features must
be maintained throughout the model, as any reduction in
feature resolution will cause major inaccuracies in the fine
crack shapes. Secondly, cracks typically make up a minority
of a given input image even when present (< 5% of pixels),
resulting in class imbalance. DeepCrack [20] computes multi-
scale features to ensure large and thin cracks are accurately
segmented and applies a class-balanced loss computed multi-
ple times throughout the network to address class imbalance.
FPHBN [31] instead derives multi-scale information via a
feature pyramid, and compares their approach with other
models across multiple datasets. MR-CrackNet [22] applies a

modified ResNet [15] backbone, maintaining feature resolution
by upsampling extracted features after each block. Many
of the above approaches are evaluated on unique datasets
not publicly available, making comparisons challenging. A
number of datasets have been proposed for crack segmentation,
including CrackBgData [22], CRACK500 [32], and others [11]
[28] [3] [36]. Due to the small number of images available in
each dataset, our approach applies a merged combination of
images from multiple datasets for training.

C. Efficient Crack Segmentation

Processing efficiency is significant when performing infras-
tructure crack detection due to the large number of images that
must be processed when applied at scale. Various studies [19]
[18] have investigated the use of UAVs for high-speed crack
segmentation, a system only viable with a highly efficient
neural network such as Faster R-CNN [2]. Recent studies have
investigated efficient crack detection. SDDNet [9] maintains
high-resolution features using a simple skip connection, and
utilises depthwise separable convolutions and modified atrous
spatial pyramid pooling techniques as introduced in the Mo-
bileNets [16] and DeepLabV3+ [6] respectively. STRNet [17]
applies multi-head attention to the crack detection task, as
well as a squeeze and excitation method for maintaining high
feature detail.

III. PROPOSED METHOD

A. Shared encoder design

The complete architecture of the proposed SC-CrackSeg
is exhibited in Figure 2. Like SCMNet, we adopt an infor-
mation sharing scheme in the encoder, where features from
both branches are periodically concatenated to share useful
information. However, instead of having two inputs of different
scales, the proposed model accepts only one full-sized input
image. This reduces the training time per epoch. Table I
displays the layered architecture of the proposed backbone. It
shows that a 3 × 3 ConvX block is deployed to down-sample
the input image by two. Each ConvX block contains a standard
convolution (Conv), Batch Normalization (BN) and ReLU
layer to filter the input by a k×k kernel. After down-sampling
the input, two parallel branches are created: a shallow branch
for extracting boundary and texture details and a deep branch
for extracting global contextual details from the scene.

Deep branch is designed using the inverted bottleneck
residual (MBConv) blocks introduced in [27]. The operation
of MBConv block is opposite to the bottleneck residual block
of ResNet [15]. The MBconv block first expands the input
tensor along the channel dimension by an expansion ratio
t and then squeezes it along its channels. To reduce the
computational cost at the expansion stage, it introduces a
Depth-wise Convolution (DwConv) which contributes at least
k2 times fewer parameters than a standard Conv layer. The
layer architecture of the MBConv block is displayed in Table
II. Motivated by the optimized design of the MBConv block,
we deploy one ConvX block and 11 MBConv blocks at
the deep branch of the proposed model. We also deploy a
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TABLE I: Layer architecture of deep branch of encoder

Stage Input Operation Output
1 448×448×3 k3×3 ConvX 224×224×24

Deep branch Shallow branch
Operation N Output Channels Operation N Output Channels

2 224×224×24 k3×3 ConvX 1 32 k3×3 DSConvX 1 32 112×112×32
3 112×112×32 k3×3 MBConv1 1 32 k3×3 DSConvX 1 48

56×56×32 k3×3 MBConv6 2 48 - - - 56×56×48
Fuse and refine deep and shallow feature by the first shared CRM

4 56×56×48 k3×3 MBConv6 3 64 k3×3 DSConvX 1 96
28×28×64 k3×3 MBConv6 1 96 - - - 28×28×96

Fuse and refine deep and shallow feature by the second shared CRM
5 28×28×96 k3×3 MBConv6 3 128 k3×3 DSConvX 1 160

14×14×160 k3×3 MBConv6 1 160 - - - 14×14×160
Fuse and refine deep and shallow feature by the third shared CRM

6 14×14×160 MaxPooling 1 160 - - - 7×7×160

MaxPooling layer on top of the deep branch to create an
additional stage. Thus, the deep branch consists of 5 stages.

TABLE II: Bottleneck residual block

Input Operator Output
h×w×c 1×1 Conv,1/1, ReLU h×w×tc
h×w×tc 3×3 DwConv, 3/s, ReLU h/s×w/s×tc

h/s×w/s×tc 1×1 Conv,1/1, - h/s×w/s×c′

Shallow branch is mainly designed for extracting the local
features such as boundary and texture details. To achieve this,
we ensure a low-channel and simple design for this branch. We
deploy four DSConvX (Depth-wise Separable Convolution)
blocks. Each contains a DSConv layer, one BN and one ReLU.
Each DSConv layer filters the input by a 3 × 3 kernel with
stride 2. A DSConv layer is more efficient than a standard
Conv layer at the middle stages of the shallow branch. This
can be observed from the equations 1 to 4, which show the
total FLOPs (Floating Point Operations) count and the number
of parameters associated with a standard Conv and DSConv
layer. (Kw ×Kh ×Ci) and (Kw ×Kh ×Ci −1) in Equation 1
present the amount of multiplication and addition operations
performed by a standard Conv layer where Kw, Kh define

the kernel size and (Ci, Co) define the number of channels of
input and output feature maps and (Ho, Wo) define the height
and width of the output feature map. For a square filter, Kh

and Kw can be replaced by K. Comparing the FLOPs and
parameter count of a standard Conv and DSConv layer, the
latter reduces computational complexity by approximately K2

times. Hence, it helps us to achieve real-time performance for
crack segmentation. We deploy 4 DSConvX blocks to create
4 stages in the shallow branch.

FLOPsConv =[(Kw × Kh × Ci) + (Kw × Kh − 1) + 1]

× Co × Ho × Wo

=2 × K × K × Ci × Ho × Wo × Co (1)
FLOPsDSConv =2 × K × K × Ci × Ho × Wo × 1+

2 × 1 × 1 × Ci × Ho × Wo × Co (2)
paramsConv =[(K × K × Ci) + 1] × Co (3)

paramsDSConv =[(K × K × Ci) + 1] × 1 + [(1 × 1 × Ci)

+ 1] × Co (4)

Like SCMNet, we deploy three shared points after stage 3,
4 and 5. At each shared point, we fuse and refine the deep
and shallow feature maps using a shared Context Refinement
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Fig. 2: Complete architecture of SC-CrackSeg
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Fig. 3: Shared Context Refinement Module

Module (CRM). The layered architecture of the shared CRM
is displayed in Figure 3. It shows that features from deep
and shallow branches at the same stages are fused together
by a simple element-wise matrix addition operation. Then, it
passes through the CRM for better semantic representation.
Both feature maps (deep and shallow) have coarse information
which needs to be refined properly before it passes to the
next level and the design of the CRM provides better recep-
tive fields for coarse-to-fine refinement. The CRM’s design
is slightly different to SCMNet’s Context Mining Module
(CMM). In the CMM, out of four parallel branches, two are
image pooling branches with a large pool size which can result
in a boundary degeneration effect. The pooling branch also
does not learn anything as it does not have any parameters.
Therefore, we replace the image pooling branches with two
additional separable branches. Motivated by the DeepLab’s
Atrous Spatial Pyramid Pooling (ASPP) [5], we also utilize
higher dilation rates (6, 12, and 18) in the separable branches
for enhancing the field of view. This allows the model to cap-
ture the contextual details of varied sizes of crack in the scene.
After processing the input through four different branches, we
concatenate all outputs along the channel dimension for better
contextualization. In contrast to ASPP, we finally deploy a
residual connection between the shared input feature map and
the concatenated output for preventing any information loss.
Hence, the noisy features are processed and refined by the
encoder at three different stages to produce the multi-scale
global feature maps.

B. Decoder design

The design of our decoder is completely different to SCM-
Net. We keep our decoder design simple and effective for real-
time crack detection and segmentation. Features from stages
6,5,4, and 3 are used at the decoder. Figure 2 shows how all
these feature maps first pass through Channel Reduction (CR)
modules to produce a uniform number of channels for each
(64). Each CR module has one 1 × 1 Conv layer, followed
by a BN layer. After CR, features are refined by CRM again.
Motivated by the simple design of the Feature Fusion Module
(FFM) of BiseNet [33], we deploy a Semantic Aggregation
(SA) module which aggregates rich features together for

Fig. 4: Semantic Aggregation Module

better region identification. The layered architecture of the SA
module is displayed in Figure 4. After refinement, features
from 6th and 5th stages pass through the SA module. Before
concatenating the two feature maps, the 6th stage features
are bi-linearly upsampled. After concatenation, we deploy a
DSConvX block instead of a ConvX block. This reduces the
number of parameters and FLOPs of each SA module. The rest
of the layered architecture is similar to BiSeNet’s FFM. We
deploy three SA modules for aggregating features at different
stages.

Classifier is the last module added on top of the decoder
for assigning a class to each pixel of the image based on
the classification score. Two 3 × 3 DSConvX blocks, one
standard 1 × 1 ConvX block, one softmax layer and one
upsampling layer with 23 scale factor are deployed for building
the classifier. Upsampling the feature map by 23 times after
softmax produces an output of similar size to the input and
speeds up the inference time. We also deploy a dropout layer
with 0.35 dropout rate and `2 regularization with 0.00004
lambda value in the DSConv layers to reduce over-fitting.

IV. EXPERIMENT

To evaluate the proposed model performance for crack
detection, a series of extensive experiments are carried out
on publicly available road crack datasets. To compare the
proposed model performance with the existing models, we also
replicate the design of some existing models and measure their
performance on the same datasets in an identical environment.
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A. Datasets

Many existing crack detection models are trained with
private datasets which are not publicly available. Hence, to
conduct our experiment, we use the crack segmentation dataset
from the Kaggle data science community. This dataset contains
almost 11,200 images with fine-tune annotations. It merges
12 different crack segmentation datasets [3], [11], [28], [31],
[34], [36] together to form a single dataset. We consider this
the most challenging crack segmentation dataset as it contains
various types of cracks on different surfaces, including deep
or light cracks on road, pavement, wall, building, and concrete
surfaces. The size of all images is 448 × 448 × 3. The whole
dataset is divided into two parts: a training set with 9505
images and a test set with 1695 images. We report our test
set results in the result section.

B. Performance metrics

For semantic segmentation, mean Intersection Over Union
(mIoU) metric [12] is used for performance evaluation. How-
ever, here we have only two classes (background and crack).
Therefore, alongside mIoU, we also present other necessary
metrics such as Precision, recall and accuracy for measuring
model performance in crack detection. Due to the highly
imbalanced class distribution, the F1, precision and recall
metrics are more useful than the accuracy metric.

As this study targets resource-constrained embedded devices
for crack detection and segmentation, hence we also report
model parameters, GFLOPs (giga Floating Point Operations)
and FPS (frames per second) for determining model efficiency.

C. Implementation details

We deploy a polynomial learning rate strategy [5] to find the
optimal learning rate (LR) at each epoch. We first train for 5
epochs using a base rate of 0.01 and plot the model loss against
LR. We find the maximum change in loss occurs between
0.5 to 10−3 LR and therefore set these as the maximum and
minimum LR for training. We also use a polynomial learning
rate schedule, which decreases LR within this range as the
training progresses. To avoid early-stage gradient descent
issues in our distributed platform, we deploy gradual warm-up
strategy [13]. We use the stochastic gradient descent (SGD)
algorithm for optimizing the loss. Different loss functions are
explored during the study. Finally, standard data augmentation
techniques, `2 regularization, and dropout are used to avoid
model over-fitting.

D. Ablation study

Our encoder design is motivated by the backbone of SCM-
Net [29]. Therefore, in this section, we first demonstrate
the performance of both model’s encoder designs and then
compare the performance of the complete pipelines of both
the models. SCMNet accepts two inputs of different sizes and
utilizes the CMM module for feature mining. In contrast, the
proposed model accepts one input and uses the CRM module
for feature refinement. The first two rows in Table III illustrate
the difference in performance when the number of inputs is

TABLE III: Result of ablation study

No. of
input in the
backbone

CMM CRM Decoder mF1(%) P(%) R(%)

Two X - - 73.0 75.6 70.5
One X - - 75.9 78.3 73.6
One X - 82.2 84.6 80.0
One X X 85.3 88.6 82.3

TABLE IV: Comparison of SCMNet to SC-CrackSeg
Model Param. GFLOPs mF1(%) TT(s) IT(ms)

SCMNet 1.23M 3.29 83.5 182 8.8
SC-CrackSeg 1.24M 2.79 85.3 93 4.5

Fig. 5: Accuracy plot of few models against epochs

different at the encoder. The third row shows the proposed
encoder’s performance with the CRM, showing that use of
the CRM increases the model’s performance by 6-7%. We
replaced SCMNet’s decoder with an efficient decoder that not
only reduces model size, but also enhances performance by
2 − 3%. The overall comparison between SCMNet and the
proposed SC-CrackSeg is exhibited in Table IV. TT and IT
denote training time and inference time respectively. Both
models were trained under the same system configuration
using a batch size of 16 in each GPU. The average IT and TT
of the proposed SC-CrackSeg are 4.5 milliseconds (ms) and 93
seconds, almost half of SCMNet’s. The proposed model also
produces almost 2% more F1 score than SCMNet. Thus, the
results of our ablation study helps us to finalize the complete
design of our proposed model.

E. Model evaluation

We trained all the models under the same system config-
uration using the same dataset. This section presents all the
outcomes of our study. During data processing, we noticed
that the dataset contains noisy pixels which do not fall into
either background or crack class category. It can be observed
in Figure 6. The first image of the Figure 6 shows the RGB
image, the second displays the actual annotation provided by
the dataset, and the third exhibits the presence of noisy pixels.
The dataset’s background and crack classes have pixel values
of 0 and 255 respectively, while the noisy pixels range in
value between 0-9 and 245-254. We address this by grouping
noisy pixels into a void class. For training, We assign 0 as a
train-ID to the background class, 1 for crack class and 255 for
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Fig. 6: Processing of dataset. (a) RGB input, (b) Actual annotation, (c) Displaying noisy pixel, (d) Processed annotation

TABLE V: Performance evaluation of different models on crack test set

IoU F1 score Precision Recall
Model Accuracy BG Crack mIoU BG Crack mF1 BG Crack aP BG Crack aR

DeepLab [7] 98.43 98.50 52.28 75.39 99.24 68.66 83.95 98.97 79.25 89.11 99.52 60.57 80.05
Unet [] 98.18 98.2 48.97 73.58 99.09 65.74 82.42 98.96 70.62 84.79 99.23 61.49 80.20

SegNet [8] 98.27 98.30 52.17 75.23 99.14 68.57 83.85 99.09 71.15 85.12 99.19 66.17 82.63
DeepCrack [20] 98.52 98.57 55.89 77.23 99.28 71.70 85.49 99.13 77.95 84.54 99.44 66.38 82.91

MR-CrackNet [22] 97.88 97.19 47.69 72.80 98.95 64.58 81.76 99.11 62.59 80.85 98.79 66.71 82.70
SCMNet [29] 98.39 98.41 51.33 74.87 99.20 67.84 83.52 98.91 77.51 88.21 99.48 60.32 79.30
SC-CrackSeg 98.52 98.52 55.55 77.04 99.25 71.43 85.34 99.05 78.14 88.59 99.46 65.78 82.32

void. This can be observed in the fourth image of Figure 6.
While training all the models, we ignore the void class pixels.
Although, void class pixels are not considered to calculate the
performance metrics, the presence of void class in training
can wrongly influence the model’s performance. Hence, we
decided to ignore it in training.

Table V displays the performance of all the models which
are evaluated under the same system configuration. All the
models are trained for a large number of epochs depending
on the saturation point, typically 300 epochs as seen in in
Figure 5. To avoid multiple overlapping lines, we plot only
four models’ test accuracy against the number of epochs.
Figure 5 also shows that in contrast of other models, the
accuracy of UNet [26] was constant for first 50 epochs, and
only then began increasing. It seems that at the initial stage,
UNet takes time to learn the features from the scene. In
Table V we report class-wise all the performance measurement
metrics. Among the existing models, DeepCrack [20] produces
the best results, followed by DeepLabV3+ [7], SegNet [4],
and SCMNet [29]. It produces 77.23% mIoU, 85.49% mean
F1 score (mF1), 84.54% average precision (aP) and 82.91%
average recall (aR) value. Among all, MR-CrackNet [22]
produces low performance on the test set. Our reproduction of
FRRN [24] has a similar architecture to MR-CrackNet. Hence,
we did not train FRRN model with the crack dataset. Literature
[22] also shows that there is less than 0.5% difference between
the performance of MR-CrackNet and FRRN models on other
private datasets. In comparison to all, the proposed model SC-
CrackSeg generates 98.52% accuracy, 77.04% mIoU, 85.34%
mF1, 88.59% aP and 82.62% aR, similar performance like
DeepCrack. However, DeepCrack is over 12 times larger and
4 times slower than the proposed model. This clearly illustrates
the superior performance by the proposed model in terms of
real-time inference.

For qualitative performance analysis, we exhibit all models’
output in Figure 7 using CFD [28] test sample. Second image

of Figure 7 displays the actual annotation which is processed
to eliminate the noisy pixels (refer third image of Figure 7).
At first glance, it would be difficult to differentiate the output
produced by all the models. However, with a close look, it can
be observed that DeepCrack [20], DeepLab [5], SCMNet [29],
and the proposed SC-CrackSeg generate better curvature of the
crack, whereas the output produced by MR-CrackNet [22],
UNet [26] and SegNet [4] are more flat and thick. Moreover,
the edges of the MR-CrackNet’s output exhibit more boundary
degeneration as compared to others. Certain sections of the
crack, especially the start and end, are not correctly segmented
by UNet [26]. Among all outputs, the output of DeepCrack is
most close to the actual annotation, followed by DeepLab and
the proposed model. However, all the models fail to detect the
disjoint section in the crack due to the lack of contrast among
the pixels within the disjoint section.

As we are using a public crack segmentation dataset that
combines images from 12 different datasets, Figure 8 displays
the output produced by the proposed SC-CrackSeg using test
samples from eight of these datasets. The name of the dataset
is mentioned at the top of each RGB image. The second
column in Figure 8 exhibits the actual annotation of the
RGB image. It is observed that across all eight datasets, the
proposed model fairly performs well. However, some wrong
classifications can be observed due to the tiny shape of the
crack.

We utilised several strategies to mitigate class imbalance,
but surprisingly found these approaches reduced performance.
We implemented a per-pixel class-weighted loss as in other
crack segmentation literature [20], using the inverse of each
class’ pixel presence as the loss weight. This made the model
significantly over-predict the crack class. While crack accuracy
improved, it also introduced many false positives, and this
trend was seen even as the class imbalance was made less
extreme. We also implemented Focal Tsverky Loss [1] to
address the class imbalance, but found this caused significant
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boundary degeneration.
Alongside efficacy, we also focus on the model’s efficiency

as we target real-time crack segmentation using resource-
constrained embedded devices. Table VI displays the various
aspects of scene processing speed and efficiency for tested
models. Among all listed models, DeepLab is the largest
with 41 million (M) parameters and 78.8 GFLOPs. GFLOPs
depend not only on model size but also on input resolution
and the channel dimensions of feature maps. Hence, it can be
observed that although UNet has 31 M parameters but 1740
GFLOPs. Similarly, SegNet and MR-CrackNet also have large
GFLOP counts. Among all, SCMNet and the proposed model
have the lowest number of parameters and GFLOPs. As we
used tensorflow and keras to build all the models,
hence we saved the checkpoints in keras model format.
It is observed from the literature that while presenting the

inference time, the model is optimized using the TensorRT
engine and the corresponding FPS is presented. Instead of
presenting directly the TensorRT optimized result, we report
the FPS count of each type of model. We convert our keras
model to tensorflow (TF), TensorRT float-32
(TF-TRT32), TensorRT float-16 (TF-TRT16) and
TensorRT integer-8 (TRT-INT8) and present the
result in Table VI. It clearly demonstrates that the proposed
final TensorRT optimized model (TRT-INT8) can count
220 frames per second at 448 × 448 resolution, followed
by SCMNet (114 FPS). Among large models, DeepLab
generates 82 FPS, followed by DeepCrack (65), SegNet (56),
UNet (50), and MR-CrackNet (45). The training time column
defines the time required for training at each epoch, though
this also depends on the batch-size. Batch-size varies from
model to model depending on their size. The proposed model

Fig. 7: Output by all using CFD crack dataset test sample

Fig. 8: SC-CrackSeg predictions for different datasets samples in the test set

TABLE VI: Efficiency analysis

FPS of different types of model

Model Param.(M) GFLOPs Keras TF TF-TRT32 TF-TRT16 TRT-INT8 Training
time(s)

Model
size (MB)

DeepLab 41.0 78.8 20 21 32 48 82 415 158
Unet 31.0 1740.0 31 30 39 39 50 348 355

SegNet 29.4 245.0 32 32 44 45 56 316 225
DeepCrack 14.7 123.0 33 33 48 50 65 257 112

MR-CrackNet 17.7 331 14 14 25 28 45 1013 203
SCMNet 1.2 3.3 61 67 111 111 114 182 10.7

SC-CrackSeg 1.24 2.8 70 78 216 216 220 93 10.8
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took 93 seconds to complete an epoch which is the lowest
among all the models. From the model size column, it can be
clearly seen that the size of the keras checkpoint is small
for SCMNet and SC-CrackSeg. Hence, the data in Table VI
distinctly illustrates the proposed model efficiency compared
to the other models.

V. CONCLUSION

We have presented SC-CrackSeg, a new model developed
specifically for crack detection and segmentation. It is based
on a previous semantic segmentation model (SCMNet), but
contains significant adaptations to suit the mobile monitoring
of civil structures: we simplify the design from two to one
input, the context mining module is simpler but still effective,
and we also include a light-weight decoder with a new
semantic aggregation module which makes the model more
efficient. These new contributions have made SC-CrackSeg
both light and high performing on challenging crack detection
datasets. We have justified our choice of model design through
a comprehensive ablation study and demonstrated its superior
performance against other alternatives. Our implementation is
available at our official GitHub repository: https://github.com/
tanmaysingha/SC-CrackSeg.
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Abstract—A popular choice when designing a semantic seg-
mentation model is to adopt a pre-trained Deep Convolution
Neural Network (DCNN) as a backbone and add extra modules
for better semantic representation and competitive segmentation
results. However, the large number of parameters and substantial
memory footprint of these DCNN architectures make these large
models unsuitable for real-time applications on mobile devices.
To address the issue, this study proposes a very lightweight
model, called Short-term Dense Bottleneck Network (SDBNet).
By staging a series of bottleneck blocks, an efficient module,
termed SDB, is carefully designed and it provides diverse field-of-
views for better contextualization of varied geometrical objects
in a complex scene. For precise localization, a shallow branch
is deployed in parallel to SDB which shares the spatial details
with the SDB module at multiple stages. At the decoder end, a
simple, yet effective feature refinement and semantic aggregation
module is deployed for better context assimilation and region
identification. The proposed model is evaluated using three public
benchmarks and the results on Cityscapes (70.8%), Camvid
(73.2%) and KITTI (51.8%) test sets clearly demonstrate a com-
petitive performance under the real-time category. Among the
real-time scene parsing models under 1.5 million parameters, the
proposed SDBNet produces the state-of-the-art (SOTA) results on
all three datasets.

Index Terms—semantic segmentation, encoder-decoder, bottle-
neck, feature aggregation, real-time models, DCNNs

I. INTRODUCTION

Semantic segmentation is one of the most challenging tasks
in computer vision. Essentially, it assigns a class to each
pixel of an image, which is fundamental for higher level
scene analysis. For various real-time applications, such as
autonomous driving vehicles [3], medical image processing
[11], indoor-outdoor scene analysis [21], robotics [22], human-
computer interaction [42], semantic segmentation plays an
important role.

Traditionally, an encoder-decoder architecture is used in
scene parsing models. Basically, a succession of convolution
layers are deployed at the encoder which filters an input
image in the pyramidal layout format. It provides multi-scale
field-of-views of the input and helps the model extracting
meaningful information from the scene. For fusing the spatial
and contextual details and completing the pixel labelling task,
a decoder is deployed by combining a series of upsampling
and convolution layers. Relying on this pyramidal architecture,
a number of semantic models [4], [5], [16], [34], [40] have
been proposed, all of which employ a popular large DCNN
[27], [35] as the encoder. Such a large backbone usually leads

Fig. 1. Test mIoU vs Parameters (real-time model having less than 8M
parameters

to good segmentation performance. For instance, DeepLab [4]
has shown around 4% gain in model performance when DCNN
VGG-16 [27] is replaced by ResNet-101 [35]. Others, such
as [13], [33], [38], also employ a large backbone for good
performance, but they all have a large memory footprint.

To reduce the computational cost, a multi-branch encoder-
decoder design is introduced [15]. Instead of having a single
pyramidal branch at the encoder, multiple branches are de-
ployed for different input resolutions. Following this architec-
ture, numerous models [23], [24], [28], [39] have achieved
improved efficiency. On the other hand, increasing the depth
of the multi-branch encoder [19], [36] improves accuracy but
also increases computational cost.

We aim at achieving a much better trade-off between model
performance and model efficiency by introducing a lightweight
semantic segmentation model, called SDBNet. Our major
contributions are:

• A new module, called Short-term Dense Bottleneck
(SDB) which provides a better receptive field than ex-
isting bottleneck blocks.

• A careful design of the shallow branch to guide the deep
branch effectively.

• A novel feature refinement and semantic aggregation
modules at the decoder.

• A lightweight segmentation model, called SDBNet, with
only 1.4 million parameters and a comprehensive eval-
uation using three public benchmarks. Among existing
models having less than 1.5 million parameters, SDBNet
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produces the best results (Refer Figure 1).

II. RELATED WORK

In semantic segmentation, the encoder-decoder structure
was first known with FCN-8S [16] which revolutionized the
field by replacing the top Fully Connected (FC) layers with the
convolution layers to obtain a spatial map. This architecture
then inspired many others models, such as DeepLab [4],
DeepLabV3+ [5], PSPNet [40], HANet [6], PAG [13], HR-
NetV2 [33], OCR [38]. These models designed different mod-
ules on top of the encoder to achieve improved performance.
For instance, DeepLabV3+ [5], PSPNet [40] have shown the
benefits of multi-scale feature scaling for extracting contextual
details of various geometrical objects in the scene. They
proposed Atrous Spatial Pyramid Pooling (ASPP) and Pyramid
Pooling Module (PPM) for feature scaling. Models like HANet
[6], PAG [13] introduce an attention mechanism which provide
an additional information to guide the extraction of semantic
details. Models that employ these modules generally achieve
improved performance but they are not suitable for real-time
applications as their backbone is large.

A more viable approach for real-time computation is
the multi-branch encoder-decoder design [15]. Essentially, a
model has one dedicated deep branch which takes low reso-
lution input image and multiple shallow branches in parallel
which accept comparatively higher resolutions input image.
Models under this architecture such as ICNet [39], BisenetV1,
[37], ContextNet [23], BiseNetV2 [36], SCMNet [28], Swift-
NetV2 [19] have been proven to improve the efficiency during
inference as compared to offline models. However, they still
struggle during training due to pre-processing of multiple
resolutions input.

In contrast to the multi-branch approach, models like ES-
PNet [31], FANet [29], M2FANet [30], FSFFNet [32] are
introduced, based on a single-branch encoder. For better
contextual representation, these models focus on multi-stage
feature aggregation at the decoder which fuses spatial and
contextual details at different stages and reduces the spatial
gap among the feature maps. Most of these models have less
than 1.5 million parameters and less than 70% test accuracy
on Cityscapes [7].

Recently, DFANet [14] introduced a new design in which
feature maps are re-used by multiple sub-encoders. This
approach also exploits an FC attention module on top of
each sub-encoder for providing better receptive fields. DFANet
requires only one input of a fixed resolution and processes it
through the first sub-encoder. The global feature map produced
by the first sub-encoder is processed by the FC attention
module and then upsampled by a large factor for further use
by the next sub-encoder. Another new model, called STDC
[9] is introduced very recently which removes the structure
dependency of BiseNet [37] model and provides a dense
feature aggregation architecture in single-stream manner. It
uses ResNet [35] blocks and offers two different variants like
DFANet, ranging parameters from 8.4 - 12.5M. Due to this

large number of parameters, both of these models requires
large memory space.

III. PROPOSED METHOD

Figure 2 displays the complete pipeline of the proposed
model, named SDBNet. The following sub-sections describes
each part of our proposed model.

A. Encoder Design

1) Down-Sampling: We use down-sampling in the first two
stages of our proposed model. First, we deploy a 3×3 ConvX
block which contains a standard convolution (Conv), a batch
normalization (BN) and a ReLU layer. The Conv layer filters
the input image by a 3×3 kernel with stride 2 and produces an
output tensor of 512×1024×32 for an input of 1024×2048×
3. Next, we deploy a DSConvX block which has a similar
layer architecture except for the Conv one. Here, the standard
Conv layer is replaced by a Depth-wise Separable Convolution
(DSConv) layer. It also reduces the semantic dimension of the
input by half and produces an output of 256×512×48. Hence,
the fist two stages down-sample the original input size to a
quarter.

2) Deep Branch: The deep branch of the proposed encoder
is designed by assembling a series of 6 SDB module of
two types: SDB1 with stride 1 and SDB2 with stride 2
(see Figure 2). The Short-term Dense Bottleneck Residual
blocks with stride 2 reduces the input size by 2. Figure 3(a)
and 3(b) exhibit SDB1 and SDB2 respectively. We use 3
Bottleneck blocks (Bblocks) and one upsampling layer in each
SDB module. The layered architecture of each Bblock, as
shown in Figure 3(c), is motivated by the Mobile Bottleneck
Convolution (MBConv) block of MobileNetV2 [25] except
for the expansion ratio and residual connection. Whereas
MobileNetV2 proposes MBConv1 and MBConv6 blocks with
residual connection where expansion ratio is either 1 or 6
respectively, we use three different expansion rates (t): 2, 3
and 4 in our SDB modules. SDB2 accepts an input of size
H ×W ×C and the first Conv layer of a Bblock produces an
output of size H ×W ×2×C ′. Here, H,W defines the spatial
dimensions and C, C ′ symbolizes input and output channels
respectively. As the first layer of a Bblock expands the channel
of the output by t, we call it an expansion layer. Immediately
after that, a Depth-wise Convolution (DwConv) layer is used
to filter the input tensor along the depth. It also reduces the
number of parameters more than the standard Conv one does.
Finally, a point-wise Conv layer (projection layer) is used
for further refinement of the feature map. Another purpose
of deploying this layer is to assign the exact number of output
channels C ′ to the output tensor. Thus, each Bblock expands
the channel first, then filters the tensor along the expanded
depth and later squeezes the channel by a projection layer.
Hence, we achieve multiple receptive fields along the spatial
and channel dimensions inside each Bblock. The first two
Bblocks have a stride of 2 which means that the original
input size of SDB2 will be reduced to one quarter. We deploy
a upsampling layer with a pooling size of 2 in each SDB2,
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Fig. 2. The complete architecture of SDBNet
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Fig. 3. The layered architecture of the SDB module

followed by a Bblock with a stride of 1. Hence, the feature map
X4 (H/2×W/2×C ′) in Figure 3 achieves similar dimensions
of X1 (H/2 × W/2 × C ′). Finally, one lateral connection is
added between X1 and X4 to avoid any gradient vanishing
issues.

SDB1 with a stride of 1 has a similar layered architecture
like SDB2, except for one residual connection from the the
end of the previous SDB2 module to the end of the current
SDB1 module. If the SDB module in one stage is going to
repeat more than once, then this residual connection will help
the model retain all information and will forward it to the
next stage. Figure 3(a) illustrates the complete architecture of
SDB1. Here, we use an upsampling layer with pool size 1.
Figure 2 shows that at each stage we deploy 2 SDB modules,
in which each SDB2 is followed by SDB1. At each stage,
the input feature map has three different spatial and channel
dimensions based on the expansion ratio and stride respec-
tively. Thus, our proposed design of SDB modules provides
different receptive fields for capturing more contextual details
of different object shapes in the scene.

3) Shallow Branch: Figure 2 also displays the shallow
branch after the stage 2. It is parallel to the deep branch
and contains only three shallow blocks (ShallowX), one in
each stage. The layered architecture of ShallowX is simple
and shallow: two DSConvX blocks are staged together with
a 3 × 3 kernel at the main branch. The first DSConvX block
has stride 2, followed by the second one with stride 1. This
branch is designed to extract the boundary and texture details
from the low level feature maps and pass the knowledge to the
deep branch. Thus, ShallowX supplements the spatial details
to the deep branch at three shared points of the encoder.

B. Decoder Design

The decoder is after the stage 5 in Figure 2. Here, the size
of the global feature is 32 × 64 × 128 for an input image of
size 1024 × 2048 × 3. Although the size of the feature map
is small, but it contains rich contextual details which needs to
be decoded by the model for generating the segmented output
of similar input size. We mainly use three modules: Feature
Refinement (FR block), Semantic Aggregation (SA block)
and classifier.
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Fig. 4. Layered architecture of (a) FR module and, (b) SA module

1) Feature Refinement: The Feature Refinement (FR) mod-
ule refines the semantic feature maps produced by the encoder
at different levels. Figure 2 shows that deep features after stage
4 and 5 and shallow feature after stage 4 pass through the
FR module. This module is similar to Attention Refinement
Module (ARM) of BiseNet [37] except for the channel re-
duction layer. We introduce a Channel Reduction (CR) layer
inside ARM. Moreover, a CR layer is also deployed to provide
equal depth of each semantic feature. The layered architecture
of the FR module can be seen in Figure 4(a). Features at stage
3, 4, and 5 are down sampled by 1/8, 1/16, and 1/32 times.
Moreover, they also have different channel dimensions. Hence,
at first feature gets uniform channel dimensions and then the
noisy semantic details are filtered out through the FR module.
After refining the 5th stage deep global feature, it is scaled
up a bi-linear upsampling layer and then, fused with the 4th

stage-refined feature map.
2) Semantic Aggregation: By exploiting the Feature Fusion

Module (FFM) of [37], we design a Semantic Aggregation
(SA) module to be used twice in the pipeline. Comparing with
FFM, we replace the ConvX block after the concatenation
by a DSConvX block. After channel reduction, features from
stage 4 and 3 have 64 channels, but the spatial dimensions
are upsampled by 2 and 4 times. Hence, to reduce the number
of parameters, deploying DSConvX is necessary. The layered
architecture of SA is shown in Figure 4(b). The symbols

⊗

and
⊕

denote element-wise multiplication and addition on a
list of tensors of similar dimensions and return a single tensor.
For semantic aggregation, we use refined deep and shallow
features from the 4th and 3rd stages.

3) Classifier: We design the classifier with two DSConvX
blocks, one standard point-wise Conv layer, one dropout and
One softmax layer. Point-wise Conv assigns an equal number
of channels similar to the number of classes of the dataset,
dropout layer addresses over-fitting and softmax produces the
class prediction based on the pixels’ softmax scores.

TABLE I
LAYERED ARCHITECTURE AND PARAMETERS AND FLOPS OF EACH

SECTION OF ENCODER

Deep branch Shallow branch
Stage/Op Input C S Module N Module N Params. FLOPs

DS1 1024 × 2048 32 2 1K 1.0G
DS2 512 × 1024 48 2 2K 0.5G

Stage3 256 × 512 64 2 SDB 2 SBlock 1 172K 11.6G
Stage4 128 × 256 96 2 SDB 2 SBlock 1 371K 6.3G
Stage5 64 × 128 128 2 SDB 2 SBlock 1 650K 2.8G

Total parameters and FLOPs of the encoder 1196K 22.2G

TABLE II
RESULT OF ABLATION STUDY

Encoder Decoder mIoU Params. FLOPs FPS
DB SB FR SA Cl. (%) M G
X X 65.3 1.2 6.0 142
X X X 66.4 1.2 6.3 139
X X X X 66.9 1.3 7.3 105
X X X X X 67.5 1.4 11.5 80

IV. EXPERIMENT

A. Datasets

We use three popular urban street scene benchmarks:
Cityscapes [7], KITTI [1], Camvid [2]. As Cityscapes and
KITTI follow the same class labeling scheme, we train and
evaluate the proposed model using 19 classes, whereas for
Camvid, we use 11 classes. For Cityscapes, only fine annotated
images are utilized for training. The fine-tune dataset is fur-
nished with 2,975 training images, 500 validation images and
1525 test images. Although, it does not provide annotations
for test set. Like Cityscapes, KITTI also provides annotations
for 200 training samples only. Both data sets provide an
online evaluation server to measure the model’s performance
on the test set. Our test results of Cityscapes and KITTI are
independently obtained from it and are available on the servers.
Camvid does not provide an evaluation server for test set.
It has 267 images for training, 101 for validation and the
remaining 233 for testing. Following the literature, we use
only 11 classes out of 32 for the experiment. As KITTI and
Camvid are comparatively smaller data sets, so model is pre-
trained on Cityscapes.

B. Implementation Details

We train our model using a computer equipped with
NVIDIA TITAN RTX5000 GPUs. The software includes
CUDA 10.2 and horovod 19.5 [26] for parallel processing.
We select a batch size of 8 for all experiments. Following
[4], [24], [40] a polynomial learning rate strategy with a base
rate of 0.045 and a power of 0.9 is utilized. To avoid the
gradient descent challenge due to the distributed horovod
framework, we utilize the gradual warm-up strategy [10]. To
achieve the optimum model loss, the stochastic gradient decent
(SGD) optimizer is employed. We apply `2 regularization at a
few top layers. A dropout layer with 0.35 rate is also deployed
after the final convolution layer of the model. Several on-the-
fly data augmentation techniques, such as random horizontal
and vertical flip, adjusting brightness and contrast, random
cropping, resizing, clipping by value, are also utilized.
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TABLE III
PERFORMANCE ANALYSIS ON CITYSCAPES VALIDATION AND TEST SET

Type Model Parameters
(Million) FLOPs

Val.
Class

mIoU(%)

Val.
Category
mIoU(%)

Test
Class

mIoU(%)

Test
Class

iIoU(%)

Test
Category
mIoU(%)

Test
Category
iIoU(%)

FPS

PAG [13] - - - - - 75.7 - 55.8 -
PSPNet [40] 250.8 412.2G - - 81.2 59.6 91.2 79.2 0.78

OCR [38] > 76.0 > 1087G - - 81.8 65.9 92.7 83.9 -
HRNetV2 [33] 65.9 747.3G 81.1 - 81.6 61.2 92.2 82.1 -

HANet [6] 65.4 2138.0G 80.3 - 80.9 58.6 91.2 79.5 -
DeepLabV3+ [5] 43.0 1550.0G - - 82.1 62.4 92.0 81.9 0.25

Real
time SwiftNetV2 [19] 12.0 128G 72.2 - 75.9 - - - 41

STDC1 [9] 8.4 2910 74.5 - 75.3 - - - 4
DFANet [14] 7.8 3.4G 71.9 - 71.3 - - - 100
ICNet [39] 6.7 28.3G - - 69.5 - - - 30.5

BiseNet [37] 5.8 - - - 68.4 - - - 105
BiseNetV2 [36] 5.2 21.2G 73.4 - 72.6 - - - 156
FSFFNet [32] 1.3 50.8G 71.8 86.4 69.4 - 87.1 - -
M2FANet [30] 1.3 37.3G 68.5 85.3 68.3 38.7 86.9 67.8 9

FAST-SCNN [24] 1.2 14.9G 68.6 - 68.0 37.9 84.7 63.5 124
SCMNet [28] 1.2 38.3G 66.5 84.2 67.9 37.1 86.8 68.0 11
FANet [29] 1.1 11.4G 65.9 83.6 64.1 33.2 83.1 61.1 22

ContextNet [23] 1.0 37.5G 67.3 - 66.1 36.8 82.8 64.3 101
ENet [20] 0.4 3.8G - - 58.3 34.4 80.4 64 21

Real
time SDBNet 1.4 42.3G 72.3 87.5 70.8 42.0 87.2 69.4 98

TABLE IV
CLASS-WISE PERFORMANCE ON CITYSCAPES TEST SET

Model Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU
ENet 96.3 74.2 85.0 32.2 33.2 43.5 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.3

ContextNet 97.6 79.2 88.8 43.8 42.9 37.9 52.0 58.9 90.0 66.9 91.9 72.2 53.9 91.7 54.0 66.5 58.4 48.9 61.1 66.1
F.SCNN 97.4 81.6 89.7 46.4 48.6 48.3 53.1 60.5 90.7 67.2 94.3 73.9 54.6 92.9 57.4 65.5 58.2 50.0 61.2 68.0
FANet 96.7 75.3 88.2 35.4 37.8 45.7 51.3 57.4 90.4 64.3 92.9 71.8 50.4 91.6 48.9 62.0 51.9 46.3 49.0 64.1

M2FANet 97.4 78.6 90.1 37.1 42.9 46.8 63.8 68.3 92.1 66.5 94.5 79.3 58.8 93.6 48.5 62.1 53.2 48.7 65.9 68.3
SCMNet 95.4 71.8 87.1 34.9 36.8 44.2 43.6 58.0 89.4 56.5 90.8 66.7 38.3 88.1 41.5 55.8 41.4 32.1 61.9 59.7
SDBNet 97.9 81.4 91.0 47.4 47.6 55.2 64.5 69.7 92.0 68.5 94.4 79.4 59.1 93.6 53.2 70.4 62.9 51.6 66.1 70.8

C. Ablation study

Table I displays the layered architecture of each stage
at the encoder and corresponding parameters and FLOPs
contribution by each section. The first two stages down-sample
(DS) the input image by a quarter. C, S and N in Table
I define the number of output channels, stride and number
of repetition of each module/block. The proposed encoder
has total 5 stages out of which last three stages contribute
almost 86% of total model parameters. To keep the parameters
and FLOPS count low, we deploy DSConv layers wherever
required. The proposed encoder contributes 22.2G FLOPs at
resolution 1024 × 2048.

We conduct an experiment using Camvid [2] to see the
efficacy of each module of the complete pipeline (see Table
II). At the initial stage, we deploy the Deep Branch, a basic
decoder, and the classifier (Cl) model which produces 65.3%
mIoU on Camvid’s validation set while having only 1.2 million
(M) parameters, 6.0G FLOPs and 142 FPS. By adding the
Shallow Branch, our model achieves 1.1% increase in mIoU.
Parameters and FLOPs counts are slightly increased which
causes a small drop in FPS. It proves that the shallow branch
provides spatial guidance to the deep branch by sharing the

spatial details at three shared points. In the later stage, we
employ Feature Refinement (FR) module at the decoder and
0.5% performance growth has been recorded. Finally, we
deploy Semantic Aggregation (SA) module at two positions
in the decoder which improves the performance by 0.6% at
the cost of 1.4M parameters and 11.5G FLOPs. All the results
are obtained at an input resolution of 640 × 896.

D. Model evaluation

To keep things self-contained, we do not pre-train our
proposed backbone with ImageNet [8] like many existing
models. We only perform transfer learning from Cityscapes
to KITTI and Camvid as they are all about urban images.

1) Performance on Cityscapes: For completeness, Table
III shows the performance of both off-line and real-time
models. Apart from class and category IoU, the Cityscapes
evaluation server also generates instance based IoU in both
class and category-wise, which is included here. We also
present validation set results, model parameters, FLOPs and
FPS. The sign ’-’ in all the following tables indicates the
missing results in either the literature or Cityscapes’ public
leaderboard.
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TABLE V
FLOPS AND FPS AT DIFFERENT INPUT RESOLUTION

Resolution 384 × 1280 640 × 896 1024 × 2048

Model FLOPs FPS FLOPs FPS FLOPs FPS
ENet 8.7G 51 10.2G 49 37.3G 9

ContextNet 2.3G 121 2.7G 114 9.9G 55
FAST-SCNN 3.5G 144 4.1G 136 14.9G 62

FANet 2.7G 86 2.7G 75 11.4G 22
M2FANet 9.0G 39 10.4G 37 37.3G 9
SCMNet 8.9G 59 9.9G 56 38.3G 11
DFANet 55.3G 45 64.4G 40 236G 8

BiseNetV2 31.1G 95 35.8G 77 133G 24
SDBNet 9.9G 100 11.6G 80 42.3G 26

TABLE VI
PERFORMANCE EVALUATION ON CAMVID TEST SET

Model Pre-train Input size Test mIoU(%)
DeepLab [4] ImageNet 720×960 61.6
PSPNet [40] ImageNet - 69.1

V ideoPro [41] Cityscapes 720×960 81.7
ENet [20] - 360×480 51.3
ICNet [39] - 720×960 67.1

BiseNetV1 [37] Cityscapes 720×960 65.6
BiseNetV2 [36] Cityscapes 720×960 76.7

DFANet [14] ImageNet 720×960 64.7
FAST-SCNN [24] - 512×1024 57.5

FANet [29] - 512×1024 57.8
M2FANet [30] - 640×896 58.2
SCMNet [28] Cityscapes 640×896 71.3

SwiftNetV2 [19] ImageNet 448×448 73.7
SDBNet Cityscapes 640×896 73.2

Among offline models, DeepLabV 3+ [5] produces an
excellent result with 82.1% test class mIoU, followed by
OCR [38] (81.8%). Note that OCR is designed based on the
backbone HRNetV2-W48 [33] and its backbone was excluded
when measuring FLOPs and model parameters. Hence, we
could not present the exact parameters and FLOPs of OCR.
We note importantly that all these offline models are very large
and have high computational cost.

Among real-time models, SwiftNetRN-18 [19] produces
75.9% test class accuracy, followed BiseNetV2 [36] (73.4%)
and DFANet [14] (71.9%). However, all models are 3.5 to 9
times larger than the proposed model SDBNet. Our proposed
model competitively accomplishes 73.2% and 74.5% mIoU on
Cityscapes test and validation sets while having only 1.4M
parameters and 42.3G FLOPs at resolution 1024 × 2048.
Existing real-time scene parsing models such as ENet [20],
ContextNet [23], FAST-SCNN [24], FANet [29], M2FANet
[30], SCMNet [28] also have less than 1.5 million parameters,
similar to the proposed model. Hence, we focus more on
comparing the proposed model performance with all these
lightweight models. Table IV exhibits the class-wise model
performance on Cityscapes test set by the above listed models.
It can be observed that the proposed model achieves the best
result on 15 classes out of all 19 classes and also produces
more than 90% class mIoU on road, building, vegetation, sky,
and car classes.

Consistent with the literature, we also measure FPS to

compare the efficiency. The last column of Table III shows
the FPS count of all models: the proposed model achieves
98 FPS at input resolution 512 × 1024. To have a fair and
meaningful comparison, we reproduce some existing models
based on the literature and measured the FPS and FLOPs
count at different input resolutions on the same hardware
and system configuration. The results are depicted in Table
V which clearly demonstrate that the FLOPs count rapidly
increases and FPS count falls as the input resolution increases.

We note that the FPS and FLOPs counts of existing models
reported in Table V may not match with what reported the
literature as we suspect that other authors were not consistent
with the way they measured these metrics. For instance,
DFANet [14] claims 3.4 GFLOPs and 100 FPS at 1024×1024
resolution, whereas our reproduction of DFANet has 236
GFLOPs and 8 FPS at 1024×2048 input resolution with same
number of parameters. Based on our experiment performed un-
der the same hardware and system configuration, FAST-SCNN
[24], ContextNet [23] are more efficient than the other existing
real-time semantic models. However, these models have low
efficacy. In comparison, the proposed model SDBNetachieve
100, 80 and 26 FPS at three different input resolutions and
the FLOPs counts at the corresponding resolutions are also
moderately small than DFANet [14] and SwiftNetV2 [19].

2) Performance on Camvid: As shown in Table VI, Video-
Pro [41] produces an outstanding results (81.7%) among offline
models, possibly due to its use of a large synthetic dataset
and specialised pre-processing techniques. Among real-time
models, BiseNetV2 [36] produces the best test mIoU (76.7%),
followed by SwiftNetV2 [19] (73.7%). However, SwiftNetV2
performs better than BiseNetV2 on Cityscapes. These models
are 3.5 to 9 times larger than the proposed model, which
competitively achieves 73.2% test mIoU and 80 FPS on
Camvid. When compared to models having less than 1.5
million parameters, the proposed SDBNetindeed produces the
SOTA results on Camvid test set as evident in Table VI.

3) Performance on KITTI: The result of KITTI test set
obtained independently by its public evaluation server is
displayed in Table VII. Although KITTI provides input images
at 375 × 1280, we used an input size of 384 × 1280 due
to tensor size compatibility when training. Note that we did
not find any existing real-time semantic segmentation models
trained and evaluated by KITTI. Models listed in Table VII
are large and mainly designed for depth analysis. For instance,
PAG [13], SDNet [18], SGDepth [12] have a semantic decoder
along with the depth decoder. A semantic decoder is utilized
for providing semantic guidance while estimating the depth.
From the literature, we did not find model parameters, FLOPs
count and FPS of all these models. Semantic head of PAG,
SDNet and SGDepth (segmentation) generate 47.96%, 51.14%
and 43.1% mIoU on KITTI test set. Model VideoPro [41]
proposes a joint framework in which a video prediction model
is deployed to generate a large synthetic training set for
semantic training. Then it trains a deep existing semantic
model with the synthetic dataset as well as Cityscapes [7] and
Mapillary [17]. It also exploits a boundary label relaxation
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TABLE VII
PERFORMANCE EVALUATION ON KITTI TEST SET

Type Model Pre-train Class mIoU(%) Class iIoU(%) Cat. mIoU(%) Cat. iIoU(%) FPS FLOPs
SGDepth (Seg.) [12] Cityscapes 43.1 - - - - -

Off-line PAG [13] City. fine-tune 47.96 17.86 78.11 49.17 - -
SDNet [18] Cityscapes 51.14 17.74 79.62 50.45 - -

V ideoPro [41] Mapillary,
Cityscapes 72.8 48.7 88.9 75.3 - -

Real-time SDBNet Cityscapes 51.8 18.7 78.0 44.5 100 9.9G

Fig. 5. Colour map and prediction using Cityscapes validation sample

Fig. 6. Colour mapping and prediction using of Camvid validation sample

Fig. 7. Prediction using KITTI test sample

pre-processing technique. Thus, this joint strategy helps this
model achieve an excellent semantic result (72.8%) on KITTI
test set. In comparison, our proposed model generates 51.8%
test class mIoU while having 9.9G FLOPs, 1.4M parameters
and 100 FPS at 384 × 1280.

4) Qualitative results and analysis: Due to a lack of space,
we only present few samples. We refer the reviewer to the
supplemental material for more qualitative results.

Figures 5, 6, and 7 present the segmented output produced
by the proposed model using all three datasets. Figure 5 also
exhibits model prediction using Cityscapes validation samples
(third image in Figure 5). For Camvid, 11 classes are used
and the corresponding color codes are depicted in Figure 6.
The third image in Figure 6 displays the prediction on Camvid
validation set. Figure 7 displays model prediction generated by
KITTI evaluation server using KITTI test samples. Along with
the segmented output, server also provides a corresponding

error image which visually unveils the correct and incorrect
pixel labelling done by the model. It contains four colors:
red defines wrong class and wrong category, yellow represents
wrong class but correct category, green indicates correct class,
and black means that the ground truth label is not used for
evaluation. All these output clearly demonstrate the superior
quality of prediction generated by the proposed SDBNet.

V. CONCLUSION

We have proposed SDBNet, a novel semantic segmentation
model that achieves a best trade-off between efficacy and
efficiency, making it very suitable for real-time applications on
mobile devices. To achieve this, we design a very lightweight
encoder by assembling SDB modules in the deep branch.
The efficient design of SDB module provides better and
wider field-of-view for extracting contextual details from the
complex scene. Our lightweight shallow branch extracts low-
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level semantics and provides a spatial guidance to deep
branch for better semantic representation. It achieves the
best performance among real-time models having less than
1.5 million parameters on three popular benchmarks. Our
implementation is available at our official GitHub repository:
https://github.com/tanmaysingha/SDBNet.
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a b s t r a c t 

Recent studies show a significant growth in semantic segmentation. However, many semantic segmen- 

tation models still have a large number of parameters, making them unsuitable for resource-constrained 

embedded devices. To address this issue, we propose an efficient Shared Feature Reuse Segmentation 

(SFRSeg) model containing several novelties: a new yet effective shared-branch multiple sub-encoders 

design, a context mining module and a semantic aggregating module for better context granularity. In 

particular, our shared-branch approach improves the entire feature hierarchy by sharing the spatial and 

context knowledge in both shallow and deep branches. After every shared point in each sub-encoder, a 

proposed cascading context mining (CCM) module is deployed to filter out the noisy spatial details from 

the feature maps and provides a diverse size of receptive fields for capturing the latent context between 

multi-scale geometric shapes in the scene. To overcome the gradient vanishing issue at the early stage, 

we reduce the number of layers in the first sub-encoder and employ a unique multiple sub-encoders 

design which reprocesses the rich global feature maps through multiple sub-encoders for better feature 

refinement. Later, the rich semantic features generated by the efficient sub-encoders at different levels 

are fused by the proposed Hybrid Path Attention Semantic Aggregation (HPA-SA) module that effectively 

reduces the semantic gap between feature maps at different levels and alleviate the well-known bound- 

ary degeneration effect. To make it computationally efficient for resource-constrained embedded devices, 

a series of lightweight methods such as a lightweight encoder, a squeeze-and-excitation design, separa- 

ble convolution filters, channel reduction (CR) are carefully exploited. With an exceptional performance 

on Cityscapes (70.6% test mIoU) and CamVid (74.7% test mIoU) data sets, the proposed model is shown 

to be superior over existing light real-time semantic segmentation models whilst having only 1.6 million 

parameters. 

© 2023 Elsevier Ltd. All rights reserved. 

1. Introduction 

Due to the growing demand of building real-time applications 

for scene understanding in different industries such as in medicine, 

agriculture, civil engineering, video surveillance, robotics and car 

industries, an enormous amount of research work has been con- 

ducted in computer vision, especially in semantic segmentation 

field. It is a fundamental task for high-level scene understanding as 

it provides pixel-level recognition of each class of objects and back- 

ground in a given image. This can be visualized in Fig. 1 where pix- 

els belonging to the same class are clustered together and assigned 

a specific color code. Compared to object detection, semantic seg- 

mentation is known to provide better contextualization and more 

detailed information about the contents of the scene. However, it 

∗ Corresponding author. 

E-mail address: tanmay.singha@postgrad.curtin.edu.au (T. Singha) . 

is usually more challenging and expensive than object detection 

and hence it is an open challenge to design semantic segmentation 

models that perform well in real time and have low computational 

cost [1] and are robust to different lighting conditions [2] . 

Many recent semantic segmentation models adopt an encoder- 

decoder architecture, with the encoder extracting contextual de- 

tails from the scene and the decoder projecting the extracted 

semantic details back to the input space. Designing the en- 

coder effectively is crucial in semantic segmentation. Several high- 

performing semantic segmentation models, such as DeepLab [5] , 

PSPNet [6] , PAG [7] , HANet [8] , and CENet [9] , rely on popular 

large backbones, for example ResNet [10] and Xception [11] , which 

have been proven effective for generic classification tasks. How- 

ever, these backbone networks are often too large, making them 

unsuitable for real-time performance on resource-constrained ap- 

plications such as mobile and edge devices due to their large mem- 

ory footprint and high computational cost. 

https://doi.org/10.1016/j.patcog.2023.109557 
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Fig. 1. Pixel labelling in semantic segmentation. First column in the figure shows the RGB images taken from Cityscapes [3] and KITTI [4] data sets and the second column 

exhibits the corresponding colored ground truth in which pixels from same class are clustered together and received a specific color code based on the class. 

By leveraging smaller variants of the ResNet architecture 

(ResNet-18/ResNet-29/ResNet-50), many semantic segmentation 

models such as SwiftNetV2 [1] , and DFANet [12] have attempted 

to address the above issue. Nevertheless, they still have a signifi- 

cant number of parameters ranging from 7 million to 14 million. 

To further reduce the cost, some recent models, such as ShiftNet- 

MV2 [1] , SCMNet [13] , ContextNet [14] , Fast-SCNN [15] , FANet [16] , 

and ESPNet [17] have employed a more efficient backbone archi- 

tecture known as MobileNet [18] , which offers outstanding generic 

classification performance on mobile devices. 

All these existing semantic segmentation models mainly focus 

on improving contextual and spatial details of the scene by de- 

ploying different f eature scaling techniques (Pyramid Pooling Mod- 

ule (PPM) [6] , Atrous Spatial Pyramid Pooling (ASPP) [5] ), differ- 

ent attention mechanisms (Height driven Attention (HA) [8] , Fully 

Connected (FC) [12] ), and different f eature fusion techniques [15] . 

Feature scaling at different scales provides different sizes of the 

receptive field for filtering the scene and provides a better field of 

view. Feature aggregation combines shallow and global feature fea- 

tures for better semantic representation and the attention mecha- 

nism guides the feature learning process with high-level informa- 

tion. However, due to the complex nature of the scene, it is often 

visible that small objects having inconsistent geometric shapes are 

occluded by large objects or appeared as a part of the large ob- 

jects. For instance, the presence of a tiny pole in front of a large 

building may be ignored by the model, although the texture and 

color of the pole and building are different. Such effect can be par- 

tially reduced by feature scaling. The features extracted by the en- 

coder will have rich contextual details but also have low resolu- 

tion. Therefore, they should be scaled at all levels differently for 

finer semantic granularity. This will segment the regions by differ- 

ent sizes of the receptive field to address objects of varying ap- 

pearances in a scene. 

To achieve real-time performance, both efficacy and efficiency 

need to be improved. A desirable semantic segmentation model 

should therefore be small and found in the top right corner of 

the performance-inference speed figure as shown in Fig. 2 . Effi- 

ciency can be achieved by reducing the size of the backbone net- 

work, but this likely reduces efficacy. Similarly, handling higher- 

resolution input images can improve efficacy, but hampers model 

efficiency. To balance these objectives, the latest approaches, such 

as multi-branch encoder (ContextNet [14] , ICNet [19] ), customized 

lightweight encoders and decoders [12] have been proposed. An- 

other recent approach is to achieve a smaller network through a 

Fig. 2. The mIoU against the inference speed (FPS) for the Cityscapes test images 

( 512 × 1024 -pixel) using the proposed SFRSeg and the state-of-the-arts of real- 

time semantic segmentation models. The point size depicts the number of model 

parameters. Light models ( ≤ 2M (Million)) and large models ( > 2M) are shown in 

Blue and Yellow, respectively. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

process known as knowledge distillation [20] . However, the bal- 

ance is still far from being satisfactory. 

As the number of parameters affects how a model can be de- 

ployed in an application, the literature on semantic segmentation 

usually divides models into two groups: offline models having a 

very large number of parameters (hereinafter we define as more 

than 30 million based on the semantic segmentation literature) 

and real-time models having less number of parameters (less than 

30 million). In this work, we further divide the real-time category 

into two sub-groups: large real-time models that still contain a 

large number of parameters (more than 2 million) and light real- 

time models that have less than 2 million parameters. Quite of- 

ten offline models offer outstanding segmentation accuracy but at 

a huge computational cost whilst real-time models have lower per- 

formance with high efficiency. The open research question is how 

to design a real-time model effectively for reducing the perfor- 

mance gap. As this work specifically targets resource-constrained 

applications, such as mobile, embedded, and edge devices, we fo- 

cus on light real-time models having a much smaller number of 

parameters, which is more suitable for these special applications. 

To address this gap, the study proposes a novel semantic segmen- 
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tation model, named SFRSeg , suitable for resource-constrained 

devices through the following contributions: 

• A new yet effective lightweight shared multiple sub-encoders 

design for feature sharing and feature reusing across the back- 

bone. This approach is inspired by the shared multi-branch en- 

coder design [13] and provides better balance between effi- 

ciency and efficacy. 
• A lightweight context mining module, called Cascading Context 

Mining (CCM) that helps the model segment regions with dif- 

ferent receptive fields at different spatial dimensions of the in- 

put tensor. This addresses the issue of inconsistent visual ap- 

pearances in the scene. 
• A new Hybrid Path Attention Semantic Aggregation (HPA-SA) 

module for identifying the objects and localizing them accu- 

rately. Effectively, it reduces the semantic gap among the fea- 

ture maps and produces more accurate semantic segmentation. 

The paper is organized as follows. Section 2 surveys related 

work on different designs for semantic segmentation. Section 3 de- 

scribes our proposed model in detail. We then present comprehen- 

sive experiments in Section 4 which justify the proposed design 

and demonstrate that our proposed model SFRSeg achieves state- 

of-the-art performance among the existing light semantic mod- 

els having 2 million parameters or less on well-known benchmark 

data sets. Finally, concluding remarks are given in Section 5 . 

2. Related work 

The literature has seen a number of approaches for designing 

the semantic segmentation models. Whilst early models are gen- 

erally deep and computationally expensive to run [21] , many re- 

cent models have been constructed with much less number of pa- 

rameters and hence are more suitable for deployment on resource- 

constrained devices. We observed the following designs and tech- 

niques: 

2.1. One-branch deep encoder design 

An early model in this approach is FCN [21] which effectively 

converted a classification network to a segmentation one by re- 

placing its last fully-connected layer with a convolution layer so 

that a spatial map is obtained. It also marked the introduction of 

the encoder-decoder architecture in semantic segmentation. The 

encoder may employ an existing deep CNN backbone such as 

Xception [11] and ResNet [22] , to extract features whilst the de- 

coder performs a series of upsample and convolution layers, fol- 

lowed by a softmax layer at the end. In this design, there is only 

a single path from the encoder to the decoder. As it is simple 

and effective, many models have been built following this gen- 

eral architecture, such as DeepLab [5] , PSPNet [6] , CENet [9] , Seg- 

Net [10] , and DenseASPP [23] . However, models that perform well, 

such as DeepLab, CENet always employs a very large backbone and 

hence they are computationally inefficient in many real-time appli- 

cations, especially when the computational resources are limited. 

To address the drawback of these models, lightweight scene pars- 

ing models such as FANet [16] , and ENet [24] have been proposed 

by designing a more efficient backbone. However, the complexity- 

performance trade-off has not been satisfactory. 

2.2. Multi-branch encoder design 

Whilst being simple, the one-branch design is generally ineffi- 

cient as it requires a very large backbone network to resolve the 

semantic information across scales. For that reason, researchers 

soon realized a better approach to address this problem through 

a multi-branch design. This is particularly important for resource- 

constrained applications. The multi-branch design was first started 

by RefineNet [25] , then followed by various models such as Swift- 

NetV2 [1] , ContextNet [14] , ICNet [19] , and LERNet [26] . A multi- 

branch encoder design has one dedicated deep branch taking low- 

resolution input for contextual information and one or more shal- 

low branches taking high-resolution input for local feature maps. 

By dealing with only low-resolution input in the deep branch, this 

design is more computationally efficient whilst retaining high per- 

formance through the extraction of local details in the shallow 

branch. However, there are two outstanding issues with this de- 

sign: firstly, it needs to pre-process multiple copies of an input im- 

age for different branches independently which is not completely 

efficient; secondly, the branches often process data independently 

which does not promote the sharing of semantic knowledge across 

branches. 

To address these issues, BiseNetV1 [27] introduced a two- 

branch encoder design that requires only a single input image and 

then two intermediate branches (deep and shallow) are created 

for deep and local feature maps. In this case, the efficiency during 

training and inference is further improved. However, both branches 

process the input tensor independently until the feature fusion 

stage. Following this two-branch approach with single-size input, 

other models such as Fast-SCNN [15] , FANet [16] , BiseNetV2 [28] , 

STDC [29] were introduced. 

Recently a new model, called SCMNet [13] has been developed 

based on a new approach called, shared-branch design. It has two 

separate branches at the encoder which takes inputs at two differ- 

ent resolutions. However, instead of having independent deep and 

shallow branches, SCMNet proposed a knowledge sharing approach 

between the deep and shallow branches. Such a shared design en- 

hances the semantic and contextual details at the encoder side. 

2.3. Multi-feature scaling technique 

The encoder produces rich semantic feature maps at different 

scales. The global feature map at the end of encoder network has 

more contextual details despite having the lowest spatial dimen- 

sions. Extracting more surrounding details from the scene at this 

lowest resolution would be difficult due to the presence of varied 

objects of different geometrical shapes. Hence, several multi-scale 

feature scaling techniques such as ASPP [5] , and PPM [6] were in- 

troduced to provide a better field of view at different scales. These 

scaling techniques have been utilized by several real-time seman- 

tic segmentation models such as ContextNet [14] , Fast-SCNN [15] , 

FANet [16] , and DenseASPP [23] ,. 

Similar to this feature scaling technique, some semantic models 

such as SCMNet [13] , and BiseNet [28] introduced a feature refine- 

ment module which not only provides various sizes of the recep- 

tive field but also refines the feature maps at different levels of the 

encoder network. 

2.4. Attention mechanism 

The attention mechanism is a useful technique in computer vi- 

sion, similar to feature scaling and feature refinement. Usually, an 

attention module is deployed on top of the encoder to better cap- 

ture feature dependencies in the spatial and channel dimensions. 

Following this strategy, CDN [30] introduced two attention mod- 

ules, called channel and spatial contextual modules, which exploits 

feature inter-dependencies in both dimensions for a better fea- 

ture representation at the decoder side. Different from CDN [30] , 

DFANet [12] exploited the attention module for enlarging the re- 

ceptive field by adding one FC module on top of each sub-encoder. 

There are many existing deep models which utilize the attention 

mechanism as a guiding vector for better scene parsing. HANet 
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[8] introduced a height-driven attention vector which helps the 

feature maps learn more contextual details from the surround- 

ing. GANet [31] proposed a Spatial Gated Attention (SGA) module 

for pixel-level attention information and highlighting the regions 

of interest for semantic pixel localization. Similarly, PAG [7] intro- 

duced a Pixel-wise Attentional Gating (PAG) unit that can be inte- 

grated with any existing semantic models to learn spatially varying 

pooling fields for enhancing model performance. In the literature 

[7] , PAG is integrated with each residual block of ResNet. 

2.5. Other techniques 

There are some pre-processing or post-processing techniques 

which can be used for improving semantic segmentation perfor- 

mance. For instance, VideoPro [32] proposed a joint strategy in 

which a video prediction model is utilized to synthetically gener- 

ate an additional training set for a semantic segmentation model. 

It also deployed a boundary label relaxation pre-processing task 

which makes training robust to label noise and propagation arti- 

facts along object boundaries. Such pre-processing techniques im- 

prove the semantic performance of any existing scene parsing 

models. Similar, like boundary label relaxation, STDC [29] deployed 

a detail head along with the semantic head which generates a de- 

tailed ground truth (GT) of object boundaries from the actual se- 

mantic segmentation GT. This detailed boundary GT is used as a 

guidance vector for spatial details during the training. It is dis- 

carded in the inference phase. 

Other models such as SDNet [33] , SGDepth [34] followed the 

one branch encoder design. These models are mainly designed 

for stereo and depth analysis. However, they have multiple de- 

coders: one decoder is used for depth analysis and the other one is 

used for semantic segmentation. Each decoder head complements 

each other. More recently, TopFormer [35] has been specifically de- 

signed for mobile devices, significantly reducing the computational 

burden of vision transformer-based approaches whilst achieving a 

good trade-off between accuracy and latency. 

3. Proposed method 

The previous study [13] has shown the effectiveness of the 

shared branch design over the independent multi-branch design 

for semantic segmentation. Inspired by the knowledge sharing ap- 

proach among the shallow and deep branches, we adopt the shared 

branch technique for designing the proposed encoder. For better 

coarse-to-fine refinement, we also use a new cascading multi sub- 

encoders architecture with successively decreasing stages but in- 

creasing repetition of convolution blocks in top stages. Here, a 

stage defines a level where the size of the input tensor is down- 

sampled by 2. Hence, the rich semantic feature maps at different 

levels from the first sub-encoder are processed multiple times by 

the successive sub-encoders for better contextualization. The de- 

tailed description of each part of the proposed network architec- 

ture is given below. 

3.1. Shared-branch approach 

We design our first sub-encoder, in which the deep and shal- 

low branches share their extracted feature maps at three points. 

Unlike SCMNet [13] , our model only requires one high-resolution 

input image and creates both deep and shallow branches at the 

second stage using down-sampling technique. This reduces the 

training complexity and makes the model more efficient for real- 

time applications. Table 1 illustrates the layered architecture of 

the down-sampling module, which consists of a standard convo- 

lution (Conv) layer followed by a depth-wise separable convolu- 

tion (DSConv) layer. After down-sampling, two separate branches 

Table 1 

Layered architecture of the down-sampling module and shallow 

branch. 

Down sampling module 

Stage Input Operator Output 

1 1024 × 2048 × 3 3 × 3 Conv 512 × 1024 × 24 

2 512 × 1024 × 24 3 × 3 DSConv 256 × 512 × 32 

Shallow branch 

3 256 × 512 × 32 3 × 3 DSConv 128 × 256 × 48 

Pass through KSB at 3rd stage 

4 128 × 256 × 48 3 × 3 DSConv 64 × 128 × 80 

Pass through KSB at 4th stage 

5 64 × 128 × 80 3 × 3 DSConv 32 × 64 × 96 

Pass through KSB at 5th stage 

(deep and shallow) are created. The shallow branch extracts spa- 

tial details, and the deep branch extracts contextual details from 

the input tensor. The layered architecture of the shallow branch of 

the first sub-encoder is shown in Table 1 , and the complete archi- 

tecture of the deep branch in each such-encoder is displayed in 

Table 2 . The successive sub-encoders do not have separate shallow 

branches; they retrieve shallow features at different levels from the 

first-sub-encoder’s shallow branch. 

Each branch of the sub-encoders is designed for the use in mo- 

bile devices with low computational power. In the shallow branch, 

three DSConv layers are assembled together to extract boundary 

details from the input at three different levels. In contrast to the 

standard Conv layer, DSConv first convolves a three dimension (3D) 

input tensor with a two dimension (2D) filter along each channel 

of the tensor. Later, the output of each channel is stacked together 

to get the final output of the 3D input tensor. The advantage of 

employing DSConv instead of Conv is best shown in terms of the 

floating point operations (FLOPs) and parameters as follows: 

FLOPs Conv = [ ( K w × K h ×C i ) + ( K w × K h ×C i − 1 ) + 1 ] 

×C o × H o ×W o = 2 × K × K ×C i × H o ×W o ×C o , (1) 

FLOPs DSConv = 2 × K × K ×C i × H o ×W o × 1 

+ 2 × 1 × 1 ×C i × H o ×W o ×C o , (2) 

params Conv = ((K × K ×C i ) + 1) ×C o , (3) 

params DSConv = ((K × K ×C i ) + 1) × 1 + ((1 × 1 ×C i ) + 1) ×C o . 

(4) 

In Eq. (1) , (K w × K h ×C i ) and (K w × K h ×C i − 1) represent the 

amount of multiplication and addition operations performed by a 

standard Conv layer, where K w , K h define the kernel size, C i , C o de- 

fine number of filters of input and output tensors, and H o , W o rep- 

resent the spatial dimensions of the output tensor. If a square filter 

is used for convolution, then K h and K w are replaced by K. By com- 

paring FLOPs and the number of parameters, it can be seen that 

DSConv reduces the complexity by approximately K 2 times. After 

every DSConv layer in the shallow branch of first sub-encoder, the 

feature map passes through a Knowledge Sharing Block (KSB). It 

consists of a simple addition layer followed by a Cascading Context 

Mining (CCM) module which refines the added feature for better 

semantic representation. Their details are given subsequently. 

3.2. Deep branch 

The design of our proposed deep branch is different from SCM- 

Net [13] . Due to our cascading multiple sub-encoders design, uti- 
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Table 2 

Layered architecture of the deep branch. Here, KSB defines Knowledge Sharing Block and FRB defines Feature Reuse Block. 

Stage Input Operators 

Width mul. 

( M w ) 

Depth mul. 

( M d ) stride 

Dilation 

rate ( r) Output 

Layered architecture of the deep branch of sub-encoder1 

3 256 × 512 × 32 MBC1,k3 × 3 1.0 1 2 1 128 × 256 × 32 

- 128 × 256 × 32 MBC6,k3 × 3 1.5 2 1 2 128 × 256 × 48 

Pass through KSB at 3rd stage 

4 128 × 256 × 48 MBC6,k3 × 3 1.33 2 2 1 64 × 128 × 64 

- 64 × 128 × 64 MBC6,k3 × 3 1.25 1 1 1 64 × 128 × 80 

Pass through KSB at 4th stage 

5 64 × 128 × 80 MBC6,k3 × 3 1.2 1 2 1 32 × 64 × 96 

Pass through KSB at 5th stage 

6 32 × 64 × 96 MBC6,k3 × 3 1.33 1 2 1 16 × 32 × 128 

Upsample it by 8 times and pass through FRB 

Layered architecture of the deep branch of sub-encoder2 

Pass through KSB at 3rd stage 

4 128 × 256 × 48 MBC6,k3 × 3 1.33 3 2 1 64 × 128 × 64 

- 64 × 128 × 64 MBC6,k3 × 3 1.25 1 1 1 64 × 128 × 80 

Pass through KSB at 4th stage 

5 64 × 128 × 80 MBC6,k3 × 3 1.2 1 2 1 32 × 64 × 96 

Pass through KSB at 5th stage 

6 32 × 64 × 96 MBC6,k3 × 3 1.33 1 2 1 16 × 32 × 128 

Upsample it by 4 times and pass through FRB 

Layer architecture of the deep branch of sub-encoder3 

Pass through KSB at 4th stage 

5 64 × 128 × 80 MBC6,k3 × 3 1.2 2 2 1 32 × 64 × 96 

Pass through KSB at 5th stage 

6 32 × 64 × 96 MBC6,k3 × 3 1.33 1 2 1 16 × 32 × 128 

Upsample it by 2 times and pass through FRB 

Layered architecture of the deep branch of sub-encoder4 

Pass through KSB at 5th stage 

6 32 × 64 × 96 MBC6,k3 × 3 1.33 2 2 1 16 × 32 × 128 

Table 3 

Bottleneck residual block. 

Input Operator Output 

h × w × c 1 × 1 Conv,1/1, Relu h × w × tc

h × w × tc 3 × 3 DwConv, 3/s, Relu h/s × w/s × tc

h/s × w/s × tc 1 × 1 Conv,1/1, - h/s × w/s × c ′ 

lizing the SCMNet backbone would significantly increase the num- 

ber of parameters and FLOPs. For instance, our proposed deep 

branch of the first sub-encoder has only 0.44 million (M) param- 

eters and 1.99G FLOPs, while SCMNet has 1.06 M parameters and 

2.96G FLOPs at a resolution of 640 × 896 px. Therefore, we propose 

here a very lightweight deep branch at the first sub-encoder. How- 

ever, extracting rich contextual details by using such a lightweight 

deep branch is difficult. As a result, we propose a cascading multi- 

ple sub-encoders design where subsequent sub-encoders reprocess 

features from the first sub-encoder. The detailed layered architec- 

ture of the deep-branches of all sub-encoders is shown in Table 2 . 

A fundamental difference between our model and many oth- 

ers is that we design the backbone from scratch. Each sub-encoder 

is designed by stacking a series of MobileNetV2 [18] bottleneck 

blocks (MBConv). Studies have shown that MBConv blocks are 

more efficient for mobile devices compared to other existing resid- 

ual blocks [11,22] . Due to the optimized bottleneck architecture 

and the effective utilization of Depth-wise Convolution (DwConv) 

layer at the expansion stage, it produces fewer parameters and 

consumes less memory. Table 3 shows the layered architecture of 

MBConv block of MobileNetV2 [18] with an expansion factor t . 

For an input feature map F i with the shape of h × w × c, an MB- 

Conv block of MobilenetV2 first expands the feature map along the 

channel and produces an output of h × w × tc. In the next layer, an 

MBConv block filters the feature map along the channel dimension 

by a 3 × 3 filter. Using a DwConv layer significantly reduces the 

computational cost compared to a Conv layer. Thus, we control the 

computational cost of the proposed backbone and make the model 

more efficient in real-time environments, by incorporating MBConv 

blocks in the deep branch of every sub-encoder. MobileNetV2 pro- 

vides two different types of bottleneck blocks: MBConv1 and MB- 

Conv6. The suffixes 1 and 6 define the expansion ratio t at the in- 

termediate stage of the bottleneck block. The depth multiplier ( M d ) 

in Table 2 specifies the number of repetition of MBConv blocks 

of varying channels in the deep branch of each sub-encoder. The 

proposed model employs 8, 6, 3, and 2 MBConv blocks in sub- 

encoder1, sub-encoder2, sub-encoder3 and sub-encoder4 respec- 

tively. The width multiplier ( M w ) in Table 2 regulates the number 

of channels of the output feature map ( F o ) of each MBConv block. 

The range of the width multiplier is from 1.0 to 1.5 and the final 

feature map has maximum 128 channels, which is known to be 

sufficient for containing color information of each pixel [12] . We 

have also attempted to increase the number of channels to 160 and 

could not achieve any further improvement whilst, incurring addi- 

tional cost. The stride in Table 2 defines the shift amount when 

filtering an input with a kernel. Thus, it reduces the size of the in- 

put feature map by 2 and creates 6 stages in the first sub-encoder. 

We use a dilation rate of 2 wherever the stride becomes 1 to pro- 

vide a larger receptive field. 

Motivated by [12] , this work reuses the final global feature of 

each sub-encoder in the next sub-encoder. For instance, the global 

feature of sub-encoder 1 is upsampled by 8 times before it is 

fed as an input to sub-encoder 2. Likewise, the global features 

of sub-encoder 2 and sub-encoder 3 are upsampled by 4 and 2 
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Fig. 3. Multiple sub-encoder design. Blue dotted arrows denote upsampling between sub-encoders. Green dotted arrows denote lateral connections between equivalent 

layers in different sub-encoders. Black dashed arrows denote lateral connections between equivalent Knowledge Sharing Blocks (KSB) in different sub-encoders. Best viewed 

in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

times respectively before they get re-filtered by the subsequent 

sub-encoders. The blue dotted arrows in Fig. 3 shows the process 

of upsampling from one sub-encoder to successive sub-encoder. 

After upsampling the global feature map, it passes through Fea- 

ture Reuse Block (FRB). Detail about FRB is discussed later. Reusing 

global feature map is known to extract more contextual details of 

every pixel. The literature has shown that the global feature map 

contains more surrounding information of each pixel than the lo- 

cal one. Therefore, filtering deep features repeatedly through the 

multiple sub-encoders will extract more context from the scene 

compared to a sub-encoder. In the proposed multiple sub-encoders 

design, deep features at the 6 t h , 5 t h and 4 th stages are re-filtered 

by 4, 4, and 3 times respectively. Deeper features are re-processed 

more number of times than the intermediate and shallow features. 

Fig. 3 demonstrates such feature reuse. The horizontal green dotted 

arrows exhibit the lateral connections among the feature maps of 

different sub-encoders at the same level. As each KSB block takes 

two input(one shallow and one deep feature maps), a lateral con- 

nection (black dotted arrow) can be seen in Fig. 3 from the previ- 

ous sub-encoder to next sub-encoder among the KSB modules at 

same level. 

Fig. 3 displays that, compared to the first sub-encoder, the num- 

ber of total stages in the successive sub-encoders is reduced, al- 

though the number of MBConv blocks in the deeper stages of suc- 

cessive sub-encoders are increased. For instance, in sub-encoder 

2, features at the 4 t h , 5 t h and 6 t h stages from sub-encoder1 are 

reused and the number of MBConv blocks at the 4 th stage is in- 

creased. Similarly, features at the 5 th and 6 th stages are reused by 

sub-encoder3 and the number of MBConv blocks at the 5 th stage 

is increased. Thus, we make the deep branch in the successive sub- 

encoders slightly deeper mainly for the global feature maps. 

3.3. Knowledge sharing block 

Tables 1, 2 show that after the 3 rd, 4 th and 5 th stages, shal- 

low and deep features pass through the Knowledge Sharing Block 

(KSB), which shares more semantic details among the branches. 

The shallow branch is designed to extract texture details from the 

input image whereas the deep branch is exploited for mining more 

contextual details from the scene. However, both branches have 

the coarsest details initially that need to be refined properly at 

the early stages. Therefore, to filer out the noisy details and for 

the accurate object localization, KSB is deployed after every shared 

point. It contains a simple addition operation followed by a CCM 

module. The addition operation combines the knowledge from the 

shallow and deep branches, whereas CCM filters the fused feature 

map through its cascading design and produce a refined output 

(see Fig. 4 (c)). 

Cascading Context Mining (CCM) module is developed to bet- 

ter refine the feature map through its own cascading multiple 

branches. Inspired by ASPP [5] and DenseASPP [23] , we first review 

them and then explain key architecture differences in our design 

of CCM. As shown in Fig. 4 , ASPP uses 5 parallel branches (one 

image pooling and four atrous Conv branches with higher dilation 

rates) to scale the same input with different field of views, whereas 

DenseASPP [23] uses a dense combination of sequential and par- 

allel atrous Conv branches with five different dilation rates. The 

dense cascading design, which is beneficial for enlarging the recep- 

tive fields, does improve the performance. However, it is computa- 

tionally demanding: a single DenseASPP module generates 10.6 M 

parameters with 128 input and output channels, which is pro- 

hibitive for resource-constrained applications. To specifically ad- 

dress this limitation, we make the following changes when design- 

ing CCM: 1) we deploy 4 branches instead of 5; 2) we utilize one 

point-wise Conv and three dilated DSConv branches with higher 

dilation rates instead of image pooling and Conv branches; 3) we 

use a single skip connection from the output of point-wise Conv 

branch to the input of second and third DSConv branches instead 

of using dense cascaded connections; 4) we use addition opera- 

tions at the third and forth branch instead of concatenation; and 5) 

we establish a lateral connection between the initial input to final 

concatenated output to avoid the gradient vanishing problem. All 

these modifications reduce the number of parameters and GFLOPs 

count of CCM. The proposed module has only 8128 parameters, 

which is 22 and 130 times smaller than ASPP and DenseASPP, re- 

spectively. 
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Fig. 4. ASPP vs DenseASPP vs CCM. Different colors represent different branches. 

Fig. 4 illustrates the design of ASPP, DenseASPP and the pro- 

posed CCM module, clearly showing the differences between these 

three modules. Each branch is defined by a different color in Fig. 4 . 

In ASPP, all four branches receive an input from the same source 

(black arrows), and output of each parallel branch is concatenated 

at the end (green arrows). In contrast, DenseASPP and CCM have 

branches that are connected sequentially, with each branch receiv- 

ing input from the previous branch. However, in DenseASPP, there 

are dense lateral connections from the input to the output of all 

the branches (displayed by different colored arrows in Fig. 4 (b)) for 

feature concatenation. In CCM, only two lateral connections exist, 

from the output of the first branch to the output of the second and 

third DSConv branch (yellow and blue arrows in Fig. 4 (c)). The first 

branch of CCM is a fine-tuned branch which uses a standard 1 × 1 

Conv layer for feature refinement. To lower the computational cost, 

it reduces the number of channels of the input feature map by 4 

times. In the DSConv branches, we use (6, 12, 18) dilation rates 

respectively. Due to the cascaded design, instead of receiving the 

same input, each DSConv branch obtains the input from the pre- 

decessor branch fused with the fine-tuned branch output by addi- 

tion operation. Thus, the shared feature gets more refinement and 

passes to the next stage of the sub-encoder. 

3.4. Feature reuse block 

Deploying the feature reuse block has two main reasons. First, 

excessive upsampling of the global feature map by 2 n times where 

n = 3 , 2 , 1 causes boundary degeneration effect. Second, channel 

reduction (CR) is required after upsampling to provide the same 

number of channels so that features from the same stages of the 

previous sub-encoder can be fused together. Fig. 5 displays the lay- 

ered architecture of FRB. Here, the global feature of the first sub- 

encoder is up-scaled by 2 3 times to produce the similar height 

and width of the third stage feature map. A bi-linear interpola- 

tion method is used for up-scaling the global feature map. Later, 

a Depth-wise convolution (DwConv), a batch normalization and a 

ReLU layer are deployed to reduce the boundary degeneration ef- 

fect. To provide the exact channel dimension of the feature map 

in the third stage, we deploy a point-wise Conv layer with 48 fil- 

ters. Thus, it makes the global feature map of the sub-encoder1 

reusable by the sub-encoder2. Once, the feature map is ready for 

use by the next sub-encoder, then features from the same stages 

of previous sub-encoder are fused with it through lateral connec- 

tions. Such lateral connections reduce the gradient vanishing issue 

and eliminate the need for shallow branch in the successive sub- 

encoders. After each residual correction, we deploy KSB for better 

feature representation. 

3.5. Decoder 

The proposed decoder is divided in two parts: a Hybrid Path 

Attention Semantic Aggregation (HPA-SA) module and a classifier. 

The first part takes all the feature maps from the different levels of 
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Fig. 5. Feature Reuse Block. BN means batch normalization. 

Fig. 6. Decoder design. Up-pointing arrows mean upsampling. Down-pointing ar- 

rows mean downsampling. Dashed arrows mean lateral connections. CR means 

channel reduction. CCM means cascade context mining module. SCB means sepa- 

rable convolution block. Best viewed in color. 

the encoder and fuses them together, and the second part assigns 

a class label to each pixel based on the softmax score. 

3.5.1. Hybrid path attention-semantic aggregation 

The complete architecture of HPA-SA is displayed in Fig. 6 . The 

encoder extracts rich features at different levels, and we use the 

entire feature hierarchy from the encoder to allow the decoder to 

reconstruct the segmented output based on it. Features at differ- 

ent stages have different spatial and channel dimensions. We de- 

ploy channel reduction (CR) to provide an equal depth to all the 

feature maps from the different stages. A CR block contains one 

1 × 1 Conv layer with 64 filters having a stride of 1. After CR, we 

create an additional stage feature map F 7 by simply down sam- 

pling the F 6 feature map by the max pooling operation. This ad- 

ditional level feature map loses texture details due to the low 

resolution, but it contains more details about the background of 

the scene. It also adds another feature hierarchy for multi-scale 

feature scaling. For instance, the proposed encoder produces a 

global feature with the shape of 16 × 32 × 128 for an input im- 

age of 1024 × 2048 × 3 . The CR block of HPA-SA transforms it to 

a 16 × 32 × 64 feature map. Later, it creates a F 7 feature map with 

the shape of 8 × 16 × 64 . Thus, it creates three deep ( F 7 , F 6 , F 5 ), one 

intermediate ( F 4 ) and two shallow ( F 3 , F 2 , F 1 ) feature maps for se- 

mantic aggregation through a hybrid path attention mechanism. 

The first path in HPA-SA is a mixed directional path, in which the 

top features are bi-linearly upsampled to acquire the same spatial 

dimension of the previous level feature map through a top-down 

approach, and the bottom feature maps are down-sampled to pro- 

vide the same size of the next level feature map through a bottom- 

up approach. The top-down signal propagation helps fuse global 

features with the local one. On the other hand, the bottom-up sig- 

nal flow enhances the object localization by blending local spatial 

details with rich semantic feature maps. Thus, this hybrid approach 

in the first path blends the top-down and bottom-up signals with 

the intermediate feature map F 4 at the 4 th level. After fusing the 

features at the 4 th stage, the output is refined by our CCM for 

better semantic representations in the next successive paths. The 

down-sampling process continues through path2 till the top stage 

(7 th ) for better region identification at different feature hierarchy 

levels. Lastly, a top-down path (path3) is introduced for final as- 

similation of contextual details. As the signal passes through multi- 

ple paths, the model may encounters the gradient vanishing prob- 

lem. To address this, lateral connections are used, which are illus- 

trated by the dotted lines in Fig. 6 . The top-down movement is 

displayed by the blue arrow and bottom-up direction is shown by 

the green arrow. After every upsample or down-sample operation, 

the features pass through a Separable Convolution Block (SCB) that 

prevents boundary degeneration effects due to scaling the feature 

map up or down. It contains one DSConv layer followed by a BN 

layer. Thus, HPA-SA produces the finest semantic feature map by 

aggregating multi-levels features through the hybrid path attention 

mechanism. 

3.5.2. Classifier 

The classifier module is shown in Fig. 3 . It takes the output 

from HPA-SA, which is a feature map with the shape of H/ 2 ×
W/ 2 × 64 where H and W define the height and width of the orig- 

inal input image. Classifier filters it through a sequentially con- 

nected two DSConv layers and one point-wise Conv layer. Inspired 

by the literature [15] , DSConv layers are utilized for better feature 

refinement and a point-wise Conv layer is deployed for assigning 

C c channels to the output feature map, where C c characterizes the 

number of classes of the data set. Finally, one upsample and one 

softmax layer are deployed on top of the decoder. Softmax is used 

as an activation function which assigns a label or class to each 

pixel based on their weighted sum values. Thus, the segmented 

output is generated by the proposed SFRSeg . 

4. Experiments 

The proposed model SFRSeg is evaluated on four data sets, in- 

cluding three urban street scenes data sets (Cityscapes [3] , KITTI 

[36] and CamVid [37] ), and one indoor object scenes dataset [38] . 

We strictly follow the evaluation protocols of these data sets and 

use the following performance metrics: class and category mean 

Intersection over Union (mIoU), instance Intersection over Union 

for each category (iIoU), the number of parameters, Floating Point 

Operations (FLOPs), and Frames Per Second (FPS). 

As mentioned in the introduction, this work is focused on 

developing a light model that is more suitable for resource- 

constrained applications such as mobile and embedded devices. 

Therefore, our primary interest is to compare SFRSeg with other 

light models having 2 million parameters or less, which are more 

likely to achieve real-time performance on mobile devices. How- 

ever, we also include other large real-time and even offline models 

to demonstrate that the performance gap with these larger models 

is reduced. 

4.1. Data sets 

4.1.1. Cityscapes 

Cityscapes [3] is the most widely used data set for seman- 

tic segmentation. It consists of around 50 0 0 finely and 20,0 0 0 
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coarsely annotated images of urban street scenes from cities in 

Germany. All objects are grouped into 35 classes and 8 different 

categories. Following the literature, we used 19 classes for seman- 

tic experiments. Among 50 0 0 fine-tuned data set, 2975 images are 

used for training, 500 for validation and the remaining 1525 for 

testing. We employed only the finely annotated images to evaluate 

the model performance. The test results were generated by the on- 

line evaluation server and are available from the following anony- 

mous link: https://bit.ly/3cfcgLQ . 

4.1.2. KITTI 

KITTI [36] is another data set for semantic segmentation in 

addition to other computer vision tasks. It supplies 200 training 

images with fine annotation and 200 test images without anno- 

tations. Its class labelling scheme is compatible with Cityscapes. 

Hence, similar training and evaluation protocols were followed for 

KITTI. To address the small number of samples in this data set, we 

also used transfer learning by starting with pre-trained weights on 

Cityscapes in the first epoch. The test performance was obtained 

objectively by submitting prediction to its evaluation server. 

4.1.3. CamVid 

CamVid [37] was mainly designed for motion-based segmen- 

tation and recognition. It provides 701 fine-tune images, out of 

which 267 images are used for training, 101 for validation and 233 

for testing. Following the literature, this study used 11 classes out 

of 32. Like KITTI, this data set contains a small number of samples. 

Therefore, we also utilized the pre-trained weights on Cityscapes 

when training the model on CamVid. As this data set does not have 

an evaluation server, we randomly split the data set to obtain a 

subset of 233 samples for testing. 

4.1.4. Indoor objects data set 

We also evaluate our proposed model using a recent indoor ob- 

jects data set [38] , which was created for indoor navigation, such 

as wheelchair users and service robots. This data set is useful as 

it provides the surrounding details of corridor objects of various 

sizes. The data set provides 1548 images with fine annotations and 

objects are grouped into 9 classes. We use 1328 images for training 

and 220 samples for validation. 

4.2. Implementation details 

We train our model using a computer equipped with three 

NVIDIA Titan RTX GPUs. For high-resolution (Cityscapes, Indoor 

objects) input images, we set the batch size to 4, and for low- 

resolution (KITTI and CamVid) images, we set it to 8. We used 

CUDA 10.2, tensorflow 2.1.0, keras 2.3.1 and horovod 0.19 to 
implement and train the proposed model. For experiments mea- 

suring inference speed, we used TensorRT 6.0.1 and followed the 

common practice of converting a keras model to a TRT-based de- 

ployment model, then used the TensorRT engine to measure the 

inference. We also measured the size of the deployment model as 

an indication of GPU memory requirement. 

To set the learning rate (LR), We used the polynomial decay 

strategy [6] with the power set to 0.9. To minimize the model 

loss, the distributed synchronous stochastic gradient decent (SGD) 

optimizer was used. To improve convergence during training, we 

also employed a gradual warm-up strategy [39] . As is standard 

in segmentation, this study employed various data augmentation 

techniques, including cropping, resizing, clipping by value, horizon- 

tal and vertical flipping, adjusting brightness, contrast, and satu- 

ration of the input, to address the limited sample size problem. 

To avoid overfitting, we deployed � 2 regularization and a dropout 

layer with a dropout rate of 0.35. For more implementation de- 

tails, reader can refer our official repository at https://github.com/ 

tanmaysingha/SFRSeg/tree/main/Supplementary . 

4.3. Ablation study 

In what follows, we examine different aspects of the proposed 

model and justify our choice. We select CamVid for this ablation 

study. For better compatibility of the tensor size, we resize the in- 

put image to 640 × 896 when training and the result of each sub- 

module training is reported after 500 epochs on CamVid validation 

set. 

The design of the proposed backbone is conceptualized based 

on two ideas: shared multi-branch approach for enhancing the 

learning process and reusing global features for better contextu- 

alization. The previous study [13] has shown the effectiveness of 

shared multi-branch design over the independent multi-branch de- 

sign. Motivated by it, the current study also adopted the shared 

branch concept, however our the design of our multiple sub- 

encoders is fundamentally different: the model only take an in- 

put image of a single size as opposed to two different sizes as 

the case with SCMNet [13] . Such a change will reduce the com- 

putational cost while training the model. It has been observed that 

the majority amount of training time per epoch is taken by data 

pre-processing. Thereby, when two different sizes input are given 

to the model, both input will be processed first before the actual 

training gets started. It takes longer time to pre-process both the 

input. On the other hand, for the single input shared multi-branch 

approach, only one input will be augmented. To validate the justi- 

fication, this study conducted an experiment and reported the cor- 

responding result in Table 4 . Only the first sub-encoder without 

CCM and DIS-CAM module is utilized to carry out this experiment. 

Table 4 clearly illustrates that the shared multi-branch approach 

with a single input reduces the training time per epoch by almost 

a half compared to that with dual inputs of the same image with 

different sizes, and so is the time to converge. GPU memory usage, 

model parameters and GFLOPs (giga FLOPs) are almost the same in 

both cases, which indicates that both approaches will have almost 

similar efficiency during inference. The observations from this ab- 

lation study supports the choice to use the shared multi-branch 

approach with a single high-resolution input image, which will be 

down-sampled by a quarter before it gets processed by two paral- 

lel shared branches (see Fig. 3 ). 

Table 5 shows the effectiveness of multiple sub-encoders (SEs) 

for feature reuse. It is noticeable that successive additions of sub- 

encoders clearly enhance the performance with the best mIoU 

being as high as 74.4%, whilst only incurring a minor increase 

in computational cost. Even when all the four sub-encoders are 

included, our model has only 1.44 million parameters and 4.81 

GFLOPs. Similar observation can be drawn from Fig. 7 . It clearly 

shows that with the successive addition of sub-encoders in the 

backbone, region localization and segmentation are more accurate. 

The yellow rectangle boxes in Fig. 7 show such a refinement 

process through multiple sub-encoders. It also shows that with 

the addition of each sub-encoder, the detection of the tiny ob- 

jects (highlighted by the green boxes in Fig. 7 ) is improved. Al- 

though, some incorrect classifications can be observed (highlighted 

by red boxes) in the scene. Here, SFRSeg fails to detect the pres- 

ence of the bicyclist in front of the bus. This could be due to the 

lack of texture differences between the bicyclist and bus class ob- 

jects. As we ignore the void class (defined by the black color in 

the annotation), pixels in the void region are influenced by the 

large neighboring objects in the scene in each prediction, e.g. the 

bonnet of the car is labelled by the road class. We note however 

that void class pixels are not usually included in the evaluation 

metric. Overall, SFRSeg produces good performance, both qualita- 

tively and quantitatively, through reusing feature maps in multiple 

sub-encoders. 

Table 5 also displays the frames-per-second (FPS) count for each 

setup when input images of 640 × 896 from the CamVid data set 
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Table 4 

Multiple input sizes vs a single input size (using CamVid). 

No. of inputs Param. GFLOPs Training time (S) per epoch Memory Consum. mIoU(%) 

2 0.49M 2.89 26.0 4.8 GB 72.2 

1 0.49M 2.96 14.3 4.8 GB 72.7 

Fig. 7. Model’s predictions by successive addition of each sub-encoder. (a) RGB input, (b) Annotation, (c) Prediction by SE1, (d) Prediction by SE1 + SE2, (e) Prediction by 

SE1 + SE2 + SE3, (f) Prediction by SE1 + SE2 + SE3 + SE4. 

Table 5 

Model performance analysis with multiple sub-encoders (using CamVid 

data set). 

SE1 SE2 SE3 SE4 Param.(M) GFLOPs mIoU(%) FPS 

� 0.49 2.96 72.7 338 

� � 0.93 4.51 73.6 302 

� � � 1.08 4.65 74.0 301 

� � � � 1.44 4.81 74.4 290 

are used. It shows that with the addition of each sub-encoder, the 

FPS count decreases as the model size increases. However, such ar- 

chitecture reuses the feature maps through multiple sub-encoders 

and produces better refined segmented output. Thereby, to obtain 

the best performance, this study decided to use the multiple sub- 

encoder design. It is concluded that processing the input through 

multiple sub-encoders of moderate depth is more effective than 

processing it through a single very large backbone. It reuses deep 

features multiple times and helps each layer retain more contex- 

tual details. 

To reduce the number of parameters and GFLOPs, we also have 

studied the maximum depth of the global feature map. Many of- 

fline segmentation models, such as DeepLab [5] , PSPNet [6] , have a 

maximum 2 11 number of channels for an input of 1024 × 2048 × 3 , 

which produces a large number of parameters and GFLOPs. A 

ResNet residual block first squeezes the channel of the input fea- 

ture map and then expands it by 2. On the other hand, real-time 

semantic models which exploit bottleneck residual block of Mo- 

bileNetV2 to build the backbone, have the input with 2 7 channels. 

A MBConv block of MobileNetV2 first expands the channel dimen- 

sion by 6, hence the global feature map at the lowest spatial di- 

mension can obtain large number of channels for capturing the 

more contextual details. Later, MBConv block squeezes the channel 

dimension of the output feature maps to reduce the parameters 

and FLOPs. Thus, it controls the computational cost. 

Our ablation study shows that the channel number of 2 7 would 

be the best for the proposed model to keep a balance between 

model efficiency and efficacy. Table 6 displays the performance 

with different number of channels. With 2 7 channels, the pro- 

posed model produces 74.4% mIoU with 1.44 M parameters and 

4.81 GFLOPs. With 2 8 and 2 9 channels, its performance becomes 

saturated and its computational cost has increased. With 2 11 chan- 

nels, a further 2% increase in performance has been recorded, how- 

ever the number of parameters and GFLOPs have increased 102 

and 27 times respectively. Therefore, we deploy 128 channels in 

Table 6 

Model performance analysis with different number of 

channels (using CamVid data set). 

No. of max. channels Param. GFLOPs mIoU(%) 

64 0.84 4.19 73.7 

128 1.44 4.81 74.4 

256 2.89 5.89 74.4 

512 9.45 10.1 74.2 

1024 36.98 33.3 75.5 

2048 146.91 129.0 76.5 

Table 7 

Results of first ablation study (using CamVid data set). 

Refinement module HPA-SA Param.(M) GFLOPs mIoU(%) 

1.44 4.81 74.4 

CMM 1.51 4.97 74.3 

CCM 1.48 4.94 74.9 

CCM � 1.56 10.3 75.9 

the backbone network for an optimal trade-off between efficiency 

and performance. 

All the above experiments have been conducted on CamVid 

without using CCM and HPA-SA. The following experiment exam- 

ines the impact of these two modules on the segmentation perfor- 

mance. We also compare the impact of CCM and Context Mining 

Module (CMM) [13] on the model’s performance. In Table 7 , the 

first row displays the results of the model without any refinement 

and feature aggregation module (similar to Tables 5 and 6 ). 

CMM has 2 image pooling branches, one separable branch and 

one fine-tuned branch. These branches are parallel to each other. 

Although these branches produce various sizes of the receptive 

field, the boundary degeneration effects can still be noticed in the 

image pooling branches due to a larger pool size. Instead of image 

pooling branch, separable branches with a larger dilation rate are 

more efficient for context mining. Due to these reasons, we pro- 

pose a new design CCM for context mining and refinement. It also 

has four branches: one fine-tune and 3 separable branches with 

different dilation rates, but the feed-backward connection from 

the predecessor output to the successor branch input improves 

the refinement process in each successor branch. This performance 

enhancement can be noticed in Table 7 . The model with CMM 

achieves 74.3% validation mIoU, whereas the model with CCM en- 

hances model’s performance by 0.5 percent-point while having less 

parameters and FLOPs. Later, we deploy HPA-SA on top of the CCM 

module which further increases the performance by 1 percent- 
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Table 8 

Class-wise SFRSeg performance on Cityscapes validation and test sets. 

D. set Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain 

Val. set 98.1 83.3 91.5 44.9 50.9 61.3 68.3 72.4 92.1 70.1 

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU 

95.1 80.5 58.4 94.3 52.4 66.5 59.7 56.1 68.4 71.8 

D. set Road S.walk Build. Wall Fence Pole T.light T.sign Veg. Terrain 

Test set 98.0 82.6 90.9 45.9 49.9 49.0 62.1 66.8 91.4 68.3 

Sky Person Rider Car Truck Bus Train M.cycle Bicycle mIoU 

94.7 78.0 54.5 93.1 57.9 69.1 67.8 54.7 66.0 70.6 

Table 9 

Category-wise SFRSeg performance on Cityscapes validation and test sets. 

Data set Flat Construction Object Nature Sky Human Vehicle mIoU 

Val. set 98.3 92.0 68.3 92.2 95.1 80.5 93.7 88.6 

Test set 98.2 91.1 58.0 94.7 90.9 78.5 92.4 86.3 

point. Without HPA-SA, the global feature map is excessively up- 

sampled to produce the final segmented output. Most of the ex- 

isting real-time semantic segmentation models such as DFANet 

[12] , ContextNet [14] , and Fast-SCNN [15] upsample the global fea- 

ture maps by 2 3 times to reduce the computational cost and im- 

prove model’s efficiency. However, it has been observed that up- 

sampling global feature map by a large factor directly causes con- 

siderable boundary degeneration effects and compromises the per- 

formance. This phenomena can be observed in the Table 7 . With- 

out using HPA-SA, the model produces 74.9% mIoU, whereas it be- 

comes 75.9% with HPA-SA. Here, the global feature map is succes- 

sively up-sampled and then mapped with the previous level’s fea- 

ture map. After every mapping, the feature is refined by SCB. This 

process goes on till the feature map has the size of the original in- 

put image. This gradual semantic aggregation and refinement im- 

proves the quality of the output. 

4.4. Model evaluation 

As discussed in the introduction, this works specifically fo- 

cuses on light real-time models that have a very small number 

of parameters as they are more likely to be suitable for resource- 

constrained applications, such as mobile and edge devices. How- 

ever, we also include offline models and large real-time models in 

order to show how light real-time models can achieve competi- 

tive performance whilst being much smaller. Three data sets re- 

lated to outdoor urban street scenes and one indoor scene data set 

are used to evaluate the proposed model SFRSeg . We note that 

some offline (DeepLab [5] , HANet [8] , DenseASPP [23] ) and real- 

time (DFANet [12] , BiseNetV2 [28] ) semantic models use variants 

of ResNet as the backbone and their pre-trained weight on Ima- 

geNet [40] . Here, SFRSeg is designed from scratch by employing 

bottleneck residual blocks of MobileNetV2 [18] . We do not pretrain 

our proposed model on ImageNet, knowing that this could poten- 

tially improve our model’s performance further. 

4.4.1. Performance on Cityscapes 

The proposed model is first trained on Cityscapes training set at 

full input resolution ( 1024 × 2048 ) for 10 0 0 epochs with a batch 

size of 4. Tables 8 and 9 display class and category-wise model 

performance on Cityscapes validation and test sets. The results of 

the top 5 classes and categories are highlighted in the tables. Due 

to the uneven class distribution in the whole data set, its perfor- 

mance varies in other classes such as wall, fence and pole. The 

proposed model produces 70.6% and 71.8% mIoU on Cityscapes test 

and validation set. 

Performance comparison Table 10 illustrates the performance 

of other existing real-time semantic segmentation models and 

compares them with the proposed model. While the focus of this 

study is on light real-time models, offline and large real-time mod- 

els are also included for completeness. It should be noted that the 

GFLOPs count can be used to determine model efficiency, but it 

also depends on the input image resolution and model size. Later 

in the paper, the impact of input resolution on GFLOPs count and 

model efficiency is shown. 

Table 10 displays the common performance metrics used in se- 

mantic segmentation and they are grouped according to the model 

size. Most of the existing semantic segmentation models reported 

only test mIoU of Cityscapes data set, and many of their results are 

not available on the Cityscapes evaluation website. Therefore, other 

performance measurement metrics of these models could not be 

reported. The sign ‘-’ in Table 10 indicates missing results, both in 

the literature and on the Cityscapes evaluation website. 

In the offline category, DeepLabV 3+ [5] and VideoPro [32] have 

achieved 82 . 1 + % class mIoU on Cityscapes test set. These models 

used extra data sets such as ImageNet, coarse images of Cityscapes, 

and synthetic images for performance enhancement. Moreover the 

deployment of large backbone such as Xception [11] , ResNet101 

[41] helps these models achieve excellent segmentation. VideoPro 

[32] is basically a combination of video prediction and a deep se- 

mantic segmentation models in which a video prediction model 

generates synthetic large data set for semantic segmentation. It 

also deployed a boundary pixel relaxation pre-processing tech- 

nique for better semantic representation. Such joint strategies help 

the model achieve 83.5% mIoU on Cityscapes test set. Other offline 

models such as PSPNet [6] , HANet [8] , CENet [9] also accomplishes 

80% to 82% test mIoU due to the large ResNet backbone. 

In the real-time category, LERNet [9] and ENet [24] are the 

smallest semantic segmentation models with less than 1 million 

parameters. However, their test accuracy ranges from 58% to 66.5%. 

In comparison,moderately large semantic models such as SwiftNet 

ResNet variant (SwiftNet-RN18) [1] , DFANet [12] , ICNet [19] , and 

STDC [29] achieved a test mIoU ranging from 69.5% to 76.8% while 

having 8 to 13 million parameters. Two recent methods, TopFormer 

[35] and LR-ASPP [42] , have a test mIoU close to our proposed 

SFRSeg , but they have 2 to 3 times the number of parameters, 

leading to lower inference speed. Other shallower models such as 

SCMNet [13] , ContextNet [14] , Fast-SCNN [15] , and FANet [16] gen- 

erate moderate results (64.1% to 68.3% test mIoU) with 1 to 1.2 

million parameters. From the above results, it is evident that per- 

formance can be enhanced with the increase of model size and an 

effective design. However, models like SwiftNet [1] , DFANet [12] , 
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Table 10 

Performance evaluation of different models on Cityscapes validation and test sets. 

Type Model Param. (M) FPS 

Val. Class 

mIoU (%) 

Val. Cat. 

mIoU (%) 

Test Class 

mIoU (%) 

Test Cat. 

mIoU (%) 

Test Class 

iIoU (%) 

Test Cat. 

iIoU (%) 

Offline 

models 

PSPNet [6] 250.8 0.8 - - 81.2 91.2 59.6 79.2 

FCN8s [21] 134 2 - - 65.3 85.7 41.7 70.1 

RefineNet [25] 68.1 - - - 73.6 87.9 47.2 70.6 

CENet [9] 66.6 - 77.6 - 81.5 - - - 

HANet [8] 65.4 - 80.3 - 80.9 91.2 - - 

DeepLabV3 + [5] 43.0 - - - 82.1 92.0 62.4 81.9 

GANet [31] > 44 - 80.9 - 81.6 91.6 63.6 81.0 

V ideoPro [32] > 43 - 81.4 - 83.5 - - - 

CDN [30] > 28 - 80.3 - 80.5 91.9 62.5 83.4 

Large 

real- 

time 

models 

SegNet [10] 29.5 16.7 - - 57.0 79.1 32.0 61.9 

STDC2 [29] 12.5 188.6 77.0 - 76.8 - - - 

S.NetV2-RN [1] 11.8 134.9 70.4 - 75.5 89.8 52.0 77.2 

STDC1 [29] 8.4 250.4 74.5 - 75.3 - - - 

DFANet [12] 7.8 100 71.9 - 71.3 - - - 

ICNet [19] 6.7 30.3 - - 69.5 - - - 

BiseNetV1 [27] 5.8 105.8 69.0 - 68.4 - - - 

BiseNetV2 [28] 5.2 156 73.4 - 72.6 - - - 

DFANet-B [12] 4.9 120 68.4 - 67.1 - - - 

TopFormer-B [35] 4.84 53.59 65.52 - 64.94 83.18 35.99 63.26 

LR-ASPP [42] 3.28 12.92 69.54 70.89 68.95 87.00 41.41 71.17 

Light 

real- 

time 

models 

SCMNet [13] 1.2 117 66.5 84.2 68.3 87.2 38.3 69.1 

Fast-SCNN [15] 1.2 266.3 68.6 - 68.0 84.7 37.9 63.5 

FANet [16] 1.1 253 65.9 83.6 64.1 83.1 33.2 61.1 

ContextNet [14] 1.0 136.2 65.9 - 66.1 82.8 36.8 64.3 

LERNet [26] 0.7 100 69.5 - 66.5 - - - 

ENet [24] 0.4 76.9 - - 58.3 80.4 34.4 64.0 

SFRSeg 1.6 194 71.8 88.6 70.6 86.3 41.3 65.8 

- sign means results are not available in literature and Cityscapes evaluation server. 

and SDTC [29] are 8 to 10 times larger than all shallow models. To 

reduce this gap, SwiftNet [1] proposed another pyramid-based mo- 

bile variant using MobileNetV2 (MV2) [18] as an encoder. It pro- 

duced 77.4% mIoU on the Cityscapes validation set while having 

only 2.7 M parameters. However, SwiftNet-MV2 did not report its 

performance on the test set, which is considered much more ob- 

jective. 

Compared to the aforementioned models, our proposed model 

SFRSeg competitively produces 70.6% and 71.8% mIoU on 

Cityscapes test and validation sets while having only 1.6 million 

parameters and 37.9 GFLOPs at full input resolution. This is a 

much more balanced trade-off between performance and complex- 

ity, placing its at the top among light real-time models having 

less than 2 million parameters. For a fair comparison, we report 

all performance measurement metrics provided by the Cityscapes 

evaluation server. For completeness, we have also included in 

Table 10 the FPS counts measured at 512 × 1024 input resolution, 

and the information was extracted from either the literature, the 

best known public implementation or our own implementation 

that we can run on our system. As can be seen, SFRSeg can pro- 

cess 194 frames per second at this resolution, being very competi- 

tive against other real-time models. 

As both inference speed and GFLOPs depend on input resolu- 

tion, in addition to hardware and topology, we also conduct a sep- 

arate experiment to measure them at different input resolutions 

and on different data sets. We report the results in Table 11 . 

It is a common practice to convert semantic segmentation mod- 

els implemented in PyTorch or tensorflow to a deployment 

model using TensorRT . We note that the impact of TensorRT 
optimization generally varies across all models and platforms. Fol- 

lowing this approach, we also optimize our tensorflow im- 

plementation with TensorRT and measure its performance. We 

report GFLOPs and frames-per-second (FPS) counts for this pur- 

pose. We also report the deployment model size obtained from 

TensorRT as it is also an indication of the GPU memory re- 

quirement. For a fair comparison, we reproduced the work of 

several existing real-time semantic segmentation models using 

tensorflow based on the literature and publicly available imple- 

mentations, and measure the FPS under the same system configu- 

ration. We also measure the GFLOPs count of each tensorflow 
model at different input resolutions and reported the results in 

Table 11 . 

We observe that the deployment size of SFRSeg is similar to 

other light real-time models (around 10 MB), while other models 

are 3–5 times larger. This means that the former are more likely 

to be suitable for devices with less memory or a given device can 

deploy many more light real-time models simultaneously. SFRSeg 

also achieves competitive inference speed on three data sets com- 

pared to other large real-time models, such as DFANet [12] , ICNet 

[19] , BiseNetV2 [28] , STDC1 [29] , and STDC2 [29] . It is only be- 

hind ContextNet [14] , Fast-SCNN [15] , and FANet [16] , but obviously 

these light real-time models do not achieve the same level of ac- 

curacy as SFRSeg . 

We also observe that models like DFANet [12] , ICNet [19] , and 

STDC1 [29] have low efficiency due to the large number of GFLOPs. 

When the input resolution increases, the FPS of each model drops, 

and their GFLOPs increase. For instance, DFANet has 112 FPS on 

KITTI [36] with 55.3 GFLOPs whereas on Cityscapes [3] , it produces 

37 FPS with 236 GFLOPs. The FPS and GFLOPs counts may differ 

from the literature due to different hardware settings and different 

input resolutions. Among the large real-time models, STDC2, which 

produces the best test accuracy (76.8%) on Cityscapes, has 36, 26, 

and 4 FPS on KITTI, CamVid and Cityscapes, respectively. In com- 

parison, the proposed SFRSeg has 209, 170 and 54 FPS, respec- 

tively, and its GFLOPs count ranges from 8.9 to 37.9, whereas for 

STDC2, it varies from 696 to 2970. In terms of number of param- 

eters, the proposed model is at least 5 times smaller than STDC1 

and STDC2. It clearly illustrates that the proposed model is more 

efficient than recent state-of-the-art semantic models whilst offer- 

ing a very competitive segmentation performance. 
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Table 11 

GFLOPs and FPS at different input resolution. The column Size refers to the model’s deployment filesize optimized by TensorRT. 

Model 

Size 

(MB) 

Params. 

(million) 

KITTI CamVid Cityscapes 

384 × 1280 640 × 896 1024 × 2048 

GFLOPs FPS GFLOPs FPS GFLOPs FPS 

STDC2 [29] 47.2 11.2 696 36 812 27 2970 4 

STDC1 [29] 29.9 7.2 684 37 798 27 2920 4 

DFANet [12] 40.5 7.8 55.3 112 64.4 141 236 37 

ICNet [19] 29.7 6.7 13.7 170 15.9 159 58.4 43 

BiseNetV2 [28] 27.3 5.2 31.1 111 35.9 125 133 51 

Fast-SCNN [15] 9.6 1.2 3.5 431 4.1 344 14.9 113 

SCMNet [13] 10.5 1.2 8.9 113 9.9 98 38.3 27 

ContextNet [14] 7.0 1.0 2.31 465 2.67 407 9.9 138 

FANet [16] 7.9 1.1 2.7 305 2.7 253 11.4 74 

ENet [24] 7.7 0.4 8.7 142 10.2 123 37.3 27 

SFRSeg 14.0 1.6 8.9 209 10.3 170 37.9 54 

Table 12 

Performance evaluation on KITTI test set. Entries with the sign ’-’ mean the result is not available in the literature. 

Type Model Pre-train Class mIoU (%) Class iIoU (%) Cat. mIoU (%) Cat. iIoU (%) 

Off line PAG [7] City. fine-tune 47.96 17.86 78.11 49.17 

SDNet [33] Cityscapes 51.14 17.74 79.62 50.45 

V ideoPro [32] Mapilary, Cityscapes 72.8 48.7 88.9 75.3 

SGDepth(Seg.) [34] Cityscapes 43.1 - - - 

Real time SFRSeg Cityscapes 49.3 17.4 77.9 46.8 

4.4.2. Performance on KITTI 

Table 12 displays the performance on the KITTI data set [36] . 

To ensure better tensor size compatibility with our implemen- 

tation, we slightly resize images from 375 × 1242 to 384 × 1280 

when training SFRSeg . As mentioned previously, we utilize the 

pre-trained weights on Cityscapes to train the model on KITTI. 

To the best of our knowledge, we have listed supervised and 

unsupervised large semantic segmentation models obtained from 

the leaderboard of KITTI. Since KITTI is a versatile data set mainly 

designed for stereo and depth analysis, it is not easy to draw a di- 

rect comparison with our proposed model, as the problem settings 

are different. One example of these methods is [32] which pro- 

poses a framework for improving semantic segmentation via video 

propagation and and label relaxation. Apart from the Cityscapes 

data set, it also produces synthetic training sets through video 

propagation and utilizes them for evaluating model performance 

on different data sets. Due to this joint strategy, it generates excel- 

lent results (72.8% test mIoU). Other depth estimation with seman- 

tic guidance models include PAG [7] , SDNet [33] and SGDepth [34] . 

The semantic head of PAG, SDNet and SGDepth produce 47.96%, 

51.14% and 43.1% test mIoU. However, all these models are com- 

paratively larger than the proposed model due to their deep back- 

bone. In comparison, the proposed SFRSeg produces 49.3% test 

mIoU with much less parameters and without using any special- 

ized pre or post-processing techniques. 

4.4.3. Performance on CamVid 

The results on CamVid are presented in Table 13 . Similar to 

the experiment on KITTI, we also resize input images to 640 × 896 

for better compatibility during training and use the pre-trained 

weight on Cityscapes. The only difference here is that domain 

mapping is required before utilizing the pre-trained weights on 

Cityscapes. First, Cityscapes’ 19 classes need to be mapped to 

CamVid’s 11 classes. Second, the model needs to be trained on 

11 classes of Cityscapes. Later, the generated weight on Cityscapes 

is then utilized to train the model on CamVid. For completeness, 

we show models belonging to the offline category as a reference. 

Table 13 shows that VideoPro [32] produces the best test mIoU 

(81.7%) due to their joint strategy and additional training set gen- 

erated by the video prediction model. This is not a traditional se- 

mantic segmentation model. Their joint mechanism can be used in 

any semantic segmentation model for performance enhancement. 

Among other deep traditional scene segmentation models, PSPNet 

[6] achieves 69.1% mIoU on CamVid test set. 

Now, we turn our attention to real-time semantic segmentation 

models, which is the main focus of this work. In terms of absolute 

segmentation performance, SwiftNetV2 [1] , SegNet [10] , BiseNetV2 

[28] , and STDC1 [29] achieve 73.7%, 71.2%, 76.7% and 73.0% test ac- 

curacy respectively. However, these models are still large and have 

3 to 18 times more parameters than the proposed SFRSeg , which 

also competitively produce 74.7% test mIoU at 640 × 896 input res- 

olution. We also generate class-wise IoU on CamVid test set and 

reported the result in Table 14 . We found few studies which have 

presented CamVid class-wise test performance, and we presented 

the results in Table 14 . It shows that SegNet [10] produces the 

best results in five classes (sky, building, pavement, tree, and car) 

and generates a 71.2% mIoU. In comparison, the proposed model 

SFRSeg achieves a 74.7% mIoU and produces the best results in 

pole, road, sign, fence and bicyclist classes, while having 18 times 

less parameters than SegNet. Moreover, the class-wise results also 

demonstrate that the proposed model performs better than others 

on tiny and rare objects such as pole, sign, fence and bicyclist. 

4.4.4. Performance on Indoor objects 

Table 15 displays model’s class-wise performance on the Indoor 

objects data set. It is observed that the proposed model performs 

exceptionally well on 3 classes: background wall, door, and car- 

pet floor, and achieves good results on movable door handle and 

fire extinguisher, even though the percentage of pixels belonging 

to these classes is around 1 − 2% . 

However, it does not produce a good result on very rare classes 

that have less than 1% pixels, including pull door handle, push but- 

ton, push door handle, and key slot. Overall, the proposed SFRSeg 

produces a 61.4% mIoU on this Indoor objects data set. 

4.4.5. Qualitative results and analysis 

In this section, we qualitatively examine the segmentation per- 

formance of SFRSeg . Fig. 8 displays the original RGB image, its 

colored annotation given by the Cityscapes, the segmented output 
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Table 13 

Performance evaluation on the CamVid test set. 

Type Model Param. (M) Pre-train Test class mIoU (%) 

Offline models PSPNet [6] 250.8 ImageNet 69.1 

V ideoPro [32] - Cityscapes 81.7 

Large real-time 

models 

SegNet [10] 29.5 3,433 additional road scenes 71.2 

STDC2 [29] > 12 . 5 Cityscapes 73.9 

S.NetV2-RN [1] 12.0 ImageNet 73.7 

STDC1 [29] > 8 . 4 Cityscapes 73.0 

DFANet [12] 7.8 ImageNet 64.7 

ICNet [19] 6.7 No pre-training 67.1 

BiseNetV1 [27] 5.8 ImageNet 65.6 

BiseNetV2 [28] 5.2 ImageNet 76.7 

Light real-time 

models 

SCMNet [13] 1.2 Cityscapes 71.3 

FANet [16] 1.1 No pre-training 57.8 

LERNet [26] 0.7 Cityscapes 58.2 

ENet [24] 0.4 No pre-training 51.3 

SFRSeg 1.6 Cityscapes 74.7 

- sign means results are not available in the literature. 

Table 14 

Class-wise SFRSeg performance on the CamVid test set. 

Model Sky Buil- ding Pole Road Pav- ment Tree Sign Fence Car Pades- trian Bicy- clist mIoU 

SegNet 96.1 89.6 32.1 96.4 93.3 83.4 52.7 53.5 87.7 62.2 36.5 71.2 

ENet 95.1 74.7 35.4 95.1 86.7 77.8 51.0 51.7 82.4 67.2 34.1 68.3 

BiseNetV1 91.9 82.2 25.4 93.3 77.3 74.4 42.8 49.7 80.8 53.8 50.0 65.6 

SFRSeg 93.8 87.8 43.5 96.5 85.1 80.8 55.9 66.2 83.1 59.8 69.0 74.7 

Table 15 

Class-wise SFRSeg performance on Indoor objects validation set. 

Model 

Background 

wall Door 

Pull door 

handle 

Push 

button 

Movable door 

handle 

Push door 

handle 

Fire extin- 

guisher Key slot 

Carpet 

floor mIoU 

SFRSeg 95.0 90.4 20.3 31.0 69.8 34.8 82.3 38.9 90.4 61.4 

Fig. 8. Color map of Cityscapes data set and model prediction using validation sample. 

Fig. 9. The first row displays the original images of the Cityscapes test set and the second row exhibits the corresponding output produced by the proposed model. 

of a validation sample generated by SFRSeg , and the segmenta- 

tion overlay for each objects in the scene. It shows a 20-color map, 

which also contains the void class by default. Although void class 

pixels are not included for calculating mIoU on the validation and 

test sets, the presence of the void class in training influences the 

model’s performance while assigning the class of the neighboring 

pixels to void. This happens due to the high occurrence of void 

class within the data set. Hence, the void class is excluded when 

training the model with all data sets. The segmentation output of 

test samples can be seen in Fig. 9 . Despite the percentage of pix- 

els belonging to motorcycle, rider, truck, train and traffic light class 

being less than 0.5%, our model correctly identifies all these classes 

in the scene and assigns right class labels to all the pixels. 

Similarly, we also displays the qualitative analysis on KITTI in 

Figs. 10 and 11 . We note that the color mapping of KITTI is exactly 

same as Cityscapes. The result is obtained from KITTI’s evaluation 

server. Along with the output, the evaluation server also generates 

an error image for each test sample. In Fig. 11 , the first column 

14 

218



T. Singha, D.-S. Pham and A. Krishna Pattern Recognition 140 (2023) 109557 

Fig. 10. Color map of KITTI data set and model prediction using validation sample. 

Fig. 11. The first column displays the original images of the KITTI test set, the second column exhibits the corresponding output produced by the proposed model and the 

third column shows the corresponding error images. 

Fig. 12. Color map of CamVid data set and model prediction using validation sample. 

Fig. 13. The first row displays the original images of CamVid test set and the second row exhibits the corresponding output produced by the proposed model. 

refers to an RGB test sample, the second column shows the col- 

ored output produced by the model, and the third column displays 

the error image. Green pixels in the error image define the correct 

labelling, yellow pixels define an incorrect class label but correct 

category, black pixels describe the ground-truth labels not used for 

evaluation, and red pixels represent a wrong class label and wrong 

category. It can be clearly observed that the presence of red pix- 

els in the test samples is very little. However, a major section of 

the second row error image shows the presence of yellow pixels, 

which still means correct category labelling. 

Figs. 12 and 13 display the segmented output generated by 

the proposed SFRSeg using CamVid validation and test sets. 

Fig. 12 also exhibits the color codes of all 11 classes of CamVid 

data set. It uses different color codes than the other two data sets. 

It can be clearly seen that small objects like pole, sign symbol are 

correctly labelled by the proposed model and the smooth bound- 

ary of different geometric objects in the output demonstrates ex- 

cellent performance by the proposed model. 

Figs. 14 and 15 exhibit the proposed model’s qualitative perfor- 

mance on the indoor objects data set [38] . It clearly demonstrates 

that, along with the urban street scenes, the proposed SFRSeg 

is equally capable of identifying various objects in indoor scenes. 

We use different color codes to define the objects in the scene. 

Fig. 14 shows the color map we use. While analyzing the data set, 

we observe that in some frames, objects like background wall, and 

door were annotated incorrectly. This can be seen in the first im- 

age of Fig. 15 , highlighted by the red rectangle box. In the anno- 

tation, the background wall is defined as a void class object and 

highlighted by the black color code, although the proposed model 

rightly predicts the class of the background wall object and assigns 

a gray color code. In the second prediction, some incorrect classifi- 

cations can be seen in the segmented output. Here, model fails to 

differentiate between the wooden door and the wooden wall (the 

yellow box) in the Fig. 15 . This could be due to the lack of texture 

difference between these objects in the scene and also due to the 

smaller size of the data set. 
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Fig. 14. Color map of Indoor objects data set and model prediction using validation sample. 

Fig. 15. Output by the proposed model using Indoor objects validation samples. (a) RGB image, (b) Colored ground truth, (c) Prediction. In the second column, there are 

incorrectly annotated items highlighted by red and yellow boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Overall, the qualitative results on both indoor and outdoor 

scenes clearly demonstrate that not only does SFRSeg achieve 

segmentation performance metrics competitive to the state-of-the- 

arts, it also produces high-quality segmentation outputs which are 

sufficiently useful for real-time applications. 

5. Conclusion 

We have introduced the concept of shared multi-branch ar- 

chitecture and proposed a novel semantic segmentation model, 

named SFRSeg , for resource-constrained mobile devices which 

produces very competitive results on three popular benchmark 

data sets among the existing real-time scene parsing models. With 

only 1.6 M parameters, the proposed model significantly reduces 

the gap between the performance between real-time and offline 

semantic segmentation models thanks to key innovations: an ef- 

fective shared-branch multiple sub-encoders design, a novel con- 

text mining module and a semantic aggregating module. The main 

limitation of our work is that we did not make use of any mod- 

ern pre-processing and post-processing techniques, such as train- 

ing on additional synthetic data sets extracted from video prop- 

agation models and exploiting additional boundary knowledge of 

each object in the scene. Similarly, the widely used network prun- 

ing technique can also be utilized to optimize the computational 

cost and improve model’s efficiency. Hence, in future we will use 

these techniques for the performance enhancement of the pro- 

posed model. For better scene understanding, we also plan to de- 

ploy the proposed model for instance and panoptic segmentation 

which will help the model distinguish between stuff and things 

objects in the scene more effectively. Due to the growing de- 

mand for real-time semantic applications in various fields such 

as robotics, autonomous car industry, medical, agriculture, urban 

planning, civil engineering, the proposed model can be exploited 

for building crack detection for structural maintenance, medical 

image processing for early diagnosis, and many more. For repro- 

ducibility, the implementation of our model is available at https: 

//github.com/tanmaysingha/SFRSeg . 
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ABSTRACT Developing computationally efficient semantic segmentation models that are suitable for
resource-constrained mobile devices is an open challenge in computer vision research. To address this
challenge, we propose a novel real-time semantic scene segmentation model called Multi-encoder Context
Aggregation Network (MCANet), which offers the best combination of low model complexity and state-
of-the-art (SOTA) performance on benchmark datasets. While we follow the multi-encoder approach, our
novelty lies in the varying number of scales to capture both global context and local details effectively.
We introduce suitable lateral connections between sub-encoders for improved feature refinement. We also
optimize the backbone by exploiting the residual block of MobileNet for resource-constrained applications.
On the decoder side, the proposed model includes a new Local and Global Context Aggregation (LGCA)
module that significantly enhances semantic details in the segmentation output. Finally, we use several known
efficient convolution techniques for the classification module to make the model more computationally
efficient. We provide a comprehensive evaluation of MCANet on multiple datasets containing structured
and unstructured urban street scenes. Among the existing real-time models with less than 3 million
parameters, the proposed model is more competitive as it achieves the SOTA performance without ImageNet
pre-trained weights on both structured and unstructured environments while being more compact for
resource-constrained applications.

INDEX TERMS Semantic segmentation, feature scaling, feature aggregation, deep learning, scene under-
standing, convolutional neural networks.

I. INTRODUCTION
Scene understanding is a crucial task in many learn-
ing systems and has numerous applications, including
self-driving vehicles [1], [2], human-computer interaction,
virtual reality [3], object detection [4], [5], medical image
analysis [6], [7], [8] and online video surveillance [9].
Semantic scene segmentation is a fundamental step towards
achieving scene understanding. The goal of semantic seg-
mentation is to recognize and localize different categories
in a scene, assigning a class or a label to every pixel. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Eduardo Rosa-Molinar .

categories can vary depending on the specific application,
as shown in Figure 1.

A semantic segmentation model usually follows an
encoder-decoder structure, where the encoder extracts seman-
tic information, and the decoder projects it back to the
input space for individual pixel classification. Inspired by the
success of Deep Convolutional Neural Networks (DCNNs)
in general classification tasks, many offline semantic seg-
mentation models have been developed with deep architec-
tures [10], [11], based on well-known backbone networks,
usually ResNet [12], which is suitable for the segmentation
task. For instance, DeepLab [11] is an approach that exploits
ResNet by removing the striding operation from the last few
ResNet blocks. Additionally, by utilizing high dilation rates

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 66227
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FIGURE 1. Labelling class to each pixel in semantic segmentation.
(a) Original input image, (b) colored annotation of the input image where
each pixel of the image has a specific color code.

in the feature scaling module, DeepLab ensures a wider field
of view for context inclusion.

Later, the ResNet model pre-trained on ImageNet with
dilated convolutions has become a popular choice as a
feature extractor for scene segmentation models, including
DeepLabV3 [13], PSPNet [14], HANet [15], and OCR [16].
Although these DCNN-based models have shown outstand-
ing performance, many of them are not designed for mobile
devices and other resource-constrained applications. There-
fore, they cannot achieve satisfactory real-time performance
on embedded devices.

In many practical applications, such as mobile and IoT
devices [17], [18], the available computing resources are
limited. Therefore, deploying large models that can achieve
satisfactory real-time performance is prohibitive. This has
led to a growing interest in developing lightweight seman-
tic segmentation models [19], [20], [21] for these specific
applications. These real-time models aim to reduce the com-
putational cost of existing offline models while still achieving
satisfactory segmentation performance.

One major challenge in developing real-time models for
mobile devices and resource-constrained applications is the
high input resolution with a large field of view, which can sig-
nificantly increase memory usage. To address this problem,
some real-time models, such as BiSeNet [21], ICNet [22],
RefineNet [23], and ContextNet [24], have introduced a new
encoder design called a multi-branch encoder. This design
consists of a shallow branch for high-resolution input and
a deep branch for low-resolution input. By using a shallow
branch with fewer layers, this approach effectively reduces
the computational cost while controlling the field of view and
maintaining global contextual information through the deep
branch. Although several models have achieved computa-
tional efficiency, there is still a considerable performance gap
between existing offline and real-time semantic scene seg-
mentation models. Developing real-time lightweight models
suitable for mobile devices and resource-constrained applica-
tions is still an open research question.

In this work, we address the above challenge for mobile
devices and other embedded devices with inadequate hard-
ware facilities through a novel architecture. Our solution
starts with the observation from the literature on real-time
semantic segmentation that the input needs to be processed
at multiple scales with larger receptive fields to capture
better contextual details for improved scene understanding.

FIGURE 2. Test accuracy vs parameters among real-time models.

We introduce a completely new multi-encoder architecture
in this study. Here, the number of stages in each succes-
sive sub-encoder is reduced, while the repetition of inverted
residual blocks is increased in the successive sub-encoder.
Consequently, each sub-encoder becomes deeper than the
previous one, allowing for extraction of more semantic infor-
mation from the scene. Lateral connections are also used
at the same stage. After the complete encoding process,
we obtain five rich global feature maps at different scales,
which are then used for feature fusion at the decoder end.
We demonstrate that MCANet enables excellent semantic
segmentation performance while keeping the model com-
plexity relatively low. Our design is at least two times
smaller than existing real-time scene segmentation models
that achieve state-of-the-art results, giving our model a com-
petitive advantage in resource-constrained applications.

Wemake the following contributions in this research study:

• Introduce a novel backbone architecture, with multiple
sub-encoders designed specifically for optimal feature
scaling. At the same time, we also reduce the number
of stages in each successive sub-encoder to control the
number of model parameters.

• Introduce an effective multi-stage module for local and
global feature aggregation at the decoder, which com-
bines feature maps at different levels produced by the
proposed backbone network.

• Relying on this novel backbone architecture and
an efficient multi-stage feature aggregation module,
introduce an efficient semantic segmentation model
named MCANet that achieves the optimal trade-off
between model accuracy and model efficiency for
resource-constrained mobile devices. This can be
viewed in Figure 2.

• Finally, we provide comprehensive experiments on both
structured and unstructured environments with various
numbers of classes and demonstrate themodel’s superior
performance in all circumstances among the existing
real-time semantic segmentation models having fewer
than 3 million (M) parameters.
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FIGURE 3. Different architectures of semantic segmentation models: (a) One-branch, (b) One-branch with feature scaling technique, (c) Multi-branch,
(d) Dual-branch with down-sampling, (e) Feature re-use in sub-encoders with increasing stages, and (f) Feature re-use in multiple sub-encoders with
decreasing stages, but increasing depth in each sub-encoder, and feature refinement through multiple decoding paths.

On structured datasets such as CamVid [25], BDD100K [26],
and KITTI [27], as well as on unstructured datasets such as
IDD-lite, the proposed model produces the state-of-the-art
(SOTA) performance among the existing real-time seman-
tic segmentation models. On Cityscapes [28], the proposed
model generates a test accuracy of 73.4% without using
ImageNet [29] or any pre-trained weights, which is the best
performance among the existing real-time semantic mod-
els with fewer than 3M parameters. It can be visualized in
Figure 2, which plots Cityscapes test mIoU (%) against FPS.
The size of the circle in Figure 2 depicts the size of the
model. Figure 2 clearly demonstrates the proposed model’s
superiority in terms of achieving the best balance between
model accuracy and model efficiency.

The paper is organized as follows. In Section II, we present
related work in semantic segmentation. Section III details
our design, and Section IV discusses numerous experiments.
Concluding remarks are given in Section V.

II. BACKGROUND
A. ONE-BRANCH DESIGN
As shown in Figure 3(a), a simple encoder-decoder archi-
tecture [10] was used in the early days of semantic seg-
mentation, such as FCN [10], DeepLab [11], BiSeNet [21],
and UNet [30]. The encoder typically contains a deep neu-
ral network to extract contextual details of the scene, and
large backbone networks such as ResNet [12], VGG-16
[31], and Xception [32] are common choices. An extension
of the one-branch approach is to include feature scaling
(see Figure 3(b)), which is known to capture contextual

details through a larger receptive field. For instance, PSPNet
[14] introduced the Pyramid Pooling Module (PPM), which
uses four image pooling branches with different bin sizes.
DeepLabV3+ [13] introduced Atrous Spatial Pyramid Pool-
ing (ASPP), which utilizes five dilation branches with
different dilation rates. Using ResNet-101 [33] as the back-
bone, it achieved 82.1% test accuracy on Cityscapes [28].
Similar to feature scaling, a few semantic segmentation mod-
els [21], [34], [35], [36] have started to use the attention
mechanism to guide the feature learning process using high-
level information.

Recently, a newmodel known asMGSeg [37] has emerged,
aiming to improve model efficiency further. It achieves this
by utilizing a lightweight backbone (ResNet-18) and incorpo-
rating a hybrid feature attention and feature scaling module.
It achieves impressive performance, achieving 77.8% test
accuracy on Cityscapes. However, it should be noted that the
model has 13.3million parameters and requires 96.5GFLOPs
(Giga Floating Point Operations) at an input resolution of
1024 × 1024. Although MGSeg has made strides in improv-
ing efficiency, the large number of parameters in the whole
design can still pose computational challenges, particularly
for high-resolution input images. As a result, these models
may not be suitable for resource-constrained applications
where computational resources are limited.

B. MULTI-BRANCH DESIGN
The multi-branch encoder approach has been intro-
duced recently to address the computational burden of
the one-branch approach. Figure 3(c) shows the general
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architecture of multi-branch encoders used in ICNet [22],
RefineNet [23],ContextNet [24], and SwiftNet [38]. These
models typically have a dedicated deep branch that accepts
lower resolution input images and produces rich global fea-
ture maps. Additionally, several parallel shallow branches are
deployed to extract low-level feature maps at higher resolu-
tions. Therefore, a multi-branch encoder can handle higher
resolution input images without incurring high computational
costs. Despite being more efficient, the open challenge with
the multi-branch encoder approach is to close the perfor-
mance gap with the one-branch deep encoder approach. For
instance, recently a new multi-branch semantic segmentation
model, called SwiftNet [38], is introduced which has almost
4 times less parameters than DeepLabV3+ [13]. However, its
test accuracy on Cityscapes is still 10% lower.

C. DUAL-BRANCH WITH DOWN-SAMPLING TECHNIQUE
This approach, as shown in Figure 3(d), is a deviation
from the multi-branch approach. In this design, the encoder
network takes a single input and employs a few convolu-
tion layers to down-sample the input image. Subsequently,
two branches are formed: a deep branch is designed to
extract rich global feature maps by exploiting a series of
residual blocks whilst a shallow branch is to uproot local
features using few convolution layers. Models such as such as
BiSeNet [21], Fast-SCNN [39], FANet [40], and ESPNet [41]
achieve improved accuracy and efficiency by employing this
approach, which requires less data pre-processing.

D. FEATURE REUSE IN SUB-ENCODERS
It is known that deep convolution layers learnmore contextual
details than the layers at the initial stage, and problems like
vanishing gradient can be diminished. Based on this fact,
DFANet [42] has introduced the concept of feature reuse in its
sub-encoders. Figure 3(e) demonstrates that the global feature
of the first sub-encoder is used as input for the second sub-
encoder. Before being fed to the next sub-encoder, the global
feature is upsampled 23 times and passed through a fully
connected (FC) attention module for better refinement. Thus,
the features from a previous sub-encoder are reused in the
next subsequent sub-encoder. Due to feature reuse, DFANet
achieves 71.3% test accuracy on the Cityscapes test set while
having 7.8 M parameters.

In contrast to the aforementioned designs, we propose
a novel approach called the multi-encoder network, which
leverages feature map reuse through dynamic sub-encoders
and generates refined output through multiple decoding
paths. Figure 3(f) provides an overview of the feature reuse
in the multi-encoder design. The specifics of our proposed
design will be discussed in the following section.

III. PROPOSED METHOD
Figure 4 depicts the end-to-end design of our proposed
MCANet. The encoder architecture is based on the concept of
reusing feature maps in a multi-encoder design. Specifically,
features at lower resolutions contain rich semantic details

TABLE 1. Bottleneck residual block.

that require multiple refinements to capture the full context.
To achieve this, we employ multiple encoders that effectively
utilize these features.

A. MULTI-ENCODER
Figure 4(a) outlines the design of our proposedmulti-encoder.
In this design, we carefully select individual components to
target mobile devices and other resource-constrained applica-
tions and optimally construct an encoder network to achieve
the best extraction of semantic features.

Empirically, it has been shown that MobileNet [43] bot-
tleneck residual convolution blocks (MBConv) are more
efficient for mobile devices than other existing residual
blocks [43], [44], [45]. The optimized architecture of these
residual blocks and the utilization of depth-wise separable
convolution layers in the bottleneck intermediate expansion
stage make MBConv much more computationally efficient.
For that reason, we decided to use MBConv blocks to build
our multi-encoder. The layered architecture of an MBConv
block is shown in Table 1. As can be seen, an input feature
Fi with spatial dimensions h× w and channel dimension c is
first filtered by a standard convolution layer and produces an
output of size h×w× tc. The number of channels of the input
feature is increased by an expansion factor t . The intermediate
expansion stage uses a lightweight depth-wise convolution
layer that reduces the computational cost by 8 to 9 times
compared to a standard convolution layer. Thus, it optimizes
the overall number of model parameters and GFLOPs count.
Following [43], we utilize MBConv6 blocks to design our
backbone. Except for the first residual block, we use an
expansion ratio of 6 for other blocks. To better preserve
contextual details, we do not apply ReLU non-linearity in the
last layer of each MBConv block.

After down-sampling the original input image using a
standard convolution layer, we use 11 MBConv blocks of
varying expansion ratios to construct the first sub-encoder of
our proposedmulti-encoder. The literature suggests that using
MBConv blocks of different expansion ratios at the initial
stage can retain more contextual and spatial details due to its
squeeze and excitation architecture [43]. The depth and width
of each block are controlled by two tunable hyper-parameters:
the width (Mw) and depth (Md ) multipliers. For an input
feature map Fi of size hi × wi × ci, each MBConv block
produces an output feature map Fo of size hi/s×wi/s×Mwci.
Here, hi, wi, and ci denote the height, width, and number of
channels of the input feature map, respectively. The stride s is
used to control the number of stages in the encoder.Whenever
s becomes 2, one new stage is created by down-sampling the
input featuremap size by half. Thus, we generate all six stages
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TABLE 2. Layer architecture of the proposed multi-encoder.

FIGURE 4. Complete pipeline of our proposed MCANet: (a) Multi-encoder design: Feature re-use in sub-encoders. Black dotted lines define the lateral
connections from the previous sub-encoder at the same levels and green dotted lines show reusing of global feature map in the next sub-encoder. Feature
F7 is produced using a simple pooling operation. (b) Decoder Design: Local and Global Context Aggregation (LGCA) module and Classifier module.

in the first sub-encoder. Hyper-parameter Md controls the
depth of the encoder by controlling the number of repetitions
of eachMBConv block. To keep our design simple, we repeat
each block in the first sub-encoder twice, except the first
block. Following [43], we set the range of the widthmultiplier
from 0.75 to 1.5 and generate a maximum of 128 chan-
nels for the global feature maps. Models like DeepLab [13],
PSPNet [14], and HANet [15] have global features with a
maximum of 2048 channels, which contribute to large-scale
parameters and GFLOPs. By setting the lower range for the
width multiplier, we achieve the best trade-off betweenmodel
performance and efficiency for mobile devices. Thus, the first
sub-encoder generates rich spatial and global features without
contributing a large number of parameters and GFLOPs. The
complete layer architecture of our proposed multi-encoder is
illustrated in Table 2.

Empirical studies have shown that high-level features at
lower resolutions contain rich semantic details that are con-
ducive to attentionweight learning [13], [37], [42]. Therefore,

many models, such as DRANet [35] and DFANet [42], intro-
duce an attention module in the later stages of their encoder
networks. The attention mechanism utilizes global pooling
to capture global contexts and guides the feature learning
process by computing an attention vector. In DFANet, the
final global feature of each sub-encoder passes through a
fully connected (FC) attention module before being used as
an input feature map for the next sub-encoder. It has been
demonstrated that deploying the FC module enhances model
performance by 4-6%. However, the effective design of our
proposed multi-encoder eliminates the need for an attention
module on top of each sub-encoder [42], thereby reducing the
number of parameters and computational cost.

In DFANet, each sub-encoder has the same layered archi-
tecture, but the spatial dimensions of the input feature map
for each sub-encoder differ. Consequently, an additional deep
stage is created after each sub-encoder. The drawback of
this architecture is that the deep features are not optimally
reused. For instance, in DFANet, features at the fourth, fifth,
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and sixth stages are reused three, two, and one time, respec-
tively. However, high-level features (the sixth stage) should
be processed more extensively compared to intermediate and
shallow features. Additionally, the uniform layered archi-
tecture of each sub-encoder is ineffective in acquiring any
additional knowledge while reusing deep feature maps:

F2
l3 = Conv(Upsample8(F1

l6 )), (1)

F2
l3 = F1

l3 + F2
l3 . (2)

In contrast to DFANet, our first sub-encoder consists of
all six stages, producing both local and deep global features.
The final feature at the sixth stage of the first sub-encoder
is upsampled 23 times and added to the output of the third
stage of the first sub-encoder, as described mathematically in
Equations 1 and 2. In the feature maps F ilj , where i represents
the sub-encoder number and j represents the level (l) position,
F1
l6
and F1

l3
denote the output of the sixth (l6) and third (l3)

stages of the first sub-encoder (i = 1), respectively. The
feature map F1

l6
from the sixth stage of the first sub-encoder

is used to produce the feature map F2
l3
, which is subsequently

used as an input for the second sub-encoder and refined
through its fourth, fifth, and sixth stages. Lateral connections
are used to reuse features from the last three stages of the first
sub-encoder. Similarly, the third and fourth sub-encoders are
designed, and their operations are described mathematically
in Equations 3, 4, 5, and 6, which define the operations
performed before processing feature maps with the third
and fourth sub-encoders. ‘Upsample8,’ ‘Upsample4,’ and
‘Upsample2’ refer to scaling up the feature map by 23, 22,
and 21 times, respectively:

F3
l4 = Conv(Upsample4(F2

l6 )), (3)

F3
l4 = F2

l4 + F3
l4 , (4)

F4
l5 = Conv(Upsample2(F3

l6 )), (5)

F4
l5 = F3

l5 + F4
l5 . (6)

We show in Table 2 that the layered architecture of each
sub-encoder is different. In the first sub-encoder, we have
11 MBConv blocks, whereas in the successive sub-encoders,
we have 7, 5, and 3MBConv blocks, respectively. The reason
for reducing the number of MBConv blocks in subsequent
encoders is that the repetition of shallow and intermediate
stages does not contribute significantly to context assim-
ilation, as these stages contain more spatial details than
contextual information. While the repetition of intermediate
stages is reduced, reusing deep features in the successive
sub-encoder is strategically increased to enhance context
assimilation.

Furthermore, Table 2 also illustrates that by increasing
the value of the depth multiplier Md , the repetition of deep
MBConv6 blocks is increased in the subsequent sub-encoder.
This allows us to increase the depth of the model without cre-
ating additional stages. Compared to DFANet, our proposed
multi-encoder design reuses deep semantic features more
effectively and eliminates the need for FC attention modules,

as it scales the feature maps at different levels through a
specially designed multi-encoder network.

Figure 4(a) shows that the four sub-encoders produce rich
semantic featuremapsF6,F5,F4, andF3. Lateral connections
between encoders at the same level are used to address the
gradient vanishing problem. We downsample the feature map
F6 by a pooling operation to create an additional feature map
F7. At this stage, the feature map may lose the contextual
details of tiny objects in the scene due to the smaller spatial
dimensions; however, it retains the context of large objects.
Tomake the model more efficient, we utilize a simple pooling
operation to create the feature map F7 as this operation does
not add any additional parameters. The rich features F7 to
F3 will then be utilized by our decoder network.

B. DECODER NETWORK
Like most semantic segmentation models, our decoder is
deployed to produce an output of the same size as the input by
employing a series of upsampling techniques. Rich semantic
features at different scales from the output of the encoder
network need to be fused together at different levels. Similar
to feature reusing in the encoder network, fusing features
from multiple paths in both directions enhances the ability of
object localization in the scene. Figure 4(b) displays the com-
plete architecture of our proposed decoder network. Next,
we describe key innovative steps.

1) LOCAL AND GLOBAL CONTEXT AGGREGATION MODULE
To motivate our proposed design, we first make an important
observation from the literature [4], [46], [47] that aggregating
features at different scales enhances the entire feature hierar-
chy with accurate object localization in the scene. Therefore,
we introduce a novel component called the Local and Global
Context Aggregation (LGCA), for this purpose. The blue
dotted box in Figure 4(b) displays the complete architecture
of LGCA. First, it takes deep and intermediate features (F3 to
F7) produced by the multi-encoder network described pre-
viously. We adopt a channel reduction mechanism in which
all feature maps at various stages will be filtered by a stan-
dard point-wise convolution layer to generate features with
reduced channel Pli = Conv(Fli ). It is required to provide
similar depth of each feature map before being fused with
each other. Moreover, by reducing the depth of the deep
feature maps, the model complexity is also reduced. Later
on, high-level semantic features are propagated downward
through a top-down path to boost the semantic representation
and improve multi-scale in-variance. Equation 7 shows that
before fusing a higher-level feature Pli with a previous level
feature map Pli−1 , Pli is bi-linearly upsampled. This top-down
path provides the first decoder path which helps in achieving
context assimilation in the feature hierarchy. However, the
spatial details of local feature maps need to be added with
rich semantic details of the global feature maps for better
object localization. This necessitates one bottom-up path to
send the accurate localization signals from a lower level to
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a higher level. Equation 8 shows that a low level feature
Pli−1 is down-sampled before it gets added with the next
higher-level feature map Pi. The downward arrows define
top-down path and the upward arrows signify the bottom-up
path in Figure 4(b):

Pli−1 = Pli−1 + Upsample2(Pli ), (7)

Pli = Pli + MaxPooling(Pli−1). (8)

Every downsampling or upsampling operation typically
causes a loss of spatial details. To minimize this loss,
we deploy a separable convolution (SC) block after every
pooling operation. This block contains a depth-wise separable
convolution (DSConv) layer followed by a batch normaliza-
tion layer (BN). DSConv first filters the feature map along
its depth, then deploys a point-wise standard convolution for
better refinement. By standardizing the output of the DSConv
layer, the BN layer enhances the independent learning ability
of every layer of the network. We set the dilation rate to 2 for
the DSConv layer in order to achieve a better receptive field
while refining the feature maps.

After the bottom-up path, we finally introduce another
top-down path for final context engrossment. Similar to
feature reuse in the multi-encoder, we aggregate seman-
tic features through multiple channels for better context
accumulation and accurate object localization. Some skip
connections among the paths of the decoder are introduced
to address the degradation problem and help the loss function
converge quickly. At the end of the second top-down path,
we receive a semantically rich feature map, which is upsam-
pled 2 times to fuse with the coarse local feature map F2. This
completes the pipeline of LGCA.

2) CLASSIFIER
This final module of our proposed decoder network assigns a
class label to every pixel based on their contextual details. The
literature has shown that adding a few layers in the classifier
module supplements model performance [24], [39]. Hence,
we employ two depth-wise separable convolution layers, one
standard convolution layer, one upsample layer, and one soft-
max layer. In each DSConv layer, we use a 3 × 3 filter with
a dilation rate of 2 as this provides a better receptive field
while refining the feature map. Since the input feature map in
the classifier module has 64 channels, the choice of DSConv
layers helps reduce the number of parameters and GFLOPs.
We implement one standard convolution layer for the finest
segmentation, setting the number of channels to be the same
as the number of classes in the target dataset. The spatial
dimensions of the feature map in the classifier module are
one-fourth of the original input. To ensure equal height and
width, we utilize a bilinear upsampling layer that upscales the
feature map by 22 times. Additionally, we employ a Dropout
layer to addressmodel overfitting. Finally, the softmax activa-
tion function is used to assign a class label to each individual
pixel.

IV. EXPERIMENTS
As this work targets resource-constrained mobile devices,
so we mainly compare the proposed model’s performance
with the existing real-time semantic segmentation models
having a less than 5 M model parameters.

A. DATASETS
To benchmark our proposed model against others, we con-
ducted extensive experiments on structured and unstructured
public datasets. We strictly followed the evaluation protocols
of these datasets for training, validation, and testing.

1) STRUCTURED DATASETS
Cityscapes [28] is the most widely used dataset for semantic
segmentation. It provides urban street scene images at a
resolution of 1024 × 2048, where objects are classified into
35 classes and grouped into 8 different categories. Following
the protocols used in the literature for Cityscapes, we used
19 classes for pixel annotations. The dataset consists of
around 5,000 finely annotated images, out of which 2,975
images are used for training, 500 samples are used for val-
idation, and the remaining 1,525 images are used for testing.
However, annotations for the test set are not provided with the
dataset. To evaluate our model on the test set, we submitted
the test results of the proposed model to the Cityscapes
online evaluation server, and the results were published on the
server.

CamVid [25] is a small structured dataset that provides
267 images for training, 101 for validation, and 233 for test-
ing. Consistent with the evaluation protocols in the literature,
we used only 11 fine-tuned classes out of the 32 classes in
the dataset. To improve performance on CamVid, we utilized
transfer learning by pre-training the model on the Cityscapes
dataset with appropriate class mapping between the two
datasets.

Similarly to Cityscapes, the BDD100K [26] and
KITTI [27] datasets use the same class labeling technique
(19 classes) for training and testing. Due to this compatibility
in class labeling, we can use Cityscapes pre-trained weights
to train the model with BDD100K and KITTI datasets.
BDD100K provides a total of 10,000 images, out of which
7,000 images are used for training, 1,000 for validation,
and the remaining 2,000 images for testing. Fine-grained
annotations are provided only for the training and validation
sets. The original input resolution of this dataset is 720×1280
pixels. On the other hand, KITTI is a small urban street scene
dataset that provides only 200 training images with fine-tuned
annotations and 200 test images without annotations. Each
input image has a resolution of 375× 1280 pixels. Similar to
Cityscapes, KITTI also provides an online evaluation server
for the test set. We submitted the test set results of our
proposed model to the KITTI evaluation server to obtain the
test results.
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2) UNSTRUCTURED DATASET
The four datasets mentioned above primarily focus on urban
street scenes captured in western countries, such as Europe or
the USA, where the road environment is well-structured and
there are fewer variations in the objects present. However,
such well-defined traffic environments are not represen-
tative of the road conditions in Asian countries, such as
India. To evaluate the performance of the proposed model
in unstructured road conditions, we trained the model using
the IDD-lite (Indian Driving Dataset lite version) [48]. This
dataset consists of 1,404 urban and rural training images,
204 validation samples, and 404 test samples, each with a
resolution of 227× 320. The dataset divides the entire object
space into seven classes: drivable, non-drivable, living things,
vehicles, roadside objects, far objects, and sky. We reported
the performance of the proposed model on each of these
classes.

Furthermore, we also trained the proposed model using
IDD part 1 and part 2, which contain approximately 14,027
training samples and 2,036 validation samples. Similar to
IDD-lite, we reported the performance of the proposed model
on the seven classes of both IDD and Cityscapes validation
sets.

B. IMPLEMENTATION DETAILS
All compared models were trained on a server equipped with
three Nvidia GeForce TITANRTXGPUs, each with 24GB of
memory. For effective utilization of all GPUs in data-parallel
distributed training, we used the horovod framework [49].
The software components included CUDA 10.2 for par-
allel processing, tensorflow 2.1.0, and keras 2.3.1.
We employed the polynomial learning rate strategy, with a
base rate of 0.045 and power of 0.9. Using a polynomial
scheduler, we found the optimal learning rate at the steepest
slope of the training loss vs. learning rate plot for 5 epochs.
We used the distributed synchronous stochastic gradient
descent (SGD) optimizer, which divides SGD mini-batches
over a pool of parallel GPUs to find the best learning rate.
Following [50], we also employed a gradual warm-up strat-
egy in the horovod distributed framework to overcome
optimization challenges, especially in the early stages of the
training process.

To improve training, we employed various on-the-fly data
augmentation techniques such as resizing, cropping, clipping
by value, horizontal and vertical flipping, adjusting bright-
ness, saturation and contrast of the input images to increase
the effective size of the training set. We also employed differ-
ent regularization techniques to address model over-fitting,
such as ℓ2 regularisation for all top layers and a dropout layer
with a dropout rate of 0.3.

C. ABLATION STUDY
In this ablation study, we aim to demonstrate the impor-
tance of each component of our proposed model in achieving
the best segmentation performance. Firstly, we highlight

TABLE 3. Results of ablation study.

the significance of the multi-encoder design. To do this,
we initially trained the proposed model with only the first
sub-encoder (as described in Table 2). Subsequently, we pro-
gressively added the second, third, and fourth sub-encoders.
The validation results reported in Table 3 were obtained
after training the model on the Cityscapes training set for
500 epochs at the full input resolution of 1024 × 2048 px.
In the results section, we reported the best validation and test
mIoU achieved by our proposed model after fine-tuning the
model and training it for a large number of epochs. Initially,
we did not utilize multiple paths at the decoder side and only
employed the first top-down path of the LGCAmodule to fuse
features at different levels. Therefore, the first five rows of
Table 3 do not include LGCA. The table clearly demonstrates
that with the addition of each sub-encoder, the model’s per-
formance noticeably improves and reaches a validation mIoU
of 70.7% after 500 epochs.

We also explored the use of ASPP (Atrous Spatial Pyra-
mid Pooling) [13] for feature scaling on top of the fourth
encoder. ASPP is known to filter the feature map with various
sizes of receptive fields and has the potential to improve
segmentation performance. However, we observed a slight
drop in performance. This could be attributed to the fact that
the model’s backbone produces a low-resolution feature map
that is 26 times smaller than the original input size. Due to
this performance reduction, we did not incorporate ASPP in
our model design. Furthermore, the different layered archi-
tectures of each sub-encoder already provide feature scaling
capability, makingASPP unnecessary. The last row of Table 3
demonstrates that with the inclusion of LGCA on top of the
multi-encoder network, our proposedmodel, calledMCANet,
achieves a validation mIoU of 71.8% after 500 epochs, while
having only 2.72 million parameters and 31.2 GFLOPs. If we
upsample the global feature map by 23 times at the decoder
end, the GFLOPs count would be reduced to 27.5 at full input
resolution. However, this may lead to boundary degeneration
effects in the output. Therefore, we perform upsampling of
the global feature map at two stages: the first upsampling by
21 times occurs inside LGCA, and the second upsampling
by 22 times occurs inside the classifier module (as shown in
Figure 4(b)).

From Table 3, it is evident that the model’s performance
improves with the addition of each sub-encoder and LGCA
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FIGURE 5. Illustration of feature similarities of a group of pixels using score map. Bright and hotter color means
more similar feature among the pixels. Weights of intermediate Conv layers are used to produce score map at
various levels for an (a) input image. (b) Score map after first sub-encoder, (c) Score map after second
sub-encoder, (d) Score map after third sub-encoder, (e) Score map after forth sub-encoder, (f) Final score map
overlaying with the input image.

TABLE 4. Class-wise MCANet performance on Cityscapes validation and test sets.

TABLE 5. Category-wise MCANet performance on Cityscapes validation and test sets.

module. To visually demonstrate this improvement, we gen-
erated score maps (before the softmax function) at various
stages using feature maps from different levels, and these
score maps are presented in Figure 5. In each score map,
pixels with similar features are highlighted using a hotter
color. We used feature maps at 16 × 32 resolution after the
first, second, third, fourth sub-encoders, and after LGCA (as
depicted in Figure 4). In Figure 5, we highlighted two main
sections (car and pedestrian) in the input image using red
and white boxes. It clearly illustrates that with the successive
addition of each sub-encoder and LGCA module, the model
becomes capable of identifying more pixels with similar
features.

Therefore, both the quantitative and qualitative studies
provide clear evidence of the effectiveness of the multiple
sub-encoder design for feature extraction at various levels and
the use of LGCA for constructing the segmented output using
the extracted features from different levels.

D. MODEL EVALUATION
The proposed model is evaluated on the four urban
street scenes datasets. Following the literature and eval-
uation servers, we present the following metrics: class

and category-wise mean Intersection over Union (IoU),
mean instance-level Intersection over Union (iIoU), model
parameters, GFLOPs and Frame Per Second (EPS). As the
proposed backbone is designed from scratch, so we did
not use any existing pre-trained weight to train the model
with Cityscapes. Moreover, We did not train the proposed
backbone with ImageNet [29] dataset like other exiting
models.

1) PERFORMANCE ON CITYSCAPES
We trained the proposed model on the Cityscapes dataset for
1000 epochs with a batch size of 4 on each GPU. During the
performance evaluation on the validation set, we utilized the
training set. However, to improve the accuracy on the test set,
we merged both the training and validation sets. Additionally,
we included additional coarse images from Cityscapes for a
small number of epochs, which resulted in a slight improve-
ment of only 0.4% in test performance. Table 4 presents
the class-wise performance of the model on the Cityscapes
validation and test sets. It is observed that the proposed model
performed exceptionally well on the top 5 classes (including
road, building, vegetation, sky, and car), with accuracy above
90% on both the validation and test sets. Overall, MCANet
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TABLE 6. Performance evaluation of different models on Cityscapes validation and test set.

TABLE 7. GFLOPs and FPS at different input resolution.

achieved a validation mIoU of 74.8% and a test mIoU of
73.4% on the Cityscapes dataset. The performance on the test
set was independently evaluated by the Cityscapes evaluation
server, and the results are available on the server.

The 19 classes of Cityscapes are categorized into 7
categories, and the corresponding category-wise mIoU is
presented in Table 5. It demonstrates that MCANet per-
formed exceptionally well in 5 out of the 7 categories. The
average performance in the object and human categories
is relatively lower due to the limited occurrence of classes
within these categories in the entire dataset. This non-uniform
distribution of classes is a common challenge across existing
models. Overall, the proposed model achieved an impressive
category-wise mIoU of almost 89% on both sets.

Performance comparison To illustrate the effectiveness
of our proposed model, we compared its performance with
existing real-time semantic segmentation models. It is gener-
ally acknowledged in the literature that offline models have
a large number of parameters due to their deep network
architecture, while real-time models have significantly fewer
parameters. Therefore, in Table 6, we did not include the
performance of existing offline models to ensure a meaning-
ful comparison. Typically, offline semantic models have over
40 million parameters and achieve mIoU values of 80-84%
on the Cityscapes test set. For example, DeepLabV3+ [13]
and PSPNet [14] achieve test mIoU values of 82.1% and
81.2%, respectively, with 43 and 250.8 million parameters.
In contrast, most existing real-time semantic segmentation
models have less than 10 million parameters and achieve

test mIoU values of 68-72% on Cityscapes. For instance,
STDC1 [51], MGSeg [37], DFANet [42], ICNet [22], and
BiSeNet [21] achieve test mIoU values of 75.3%, 72.7%,
71.3%, 69.5%, and 68.4%, respectively. However, these mod-
els still have moderately large parameter counts ranging
from 4.5-8.4 million. SwiftNet [38], which uses a pre-trained
ResNet-18 (RN18) as a backbone, achieves a test mIoU of
75.9% on Cityscapes with 11.8 million parameters. While all
these models demonstrate good accuracy, they still have a
moderately large number of parameters. On the other hand,
models like ENet [19], ContextNet [24], Fast-SCNN [39],
and FANet [40] have 0.4-1.2 million parameters and achieve
test class mIoU values of 58-68%. These models are more
efficient in real-time environments but their performance lags
behind moderately large real-time semantic models by 4-6%.
Striking a balance between model size and performance, our
proposed model, MCANet, achieves 74.8% and 73.4% class
mIoU on the Cityscapes validation and test sets, respectively,
with only 2.7 million parameters. This clearly demonstrates
the superior performance of our model on the Cityscapes
dataset.

For consistency, we decided to replicate a few existing
real-time models based on publicly available implementa-
tions on GitHub to ensure a more meaningful comparison.
These models are marked with an asterisk ‘*’ sign in the
following tables.We trained thesemodels under the same sys-
tem configurations with the full input resolution. The results
obtained from our experiments on the Cityscapes validation
set are presented in Table 6 and are marked with an asterisk
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FIGURE 6. The plot Input size vs GLFOPs illustrates that with an increase
in input resolution, the GFLOPs count of all models also increases.

‘*’ sign. Our experimental results for the existing models
may differ from the actual literature, but it provides a fair
comparison based on the same system settings.

Table 6 provides the class and category-based mIoU results
for different existing models on the validation and test sets of
Cityscapes. The mean iIoU, as provided by the Cityscapes
evaluation server, is also included, along with the model
parameters and GFLOPs count. However, some real-time
semantic segmentation models did not publish their results on
the Cityscapes evaluation server, resulting in unavailable iIoU
values denoted by the sign ‘‘-’’. Our result on the Cityscapes
test set is available on the benchmark server.

While class mIoU is the primary metric for comparison
as it comes from the Cityscapes evaluation server, we also
discuss GFLOPs count for completeness. However, it is worth
noting that GFLOPs count is not an optimal metric as it
depends on the model size and input resolution. The increase
in input resolution leads to a somewhat polynomial increase
in GFLOPs count, as shown in Figure 6. This has resulted in
inconsistent GFLOPs counts being reported in previous work.
For example, ENet has 3.8 GFLOPs at a 360 × 360 input
resolution with 0.4 million parameters, while STDC1 [51]
claims 0.8 GFLOPs at a 224 × 224 input resolution with
8.4 million parameters.

Since we trained three existing models (FANet [40], Fast-
SCNN [39], ContextNet [24]) using the Cityscapes dataset
under the same system configuration, we measured the
GFLOPs of these models at different input resolutions. The
results are presented in Figure 6 and Table 7. It can be
observed that as the input resolution increases, the GFLOPs
count of all models also increases, with ContextNet [24] hav-
ing the highest GFLOPs count. Our proposedmodel produces
31.2 and 2.0 GFLOPs at input resolutions of 1024×2048 and
256 × 512, respectively.

Another commonly mentioned metric in semantic seg-
mentation evaluation is frames per second (FPS). However,
it is evident that FPS is highly dependent on hardware
and input resolution. For the sake of completeness, we also
discuss this metric here. To ensure a meaningful comparison,

we measured the FPS of all four trained models listed in
Table 7 under the same system configuration at different input
resolutions and presented the experimental results. To mea-
sure FPS, we first converted the TensorFlow model to a
TensorRT optimized model and then used a single Tesla T4
GPU with 16GB memory. We used a batch size of 4 and
averaged the FPS value over 10 iterations. It is evident
from the results that Fast-SCNN [39] achieves higher FPS
compared to the other models at different input resolutions.
We acknowledge that our ownmeasurementsmay differ from
the figures published in the original papers, possibly due to
variations in hardware and measurement methods. However,
what is more important is the relative performance based on
the most intuitive way to measure the overall computation of
the entire pipeline.

When compared to our proposed model, all three models
listed in Table 7 have approximately 2-3 times fewer param-
eters. They employ a computationally cheaper method for
upsampling the global feature map in the decoder, which
results in boundary degradation in the output and over-
all lower segmentation performance. Our effective upsam-
pling solution, as described earlier, introduces additional
computational cost, leading to a lower FPS. However,
we believe that such a trade-off is worthwhile for signifi-
cantly improved segmentation quality. In Table 6, we reported
the FPS of our proposed model at an input resolution of
512 × 1024.

2) PERFORMANCE ON CamVid DATASET
We also trained our proposed model along with a few exist-
ing semantic segmentation models with CamVid dataset and
present the results in Table 8. To ensure tensor size com-
patibility, we used an input size of 640 × 896 px instead of
the full input resolution of 720 × 960 px. Table 8 clearly
illustrates that our proposed model MCANet achieved the
state-of-the-art (SOTA) performance on the CamVid vali-
dation and test sets among the existing real-time semantic
models. It achieved 81.4% and 80.2% validation and test
mIoU, respectively, which is even higher than many exist-
ing offline models such as DeepLab [11] and PSPNet [14].
The dual deep model DeepLabV3+ with SDCNetAug [52]
achieved the SOTA performance (81.7%) on the CamVid
test set due to its large backbone, joint strategies, and large
synthetic datasets. In comparison, real-time models such as
STDC1 [51] and MGSeg [37] achieved 73.0% and 72.7%
test mIoU on the CamVid set, respectively. Literature [37] did
not report the performance of the smaller variant of MGSeg
(ShuffleNetV2) on the CamVid dataset. Hence, we compared
the proposed model’s performance with the higher variant of
MGSeg (ResNet-18) (refer to Table 8). In terms of size, both
of these models (MGSeg (R18) and STDC1) are 3 to 5 times
bigger than our proposed model. Despite being a smaller
network, our proposed MCANet achieved more than 7% test
accuracy on the CamVid dataset. Thus, Table 8 shows the
superior performance of our proposedmodel among real-time
semantic models.
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TABLE 8. Performance evaluation on CamVid validation and test sets.

TABLE 9. Performance evaluation on validation set of BDD100K dataset.

TABLE 10. Performance evaluation on test set of KITTI.

3) PERFORMANCE ON BDD100K
Table 9 displays models performance on the BDD100K
dataset. We trained the model with 768 × 1280 input
resolution for better compatibility with tensor dimensions.
To improve model performance on BDD100K dataset,
we used Cityscapes pre-trained weight. Due to the diverse
and complex nature of this data set, not many existing
models are trained with this dataset. The only work we
could find is [15] which introduced two different variants of
HANet- HANet with MobileNetV2 (MV2) as backbone and
HANet with ResNet-101 (R101) as backbone, both of which
are clearly off-line models. We present both the variants’
performance along with the proposed model. HANet R101
variant produces the SOTA result (64.8%) on BDD100K
validation set while having as many as 64.2M parameters
and 2137.8 GFLOPs. The smaller variant of HANet (MV2)
which has 14.8M parameters, generates 58.9% validation

TABLE 11. Model performance on IDD-lite validation set.

mIoU. In comparison, the proposed model generates 58.8%
validation mIoU while having 5 to 24 times less parameters
than the both variants of HANet. It clearly shows the superior
performance of the proposed model on BDD100K dataset.
We also trained few existing models (marked by * sign) with
BDD100K dataset and presented the results in Table 9. It can
be observed that among the real-time semantic models, the
proposed model produces the SOTA result on BDD100K
validation set.

4) PERFORMANCE ON KITTI
We followed the same training protocol as BDD100k [26] to
train our proposed model with the KITTI [27] dataset, and
the results on the KITTI test set are presented in Table 10.
The KITTI dataset is primarily used for stereo, visual
odometry, and depth analysis. Therefore, we did not find
any existing real-time semantic segmentation models that
were specifically trained and tested on the KITTI fine-tune
dataset and had their results submitted to the evaluation
server. We came across a few works from the KITTI server,
such as DeepLabV3Plus+SDCNetAug [52], SGDepth [53],
SDNet [54], and PAG [55], which primarily focused on depth
analysis. Although these models incorporate a semantic head
to enhance the model’s performance in addition to the depth
analysis decoder head. Among these models, SGDepth [53]
achieves relatively better results with a class mIoU of 53.0%
on the KITTI test set, followed by SDNet [54] with 51.1%.
The current state-of-the-art result on the KITTI test set is
achieved by DeepLabV3Plus+SDCNetAug [52], which is
a combination of multiple models. It utilizes a joint video
prediction model to augment the training sets for robust
semantic segmentation, leverages a deep semantic model
(DeepLabV3Plus) for feature extraction, and applies a bound-
ary label relaxation technique to reduce noise at the object
edges. Due to the collective efforts of multiple models and the
presence of large synthetic training sets, this model achieves a
classmIoU of 72.8%on theKITTI test set. In comparison, our
proposed lightweight single model is significantly smaller
and specifically designed for scene parsing. It achieves a class
mIoU of 58.5% and a category (Cat.) mIoU of 83.0% on
the KITTI test set, setting the state-of-the-art performance in
the real-time semantic segmentation category. The results of
MCANet were independently generated by the KITTI evalu-
ation server. For tensor dimension compatibility, we used an
input resolution of 384×1280 to train themodel on the KITTI
dataset. All the models listed in Table 10 were pre-trained
with the Cityscapes dataset.
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TABLE 12. Class-wise model performance on IDD-lite validation set.

FIGURE 7. Colour mapping of Cityscapes dataset.

FIGURE 8. Output produced by (a) ContextNet, (b) FANet, (c) FAST-SCNN, (d) MCANet using Cityscapes validation image.

FIGURE 9. Output produced by MCANet using Cityscapes test set samples.

5) PERFORMANCE ON IDD-LITE
he IDD-lite dataset is primarily designed for resource-
constrained devices that lack sufficient hardware resources
to train models with large input resolutions. To ensure ten-
sor size compatibility, we trained our model with a 256 ×

384 input resolution. The performance of different exist-
ing models on the IDD-lite validation set is presented in
Table 11. Among the existing models, Eff-UNet (E.Net
B7) [56] achieves the state-of-the-art performance on the
IDD-lite validation set and won the first prize in the IDD-lite
segmentation challenge held in 2019. Eff-UNet [56] uti-
lizes a large feature extractor called EfficientNet-B7 (E.Net
B7) [57], which has 66M parameters and 37 GFLOPs at a

224 × 224 input resolution. However, despite the IDD-lite
dataset targeting resource-constrained embedded devices, the
evaluated existingmodels on this dataset are still too large and
computationally inefficient for mobile devices.

Table 11 presents the results of the top-performing existing
models on the IDD-lite dataset, including their parameters
and GFLOPs at a 128 × 256 input resolution. It is evi-
dent that all these existing models have a large number
of parameters and GFLOPs, making them impractical to
run on resource-constrained embedded devices, especially at
higher input resolutions. In contrast, our proposed MCANet
is 10 to 58 times smaller than all the listed existing mod-
els while achieving a state-of-the-art result (73.8% mIoU)
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FIGURE 10. Colour mapping of CamVid dataset.

FIGURE 11. Output produced by (a) ContextNet, (b) FAST-SCNN, (c) FANet, (d) MCANet using CamVid validation image.

FIGURE 12. Output produced by MCANet using CamVid test set samples.

FIGURE 13. Models prediction on BDD100K validation set. (a) RGB input, (b) Coloured annotation, (c) ContextNet,
(d) Fast-SCNN, (e) FANet, (f) MCANet.

on the IDD-lite validation set, similar to Eff-UNet (E.Net
B7) [56]. Table 11 also provides information on the model
parameters, GFLOPs, and FPS count. It is clear that our pro-
posed MCANet is more efficient compared to all the existing
models, as it processes a higher number of frames (494) per
second while significantly reducing computational usage by
reducing the number of parameters and GFLOPs.

Table 12 presents the class-wise mIoU performance of
Eff-Unet (E.Net B7) [56] and our proposed MCANet. Addi-
tionally, we report the performance of our proposed model

on seven classes of the IDD (part 1 and part 2) [58]
and Cityscapes [28] datasets. Our model achieves 75.5%
and 71.6% mIoU on the IDD and Cityscapes datasets,
respectively.

6) QUALITATIVE RESULTS AND ANALYSIS
In this section, we demonstrate the quality of the output
produced by our proposed model and compare it with other
models. Figure 7 and 10 display the annotation and color map
used for the Cityscapes and CamVid datasets, respectively.
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FIGURE 14. Output produced by MCANet using BDD100K test set samples.

FIGURE 15. Output produced by MCANet using KITTI test set samples.

FIGURE 16. Color map of IDD lite dataset and model prediction using validation sample.

FIGURE 17. Models predictions using Cityscapes and IDD samples on 7 classes. (a) Cityscapes input, (b) Cityscapes prediction, (c) IDD input, (d) IDD
prediction.

Nineteen color codes are used for Cityscapes, while eleven
color codes are used for CamVid. The BDD100K and KITTI
datasets follow the same color codes as Cityscapes. The void
class is excluded for all datasets.

Figure 8 showcases the corresponding segmented output of
the input images depicted in Figure 7. The outputs generated

by ContextNet, Fast-SCNN, and FANet exhibit a boundary
degradation effect due to the 23 times upsampling at the
end of the decoder. On the other hand, our proposed model
MCANet produces outputs with sharp and clear edges for
each object in the scene. The results in Figure 9 demonstrate
that our model accurately positions tiny classes such as poles,
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traffic lights, and traffic signs in the test samples, without
overlooking them amidst the larger classes

Likewise, Figure 11 displays the output produced by dif-
ferent models on selected CamVid images. In contrast to
the original annotation of CamVid, we formed some super
classes by merging related classes. For instance, we grouped
car, truck, bus, and caravan together and formed a single
class called ‘‘car.’’ Thus, the bus is represented by the same
color as the car, as can be observed in Figure 11. Figure 12
displays the output generated by the proposed model using
selected test samples from the CamVid dataset. In line with
the quantitative results presented in Table 8, Figure 11 also
confirms the model’s superiority over other models.

Figure 13 shows the segmented output produced by differ-
ent models using the BDD100K validation set. Classes such
as ice and car hood, which are defined by the black color in the
colored annotation (Figure 8(b)), are ignored during training
of the model. As a result, pixels that belong to ignored classes
are assigned the color of the neighboring classes. This does
not affect the model’s performance, as these pixels are com-
pletely disregarded when calculating mIoU. By inspecting all
the output, it can be clearly seen that the quality of the output
produced by the proposed model is much better than other
three models in Figure 13. In order to provide a better view
of different scenes that contain tiny objects, we also present
the output produced by the proposed model using BDD100K
test set in Figure 14. All of these figures clearly demonstrate
the excellent performance ofMCANet in the field of semantic
segmentation.

Figure 15 shows the predictions of the proposed model on
KITTI test set samples, as generated by the KITTI evaluation
server. Along with the colored predictions, it also provides an
error image for each sample. The second column of Figure 15
displays the proposed model’s predictions, and the third col-
umn shows the corresponding error images. The color red in
the error images indicates wrongly classified pixels. It is clear
that pixels mostly at the boundaries of each object in the scene
are incorrectly classified. However, the proposed model’s
object identification and overall segmentation demonstrate its
excellent performance on the KITTI dataset.

Figure 16 displays the colour map of IDD-lite dataset
and the output produced by the proposed model MCANet,
using IDD-lite validation sample. Like the other datasets,
the quality of the predicted output of the IDD-lite sam-
ple is good, and it justifies the quantitative result produced
by the proposed model. In Figure 17, we also shows the
model’s predictions using Cityscapes and IDD samples. Like
IDD-lite, seven classes are used.

V. CONCLUSION
To improve the performance of existing models in real-time
semantic segmentation for resource-constrained applications
and to reduce the performance gap between offline and
real-time models, we introduced an efficient multi-encoder
network that can handle high-resolution input images and
produce competitive semantic segmentation results. The key

innovative steps in our design are: a novel multi-encoder
network with a dynamic layered structure for better cap-
turing semantic information and sharing information more
effectively across different scales; a new local and global
context aggregation module for better semantic fusion in
the output. Compared to existing real-time semantic seg-
mentation models, our proposed model MCANet produces
competitive performance in both structured and unstructured
environments and sets a new benchmark on all the tested
datasets while having only 2.7 M parameters. The effective
design of our proposed multi-encoder fulfills the needs of
feature scaling techniques and produces rich feature maps
at different scales. By exploiting these feature maps, our
proposed decoder assimilates contextual details in multiple
paths and produces output with accurate object positioning
in the scene. Although the addition of the LGCA module
improves the localization of each object in the scene, it also
slightly increases the processing time of each frame. Hence,
in the future, we will try to optimize the design of the
LGCA module to improve the model’s FPS without sacrific-
ing the model’s performance. We will also exploit the design
of the multi-encoder for instance and panoptic segmenta-
tion. we make an implementation of our model available
at https://github.com/tanmaysingha/MCANet for reproduc-
ing the results presented in this work.
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