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Abstract 

Perinatal epidemiology is the study of the distribution, determinants and sequelae of 

perinatal events. As randomised controlled trials are neither practical, feasible, nor 

ethical in pregnant women, much of the information that has informed our 

understanding of causal effects in perinatal epidemiology have been derived from 

observational studies. Due to the non-random nature of observational data, perinatal 

epidemiological studies are often prone to various types of bias. Yet there remains a 

lack of clarity around the magnitude or direction of such biases.   

Simulation is a powerful tool that has the potential to quantify the influence of bias in 

aetiological associations. Simulation involves computational experiments in which 

pseudo random sampling generates data to replicate bias mechanisms, enabling the 

illustration and quantification of multiple types of bias (selection, confounding and 

information), and facilitating the rapid testing of simulation models under multiple 

scenarios. Despite the seemingly benefits of simulation to quantitative bias analysis, 

there has been limited evidence of their application in perinatal epidemiology.  

This thesis considered the utility of simulation to quantify the influence of bias in 

perinatal epidemiology through three inter-related aims:  

1. To review and explore the existing literature on the application of simulation 

methods as an approach to quantify the influence of bias in perinatal epidemiology.  

2. To design, implement and analyse a series of simulation studies to quantify the 

magnitude and direction of bias in perinatal epidemiology to address issues from 

methodological challenges that may lead to spurious inference on associations 

between pregnancy exposures and adverse birth outcomes.  

3. To develop a framework for the application of simulation to quantify bias in perinatal 

epidemiology.  

To address the specific aims of this thesis, various studies and simulation 

methodologies were undertaken. The findings from a systematic review identified that 

simulation was effective in the quantification of bias in perinatal epidemiology; 

however, there was a lack of uniformity in the design, implementation and reporting of 

simulation studies. The limitations of these studies reinforced the need for a framework 
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to guide perinatal epidemiologists on the development of simulation studies to quantify 

bias. The application of simulation in included studies in this thesis demonstrated its 

broad utility in perinatal epidemiology. Simulation methods were employed with 

traditional epidemiological regression modelling and the e-value for confounding to 

investigate the role of unmeasured confounding in association between pregnancy 

complications across successive pregnancies. Here, the application of simulation 

strengthened the validity of the epidemiological findings. Simulation studies extricated 

the role of the collider in selection bias mechanisms and its influence on mediated 

associations, providing methodologies and reproducible simulation code that can be 

applied by other researchers to quantify the influence of bias across a range of 

perinatal epidemiological associations. Lastly, a framework was developed to guide 

epidemiologists on the design, implementation and reporting of simulation studies to 

quantify bias.  

Taken together, this body of work demonstrated that simulation is a potent method to 

quantify the influence of bias in perinatal epidemiology. The methods demonstrated in 

this thesis have to potential to aid epidemiologists to increase their understanding of, 

and quantify, the influence of pervasive bias mechanisms in perinatal epidemiology.  
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Thesis Outline 

This thesis has seven chapters comprising an introduction to the topic (Chapter One), 

five original research chapters (Chapters Two to Six) and a discussion (Chapter 

Seven). The original research is a combination of published manuscripts (Chapters 

Two to Four) and two manuscripts under peer review (Chapter Five and Six).   

Chapter One: Introduction 

The aim of this opening chapter was to include sufficient background information on 

key concepts of importance in the application of simulation to the quantification of the 

influence of bias. Bias from selection, information and confounding is pervasive in 

perinatal aetiology. Data that informs perinatal epidemiological studies is left truncated 

as the sample population is restricted to a pre-specified gestational cut-off. Bias from 

confounding is impactful due to causal factors that are unmeasured or unknown to a 

study. Moreover, the physiology of pregnancy is complicated, with many influencing 

factors that are potentially yet undiscovered. Bias compromises the validity of a study. 

Yet, the practice of quantifying the influence of bias in perinatal epidemiological studies 

remains low. The application of simulation, empirical computer experiments, have the 

potential to quantify the influence of multiple types of bias on a range of exposure-

outcome associations commonly found in perinatal epidemiology. However, there is a 

lack of guidance for researchers in the design, implementation and analysis of 

simulation studies for the prime purpose of bias analysis. This chapter placed the 

contribution of this thesis amongst these knowledge gaps.  

Chapter Two: The application of simulation to quantify bias 

The first step of this PhD project was to map out how simulation had been applied as 

a method to quantify bias in perinatal epidemiology. To fill this knowledge gap, a 

systematic review was conducted of the application of simulation as a method to 

quantify the magnitude and influence of bias in reproductive and perinatal 

epidemiology. The findings indicated that, although the number of simulation studies 

remained low, there was increasing application for bias analysis in more recent years. 

There was a lack of conformity in the design, implementation, analysis and reporting 

of the included simulation studies. Few studies provided simulation code, which 
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impeded the reproducibility of their results. These limitations informed 

recommendations for best practice in the application of simulation to quantify the 

influence of bias, which underpinned the design, implementation and analysis of 

subsequent simulation studies in this thesis (Chapter Four and Five) and the 

development of a framework (Chapter Six). This chapter (Publication One) was peer-

reviewed and published in Annals of Epidemiology.  

Chapter Three: The role of confounding  

This chapter examined the role of confounding in the association between 

complications in first pregnancy and the subsequent risk of preterm birth. The study 

applied traditional epidemiological methods (regression models) to measure the 

associations between pre-eclampsia, placental abruption, small-for-gestational age 

and perinatal deaths (stillbirth and neonatal death within 28 days of birth) with 

subsequent preterm birth. Included in this study was a brief simulation in which a 

relevant but unknown confounder of maternal obesity was simulated to determine its 

influence on the observed associations between pregnancy complications and 

subsequent preterm birth. To measure the role of confounding, the e-value for 

confounding was computed to determine the magnitude of unmeasured confounding 

in the observed associations. The main finding of this study indicated that recurrent 

confounding was unlikely as any such unmeasured confounder would have to be 

uncharacteristically large explain away the observed associations between pregnancy 

complications and subsequent preterm birth. This chapter (Publication Two) was peer-

reviewed and published in BJOG: An International Journal of Obstetrics & 

Gynaecology.  

Chapter Four: Bias due to left truncation 

Chapter Four quantified the magnitude and influence of bias from the use of left 

truncated birth data in the association between advancing maternal age and stillbirth. 

The bias mechanism occurs as the cause of the left truncation (restriction to 

pregnancies that survived past 20 gestational weeks) was influenced by both the 

exposure and an unmeasured factor, which also affected the outcome. The simulation 

was based on an observed cohort and range of plausible parameters derived from 

published literature. The findings of this simulation study revealed that the exclusion 

of early pregnancy losses (prior to 20 gestational weeks) produced minimal bias in the 

https://www.sciencedirect.com/science/article/pii/S1047279721002490
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association between advancing maternal age and stillbirth. This study (Publication 

Three) was peer-reviewed and published in Scientific Reports. 

Chapter Five: Bias in mediated associations 

This chapter quantified the influence of bias due to unmeasured confounding in the 

association between maternal obesity and caesarean section delivery when mediated 

by the pregnancy complication of pre-eclampsia. The magnitude and direction of bias 

was quantified under the three most common scenarios: 1) mediator-outcome 

confounding, 2) mediator-outcome confounding affected by the exposure, and 3) 

exposure-mediator confounding. The simulation was based on an observed cohort 

and a range of plausible parameters. The strongest evidence of bias was due to 

exposure-mediator confounding, contrasting with the mediator-outcome confounding 

which produced minimal bias. This study (Publication Four) has been submitted to 

Statistics in Medicine.  

Chapter Six: A framework to apply simulation to bias analysis 

Chapter Six introduced a framework for the application of simulation to quantify the 

magnitude and direction of biases in perinatal epidemiology. This framework provides 

guidance to researchers in the design, implementation and reporting of simulation 

studies for the prime purpose of bias analysis. Underpinning this framework are five 

steps: 1) study aim, 2) causal logic, 3) data generation processes, 4) implementation, 

and, 5) reproducibility of the study. Included in this chapter is a reproducible simulation 

which demonstrated the implementation of the frame to quantify bias. This study 

(Publication Five) has been submitted to the European Journal of Epidemiology.  

Chapter Seven: Discussion 

This final chapter discusses the thesis research outcomes and summarises the 

relevance of each of the chapters in achieving the thesis aims. This chapter also 

highlights the strengths and limitations of the thesis, discusses the significance of 

simulation as a method for bias analysis in perinatal epidemiology, and makes 

suggestions for future research.  
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Chapter One: Introduction       

This chapter provides a comprehensive introduction and description to the application 

of simulation to quantifying bias in perinatal epidemiology. It begins with a brief 

overview of causal inference and bias mechanisms commonly found in perinatal 

epidemiological studies. It then provides background to simulation and the role it can 

play in quantifying the influence of bias. This introductory chapter also highlights the 

knowledge gaps that are filled by this PhD project and includes the research aim and 

objectives of the thesis.  
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1.1 Background 

Pregnancy is often a time of joy for families. Yet, for some mothers and babies, 

pregnancy can be a dangerous period. The physiology of pregnancy is complex. 

Understanding the causal associations between exposures and outcomes is 

challenging due to many unseen and possibly unforeseen factors. Increasing our 

understanding of the complex causal associations between exposures during 

pregnancy and adverse outcomes will improve the quality of the evidence-based 

information that many clinicians and families rely upon. Epidemiology mainly focuses 

on the distributions and determinants of diseases in a specific population. Since its 

earliest inception, the field of epidemiology has expanded from a singular focus on 

infectious diseases to broader chronic and non-communicable diseases. To support 

this aetiology, formalised assumptions and statistical methods have been developed 

to ensure our understanding of cause and effect. More recently, the rapid growth in 

computing power has increased the feasibility of analysing big datasets using complex 

methodologies in epidemiology. However, the application of such data is prone to 

various types of bias due to the non-random nature of observational studies. The 

application of simulation methods, which are computer-based experiments using 

pseudo-generated data, are placed to improve causality in epidemiology, as they can 

quantify the magnitude and direction of multiple types of bias mechanisms that distort 

exposure-outcome associations derived from observational studies.   

1.2 Complications of pregnancy 

Although pregnancy is a natural life transition, both mothers and babies are 

susceptible to many adverse events during the pregnancy period. Perinatal 

epidemiology has been instrumental in identifying risk factors for these adverse 

events, leading to the development of medical interventions and practices that 

improved health outcomes associated with pregnancy and birth.1 In Australia, these 

improvements have resulted in very low maternal mortality rates of 6 deaths per 

100,000 women giving birth,2 compared to the average global rate of 12 deaths per 

100,000 women giving birth in high-income countries.3 Yet, Australia continues to 

report a higher perinatal mortality rate (9.1 deaths per 1,000 women giving birth),2 

compared to the standardised average in high-income countries (4 deaths per 1,000 

women giving birth).3 Contributing to high perinatal mortality rate were stillbirths which 
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accounted for 6.82 deaths per 1,000 women giving birth, with the underlying causes 

remaining unexplained in up to half of all Australian stillbirths.4  

Changing demographics in Australia, as in many similar high-income countries, are 

presenting new challenges in reducing adverse events during pregnancy. Two main 

challenges relevant to this thesis are the increasing prevalence of advanced maternal 

age (≥ 35 years) and the increasing prevalence of maternal obesity (body mass index 

(BMI) ≥ 30kg/m2), both of which are associated with an increased incidence of 

pregnancy complications and adverse birth outcomes.5, 6 Some evidence shows that 

in high-income countries the delay in reproduction to later years is often attributed to 

access to effective contraception, greater workforce participation, and difficulties in 

finding a life partner.7 Advances in assisted reproductive technologies have also 

contributed to an increase in the prevalence of very advanced maternal age (i.e. 

women who are greater than 45 years at the time of birth).8 Globally, the prevalence 

of obesity in women of reproductive ages is increasing, significantly impacting 

maternal and perinatal outcomes in women entering pregnancy with a higher BMI.9 

Over 20% of all births in Australia in 2015 were to women who were clinically obese, 

which is defined as a BMI ≥ 30kg/m2.10, 11 Perinatal epidemiologists have established 

a strong association between advancing maternal age and maternal obesity with a 

range of adverse outcomes,5, 6, 12 with the incidence increasing monotonically for each 

additional year of maternal age and unit increase in BMI.12, 13 Further, there is evidence 

that the risk factors associated with advanced maternal age and maternal obesity are 

increased in the presence of comorbidities, such as gestational mellitus diabetes and 

hypertensive disorders.12, 14 These risk factors and comorbidities are also 

independently associated with increased risk of pregnancy loss, perinatal mortality, 

sequelae of fetal growth restriction, and congenital malformations.12, 14-16 

Early pregnancy losses (prior to 20 gestational weeks) are not an uncommon outcome 

of pregnancy.17 Although the exact aetiology of miscarriage (also known as 

spontaneous abortions) remains unknown, they are widely acknowledged to result 

from a complex interaction between multiple factors (environmental, genetic, 

hormonal, and immunology).17-20 Advancing maternal age has been reported as a 

strong independent risk factor for early pregnancy loss in the first trimester, with 

evidence of an incremental increase in risk for each year after 30 years.17 Women who 

are overweight (BMI 25- 29.9kg/m2) or obese (BMI ≥ 30kg/m2) are also at increased 
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risk of early pregnancy loss, with the reported risk almost 40% higher in mothers who 

are obese compared to those with a normal BMI (BMI 18.5- 24.9kg/m2).21  

Adverse outcomes and complications of pregnancy relevant to studies contained in 

this thesis include stillbirth, preterm birth, pre-eclampsia, placental abruption and 

small-for-gestational age. Stillbirth is defined as the fetal death of a baby either 

antepartum (fetal death prior to the birth of a baby of ≥20 gestational weeks or >400 

grams birthweight) or intrapartum (fetal death of the baby during labour).22 Despite the 

absolute risk of stillbirth being low in high-income countries, such as Australia, it has 

not declined in line with advances in perinatal and obstetric care.23 There is a strong 

interaction between stillbirths and preterm birth (defined as a birth prior to the 37th 

gestational week of pregnancy),22 with 80% of all stillbirths in high-income countries 

being born preterm.24 Pre-eclampsia, characterised by the presence of hypertension 

or proteinuria in pregnancy,25 is the most common serious medical disorder of 

pregnancy.26 In Australia, the prevalence of mild and severe pre-eclampsia is 5-10% 

and 2%, respectively.27 Pre-eclampsia is also associated with adverse events in 

Australia, accounting for between 5-10% of preterm birth, 10% of perinatal mortality 

and 15% of maternal mortality.26 Placental abruption results from the early separation 

of the placenta from the lining of the uterus before labour has progressed beyond the 

second stage.28 This relatively rare, yet very serious, pregnancy complication occurs 

in between 0.5-1.5% of pregnancies in high-income countries.29 Adverse pregnancy 

outcomes resulting from placenta abruption include preterm birth, asphyxia, stillbirth 

or perinatal mortality.28 Small –for-gestational age babies generally have a birthweight 

below the 10th percentile for babies of the same gestational age and sex.30 Babies that 

are small-for-gestational age have more than twice the risk of stillbirth23 and an 

increased risk for neonatal death (death within 28 days of birth)31 compared to babies 

that are not small-for-gestational age.  

There is a complex interplay between the above pregnancy outcomes (stillbirth, 

preterm birth, pre-eclampsia, placental abruption and small-for-gestational age) that 

may be due to biological and environmental exposures that are not fully understood. 

It has been purported that there are shared underlying mechanisms underpinning the 

complex interaction between pregnancy complications.32 Often referred to as the 

Great Obstetrical Syndrome, ischemic placental diseases are thought to be associated 

with disorders of the placental,33 preterm birth,34 intrauterine growth and stillbirth.35, 36 
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Furthermore, advancing maternal age and increments in BMI are associated with each 

of the aforementioned pregnancy outcomes. Increasing our understanding of how a 

pregnancy exposure can influence perinatal outcomes is imperative to informing the 

creation of effective preventative health that seeks to improve health outcomes for 

mothers and babies.  

1.3 Causal inference  

Historically, much of epidemiology was concerned with establishing association (i.e. 

smoking is a cause of lung cancer);37 however, there have been increasing 

movements by experts in the field towards establishing true causal inference in recent 

decades.37-41 Causal inference can be defined in basic terms as the process of 

determining that an exposure was the ‘true cause’ of the effect or outcome that was 

observed.42 More broadly, causal inference can be considered a multi-disciplinary 

science, comprising areas of philosophy, biostatistics, epidemiology, artificial 

intelligence and machine learning.37 This contrasts with traditional epidemiological 

methods which are broadly interested as to whether an effect is present or not.41  

Common criteria for establishing causation in modern epidemiology are what came to 

be known as the Bradford Hill’s Criteria;43 comprising a list of nine aspects to be 

considered by researchers to distinguish between causal and non-causal associations 

(strength; consistency; specificity; temporality; biological gradient; plausibility; 

coherence; experimental evidence; analogy).43 Despite the wide acceptance of 

Bradford Hill’s Criteria, the criterion has remained controversial overtime as to whether 

they are too prescriptive for establishing causation.44-47 It should be noted, however, 

that Hill considered the above criteria to be viewpoints,43 and it is generally considered 

that not all the criterion have to be met for causation to exist.43 Over time, the 

interpretation of each criterion has evolved to accommodate complementary research 

tools and data methods, yet the underlying checklist continues to guide researchers.48  

In general, establishing causation is a complicated process as a given outcome could 

be caused by more than one causal mechanism; thereby, the joint action of multi-

causality must be considered with any of the components having either strong or weak 

effects.41 To complicate matters further, the strength of an effect may alter an outcome, 

or the effects themselves may not necessarily influence the outcome at the same 

time.41 It is therefore unsurprising that one of the requirements of a good study design 
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that can infer causality is expert knowledge on the topic of interest.49 A qualitive 

approach that is similar to Hill’s “consistency” is triangulation. Triangulation occurs in 

aetiological epidemiology when different methodological associations containing 

different sources of bias are compared to determine if the obtained effect estimates is 

similar.50 Here, it would be expected that the effect estimates would only be the same 

if all sources were unbiased. Although a promising method to establish causal 

inference, a limitation of triangulation is access to data and considerations around the 

pooling of such data.50 Consequently, there are no exact criteria that can be universally 

applied to determine the true validity of a causal inference. However, sources of 

potential bias need to be identified and their influence either removed or quantified to 

reduce uncertainty around causal effects. 

One of the earliest advocates for causality, and possibly less known in statistical 

science, was Barbara Stoddard Burks, who obtained her PhD from Stanford University 

in 1929.51 During her academic career in social science, she applied causal diagrams 

(originally developed by Sewall Wright, a biometrician)52 to explain her research and 

identified colliders (a common effect of two variables) and their biasing influence.53 A 

more well-known study of the influence of selection bias is the Berkson’s bias, which 

came to light in 1946.54 This type of bias arose in a case-control study in which the 

case and the controls were not comparable as the probability of hospitalisation was 

higher amongst cases who had two or more diseases compared to the controls from 

a healthy population.55 Since the mid-19th century, there has been a rapid growth in 

statistical methods to minimise the influence of bias. However, due to the non-random 

nature of observational studies they are prone to various biases (selection, 

confounding and information) that cannot be accounted for fully using statistical 

methods. As it is not possible to completely remove bias, it is often recommended that 

epidemiologist employ caution when interpreting their results. Consequently, it is 

important that epidemiologists identify and quantify the influence of potential biases in 

order to reduce uncertainty prior to reporting causal associations.  

1.4 Overview of bias in perinatal epidemiology  

Quite simply, bias can be conceived as some deviation from the truth. In epidemiology, 

bias can result from systematic errors in the study design or data analysis that 

consistently produce an incorrect estimate of the exposure-outcome association.56 By 
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contrast with random error in which there is a chance difference between the observed 

and true association, systematic errors  do not decrease as the study size increases.56  

Perinatal epidemiological studies are vulnerable to unique methodological challenges 

that can lead to biased exposure-outcome associations if not adequately addressed. 

A major challenge for researchers is that the study population themselves are 

incompletely observable due to high attrition from conception to when a pregnancy 

has been established.57 Although the true attrition rate remains unknown, it is 

estimated that there are 2,500 early pregnancy losses per 10,000 implantations57 due 

to spontaneous and induced abortion. As the detection of early pregnancy loss is not 

always clinically diagnosed nor apparent to women, there are feasibility issues in 

conducting longitudinal studies to identify all conceptions due to methodological 

complexities (i.e. difficulty in identifying the cohort of women who did not intend to 

become pregnant and had a missed miscarriage) and associated monetary 

expenditure.58 

Moreover, perinatal epidemiology often relies on birth registries that are restricted to 

pregnancies that survive beyond a specified gestational age.59 In Australia, as in many 

high-income countries, birth datasets are restricted to pregnancies that survive past 

20 gestational weeks or have a birth weight >400 grams.60 This is a selection bias as 

the individuals in the sample (women with a pregnancy beyond 20 gestational weeks) 

differ systematically from the population of interest (i.e. pregnant women). A further 

source of selection bias is that in some cases the birth datasets are restricted to live 

births,61 thus conditioning on the ‘survival’ leads to distorted associations. 

Inadvertently, conditioning on a collider variable, a variable that is a common effect of 

an exposure and outcome, can lead to specious exposure-outcome associations.62 

Further challenging for researchers is conditioning on intermediaries/mediator 

variables that lie on the causal pathway.59  Such challenges are evident in the difficulty 

of  handling gestational age or birthweight variables that lie on the causal pathway 

between exposures and outcomes,59 as intersecting birthweight-specific and 

gestational age-specific mortality curves can lead to paradoxical associations.63  

The influence of unmeasured confounders, a variable that is related to the exposure 

and outcome which may account for the observed association, is a broader 

epidemiological issue.  However, it is highly unlikely that any association observed in 

perinatal exposure-outcomes is not subject to some degree of bias from confounders 
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that are either unavailable in the dataset or even unknown to the researcher. This is 

particularly true when we consider that exposures during the pre-conception period, 

which are often unavailable, can lead to adverse events over the life-course of the 

pregnancy and beyond.64, 65  

Misclassification bias is particularly pertinent in perinatal epidemiology due to the 

potential for measurement error of exposure(s), potential confounder(s) and 

outcome(s).66 A previous cause for concern was the potential for misclassification of 

gestational age due to the varied methods of calculation (fetal ultrasound 

measurement; first day of the last menstrual period; time of in vitro fertilisation; based 

on clinical judgement after birth);66 however, the increased use of fetal ultrasound in 

many countries has reduced this potential bias. In recent years, there has been 

increasing awareness of the potential for misclassification in the ascertainment of 

environmental exposures.67-69 Further, due to left truncation of birth datasets there is 

potential for misclassification of the true interpregnancy or interbirth intervals due to 

unobservable early pregnancy losses.70 It should also be noted that misclassification 

bias can be introduced during the data analysis phase by researchers through 

categorisation of continuous data,71 including varying cut off consideration used for 

exposure or outcome variables. This is particularly pertinent in sibling comparison 

studies, where the categorising of variables such as the interpregnancy interval and 

birthweight for gestational age percentile may compromise statistical power and can 

introduce selection bias for discordant pairs.72 

The above is a brief and selective summary of the types of biases that are likely to be 

impactful when conducting perinatal epidemiological studies. This thesis will focus 

primarily on three interrelated influences of bias relevant to perinatal epidemiology; 

selection bias, collider bias and the influence of unmeasured confounders. The 

descriptions of these types of bias will be expanded throughout this chapter and 

quantified through simulation studies in chapters three (bias due to confounding), 

chapter four (selection bias and collider bias) and chapter five (collider bias and bias 

due to confounding). 

Confounding  

A confounder is an extraneous variable that influences both the exposure and outcome 

of interest but is not part of their causal pathway (Figure 1.1).73 Nearly all observational 

studies will adjust for measured confounders74 using methods such as stratification, 
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multivariate linear regression, and logistic regression.75 Therefore, consideration must 

be given to identifying the appropriate set of confounders to adjust for in order to 

produce plausible associations76 as confounding can result when researchers fail to 

correctly adjust for all relevant confounders, leading to the masking of the true 

exposure-outcome associations.77 An overestimation of the effect sizes can occur 

when researchers adjust for apparent differences between study groups when they do 

not exist.78 Traditionally, strategies to decide whether a variable is a confounder that 

should be adjusted for largely rely on statistical approaches, such as forward and 

backward stepwise selection,76 the change in time approach,76 or penalised 

regression.79 More promisingly, a review80 of 299 observational studies published in 

2015 found that 50% of authors reported using prior knowledge or causal graphs for 

selecting confounding variables; yet 37% of the included studies failed to provide 

sufficient detail on their methods of variable selection.  

One conundrum in perinatal epidemiology is where to include prior pregnancy 

outcomes as a confounder. Many epidemiologists do adjust for prior pregnancy 

outcomes as they are often predictive of future adverse outcomes; however, this is not 

an appropriate method when the aim is to produce unbiased estimate of an exposure 

on an current outcome as the prior outcome is likely associated with current outcome 

and the exposure.81 Here, adjustment for the prior pregnancy outcome can produce a 

bias effect as this seemingly confounder variable may be a collider variable.81 

Therefore, it is strongly recommended that causal diagrams or direction acyclic graphs 

(DAGs) are used to explore the nature of the proposed causal association to identify 

relevant confounders.76, 81, 82    

 

Figure 1.1 Causal diagram showing the causal pathway between an exposure and 
outcome in the presence of a confounder 

 

Even with the best attempts to address confounding in perinatal epidemiology, there 

will always remain some degree of residual confounding83 largely due to omission of 

relevant variables that were unknown to the study, those that cannot be measured or 
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those variables that are yet undiscovered.84 Furthermore, measurement errors in the 

classification of confounding variables can also contribute to residual confounding.85 

In instances when a moderate effect is evident, epidemiological observations may be 

considered less robust to bias due to difficulties in controlling for unknown or 

unobservable confounders that can distort the results and be responsible for creating 

an observed association that may not be exist.73 To take one example, if a study is 

reporting the association between a maternal exposure and perinatal outcome, the 

association may not be due to the maternal exposure but to a factor that directly affects 

both the exposure and outcome that is unknown to the study or not included in the 

available clinical dataset.73, 74, 86 Determining if an observed association is due to 

unmeasured confounding is critical to determining plausible causal effects; however, 

quite often unmeasured confounding is not adequately addressed in epidemiological 

studies.87-89  

Collider bias  

In contrast to the aforementioned bias associated with failure to control for 

confounding, incorrectly conditioning on a common effect of exposure and outcome 

(through restriction, stratification, or regression adjustment) will induce collider bias.90 

Thus conditioning on a collider, or a variable influenced by the collider, will induce 

biased association exposure-outcome associations.62 A simple form of collider bias 

can be viewed in Figure 1.2 in which the collider is a variable in which two arrows 

collide. Adjusting for this variable in a regression model will induce a specious 

association between the exposure and the outcome3 through the causal pathway of 

Exposure →Collider←Outcome that was previously blocked.39 In general, it is strongly 

advised that epidemiologists use causal diagrams or DAGS to distinguish between 

confounders and colliders during the study design phase.91  
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Figure 1.2 Causal diagram showing the causal pathway between an exposure and 
outcome in the presence of a collider variable  

 

Examples of a collider variable that can be incorrectly adjusted for in perinatal 

epidemiology is gestational age and birthweight as they lie on the causal pathway 

between exposure and outcomes.92-94 Preterm birth and low birth weight are predictors 

of infant morbidity and mortality but may also be due to other pathological factors that 

cause both preterm birth and low birth weight and infant morbidity and mortality.93, 94 

Consequently, the practice of stratifying on a potential intermediate has previously led 

to the intersection of gestational age-specific and birthweight-specific mortality 

curves.63  This has been evidenced when low birth-weight infants from populations 

with higher infant mortality have better survival rates compared to low birth-weight 

infants from a lower-risk population. As Basso and Wilcox (2009)92 explained, this can 

result from the presence of unmeasured confounders influencing the variable of birth 

weight and making it a collider. This bias results as conditioning on (or including in a 

regression analysis) a collider opens a back-door causal pathway between the 

exposure and outcome that leads to biased exposure-outcome associations.39 As you 

can see in Figure 1.3, when the variable of LBW is influence by an unmeasured 

confounder, which also influences the outcome, then the variable of LBW becomes a 

collider variable. Conditioning on LBW (or including it in a regression analysis) opens 

a back-door pathway between the exposure and the outcome via Exposure → LBW 

← U → Outcome.  

 

Figure 1.3 Causal diagram showing the causal pathway between an exposure and 
outcome in the presence of a mediator. There is a causal pathway between an 
exposure and outcome when low birth-weight (LBW) is a mediator on the pathway 
between the exposure and the outcome but is also influenced by an unmeasured 
confounder (U) that also influences the outcome. Here LBW is a collider variable. 
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Conditioning on LBW will open a backdoor causal pathway from Exposure → LBW 
← U → Outcome that can lead to biased exposure-outcome effect estimates. 

 

Collider bias resulting from restriction and stratification will be discussed in more 

detail under selection bias.  

Selection bias  

Selection bias results from factors related to the selection of the study cohort. In its 

simplest form, selection bias indicates that participants in a study are systematically 

different from those that were not included.95 Random sampling is the most effective 

method to prevent selection bias, yet this is not possible in observational studies.96 

Rather, the onus is largely upon the researchers to ensure that measures to prevent 

or minimise the influence of selection bias are enacted during the study design period. 

Although selection bias can never be completely controlled in observational studies, it 

is important for perinatal epidemiologists to have a comprehensive understanding of 

the various avenues in which selection bias can lead to spurious associations. Bias 

from selection commonly occurs when the exposure and outcome, or even a cause of 

these variables, influences the probability of being selected into the study population.97 

This is pertinent in perinatal epidemiology where the selection into a pregnancy cohort 

is restricted to pregnancies that survive beyond a specified gestational period 

(generally 20 gestational weeks in high-income countries).59 Left truncation is missing 

person-time information, where time zero is not detected in the timeline.59, 98, 99 It is 

imbedded in all perinatal epidemiology studies as women are recruited after 

conception.100 Consequently, an unknown proportion of the source population is 

absent due to pregnancy losses prior to the enrolment period.100 Bias from left 

truncation casts doubt on the validity of observational studies in which truncation 

varies by risk factors associated with the outcome of interest.101 Birth datasets from 

which perinatal epidemiologist draw their effect estimates are left truncated. In high-

income countries, such as Australia and the US, selection into a birth dataset is 

restricted to those pregnancies that survive beyond 20 gestational weeks or >400g 

birth weigth.59 In low and middle-income countries, selection into a birth cohort is 

restricted to pregnancies that survive beyond 28 gestational weeks or >1000g birth 

weight.102 Furthermore, in many countries birth datasets are often restricted to live-

births, thereby excluding all pregnancy losses from 20 gestational weeks including 
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neonatal deaths.103 This left truncation results in a type of selection bias called live-

birth bias.61, 104-106 However, the issue of left truncation is not solely linked to birth 

datasets. All perinatal studies as subjected to left truncation as recruitment into a 

cohort is often restricted until some pre-specified point when the pregnancy is deemed 

viable.107 Moreover, studies that are interested in pre-pregnancy exposures are 

additionally left truncated as women with sub-fertility or those who chose not to 

become pregnancy are excluded.108   

The bias mechanism that underpins left-truncation bias and live birth bias is called 

collider-stratification. This bias mechanism results from conditioning on a collider that 

represents a variable that is either restricted or stratified. The most famous example 

is the smoking birth-weight paradox originally described by Yerushalmy109 in 1971. 

Here, neonatal mortality rates among low birth-weight infants of smokers were found 

to be substantially lower than the neonatal mortality rates among low birth-weight 

infants of non-smokers; conversely, with the reverse true at higher birth-weights.109 

Since then, this study has been replicated in different studies and populations (altitude 

vs low altitude,93 infants of older vs young mothers,110 ethnicity111). More commonly 

called the ‘birthweight’ paradox, these effects occur regardless of whether the 

conditioned intermediate is birth-weight or gestational length.112 Below, I have 

presented the most common example of the smoking birthweight paradox. If we 

consider the example in Figure 1.4, birthweight is a collider variable, blocking the 

causal pathway it is on (Smoking → Birthweight) ensuring that the only causal pathway 

is the direct association between the exposure and outcome (Smoking → Neonatal 

mortality). By stratifying on the variable of birthweight, a spurious association is 

induced between smoking and neonatal mortality through the collider birthweight and 

the unmeasured confounder (Smoking → Birthweight ← U → Neonatal mortality).  
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Figure 1.1 Causal diagram showing the causal pathway between an exposure and 
outcome in the presence of collider-stratification. There is a causal pathway between 
an exposure of smoking and an outcome of neonatal mortality in the presence of a 
collider variable of birthweight and an unmeasured confounder. This causal diagram 
depicts the smoking ‘birthweight’ paradox, which is depicted by collider-stratification 
resulting from stratifying on the collider variable of birthweight.  

 

Depletion of susceptibles  

A variation of collider-stratification bias is depletion of susceptibles. Here, the 

susceptibles are individuals who have a higher baseline risk or are more susceptible 

to the outcome.113 Overtime, a depletion of these susceptibles will lead to an overall 

decrease in the prevalence of individuals that are at risk of the outcome within the 

study cohort.114 In general, this depletion of susceptibles will lead to an attenuation of 

effect size towards the null by amounts that increase with the incidence of the 

outcome, the variance of the susceptibility and the impact of the susceptibility on the 

outcome.105  

Depletion of susceptibles bias can operate independently or in conjunction with 

collider-stratification mechanism; whereby there is an even greater depletion of 

susceptibles. This is because the depletion is dependent on the joint effects of the 

exposure and the unmeasured variable U (Figure 1.5). A potential example of this type 

of bias is in environmental epidemiology where nitrogen dioxide exposure in 

pregnancy is associated with an increased risk of preterm birth.115 Here, it is plausible 

that the exposure of N02 could induce early pregnancy loss preferentially in those 

people who also have the factor U, which may be a genetic influence. This group is a 

subset of pregnancies that are susceptible to the outcome of preterm birth that is 

differential from individual who are only exposed to N02.  
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Figure 1.5 Causal diagram showing the causal pathway between an exposure and 
outcome in the presence of depletion of susceptibles. There is a causal pathway 
between an exposure and outcome in the presence of a collider variable and an 
unmeasured confounder. This causal diagram depicts collider bias with the depletion 
of susceptibles. When there is an interaction between the exposure and the 
unmeasured variable U (as depicted by the red dashed line) there is an increase in 
the prevalence of the collider for those individuals that are exposure to both the 
exposure and the unmeasured variable U.  

M bias 

Another variation of the collider-stratification bias is M bias, which occurs when the 

collider-stratification bias results through variables that are ancestors of the exposure 

and outcome (Figure 1.6).116, 117 Here, the collider variable has no causal association 

with the exposure or the outcome. Rather, it is indirectly association with both the 

exposure and the outcome through the causes (ancestors) of the exposure and the 

outcome.116, 117 The bias is a results of Berkson’s paradox54 as both the independent 

unmeasured confounders U1 and U2 become dependent once the collider variable is 

conditioned.116, 117  

 

 

Figure 1.6 Causal diagram showing the causal pathway between an exposure and 
outcome in the presence of M-bias. There is a causal pathway between an exposure 
and outcome in the presence of a collider variable and two ancestor unmeasured 
confounders U1 and U2. This causal diagram depicts M-bias where the two 
independent variables of U1 and U2 become dependent when conditioning on the 
collider variable leading to a spurious association.  

 

1.5 Statistical approaches to minimise bias 

Much bias can be minimised through a good study design, thus reducing the 

propensity of a study to bias from poor selection processes, misclassification of 

variables, and the inclusion of important confounding factors. However, as previously 
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discussed, it is not possible to address all study design issues that lead to biased 

exposure-outcome associations, particularly in perinatal epidemiology, where we rely 

on clinical or administrative data that is left truncated and many variables on causal 

pathways that are unobservable. Not surprisingly, there is a large body of statistical 

tools (sensitivity analysis, stratified, analysis, matching, and regression) to minimise 

the effect biases from selection, information, and confounding. As it is not possible to 

describe every statistical tool, below is a summary of the most accessible and 

commonly implemented statistical tools by perinatal epidemiologist.  

Selection bias is generally minimised by techniques such as propensity score 

matching118 and probability weighting (inverse probability weighting).119 However, 

limitations of these methods are the reliance on information of the entire population120  

and their assumption of no influence of unmeasured confounding.118, 119 A number of 

distinct methods are available to help researchers to mitigate the effects of bias from 

confounding, the most promising of which seems to be the G-methods, comprising of 

G-formula, marginal structure models and structured nested models.121 These 

methods create models using different exposure scenarios to generate potential 

outcome effects, under a less restrictive set of conditions compared to standard 

regression models.122 Multiple imputation provides a general purpose approach to 

handle information bias due to missing data.123 Traditional approaches employed by 

researchers include replacing missing values with values imputed some an observed 

data, using a missing category indicator or carrying forward the last value.123 All these 

approaches to minimise bias from missing data can lead to bias themselves. Further, 

none of the above-mentioned methods to minimise the influence of bias are able to 

quantify the influence of bias when the bias interacts between the exposure, the 

outcome and unmeasured confounding.  

1.6 E-values 

E-values were investigated as they are the most commonly used approach to the 

assessment of the potential influence of unmeasured confounding. E-values provide 

an alternative method for sensitivity analysis of unmeasured confounding in 

observational studies and were included in Chapter 3.  Although not a method to 

minimise bias, the uptake of e-value has been strong in the epidemiological 

community124 since the original ground-breaking paper in 2017.125 The most popular 

e-value is for confounding, which assess the strength of the effect size needed to 
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explain away potential bias. The e-value125 calculates the minimum strength of the 

exposure-confounder and outcome-confounder association needed for the 

confounder to completely explain the observed exposure-outcome association. Here, 

a small e-value would indicate that a small amount of bias from unmeasured 

confounding would be required to explain away an observed effect,125 or that the effect 

sizes observed are not robust to bias from unmeasured confounding. Conversely, a 

large e-value would indicate that a larger amount of bias from unmeasured 

confounding would be required to explain the observed effect.125 Also reported is the 

e-value for the lower limit of the 95% confidence interval which represents the level of 

confounding from unmeasured or unknown variables required to render the interval 

estimate null.126  

The e-value for confounding has proven to be a highly topical method124, 127-133 

Criticisms levelled include their relationship with effect estimates is monotonic124, 130 

and that they are prone to potential misinterpretations124, 130, 133 by researchers. 

Determining how small an e-value would need to be to be of concern remains 

unclear;133 however, the author’s recommend that researchers should interpret the e-

value within the context of their research question.134 The e-value was originally 

proposed as an alternative to sensitivity analysis,125 yet critics have argued that e-

values cannot provide valid and precise estimates of effects that could only be 

obtained using more complex sensitivity analysis methods.124, 127, 130, 133 Further 

criticism include that focusing on bias from unmeasured confounding is oversimplified 

as bias required to explain away an observed effect could be due to other sources of 

bias (selection and information) that may act together.127 However supporters of the 

e-values for confounding acknowledge that e-values are first step in calculating of the 

amount of potential bias from unmeasured confounding, rather than to replace more 

complicate analysis to identify missing values or quantify measurement error.128, 129 To 

address these concerns, the authors VanderWeelee and Mathur (2020) responded 

with a best-practice guideline for reporting of e-values.132  In addition to the e-value for 

confounding, e-values have been developed for selection bias,135 misclassification 

bias and multiple types of bias;136 although their uptake has lagged by comparison to 

that of the e-value for confounding.  
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1.7 The application of simulation  

Epidemiologists derive effect estimates of an exposure on an outcome in specific 

populations, using sample data from a representative population. However, it is rare 

for researchers to have full access to data that would enable unbiased exposure-

outcome associations. Simulation studies are empirical studies in which missing data 

can be simulated,137-140 based on observed cohorts or prior published literature, to test 

biased assumptions and draw clearer associations that may be closer to the ‘true 

association’. A simulation itself can be considered a computational experiment that 

requires the creation of data by a pseudo-random sampling method,139 which is the 

use of an algorithm to generate values that follow a given distribution.141, 142  

In health research, simulation studies are more widely used to test and compare the 

performance of statistical methods to minimise the influence of bias.139 However, they 

are under-utilised in their application to quantify bias more broadly in epidemiology. 

The quantification of bias is often an intractable problem that cannot be fully solved by 

closed form mathematical expressions. One of the key assets of simulation studies is 

that they enable epidemiologists to increase their understanding of the influence of a 

range of bias in aetiological associations. This results as the actual process of 

generating the data requires epidemiologists to fully immerse in the causal pathways 

between an exposure and outcome. Unlike mathematical solutions, the process of 

generating a simulation usually begins with a causal diagram or a DAG. Parameters 

in a simulation study can be fully simulated or based on observed data, which can 

inform the exposure, outcome and confounder variables, thereby, ensuring that the 

simulation model has real-world context. The main advantage of simulation studies is 

that multiple scenarios can be generated in which the biased parameters of interest 

can be varied (i.e. such as values for unknown or unmeasured confounding variables 

that possibly influence the exposure-outcome association). Due to increased 

computing power, the running of simulation models is fast and multiple scenarios can 

be run within a short time-frame.  

The reasons that simulation studies are more commonly conducted by statisticians 

rather than epidemiologist remains speculative; a lack of guidance in the design and 

implementation of simulation studies,139  lack of skills in statistical modelling140 and a 

lack of interest in exploring new research methods have been cited as potential 

barriers.139 Further negating the application of simulation to quantify the influence of 
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bias in perinatal epidemiology, is the oft-cited reports that simulation studies are prone 

to poor design, analysis and reporting.139 In response to the negativity surrounding 

simulation studies, a number of researcher groups have attempted to educate 

researchers and reviewers on the design, implementation and reporting of a good 

quality simulation study; however their purpose has been largely limited to simulation 

as a tool to test the performance of statistical methods.139, 143-145 In 2013 the 

STRengthening Analytical Thinking for Observational Studies (STRATOS) group140 

was established to educate and upskills researchers in the application of simulation 

studies. Recent outputs by STRATOS members include a platform for planning for 

planning simulation studies with a focus on testing statistical methods139 and more 

relevant to this PhD project a tutorial on quantifying misclassification bias.146 Although 

these publications have been positively received, uptake of simulation studies with the 

prime purpose of quantifying the influence of bias in epidemiology has remained 

limited  

Simulation methods have evolved from a foundation of bias analysis methods, which 

traditionally applied mathematical formulae to compare an observed dataset with a 

hypothetical dataset.45 In 2014, a seminal paper was published by Lash et al.,147 which 

informed best practices when quantifying the influence of bias under the overarching 

term ‘quantitative bias analysis’.148 Although not a guide to simulation as a method, 

their paper provides a direction for the assignment of plausible values to bias 

parameters in order to determine the influence of bias on exposure-outcome 

associations.148 Types of quantitative bias analysis techniques include simple 

sensitivity analysis, multidimensional analysis, probabilistic analysis and multiple bias 

analysis.149, 150 With the exception of multiple bias modelling, these approaches are 

limited to analysing one type of bias at a time. Additional limitations of the application 

of these methods include the ability to only assess fixed variables,151 inability to assess 

multiple biases at once152 or in the case of multiple bias modelling, the biases must be 

independent of each other;153 none of which reflect reality (see Table 1.1 for further 

details).  

Table 1.1 Types of bias analysis methods and their characteristics 

Bias analysis 
method 

Bias parameters Number of biases 
analysis  

Limitations 
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Simple sensitivity 
analysis  

One fixed value 
assigned to each 
bias parameter 

One at a time Assess only fixed 
one variable  

Multidimensional 
analysis 

More than one 
value assigned to 
each bias 
parameters 

One at a time Assess multiple 
fixed variables 

Probabilistic 
analysis 

Probability 
distributions 
assigned to each 
bias parameter 

One at a time Cannot assess 
multiple biases 

Multiple bias 
modelling 

Probability 
distributions 
assigned to bias 
parameters 

Multiple biases at 
once 

Bias are 
independent of 
each other 

 

Previous simulation studies in perinatal epidemiology applied simulation methods to 

explain paradoxical associations, such as the smoking birth-weight paradox.100, 101, 154.  

Yet, simulation methods have the potential to quantify the influence of bias under more 

commonly applied scenarios, particularly when the epidemiological effects reported 

seem to conform to expectations. The application of simulation can quantify multiple 

types of biases simultaneously, moving away from the quantitative bias analysis 

methods proposed by Lash et al.147, 150 in which the type of bias should be prioritised 

by order of the bias that is deemed to be most impactful on the observed association. 

Some additional limitations under the quantitative bias analysis methods proposed by 

Lash et al.147 was the assertion that bias analysis was only essential when the findings 

were informing action or policy, or when it is expected that the bias could explain a 

finding. By contract, simulation methods can provide a tool to quantify the magnitude 

and direction of multiple types of bias simultaneously that can be rapidly tested under 

multiple scenarios. The application of simulation can provide new knowledge on the 

influence of bias on common perinatal aetiological associations that are potentially 

biased yet seem to conform to expectations.  

As highlighted earlier in this chapter, bias is ubiquitous in perinatal epidemiology and 

quantifying the influence of various types of bias is valuable step in strengthening the 

validity of epidemiological studies. However, there remains a lack of good practice in 

the design, implementation, and analysis of simulation studies that quantify bias,155 

which is further compounded by a lack of confidence in the application of simulation 
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as a method to facilitate bias analysis by researchers.139 In order for perinatal 

epidemiologists to develop the skillset required to apply simulation methods to quantify 

the influence of multiple biases across a range of research questions, a unifying 

framework of quantitative bias analysis methods and simulation methods is required.   

1.8 Summary of gaps in knowledge 

Bias is omnipresent in perinatal epidemiology, yet it is rarely quantified. Bias is 

generally addressed by researchers qualitatively through a descriptive explanation of 

different potential sources of bias in their studies, which is generally limited to the 

discussion section of research papers. Researchers rarely discuss the influence of 

bias on the direction and magnitude on their observed effects nor quantify the extent 

to which bias could influence their results.    

The left truncation of data is evident in all perinatal studies as the sample population 

will always be restricted to pregnancies that reach a pre-specified gestational age cut-

off. Further complicating the aetiology of perinatal associations is the influence of 

factors that are unknown to the study, unmeasured or undiscovered. The influence of 

these ‘unmeasured confounders’ on variables that are mediators, or variables that are 

either restricted or stratified on, can create a collider bias mechanism when those 

‘unmeasured confounders’ also influence the outcome; threating the validity of 

exposure-outcome associations. The applied simulation studies conducted in this PhD 

thesis were focused on this collider bias mechanism that resulted from common 

occurrences in perinatal epidemiology, that is selection bias that results from the left 

truncation of birth data and the influence of unmeasured confounding on mediators 

(i.e. pregnancy complications) that are often mediate an association between 

pregnancy exposures and adverse birth outcomes. The studies conducted in this 

thesis also addressed changing demographics in Australia and other high-income 

countries, focusing on exposures of advancing maternal age and maternal obesity, 

their association with early pregnancy loss and other adverse outcomes, such as 

stillbirth and pregnancy complications of caesarean section delivery, preterm birth, 

pre-eclampsia, placental abruption, and small-for-gestational age.  

A hypothesis of this PhD project is that if the mechanisms that lead to bias in 

paradoxical associations (such as the ‘smoking –birthweight’ paradox) hold true, then 

these same bias mechanisms would also lead to distorted effect estimates in other 

observational associations, even when the results seem to conform to expectations. 
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Simulations are powerful tools that can increase our undertaking of potential biases in 

epidemiology. They have the potential to quantify the magnitude and direction of 

multiple biases that influence the associations between exposures and outcomes 

under commonly applied scenarios in perinatal epidemiology. However, to date it is 

unknown the full extent to which simulation methods have been applied to quantify the 

influence of bias in perinatal epidemiology. 

It is not expected or common for researchers to conduct even a basic analysis of bias 

when they share their research findings. This presents a problem when those same 

results are used to inform policy to drives improvements in population health. The lack 

of guidance in the design, implementation and analysis of simulation studies to 

quantify bias likely hinders their application by perinatal epidemiologists. A framework 

is required to assist epidemiologists to undertake simulation studies for the purpose of 

undertaking quantitative bias analysis. This will make simulation methodologies 

accessible to perinatal epidemiologists and, thereby, increase understanding of the 

causal mechanisms that have the potential to distort the observed effects of perinatal 

exposures on birth outcomes.  

1.9 Thesis aims and objectives 

The overarching aim of this thesis was to determine the utility of simulation methods 

to quantify the influence of a range biases commonly found in perinatal epidemiology. 

To achieve this, the thesis is organised into three inter-related study aims and 

objectives that addressed the knowledge gaps identified in the above chapter.  

Aim1: To review and explore the existing literature on the application of simulation 

methods as an approach to quantify the influence of bias in perinatal epidemiology. 

Objective 1.1: To systematically search, compile, synthesis and critically review the 

current evidence on the application of simulation to quantify the magnitude and 

direction of bias in perinatal and reproductive epidemiology (Chapter Two). 

Aim 2: To design, implement and analyse a series of simulation studies to quantify 

the magnitude and direction of bias in perinatal outcomes to address issues from 

methodological challenges that may lead to spurious inference on associations 

between pregnancy exposures and adverse birth outcomes.  
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Objective 2.1: To investigate the consequences of unmeasured confounding on 

the association between pregnancy complications over two successive 

pregnancies (Chapter Three). 

Objective 2.2: To quantify the influence bias resulting from the use of left-truncated 

datasets (birth registries) in which early pregnancy losses prior to 20 gestational 

weeks are excluded (Chapter Four). 

Objective 2.3: To quantify the influence of unmeasured confounding in mediated 

associations (Chapter Five). 

 

Aim 3: To develop a framework for the application of simulation to quantify bias in 

perinatal epidemiologists.  

Objective 3.1: To incorporate best practice for the application of simulation methods 

to quantify the influence of bias into a framework to guide researchers in the design, 

implementation, analysis and reporting of simulation studies in perinatal epidemiology 

(Chapter Six). 

The studies that were conducted to fulfil this aim and objectives are described in 

Chapters two to six.  
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Chapter Two: The application of simulation to quantify bias 

This chapter addressed Aim 1 and Objective 1.1 of the thesis.  

Aim 1: To review and explore the existing literature on the application of simulation 

methods as an approach to quantify the influence of bias in perinatal epidemiology. 

Objective 1.1: To systematically search, compile, synthesise and critically review the 

current evidence on the application of simulation to quantify the magnitude and 

direction of bias in perinatal and reproductive epidemiology. 

The content of this chapter is covered by Publication One. It provides a synthesised 

summary of the application of simulation to quantify the influence of bias in 

reproductive and perinatal epidemiology. As limiting this review to perinatal 

epidemiology would exclude by design all reproductive factors that could potentially 

introduce bias later in the perinatal period, a decision was made to include, rather than 

exclude reproductive epidemiology, thereby enhancing the understanding of the 

application of simulation to quantify the influence of bias. This chapter highlighted 

specific areas for improvement in the development, analysis and reporting of 

simulation methods that would enable researchers to better quantify the magnitude 

and direction of bias in reproductive and perinatal epidemiology.  

The version that appears in this thesis is of an article that has been through peer-

review with Annals of Epidemiology but has not been through the copyediting process. 

The contribution of co-authors, Professor Gavin Pereira, Dr Gizachew A. Tessema 

and Milica Ognjenovic are detailed in the author attribution statements in Appendix A. 

Dunne J, Tessema GA, Ognjenovic M, Pereira G. Quantifying the influence of bias in 

reproductive and perinatal epidemiology. Annals of Epidemiology 2021;63:86-101. 

doi:10.1016/j.annepidem.2021.07.033  

A copy of this publication has been provided in Appendix C. Supplementary material 

for this chapter are available in Appendix D.  
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2.1  Abstract 

The application of simulated data in epidemiological studies enables the illustration 

and quantification of the magnitude of various types of bias commonly found in 

observational studies. This was a review of the application of simulation methods to 

the quantification of bias in reproductive and perinatal epidemiology and an 

assessment of value gained. A search of published studies available in English was 

conducted in August 2020 using PubMed, Medline, Embase, CINAHL, and Scopus. A 

gray literature search of Google and Google Scholar, and a hand search using the 

reference lists of included studies was undertaken. Thirty-nine papers were included 

in this study, covering information (n =14), selection (n = 14), confounding (n = 9), 

protection (n=1), and attenuation bias (n=1). The methods of simulating data and 

reporting of results varied, with more recent studies including causal diagrams. Few 

studies included code for replication. Although there has been an increasing 

application of simulation in reproductive and perinatal epidemiology since 2015, 

overall this remains an underexplored area. Further efforts are required to increase 

knowledge of how the application of simulation can quantify the influence of bias, 

including improved design, analysis and reporting. This will improve causal 

interpretation in reproductive and perinatal studies.   

2.2  Introduction 

Reproductive and perinatal epidemiology seeks to establish the effects of exposures 

on maternal and neonatal outcomes before, during and after pregnancy.156 As 

randomised controlled trials cannot always be conducted in pregnant women for 

ethical reasons97, well-designed observational studies have provided information to 

increase the understanding of causal effects in reproductive and perinatal health.97 

Due to the non-random nature of observational studies, they can be prone to bias,97 

influencing causal inference. Bias results from systematic errors in study design, 

conduct or data analysis, and unlike random error, does not decrease as study size 

increases.56 To strengthen the validity of associations drawn from observational 

studies, it is therefore important to identify and evaluate potential sources of bias.   

Reproductive and perinatal studies are vulnerable to unique methodological 

challenges. The study population themselves are widespread from preconception to 

birth stages, and include populations that are difficult to define, such as women who 

may conceive in the future.157 Proving an additional challenge is that the study 
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populations are incompletely observed due to high attrition from the preconception 

period through to birth.157 Thereby, by the time pregnancy is established, an extensive 

cohort attrition has already occurred; estimated to be 2,500 early pregnancy losses 

per 10,000 implantations.57 Consequently, the use of birth register datasets, which are 

generally restricted to specific periods and in many cases live births, can introduce 

bias because the sample is thus restricted.59 Conditioning on intermediaries that are 

on the causal pathway also proves problematic.59 Conditioning on a collider, a 

common effect of the exposure and outcome, or a variable influenced by the collider, 

can induce a specious association between the exposure and outcome.62 One such 

example of such challenges in perinatal epidemiology is how to deal with gestational-

age-specific or birth-weight-specific associations that lie on the causal pathway 

between exposure(s) and an outcome.59 Reproductive and perinatal epidemiological 

studies are also impacted by information bias, a measurement error of exposures, 

outcomes and potential confounders.66 For example, gestational age can be 

calculated using various methods: fetal ultrasound measurement, first day of the last 

menstrual period, time of in vitro fertilisation, or based on clinical judgement after 

birth.66 All these measures are prone to some degree of misclassification, not all of 

which are at random.66 Additionally, information bias can be introduced during the data 

analysis phase, such as the incorrect categorisation of continuous data.71 Thus, 

selection, confounding and information bias are ubiquitous in reproductive and 

perinatal research,59, 157 compromising study validity.158  

Quantitative bias analysis methods to estimate systematic errors in epidemiology are 

available,147 the basic principle of which is to assign plausible values to bias 

parameters to determine the influence of bias.148 However, there are a number of 

limitations in the available methods. Sensitivity analysis, a standard practice, only 

assesses one binary variable independently.151 A limitation of multiple bias analysis 

modelling is the assumption that the bias are independent, which may not reflect 

actuality.153 More recent methods have been developed to calculate the effects of 

unmeasured mediators; however, unless the mediator is binary the study will require 

a large number of parameters.125 In recent years, quantitative bias analysis methods 

have been expanded to include simulation,148 empirical experiments that involve 

applying epidemiological modelling to simulated bias parameters.139 Computer 

simulations comprise a broad range of computational practices that vary across 
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disciplinary fields.159 This review is interested in simulations that replicate complex 

causal structures, thereby allowing the illustration and quantification of bias by 

comparing scenarios for the observed association with alternative scenarios.146 One 

of the main benefits of simulation is that it enables researchers to conduct numerous 

experiments, exploring complex causal pathways between exposures and outcomes. 

This has been greatly facilitated by technological advances that have led to improved 

computation speed at lower cost. While simulation as a method is well-established,159 

there is a paucity of research using simulations to quantify bias across epidemiology 

in general.139 The reasons for the limited application of simulation as a method to 

quantify bias in reproductive and perinatal epidemiology could be due to several 

factors. Notably, there is a lack of guidance in the design and implementation of 

simulation,139 combined with researchers with a limited skillset in statistical 

modelling140 and a lack of interest in exploring new research methods.139 Further to 

this, adoption of simulation may be impeded by negative reports that studies that use 

simulation are prone to poor design, analysis and reporting.139  

Although the problems of bias in observational studies are well-acknowledged, 

reviews of the application of methods to address this bias remain limited.160 Further, 

no study has documented how simulation methods have been applied in the 

quantification of bias in reproductive or perinatal epidemiology, which would otherwise 

be of interest to those who would wish to apply simulation within this field. To address 

this, we aimed to systematically review the published literature to provide an 

assessment of the value gained in reproductive and perinatal research, and to identify 

best practices in the application of simulation in the quantification of bias.  

2.3  Methods 

Search strategy 

A systematic search of four databases (PubMed, Medline, EMBASE, CINAHL and 

Scopus) was conducted from the start of indexing to the 31st August 2020. Search 

strategies for each database used the particular databases controlled vocabulary (e.g., 

medical subject headings (Mesh) terms) and free-text terms (Appendix D). A search 

on Google and Google Scholar was undertaken to identify gray literature (i.e. literature 

that has not been formally published in a peer-reviewed indexed format) using 

simulation methods in perinatal and reproductive epidemiology. A combination of key 

terms were used: simulat* AND bias AND (reproductive OR perinatal). Due to the large 
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nature of search results in Google Scholar, the search was limited to the first 100 

results returned sorted by relevance. To capture articles that may have been indexed 

incorrectly, further data collection was completed using a systematic retrospective 

snowball sample. Here, a hand search was conducted using the reference lists of 

included studies to identify additional relevant articles. All references were exported to 

Endnote X9 (Thomson Reuters).  

Study selection 

Studies identified by the search strategy were initially screened for eligibility by the 

primary author. The initial eligibility criteria, based on an abstract and title screen, was: 

1) examination of the bias types as defined in the search, and 2) focused on 

reproductive or perinatal outcomes as defined in the search (Appendix D). Studies 

were excluded using a priori exclusion criteria as follows: 1) does not include 

reproductive or perinatal outcomes in humans, 2) are conference abstracts, review 

papers (systematic, narrative or literature), editorials or opinion letters, and 3) are not 

published in English. Studies that fulfilled these criteria were obtained for a full-text 

review to determine if simulated data is applied as a method to quantify bias. Studies 

were excluded if the details of the simulation process were not included in the article. 

Title and abstract screening were undertaken by the primary author. For the full-text 

screening, a second independent reviewer (MO) conducted a dual review for a sub-

sample (20%) of the records. When conflicts for including/excluding articles between 

the two reviewers occurred, a third independent reviewer (GT) was involved for a final 

decision. 

Data extraction 

Studies were retrieved for inclusion through a two-stage process according to the 

inclusion/exclusion criteria specified above. The key characteristics and methodology 

details were tabulated and discussed. Standard bibliographic information (authors, 

and journal year of publication) was extracted. Additionally, the objectives of each 

study were extracted, type of bias, exposure and outcomes, original cohort (if any), 

simulation method, simulation analysis, simulation results, author’s conclusions, and 

the key findings of the simulation study. Studies were reported according to the type 

of bias. We reported study features such as the use of causal diagrams and statistical 

software, including the availability of code.   
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2.4  Results 

Our searches returned 1,390 records through bibliographic databases and an 

additional 171 records from gray literature searches. After removing duplicates 913 

unique titles and abstracts remained of which 90 articles were retrieved for full-text 

screen. Of the 90 studies eligible for the full-text screening, 51 were excluded 

(Appendix D). The principal reason for exclusions were that the studies did not quantify 

bias as the primary aim study (n=31). Other reasons for exclusion included not 

applying simulation or where the application of simulation were not core to the article 

(n=8). Eight studies did not apply simulated data and four studies applied simulation 

for the purpose of learning in a clinical environment. A total of 39 articles met the 

inclusion criteria as the studies applied simulation methods to the quantification of bias 

in reproductive or perinatal epidemiology.  The process of study identification, 

screening and inclusion is summarised in Figure 2.1. The included studies covered 

three main areas of bias: information (n =14), selection (n = 14) and confounding (n = 

9).  One study quantified protection bias, defined by the authors as ‘the effect of the 

ability to protect against giving birth to an unintended child’ in measures of time-to-

pregnancy.161 Another study investigated the effects of attenuation in study designs 

used to determine the cumulative probability of pregnancy.162 Overall, perinatal 

outcomes were examined in 27 studies and 12 studies examined reproductive 

outcomes. The timeline of the studies ranged from 1983 to 2019, with 18 studies 

published since 2015 (Figure 2.2). See Appendix D for a summary of the study 

characteristics.  

 

 

 

 

 

 

 

 

 



 
Chapter Two   33 

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

            

 Figure 2.1 Flowchart of the study selection process 
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Figure 2.2 Number of included studies (n=39) by publication year 

 

Information bias 

Of the studies that quantified information bias, all quantified misclassification bias. The 

earliest published reproductive study163 investigated reporting errors resulting from 

collecting self-reported data in a time-to-pregnancy study, producing bias towards the 

null. One study164 investigated the potential magnitude of error resulting from loss to 

follow up in studies of fertility, noting that the return of pregnant drop-outs to the study 

biased cumulative pregnancy rates.164 Four studies examined misclassification bias 

associated with gestational age. One study165 examined misclassification bias caused 

by errors in gestational age on spontaneous abortion studies. Another study166 

evaluated the impact of misspecifying the distributions of weight gain and gestational 

age using directed acyclic diagrams to inform the simulation. A later study167 specified 

a model that investigated Gaussian measurement error in gestational age on the 

subsequent risk of preterm birth, finding that parameter estimation was mostly 

unbiased. Lastly, a study168 used gestational age at arrest of development to reduce 

misclassification bias for time-varying exposures on the risk of miscarriage. Three 

articles investigated misclassification bias in studies of the impact of pollutants on 

perinatal outcomes. The first study69 applied simulation to estimate bias in relative risk 



 
Chapter Two   35 

estimates due to exposure misclassification in disinfection by-product in birthweight 

studies. A 2016 study67 evaluated the impact of uncertainty in estimated 

Perfluorooctanoic acid drinking-water concentrations on estimated serum 

concentrations and pre-eclampsia. A later study68 applied simulation to determine the 

impact of maternal residential mobility during pregnancy on identifying critical windows 

of susceptibility to term low birth weight from weekly exposure to particulate matter 

less than or equal to 10μm in aerodynamic diameter (PM10). A study from 2014169 

evaluated bias arising from misclassification of pre-pregnancy body mass index and 

its association with early preterm births. Another study,170 quantified the extent to 

which current measures of gestational weight gain could bias the relationship between 

maternal weight gain and risk of preterm birth. One study171 demonstrated how the 

correction for misclassification in a time-varying exposure of influenza vaccination 

using survival analysis. Another study172 demonstrated that bias increased with 

advancing gestational age at antiretroviral therapy initiation and the introduction of 

gestational age measurement error. The final study investigated the ability of the 

propensity score to reduce confounding bias in the presence of non-differential 

misclassification of treatment.173 The authors showed in the presence of even 

moderate misclassification, all methods (adjustment, weighting, matching and 

stratification) increased bias estimates.173  

Selection bias 

Of the three studies that examined bias in reproductive outcomes, the earliest174 

evaluated how the availability of contraception and induced abortion might bias studies 

of time trends in couple’s fertility. The second reproductive study175 focused on 

selection bias in pregnancy samples for time-to-pregnancy, with the authors finding 

that even when fecundity decreased with age, the estimation of the effect of age 

showed the opposite trend.  Another reproductive study98 investigated bias from left 

truncation in time-to-pregnancy, demonstrating that fixed or variable differential left 

truncation can bias results either towards or away from the null. A perinatal study99 

investigated left truncation bias in spontaneous abortion studies when the exposure is 

maternal smoking, with the simulation suggesting that a difference in 10 days or more 

in gestational age at entry biased the odds ratio of spontaneous abortion by more than 

20%. Lisonkova and Joseph101 investigated whether left truncation bias could explain 

the negative association between smoking and pre-eclampsia, finding a protective 
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effect of pre-eclampsia given smoking even in simulations that did not require 

assumptions about early pregnancy loss. Kinlaw and colleagues100 then examined the 

sensitivity of the assumptions in the Lisonkova and Joseph study, suggesting that the 

earlier study’s results were highly dependent on assumptions regarding the strength 

of association between abnormal placentation and pre-eclampsia, resulting in less 

bias than the Lisonkova and Joseph study101 suggested. Another study154 also 

examined the smoking pre-eclampsia paradox with results indicating that the biased 

effect of smoking was estimated to reduce the odds of pre-eclampsia by 28% and after 

stratification by gestational age at delivery by 75%.  

Three studies examined collider-stratification bias. The first study176 investigated the 

‘birthweight’ paradox, where birthweight specific mortality curves cross after 

stratification by smoking status. Another study94 quantified selection bias when 

adjusting for gestational age, which was considered as the collider variable where 

preterm birth was a predictor for neonatal mortality. Here, conditioning on the collider 

of gestational age led to the reversal of exposure-outcome association.94 A later study 

on the effect of asthma medication during pregnancy on major congenital 

malformations177 evaluated the potential impact of selection bias due to conditioning 

on a collider of delivery after 20 weeks gestation. This study found that selection bias 

could be partially mitigated by controlling for other variables that are not colliders, on 

exposure-outcome pathway.177 One study178 quantified the impact of initial selection 

into the national birth dataset on different associations between well-established risk 

factors and pregnancy outcomes. Another study179 illustrated how selection bias 

affecting studies restricted to very preterm births should be carefully interpreted, as 

pre-eclampsia can appear to reduce the risk of adverse neonatal outcomes. A later 

study172 hypothesized that the lower risk of preterm birth amongst women who initiate 

antiretroviral therapy during pregnancy compared to those already receiving therapy 

is due to selection bias. In this study, selection bias increased with advancing 

gestational age at therapy initiation and the introduction of gestational age 

measurement error.172 Another study180 used simulation to demonstrate how 

conditioning on live birth can induce selection bias in studies of drug effects on 

pregnancy complications when fetal death is a competing risk or is also caused by the 

complication. Another study181 quantified both selection and misclassification bias in 
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studies of reproductive abortion-related mortality, applying explicit assumptions in a 

multiple-bias analysis model. 

Confounding bias 

The earliest reproductive paper in this review examined bias arising from inadequate 

statistical control that impacts gravidity and gravidity-specific relative risks.182 Another 

study183 quantified potential sources of bias related to seasonal variation in 

reproductive failures, demonstrating that seasonal planning differences in subfecund 

females lead to variations in reproductive failures. A later study184 found that 

differential persistence in pregnancy attempts, which are age-dependent, leads to the 

observation that older women conceive faster on average unless unsuccessful waiting 

times are considered. The final reproductive study185 highlighted fixed cohort bias in 

pregnancy studies when estimating the effects of seasonal exposures on birth 

outcomes. When shorter and longer pregnancies are missing, bias can be substantial, 

changing the estimated effect of temperature on gestational length.185 One perinatal 

study186 postulated that the relationship between birthweight and mortality could be 

explained by confounding factors that decrease birthweight and also increase 

mortality. The same authors expanded their previous model in a later study92 to 

demonstrate that the addition of a simple exposure could produce a paradoxical 

reversal of risk among small babies. A later study187 considered the effects of time-

varying covariates such as weight gain on preterm delivery when their mutual 

dependence relies on gestational age. The study suggested that failure to account for 

confounding effects of time on gestational weight gain produced a stronger association 

between higher weight gain and later delivery.187 One study188 investigated bias when 

gestational age acting as a mediator between maternal asthma and small for 

gestational age. Here, the authors consider small for gestational age to be an 

absorbing variable, that is the observed association between the exposure and small 

for gestational age solely reflected the direct effect of the exposure on birth weight.188 

The final perinatal study189 used simulation to quantify cluster-level confounding of the 

effect of caesarean section on the Apgar score, finding that preferential within-cluster 

matching approach showed a good performance in the presence of big and small 

clusters.  

Simulation methods 
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Of the 39 included studies, 24 studies based their simulations on an original cohort; 

three studies based their simulations on previously published papers with the 

remaining twelve studies creating hypothetical cohorts. Key findings related to the 

types of bias investigated and the simulation methods applied are summarised in 

Table 2.1. Nine studies used Monte Carlo simulation methods for data generation. 

One study used a hidden Markov model to account for measurement error in 

gestational age.167 The primary method of statistical analysis was logistic regression, 

with sixteen studies reporting odds ratios. Cox regression models were used to 

calculate hazard ratios in eight studies. Relative risks were reported in six studies. Two 

reproductive studies92, 186 produced mortality curves and one175 produced Kaplan-

Meier curves for waiting time-to-pregnancy. One perinatal study produced generate 

birthweight-specific mortality curves stratified on a binary risk factor of interest.154  

Eleven studies used causal diagrams to represent their causal research question and 

inform their simulation studies. One reproductive study applied a causal diagram in a 

study of time trends in fertility.174 Two perinatal studies used a directed acyclic diagram 

(DAG) where gestational age was the potential mediator between the exposure of 

interest and birth weight.94, 188 A study on information bias, used DAGs to depict the 

correlation between weight gain and gestational age longitudinally across gestation 

before building simulations.166 Three studies used DAGs to describe the smoking-pre-

eclampsia paradox.100, 154, 176 Another study used a DAG to illustrate collider-

stratification bias when conditioning on live birth.180 Two studies used DAGs to 

illustrate bias resulting from restriction to live births in pharmacological studies,177, 180 

and one study illustrated measurement error in a pharmacological study.173 Nineteen 

studies disclosed their statistical software. R were the most commonly used in eight 

studies, Five authors used SAS, four used STATA, one used Microsoft Excel and an 

early study (from 1993) used BASIC. One study used a combination of R and 

MATLAB. Six studies made their code available online and two others agreed to make 

code available upon request. (Appendix D contains a checklist for the application of 

simulation in studies that quantify bias using observational data). 
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Table 2.1 Summary of the key findings related to the types of bias investigated and simulation 

methods applied by the included studies (n=39). 

 

  N (%) 

Type of bias examined  Information 14 (36) 

 Selection 14 (36)  

 Confounding 9 (23) 

 Protection 1 (2.5) 

 Attenuation 1 (2.5) 

 Multiple types 4 (10) 

   

Area of main focus Perinatal  

Reproductive 

27 (69) 

12 (31) 

   

Source of data for simulation Register/database 24 (61) 

 Simulation 12 (31) 

 Previous study 3 (8) 

   

Causal diagram provided  Yes 11 (28) 

   

Source of bias parameters Previous study 

Not stated 

28 (72) 

11 (28) 

   

Simulation iterations Reported in study 

Minimum 

Mode 

Maximum 

24 (62) 

100 

1,000 

100,000 

   

Code availability 

Type of software used 

Available online 

Available upon request 

R 

SAS 

STATA 

Other* 

6 (15) 

2 (5) 

8 (21) 

5 (13) 

4 (10) 

3 (8) 

*Other included Microsoft Excel, Basic and Matlab 
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2.5  Discussion 

Although it is standard practice to report potential sources of bias, this review 

highlights that few reproductive and perinatal epidemiological studies have applied 

simulation to quantitatively evaluate bias. This is the first review of the application of 

simulation to quantifying the influence of bias, providing a catalogue of diverse 

application in the field. This is an important topic due to the potential to improve causal 

inference by providing context for observational results. Our findings highlight that 

although simulation is a promising method for quantifying the influence of bias, it 

remains infrequently utilised in reproductive and perinatal studies. Nonetheless, there 

has been a significant increase in its application to evaluate bias in this specific field 

since 2015. As might be expected, there were considerable differences in how the 

simulations were designed, presented, and reported, revealing a range of specific 

areas where improvement can be made.  

One of the main advantages of simulation is the potential to investigate scenarios that 

were not directly observed or cannot be directly observed, scenarios in which the true 

underlying causal effect of an exposure on an outcome can be bounded but is 

generally unknown.158 This is particularly relevant in perinatal research where the 

study population is incompletely observable, in part due to perinatal databases 

restricting to specified gestational time-periods in pregnancy. This issue is not unique 

to registries, as prospective cohorts are also usually limited to “recognised” 

pregnancies. As evidenced in this review, such left truncation can result in bias toward 

the null, bias away from the null, and loss of precision.98, 100, 101, 190 Importantly, 

simulating a population for unmeasured confounders can not only improve precision 

but can potentially highlight the impact of rare pathologies on adverse outcomes.92 

Further, simulation can illustrate bias when stratifying on an intermediate such as 

gestational age or birth weight, which can lead to unexpected results such as the 

intersection of mortality curves.92, 98, 186 Simulation can also demonstrate whether 

collider-stratification results in a level of bias that would be of concern,92, 98, 179, 180, 186 

as the incorrect handling of colliders can yield paradoxical associations. 92, 98, 179, 180, 

186 This is a valid concern for researchers, as conditioning on a collider such as 

gestational length will introduce bias, regardless of whether that collider is restricted 

on or adjusted for in a model.179 As demonstrated in this review, simulation is a 

valuable method to correct estimates for potential measurement error. A true 
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representation of the causal pathway would typically consider more than one type of 

bias, yet only four of the reviewed studies considered more than one type of bias.166, 

172, 179, 181 However, it remains unclear whether there is a lack of confidence or lack of 

interest by researchers has led to the limited application of simulation in multiple bias 

analysis in reproductive and perinatal epidemiology.   

This review highlighted several attributes that were common to the included studies. 

The first is the use of causal diagrams to inform the development of the simulation. 

Causal diagrams are powerful tools that can aid researchers in constructing models 

based on hypothesized biologic mechanisms in order to produce the least biased 

effect estimates possible.191 Considerable literature has been published on the best 

approach to the application of causal diagrams, more recently with perinatal 

examples.191, 192 Despite the evidence that information bias has a clear and helpful 

representation within the causal diagram framework,193 there remains limited 

application of causal diagrams in the wider epidemiological context. The second 

attribute common to the included studies was the careful selection of bias parameters 

to represent effect sizes within the bounds of associations. A common caveat 

acknowledged in the included studies was that the simulation was only as good as the 

assumptions that informed the parameters.100, 101, 154, 172, 177, 181  Bias parameters and 

the causal structures that underpin the simulations are largely based on researcher 

knowledge and previously published literature. Although such caveats are 

unavoidable, a general limitation of the included studies was the lack of clarity from 

where the estimated bias parameters were derived. Overall, a limitation of the 

application of simulation in epidemiology, which was also evidenced in this review, is 

that the simulations are often over-simplified and do not reflect the true complexity of 

the true causal association. Nonetheless, the application of simulation was an 

improvement, as it accounted for greater complexity of the underlying true causal 

pathways than observational studies alone.  

Scientific evidence is strengthened by the replication of important findings by multiple 

independent studies; however, replication may not be always feasible due to costs 

and difference in the context where the epidemiological population data were drawn.194 

An attainable minimum standard can be reproducibility, where independent 

investigators subject their original data to their analysis and interpretations based on 

published protocols and code.194 The reporting of simulation protocols and the release 
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of code are important considerations in reproductive and perinatal epidemiology,139 

enabling researchers to identify bias scenarios commonly found in all reproductive and 

perinatal research questions. However, only a handful of included studies in this 

review shared their code in the public domain. Increasing study reproducibility can 

elucidate processes that produce contradictory results. A working example of 

contradictory results was evident in this review in regards to the paradoxical inverse 

association between maternal smoking and pre-eclampsia.100, 101 One study proposed 

that left truncation bias was responsible for a protective effect of maternal smoking on 

pre-eclampsia, based on the assumption that there was no direct effect of smoking on 

pre-eclampsia but an indirect effect through abnormal placentation.101 Another 

research group examined the sensitivity of these conclusions, constructing a new 

simulation model using published estimates to frame their bias parameters.100 These 

authors concluded that under more empirical assumptions, bias from left truncation 

does not fully account for the inverse association between maternal smoking and pre-

eclampsia.100 Rather, when left truncation may result from the exposure, researchers 

should describe the target population and parameter of interest prior to assessing 

potential bias.100  

There are no published guidelines for the development and application of simulation 

studies in epidemiology for the purpose of bias analysis. A 2014 paper provided a 

guide for conducting and presenting quantitative bias analysis research studies, 

highlighting the importance of diagrams to establish causal pathway and the careful 

selection bias parameter.147 In recent years, several epidemiological studies have 

been published under the framework of quantitative bias analysis.195 As evidenced in 

this review, the number of studies publishing under the quantitative bias analysis 

framework is limited169 compared to the number of studies applying simulation in bias 

analysis. This may indicate that a broader approach for the development, analysis and 

reporting of studies applying simulation in bias analysis is required. In 2013 the 

STRengthening Analytical Thinking for Observational Studies (STRATOS) group was 

established to guide health researchers to meet the rapid development of statistical 

methodology.140 Recently, members of the STRATOS simulation study panel 

published a guide on the application of statistical simulations in health research, which 

included a helpful example of measurement error in confounding and exposure 

variables.146 Yet it could be considered a potential missed opportunity to consider the 
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impact of bias more holistically, including complications from selection bias and the 

dangers of stratifying or adjusting for colliders in observational studies. Overall, there 

remains a lack of guidance to inform researchers of the practical steps in the 

development, analysis and reporting of simulation for the quantification of the influence 

of multiple types of bias in observational epidemiological studies.  

The strength of this review was a comprehensive search strategy that included 

keyword searches and citations indexes of key sources of simulation in reproductive 

and epidemiology studies that investigated bias. This review also considered the 

application of simulated data to different types of bias in the broad research areas of 

reproductive and perinatal health. Our search strategy restricted studies to those that 

described simulation methods within the paper. Consequently, we may have excluded 

studies that included simulation methods in supplementary material or those 

quantifying bias through other methods. Due to a lack of formal critical appraisal tools 

for simulation studies, an additional limitation is that this study did not conduct a quality 

assessment of the included studies. Although the included studies’ primary aims 

centred on bias analysis with simulation as an integral component, the simulation itself 

was not always their central focus. As such, the studies did not need to report all 

important aspects of their simulations to achieve their study aims. Finally, as we 

intended to identify the extent to which simulation has been applied in the field, the 

types of applications of simulation, and potential advantages of simulation, we did not 

evaluate the degree to which the simulations in each study were effective in achieving 

the respective individual study aims.  

2.6  Conclusion 

The use of simulation to quantify bias in reproductive and perinatal epidemiology 

remains relatively limited. The use of causal diagrams and the reporting of simulation 

code is minimal. The current applications and examples of simulation demonstrated 

that such techniques can be implemented to more comprehensively investigate 

associations. Simulation should be considered as a complementary method in 

observational studies, rather than a competing method of analysis. It is possible that 

the potential of simulation to address common issues of bias in reproductive and 

perinatal epidemiology is under-emphasized due to an overall lack of knowledge in the 

process of their application, lack of the necessary computational skillset among 

researchers in the field, lack of a well-established reporting standard, or possibly the 
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lack of knowledge on potential applications. Increased adoption could be achieved 

through a more holistic approach to research regarding simulation methodology, which 

might include cataloguing successful applications of simulation, development of 

protocols for reporting of simulations studies, complementary application of simulation 

in observational studies to address bias and sharing of simulation code. 
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Chapter Three: The role of confounding  

This chapter contributed to Aim 2 and fully met Objective 2.1 of the thesis.  

Aim 2: To design, implement and analyse a series of simulation studies to quantify 

the magnitude and direction of bias in perinatal outcomes to address issues from 

methodological challenges that may lead to spurious inference on associations 

between pregnancy exposures and adverse birth outcomes.  

Objective 2.1: To investigate the consequences of unmeasured confounding on 

the association between pregnancy complications over two successive 

pregnancies. 

The content of this chapter is covered by Publication Two. This study investigated the 

consequences of unmeasured confounding on the association between 

(preeclampsia, placental abruption, small-for-gestational age and perinatal deaths) 

with a subsequent preterm birth. Using e-values and a simulation, this study 

demonstrated that recurrent confounding is unlikely as any such unmeasured 

confounder would have to be uncharacteristically large explain away the observed 

associations.  

The version that appears in this thesis is of an article that has been through peer-

review with BJOG: An International Journal of Obstetrics & Gynaecology but has not 

been through the copyediting process. The contribution of co-authors, Professor Gavin 

Pereira and Dr Gizachew A. Tessema are detailed in the author attribution statements 

in Appendix A. 

Dunne J, Tessema GA, Pereira G. The role of confounding in the association between 

pregnancy complications and subsequent preterm birth: a cohort study. BJOG: An 

International Journal of Obstetrics & Gynaecology 2022;129:4-101. doi:10.1111/1471-

0528.17007  

A copy of this publication has been provided in Appendix C. Supplementary material 

for this chapter are available in Appendix E.  

https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.17007
https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.17007
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3.1 Abstract 

Objectives 

To estimate the degree of confounding necessary to explain the associations between 

complications in first pregnancy and the subsequent risk of preterm birth.   

Design 

Population based cohort study.  

Setting 

Western Australia. 

Participants 

Women (n=125,473) who gave birth to their first and second singleton children 

between 1998 and 2015. 

Main outcome measures 

Relative risk of the subsequent preterm birth (<37 gestational weeks) with 

complications of pre-eclampsia, placental abruption, small-for-gestational age and 

perinatal death (stillbirth and neonatal death within 28 days of birth). We derived e-

values to determine the minimum strength of association for an unmeasured 

confounder to explain away an observed association.  

Results 

Complications in first pregnancy were associated with higher risk of a subsequent 

preterm birth. Relative risks were significantly higher when the complication was 

recurrent, with the exception of first term perinatal death. The association with 

subsequent preterm birth was strongest when pre-eclampsia was recurrent. The risk 

of subsequent preterm birth with pre-eclampsia was 11.87 (95% confidence interval 

(CI) 9.52 to 14.79) times higher after a first term birth with pre-eclampsia and 64.04 

(95% CI 53.58 to 76.55) times higher after a preterm first birth with pre-eclampsia, 

than an uncomplicated term birth. E-values were 23.22 and 127.58 respectfully.  

Conclusions  

The strong associations between recurrent pre-eclampsia, placental abruption and 

small-for-gestational age with preterm birth supports the hypothesis of shared 

underlying causes that persist from pregnancy to pregnancy. High e-values suggest 

that recurrent confounding is unlikely, as any such unmeasured confounder would 

have to be uncharacteristically large.  
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3.2 Introduction 

There is strong evidence that a previous preterm birth is a predictor of a subsequent 

one,196-198 suggesting the presence of persistent causal factors in the mother or her 

environment.199 The assumption that a term birth in first pregnancy can be considered 

sufficient to imply a reduced risk for a future preterm birth has been refuted by recent 

studies.200-202 These studies reported that term first births, complicated by either pre-

eclampsia, placental abruption, small-for-gestational age, stillbirth or neonatal death, 

were associated with elevated risks of subsequent preterm birth, leading the authors 

of those studies to conclude that there are likely shared underlying pathologic 

mechanisms persisting from pregnancy to pregnancy.200-202  

One pathway that explains the association between complicated term birth and 

subsequent preterm birth is that the complications can also reoccur.203, 204 Recurrence 

has been well-established for pre-eclampsia,205 placental abruption206 and small-for-

gestational age,207 complications pertaining to ischemic placental diseases,27 with 

these complications acting as risk factors for preterm birth.196-198 Another more 

complex explanation is that each complication is associated with an increased risk of 

other complications,203, 208 which is supportive of the hypothesis of shared underlying 

mechanisms.203 Further supportive of a shared underlying mechanism are 

observations for associations with preterm birth in the “reverse” direction. For example, 

more recent studies have established associations between preterm first birth and risk 

of pre-eclampsia204 and stillbirth209 in the next birth.  

The most well-cited candidate for the shared underlying mechanism is the Great 

Obstetrical Syndrome,32 ischemic placental diseases that are associated with 

disorders of deep placentation,33 preterm birth,34 and late stillbirth.35, 36 However, the 

shared causal pathway is not necessarily biological. Environmental confounders such 

as socio-economic status, income, age, education and body mass index have 

previously been identified as risk factors for pregnancy complications202 and preterm 

birth.210 If environmental risk factors and underlying biological mechanisms that cause 

complications of pre-eclampsia, placental abruption, small-for-gestational age and 

perinatal death are shared with preterm birth, these associations would persist from 

pregnancy to pregnancy. Although incomplete control for confounding is inevitable in 

non-randomised studies,73, 77 it is possible to estimate the amount of confounding 

needed to explain away observed associations, which would thereby allow qualitative 
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assessment as to whether such confounding is likely. We hypothesise that the 

associations between pregnancy complications exist and that they are largely 

explained by recurrence of the complications themselves. We aimed to estimate the 

magnitude of these associations and to establish the degree of evidence for shared 

underlying pathways by estimating the degree of confounding necessary to explain 

away these associations.    

3.3 Methods 

Data sources 

We conducted a retrospective population-based cohort study using perinatal records 

from the Midwives Notification System in Western Australia (WA), a statutory data 

collection of all live births and stillbirths with either a final gestational length of ≥20 

weeks or a birth weight > 400 grams.211 This de-identified and validated dataset212 was 

cross-referenced with Death Registrations obtained from the WA Registry of Births, 

Deaths and Marriages using a linkage key provided by the Data Linkage Branch of the 

WA Department of Health.213 Hospitalisation records were identified from Hospital 

Morbidity Data Collection for WA using the Australian Modification of International 

Classification of Diseases (ICD-10-AM) coded diagnostic information for pregnancy 

complications.214 As data on chronic co-morbidities and smoking status were not 

routinely and comprehensively collected until 1998, analysis was restricted to women 

who gave birth (live birth or stillbirth) within the period 1998–2015. 

Study cohort 

The study cohort consisted of women who delivered their first two singleton births (live 

birth or stillbirth) in WA, during the period 1998-2015. From a starting population of 

299,166 women who gave birth during this period, we sequentially excluded: multiple 

births (n=3,276; 1.1%); duplicate parity (n=28; <0%); parity greater than 1 (n=36,892; 

12.3%); gestational age <20 or >= 45 weeks (n=76; <0%); birth weight by gestational 

age z score > 5 (n=6; <0%); women with only one birth (n=133,415; 44.6%). After 

these exclusions, the final eligible study population was 125,473 women with first and 

second births (live birth or stillbirth) in WA (Figure 3.1).  
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Figure 3.1 Selection of eligible birth records included in this study, Western Australia, 
1998-2015 

 

Exposure and outcome ascertainment 

The four variables used to identify a shared pathway were pre-eclampsia, placental 

abruption, small-for-gestational age, and perinatal death (hereon complications). Pre-

eclampsia (ICD-9: 642.4, 642.5, 642.6, 642.7 and ICD-10: 011, 014, 015) and 

placental abruption (ICD-9: 641.20 and ICD-10: 045) were obtained from hospital 

Women who gave birth (live birth or stillbirth) 
in Western Australia, 1998-2015  
(N=299,166) 

Eligible: parity 0 and 1  
(N=258,970) 

 

Excluded: multiple gestation births  
(N= 3,276) 

Eligible: singleton births  
(N= 295,890) 

 Excluded: duplicate parity (N=28) and parity > 
1 (N=36,892)  

Excluded: gestational age null, < 20 or ≥ 46 
weeks (N=76) 

 

(N=125,649) 

Eligible: gestational ages 20-46 weeks 
 (N=258,894) 

Excluded: birth weight by gestational age z 
score > 5 (N=6) 

  

 

(N=125,649) 

Eligible: women with first and second births 
(live birth or stillbirth) 
(N= 125,473) 

 

(N=385,154) 

Eligible: birth weight by gestational age z 
score < 5 (N=258,888) 

 

Eligible: women with both parity 0 and 1  
(N=125,473) 

 

Excluded: women who only birthed once 
(N=133,415) 

 

(N=125,649) 



 
Chapter Three   50 

discharge ICD-9 and ICD-10 diagnosis. Small-for-gestational age was derived using 

the Australian national centiles and defined with the 3rd percentile for singleton births 

to exclude more constitutionally mall births.215 Perinatal death included stillbirths and 

neonatal deaths, where stillbirth is defined as fetal death after 20 gestational weeks or 

≥ 400 grams birthweight, and neonatal death is the death of a live born baby in the 

first 28 days of life. Preterm birth was defined as a live birth or stillbirth delivered before 

37 weeks of gestation. Gestational age at birth was derived from dating ultrasounds.216 

Based on the hypothesis that the complications and preterm birth share common 

mechanisms, complications in the first pregnancy (exposure) would be associated with 

the risk of preterm birth in the second pregnancy (outcome). Similarly, preterm birth in 

the first pregnancy (exposure) would be associated with complications in the second 

pregnancy (outcome). Associations were investigated separately for each 

complication (hereon primary complication). Because associations can be induced by 

the recurrence of complications independent of preterm birth, and recurrence of 

preterm birth independent of complications, outcomes and exposures were 

categorised with levels to account for such recurrence. Specifically, for the association 

between first pregnancy complication and preterm birth in the second pregnancy we 

defined (i) six exposure groups: uncomplicated term birth, uncomplicated preterm 

birth, term birth without primary complication (i.e. had a complication other than the 

primary complication), term birth with primary complication, preterm birth without 

primary complication (i.e. had a complication other than the primary complication), and 

preterm birth with the primary complication and (ii) three preterm outcomes: preterm 

birth with no complications, preterm birth including the primary complication, and 

complicated preterm birth excluding the primary complication. To avoid introducing 

collider bias from conditioning on preterm birth, the association between preterm birth 

in first pregnancy was limited to pregnancy complications at second term birth.  

Confounders 

Adjustment was made for known confounders that may contribute to the associations 

between complications and preterm birth. These factors included maternal age, 

ethnicity, smoking during pregnancy, year of delivery, socio-economic status, inter-

pregnancy interval and change of father between the first and second birth. To avoid 

introducing bias from factors that may have changed since first pregnancy, maternal 

age, smoking, year of delivery, and socio-economic status were adjusted at the time 
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of first pregnancy. Ethnicity was classified as Caucasian, Aboriginal Torres Strait 

Islander and other. Smoking during pregnancy was dichotomised as non-smoking vs 

smoking. Socio-economic status was derived by the Australian Bureau of Statistics as 

the Socio-Economic Indexes of Areas (SEIFA) at a geographic area for the maternal 

residence at the time of birth, with lower values indicating an area that is relatively 

disadvantaged compared to an area with a higher score.217 Inter-pregnancy interval 

was defined as the length of time between the delivery date of the first pregnancy and 

the estimated conception date of the second pregnancy.  

Statistical analysis 

We used robust Poisson regression models to calculate relative risks with 95% 

confidence intervals for the association between complications in the first pregnancy 

and the risk of preterm birth in second pregnancy. The Poisson model was chosen 

because the results approximate those obtained from a log-binomial model when the 

outcome is rare and the sample sizes are large,218 and overcome problems with 

convergence219 commonly associated with log-binomial models. Robust standard 

errors were applied to derive the confidence intervals. Separate models were run for 

each primary complication (pre-eclampsia, placental abruption, small-for-gestational 

age, and perinatal death), with reference set as uncomplicated first term pregnancy. 

When preterm birth in first pregnancy was the exposure and pregnancy complications 

at term the outcome, the reference was term birth in the first pregnancy. We presented 

unadjusted relative risks and relative risks after adjustment for potential confounding 

variables. 

E-values provide a method to gauge the minimum strength of association required to 

explain away exposure-unmeasured confounders and unmeasured confounder-

outcomes associations.125 A large e-value indicates that considerable unmeasured 

confounding is needed to expound an observed effect estimate. Conversely, a small 

e-value indicates that less unmeasured confounding is needed to explain an observed 

effect estimate.125 The e-value for the lower limit of the 95% confidence interval is the 

level of confounding needed to render the interval estimate null, and thereby alter 

inference.220 To address the potential impact of bias from unmeasured confounding in 

our study, e-values were calculated and presented for the unadjusted and adjusted 

relative risks. 

Simulation 
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We undertook a brief simulation exercise to determine if the inclusion of a well-

established known confounding variable could explain the association between 

complications in the first pregnancy and subsequent preterm birth. Body mass index 

(BMI) is a commonly adjusted confounder in perinatal studies; yet is unavailable in the 

WA data prior to 2016. As maternal height and maternal weight were readily available 

for births delivered after 2012, we were able to directly estimate BMI and thereby 

derive obesity (BMI ≥ 30kg/m2) for the period 2012-2015. We then applied logistic 

regression to simulate obesity at the first birth that was not associated with preterm 

second birth while preserving the correlations in the data between obesity and the 

other observed variables. Applying the same statistical approach as the main analysis, 

we re-analysed the data adjusting for the same confounders as before but with the 

addition of the new simulated obesity. A simulation was run for each exposure-

outcome association, with iteration until convergence of the new obesity-adjusted 

relative risks, which was defined as no change at the third decimal place. 

All data analyses and simulations were conducted using R v4.0.5.221 

3.4 Results 

Study population characteristics 

In total, 125,493 women had two consecutive births (live birth or stillbirth) in WA 

between 1998 and 2015. Women were more likely to be in the 25-29 years age group 

(33.3%) at first birth, Caucasian (83.9%), and reported not smoking during pregnancy 

(86.5%) (Table 3.1). The majority of the study sample had a SEIFA score greater than 

1000 (58.4%) which is slightly above the national average (50%).217 The most common 

inter-pregnancy interval was 24-59 months (34.1%). The prevalence of preterm birth 

in first pregnancy was 7.4%, pre-eclampsia was 4.5%, placental abruption was 0.3%, 

small-for-gestational age was 3%, and, perinatal death was 0.9%. The prevalence of 

preterm birth in an uncomplicated second pregnancy was 3.7%. 
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Table 3.1 Characteristics of the 125,473 women who gave birth between 1998 and 2015 in 
Western Australia.  

Characteristics N (%) 

  

Maternal age at first-birth (years):  

< 20 18,352 (14.6) 

20-24 21,747 (17.3) 

25-29 41,779 (33.3) 

30-34 37,250 (29.7) 

35-39 6,103 (4.9) 

40+ 242 (0.2) 

Ethnicity:  

Caucasian 105,293 (83.9) 

Aboriginal Torre Strait Islander 5,470 (4.4) 

Other 14,710 (11.7) 

Maternal smoking status at first-birth:  

No 108,518 (86.5) 

Yes 16,955 (13.5) 

SEIFA score at first-birth:  

< 700 279 (0.2) 

700-800 1,044 (0.8) 

800-900 8,443 (6.7) 

900-1000 32,664 (26.1) 

>1000 73,312 (58.4) 

Missing 9,731 (7.8) 

Inter-pregnancy interval (months):  

< 6 4,108 (3.3) 

6-11 18,759 (15) 

12-17 28,534 (22.7) 

18-23 23,229 (18.5) 

24-59 42,731 (34.1) 

60-120 7,326 (5.8) 

>120 786 (0.6) 

Year at first-birth:  

1998-1999 22,421 (17.9) 

2000-2004  38,307 (30.5) 

2005-2009 43,766 (34.9) 
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2010-2016 

Outcome in 1st pregnancy: 

20,979 (16.7) 

 

Preterm 9,240 (7.4) 

Term 116,233 (92.6) 

Pre-eclampsia 5,644 (4.5) 

Placental abruption 

Small-for-gestational age 

435 (0.3) 

3,781 (3) 

Perinatal death 1,174 (0.9) 

 

Association between complications at first birth and preterm second birth 

The strongest associations were observed between first pregnancy pre-eclampsia and 

subsequent preterm birth when both pre-eclampsia and preterm birth were recurrent 

(RR 67.69, 95% CI 56.82 to 80.63) (Table 3.2). The risk of subsequent preterm birth 

remained elevated when first pregnancy was term and pre-eclampsia was recurrent 

(RR 11.94, 95% CI 9.60 to 14.86). There was insufficient evidence to suggest that first 

preterm birth complicated by pre-eclampsia confers greater risk on subsequent 

complicated preterm birth without recurrent pre-eclampsia (RR 3.67, 95% CI 2.49 to 

5.42), than an uncomplicated preterm birth (RR 3.70, 95% CI 3.21 to 4.27). 

Corresponding e-values for associations that involved either recurrence of pre-

eclampsia or recurrence of preterm birth were high (> 6). In the absence of recurrence 

of pre-eclampsia or preterm birth, smaller associations were observed. Strong 

associations were also observed between placental abruption in first term pregnancy 

and subsequent preterm birth (RR 11.79, 95% CI 4.37 to 31.83) when placental 

abruption was recurrent. When the first preterm birth was complicated by placental 

abruption, the risk of a subsequent preterm birth remained elevated when placental 

abruption was recurrent (RR 10.47, 95% CI 3.37 to 32.51) and when the subsequent 

pregnancy was complicated without recurrent placental abruption (RR 10.80, 95% CI 

6.69 to 18.00). Corresponding e-values for the associations of the recurrence of 

placental abruption and preterm birth were high (>20). There was a weak association 

between first term pregnancy with placental abruption and subsequent complicated 

preterm birth without recurrent placental abruption (RR 1.35, 95% CI 0.34 to 5.37). 

There was no association between first term birth with placental abruption and the 

subsequent risk of uncomplicated preterm birth. Corresponding e-values were low (≤2) 

with confidence limits of 1. 
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Table 3.2 Relative risk and assessment of unmeasured confounding in the association between complications in first pregnancy and preterm  

1st pregnancy 2nd pregnancy 

 

 

Preterm birth with no 
complicationsa  

  

Complicated preterm birth including 
primary complicationa 

 

Complicated preterm birth 
excluding primary complicationa 

Complication status  Adjusted* RR  

(95% CI) 

E-valueb for RR 
(lower 95% CIc) 

Adjusted* RR  

(95% CI) 

E-valueb for RR  

(lower 95% CIc) 

Adjusted* RR  

(95% CI) 

E-valueb for RR 

(lower 95% CIc) 

 

Term no complication 

 

Referenced  

 

Referenced 

 

Referenced 

 

Referenced 

 

Referenced 

 

Referenced  
 

Pre-eclampsia: 
      

Terme 1.22 (1.05, 1.41) 1.73 (1.29) 11.87 (9.52, 14.79) 23.22 (18.53) 1.75 (1.29, 2.38) 2.89 (1.89) 

Pretermf 3.70 (3.21, 4.27) 6.87 (5.58) 64.04 (53.58, 76.55) 127.58 (106.65) 3.67 (2.49, 5.42) 6.80 (4.41) 
 

      

Placental abruption:       

Terme 1.00 (0.51, 1.98) 1.04 (1) 11.79 (4.37, 31.83) 23.08 (8.20) 1.35 (0.34, 5.37) 2.03 (1) 

Pretermf 5.40 (4.16, 7.01) 10.27 (7.78) 10.47 (3.37, 32.51) 20.43 (6.20) 10.80 (6.49, 
18.00) 

21.10 (12.45) 

 

      

Small –for- 
gestational age: 

      

Terme 1.62 (1.42, 1.84) 2.62 (2.20) 4.30 (2.78, 6.66) 8.07 (5.00) 2.39 (1.83, 3.11) 4.21 (3.06) 

Pretermf 3.66 (2.86, 4.69) 6.78 (5.16) 32.68 (19.87, 53.74) 64.86 (39.24) 9.69 (6.60, 14.25) 18.87 (12.67) 
 

      

Perinatal death:       
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Terme 3.00 (2.22, 4.05) 5.45 (3.87) 1.29 (0.32, 5.17) 1.90 (1) 2.80 (0.91, 8.61) 5.04 (1) 

Pretermf 4.22 (3.61, 4.93) 7.91 (6.68) 5.23 (3.36, 8.14) 9.93 (6.17) 12.72 (8.90, 
18.18) 

24.93(17.28) 

 

a complications included are pre-eclampsia, placental abruption, small-for-gestational age and perinatal death; b The e-values for the effect 

estimates are the minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have with both the 

exposure and outcome to fully explain away the association between preterm birth in first pregnancy and complications in the second term 

pregnancy; c The e-values for the limit of the 95% confidence interval (CI) closest to the null denote the minimum strength of association on the 

risk ratio scale that an unmeasured confounder would need to have to shift the confidence interval to include the null value; d uncomplicated 

term birth; e term birth with primary complication; f preterm birth with primary complication  

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, inter-
pregnancy interval, and change of father between first and second birth. 
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The associations were strong when small-for-gestational age and preterm birth were 

recurrent (RR 32.68, 95% CI 19.87 to 53.74) compared to a first term uncomplicated 

pregnancy. Preterm birth in first pregnancy confers a greater risk on the subsequent 

risk of complicated preterm birth when small-for-gestational was not recurrent (RR 

9.69, CI, 6.60 to 14.25), in contrast to the subsequent risk of preterm birth without 

complications (RR 3.6, 95% CI 2.86 to 4.69). Corresponding e-values for associations 

that involved recurrence of small-for-gestational age were high (> 6). In the absence 

of recurrence of preterm birth or small-for-gestational age, smaller associations were 

observed, with first term pregnancy complicated by small-for-gestational age weakly 

associated with subsequent uncomplicated preterm birth (RR 1.62, 95% CI 1.42 to 

1.84) with a corresponding e-value (2.20). There was a stronger association between 

a first preterm birth with perinatal death and subsequent complication preterm birth 

without recurrent perinatal death (RR 12.72, CI 8.90 to 18.18) compared to when the 

subsequent pregnancy was uncomplicated (RR 4.22, 95% CI 3.62 to 4.93) and when 

perinatal death was recurrent (RR 5.34, CI 3.36 to 8.14). Conversely, the risk of 

subsequent preterm birth was higher after a first term birth with perinatal death (RR 

3.00, 95% CI 2.22 to 4.05), compared to when perinatal death was recurrent (RR 1.29, 

95% CI 0.32 to 5.17). The corresponding e-values were 5.45 and 1.90 respectively. 

Association between preterm first birth and complications at second birth 

When we compared women whose first pregnancy ended in preterm birth to those 

with a first term birth, there was an increased risk of each complication in second 

pregnancy. This was particularly true for pre-eclampsia, for which we observed a 

three-fold higher risk after preterm birth in the first pregnancy (Table 3.3). Generally, 

there was very slight attenuation after adjustment for known confounders in models 

when preterm birth was considered the exposure or the outcome of interest. 
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Table 3.3 Relative risk and assessment of unmeasured confounding in the association between preterm birth in first pregnancy and complications 

in the second term pregnancy  

1st 
pregnancy 

 

2nd pregnancy 

 Pre-eclampsia Placental abruption Small-for-gestational age Perinatal death 

 

 Adjusted* 
RR  

(95% CI) 

E-valuea for 
RR (lower 
95% CIb) 

Adjusted* 
RR  

(95% CI) 

E-valuea for 
RR (lower 
95% CIb) 

Adjusted* 
RR  

(95% CI) 

E-valuea for 
RR (lower 95% 
CIb) 

Adjusted* 
RR  

(95% CI) 

E-valuea for 
RR  

(lower 95% 
CIb) 

 

Term birth 

 

Reference 

 

Reference 

 

Reference 

 

Reference 

 

Reference 

 

Reference  

 

Reference 

 

Reference  

         

Preterm 
birth 

3.58  

(3.12 to 
4.11) 

6.62 (5.69) 1.71  

(1.03 to 
2.83) 

2.81 (1.22) 1.85  

(1.60 to 2.15) 

3.11 (2.57) 1.02  

(0.53 to 
1.93) 

1.14 (1) 

         

a The e-values for the effect estimates are the minimum strength of association on the risk ratio scale that an unmeasured confounder would 
need to have with both the exposure and outcome to fully explain away the association between preterm birth in first pregnancy and 
complications in the second term pregnancy; b The e-values for the limit of the 95% confidence interval (CI) closest to the null denote the 
minimum strength of association on the risk ratio scale that an unmeasured confounder would need to have to shift the confidence interval to 
include the null value.   

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, inter-
pregnancy interval, and change of father between first and second birth. 
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Simulation results 

After the simulated confounder of obesity was included, each model was iterated 50 

times until convergence was achieved at the third decimal point. When the outcome 

was uncomplicated preterm birth, there was no difference in relative risks from any of 

the complications in first pregnancy. There were marginal differences in the relative 

risks after the simulated confounder was included when the outcome was a 

subsequent preterm birth complicated with the recurrent pregnancy complication. 

Overall, the simulation demonstrated that the inclusion of the confounder obesity did 

not alter the relative risks.  

3.5 Discussion 

This study examined the role of confounding in the association between pregnancy 

complications across two subsequent pregnancies. Women with previous pre-

eclampsia, small-for-gestational age or perinatal death in first pregnancy were at 

increased risk for a subsequent preterm birth, regardless of whether their first birth 

was term or preterm. Placental abruption was the exception with an increased risk of 

uncomplicated subsequent preterm birth observed only after a first preterm birth. 

Moreover, preterm birth in first pregnancy was associated with an increased risk of 

complications in second pregnancy, excluding perinatal death. We were able to 

demonstrate that substantial confounding would be required to explain away the 

strong associations observed. Maternal obesity was simulated, demonstrating that the 

inclusion of a single well-established confounder is not enough to weaken the strong 

observed associations.   

The findings that pre-eclampsia, small-for-gestational age, and perinatal death in a 

first pregnancy, at either term or preterm, present an increased risk of a subsequent 

preterm birth support the hypothesis of shared underlying mechanisms. This is 

reinforced by the findings that preterm birth in the first pregnancy increased the risk of 

pre-eclampsia, placental abruption, and small-for-gestational age in the next 

pregnancy. We found that placental abruption at first term birth was not a risk for a 

subsequent uncomplicated preterm birth. Moreover, the increased risk of subsequent 

preterm birth with a recurrence of placental abruption was higher after a term birth 

compared to preterm. These findings may result from situations in which an elective 

delivery at term occurs before spontaneous labour, leading to uncertainty regarding 

the true recurrence rate of placental abruption.222 The strong effect for the associations 
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between recurrent pre-eclampsia, placental abruption, and small-for-gestational age 

on preterm birth suggests the presence of strong maternal specific factors that persist 

from pregnancy to pregnancy. The exception was perinatal death, for which we 

observed higher risks for a subsequent preterm birth when the complication was not 

recurrent after a first term birth. This may in part be due to the variability in the influence 

of placental causes for stillbirth223 and neonatal death224 compared to the other 

complications, and increased health surveillance after the occurrence of said 

complication in first pregnancy.225 Adjustment for known confounders had almost no 

influence on the point estimates of associations between pregnancy complications 

suggesting the true causal mechanisms are a complex interplay between 

environmental and biological factors.32  

To explore the sensitivity of our results to confounding, we applied e-values, a 

relatively new method to quantify the minimum strength of association an unmeasured 

confounder would need to explain away the exposure-outcome relation.125 Interpreting 

the e-value within the context of our effect sizes, the large e-values suggest large 

unmeasured confounder(s) are required to explain away the strength of the 

association between complications of pregnancy. In particular, an unmeasured 

confounder would have to be extremely high to explain the association between pre-

eclampsia in a preterm first birth and a subsequent preterm birth with recurring pre-

eclampsia (e-value 127.58). Although it is improbable that a single unmeasured 

variable could confound the strong associations evidenced between pregnancy 

complications and subsequent preterm birth, we included a simulated variable of 

maternal obesity as a sensitivity analysis. As expected, simulated maternal obesity did 

not influence the effect size, supporting previous observations that the shared and 

unknown underlying mechanisms are a possible interaction between complex 

biological and environmental exposures.32  

Comparison to other studies 

Our study is the first to report the results of associations between pregnancy 

complications and subsequent risk of preterm birth for first births at term and preterm. 

Although direct comparison to other studies is constrained by differences between 

exposure and reference groups, several past studies support our findings.125, 196-198, 

202, 204, 206, 209, 226-229 There is consistent evidence for the recurrence of preterm birth,196-

198 most notably when the previous preterm birth occurred with early onset pre-
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eclampsia.202, 227 One study reported an increased risk for recurrent placental 

abruption after a term first birth compared to preterm birth,228 another study reported 

almost three-fold higher odds of preterm birth (compared to a term birth) after a small-

for-gestational preterm birth,226 and a study reported that previous all-cause infant 

death (up to 365 days post-birth) was associated with a two-fold increase in the risk of 

a subsequent preterm birth.229 Only two studies considered the reverse associations 

between a first preterm birth and complications,204, 209 with one study reporting an 

increased risk of term pre-eclampsia in second pregnancy204 and the other reporting 

a higher risk of stillbirth, after preterm birth.209 The findings of these studies support 

the premise of shared underlying mechanisms between pregnancy complications and 

preterm birth.  

More recently, researchers have turned their attention to the subsequent risk of 

preterm birth from complications when the first birth is term.196-198 Finding similar 

results to ours, a study from Norway201 reported a two-fold increase in the risk of 

preterm birth when the previous births were term with at least one complication (pre-

eclampsia, placental abruption, small-for-gestational age, stillbirth or neonatal 

mortality) compared to an uncomplicated first term birth. Consistent with our study, the 

authors also found little evidence for confounding by known demographic and lifestyle 

factors.201 Findings from another study provide further support that complications of 

pre-eclampsia, small-for-gestational age, and perinatal mortality at first term birth 

increased the subsequent risk of preterm birth.202 A study from the United States 

reported similar associations between subsequent preterm birth for first term 

complications (small-for-gestational age, placental abruption and neonatal death); 

however, a protective association was observed between term births with pre-

eclampsia and subsequent preterm birth.200 An alternative explanation for these 

results is that the adjustment for placental abruption and small-for-gestational age 

(potential mediators) introduced collider bias.230 The findings of these studies add 

weight to the hypothesis that there are shared underlying causal mechanisms 

influencing outcomes even when the first birth is term.  

Strengths and limitations 

This study provided a comprehensive analysis considering multiple scenarios of the 

interactions between pregnancy complications. A strength was the application of e-

values to measure the strength of potential confounding required to explain results. An 
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additional strength of this study was that pregnancy complications for this analysis 

were drawn from population-based birth data, linking each woman across two 

pregnancies, enabling the study of relatively rare outcomes with precision. Inevitably, 

as with most observational studies, these data may also be prone to a degree of 

misclassification. Furthermore, our findings are not necessarily generalisable to higher 

order parities than those included in our cohort, although it is uncertain as to why 

underlying causal pathways would differ. Another limitation is that we were also not 

able to include women who gave birth to their first child or subsequent child out of the 

state. 

3.6 Conclusion 

The evidence for shared casual risk factors between pregnancy complications and 

preterm birth in this study is strong. The high e-values indicate that substantial 

confounding would be needed to explain away these associations. However, these 

findings alone do not provide direct evidence that the shared risk factors are of 

placental origin or biological origin. Further research is required to elucidate specific 

pathways that explain these associations whether genetic or pathologic, behavioural 

or other recurrent mechanisms.  
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Chapter Four: Bias due to left truncation 

This chapter contributed to Aim 2 of the thesis and met Objective 2.2.  

Aim 2: To design, implement and analyse a series of simulation studies to quantify 

the magnitude and direction of bias in perinatal outcomes to address issues from 

methodological challenges that may lead to spurious inference on associations 

between pregnancy exposures and adverse birth outcomes.  

Objective 2.2: To quantify the influence bias resulting from the use of left-truncated 

datasets (birth registries) in which early pregnancy losses prior to 20 gestational 

weeks are excluded. 

The content of this chapter is covered by Publication Three. This chapter quantified 

the magnitude and influence of bias due the use of left truncated birth data in the 

association between advancing maternal age and stillbirth in a simulation study. This 

simulation study is reproducible with published code and a full disclosure of the 

informing data parameters.  

The version that appears in this thesis is of an article that has been through peer-

review with Scientific Reports but has not been through the copyediting process. The 

contribution of co-authors, Professor Gavin Pereira, Dr Gizachew A. Tessema and Dr 

Amanuel T. Gebremedhin are detailed in the author attribution statements in Appendix 

A. 

Dunne J, Tessema GA, Gebremedhin AT,  Pereira G. Bias in the association between 

advanced maternal age and stillbirth using left truncated data. Scientific Reports 

2022;12:19214. doi:10.1038/s41598-022-23719-3  

A copy of this publication has been provided in Appendix C. Supplementary material 

for this chapter are available in Appendix F.  

 

 

  

https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/1471-0528.17007
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4.1 Abstract 

The left-truncation of birth datasets to those that survive past a specified gestational 

age (usually 20 gestational weeks) leads to biased exposure-outcome associations in 

perinatal epidemiology. Here, the exposure itself may impact selection into the study. 

Collider-stratification bias results when the cause of this restriction (early pregnancy 

loss) is influenced by the exposure and an unmeasured confounder. The aim of this 

study is to estimate the magnitude of bias resulting from left truncated data in the 

association between advanced maternal age and stillbirth. We simulated data for the 

causal pathway under a collider-stratification mechanism. Using an original birth 

cohort and a range of plausible values we simulated parameters for the prevalence of 

early pregnancy loss, and unmeasured confounder U and odds ratios for selection 

effects (maternal age → early pregnancy loss, U → pregnancy loss, U → stillbirth). 

We compared the simulation scenarios to the observed birth cohort that was truncated 

to pregnancies that survived beyond 20 gestational weeks. We found evidence of 

marginal downward bias, which was most prominent for women aged 40+ years. 

Overall, we conclude that the magnitude of bias due to left truncation is minimal in the 

association between advanced maternal age and stillbirth. 

4.2 Introduction 

It is considered that women with advanced maternal age (>35 years of age) have an 

increased risk of stillbirth.5 However, the magnitude of this increased risk is unclear 

when using birth data that is restricted to pregnancies that survive beyond a specified 

gestational week,97 as the exposure may impact selection into the study and thus mask 

the true observation of outcomes. In high-income countries, selection into a study is 

generally restricted to pregnancies that survive beyond 20 gestational weeks.59 Thus, 

the use of left truncated birth registries and cohort studies that recruit women during a 

specific period of pregnancy, will produce biased estimates in perinatal exposure-

outcome associations. The mechanism that leads to these biased associations is 

collider stratification bias. This occurs as conditioning on a collider, a common effect 

of an exposure and an outcome, induces a correlation between the exposure and a 

confounder.231 As the confounder also affects the outcome, conditioning on the collider 

leads to a specious association that is either strengthened or reversed between the 

exposure and outcome.232 The most well-known example of collider-stratification bias 

in perinatal epidemiology is the birth-weight paradox.112 In this example, stratifying on 
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birth weight produces a cross-over of the birth-weight mortality curves, such that low 

birth weight babies with smoking mothers have a lower mortality rates than low birth 

weight babies with non-smoking mothers.109 However, the collider-stratification 

mechanism that underpins bias resulting from left truncated data is more difficult to 

address analytically as selection is based on an attrition processes that we cannot 

observe in data, i.e. early pregnancy loss. 

With estimates of 2,500 early pregnancy losses per 10,000 implantations,57 an 

extensive cohort attrition has already occurred prior to pregnancy being established 

due to spontaneous and induced abortion. The exact aetiology of spontaneous 

abortion remains unclear, although it is widely acknowledged that they result from 

interaction between hormonal, immunology, genetic and environmental factors.17-20 

Parental age is considered to be a strong risk factor for early pregnancy loss,17, 233 with 

the risk of early pregnancy loss slightly elevated in younger mothers before rising 

sharply in older mothers (≥35 years).17 The continuing trend of advanced maternal age 

and high rates of stillbirth in high-income countries have led many researchers to 

examine the association between the exposure of advanced maternal age and the 

outcome of stillbirth, defined as fetal death at 20 gestational weeks or more. Advancing 

maternal age (≥35 years) has been identified is an independent risk factor for stillbirth,5 

with the increased risk of stillbirth not accounted for by increased prevalence of other 

maternal comorbities.23 In studies that use left truncated datasets (i.e. missing 

pregnancies prior to 20 gestational weeks), the differential impact of maternal age on 

early pregnancy loss will lead to biased estimates in the relationship between 

advanced maternal age and stillbirth. Whether the bias is of concern will depend on 

its magnitude and direction, which remain unclear. Because early pregnancy losses 

are unobserved, simulations are a useful tool for exploring the influence of bias 

resulting from such left truncated data on the effects of exposure prior to pregnancy 

on birth outcomes.234 In this simulation study, we aimed to quantify the influence of 

bias due to left truncation and selection in utero on the association between the 

exposure of advancing maternal age and the risk of stillbirth in a population 

representative of high-income countries. 
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4.3 Methods 

The motivation for this study was to quantify the influence of bias due to left truncated 

birth data in the association between advanced maternal age at conception and 

stillbirth. Using data from the Midwives Notification Systems (MNS) in Western 

Australia, we compared effect estimates with those from simulated models in which 

we adjusted for the influence of selection bias under a range of plausible scenarios. 

For this study, we considered early pregnancy loss as fetal death prior to 20 

gestational weeks; and stillbirth when fetal deaths occurred at 20 gestational weeks 

or later.212   

Observed cohort 

The observed cohort consisted of women who had a singleton birth in Western 

Australia between 1998 and 2015 (births=483,466), derived from the MNS.212 This de-

identified and validated dataset contains all births in Western Australia with either a 

gestational length ≥20 gestational weeks or a birth weight > 400 grams.212 We cross-

referenced the MNS with Death Registrations obtained from the WA Registry of Births, 

Deaths and Marriages using a linkage key provided by the Data Linkage Branch of the 

WA Department of Health.213 Hospitalisation records were identified from the Hospital 

Morbidity Data Collection for WA using the Australian Modification of International 

Classification of Diseases (ICD-9:779.9; ICD-10:P45 and P96.9) coded diagnostic 

information for stillbirth.214 We categorised maternal age into five- year age groups 

(20-24, 25-29, 30-34, 35-39 and 40+ years). As the primary interest of this study is the 

biological impact of advancing age on stillbirth, women younger than 20 years were 

excluded in both the observed cohort and simulation study.  

Bias structure 

The causal diagram (Figure 4.1) illustrates the bias resulting from restriction to births 

that survive past 20 gestational weeks. Here, the exposure A (maternal age, a proxy 

for aging) affects early pregnancy loss L. An unmeasured confounder U is causally 

associated with increased risk of pregnancy loss L and the outcome of stillbirth S. Both 

the exposure A and the unmeasured confounder U independently affect early 

pregnancy loss L, which is a collider. Thus, by excluding pregnancies that end in loss 

prior to 20 weeks gestation (L=1), or conditioning on L, a back-door pathway is opened 

from maternal age to stillbirth through the pregnancy loss L and the unknown 
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confounder U. This bias is commonly known as collider-stratification bias. An 

assumption implicit in the causal diagram is that maternal age causes early pregnancy 

loss, however, after attaining a gestational length close to viability (here 20 gestational 

weeks), maternal age has no direct influence on risk of stillbirth. 

 

 

Figure 4.1 Directed acyclic graph of the structure of collider-stratification bias. The 
exposure maternal age A affects early pregnancy loss L, which is also affected by 
the independent risk factor U, inducing a back-door pathway between exposure A 
and the outcome of stillbirth S. 

  

Simulation 

To quantify the influence of the collider-stratification bias on the association between 

advanced maternal age and stillbirth, we simulated a population of 500,000 

conceptions which is approximately the number of births in the observed cohort. We 

generated data for the maternal age exposure A, unmeasured confounder U, early 

pregnancy loss L and the outcome of stillbirth S. Maternal age variable A was normally 

distributed, with the mean and standard deviation derived from the Gaussian 

distribution of age in the observed cohort. As per the observed cohort, we categorised 

maternal age into five-year age groups. The early pregnancy loss variable L, the 

unmeasured variable U and the stillbirth variable S were binary variables. The 

prevalence of L (πL) was set to 12.8%,17 20%235 and 30%236 to reflect a realistic range 

of early pregnancy loss as reported in high-income countries. The baseline prevalence 

of S was set to 0.7% to reflect the incidence of stillbirth in the observed cohort. We set 

the prevalence of U (πU) to 0.15, 0.30 and 0.50, to reflect a range of plausible 

scenarios. 

The overall causal pathway [A -> L <- U -> S] that represents the collider-stratification 

bias was broken down to smaller pathways [A -> L, U  -> L, U -> S], which we deemed 
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‘selection effects’. All selection effects were modelled in terms of odds ratios (ORs) so 

that simulation probabilities were bounded between 0 and 1. For the selection effect 

A -> L, we assigned each individual an underlying risk of early pregnancy loss based 

on their biological age at conception, which was drawn from a Bernoulli model based 

on results from a 2019 Norwegian study17 of the effects of maternal age on early 

pregnancy loss. The Norwegian study17 reported the lowest risk of miscarriage among 

women aged 25-29 (9.8%), with an absolute lowest risk at age 27 (9.5%) and the 

highest risk at age 45 (53.6%). As we were unable to ascertain the increasing risk of 

early pregnancy loss for women aged older than 45 years, we limited our simulation 

study to women aged between 20 and 45 years. In our Bernoulli model we used non-

parametric regression to capture the nonlinearity of the association between the 

exposure and early pregnancy loss using LOESS (locally weighted scatterplot 

smoothing)237 (Figure 4.2).  
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Figure 4.2 Risk of early pregnancy loss according to maternal age with locally 
weighted scatterplot smoothing curve.  

 

The probability of early pregnancy loss for each conception i (assuming a monotonic 

risk by maternal age) was estimated using the equation below:  

 

Selection effects for U -> L and U -> S were set to an equal OR from a range of 1.5, 

2.0, 2.5 and 3.0.  To isolate the bias mechanism we firstly assumed a true null effect 

of maternal age on stillbirth (i.e. there is no direct causal effect of A -> S). We further 

considered a scenario in which there was an interaction between the unmeasured 

confounder U and maternal age A on early pregnancy loss L in conjunction with the 

collider-stratification mechanism. Often called depletion of susceptibles, the 

interaction of A*U increases the prevalence of early pregnancy loss for those that are 

exposed to both the exposure A and U (Appendix F). Selection effects for A*U were 

set to an equal OR as with the selection effects for U -> L and U -> S, with a range set 

to 1.5, 2.0, 2.5 and 3.0. To enable a direct comparison with the observed cohort, we 

then considered a third scenario in which we assumed a true effect of maternal age 

on stillbirth A -> S (Appendix F). Here each individual was assigned a probability of 

stillbirth drawn from a Bernoulli model based on the risk of stillbirth from their biological 

age of the observed cohort at conception (Appendix F).  To capture the nonlinearity of 

this direct association between the exposure maternal age A and the outcome of 

stillbirth S we conducted non-parametric regression with LOESS.237 

Analysis 

We estimated the OR for the association between the exposure and outcome in the 

observed cohort and the simulated populations. We performed logistic regression of 

stillbirth with maternal age as the exposure to obtain the OR, which approximates the 

risk ratio because the outcome of stillbirth is rare in Western Australia.238 We 

exponentiated the mean of the point estimates obtained from 100 iterations for each 

scenario to obtain ORAS|L=0 , which represents the OR for the effect of A on S for 

pregnancies in which early pregnancy loss did not occur (L=0). We then derived the 
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percentile-based 95% simulation intervals (SI) of the OR mean using 500 bootstrap 

replications.  

We initially examined the collider-stratification bias under a range of plausible 

assumptions by varying the selection effects (ORUL and  ORUS) and the prevalence of 

both L and U as described above. In the first scenario, the simulation is conducted 

under the null hypothesis of no association between advancing maternal age A with 

the exposure of stillbirth S. In the second scenario we simulated a collider-stratification 

mechanism with an association between the exposure A and the unmeasured 

confounder U. As in the first scenario, we conducted the simulation under a hypothesis 

of no association between advancing maternal age A and stillbirth S. In both scenario 

one and scenario two we assumed that there is no causal effect, and therefore the 

value of ORAS|L=0 was set to 1. Consequently, we interpreted the results such that the 

greater the departure of ORAS|L=0 from 1 the greater the magnitude of the bias.  

For the third scenario in which we assumed a true effect of A -> S, we were able to 

undertake a direct comparison with the observed cohort. For ORAS|L=0  in this scenario, 

we simulated collider-stratification mechanism without an association between 

exposure A and the unmeasured confounder U and assumed a true effect of the 

exposure A on the outcome stillbirth S. Here the greater difference between ORAS|L=0  

and ORAS (the observed cohort without the simulated bias), the greater the magnitude 

of bias. Furthermore, to eliminate possible model misspecification due to the 

categorisation of maternal age, we undertook a sensitivity analysis in which we 

simulated the true null association between the exposure maternal age A and the 

outcome of stillbirth S with input parameters πL =0.20, πU =0.15, ORUL=1.5, ORUS=1.5 

for each whole year of maternal age (Appendix F). All data analyses and simulations 

were conducted using R v4.0.5.239 

4.4 Results 

Overall, the bias was minimal under a true null association between the exposure 

maternal age A and the outcome of stillbirth S. In scenario one, we considered a 

collider-stratification bias where the exposure maternal age A and the unmeasured 

confounder U independently effected early pregnancy loss (Appendix F).  Here the 

magnitude of bias was generally weak for women aged 35-39 years, with departure 
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from 1 not evidenced until the selection effects (ORUL and ORUS) were set to a 

minimum of 2.5 and regardless of the values of πL and πU. For example, the ORAS|L=0 

for women aged 35-39 years was 0.98 (SI 0.97 to 0.99) with input parameters of πL 

=0.128, πU=0.30, ORUL=3.0, ORUS=3.0. For women aged 40+ years there was 

evidence of increasing bias when the magnitudes of the selection effects increased 

(ORUL and ORUS) regardless of the values of πL and πU (Figure 4.3). The largest 

departure from the null for women aged 40+ years was evident with input parameters 

of πL =0.128, πU=0.30, ORUL=3.0, ORUS=3.0 (ORAS|L=0  0.92 SI 0.90 to 0.94).  

 

Figure 4.3 Collider-stratification bias of ORAS|L=0 -1 under the true null effect of 
maternal age on stillbirth for women aged 40+ years, where the bias represents the 
departure from the null. Average odds ratio (ORAS|L=0) with πL= 0.20 and with varying 
input parameters for πU (0.15, 0.30, 0.50) and the selection effects ORUL and ORUS 
(1.5, 2.0, 2.5, 3.0). Each scenario was iterated 100 times.  

In the second scenario, when we considered the collider-stratification mechanism with 

an interaction between the exposure A and the unmeasured confounder U, we found 

a greater departure from the null for women aged 40+ compared to scenario one. In 

this scenario, we also found that the magnitude of the bias increased with increasing 

values of πL and πU (Figure 4.4). The strongest evidence of bias was evident in women 

aged 40+ years with πL =0.30, πU=0.30, ORUL=3.0, ORUS=3.0 (OR 0.87 SI 0.84 to 
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0.89) (Appendix F).  For women aged 35-39 years, there no evidence of bias when 

the selection effects (ORUL, ORUS, ORAU) were set to  1.5 and 2.0, regardless of the 

values of πL and πU. The greatest departure from the null was evidenced (ORAS|L=0 

0.98 SI 0.97 to 0.99) when πL =0.30, ORUL=3.0, ORUS=3.0, ORAU=3.0 and πU was set 

to either 0.15, 0.30 or 0.50.  

 

Figure 4.4 Collider-stratification bias of ORAS|L=0 -1 under the true null effect of 
maternal age on stillbirth for women aged 40+ years with an interaction between 
exposure A and the unmeasured confounder U, where the bias represents the 
departure from the null. Average odds ratio (ORAS|L=0 ) with πL= 0.30 and with varying 
input parameters for πU (0.15, 0.30, 0.50) and the selection effects (ORUL, ORUS, ORAU 

). Each scenario was iterated 100 times.  

In the observed cohort, the association between maternal age and stillbirth presented 

as a U-shape, with the lowest risk for women aged 25-29 (OR 0.98 95% CI 0.90 to 

1.17). The ORAS for women aged 35-39 years was 1.23 (95% CI 1.11 to 1.37), 

increasing to 1.74 (95% CI 1.42 to 2.12) for women aged 40+. In scenario three we 

simulated the biased collider-stratification pathway (without interaction between the 

exposure A and the unmeasured confounder U) with a direct effect of the exposure A 

on the outcome S (with data drawn from the observed cohort).  We found evidence of 

minimal downward bias when we compared the results from this simulation with the 

observed cohort in which we assumed there was no influence from unmeasured 
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confounders nor selection bias (Appendix F). Women aged 35-39 years had an ORAS 

of 1.23 (95% CI 1.11 to 1.37) in the observed cohort which was only marginally higher 

than the average ORAS|L=0 of 1.21 in the simulated scenario three. The greater 

departure from the results of the observed cohort for women aged 35-39 years 

(ORAS|L=0 1.18 SI 1.17 to 1.20) was evident with input parameters of πL= 0.20, πU=0.30, 

ORUL=3.0, ORUS=3.0. In the observed cohort, women aged 40+ years had an ORAS of 

1.74 (95% CI 1.42 to 2.12) and we found a greater departure from the observed cohort 

in general (Figure 4.5). For example, with input parameters of parameters πL= 0.20, 

πU=0.30, ORUL=3.0, ORUS=3.0 the ORAS|L=0  for women aged 40+ years was 1.58 (SI 

1.56 to 1.61). 

 

Figure 4.5 The upper straight line represents the results of the observed cohort for women 
aged 40+ years assuming no influence of an unmeasured confounder or selection bias. The 
lower lines represent the collider-stratification bias of ORAS|L=0  assuming a true effect of 
maternal age on stillbirth for women aged 40+ years without an interaction between exposure 
A and the unmeasured confounder U. Average odds ratio with πL= 0.20 and with varying input 
parameters for πU (0.15, 0.30, 0.50) and the selection effects (ORUL and ORUS). Each scenario 
was iterated 100 times.  

 

When we simulated the true null association between exposure maternal age A and 

the outcome of stillbirth S (input parameters πL= 0.20, πU=0.15, ORUL=1.5, ORUS=1.5) 
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by each maternal age in the sensitivity analysis, we found that the structure of bias 

was similar to when maternal age was categorised by 5-year age groups (Appendix 

F). 

4.5 Discussion 

Establishing the magnitude and direction of bias from unobserved early pregnancy 

losses on exposure-outcome associations is essential in improving our understanding 

of aetiological associations in perinatal epidemiology. In this simulation study, we 

quantified the magnitude and direction of bias due to left truncation and selection in 

utero on the association between the exposure of advancing maternal age and the risk 

of stillbirth. Our findings suggest that the exclusion of early pregnancy loss in perinatal 

epidemiological studies likely biases effect estimates downwards. However, we found 

that the magnitude of bias was generally marginal, with a maximum ORAS|L=0  of 0.87 

for women aged 40+ years when we considered a true null effect of advancing 

maternal age on stillbirth. The strength of this bias was primarily dependent on the 

selection effects of the unmeasured confounder on the collider of early pregnancy loss 

L (ORUL), the exposure of advancing maternal age A (ORAU) and the outcome of 

stillbirth S (ORUS).  

Direct comparison to other studies was constrained by differences between exposure-

outcome associations and the structure of the collider-stratification bias; however, the 

small magnitude of bias in this study is consistent with other studies that examined the 

collider-stratification mechanism for other perinatal outcomes,100, 101, 104, 105, 154, 176, 180, 

240 such as the smoking-birthweight paradox.100, 101, 112, 154 Our findings, and those of 

others, suggest that the bias resulting from a collider-stratification mechanism would 

need to be very strong to produce an association that reverses the observed causal 

effects, and that this would primarily occur in scenarios where the effect of the 

unmeasured confounder would be quite large. It remains uncertain as to whether it is 

plausible that such a large causal effect would remain unknown or unobservable. On 

this basis, we limited the selection effects of U (ORUL and ORUS) to a realistic range 

from 1.5 to an upper limit of 3.0. We found that the stronger the selection effects of U 

(ORUL and ORUS), the stronger the magnitude of bias regardless of the prevalence of 

early pregnancy loss L or the prevalence of the unmeasured confounder U. Simulation 

studies that considered an interaction between an unmeasured confounder and the 
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exposure found evidence of a stronger magnitude of bias in comparison to simulations 

without an interaction effect.104, 105 Often called depletion of susceptibles, this 

interaction between the susceptible factor (in our study this would be advancing 

maternal age) increases the depletion of early pregnancy loss among those who 

experience the unmeasured confounder.106, 241 Although our study showed an 

increase in the magnitude of bias when we considered a depletion effect, it was only 

evident for women aged 40+ years. One of the benefits of this study was that we could 

directly compare the difference between ORAS|L=0 and ORAS (the observed cohort 

without the simulated bias). Here, we found that the magnitude of downward bias was 

negligible for women aged 35-39 years and minimal for women aged 40+. Overall, our 

findings indicate that the influence of bias due to left truncation and selection in utero 

is not sufficient to have a substantial effect on the strength of the association between 

advancing maternal age and stillbirth. 

As simulation studies are only as valid as their assumptions, we used published 

literature and an observed cohort to support our assumptions of the magnitude of the 

underlying causal effects when quantifying the influence of bias in the association 

between advancing maternal age and stillbirth. Advancing maternal age has 

previously been established as a strong independent risk factor for early pregnancy 

loss in the first trimester,17 with risks increasing incrementally after the age of 30 years. 

Although the absolute risk of second trimester pregnancy loss is small in comparison 

to first semester, there is an incremental increase for women of advancing age.242 

Using data from a 2019 Norwegian study17we were able to model this incremental 

increase in risk of early pregnancy loss L prior to 20 gestational weeks for each year 

of maternal age from 20 to 45 years in our simulations. We accounted for a variety of 

early pregnancy loss scenarios from 12.8%17 a mid-range of 20%235 and an upper 

level of 30%.236 As our simulations are hypothetical scenarios in which all conceptions 

are selected, it is also likely that induced abortions would present a small competing 

risk to stillbirth. However, the Norwegian study,17 from which our lowest prevalence 

(12.8%) of early pregnancy loss is derived, did correct for induced abortions, finding 

very little difference in the overall estimate of miscarriage.17 Although the absolute risk 

of stillbirth is low in high-income countries, it has not declined in recent decades 

despite advances in perinatal and obstetric care.23 For women aged 40+ years, the 

risk of stillbirth increases earlier in pregnancy than for younger women, with a women 
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aged 40+ having a greater risk of stillbirth at 39 gestational weeks compared to a 

younger women at 41 weeks.242 Using data from our large observed cohort in Western 

Australia, we built models that accounted for the differential impact of the exposure 

advancing age A on the outcome of stillbirth S in a high-income setting. Our careful 

definition of our exposure variable advancing maternal age A, accounting for the 

differential impact on the early pregnancy loss L and stillbirth S, ensure our simulations 

are reflective of real world interactions between variables.  

The exact biological mechanism of the higher risk of maternal age remains uncertain, 

with many of the potential shared risk factors for early pregnancy loss and stillbirth 

unobservable prior to the outcome. Possible suggestions include utero-placental 

dysfunction predisposing some women to adverse fetal outcomes including early 

pregnancy loss and stillbirth.16 Infections can increase risk of early pregnancy loss and 

stillbirth, infecting the fetus via the placenta 243 with many infections asymptomatic. 

Fetal chromosomal abnormalities are the most common cause of early pregnancy loss 

in the first trimester, accounting for 50% of non-recurrent pregnancy losses.244, 245 

There is an increased chromosomal anomaly rate (approx. 20%) in women aged 35+ 

years compared to younger women in sporadic and recurrent pregnancy losses.246 

Here, chromosomal anomalies would be an ideal candidate for the unobserved 

variable in our second simulation scenario. Increasing advanced age predisposes 

mothers to increasing risk of chromosomal anomalies that increase the risk of early 

pregnancy loss. Notwithstanding the collider-stratification mechanism, unmeasured 

confounders can lead to biased exposure-outcome effect estimates in either direction. 

Making assumptions about such confounders that are unobservable or unknown is 

challenging for researchers. Given the existence of causal factors that are not 

measured or remain to be discovered, researchers will continue to be required to make 

reasonable assumptions in relation to the strength and role of such unobservable 

confounders in the causal pathway, as we have done in our simulation study. 

Quite often, the influence of collider-stratification bias is only examined when 

unexpected associations are observed in epidemiological studies.100, 101, 105, 154, 176, 240 

As the use of left truncated data is ubiquitous in perinatal in epidemiology, due to 

restriction of studies until a time when pregnancy is either observed or deemed viable, 

the quantification of bias should be no less important in studies when an expected 
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association is observed. Nonetheless, there are some caveats for interpreting our 

simulation results. The estimates in our simulation study are based on simple 

scenarios with all the variables having a binary response. We further assumed that 

there are no other forms of bias such as misclassification, nor the effects of multiple 

unmeasured confounders. There may also be a mediator variable, such as a 

pregnancy disease, that mitigates the association between advancing maternal age 

and stillbirth. An additional limitation of this study on the effect of ageing on stillbirth is 

that we did not consider selection bias prior to conception; that is women of advancing 

maternal age have a higher risk of infertility.247  

In this simulation study, we have quantified the magnitude and influence of bias from 

left-truncated perinatal data caused by studying cases prevalent from a specified 

gestation age, rather than including all cases in a conception or pregnancy cohort. We 

know that conditioning on the collider (early pregnancy loss prior to 20 weeks 

gestational weeks) will produce biased estimated in perinatal exposure-outcome 

associations. Using realistic assumptions, we found the magnitude of bias was 

generally minimal when using data that is left truncated due to early pregnancy loss 

on the association between the exposure of advancing maternal age and the outcome 

of stillbirth. When we considered a true association between the exposure and 

outcome, we observed a small downward bias which was stronger for women aged 

40+ years. In our specific research question, in which the exposure is advancing 

maternal age, our findings indicated that the influence of bias due to selection in utero 

(and thereby left truncation) is not sufficient to have a substantial effect on the 

association with stillbirth. That is not to say that other researchers, with a different 

research question, would not find stronger evidence of bias when using left truncated 

birth data. However, as we demonstrated in this simulation, the strength of the bias is 

driven primarily by the prevalence and strength of the unmeasured confounder U 

rather than selection in utero. Although it is unlikely that such large unmeasured 

confounders exist, researcher should consider the influence of collider-stratification 

bias when using left-truncated data within the context of their own studies. 
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Chapter Five: Bias in mediated associations 

This chapter contributed to Aim 2 of the thesis and met Objective 2.3.  

Aim 2: To design, implement and analyse a series of simulation studies to quantify 

the magnitude and direction of bias in perinatal outcomes to address issues from 

methodological challenges that may lead to spurious inference on associations 

between pregnancy exposures and adverse birth outcomes.  

Objective 2.3: To quantify the influence of unmeasured confounding in mediated 

associations. 

The content of this chapter is covered by Publication Four. This study quantified the 

magnitude and direction of bias from unmeasured confounding in the association 

between maternal obesity and caesarean section delivery when mediated by the 

pregnancy complication of pre-eclampsia. This study is reproducible with published 

code and a full disclosure of the informing data parameters.  

The version that appears in this thesis is of an article that has been submitted for peer-

review to Statistics in Medicine. The contribution of co-authors, Professor Gavin 

Pereira, Dr Gizachew A. Tessema and Dr Amanuel T. Gebremedhin are detailed in 

the author attribution statements in Appendix A. 

Supplementary material for this chapter are available in Appendix G.  

 

  



 
 

Chapter Five  79 
 

5.1 Abstract 

Background: 

Bias from unmeasured confounding has the potential to distort mediated exposure-

outcome associations. The aim of this simulation study was to quantify the influence 

of unmeasured confounding in the association between maternal obesity and 

caesarean section delivery when mediated by the pregnancy complication of pre-

eclampsia.  

Methods: 

Bias from unmeasured confounding in the mediated association was simulated under 

three common scenarios: 1) mediator-outcome confounding, 2) mediator-outcome 

confounding affected by the exposure, and 3) exposure-mediator confounding. Using 

an observed cohort from Western Australia, we simulated data for a range of values 

for the prevalence of maternal obesity, pre-eclampsia, caesarean section delivery and 

an unmeasured confounder U. We also simulated the odds ratio for the selection 

effects (maternal obesity → pre-eclampsia, maternal obesity → U, pre-eclampsia → 

caesarean section delivery, U → maternal obesity, U → pre-eclampsia, U → 

caesarean section delivery) based on realistic assumptions drawn from the observed 

cohort and prior published literature.  

Results: 

Overall, we found the strongest bias due to exposure-mediator confounding, producing 

an upward bias that increased with the prevalence and the strength of U. Bias due to 

mediator-outcome confounding was minimal; however, when we simulated the 

mediator-outcome confounding affected by the exposure, there was evidence of an 

upward bias.  

Conclusion: 

In all three scenarios, the influence of bias from unmeasured confounding association 

between maternal obesity and caesarean section when mediated by pre-eclampsia 

was dependent on the prevalence and the strength of the unmeasured confounder U. 

Bias was strongest in scenarios in which there was an association between maternal 

obesity and the unmeasured confounder U. 
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5.2  Introduction 

There is a strong association between maternal obesity and having a caesarean 

section delivery.248, 249 However, it is likely that the true association is mediated by 

other pregnancy complications that are on the causal pathway between the exposure 

of maternal obesity and the outcome of caesarean section delivery.250, 251 Determining 

the true association between exposure and outcomes when there are mediating 

variables proves a statistical challenge for researchers.77, 252, 253 For example, it is 

inadvisable to condition on a variable that occurs after the exposure, as that variable 

may have been caused by the exposure itself and may mediate the causal pathway 

between the exposure and the outcome.84, 230 One solution to address this dilemma is 

the use of causal mediation analysis which is based on the assumption of temporal 

precedence of the exposure, mediator and the outcome, i.e. exposures precede the 

mediator and the mediator precedes the outcome.252-254 However, one of the main 

limitations of causal mediation analysis is the reliance on strict assumptions, including 

the assumption of no unmeasured confounding.252, 253, 255 Yet for many associations 

from etiological observational studies, there is likely to be at least some degree of 

confounding from variables that are unknown to the study or unobserved.74  A recent 

review256 of the application of mediation analysis methods used in observational 

epidemiological studies (published between 2015 and 2019) found that only three out 

of  the 174 included studies undertook a sensitivity analysis for unmeasured 

confounding when mediation was the primary analysis. This might indicate the 

difficulty for researchers to apply methods, such as the application of the potential 

outcomes framework,257 to address the influence of unmeasured confounders in 

mediated associations when conducting observational studies.  

Although obesity per se is not acknowledged in clinical guidelines as an indication for 

caesarean section delivery,258 the body of research to date has only focused on the 

total effect of maternal obesity on caesarean section delivery.248-250, 259-266 That 

maternal obesity has been identified as an independent risk factor for caesarean 

section deliveries has significant implications due to the associated risks of surgical 

and anaesthetic complications.258 After delivery, obese women (body mass index 

(BMI) ≥ 30 kg/m2) are at increased risk of postpartum haemorrhage, post-partum 

anaemia, and endometriosis compared to mothers whose BMI is within the normal 

range (18.5 to 24.9 kg/m2).258 The risk of wound infection also doubles for every 5-unit 
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increase in BMI.258 Thus, medical experts recommend caution when planning to 

undertake a caesarean section delivery in women with a high BMI (≥ 30 kg/m2).258 A 

systematic review and meta-analysis249 suggested pregnancy complications of pre-

eclampsia, gestational diabetes and macrosomia as possible mediators in the 

association between maternal obesity and caesarean section delivery. This simulation 

study will investigate the influence of unmeasured confounding on the association 

between maternal obesity and caesarean-section delivery when mediated by the 

pregnancy complication of pre-eclampsia.  Pre-eclampsia is defined as the presence 

of hypertension or proteinuria in pregnancy,25 and is strongly associated with maternal 

obesity267 and caesarean section delivery.268  

Mediation analysis is a relevant approach to determine the association between 

maternal obesity and caesarean section delivery when accounting from the influence 

of possible mediators but its value is limited in the presence of unmeasured 

confounding in the mediated associations. If unmeasured confounding is present, the 

estimates for the direct and indirect (mediated) effects may be over- or under-

estimated. In such cases, where a potential unmeasured confounder affects the 

mediator and the outcome (known as mediator-outcome confounding), conditioning 

on the mediator (which acts as a collider as it is the common descendant of the 

exposure and the unmeasured confounder) can lead to a specious association.231, 232 

However, this phenomenon of collider bias due to unmeasured confounding can also 

materialise in the mediator-outcome confounding affected by the exposure and 

exposure-mediator confounding. The purpose of this simulation study was to quantify 

the magnitude and direction of the influence of unmeasured confounding on the 

association between maternal obesity and caesarean section delivery when mediated 

by the pregnancy complication of pre-eclampsia, under three common scenarios: 1) 

mediator-outcome confounding, 2) mediator-outcome confounding affected by the 

exposure, and 3) exposure-mediator confounding.  

5.3 Methods 

We quantified the magnitude and direction of bias resulting from the influence of 

unmeasured confounding in the association between the exposure (maternal obesity) 

and the outcome (caesarean section delivery) when mediated by a pregnancy 

complication (pre-eclampsia) under three scenarios: 1) mediator-outcome 
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confounding, 2) mediator-outcome confounding affected by the exposure, and 3) 

exposure-mediator confounding. As per the World Health Organization criteria,269 we 

defined the exposure of maternal obesity as a BMI greater than or equal to 30 kg/m2.  

Observed cohort 

Our simulation cohort was derived from an observed cohort in Western Australia, 

which provided data on maternal obesity, pre-eclampsia and caesarean section 

delivery. The observed cohort consisted of women who had a singleton birth between 

2012 and 2015 (n = 128,167) and was obtained from the Midwives Notification System, 

a  de-identified and validated dataset containing all births in Western Australia with 

either a gestational length ≥ 20 gestational weeks or a birth weight > 400 grams.212 

The data was limited to collection from the period 2012-2015 as data on maternal 

height and maternal weight were unavailable prior to that period. Therefore, we were 

only able to directly estimate BMI and thereby derive obesity (BMI ≥ 30 kg/m2) for the 

period 2012-2015. We identified hospitalisation records from the Hospital Morbidity 

Data Collection for West Australia using the Australian Modification of International 

Classification of Diseases (pre-eclampsia ICD-9:624.4, 624.5, 624.7 and ICD-10:011, 

014; caesarean section delivery ICD-9:669.7 and ICD-10:O82) coded diagnostic 

information for pre-eclampsia and caesarean section delivery.214 

Bias structure 

The causal diagram (Figure 5.1) illustrates the bias mechanisms resulting from the 

influence of unmeasured confounding when we adjust for a mediator variable under 

the three scenarios: 1) mediator-outcome confounding (Figure 5.1a); 2) mediator-

outcome confounding affected by the exposure (Figure 5.1b); and 3) exposure-

mediator confounding (Figure 5.1c). In Figure 1a, an unmeasured confounder U is 

causally associated with increased risk of pre-eclampsia and the outcome of 

caesarean section delivery. Here, both maternal obesity exposure and the 

unmeasured confounder U independently affect pre-eclampsia, rendering it a collider 

variable. Thus, by adjusting for pre-eclampsia in a model, a back-door pathway is 

opened from maternal obesity to caesarean section delivery through the mediator pre-

eclampsia and the unknown confounder U. This bias is commonly known as collider 

bias and leads to inflation or deflation of the exposure on the outcome due to mediator-

outcome confounding.  Figure 5.1b is an extension of Figure 5.1a with an additional 
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unidirectional association between the exposure and U in conjunction with mediator-

outcome confounding. In Figure 5.1c, there is exposure-mediator confounding when 

U affects both the exposure and the mediator. Here there is no direct influence U on 

the outcome. In all three scenarios, the influence of the unmeasured confounding U 

and the exposure variable on the mediator of pre-eclampsia have led to a collider bias 

mechanism, which has the potential to distort the observed effect.  

(a) mediator-outcome confounding 

 

(b) mediator-outcome confounding affected by the exposure 

 

(c) exposure-mediator confounding 
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Figure 5.1 (a-c). Directed acyclic graphs representing the collider bias in the 
association between obesity and caesarean section delivery when mediated by the 
pregnancy complication of pre-eclampsia and in the presence of an influencing 
unmeasured confounding U.  

Simulation 

To quantify the influence of the collider bias on the mediated association between 

maternal obesity and caesarean section delivery, we simulated a population of 

128,000 conceptions, which was approximately the number of births in the observed 

cohort during the study period (2012-2015). We generated data for the maternal 

obesity exposure OB, the mediator pre-eclampsia PE, an unmeasured confounder U, 

and the outcome of caesarean section delivery CS. All variables were binary. The 

baseline prevalence of maternal obesity OB was derived from a binomial distribution 

with a probability of 20% based on the observed cohort. The baseline prevalence of 

CS was set to 34.5% to reflect the incidence of caesarean section delivery CS in the 

observed cohort. We set the prevalence of U (πU) to 0.15, 0.30 and 0.50, to reflect a 

range of potential conditions. 

We considered each causal pathway as selection effects [OB → PE, PE →CS, U → 

PE, U → CS, OB →U, and U→OB], which were modelled in terms of odds ratios 

(ORs), with simulation probabilities bounded between 0 and 1. The selection effects 

of [OB → PE, PE →CS] were ORs derived from the observed cohort. Selection effects 

[U→PE, U→CS, OB →U, and U→OB] for the influence of the unmeasured confounder 

U were varied and set to an equal OR of 1.5, 2.5 and 3.5.  The probability of PE was 

estimated using the formulae:   

𝑃(𝑃𝐸 | 𝑂𝐵, 𝑈) =  
exp(𝛽0 + 𝛽1𝑂𝐵 +  𝛽2𝑈)

1 + exp (𝛽0 +  𝛽1𝑂𝐵 +  𝛽2𝑈)
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(Scenario 1) 

𝑃(𝑃𝐸 | 𝑂𝐵, 𝑈) =  
exp(𝛽0 + 𝛽1𝑂𝐵 +  𝛽2𝑈 +  𝛽3𝑂𝐵. 𝑈)

1 + exp (𝛽0 +  𝛽1𝑂𝐵 +  𝛽2𝑈 +  𝛽3𝑂𝐵. 𝑈)
 

(Scenario 2 and 3) 

As we are only interested in quantifying the influence of bias from unmeasured 

confounding (indirect association), we assumed a true null direct effect of maternal 

obesity OB on caesarean section delivery CS (i.e. there is no direct causal effect of 

OB → CS in the causal diagram in Figure 5.1). The probability formula for the outcome 

of caesarean section delivery is presented below for scenarios 1 and 2:  

𝑃(𝐶𝑆 | 𝑃𝐸, 𝑈) =
exp (𝛾0 +  𝛾1𝑃𝐸 +  𝛾1𝑈)

1 +  exp (𝛾0 +  𝛾1𝑃𝐸 +  𝛾1𝑈)
 

The probability formula for the outcome of caesarean section delivery for scenario 3 

is: 

𝑃(𝐶𝑆 | 𝑃𝐸, 𝑈) =
exp (𝛾0 + 𝛾1𝑃𝐸)

1 +  exp (𝛾0 +  𝛾1𝑃𝐸)
 

Analysis 

We performed logistic regression of caesarean section delivery CS with maternal 

obesity OB when mediated by pre-eclampsia PE to obtain ORs in the simulated 

population. To obtain the ORs, we exponentiated the mean of the point estimates 

obtained from 100 iterations for each scenario, which represent the ORs for the effect 

of OB on CS when mediated by pre-eclampsia PE. Percentile-based 95% simulation 

intervals (SI) of the OR mean were derived using 500 bootstrap replicates. The collider 

bias was examined under a range of plausible assumptions by varying the selection 

effects (ORU.PE, ORU.CS, OROB.U, ORU.OB, and OROB.U) and the prevalence of U as 

described above. This simulation models were conducted under the null hypothesis of 

no direct causal effect of maternal obesity OB on caesarean section delivery CS. As 

such, we interpreted the results that the greater the departure of OR from 1, the greater 

the magnitude of the bias. All data analyses and simulations were conducted using R 

v4.0.5.239 Reproducible code for each scenario is available in the supplementary 

materials.  
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5.4 Results 

Overall, we found that bias resulting from the influence of unmeasured confounding 

increased across each of the scenarios from mediator-outcome confounding to 

mediator-outcome confounding affected by the exposure, with the strongest bias 

results from exposure-mediator confounding. When we simulated mediator-outcome 

confounding in the association between maternal obesity and caesarean-section 

delivery, we found that the magnitude of bias was generally weak and in an upward 

direction (Figure 5.2). For example, the ORCS~O|PE,U  was 1.03 (95% SI 1.03 to 1.03) 

with input parameters of πU=0.15, ORUPE=1.5, ORUCS=1.5. The magnitude of the bias 

did not increase until input parameters were set to πU=0.50, ORUPE=3.5, ORUCS=3.5, 

producing the maximum result of OROCS|PE 1.04 (95% SI 1.04 to 1.05).  

 

Figure 5.2 Collider bias of OR CS~O|PE,U -1 under the true null effect of maternal obesity 
OB on caesarean section delivery CS when mediated by pre-eclampsia PE and the 
presence of one unmeasured confounder U (Scenario 1: mediator-outcome 
confounding). Bias represents the departure from the null. Average odds ratio OR 

CS~O|PE,U with varying input parameters for πU (0.15, 0.30, 0.50) and the selection 
effects ORU.PE and ORU.CS (1.5, 2.5, 3.5). Each scenario was iterated 100 times.  
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There was stronger evidence of upwards bias when we extended scenario 1 to include 

the influence of the exposure on the unmeasured confounder (scenario 2) (Figure 5.3). 

Here, the minimum bias for ORCS~O|PE,U  was 1.04 (95% SI 1.03 to 1.04) with input 

parameters of πU=0.15, ORU.PE=1.5, ORU.CS=1.5. The magnitude of the bias increased 

when the prevalence of the unmeasured confounder U and the strength of the 

selection effects (ORUPE, ORUCS and OREU) increased. This produced a strong biased 

OROCS|PE,U of 1.10 (95% SI 1.09 to 1.10) when the parameters were set to πU=0.50, 

ORU.PE=3.5, ORU.CS=3.5 and ORPE.U=3.5.  

 
Figure 5.3. Collider bias of OR CS~OB|PE,U -1 under the true null effect of maternal 
obesity OB on caesarean section delivery CS when mediated by pre-eclampsia PE 
and the presence of one unmeasured confounder U (Scenario 2: mediator-outcome 
confounding when affected by the exposure). Bias represents the departure from the 
null. Average odds ratio OR CS~O|PE with varying input parameters for πU (0.15, 0.30, 
0.50) and the selection effects ORU.PE, ORU.CS and OROB.U (1.5, 2.5, 3.5). Each scenario 
was iterated 100 times.  

Scenario 3 (exposure-mediator confounding) produced the strongest evidence of 

upwards bias from the influence of unmeasured confounding in the mediated 

association between maternal obesity and caesarean-section delivery. For example, 

the ORCS~O|PE  was 1.04 (95% SI 1.04 to 1.04) with input parameters of ORU.PE=1.5, 
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ORU.OB=1.5 and when the πU  was 0.15 and 0.30. The strongest evidence of bias 

occurred when the input parameters were set to πU=0.50, ORU.PE=3.5, ORU.OB=3.5, 

producing the maximum result of ORCS~O|PE 1.17 (95% SI 1.17 to 1.18). Results for 

each scenario are presented in tabular format in the supplementary materials.  

Figure 5.4 Collider bias of OR CS~O|PE -1 under the true null effect of maternal obesity 
OB on caesarean section delivery CS when mediated by pre-eclampsia PE and the 
presence of one unmeasured confounder U (Scenario 3: exposure-mediator 
confounding). Bias represents the departure from the null. Average odds ratio OR 

CS~O|PE with varying input parameters for πU (0.15, 0.30, 0.50) and the selection effects 
ORU.PE and ORU.OB (1.5, 2.5, 3.5). Each scenario was iterated 100 times.  

 

5.5 Discussion 

To increase our understanding of exposure-outcome associations in epidemiological 

studies, we must disentangle potential causal pathways that link exposures with 

outcomes. Despite the strong assumptions required, causal mediation analysis 

continues to be a commonly applied tool, leading to uncertainty of the validity of results 

reported by causal mediation analysis studies. As assumptions about unmeasured 

confounders cannot be tested using observed data, simulations are a powerful tool to 
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determine the influence of bias due to confounding in epidemiological associations. 

The purpose of this simulation study was to quantify the magnitude and direction of 

bias in mediated associations due to the influence of unmeasured confounding under 

three common scenarios. The strongest bias was evident when we considered the 

influence of exposure-mediator confounding on the mediated association between 

maternal obesity and caesarean section delivery. The bias was marginal under 

mediator-outcome confounding, however, it increased when there was an effect of the 

exposure on the mediator-outcome confounding. Overall, we found that the strength 

of the bias in the mediation associations was influenced by the prevalence and 

strength of the influencing unmeasured confounder U.  

The prevalence of obesity in women of reproductive ages is increasing globally, 

significantly impacting maternal and perinatal outcomes in women when they enter 

pregnancy with a higher BMI.9 In parallel, caesarean section delivery rates are also 

increasingly common, having risen by 14% globally since 1990.270 As of 2014, 

Australia had a caesarean section delivery rate of 34 per 100 live births, exceeding 

the OECD (Organisation for Economic Co-operation and Development) average of 28 

per 100 live births.271 This has also been evidenced in Western Australia, with the 

incidence of caesarean section delivery of 34.8% in our observed cohort. In 2019, a 

group of experts in the US proposed a framework272 for the impact of maternal obesity 

on the risk of caesarean section delivery in which they posited that obesity operates 

through potential mediating pathways including but not limited to pregnancy 

complications and pregnancy comorbidities. Our simulation study examined one 

potential causal pathway via the pregnancy complication of pre-eclampsia, the most 

common reason for therapeutic interruption of pregnancy.268 Maternal obesity is a risk 

factor for all types of pre-eclampsia, with a raise in BMI increasing the risk, from mild 

to severe forms.267 There are a number of potential influencing factors in the inter-

related relationship between maternal obesity, pre-eclampsia and caesarean section 

delivery that are not necessarily readily available to researchers when conducting a 

mediation analysis. One such plausible factor is leptin, a hormone that is secreted from 

adipose tissue that is controlled by the obesity gene,273 with increasing percent of body 

fat associated with increasing concentrations of leptin. Leptin also plays an important 

role during pregnancy with the placenta producing leptin, thereby high levels of 

maternal leptin levels in obesity can adversely impact fetal growth and development.274  
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Furthermore, leptin can inhibit the intensity and frequency of myometrial contractions 

which can lead to caesarean-section delivery.275 As leptin concentrations are higher 

in women with pre-eclampsia,276 leptin is a potential unmeasured influencing factor in 

scenario 1 and 2. Another plausible factor worth considering is maternal deficit in 

dietary intake, particularly in calcium, protein, essential vitamins and essential fatty 

acids.267 Maternal obesity is associated with insulin resistance and systemic 

inflammation, mechanisms that are conductive to pre-eclampsia, supporting scenario 

3. As the physiology of pregnancy is complicated, it is possible that there are other 

factors that are impactful on the association between the exposure of maternal obesity, 

the outcome of caesarean section delivery and the mediator of pre-eclampsia that 

remain unknown or are yet to be fully elucidated.  

As the presence of unmeasured confounding can rarely be ruled out in epidemiological 

associations,74 quantifying the influence of bias from unmeasured confounding is 

essential to increase our understanding of causal effects in mediated associations. 

Simulation is a valuable tool to advance our understanding of the influence of bias in 

such mediated associations,234 as through the data generation process it is possible 

to examine multiple scenarios in which bias can be corrected for. Simulation studies 

been used to test bias resulting from misclassification of variables in mediation 

analysis.277-282 In more recent years, a number of bias methods have been proposed 

to explore the sensitivity of mediation analysis to the influence of unmeasured 

confounding;252, 253, 255, 283-287 however, many of these methods have focused on 

mediator-outcome confounding255, 283, 285, 287 or are often reliant on specific 

assumptions.284, 286  In this study, we have simulated models in which the effect of the 

unmeasured confounding on the outcome given the exposure and mediator, and the 

relationship between each variable is pre-specified, based on assumptions drawn from 

an observed cohort or published literature. We found that the mediated association 

was more sensitive to the influence of the unmeasured confounder from the exposure-

mediator compared to the mediator-outcome, a finding that was shared with simulation 

study281 that undertook a sensitivity analysis of the influence of unmeasured 

confounding on the direct and indirect effects. As it is not uncommon for the effect of 

a pregnancy exposure on an outcome to be mediated through a complication of 

pregnancy, this simulation model can be applied to other perinatal epidemiological 

associations.  
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Quite often in perinatal epidemiology, the association between maternal exposures 

and adverse outcomes are mediated by other complications. The influence of 

unmeasured confounders can create a collider bias mechanism that has the potential 

to distort the mediated association. Quantifying the influence of this bias cannot be 

undertaken using observational data, therefore simulations studies such as this, 

enable the quantification of the influence of unmeasured confounding under a number 

of scenarios that replicate real world examples. The simulations here evaluated the 

sensitivity of unmeasured mediator-outcome, mediator-outcome when affected by the 

exposure and exposure-mediator confounding. However, a limitation of these 

simulations is that they are based on simple scenarios, the most prominent is that 

there is only one mediator variable in each of the scenarios. However, we undertook 

the simulations under strong associations (high prevalence and strength of the 

influence of the unmeasured confounder U) which would also be taken to represent 

the influence of multiple mediators. Additionally, to minimise the complexity and 

maintain the interpretability of the simulation scenarios, we assumed that there was 

no misclassification in any of the variables and that all variables were binary. Finally, 

like any metric, BMI is an imperfect as a measure to determine maternal obesity and 

adiposity288 but is relevant to this topic and has been almost universally adopted in 

past studies. 

In this simulation study, we calculated the effect of maternal obesity on caesarean 

section delivery in the presence of a mediator of pre-eclampsia and the influence of 

an unmeasured confounder U. In our three simulation scenarios, the influence of the 

unmeasured confounder U created a collider of the mediator of pre-eclampsia, leading 

to biased estimates in the mediated exposure-outcome association. We found 

evidence of bias across all three scenarios, with the strongest evidence due to the 

influence of exposure-mediator confounding, which was closely followed by the 

mediator-outcome confounding affected by the exposure. Further, we found that the 

strength of the bias was directly related to the prevalence and strength to the 

unmeasured confounder, with the weakest evidence of bias presenting when the 

prevalence of the unmeasured confounder was small (15%) and the strength of the 

OR was minimal (OR 1.5) across all three scenarios. We recommend that all 

researchers undertake analysis to investigate the mechanisms in which the influence 
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of unmeasured confounding can impact their mediated exposure-outcome 

associations, in addition to causal mediation analysis.  
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Chapter Six 

Chapter Six: A framework to apply simulation to bias analysis
        

This chapter fulfilled Aim 3 and objective 3.1 of the thesis. 

Aim 3: To develop a framework for the application of simulation to quantify bias in perinatal 

epidemiologists.  

Objective 3.1: To incorporate best practice for the application of simulation methods to 

quantify the influence of bias into a framework to guide researchers in the design, 

implementation, analysis and reporting of simulation studies in perinatal epidemiology.  

The content of this chapter is covered by Publication Five. This study provides a framework 

to guide epidemiologists in the design, implementation and reporting of simulation studies 

with the prime purpose of quantifying the influence of bias in aetiological associations. This 

framework includes a simulation study to demonstrate the application of the framework to 

quantify bias in the association between maternal BMI and preterm birth. This chapter was 

written in the style of an educational note, translating the simulation methods applied in this 

thesis through the provision of an education tool for epidemiologists in the application of 

simulation to quantify the influence of bias.    

The version that appears in this thesis is of an article that has been submitted for peer-review 

to European Journal of Epidemiology. The contribution of co-authors, Professor Gavin 

Pereira and Dr Gizachew A. Tessema are detailed in the author attribution statements in 

Appendix A. 

Supplementary material for this manuscript is available in Error! Reference source not 

found.H. 
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6.1  Abstract 

Due to the observational nature of epidemiological studies, they are prone to one or more 

type of bias (information, selection, confounding). In particular, reproductive and perinatal 

epidemiological studies are subject to unique methodological challenges due to 

unobservable events from pre-conception to birth and the clustering of outcomes across 

successive pregnancies or multiple births. Therefore, to strengthen the validity of 

associations drawn from observational studies, it is important that researchers are able to 

identify and evaluate potential sources of bias.   

Simulations studies involve computational methods to create data by pseudo-random 

sampling. They are ideal to quantify bias as the process of generating data allows greater 

control of the biased parameters of interest. Commonly used to test statistical methods, 

simulation studies are under-used in epidemiology, yet have the potential to quantify the 

influence of a range of biases simultaneously on aetiological associations. Current simulation 

studies in reproductive and perinatal epidemiology lack uniformity in their design, analysis, 

and reporting. The absence of guidance in the application of simulation to quantify the 

influence of bias has hampered researchers and peer reviewers.  

This paper proposes a framework to guide epidemiologists in the application of simulation 

studies to quantify the magnitude and direction of biases in epidemiological studies. Using a 

perinatal example, we applied the framework to a simple simulation that quantified the 

influence of selection bias on the association between maternal BMI and preterm birth. This 

framework was aimed with highlighting the application of simulation methods to quantify the 

influence of various types of bias common in observational research, and to increase their 

application in the practice of quantitative bias analysis in epidemiological studies.  
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6.2  Introduction  

Due to the non-random nature of observational studies, they are prone to various 

biases.56 A great deal of literature has been published to increase the understanding 

of the influence of bias in observational studies,74, 117, 158, 170, 231, 232, 289 including the 

development of methods to minimise their influence.119, 122, 290-292 However, much less 

consideration has been given to quantifying the influence of bias on reported 

exposure-outcome associations.293 To strengthen the validity of associations drawn 

from observational studies, researchers need to be able to identify and evaluate 

potential sources of bias. Simulation studies are one method that can aid researchers 

in quantifying the influence of bias in aetiological associations. In short, simulations 

are computational methods that allow greater control when generating important bias 

parameters. This enables researchers to create models that represent complex real-

life conditions, which can then be tested under a range of scenarios. However, a 

potential barrier to the application of simulation studies in epidemiology is its seemingly 

complicated application and the lack of guidance in their design, implementation and 

reporting.  

Research conducted by Lash et al.147-150, 169 propagated the term quantitative bias 

analysis in epidemiology. Their 2014 paper147 provided a list of best practices when 

quantifying the influence of bias. The same authors later developed an online tool in 

which epidemiologist can assign plausible values to bias parameters in order to 

determine the influence of bias.148 Despite the diligent guidance of Lash et al., the 

uptake of quantitative bias analysis methods in epidemiology has remained low with a 

recent systematic review identifying only 24 standalone bias analysis studies that 

applied their framework over a 14 years period.195 Although it should be noted that a 

further 123 undertook a bias analysis as a secondary analysis which is encouraging;195 

however, these numbers are overshadowed by the vast number of epidemiological 

studies published in the same period.  A more recent paper155 published by the same 

research group, critiqued three examples of what the authors deemed suboptimal bias 

analysis studies. Here, the authors noted that attention to good practices in the 

presentation, explanation and interpretation of bias remains lacking.155 We concur with 

their statements and believe that quantitative bias analysis is a worthwhile endeavour 

that should be undertaken to strengthen the validity of epidemiological studies.  
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Some of the limitations of the early quantitative bias analysis methods was the 

assertion that bias should only be analysed under recommended situations, such that 

the findings of a study were informing policy development or when it was expected 

that bias could explain away a finding.147 It is the assertion of the authors of this paper 

that bias should be quantified if there is plausibility of an influence on exposure-

outcome associations that may alter inference. The application of a causal diagram 

will be sufficient to determine if there is any such influence. Simulation methods also 

enable the quantification of multiple types of bias simultaneously, moving away from 

the need to prioritised the quantification of bias by the order of the most influential 

factor.147 However, the design of high-quality simulations that reflect complex 

situations that lead to biased exposure-outcome associations can be challenging for 

researchers. Furthermore, assessing the integrity of published simulation studies is 

both challenging for reviewers and other researchers. Simulation studies and concerns 

about their reporting has been an issue for a long time, with the first paper guiding the 

reporting of computational statistical results published in 1975.296 Since then, there 

have been several papers guiding researchers to improve the planning, 

implementation, and reporting of their simulation studies with the specific aim of testing 

or comparing statistical methods.139, 143-145 The STRengthening Analytical Thinking for 

Observational Studies (STRATOS) group140 was created to meet the increased 

interest in the application of simulation in statistical methodology. This initiative has a 

broad interest in the application of statistical simulation in health research.146  A 2018 

paper by Morris et al.,139 produced a primer of a detailed systematic approach to 

planning simulation studies for the purpose of testing statistical methods.139 A more 

recent paper provided a tutorial on generating Monte Carlo simulations in 

epidemiology for quantitative bias analysis; however, a framework to guide 

researchers and reviewers on the application of simulation methods for the prime 

purpose of quantifying the influence of bias in epidemiological modelling remains 

lacking.234  

Simulation as a method for quantitative bias analysis has the potential to assess the 

influence of multiple types of bias through the design, implementation and analysis of 

simulation models that reflect true causal pathways between exposures and 

outcomes. One of the main benefits of simulation studies in epidemiology is the ability 

to conduct numerous experiments on the complex causal pathway between exposures 
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and outcomes to ascertain the magnitude and direction of multiple biases. 

Technological advances in recent decades have led to improved computation speed 

at a lower cost, with complex simulations being able to run on hardware that is easily 

accessible, which in theory should have supported the increased adoption of 

simulation studies in epidemiology. In order for researchers to become more confident 

in the application of simulation to quantify the influence of multiple biases across a 

range of epidemiological research questions, a unifying framework of quantitative bias 

analysis methods and simulation methods is required. The purpose of this paper is to 

introduce epidemiologists to the benefits of using simulation studies to quantify the 

magnitude and direction of biases. Building on the prior work of experts in simulation 

modelling and quantitative bias analysis methods, we aim to provide a primer 

framework to guide researchers on the design, implementation, analysis, and reporting 

of simulation studies for the prime purpose of quantitative bias analysis.   

6.3 Framework 

As with any other study, when planning a simulation study to quantify bias, researchers 

should first produce a protocol detailing how the study will be designed, implemented, 

and analysed for transparency and to facilitate understanding. A good simulation study 

protocol should document the specific aims of the studies, a graphical display of the 

causal association, the procedures for generating data, details of how the study will 

be implemented, analysed and reported, and the simulation source code to support 

the reproducibility of the study. The framework proposed here will provide guidance to 

epidemiologists to quantify the magnitude and direction of potential biases that 

undermine the validity of exposure-outcome associations. See Figure 6.1 for the 

proposed framework on the design, implementation, analysis, and reporting of 

simulation studies to quantify the influence of bias. This framework was informed by 

the findings of the previously published review of the application of simulation to 

quantify bias in reproductive and perinatal epidemiology234 and drew inspiration from 

previously published frameworks for bias analysis147, 297 or simulation studies to test 

and compare statistical methods.137-139, 146  

The framework is supported by a demonstrated simulation example of selection bias 

in perinatal epidemiology. All observational studies are prone to bias; however, 

selection bias is particularly problematic in perinatal epidemiology. A major challenge 
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for researchers is that the study population itself is difficult to define as only 

pregnancies to fertile couples can be observed.157 Furthermore, by a time when 

pregnancy is recognised an extensive attrition of the conceptions has already 

occurred62 due to spontaneous and induced abortions. Further compounding this 

selection bias, is that most epidemiologists rely on birth data obtained from 

administrate databases that are left truncated,294 with selection into a study restricted 

to those pregnancies that survive pass a specified gestational age; ranging from 16 

gestational weeks in Nordic countries to 28 gestational weeks in low and middle-

income countries.60  
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Figure 6.1 Flowchart of the framework for applying simulation to quantifying bias in 
observational studies.  

 

1. Aim  

State the research purpose, define exposure and outcomes, the target population and, 

the types of bias(es) to be quantified 

1. Aim:  
State the research purpose and define the target population, exposure, 

outcome and type of bias 

2. Logic:  

Use causal graphs or directed acyclic graphs to explain the influence of bias  

4. Implementation:  

Clearly state methods of analysis and report appropriately 

5. Reproducibility:  
Identify software used for analysis and provided code 

3. Data:  
Identify the sample population, data sources, bias parameters and the data 

generation methods  
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1.1 Purpose of the simulation – explain the background and clearly state the aim of the 

simulation in the research study 

1.2 Exposure(s) and outcome(s) – define the exposure and outcomes which will be 

included in the simulation model 

1.3 Target population – clearly define the population of interest to the study 

1.4 Type(s) of bias – state the types of bias that the simulation model will be quantifying 

The simulation study should have clearly defined aims that are established prior to 

commencement of the study. The overarching purpose of a simulation study for bias 

analysis requires detailed description of the types of biases to be quantified. The aims 

should also clearly state the research question of interest and the target population. It 

should also include a defined exposure, outcome and any other variables that are 

considered on the causal pathway between the exposure and outcome when 

quantifying bias.  

2. Logic  

Use causal diagrams to explain the influence of bias  

2.1 Graphs – describe the influence of bias using causal diagrams or direct acyclic 

graphs. 

It would be remiss of any researcher that aims to undertake a simulation study to omit 

a causal diagram that conceptualises the causal associations between each of the 

relevant variables (exposure, outcomes and other variables). The most popular 

graphical tool for causal diagrams is directed acyclic graphs (DAGs).298 DAGs provide 

researchers with a tool to graphically represent and increase understanding of causal 

associations between exposures and outcomes.299 Akin to conceptual diagrams, 

DAGs operate with formal rules which define causal effect and increase the 

identification of bias.293 Each variable is depicted as nodes, which are connected to 

each other by unidirectional arrows or arcs to depict the hypothesised relationships 

between them.293, 300 The arrow between two nodes assumed the existence and 

direction of a causal relationship; however, it does not denote the magnitude nor the 

direction (i.e. positive or negative) of that relationship.293, 300 A DAG is considered 

acyclic as no variable (node) can cause itself at a particular moment in time.293, 300 

Further, DAGs are not able to determine if the causal relationship is linear or non-

linear, nor if the relationship is parametric or not. The absence of a direct effect of one 
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variable on another is evidenced by the absence of an arrow between them.301 

However, it is important to note that the arrows themselves are not completely 

deterministic. In perinatal research questions this would mean that not all women who 

are exposed will experience an outcome, rather that the exposure is hypothesised to 

cause the outcome in at least some of the women.299  

The benefit of using a tool like DAGs is that they make unstated relationships between 

variables explicit. This can help researchers to decide which variables to collect, which 

variables to adjust for, to differentiate between a confounder and a collider and to 

identify the sources of bias.76, 82 A recent review 6 of the application of DAGs to identify 

confounders in applied health research noted inconsistencies in reporting of technical 

details (target estimand(s) of interest, the DAG and the DAG-implied adjustment sets). 

The authors then identified eight recommendations for the application of DAGs to 

improve utility and transparency.6 Tools that enables the application of DAGs include 

the popular online user-friendly interface of DAGitty and the DAGitty R software 

packages.302 Modules for the application of DAGs are also available in STATA.  

3. Data  

Identify the sample population, data sources, bias parameters and the data generation 

methods  

3.1 Population – provide clear details of the base population 

3.2 Data sources – clearly state the data sources that inform the simulation. This could 

be an observed cohort or data from previously published literature.   

3.3 Bias parameters – provide the parameters applied to the model that drive the 

influence of the bias  

3.4 Data generation – report how probability distributions were assigned to the bias 

parameters 

As one of the main benefits of simulation studies is their ability to quantify the 

influences of multiple types of biases under different scenarios; an important step in 

producing a valid study is the explicit description of the data generating mechanisms 

for each variable. These data-generating mechanisms are based on the causal 

diagram or a previously created DAG. The pre-specified assumptions that inform this 

data generation could be derived from an observed cohort or based on prior published 
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research. To ensure the transportability of bias parameters that inform the simulation 

model, it is important that the sources of these assumptions are explicitly stated and 

described in detail. If the simulated dataset is derived from an observed cohort, 

important details of that observed cohort should be reported, including when the data 

was collected, by what means and the general characteristics of the sample, including 

whether the dataset has previously been validated.  

Variables that are endogenous (i.e. changed by its relationship with another variable) 

should be represented by a probability formula. The distribution of all other variables 

is determined by variable type. For example, the researcher may assume that 

dichotomous variables are binomially distributed, and continuous variables are either 

normally or uniformly distributed. The relationships between each variable in the model 

must be specified and it is recommended to include probability distribution formulae 

for all endogenous variables. Data-generation can be undertaking using statistical 

software popular with epidemiologists such as SAS, STATA and R programming, 

including functions to facilitate the simulation of data. Alternatively, programming 

languages such as Python, C and C++ are also viable.  

4. Implementation  

Clearly state methods of analysis and report appropriately 

4.1 Analysis – clearly state the analysis methods applied to the simulation.  Details 

should include all methods, results, diagnostics, and code used during the 

implementation of the model. 

4.2 Reporting results – restate the assumptions of the simulation and clearly report the 

results, focusing on whether the model explains the reported estimate.  

As in standard epidemiological studies, the selection of an appropriate statistic is an 

important step that should be considered during the study design period. Regression 

modelling is one of the most commonly applied analysis methods in aetiological 

epidemiology.303 Models include but are not limited to linear regression for continuous 

outcomes, logistic regression for binary outcomes, Cox regression for time-to-event 

data, and Poisson regression for frequencies and rates.304 Prior to conducting the 

analysis, consideration should be given how to store estimates after each iteration. 

Researchers should also decide how they will summarise the estimates once all the 
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iterations have been performed. Simulation can generate a large amount of results 

that need to be summarised and displayed in a clear and concise manner, with 

graphical displays preferred over tabular format.305 The number of times a simulation 

will be iterated should be considered a prior. The greater the number of iterations, the 

less random error will be present. However, an additional consideration in determining 

the number of iterations should be available computational power. After each 

simulation iteration has been performed and each estimate stored and summarised, it 

is necessary to evaluate the performance of the simulation model from different 

scenarios or observed data. Evaluating the performance of the simulation study to 

provide a meaningful measure of the influence of bias can be achieved by a 

comparison of the simulated vs observed data or comparison of different bias 

mechanism scenarios.   

5. Reproducibility  

Identify software used for analysis and provide source code 

5.1 Model assumptions - if assumptions of the model are summarised in the methods 

section, use online appendices to elaborate on their details.   

5.2 Software - the software used for data analysis should be highlighted in the 

methods, including and any relevant packages or functions. 

5.3 Code sharing - all source code for the simulation should be made available online, 

preferably without necessitating a request from the researcher(s). 

 

A cornerstone of scientific research is its replication. Scientific evidence is 

strengthened when important findings can be replicated by multiple independent 

researchers using different datasets.194 However, in some circumstances replicating 

an epidemiological finding may be limited due to lack of generalisation across different 

demographic populations. Yet, a basic minimum any research study should be 

achieving is reproducibility, whereby independent researchers can test the reliability 

of a prior finding using the same data and methods.306 However, reproducibility itself 

can only be achieved when the data, code, methodology and the software is 

available.306 A recent review of the application of simulation in reproductive and 
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perinatal epidemiology found only six out of 39 simulation studies made their source 

code available online.234 

6.4  An example of simulation to quantify the influence of bias 

In this section, we present a simple simulation study that quantifies the influence of 

bias in the association between maternal body mass index (BMI) and preterm birth to 

demonstrate the application of the above framework. The methods applied in this 

study have been inspired by a previous published study that quantified selection bias 

in the association between maternal advancing age and stillbirth.294 Each subsection 

of the framework is highlighted in the subsequent text.  

Aim 

The aim of this simulation study is to quantify the influence of selection bias 

(Framework: 1.1; 1.4) on the association between the exposure of maternal BMI and 

the outcome of preterm birth (Framework: 1.2) in pregnancies in Western Australia 

between 2012 and 2015 (Framework: 1.3). 

Causal logic 

The bias mechanism as illustrated in the causal diagram (Figure 6.2) results from the 

exclusion of miscarriage prior to 20 gestational weeks, a restriction commonly applied 

in birth datasets in high-income countries. The exposure of maternal BMI affects 

miscarriage, which is influenced by an unknown or unmeasured confounder U 

(possibly a genetic factor) that also influences the outcome of preterm birth. Here, the 

selection of pregnancies that survive beyond 20-gestational weeks induced a back-

door causal pathway from the exposure to the outcome via the collider variable of 

miscarriage and U. Commonly known at the collider-stratification bias, the left 

truncation of pregnancy and birth studies can lead to distorted exposure-outcome 

associations (Framework: 2.1).  
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Figure 6.2 Directed acyclic graph depicting the causal structure of selection bias in 
the association between maternal body mass index (BMI) and preterm birth. 
Commonly referred to as collider-stratification bias, the exposure maternal BMI affects 
miscarriage, which is also affected by the independent risk factor U, inducing a back-
door pathway between exposure and the outcome of preterm birth. 

Data 

The simulated data in study was derived from an observed birth cohort in Western 

Australia. It included all women (n= 124,806) who had a singleton birth between 2012 

and 2015 (Framework: 3.1) derived from the Midwives Notification Systems, a de-

identified and validated dataset that captures >99% of all births in the jurisdiction with 

a gestational age length ≥20 gestational weeks or a birth weight > 400 grams212 

(Framework: 3.2). We then simulated a population of 125,000 conceptions, with data 

generated for the variables of BMI, miscarriage, U and preterm birth. The baseline 

prevalence of miscarriage was set to 20%, which is a commonly reported statistic for 

pregnancy loss prior to 20 gestational weeks.235 The baseline prevalence of BMI and 

preterm birth were derived from the observed birth cohort. The prevalence of U was 

varied from a low prevalence of 15% to 20%, 40% and 50%.  

The causal pathway (highlighted in red) [BMI→ Miscarriage ← U → Preterm birth] 

represent the collider-stratification mechanism. We can further break this causal 

pathway down [BMI → Miscarriage, Miscarriage ← U and U → Preterm birth]. Each 

pathway can be deemed a selection effect, with a simulated probability bounded 

between 0 and 1. The selection effect BMI → Miscarriage  was  drawn from a Bernoulli 

model based on a study307 that reported the effect of BMI on miscarriage using 

Australian data. The selection effects of U → Miscarriage and U → Preterm birth were 

modelled in terms of equal odds ratios from modestly strong to very strong effect: OR 

1.5, 2.5, 3.5 (Framework: 3.3).   

The probability formula (Framework: 3.4) for miscarriage for each conception in the 

study can be represented by the below equation where BMI represent BMI, M 

miscarriage and U the unmeasured confounder:  

𝑃(𝑀 | 𝐵𝑀𝐼, 𝑈) =  
exp (𝛽0 + 𝛽1𝐵𝑀𝐼 +  𝛽2𝑈)

1 + exp (𝛽0 + 𝛽1𝐵𝑀𝐼 +  𝛽2𝑈)
 

As we are only interested in quantifying the influence of bias, we assumed a true null 

effect of BMI on preterm birth in this simulated example. Therefore, the probability 
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formula for the outcome of preterm birth is represented by the below formula 

(Framework: 3.4): 

𝑃(𝑃𝑇𝐵 | 𝑈) =
exp (𝛾0 + 𝛾1𝑈𝑖)

1 +  exp (𝛾0 +  𝛾1𝑈𝑖)
 

Implementation 

Simple logistic regressions were performed of preterm birth with BMI to obtain the 

odds ratio. The mean of the point estimate was obtained from 100 iterations for each 

scenario. The percentile-based 95% simulation intervals (SI) of the OR mean were 

derived using 500 bootstrap replications. For the purpose of interpretation, the results 

of BMI were categorised as follows: underweight (BMI < 18.5 kg/m2), normal (set as 

reference) (BMI 18.5- 24.99 kg/m2), overweight (BMI 25- 29.9kg/m2) and obese (BMI 

≥ 30kg/m2). All data analysis and simulation were conducted using R v4.2.1239  

(Framework 4.1).  

This simulation indicated that the influence of bias due to collider-stratification was 

marginal in the association between maternal BMI and preterm birth, and only 

prominent for women that met the BMI criteria for underweight. When the prevalence 

of U was strong (50%) and the strength of the selection effects (U → miscarriage and 

U → Preterm birth) were set to an equal OR 3.5, there was evidence of a downwards 

bias was for women that were underweight (OR 0.92 95% SI 0.92 to 0.93). Using the 

same parameters, there was a marginal upwards bias for women with a BMI that meet 

the criteria for overweight (OR 1.04 95% SI 1.04 to 1.05) and obese (1.04 95% SI 

1.04-1.05) (Framework: 4.2).   
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Figure 6.3 Collider-stratification bias of OR of body mass index on preterm birth, 
where the bias represents the departure from the null. Average odds ratio when the 
prevalence of U was 50% and the selection effects for U → miscarriage and U → 

Preterm birth ranged from 1.5, 2.5 to 3.5 for women who were underweight, 
overweight, and obese. Each scenario was iterated 100 times.  

 

Reproducibility 

An extract of the simulation function in R programming (Framework 5.2) to quantify 

the influence of selection bias on the association between maternal BMI and preterm 

birth is included below (Figure 6.4) The full reproducible code for the simulation model 

undertaken in this framework is available in the supplementary materials (Framework: 

5.1: 5.3). This will enable other researchers to reproduce this simple example of 

collider-stratification bias.  
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results=foreach(i=1:100,.packages=c("MASS","sandwich","lmtest","tidyverse","Rlab","dplyr","matrix
Stats"),.combine=rbind) %dopar% { 

   rboundednorm <- function(n, mymean, mysd, min = 15, max = 40) { 

    a = pnorm(c(min, max), mymean, mysd) 

    z = runif(n, a[1], a[2]) 

    qnorm(z, mymean, mysd)} 

 n=128000;pU=0.50;min.bpL=19.43;or1=3.5;bY=0.738;or2=3.5 

      set.seed(i)  

 bias <- data.frame("id" = 1:n) %>% 

 mutate(BMI= rboundednorm(n, mymean=BMI.mean, mysd=BMI.sd), #create BMI 

bMiscarriage = (min.bpL + 
BMI.to.misc(BMIvec=BMI,min.BMI=x2[p2==min(p2)],min.risk=min(p2)))/100, 

               b_Miscarriage = bMiscarriage / (1 - bMiscarriage),  

              U = rbern(n, pU),  

               prob_Miscarriage = plogis(log(b_Miscarriage) + log(or1)*U),    

Miscarriage = rbern(n, prob_Miscarriage), #miscarriage 

               pPTB = plogis(log(bY) + log(or2)*U), 

               PTB = rbern(n, pPTB))  %>% #preterm birth 

   mutate(BMI_cat = cut(BMI,breaks=c(15, 18.5, 25, 30,Inf),  

         labels=c("underweight","normal", "overweight", "obese"), include.lowest=TRUE), 

  BMI_cat = relevel(BMI_cat, ref ="normal"))#set normal BMI as reference  

 #fit a logistic model  

       log_model <- bias %>% glm(formula = PTB ~ BMI_cat, family = binomial(link = "logit"), 

           data = ., subset = Miscarriage==0) 

       ct=coeftest(log_model, vcov = sandwich)  

       ci=confint(ct)  

       c(ct[-1,1],ci[-1,1],ci[-1,2]) 

} 
 

Figure 6.4 Extract of R code for simulation study to quantify the influence of selection 
bias on the association between maternal body mass index and preterm birth.  
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6.5 Conclusion 

This framework included in this paper will provide guidance to epidemiologists in the 

application of simulation methods to quantify the magnitude and direction of bias under 

a range of plausible scenarios.  A benefit of simulation methods is that the influence 

of multiple types of bias can be computed in one model. This enables researchers to 

investigate bias mechanisms that replicated complex real-life scenarios. However, for 

researchers unexperienced with computation simulation, it is preferable to start with a 

small uncomplicated simulation model and build towards increased complexity. The 

included simulation example is one such simple example, including only four variables. 

It is intended to provide epidemiologists with a working demonstration that they can 

apply to their own work and research questions. This simple simulation is fully 

reproducible using the R code provided.   

In this paper, we proposed a framework to apply simulation methods to quantify the 

influence of bias in epidemiology. However, it should be noted that even adhering to 

the best of frameworks will not necessarily guarantee that a study is deemed optimal 

or valid. Nonetheless, adhering to the framework provided here will ensure that 

simulation studies that seek to quantify the influence of bias in epidemiological 

associations have provided sufficient details to enable the wider research community 

to validate their findings and advance our collective knowledge. 
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Chapter Seven: Discussion 

This thesis project addressed the overall aim of demonstrating that the application of 

simulation is a powerful tool in quantifying the influence of bias in perinatal 

epidemiology. Further, this thesis project has filled the knowledge gaps identified in 

Chapter One and achieved each of the three specific aims of the thesis. This chapter 

presents a summary of the main findings from each of the five publications that 

addressed the specific aims of the thesis, explores the significance of the findings and 

includes recommendations for future research.  
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This thesis project achieved the overall aim of demonstrating the application of 

simulation to quantify the influence of bias in perinatal epidemiology. Using three inter-

related study aims and objectives, this thesis addressed the knowledge gaps identified 

in Chapter One. The systematic review in Chapter two demonstrated that simulation 

had utility in the quantification of bias; however, the method was under-applied and 

there was a lack of conformity in study design, implementation, analysis and reported 

was noted.  

This thesis adds to quantitative bias analysis methods by demonstrating the suitability 

of simulation as a methodology to support bias analysis. Chapter Three demonstrated 

simulation as a complementary method to traditional epidemiological methods. One of 

the main benefits of simulation is the ability to quantify multiple types of bias 

simultaneously. This was demonstrated in Chapters Four and Five, in which applied 

simulation studies quantified the influence of bias under common mechanisms in 

perinatal epidemiology, in particular the influence of left truncation bias on perinatal 

exposure-outcome associations. The included framework in Chapter Six extends on 

recommended best practices in quantitative bias analysis by providing a targeted 

educational tool to guide epidemiologists in the application of simulation to quantify 

bias. 

7.1  The application of simulation to quantify bias  

Aim 1: To review and explore the existing literature on the application of simulation 

methods as an approach to quantify the influence of bias in perinatal epidemiology. 

A systematic review was carried out at the onset of this PhD project (Publication One) 

to fulfil the first aim of the thesis. Based on this systematic review,234 there was a  

limited number publications applying simulation methods to quantify bias in 

reproductive and perinatal epidemiology (n=39), ranging in time from 1983 to 2019. 

The included simulation studies presented a heterogeneity in their design, 

implementation and reporting of their results. Nonetheless, this review234 did highlight 

some clear best practices in the application of simulation to quantifying bias; including 

the use of causal diagrams to illustrate the influence of the bias(es) and a clear 

declaration of data parameters that informed the development of the simulation 

models. Few studies included the simulation code, reducing the reproducibility of their 
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studies; however, the practice of sharing simulation code was becoming increasingly 

common in studies published post 2015.  

This was the first and only review234 of the application of simulation as a method to 

quantify the influence of bias in perinatal epidemiology. The included studies 

demonstrated that simulation is beneficial in the quantification the magnitude and 

strength of bias and has potential to be applied more comprehensively to investigate 

bias in perinatal associations. Since 2019, only three studies104, 105, 308 were published 

that applied simulation to quantify the influence of bias in reproductive or perinatal 

epidemiology, independent of the research included in this PhD project. The lack of 

research activity in bias analysis during the course of the PhD (April 2020 to April 

2023) could be contributed to the Covid-19. It is plausible that during this time 

epidemiologists temporarily moved away from methods-based research to focus on 

tracking and preventing the spread of Covid-10 globally. Nonetheless, this paucity of 

simulation studies to quantify bias in perinatal epidemiology reinforces the need for 

guidance to support perinatal epidemiologist on best practices in the application of 

simulation to quantify the influence of bias.  

In 2021, two studies104, 105 applied simulation to quantify the influence of live-birth bias 

on environmental exposures in perinatal epidemiology, with both studies also 

quantifying the influence of depletion of susceptibles. The first simulation study 

reported that exposure to environmental hazards induced a live-birth bias, which was 

increased for women who were socially vulnerable.104 The second simulation study105 

was undertaken to try to explain a previously reported309 paradoxical association 

between exposure to nitrogen dioxide during pregnancy and the subsequent 

development of autism spectrum disorder in offspring. The findings of both studies104, 

105 indicated that bias was strongest when both live-birth bias and the depletion of 

susceptibles mechanisms were present. The most recent study by Jayaweera and 

colleagues (2023)308 used a Monte Carlo simulation to estimate self-managed abortion 

effectiveness account for bias from misclassification of self-reported outcomes and 

selection bias due to loss of follow-up. They found that bias-adjusted estimates were 

similar to the observed effect estimated in a cross-sectional study, with the level of 

bias dependent on the chosen bias parameters. These recent studies included 

important factors that meet the requirements of best practice in applying simulation to 
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quantify the influence of bias; including the use of causal diagrams, the clear 

declaration of data sources and bias parameters, and the inclusion of reproducible 

simulation code.  

The findings of this study indicated the simulation methods are an important tool in 

quantitative bias analysis; however, the lack of simulation studies undertaken in 

reproductive and perinatal epidemiology suggests a clear need for a framework to 

upskill epidemiologist in their application. This review highlighted best practices for the 

application of simulation to quantify bias which informed the subsequent development 

of the simulation studies included in this thesis, and the development of a framework 

to guide researchers in their study design, implementation, analysis and reporting of 

simulation studies to quantify bias in perinatal epidemiology as presented in Chapter 

Six.  

7.2  Quantifying the magnitude and direction of bias in perinatal epidemiology 

Aim 2: To design, implement and analyse a series of simulation studies to quantify 

the magnitude and direction of bias in perinatal epidemiology to address issues from 

methodological challenges that may lead to spurious inference on associations 

between pregnancy exposures and adverse birth outcomes.  

The role of confounding 

Unmeasured confounding is routinely acknowledged in research papers yet its impact 

on aetiological associations is rarely addressed. The influence of unmeasured 

confounding in the association between pregnancy complications and a subsequent 

preterm birth was investigated in Chapter Three to address objective 2.1 of this thesis.  

Traditional epidemiological methods (regression models) were combined with 

simulation and the e-value for confounding to estimate the degree of confounding 

necessary to explain the observed associations between complications in first 

pregnancy and the subsequent risk of a preterm birth (Publication Two)310.  

The simulation in this study generated data for maternal obesity, a potentially 

important confounding variable as it is considered a risk factor for the development of 

pregnancy complications and preterm birth.6, 9, 267, 311 By re-analysing the original data 

and adjusting for the same observed confounders plus the new simulated maternal 

obesity, this simple simulation demonstrated that the inclusion of a single confounder 

was not enough to weaken the observed associations between pregnancy 
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complications across two successive pregnancies. This is unsurprising given the 

strengths of the associations and their subsequent e-values that were observed in the 

study. E-values for confounding are a powerful tool to determine how robust the 

observed association are to bias.125, 132, 220 The high e-values observed in this study 

suggest that any unmeasured confounding would have to be extremely high to explain 

away the observed associations, particularly for the association between pre-

eclampsia in a preterm first birth and a subsequent preterm birth with recurring pre-

eclampsia (e-value 127.58). It is highly improbable that a single unmeasured 

confounder, or multiple unmeasured confounders working together, could explain 

away the observed association.  

The findings of this Western Australian study supported the previous evidence from 

the US200, 202  and Norway,201  that a previous pregnancy complicated by pre-

eclampsia, placental abruption, small-for-gestational age or perinatal death can 

increase the risk of a subsequent preterm birth, regardless of whether the first birth 

was preterm or term. This would indicate that there are shared and unknown 

underlying mechanisms that influences the recurrence of a pregnancy association 

across successive pregnancies.32 A plausible candidate for these mechanisms is the 

emerging evidence that latent cardiovascular disease risk factors could explain the 

associations between pregnancy complications across successive pregnancies.312 

This hypothesis is supported by the circular relationship between cardiovascular 

disease and pregnancy complications, with markers of cardiovascular disease, such 

as obesity, hypertension and diabetes, increasing the risk of pregnancy 

complications313, and pregnancy complications themselves predicting the subsequent 

development of cardiovascular disease.314  

The study310 demonstrated how simulation and novel methods, such as the e-value, 

can support traditional epidemiological methods by providing evidence to strengthen 

the validity of observed associations.  

Bias due to left truncation 

Much of the evidence on perinatal epidemiological effects are derived from pregnancy 

data that is left truncated. This is problematic when examining aetiological 

associations between an exposure in early pregnancy and a subsequent adverse 
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perinatal event, as the cause of the exposure could influence selection into the study 

cohort. The influence of bias due to the application of left-truncated datasets (birth 

registries), in which early pregnancy losses prior to 20 gestational weeks are excluded, 

was quantified in Chapter Four to address objective 2.2 of the thesis. A simulation 

study was undertaken to quantify the magnitude and direction of bias due to the left 

truncation of birth data in the association between advanced maternal age and stillbirth 

(Publication Three).294 This study hypothesised that bias occurs when early pregnancy 

loss (<20 gestational weeks) is influenced by both the exposure and the unmeasured 

confounder, creating a backdoor causal pathway between the exposure of advancing 

maternal age and the outcome of stillbirth. The mechanism for this bias is commonly 

referred to as collider-stratification.  

The findings of this study strongly suggested that for left truncation bias to be 

influential, the prevalence and strength of the unmeasured confounder must be strong. 

Specific to this study, an unmeasured confounder would have to be highly prevalent 

(≥50%) in the population of pregnant women and have an impactful effect (OR ≥ 3.0) 

to produce significant bias. It is unlikely that such plausible confounders exist that 

would be capable of inducing such strong bias. In this simulation study, evidence of 

marginal bias was only found for women aged 40+ years, which is comprehensible 

given that this group had the most susceptibility to early pregnancy loss and stillbirth, 

in comparison to the other age categories. Similar findings were also reported by US 

based researchers104, 105 that examined live-birth bias, a bias that results from collider-

stratification mechanism in studies that restrict their birth dataset to pregnancies that 

results in live-births only.157 A study by Leung et al.105 attempted to explain away the 

protective effect of the ambient air pollutant of nitrogen dioxide during pregnancy on 

the subsequent development of autism spectrum disorder in early childhood.106, 309 

This causal association was purported to results from live-birth bias ,where the OR 

was per 5.85 parts per billion increase in nitrogen dioxide exposure during pregnancy 

(median, 16.8 ppb; range, 7.5–31.2 ppb) was 0.77 (95% confidence interval: 0.59, 

1.00), when mutually adjusting for post-natal exposure to nitrogen dioxide.106, 309 

Leung et al. could only replicate the bias when both collider-stratification bias and the 

depletion of susceptibles mechanisms worked together and the prevalence of U was 

75% with an OR strength of 3.0.105 This seems to suggest that bias mechanisms from 

one selection event alone are not sufficient to produce such an inverse association; 
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there may, in fact, be a combination of biasing factors from misclassification, mediation 

and selection bias acting together to produce spurious inverse associations.  

As demonstrated in my study, bias due to left-truncation is not likely to be sufficient to 

substantially distort exposure-outcome associations in perinatal epidemiological 

studies. As the application of left truncated data is pervasive in perinatal in 

epidemiology, these findings will be reassuring to perinatal epidemiologist who are 

interested in the association between pregnancy exposures and perinatal outcomes.  

Bias in mediated associations 

The handling of mediator variables in perinatal epidemiology can be problematic, 

particularly the mediator of gestational age or birthweight. Adjusting for mediators of 

gestational age or birthweight will produce intersecting birthweight-specific and 

gestational age-specific mortality curves can lead to paradoxical associations.74, 92, 157, 

186 However, it is not uncommon for pregnancy complications to mediate associations 

between an exposure in pregnancy and a subsequent adverse outcome. Causal 

mediation analysis is a method that enables researchers to separate the total effect of 

an exposure-outcome association into a direct and indirect effect (mediated). Yet, 

causal mediation analysis is highly restricted to the strict assumption that there is no 

influence of unmeasured confounders.252, 253, 255 The influence unmeasured 

confounding on a mediator will render that mediator a collider and lead to biased 

results.231, 232  Chapter Five addressed objective 2.3 of the thesis: to quantify the 

influence of unmeasured confounding in mediated associations. To estimate the 

magnitude and direction of bias from unmeasured confounding in the association 

between maternal obesity and caesarean section delivery when mediated by the 

pregnancy complication of pre-eclampsia, a simulation study (Publication Four) 

quantified the collider bias mechanism in mediated associations under three common 

scenarios: 1) mediator-outcome confounding, 2) mediator-outcome confounding 

affected by the exposure, and 3) exposure-mediator confounding.  

The findings indicated that bias was strongest when the unmeasured confounder 

influenced the mediator of pre-eclampsia and the exposure of maternal obesity 

(exposure-mediator confounding). This confounding scenario has received less 

attention from researchers compared to mediator-outcome confounding,255, 283, 287 

which produced very minimal bias in my study. These findings are important, 
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particularly when using observational data as the exposure itself cannot be 

randomised. However, as per the previous simulation study (Publication Three)294 we 

found that the strength of the bias was directly related to the prevalence and strength 

of the unmeasured confounder, with the weakest evidence of bias presenting when 

the prevalence of the unmeasured confounder was small (15%) and the strength of 

the OR was minimal (OR 1.5) across all three scenarios. The findings of this study 

support the need to undertake a quantitative bias analysis to investigate the 

mechanisms in which the influence of unmeasured confounding can impact their 

mediated exposure-outcome associations, in addition to causal mediation analysis.  

7.3 A framework to guide the application of simulation for bias analysis  

Aim 3: To develop a framework for the application of simulation to quantify bias in 

perinatal epidemiologists. 

Chapter Six addressed a key research gap on the lack of guidance for perinatal 

epidemiologists in the application of simulation methods for the purpose of bias 

analysis, and addressed the final aim of the thesis. The requirement for a practical 

guide on the application of simulation was further evidenced in the systematic review 

(Publication One)234, which found a lack of conformity in the methods of designing, 

implementing and reporting of simulation studies for bias analysis in reproductive and 

perinatal epidemiology. Furthermore, the identification of best practices from the 

systematic review informed the development of this framework (Publication Five) to 

guide perinatal epidemiologists in the design, implementation and reporting of 

simulation studies to quantify the influence of bias in perinatal aetiological 

associations.  

The framework is composed of five steps to guide perinatal epidemiologist through the 

development of simulation studies to quantify bias: 1) clearly define the aim, including 

the research purpose, the target population, exposure and outcome, 2) use causal 

diagrams to explain the influence of potential biases, 3) identify the sample population, 

data sources, bias parameters and the data generation methods, 4), clearly state the 

methods of analysis and report appropriately, and 5) provide reproducible code. This 

framework also included a simulation study, which provides a building block for 

perinatal epidemiologist to start undertaking quantitative bias analysis for their own 

research questions.  
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Applying the framework to the included simulation studies in this thesis (Publication 

Three and Four), I first clearly identified the study aim and then created a causal 

diagram to illustrate the bias mechanisms. I explicitly declared the sources of my data 

and the assumptions that informed the development of the simulation model. In both 

the simulation studies, an observed cohort from Western Australia informed the 

simulated population. This data for this observed cohort was derived from probabilistic 

linked datasets in Western Australia, including the Midwives Notification System and 

the WA Registry of Births, Deaths and Marriages using a linkage key provided by the 

Data Linkage Branch of the WA Department of Health.213 Both simulation studies 

undertook logistic regression modelling to calculate the biased estimate of the 

exposure on the outcome. Results were subsequently reported using figures and 

tables. I also included my simulation code. By following all five steps of the framework, 

I have ensured that my simulation studies have high reproducibility.  

Both the simulation example included in the framework, and the simulation studies 

undertaken in this thesis, are fully reproducible. Researchers can use the provided 

simulation code to determine the influence of bias in their exposure-outcome 

associations. Implementing the steps highlighted in this framework will enable the 

standardisation of reporting, reproducibility, better comparisons between studies and 

consequently improve research synthesis. The provision of this framework can 

advance our collective knowledge about bias mechanisms and the nature in which 

they can distort our observed associations; thereby improving causal inference in 

perinatal epidemiology. 

7.4 Significance 

This thesis has made a significant contribution to the field of quantitative bias analysis 

by 1) demonstrating that simulation methods are powerful tool quantity the influence 

of bias, 2) undertaking simulation studies that quantified the magnitude and direction 

under multiple bias mechanisms, and 3) developing a framework to guide other 

researchers to apply simulation to quantify bias.  

The initial review (Publication One) indicated that simulation studies are a potentially 

powerful tool in quantitative bias analysis; however, they are under-utilised in perinatal 

epidemiology. This thesis demonstrated that simulation methods can be used to 

supplement traditional epidemiological methods to account for important variables that 
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are unavailable to a study in Publication Two. As demonstrated in Publication Three 

(bias due to left truncation) and Publication Four (bias in mediated associations), 

simulation models can replicate complex bias mechanisms that may be unknown or 

seen by researchers. Furthermore, the simulation studies demonstrated that it is 

possible to test simulation models under multiple scenarios and quantified the 

influence of multiple types of bias simultaneously.   

A significant contribution of this thesis was the quantification of the influence of left 

truncated birth data in perinatal epidemiological studies. Although, live-birth bias has 

been previously explored as a bias mechanism, in countries such as Australia and 

many European countries, birth data includes stillbirths so live-birth bias is not an 

issue. This restriction of data to only include pregnancies that survived past 20 

gestational weeks was problematic when researchers were drawing associations 

between exposures in early pregnancy and adverse perinatal outcomes. Quantifying 

the magnitude and direction of this bias can assure perinatal epidemiologists that the 

influence of bias on the observed exposure-outcome associations is minimal. – 

assuming that they is no other influencing bias mechanism.  

Much research has been dedicated to developing methods in which the influence of 

mediator-outcome confounding in mediation analysis. However, the findings of 

publication four indicate that mediator-outcome bias is insignificant, with the strong 

bias evidence in the exposure-mediator association. Although, ours in not the first 

study to find these results. These findings should act as a cautionary note to other 

researchers to carefully draw their causal association using a diagram.  

The final significant contribution to perinatal epidemiology was the development of a 

framework to guide other researchers to undertake simulation studies to quantify bias. 

This framework provides five steps to guide perinatal epidemiologist in the 

development, implementation and reporting of simulation studies to quantify bias. The 

inclusion of a simulation study will reinforce the steps of the framework, providing a 

visualisation of a simple simulation study which can act as a building block for other 

research questions.  

7.5 Strengths and limitations 

The systematic review was novel, as no similar review had previously undertaken that 

investigated the application of simulation to quantify bias in reproductive and perinatal 
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epidemiology. This systematic review was also an important step of the thesis as it 

identified best practices in the application of simulation, which later informed the 

development of the simulation studies and underpinned the steps in the framework to 

guide perinatal epidemiologist on the application of simulation to in bias analysis. 

This thesis demonstrated that simulation can supplement traditional epidemiological 

methods by generating data for important variables that are missing from perinatal 

datasets. Quite often bias is only quantified in perinatal epidemiology in an attempt to 

explain away an association that seems counter-intuitive. Therefore, a strength of this 

thesis was the application of simulation studies to quantify bias in common perinatal 

associations when the results seem to conform to expectations. That the research 

questions quantified bias in associations that are relevant to the changing 

demographics (i.e. advancing maternal age and increasing maternal obesity) of 

perinatal research in high-income countries is an additional strength.  

The outputs of the simulation studies addressed important bias mechanisms, 

particularly increasing our understanding of the collider bias mechanism which 

underpins selection biases and its influence in mediated associations.  A strength of 

the simulation studies included the clear use of DAGs to map the causal pathway 

between exposure and outcomes, highlighting bias mechanisms that may be 

otherwise hidden to researchers. The data source for the included studies was derived 

from probabilistic linked datasets in Western Australia, which are routinely validated 

and are of high quality.315 A major strength of the simulation studies was the inclusion 

of the simulation code, which can be adapted by other researchers to replicate their 

study findings using their own data. A major output of this thesis was the development 

of a framework to guide the development, implementation and reporting of simulation 

studies to quantify bias. This filled a much needed research gap and has the potential 

to increase the application of simulation and the undertaking of quantitative bias 

analysis. The simulation approach adopted in this thesis captures the sensitivity of 

results to different assumptions and types of bias, ensuring high quality inference. This 

approach can provide a stronger evidence-base for the effect of preventative actions, 

policy interventions and clinical practice. 

A limitation of simulation models is that simplifying assumptions must be made. Such 

assumptions arise, for example, from the examination of a limited set of factors in the 
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causal model, the need to hold some aspects of the study parameters constant while 

varying others, or the practical need to limit to a specific range of parameters to 

improve interpretation. Therefore, a common criticism of quantitative bias analyses is 

that the scenarios are not truly representative of real-world situations. However, the 

work completed in this PhD thesis should be considered a building block on which 

more complex simulations can be built to replicate more complicated bias 

mechanisms. An additional limitation of the simulation studies may be the inclusion of 

only one unmeasured confounder in the simulation models. However, it may be 

considered that an unmeasured confounder that is both strong in prevalence and 

strength may comprise multiple smaller unmeasured confounders. An additional 

limitation of the simulation models included in this thesis is that the included variables 

were categorical. This is not uncommon in perinatal epidemiology where risk factors 

and outcomes often have binary classifications. The same principles apply to 

simulation studies when risk factors and outcomes occur on a continuum. The model 

family, link function and error distributions can be amended accordingly. The inclusion 

of time-varying exposures or risk factors was not explicitly modelled in the simulation 

models included in this thesis. As simulations are based on substantive knowledge of 

the data generating mechanisms, time-varying exposures prove challenging due to 

the need to observe individuals over time. Nonetheless, my approach to the design of 

the included simulations, which included explicit specifications of the theoretical model 

in the form of DAGs, is generalisable to time-varying factors, which can be included in 

the DAG by including time in the definition of the variable.316 A final limitation is that 

the included simulations did not quantify bias from misclassification, which is a 

common source of bias, particularly when exposure or outcome assessment is 

challenging (e.g. environmental exposures, latent variables, self-reported states, and 

non-specific diagnostic criteria). This was beyond the scope of this PhD thesis as the 

inclusion of misclassification of the exposure and/or outcome in addition to selection 

bias and bias from the influence of confounding would generate an impractical number 

of combinations to investigate in a single thesis. Nonetheless an achievable activity 

when using simulation methods and should be considered for future research.  

7.6 Direction for future research 

This thesis demonstrated that simulation methods are a powerful tool to quantifying 

the influence of bias in perinatal epidemiology. As established in this thesis, simulation 
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methods do not have to be complicated; they can complement traditional 

epidemiological studies to strengthen the validity of results. For example, simulation 

can generate data for important variables that are omitted from a dataset - variables 

that could potentially explain the observed exposure-outcome association. Simulation 

can also correct for misclassified variables, a common source of bias due to 

inaccuracies in the exposure, outcome and confounding variables. Simulations of this 

nature are a relatively simple exercise that should be achievable for all perinatal 

epidemiologists. The increase of well-designed pre-conception cohort studies may 

provide richer data, including a better set of adjustment variables. However, there 

would always remain a degree of bias from confounders that are unknown (i.e. not yet 

discovered) and bias from self-reported variables, such as maternal smoking. 

Therefore, future researchers should consider the use of simulation to account for 

omitted variables in statistical modelling and to correct for misclassified variables; this 

will prevent the reporting of biased estimated effects and improve causal inference in 

perinatal epidemiology.  

The simulation studies included in this thesis made use of DAGs to illustrate bias 

mechanisms. This is a practice that all perinatal epidemiologist should undertake prior 

to their data analysis. Graphically drawing the associations between variables will 

reveal potential sources of bias that may not be obvious to researchers otherwise. 

DAGs are useful in identifying collider variables, particularly those that may be 

mistaken for confounders. One such example is M Bias, where bias results from 

conditioning on a variable that is caused by two other variables, one of which is the 

cause of the exposure and the other is the cause of the outcome.317 A naive approach 

may involve adjustment for all three variables - the collider, the cause of the exposure 

and the cause of the outcome - believing that such adjustment will “control” for any 

spurious associations attributable to all pathways involving these variables, when in 

fact it will lead to a bias of the observed associations, the direction of which can be 

either upward or downward. To avoid the perils of such hidden bias mechanisms, 

perinatal epidemiologists must draw a DAG to illustrate the causal relationship 

amongst their set of included variables prior to undertaking data analysis. Ideally, the 

inclusion of a DAG should be mandated in peer-reviewed publications that report 

perinatal aetiological associations.  
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Although DAGs are a vital tool to illuminate complex bias mechanisms that are more 

difficult to avoid in perinatal research, they only tell us one part of the bias analysis 

story. In order to increase our understanding of the consequences of bias 

mechanisms, we must undertake a quantitative analysis to determine the magnitude 

and direction of the influence of bias on perinatal aetiological associations. The 

undertaking of simulation studies to quantify bias is a worthwhile activity that enables 

researchers to strengthen the validity of perinatal associations drawn from 

observational studies. The included simulation studies in this thesis have high 

reproducibility, which combined with the provision of a framework on the application 

of simulation to quantify bias, makes simulation methodologies more accessible to 

researchers. Bias analysis is a very important facet of epidemiological research; 

therefore, more research that quantifies the influence of bias is necessary. The 

application of simulations is an achievable methodology that all perinatal 

epidemiologist need to develop skills in. To strengthen the validity of perinatal 

associations, future researchers should apply simulation to quantify bias in addition to 

the reporting of traditional epidemiological methods.  

Moving forward, perinatal epidemiologists need to apply simulation to increase our 

understanding of paradoxical associations, an intractable problem in perinatal 

epidemiology and one that cannot necessarily be resolved by closed form 

mathematical expressions. Using the traditional example of the birthweight paradox, 

researchers have tried to explain the protective effect of maternal smoking on neonatal 

mortality94, 109-112, 176 (or pre-eclampsia100, 101, 154) from different bias mechanisms 

(collider-stratification due to conditioning on birth weight94, 100, 101, 109-112, 154, 166, 176 or 

gestational age154 and left truncation100, 318). Despite numerous attempts, researchers 

have not been able to fully explain this inverse association. It is plausible that 

mechanisms required to induce such strong bias is due to a complex interaction 

between bias mechanisms of selection, confounding and misclassification. Simulation 

has the potential to solve this riddle, elucidating these obscure mechanisms that can 

lead to paradoxical associations. These counter-intuitive associations are also likely 

subjected to publication bias and therefore their prevalence in perinatal epidemiology 

may be underestimated. Future researchers should apply simulation methodologies 

to increase our understanding of these complex and elusive bias mechanisms that 

have the potential to obfuscate perinatal aetiological associations.   
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7.7 Conclusion 

This thesis has confirmed that simulation is a dynamic tool to quantifying the influence 

of bias in perinatal epidemiology. There should be no doubt that quantification of bias 

is a worthwhile activity, as it enables researchers to strengthen the validity of perinatal 

associations drawn from observational studies. Simulation methodologies have a 

number of advantages that make them integral to quantitative bias analysis. 

Simulations can account for data that is missing, misclassified and replicate complex 

bias mechanisms that are often not obviously visible to researchers, nor are 

answerable by closed form mathematical expressions. Simulations can rapidly 

conduct numerous experiments to test bias mechanisms across a range of scenarios 

that represent real-life situations.  

The simulation studies in this thesis have demonstrated the application of simulation 

to quantify important bias mechanisms that are common to perinatal epidemiology. 

The included studies extricated the role of the collider in selection bias and mediated 

associations, providing a methodology that can be applied to quantify the influence of 

bias across a range of perinatal epidemiological associations. The development of a 

framework supports perinatal epidemiologists to develop skills in the quantification of 

bias; thereby increasing the breadth of studies that undertake quantitative bias 

analysis in epidemiology. Taken together, the included studies make the application 

of simulation to quantify bias more accessible to perinatal epidemiologists.   

The ubiquity of bias in observational studies necessitates further research to provide 

clarity on the influence of bias mechanisms common to perinatal epidemiological 

studies. Researchers should consider the application of simulation studies to quantify 

the magnitude and direction of such bias mechanisms in addition to traditional 

epidemiological methods. Moving forward, simulation methodologies have the 

potential to explain paradoxical associations and elucidate the complex bias 

mechanisms from which they evolve.  
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Appendix D Supplementary material for Publication One 

 

Supplementary Table S2.1 Search strategy by database  

Simulat* AND Bias AND (Perinatal OR Reproductive) 

 

Bias  Perinatal                      OR              Reproductive 

Pubmed (includes simulat*[tiab] with the below search terms) 

Bias[mh] OR  

Selection bias*[tiab] OR 

confound* bias*[tiab] OR 

collider*[tiab] OR truncat* 

bias*[tiab] OR censor* 

bias*[tiab] OR misclass* 

bias*[tiab] OR measurement 

bias*[tiab] 

Pregnancy[mh] OR 

Pregnancy 

complications[mh] OR  

Infant Death[mh] OR Fetal 

Development[mh] OR 

 

*birth*[tiab] OR 

perinatal[tiab] OR 

neonatal[tiab] OR fetal[tiab] 

OR foetal[tiab] OR 

abortion[tiab] OR pregnancy 

termination[tiab] OR 

preterm[tiab] OR premature 

labour[tiab] OR small for 

gestational age[tiab] OR 

macrosomia[tiab] OR 

anomalies[tiab] OR 

malformations[tiab] OR 

defects[tiab] OR pregnancy 

hypertension[tiab] OR 

placenta previa[tiab] OR 

placenta praevia[tiab] OR 

intrauterine growth 

retardation[tiab] OR 

pregnancy loss[tiab] OR 

Reproductive 

techniques[mh] OR 

Embryonic and Fetal 

Development[mh] OR 

Fertilization[mh] OR 

Fertility[mh] OR  

 

fecund*[tiab] OR 

placent*[tiab] OR 

reproductive tech*[tiab] OR 

blastocyst transfer[tiab] OR 

tubal embryo[tiab] OR 

fertil*[tiab] OR test-tube[tiab] 

OR steril*[tiab]  
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premature rupture 

membranes[tiab] 

 

Medline (includes simulat*:ti,ab with the below search terms) 

Bias/exp OR  

Selection bias*.ti,ab OR  

Confound* bias*.ti,ab OR 

collider* bias*.ti,ab  OR 

truncat* bias*.ti,ab OR 

censor* bias*.ti,ab OR 

misclass* bias*.ti,ab OR 

measurement bias*.ti,ab 

Pregnancy/exp OR 

Pregnancy 

complications/exp OR Infant 

Death/exp OR Fetal 

Development/exp OR 

 

birth*.ti,ab OR perinatal.ti,ab 

OR neonatal.ti,ab OR 

fetal.ti,ab OR foetal.ti,ab OR 

abortion.ti,ab OR pregnancy 

termination.ti,ab OR 

preterm.ti,ab OR premature 

labour.ti,ab OR small for 

gestational age.ti,ab OR 

macrosomia.ti,ab OR 

anomalies.ti,ab OR 

malformations.ti,ab OR 

defects.ti,ab OR pregnancy 

hypertension.ti,ab OR 

placenta previa.ti,ab OR 

placenta praevia.ti,ab OR 

intrauterine growth 

retardation.ti,ab OR 

pregnancy loss.ti,ab OR 

premature rupture 

membrane.ti,ab 

 

Reproductive 

techniques/exp OR 

Embryonic and Fetal 

Development/exp OR 

Fertilization/exp OR 

Fertility/exp OR  

 

fecund*.ti,ab OR 

placent*.ti,ab OR 

reproductive tech*.ti,ab OR 

blastocyst transfer.ti,ab OR 

tubal embryo.ti,ab OR 

fertil*.ti,ab OR test-tube.ti,ab 

OR steril*.ti,ab  

 

EMBASE (includes simulat*:ti,ab with the below search terms) 
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Bias/exp OR 

Selection bias*.ti,ab OR  

Confound* bias*.ti,ab OR 

collider* bias*.ti,ab  OR 

truncat* bias*.ti,ab OR 

censor* bias*.ti,ab OR 

misclass* bias*.ti,ab OR 

measurement bias*.ti,ab 

Pregnancy/exp OR 

Pregnancy 

complications/exp OR Infant 

Death/exp OR Fetal 

Development/exp OR 

 

 

birth*.ti,ab OR perinatal.ti,ab 

OR neonatal.ti,ab OR 

fetal.ti,ab OR foetal.ti,ab OR 

abortion.ti,ab OR pregnancy 

termination.ti,ab OR 

preterm.ti,ab OR premature 

labour.ti,ab OR small for 

gestational age.ti,ab OR 

macrosomia.ti,ab OR 

anomalies.ti,ab OR 

malformations.ti,ab OR 

defects.ti,ab OR pregnancy 

hypertension.ti,ab OR 

placenta previa.ti,ab OR 

placenta praevia.ti,ab OR 

intrauterine growth 

retardation.ti,ab OR 

pregnancy loss.ti,ab OR 

premature rupture 

membrane.ti,ab 

 

 

Reproductive 

techniques/exp OR 

Embryonic and Fetal 

Development/exp OR 

Fertilization/exp OR 

Fertility/exp OR  

 

fecund*.ti,ab OR 

placent*.ti,ab OR 

reproductive tech*.ti,ab OR 

blastocyst transfer.ti,ab OR 

tubal embryo.ti,ab OR 

fertil*.ti,ab OR test-tube.ti,ab 

OR steril*.ti,ab  

  

CINAHL (includes TI simulat* AND AB simulat* with the below search terms) 

MH Bias OR    

 

MH Pregnancy OR MH 

“Pregnancy complications” 

MH “Reproductive 

techniques” OR MH 

“Embryonic and Fetal 
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TI “selection bias*” OR AB 

“selection bias*” OR TI 

“confound* bias*”OR AB 

“confound* bias*” OR TI 

“collider* bias*” OR AB 

“collider* bias*” OR TI  

“truncat* bias*” OR AB 

“truncat* bias*” OR TI 

“censor*  bias*” OR AB 

“censor* bias*”OR  TI 

“misclass* bias*”OR AB 

“misclass* bias*” OR TI 

“measurement bias*” OR AB 

“measurement bias*” 

OR  MH “Infant Death” OR 

MH “Fetal Development” OR 

 

TI *birth* OR AB *birth* OR 

TI perinatal OR AB perinatal 

OR TI neonatal OR AB 

neonatal OR TI feta OR AB 

fetal OR TI foetal OR AB 

foetal OR TI abortion OR AB 

abortion OR TI “pregnancy 

termination” OR AB 

“pregnancy termination” OR 

TI preterm OR AB preterm 

OR TI “premature labour” 

OR AB “premature labour” 

OR TI “small for gestational 

age” OR AB “small for 

gestational age” OR TI 

macrosomia OR AB 

macrosomia OR TI 

anomalies OR AB 

anomalies OR TI 

malformations OR AB 

malformations OR TI 

defects OR AB defects OR 

TI “pregnancy hypertension” 

OR AB “pregnancy 

hypertension” OR TI 

“placenta previa” OR AB 

“placenta previa” OR TI 

“placenta praevia” OR AB 

“placenta praevia” OR TI 

“intrauterine growth 

retardation” OR AB 

“intrauterine growth 

Development” OR MH 

Fertilization OR MH Fertility 

OR  

 

TI fecund* OR AB fecund* 

OR TI placent* OR AB 

placent* OR TI “reproductive 

tech*” OR AB “reproductive 

tech*” OR TI “blastocyst 

transfer” OR AB “blastocyst 

transfer” OR TI “tubal 

embryo” OR AB “tubal 

embryo” OR TI fertile* OR 

AB fertil* OR TI test-tube 

OR AB test-tube OR TI 

steril* OR AB steril* 
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retardation” OR TI 

“pregnancy loss” OR AB 

“pregnancy loss” OR TI 

“premature rupture 

membranes” OR AB 

“premature rupture 

membranes” 

 

SCOPUS (includes ALL(simulat*) with the below search terms) 

TITLE-ABS-KEY(“selection 

bias*” OR ”confound* bias*” 

OR “collider*  bias*” OR 

“truncat* bias*” OR “censor* 

bias*” OR “misclass*  bias*” 

OR “measurement bias*”) 

 

 

TITLE-ABS-KEY(Pregnancy 

OR {Pregnancy 

complication} OR {Infant 

Death} OR {Fetal 

Development} OR 

 

*birth* OR perinatal OR 

neonatal OR fetal OR foetal 

OR abortion OR “pregnancy 

termination” OR preterm OR 

“premature labour” OR 

“small for gestational age” 

OR macrosomia OR 

anomalies OR 

malformations OR defects 

OR “pregnancy 

hypertension” OR “placenta 

previa” OR “placenta 

praevia” OR “intrauterine 

growth retardation” OR 

“pregnancy loss” OR 

“premature rupture 

membranes”) 

 

TITLE-ABS-

KEY({Reproductive 

techniques} OR {Embryonic 

and Fetal Development} OR 

Fertili?ation OR Fertility OR  

 

fecund* OR placent* OR 

“reproductive tech*” OR 

“blastocyst transfer” OR 

“tubal embryo” OR fertil* OR 

test-tube OR steril*) 
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Supplementary Table S2.2 Records excluded at full-text screening with reasons 

1. Adebayo et al. Analyzing infant mortality with geoadditive categorical regression models: 

A case study for Nigeria. Economics and Human Biology 2004, 2(2):229-244 

Reason for exclusion: The primary aim is not to quantify bias.     

2. Aiken et al. Management of fetal malposition in the second stage of labor: A propensity 

score analysis. American Journal of Obstetrics and Gynecology 2015 212(3):335e1-335e7 

Reason for exclusion: This study did not use simulated data.  

3. Bang et al. Estimating treatment effects in studies of perinatal transmission of HIV. 

Biostatistics 2004 5(1):31-43 

Reasons for exclusion: The primary aim is not to quantify bias.   

4. Basso et al. The performance of several indicators in detecting recall bias. Epidemiology 

1997 8(3):269-274 

Reasons for exclusion: The primary aim is not to quantify bias.   

5. Brubaker et al. Vaginal progesterone in women with twin gestations complicated by short 

cervix: A retrospective cohort study. BJOG 2015 122(5):712-718 

Reasons for exclusion: This study did not use simulated data.  

6. Chaemsaithong et al. Uterine artery pulsatility index in the first trimester: assessment of 

intersonodiagramer and intersampling site measurement differences. Journal of Maternal-

Fetal and Neonatal Medicine 2018 31(17):2276-2283 

Reasons for exclusion: The primary aim is not to quantify bias. 

7. Cies et al. Population pharmacokinetics of gentamicin in neonates with hypoxemic-

ischemic encephalopathy receiving controlled hypothermia. Pharmacotherapy: The 

Journal of Human Pharmacology & Drug Therapy 2018 38(11):1120-1129 

Reasons for exclusion: The primary aim is not to quantify bias.   

8. Cirillo et al. The human factor: does the operator performing the embryo transfer 

significantly impact the cycle outcome? Human Reproduction 2020 35(2):275-282 

Reasons for exclusion: This study did not use simulated data.  

9. De Oliveira et al. A random-censoring Poisson model for underreported data. Statistics in 

Medicine 2017 36(30):4873-4892 

Reasons for exclusion: The primary aim is not to quantify bias.   

10. Ding et al. Estimating effect of environmental contaminants on women’s subfecundity for 

the MoBa study data with an outcome-dependent sample scheme. Biostatistics 2014 

15(4):636-650 

Reasons for exclusion: The primary aim is not to quantify bias.   

11. Gard et al. A coarsened multinomial regression model for perinatal mother to child 

transmission of HIV. BMC Medical Research Methodology 2008 8(1):46-46 

Reasons for exclusion: The primary aim is not to quantify bias.   

12. Hatch et al. Evaluation of selection bias in an internet-based study of pregnancy planners. 

Epidemiology 2016 27(1):98-104 

Reasons for exclusion: This study did not use simulated data. 
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13. Heinke et al. Quantification of selection bias in studies of risk factors for birth defects 

among livebirths. Paediatric & Perinatal Epidemiology 2020 34(6):655-664 

Reasons for exclusion: The application of simulation was not core to the paper.   

14. Honein et al. Modeling the potential public health impact of prepregnancy obesity on 

adverse fetal and infant outcomes. Obesity 2013 21(8):1276-1283 

Reasons for exclusion: The primary aim is not to quantify bias. 

15. Horton et al. A population-based approach to analyzing pulses in time series of hormone 

data. Statistics in Medicine 2017 36(16):2576-2589 

Reasons for exclusion: The primary aim is not to quantify bias.  

16. Howards et al. Adjusting for bias due to incomplete case ascertainment in case-control 

studies of birth defects. Practice of Epidemiology 2015 181(8):595-607 

Reasons for exclusion: The application of simulation was not core to this paper. 

17. Janssen et al. Towards rational dosing algorithms for vancomycin in neonates and infants 

based on population pharmacokinetic modeling. Antimicrobial Agents & Chemotherapy 

2016 60(2):1013-1021 

Reasons for exclusion: The primary aim is not to quantify bias.   

18. Jiang et al. Causal Mediation Analysis in the Presence of a Misclassified Binary Exposure. 

Epidemiological Methods 2019 1(8) 

Reasons for exclusion: The primary aim is not to quantify bias.  

19. Kim et al. Flexible Bayesian human fecundity models. Bayesian Analysis 2012 7(4):771-

800 

Reasons for exclusion: The primary aim is not to quantify bias.   

 

20. Kim et al. A model-based approach to detection limits in studying environmental exposures 

and human fecundity. Statistics in Biomedicine 2019 11:524-547 

Reasons for exclusion: The application of simulation is not core to the study. 

 

21. Kone et al. Heckman-type selection models to obtain unbiased estimates with missing 

measures outcome: theoretical considerations and an application to missing birth weight 

data. BMC Medical Research Methodology 2019 19(1):231 

Reasons for exclusion: The primary aim is not to quantify bias.  

22. Kovacevic et al. Fetal aortic valvuloplasty: investigating institutional bias in surgical 

decision-making. Ultrasound in Obstetrics & Gynecology 2014 44(5):538-544 

Reasons for exclusion: This is simulation based research. 

23. Lau. On the heterogeneity of fecundability. Lifetime Data Analysis 1996 2(4):403-415  

Reasons for exclusion: The primary aim is not to quantify bias.  

24. Manuel et al. Matched case-control data with a misclassified exposure: what can be done 

with instrumental variables? Biostatistics 2019 0:1-18 

Reasons for exclusion: The application of simulation was not core to the study.  

25. Marston et al. The effects of HIV on fertility by infection duration: evidence from African 

population cohorts before antiretroviral treatment availability. AIDS 2017 31(1):S61-S76 
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Reasons for exclusion: The study did not use simulated data.  

26. Molitor et al. Using Bayesian graphical models to model biases in observational studies 

and to combine multiple sources of data: application of low birth weight and water 

disinfection by-products. Journal of Royal Statistical Society 2009 172:615-637 

Reason for exclusion: The application of simulation was not core to the study.   

27. Nadler et al. Clinicians can accurately assign Apgar scores to video recordings of 

simulated neonatal resuscitations. Simulation in Healthcare: Journal of the Society for 

Medical Simulation 2010 5(4):204-212 

Reasons for exclusion: This is simulation based research.  

28. Osei et al. What happened to the IUD in Ghana? African Journal of Reproductive Health 

2005 9(2):76-91 

Reasons for exclusion: The primary aim is not to quantify bias.  

29. Parry et al. An online tool for investigating clinical decision making. Information for Health 

and Social Care 2004 29(1):75-85 

Reasons for exclusion: This is simulation based research.  

30. Piao et al. Semiparametric model and inference for spontaneous abortion data with a 

cured proportion and biased sampling. Biostatistics 2018 19(1):54-70 

Reasons for exclusion: The primary aim is not to quantify bias. 

31. Radin et al. Maternal recall error in retrospectively reported time-to-pregnancy: an 

assessment and bias analysis. Paediatric and Perinatal Epidemiology 2015 29(6):576-588 

Reasons for exclusion: The application of simulation was not core to this paper. 

32. Rosenbaum. Confidence intervals for uncommon but dramatic responses to treatment. 

Biometrics 2007 63(4):1164-1171 

Reasons for exclusion: This study did not use simulated data.   

33. Rousson et al. Stabilizing cumulative incidence estimation of pregnancy outcome with 

delayed entries. Biometrical Journal 2019 61:1290-1302 

Reasons for exclusion: The application of simulation was not core to the paper.   

 

34. Sallmen et al. Selection bias due to parity-conditioning in studies of time trends in fertility. 

Epidemiology 2015 26(1):85-90 

Reasons for exclusion: The application of simulation was not core to the paper. 

35. Sampson et al. Predictive performance of a gentamicin population pharmacokinetic model 

in neonates receiving full-body hypothermia. Therapeutic Drug Monitoring 2014 36(5):584-

589 

Reasons for exclusion: The primary aim is not to quantify bias.  

36. Shaffer et al. Analysis of neonatal clinical trials with twin births. BMC Medical Research 

Methodology 2009 9(1):12-21. 

Reasons for exclusion: The primary aim is not to quantify bias.   
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37. Slager et al. Stoppage: an issue for segregation analysis. Genetic Epidemiology 2001 

20:328-339 

Reasons for exclusion: The primary aim is not to quantify bias. 

38. Stott-Miller et al. Increased risk of orofacial clefts associated with maternal obesity: case-

control study and Monte Carlo-based bias analysis. Paediatric & Perinatal Epidemiology 

2010 24(5):502-512 

Reasons for exclusion: The primary aim is not to quantify bias.  

39. Takada et al. Practical approaches for design and analysis of clinical trials of infertility 

treatments: crossover designs and the Mantel-Hansel method are recommended. 

Pharmaceutical Statistics: Journal of the Pharmaceutical Industry 2015 14(3):198-204 

Reasons for exclusion: The primary aim is not to quantify bias. 

40. Van Eekelen et al. A comparison of the beta-geometric model with landmarking for 

dynamic prediction of time to pregnancy. Biometrical Journal 2019 62(1):175-190 

Reasons for exclusion: The primary aim is not to quantify bias.   

41. Van Os et al. Influence of cut-off value on prevalence of short cervical length. Ultrasound 

in Obstetrics & Gynecology 2017 49(3):330-336 

Reasons for exclusion: The primary aim is not to quantify bias.  

42. Venkatacharya. An examination of a certain bias due to truncation in the context of simulation 

models of human reproduction. The Indian Journal of Statistics 1969 31(3/4):397-412 

Reasons for exclusion: This primary aim is not the application of simulation to quantify 

bias.  

43. Weinberg et al. Efficiency and bias in studies of early pregnancy loss. Epidemiology 1992 

3(1):17-22 

Reasons for exclusion: The primary aim is not to quantify bias. 

44. Weinberg et al. Pitfalls inherent in retrospective time-to-event studies: the example of time 

to pregnancy. Statistics in Medicine 1993 12:867-879 

Reasons for exclusion: This is a statistical study whose primary aim is not the 

quantification of bias.   

45. Wilbaux et al. Characterizing and forecasting individual weight changes in term neonates. 

Journal of Pediatrics 2016 173:101-107 

Reasons for exclusion: The primary aim is to not to quantify bias. 

46. Williams & Nix. Bias in risk estimation: application to Down's syndrome screening. 

Statistics in Medicine 2002 21(17):2495-2509 

Reasons for exclusion: The primary aim is the demonstration of a method.  

47. Wilson et al. Confounder selection via penalized credible regions. Biometrics 2014 

70(4):852-861 

Reasons for exclusion: The primary aim is not the application of a simulation to quantify 

bias.  
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48. Wilson et al. Bayesian distributed lag interaction models to identify perinatal windows of 

vulnerability in children's health. Biostatistics 2017 18(3):537-552 

Reasons for exclusion: The primary aim is not to quantify bias.   

49. Yland et al. Methodological approaches to analyzing IVF data with multiple cycles.  Human 

Reproduction 2019 34(3):549-557 

Reasons for exclusion: The study did not apply simulation.  

50. Zekavat et al. A computational model of 1,5-AG dynamics during pregnancy. Physiological 

Reports 2017 5(16):13375 

Reasons for exclusion: The primary aim is not to quantify bias.   

51. Zelop et al. Cardiac arrest during pregnancy: ongoing clinical conundrum. American 

Journal of Obstetrics & Gynecology 2018 219(1):51-61 

Reasons for exclusion: The study applied simulation based research.
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Supplementary Table S2.3 Summary of the characteristics of the studies quantifying bias (n=39) in the review. 

 

First author (year of publication) Aim(s) of the 
simulation 

Key findings of the 
simulation 

Author’s conclusion 

 

Olsen (1983) 

 

To demonstrate bias 
resulting from the 
inadequate control of 
exogenous effects in 
gravidity and 
pregnancy order 
specific rates. 

 

 

In the simulated scenarios 
where the number of women 
with low gravidity is high in 
the exposed group, the odds 
ratio will be too low when 
using inadequate statistical 
control. Conversely, high 
numbers of women with high 
gravidity in the exposed 
group will lead to an 
overestimated odds ratio.  

 

 

Stratification based on either 
pregnancy order or gravidity 
alone can occasionally 
produce misleading results.   

 

Baird (1991)  To examine reporting 
errors from collecting 
data on time-to-
pregnancy.  

Substantial power was lost in 
detecting weak exposures yet 
exposures that reduce 
fecundability by 50%, could 
still be detected with 80% 
power in samples of about 
100 women (half of which 
were exposed to a possible 
toxin). 

 

Data from a brief measure of 
time-to-pregnancy can 
produce bias toward the null 
and concomitant loss of 
power due to non-differential 
misclassification. Women with 
short and long times to 
pregnancy had less 
misclassification compared to 
women who required 5-13 
menstrual cycles to conceive.  
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Doody (1993) To investigate the 
potential magnitude of 
error resulting from 
loss to follow up in 
studies of fertility. 

Using a range of clinical 
plausible assumptions, very 
large deviations were noted 
from loss to follow-up in the 
direction of elevated 
cumulative pregnancy rates. 
On a percentage basis, the 
largest effects were seen in 
groups that have the lowest 
monthly fecundity rates and 
the lowest cure ratios.  

 

Loss to follow-up can lead to 
a systematic error in the 
reporting of excess 
pregnancy, raising fecundity 
rates. The later return of 
pregnant drop-outs to the 
study introduced major 
confounding effects in the 
simulation. These effects 
were most evident in women 
with lower fecundity rates, 
lower ‘cured’ women (where 
‘cured’ is fertility restored due 
to treatment), higher drop-
outs, and higher pregnant 
drop-out return rates.  

 

Basso (1995) To evaluate the 
influence of the 
magnitude of bias on 
seasonal patterns of 
reproductive failures.  

Under conditions that were 
more extreme than those 
observed in the original 
cohort, bias related to 
differential pregnancy 
planning was marginal in the 
simulation. 

 

Correcting for seasonal 
patterns in reproductive 
failures may eliminate bias 
associated with the seasonal 
variation in pregnancy 
planning. 

 

Basso (2000) To determine whether 
a differential 
persistence in 
pregnancy attempt is a 
source of bias in time-
to-pregnancy 
estimates.   

Simulating moderate changes 
in planning behaviour 
modified the waiting time 
distributions significantly. 
Persistence in trying to 
become pregnant was age-
related. 

Time-to-pregnancy studies 
are vulnerable to bias due to 
differential compliance in 
pregnancy planning. Relative 
risk measures can be biased 
up to 20% under realistic 
circumstances. 
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Juul (2000) To demonstrate 
selection bias 
associated with 
restriction to completed 
pregnancies in 
retrospective study 
designs. 

 

The simulation showed that 
even if each women’s 
fecundity decreased with age, 
estimation of the effect of age 
may show the opposite trend 
when restricted to completed 
pregnancies.  

 

The different fecundability 
classes (high fecund; low 
fecund; age-dependent) 
becomes differentially 
distorted in the various age 
groups when the sampling 
based on completed 
pregnancies.  

 

Sallmen (2005) To evaluate whether 
contraception and 
induced abortion might 
bias the direct study of 
time trends in fertility. 

Comparing bias across two 
study designs, the strength of 
the bias is weaker in infertility 
study designs compared to 
time-to-pregnancy study 
designs; however the bias 
remains substantial 

 

Dependent on the study 
design (time-to-pregnancy or 
infertility) access to effective 
contraception and elective 
abortion can bias the fertility 
rates, despite no actual 
change in fertility.  

 

Wright (2005)   To examine bias due 
to exposure 
misclassification from 
the use of weighted 
and unweighted 
exposure metrics 
(disinfection by-
product) on fetal 
development.  

 

The simulation showed that 
the attenuation of the true 
effect of the exposure was 
diminished when town mean 
concentrations with large 
variability were down-
weighted.  

 

The weighted town mean 
analysis produced less 
misclassification bias; but at 
the cost of greater variability 
in the effect estimates 
compared to the unweighted 
results.  

 

Basso (2006) 

 

To explore 
confounding bias in the 
observed association 

An observed steep gradient 
of risk for small babies at 
term could be produced by 

A high rate of mortality in 
small babies could be 
explained by the presence of 
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between birth weight 
and neonatal mortality.  

rare confounders, impacting 
associations between fetal 
growth and mortality. 

  

rare and unmeasured 
confounders that underlie the 
association of birth weight 
with mortality.  

 

Howards (2006) To examine 
misclassification bias 
caused by errors in 
gestational age.  

In this simulation, errors in 
gestational age dating did not 
bias Cox regression if 1) the 
error is not differential by 
exposure, 2) differential error 
by exposure is small, or 3) 
due to the tail of the 
distributions. 

  

Pregnancies ending in 
spontaneous abortion are 
more likely to have errors in 
their gestational ages than 
pregnancies ending in live 
birth. However, bias resulting 
from these errors is likely to 
be marginal.  

Nohr (2006) To evaluate two 
methods for 
constructing 
confidence limits for 
estimates of selection 
bias of relative risk 
estimates in perinatal 
cohort studies.   

The effect of differential 
participation was modelled, 
resulting in small estimated 
effect on the risk estimates, 
even after adjustment for 
minimal confounding. 
Although some of the 
confidence intervals were 
wide, the bias was never 
larger than sixteen.  

 

The two methods (logarithm 
of relative odds ratio and non-
parametric bootstrap) used to 
compute confidence intervals 
gave very similar results with 
the simulation study showing 
coverage probabilities were 
close to the 95% nominal 
level. As the logarithm of 
relative odds ratio is simpler 
to implement, it is a valid 
choice when the selection 
bias is modest. 

 

Howards (2007) To assess the 
magnitude of bias 
introduced by fitting 

The simulation suggested 
that bias in the odds ratio will 
exceed 20% when average 

For variables where the 
exposure is associated with 
entry time, logistic regression 
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logistic versus Cox 
models using left-
truncated data. 

gestational age at entry for 
the exposed versus the 
unexposed differs by ten days 
or more. This was observed 
due to possible 
socioeconomic factors, such 
as education and ethnicity. 

 

may be subject to bias. Given 
that left truncation in studies 
may be related to exposure or 
important covariates, Cox 
regression model may be a 
better fit.  

 

Basso (2009) To demonstrate the 
intersection of mortality 
curves due to the 
presence of 
unmeasured 
confounders.  

In this simulation model, the 
addition of a simple exposure 
(one that reduces birth weight 
and independently increases 
mortality) reversed the risk of 
mortality among small babies. 
Furthermore, the model 
explicitly showed how the mix 
of high- and low-risk babies 
within a given stratum of birth 
weight produced lower 
mortality for high-risk babies 
at low birth weights.  

 

The intersection of mortality 
curves can be  explained by 
the presence of confounding 
variables and the unequal mix 
of those variables across the 
birth weight distribution.  

Key (2009) To quantify the effects 
of protection bias from 
accidental pregnancies 
on fecundity in time-to-
pregnancy studies.  

 

To see a change in the trend 
of fecundity, the simulations 
required extreme and 
implausible trends in 
accidental pregnancies and 
unrealistic sample sizes.  

 

Protection bias probably does 
exist, however it is 
quantitatively not very 
important. In any study of 
fecundity trends or cross-
cultural differences, the 
proportion of accidental 
pregnancies can be used to 
screen for the presence of this 
bias.  
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Whitcomb (2009)   To quantify the 
collider-stratification 
bias between smoking 
and neonatal death.  

When birth weight is a proxy 
for other causally related 
variables, inclusion in 
regression models of 
neonatal mortality generates 
an over-adjustment.  

 

This study illustrated that 
when the birth weight–
mortality relation is subject to 
substantial uncontrolled 
confounding, the bias on 
estimates of effect adjusted 
for birthweight may be 
sufficient to yield opposite 
causal conclusions. Therefore 
a factor that posed increased 
risk now appears protective.  

 

Strand (2011)   To quantify fixed 
cohort bias when 
estimating the effects 
of season and 
seasonal exposures on 
birth outcomes.   

Using a fixed cohort does not 
only bias the estimated 
effects of the season (e.g., 
month of conception), but can 
also bias the estimated 
effects of seasonal exposures 
(e.g. air pollution and 
temperature).  

This study demonstrated that 
the size of the fixed cohort 
bias can be substantial, 
causing great changes in the 
months that most affect 
gestational length and 
changed the estimated effect 
of temperature on gestational 
length. 

 

Wilcox (2011) To explore bias 
resulting from 
adjustment when 
gestational age is a 
mediator.  

The simulations 
demonstrated that under 
plausible conditions, reversal 
of exposure-outcome 
associations can occur due to 
collider bias.  

Unmeasured risk factors 
complicate inference about 
the risk of morbidity outcomes 
due to immaturity alone. 
Adjustment for gestational 
age is likely to produce biased 
estimates.  
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Ahrens (2012) To correct for exposure 
misclassification when 
using survival analysis 
with a time-varying 
exposure 

Correction for 
misclassification bias in a 
simulation could result in a 
much greater change in effect 
estimates depending on the 
magnitude and pattern of 
exposure misclassification.  

 

In this simulation, correction 
for misclassification of 
prenatal influenza vaccination 
resulted in an adjusted hazard 
ratio that was slightly higher 
and less precise than the 
conventional analysis. 

 

Hutcheon (2012) To quantify bias from 
conventional 
gestational weight gain 
measures on the 
relationship between 
maternal weight gain 
and risk of preterm 
birth. 

Bias was likely due to a 
positive correlation between 
the adequacy ratio and 
gestational duration, resulting 
from increased differences 
between observed and 
expected weights as the 
pregnancy progressed. 

 

Conventional measures of 
gestational weight gain 
introduce a significant degree 
of bias when assessing the 
relationship between 
gestational weight gain and 
risk of preterm birth ≤ 32 
gestational weeks. 

Schisterman (2013) To demonstrate 
selection bias using 
truncated data in a 
time-to-pregnancy 
study.  

Fixed or variable non-
differential left truncation will 
results in a loss of precision. 
Fixed or variable differential 
left truncation will result in a 
bias either towards or away 
from the null, including a loss 
of precision.  

Null-bias can be induced 
when events occur prior to 
truncation time. When deaths 
occur before the truncation 
time, identifying if these prior 
events are likely associated 
with exposure is important.  

  

Lash319318318319319319319319319319319319319319319318317317316 
(2014) 

To evaluate the 
direction, magnitude, 
and uncertainty in 
estimates as a result of 
misclassification bias 
from pre-pregnancy 

The applications of 
probabilistic-bias analysis to 
frequency-weighted datasets 
using simulation enabled the 
same conceptual correction 
to be applied to each data 

Probabilistic bias analyses 
suggested that the 
association between 
underweight and early 
preterm birth was 
overestimated by the 
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body mass index on 
early preterm births. 

record. This allowed the 
covariates required for 
adjustment to account for 
misclassification. 

conventional approach. 
However, the associations 
between over-weight 
categories and early preterm 
birth were underestimated. 

 

Lisonkova (2015)   To determine whether 
left truncation bias 
could explain the 
paradoxical 
association between 
smoking and pre-
eclampsia. 

The simulation yielded a 
protective effect of pre-
eclampsia given smoking. 
This protective effect of 
smoking was also evident in 
simulations that did not 
require assumptions about 
early pregnancy loss rates. 

 

Left truncation bias due to 
differential rates of early 
pregnancy loss among 
smokers is a reasonable 
explanation for the inverse 
association between maternal 
smoking and pre-eclampsia. 

Arpino (2016) To reduce bias due to 
cluster level 
confounders (hospitals 
and sample size) on 
estimates of caesarean 
section treatment on 
the 5-min Apgar score. 

The simulations suggest that 
when the average cluster size 
is about 100 units, the bias of 
within cluster matching can 
be rather high. With smaller 
clusters of size 50, the results 
were even more negative 
when using pure within-
cluster matching. The 
proposal of a preferential 
within-cluster matching is a 
better alternative in these 
cases.  

 

The preferential within-cluster 
matching approach, 
combining the advantages of 
within-cluster and between 
cluster matching, showed a 
relatively good performance 
both in the presence of big 
and small clusters.  

 

Avanasai (2016) To evaluate the impact 
of bias in estimated 

Using variables for 
uncertainty exposures 

The correlated exposure 
uncertainty can substantially 
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perfluorooctanoate 
drinking-water 
concentrations on the 
association with pre-
eclampsia. 

allowed for specification of 
correlations in exposure 
measurement errors across 
years and individuals with 
shared exposure sources, in 
contrast to standard 
epidemiological models that 
assume independence of the 
measurement errors.  

 

change estimated 
perfluorooctanoate serum 
concentrations, but results 
had only minor impacts on the 
association between 
perfluorooctanoate and pre-
eclampsia. 

Gerdts (2016) To quantify selection 
and misclassification 
bias in reproductive 
abortion-related 
mortality.  

Using simulated data in 
multiple-bias analysis allowed 
for explicit assumptions to 
replace implicit assumptions 
through the quantification of 
selection bias and 
sensitivity/specificity.  

 

After adjustment for selection 
bias, misclassification, and 
random error, there was 
approximately 20% increase 
in the reported proportion of 
abortion related deaths.  

 

Hinkle166 (2016)   

 

To evaluate the impact 
of mis-specifying the 
distributions of weight 
gain and gestational 
age.  

 

Adjusting for gestational age, 
total weight gain will obtain 
unbiased estimates of the 
true association with neonatal 
mortality, assuming no 
unmeasured confounding. 
The simulation model 
permitted flexibility in 
identifying the most 
appropriate relationship 
between potential 
confounders with the 
exposure and outcome. 

Using directed acyclic graphs 
and simulation, gestational 
weight gain is recognised as a 
time-varying exposure. There 
was no true association 
between weight gain and 
neonatal mortality. Adjusting 
for gestational age achieved 
unbiased estimates of the 
association between total 
gestational weight gain and 
neonatal mortality.  
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Luque-Fernandez (2016) To determine if 
selection bias could 
explain the paradoxical 
association between 
smoking pregnancy 
and pre-eclampsia as 
being a consequence.  

Applying a simulated 
probabilistic sensitivity 
analysis, the inverse 
association of smoking on 
pre-eclampsia shifted from a 
28% risk reduction to a non-
significant bias-adjusted 
effect of 22% risk increase of 
pre-eclampsia for smokers 
compared with non-smokers.  

Selection bias is evident from 
two sources. The first is 
conditioning on the collider of 
gestational weeks at delivery. 
The second source is the 
omittance of important 
confounders associated with 
smoking and pre-eclampsia, 
given that some pregnancies 
will not be selected into the 
population because they are 
left truncated.  

 

Mitchell (2016) To investigate bias due 
to effect of gestational 
age on the time-
varying confounder of 
gestational weight gain 
and it’s association 
with preterm delivery.  

 

The results of the simulations 
suggest that the survival 
model with interpolated 
gestational weight gain 
performs extremely well 
under various effect sizes, 
with no discernible bias and 
nominal coverage. When 
weight was measured only 
intermittently, an unbiased 
and precise hazard ratio 
estimate can be achieved. 

 

Hazard ratio estimates can be 
accurately and precisely 
estimated under a survival 
model with linear interpolation 
of weight gain. This study 
emphasised the importance of 
accounting for the 
confounding effect of time. 
Not doing so could result in 
misleading inference.   

 

Kinlaw (2017) To examine the 
sensitivity of Lisonkova 
& Joseph simulation 
study on the inverse 
association between 

The simulation confirmed that 
the previous findings by 
Lisonkova and Joseph (2015) 
are highly dependent on 
assumptions regarding the 

Left truncation does not 
appear to fully explain the 
inverse association between 
smoking and pre-eclampsia. 
Conceptualizing early loss as 
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maternal smoking and 
pre-eclampsia. 

strength of association 
between abnormal 
placentation and pre-
eclampsia. Other factors 
might introduce additional 
biasing pathways from 
smoking to pre-eclampsia.  

 

a competing event for pre-
eclampsia clarifies the 
consequences of analytic 
decisions intended to address 
potential collider bias.  

 

Lefebvre (2017) To investigate 
confounding bias from 
small-for-gestational 
age on birthweight 
related outcomes.  

The simulations highlight that 
in addition to gestational age, 
both outcome variables (low) 
birthweight and small-for-
gestational age must be 
considered in studies that rely 
on these perinatal outcomes.  

 

Small-for-gestational age is 
an absorbing variable: the 
observed association between 
the exposure and small-for-
gestational age solely reflects 
the direct effect of the 
exposure on birth weight.  

Albert (2018) To examine 
measurement error in 
gestational age on 
subsequent risk of 
preterm birth. 

 

Under the correctly specified 
model assuming a Gaussian 
distributed measurement 
error, parameter estimation is 
nearly unbiased. For all, 
except the polynomial terms 
for the regression relating 
gestational age to birth 
weight, the average 
asymptotic standard errors 
are close to the reported 
Monte Carlo estimates. This 
suggests the variance 
estimation for important 
parameter estimates 
performs well.  

The authors showed the 
importance of properly 
accounting for measurement 
error in transition probabilities 
across multiple pregnancies. 
Analyses with the hidden 
Markov models found that the 
odds ratio for smoking on 
preterm birth was 
substantially larger when the 
first pregnancy was not 
preterm. 
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Schnitzer (2018) To assess the extent of 
selection bias due to 
the delayed inclusion 
of pregnancies. 

An advantage of the 
simulation study is the ability 
to investigate the estimation 
bias, standard error, and 
power of the statistical 
estimator.  

Not all sources of bias 
threaten the overall validity of 
the conclusions; it is important 
to investigate the potential 
size of bias in relation to effect 
estimates. While delayed 
pregnancy can produce 
substantial bias in pregnancy 
drug studies, simulation is an 
effective method for producing 
estimates of the size of the 
bias. 

 

Snowden (2018) To examine bias in 
associations from 
studies restricted to 
preterm births are 
potentially biased. 

The simulation provided a 
simple demonstration of 
collider-stratification bias, 
calculated (i.e. gestational 
length is ‘conditioned on’) 
when there is uncontrolled 
mediator-outcome 
confounding, regardless of 
whether gestational length is 
‘restricted on’ or adjusted for 
in a model.  

Among very preterm births, 
nearly all babies are born with 
pathologies that increase the 
risk of adverse outcomes. 
Babies exposed to one factor 
(e.g. pre-eclampsia) are 
compared with babies who 
have a mix of other 
pathologies; thereby, 
selection bias affects studies 
carried out among very 
preterm births. 

 

Stoner (2018) To quantify selection 
bias in the effect of 
immediate versus 
delayed antiretroviral 
therapy initiation on 

Non-differential measurement 
error generally produced bias 
toward the null. In this 
simulation with selection bias, 
increased measurement error 

Selection bias increases with 
1) lower thresholds of 
prematurity when women 
initiate treatment later in 
pregnancy, and 2)  
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preterm birth in HIV-
infected women.   

increased the number of 
preterm births and the 
number who were excluded 
as they delivered prior to 
initiation of treatment. 

measurement error in 
gestational age dating.  

 

Suarez (2018) 

 

To estimate collider-
stratification bias when 
conditioning on live 
birth.  

 

When unmeasured covariates 
are positively associated with 
exposures, confounding is 
introduced into the exposure-
outcome relationship in 
addition to selection bias. 
Bias is thereby no longer 
predictable and is dependent 
on which bias is stronger, 
confounding or selection.  

 

A downward bias was 
observed in the relative risk 
estimates of antidepressant 
use and pre-eclampsia when 
restricted to live birth, but only 
when the covariates of obesity 
was not associated with 
antidepressant use. This 
study demonstrated that if the 
exposure of interest is also a 
strong risk factor for stillbirth, 
substantial bias can result.  

 

Sundermann (2018) To quantify bias from 
misattributed exposure 
time on estimates of 
miscarriage risk.  

Exposures after arrest of 
development are unlikely to 
affect pregnancy outcome. 
Using estimated gestational 
arrest at development instead 
of miscarriage to determine 
time at risk, allowed for more 
precise estimate of the risk of 
pregnancy loss associated 
with time-varying exposures. 

 

Using gestational age at 
arrest of development to 
assign time at risk reduced 
the misclassification bias and 
variance of effect estimates 
for time-varying exposures.  
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Warren (2018) To quantify the impact 
of exposure 
misclassification from 
maternal residential 
mobility during 
pregnancy on defining 
weekly exposure to air 
pollution.   

 

The simulation study showed 
that the distance travelled 
may be a more important 
factor in terms of exposure 
misclassification than the 
proportion of the population 
who move during pregnancy. 
Mobilising larger distances 
would increase the 
geographical variability of 
ambient air pollution and 
therefore lead to larger 
exposure classification.  

 

Even when a larger proportion 
of the pregnant population 
moves residence a short 
distance from their usual 
vicinity between conception 
and delivery, there is relatively 
little impact on critical window 
identification for PM10 and 
term low birth weight. 

 

Wood (2018)   To investigate the 
ability of the propensity 
score to reduce 
confounding bias in the 
presence of non-
differential 
misclassification of 
treatment.  

The simulation demonstrated 
that the impact of sensitivity 
and specificity on bias is 
strongly related to prevalence 
of exposure: as exposure 
prevalence decreases and/or 
outcomes are continuous 
rather than categorical, the 
effect of misclassification is 
magnified.  

 

Propensity score matching 
more often produced 
estimates with worse 
coverage and greater bias, 
although in the presence of 
even moderate 
misclassification, all methods 
(adjustment, weighting, 
matching and stratification) 
increased in bias.  

Eijkemans (2019) To investigate bias in 
study designs that 
estimate the 
cumulative probability 
of pregnancy.   

The simulations showed that 
all four study designs 
(incident cohort; prevalent 
cohort; pregnancy-based; 
current duration approach) 
analysed by proportional 
hazards regression suffered 

Focusing on the effect of 
exposures during the first six 
months of unprotected 
intercourse through censoring 
partly removes bias from 
attenuation.  
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from attenuation bias. 
However, this bias could be 
reduced by censuring 
analysis at six months follow-
up.  
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Supplementary Table S2.4 Checklist for the application of simulation in studies that 

quantify bias using observational data 

Section/subsection Recommendation 

1. Aim 
 

1.1 Purpose of the 

simulation 

Explain the background and clearly state the aim of the simulation 

in the research study. 

1.2 Exposure(s) and 

outcome(s) 

Define the exposure and outcomes that will be included in the 

simulation model.  

1.3 Type(s) of bias State the types of bias that the simulation model will be 

quantifying.   

2. Logic 
 

 

2.1 Causal graphs Describe the simulation logic using causal diagrams. 

2.2 Probability 

formula (optional) 

Provide details on any probability formula that will inform the 

simulation.  

 

3. Data 
 

 

3.1 Population                                      Provide clear details of the base population, including whether an 

original cohort is used or the population is simulated. If the 

population is simulated, describe the assumptions in details that 

inform the dataset.  

3.2 Data sources 
 

Clearly state the data sources that inform the simulation of the 

population and/or the assumptions of the model.  

3.3 Bias parameters Provide the parameters applied to the model, and details of the 

source of these parameters. If using prior published literature, also 

include references.  

3.4 Data generation Report how probability distributions were assigned to the bias 

parameters.  

4. Implementation  
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4.1 Summarise 

analysis of the 

simulation 

 

Clearly state the analysis methods applied to the simulation. 

Details should include all methods, results, diagnostics and code 

used during the implementation of the model.  

 

4.2 Report results of 

simulation 

Restate the assumptions of the simulation and clearly report the 

results, focusing on whether the model explains the reported 

estimate.  

5. Reproducibility  

5.1 Model 

assumptions 

If assumptions of the model are summarised in the methods 

section, use online appendices to elaborate on details, including 

probability formulas.  

5.2 Software  Provide a clear statement of the software used to conduct the 

simulation.  

5.3 Code sharing 
 

Make the code available, preferably online with the published 

paper.   
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Appendix E Supplementary material for Publication Two 

 

 
 

Uncontrolled common causes of complications and preterm birth 
 

 

 

 

Complications Pregnancy 1      Preterm birth pregnancy 2 

[includes complications] 

      

           

      

 

 

Obesity    [Common causes of complications and preterm birth] 

 

Supplementary Figure S3.1. This causal diagram illustrates the potential causal relationship 

between complications in first pregnancy and subsequent preterm birth. Obesity represents a 

simulated confounder. Second pregnancy complications are included in the outcome of 

preterm birth to prevent collider bias that would be induced by conditioning on them when 

estimating the effect of first pregnancy complications on subsequent preterm birth. [variable] 

represents the adjustment of known confounders. Uncontrolled common causes of 

complications and preterm birth are not included in the model. 
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Supplementary Table S3.1 Prevalence of complications in second pregnancy in the subsequent risk of preterm birth  

1st pregnancy 2nd pregnancy 

 

 

 Preterm birth with no complicationsa Complicated preterm birth including 

primary  complicationa 

Complicated preterm birth excluding 

primary complicationa 

 

Complication 

status  

N(%) N(%) N(%)   

 Yes No Unknown Yes No Unknown Yes No Unknown Total 

  

Referenceb 

 

3,897 (3.7) 103,240 (95.5) 901 (0.8) - - - - - - 108,128 

Pre-eclampsia - - - 252 (0.2) 103,240 (95.5) 4,636 (4.3) 649 (0.6) 103,240 (95.5) 4,239 (3.9) 108,128 

Placental 

abruption 

- - - 154 (0.1) 103,240 (95.5) 4,734 (4.4) 742 (0.7) 103,240 (95.5) 4,146 (3.8) 108,128 

Small-for-

gestational 

age 

- - - 145 (0.1) 103,240 (95.5) 4,743 (4.4) 754 (0.7) 103,240 (95.5) 4,134 (3.8) 108,128 

Perinatal 

death 

- - - 467 (0.4) 103,240 (95.5) 4,421 (4.1) 434 (0.4) 103,240 (95.5) 4,454 (4.1) 108,128 

  

Pre-

eclampsia: 

  

PE02c 1,315 (19.8) 5,175 (77.8) 160 (2.4) 77 (1.2) 5,175 (77.8) 1,398 (21) 83 (1.2) 5,175 (77.8) 1,392 (20.9) 6,650 

PE03d 225 (6.9) 3,386 (91.3) 66 (1.8) 20 (0.5) 3,386 (91.3) 301 (8.1) 46 (1.2) 3,386 (91.3) 275 (7.4) 3,707 
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PE04e 185 (4.4) 3,839 (91.8) 158 (3.8) 115 (2.7) 3,839 (91.8) 228 (5.5) 43 (1) 3,839 (91.8) 300 (7.2) 4,182 

PE05f 201 (17.9) 855 (76) 69 (6.1) 21 (1.9) 855 (76) 249 (22.1) 48 (4.3) 855 (76) 222 (19.7) 1,125 

PE06g 174 (11.9) 1054 (72.1) 234 (16) 208 (14.2) 1054 (72.1) 200 (13.7) 26 (1.8) 1054 (72.1) 382 (26.1) 1,462 

Missing 0 (0) 215 (98.2) * 0 (0) 215 (98.2) * 0 (0) 215 (98.2) * 219 

  

Placental 

abruption: 

       

PA02c 1,469 (18.4) 6,135 (76.9) 370 (4.6) 31 (0.4) 6,135 (76.9) 1,808 (22.7) 338 (4.2) 6,135 (76.9) 1,501 (18.8) 7,974 

PA03d 432 (5.5)  7,235 (91.7) 221 (2.8) 19 (0.2)  7,235 (91.7) 634 (8) 199 (2.5)  7,235 (91.7) 454 (5.8) 7,888 

PA04e 8 (3.7) 203 (93.5)  6 (2.8) * 203 (93.5)  10 (4.6) * 203 (93.5)  12 (5.5) 217 

PA05f 174 (16.7) 794 (76.1) 76 (7.3) 9 (0.9) 794 (76.1) 241 (23.1) 67 (6.4) 794 (76.1) 183 (17.5) 1,044 

PA06g 45 (20.6) 156 (71.6) 17 (7.8) * 156 (71.6) 59 (27.1) 14 (6.4) 156 (71.6) 48 (22) 218 

Missing * * * 0 (0) * * * * * * 

        

Small-for-

gestational 

age: 

       

SGA02c 1,469 (18.4) 6,135 (76.9) 370 (4.6) 27 (0.3) 6,135 (76.9) 1,812 (22.7) 342 (4.3) 6,135 (76.9) 1,497 (18.8) 7,974 

SGA03d 215 (4.6) 4,296 (92.3) 143 (3.1) 9 (0.2) 4,296 (92.3) 349 (7.5) 131 (2.8) 4,296 (92.3) 227 (4.9) 4,654 

SGA04e 225 (6.6) 3,078 (90.9) 84 (2.5) 25 (0.7) 3,078 (90.9) 284 (8.4) 59 (1.7) 3,078 (90.9) 250 (7.4) 3,387 

SGA05f 166 (19.1) 654 (75.1) 51 (5.9) 5 (0.6) 654 (75.1) 212 (24.3) 46 (5.3) 654 (75.1) 171 (19.6) 871 

SGA06g 55 (14) 296 (75.1) 43 (10.9) 18 (4.6) 296 (75.1) 80 (20.3) 25 (6.3) 296 (75.1) 73 (18.5) 394 

Missing 0 (0) 65 (100) 0 (0) 0 (0) 65 (100) 0 (0) 0 (0) 65 (100) 0 (0) 65 

  

Perinatal 

death: 
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PD02c 1,469 (18.4) 6,135 (76.9) 370 (4.6) 69 (0.9) 6,135 (76.9) 1,770 (22.2) 300 (3.8) 6,135 (76.9) 1,539 (19.3) 7,974 

PD03d 401 (5.1) 7,172 (92) 222 (2.8) 52 (0.7) 7,172 (92) 571 (7.3) 167 (2.1) 7,172 (92) 456 (5.8) 7,795 

PD04e 39 (12.6) 266 (85.8) 5 (1.6) * 266 (85.8) 42 (13.5) * 266 (85.8) 41 (13.2) 310 

PD05f 71 (17.7) 294 (73.1) 37 (9.2) 13 (3.2) 294 (73.1) 95 (23.6) 24 (6) 294 (73.1) 84 (20.9) 402 

PD06g 150 (17.4) 657 (76) 57 (6.6) 22 (2.5) 657 (76) 185 (21.4) 35 (4.1) 657 (76) 172 (19.9) 864 

Missing 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 

           

a complications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; b uncomplicated term birth; c  
uncomplicated preterm birth; d term birth without primary complication; e term birth with primary complication; f preterm birth without primary 
complication; g preterm birth with primary complication  
*observations with less than 5 counts were not reported 
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Supplementary Table S3.2 Relative risk for the association between complications in first pregnancy and preterm birth in the second 

pregnancy  

1st pregnancy 2nd pregnancy 

 

 

Preterm birth with no complicationsa  Complicated preterm birth including 

primary  complicationa 

Complicated preterm birth excluding 

primary complicationa 

Complication 

status  

Unadjusted RR 

(CI) 

Adjusted* RR 

(CI) 

Unadjusted RR 

(CI) 

Adjusted* RR (CI) Unadjusted RR (CI) Adjusted* RR (CI) 

 

No complication 

 

Referenceb 

 

Referenceb  

 

Referenceb  

 

Referenceb  

 

Referenceb  

 

Referenceb  

 

Pre-eclampsia: 

      

PE02c 5.45 (5.15 to 5.77) 5.16 (4.87 to 5.46) 6.02 (4.67 to 7.76) 5.38 (4.52 to 7.53) 2.53 (2.01 to 3.17) 2.37 (1.89 to 2.97) 

PE03d 1.88 (1.67 to 2.13) 1.67 (1.48 to 1.89) 2.41 (1.53 to 3.80) 2.27 (1.43 to 3.58) 2.15 (1.59 to 2.89) 1.83 (1.35 to 2.47) 

PE04e 1.24 (1.07 to 1.43) 1.22 (1.05 to 1.41) 11.94 (9.60 to 

14.86) 

11.87 (9.52 to 

14.79) 

1.77 (1.30 to 2.41) 1.75 (1.29 to 2.38) 

PE05f 5.12 (4.50 to 5.82) 4.35 (3.80 to 4.98) 9.85 (6.34 to 15.29) 10.10 (6.38 to 

15.99) 

8.51 (6.39 to 11.32) 6.81 (5.06 to 9.16) 

PE06g 3.81 (3.31 to 4.39) 3.70 (3.21 to 4.27) 67.69 (56.82 to 

80.63) 

64.04 (53.58 to 

76.55) 

3.85 (2.62 to 5.68) 3.67 (2.49 to 5.42) 

       

Placental 

abruption: 

      



   

 

 
 

Appendices  219 
 

PA02c 5.20 (4.92 to 5.49) 4.93 (4.66 to 5.22) 3.83 (2.30 to 4.96) 3.25 (2.21 to 4.78) 7.32 (6.45 to 8.30) 6.99 (6.15 to 7.94) 

PA03d 1.52 (1.38 to 1.67) 1.42 (1.29 to 1.56) 1.76 (1.09 to 2.83) 1.62 (1.00 to 2.61) 3.75 (3.21 to 4.38) 3.57 (3.05 to 4.17) 

PA04e 1.02 (0.52 to 2.01) 1.00 (0.51 to 1.98) 12.97 (5.85 to 

34.68) 

11.79 (4.37 to 

31.83) 

1.37 (0.34 to 5.44) 1.35 (0.34 to 5.37) 

PA05f 4.83 (4.21 to 5.55) 4.11 (3.56 to 4.75) 7.52 (3.86 to 14.68) 6.39 (3.16 to 12.92) 10.91 (5.57 to 13.87) 10.12 (7.86 to 

13.02) 

PA06g 6.02 (4.65 to 7.80) 5.40 (4.16 to 7.01) 12.67 (4.08 to 

39.29) 

10.47 (3.37 to 

32.51) 

11.54 (6.95 to 19.16) 10.80 (6.49 to 

18.00) 

       

Small-for-

gestational age: 

      

SGA02c 5.20 (4.92 to 5.49) 4.94 (4.67 to 5.22) 3.12 (2.07 to 4.71) 2.89 (1.92 to 4.35) 7.28 (6.43 to 8.25) 7.00 (6.16 to 7.94) 

SGA03d 1.28 (1.12 to 1.47) 1.26 (1.10 to 1.44) 1.49 (0.76 to 2.92) 1.51 (0.77 to 2.97) 4.08 (3.40 to 4.90) 4.02 (3.34 to 4.83) 

SGA04e 1.83 (1.61 to 2.09) 1.62 (1.42 to 1.84) 5.74 (3.76 to 8.77) 4.30 (2.78 to 6.66) 2.59 (1.99 to 3.37) 2.39 (1.83 to 3.11) 

SGA05f 5.44 (4.74 to 6.26) 4.63 (4.00 to 5.36) 5.41 (2.23 to 13.15) 5.73 (2.33 to 14.09) 9.06 (6.79 to 12.09) 8.18 (6.07 to 11.03) 

SGA06g 4.21 (3.30 to 5.38) 3.66 (2.86 to 4.69) 40.87 (25.36 to 

65.86) 

32.68 (19.87 to 

53.74) 

10.74 (7.32 to 15.76) 9.69 (6.60 to 14.25) 

       

Perinatal death:       

PD02 c 5.20 (4.92 to 5.49) 4.93 (4.67 to 5.22) 2.47 (1.92 to 3.18) 2.34 (1.82 to 3.00) 11.14 (9.63 to 12.87) 10.69 (9.23 to 

12.39) 

PD03d 1.42 (1.29 to 1.57) 1.34 (1.21 to 1.48) 1.60 (1.20 to 2.13) 1.52 (1.14 to 2.02) 5.44 (4.55 to 6.49) 5.14 (4.30 to 6.14) 

PD04e 3.44 (2.56 to 4.62) 3.00 (2.22 to 4.05) 1.66 (0.42 to 6.61) 1.29 (0.32 to 5.17) 2.66 (0.86 to 8.24) 2.80 (0.91 to 8.61) 

PD05f 5.23 (4.24 to 6.46) 4.65 (3.76 to 5.76) 9.40 (5.48 to 16.13) 8.09 (4.72 to 13.85) 18.03 (12.13 to 

26.79) 

16.19 (10.89 to 

24.07) 



   

 

 
 

Appendices  220 
 

PD06g 5.00 (4.31 to 5.79) 4.22 (3.61 to 4.93) 7.20 (4.72 to 10.96) 5.23 (3.36 to 8.14) 12.08 (8.63 to 16.91) 12.72 (8.90 to 

18.18) 

a complications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; b uncomplicated term birth; c  
uncomplicated preterm birth; d term birth without primary complication; e term birth with primary complication; f preterm birth without primary 
complication; g preterm birth with primary complication  
*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, inter-
pregnancy interval, and change of father between first and second birth. 
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Supplementary Table S3.3 E-values for unmeasured confounding of the relative risk of subsequent preterm birth from complications 
in first pregnancy 

 
 1st pregnancy 

 

2nd pregnancy 

 

 Preterm birth with no complicationsa  

  

Complicated preterm birth including 

primary complicationa 

Complicated preterm birth excluding 

primary complicationa 

Complication 

status 

E-value 

unadjusted RR 

(lower 95% CI) 

E-value adjusted* 

RR  (lower 95% 

CI) 

E-value 

unadjusted RR 

(lower 95% CI) 

E-value adjusted* 

RR  (lower 95% 

CI) 

E-value 

unadjusted RR 

(lower 95% CI) 

E-value 

adjusted* RR  

(lower 95% CI) 

No complication Referenceb Referenceb  Referenceb  Referenceb  Referenceb  Referenceb  

Pre-eclampsia:       

PE02b 10.37 (9.77) 9.78 (9.20) 11.52 (8.81) 11.14 (8.50) 4.49 (3.44) 4.18 (2.19) 

PE03c 3.17 (2.72) 2.73 (2.32) 4.26 (2.43) 3.96 (2.22) 3.71 (2.57) 3.05 (2.03) 

PE04d 1.78 (1.35) 1.73 (1.29) 23.38 (18.69) 23.22 (18.53) 2.94 (1.93) 2.89 (1.89) 

PE05f 9.71 (8.48) 8.17 (7.07) 19.18 (12.16) 19.68(12.23) 16.50 (12.27) 13.09 (9.59) 

PE06g 7.08 (6.07) 6.87 (5.58) 134.87 (113.18) 127.58 (106.65) 7.17 (4.67) 6.80 (4.41) 

       

Placental 

abruption: 

      

PA02b 9.86 (9.31) 9.34 (8.80) 6.21 (4.02) 5.95 (3.84) 14.11 (12.38) 13.49 (11.78) 

PA03c 2.40(2.10) 2.19 (1.90) 2.91 (1.41) 2.61 (1.0) 6.96 (5.88) 6.59 (5.55) 
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PA04d 1.16 (1) 1.04 (1.0) 25.44 (9.18) 23.08 (8.20) 2.08 (1.0) 2.03 (1.0) 

PA05f 9.14 (7.89) 7.69 (6.59) 14.53 (7.17) 12.27 (5.78) 21.30 (16.62) 19.73 (15.21) 

PA06g 11.52 (8.76) 10.27 (7.78) 24.83 (7.63) 20.43 (6.20) 22.57 (13.38) 21.10 (12.45) 

       

Small-for-

gestational age: 

      

SGA02b 9.86 (9.31) 9.34 (8.81) 5.70 (3.57) 5.22 (3.23) 14.04 (12.33) 13.47 (11.81) 

SGA03c 1.88 (1.49) 1.84 (1.44) 2.35 (1) 2.39 (1) 7.63 (6.25) 7.50 (6.14) 

SGA04d 3.07 (2.60) 2.62 (2.20) 10.96 (7.00) 8.07 (5.00) 4.62 (3.40) 4.21 (3.06) 

SGA05f 10.36 (8.94) 8.73 (7.47) 10.29 (3.88) 10.94 (4.10) 17.61 (13.07) 15.85 (11.61) 

SGA06g 7.89 (6.05) 6.78 (5.16) 81.24 (50.3) 64.86 (39.24) 20.97 (14.13) 18.87 (12.67) 

       

Perinatal death:       

PD02b 9.86 (9.31) 9.34 (8.80) 4.38 (3.25) 4.10 (3.04) 21.76 (18.75) 20.87 (17.94) 

PD03c 2.20 (1.90) 2.02 (1.72) 2.58 (1.69) 2.40 (1.54) 10.35 (8.58) 9.75 (8.06) 

PD04d 6.34 (4.56) 5.45 (3.87) 2.70 (1) 1.90 (1) 4.77 (1) 5.04 (1) 

PD05f 9.94 (7.94) 8.78 (7.00) 18.29 (10.44) 15.66 (8.91) 35.55(23.77) 31.87 (21.26) 

PD06g 9.47 (8.09) 7.91 (6.68) 13.87 (8.92) 9.93 (6.17) 23.65 (16.75) 24.93(17.28) 

a complications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; b uncomplicated term birth; c  

uncomplicated preterm birth; d term birth without primary complication; e term birth with primary complication; f preterm birth without primary 

complication; g preterm birth with primary complication  

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, 

inter-pregnancy interval, and change of father between first and second birth. 
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Supplementary Table S3.4 Relative risk for the association between complications in first pregnancy and preterm birth in the second 
pregnancy after simulating obesity 

1st pregnancy 2nd pregnancy 

 

 

Preterm birth with no 

complicationsa  

  

Complicated preterm birth including 

primary  complicationa 

Complicated preterm birth excluding 

primary complicationa 

Complication 

status  

Adjusted* RR 

(CI) 

Simulation 

adjusted* RR 

(CI) 

Adjusted* RR (CI) Simulation 

adjusted* RR (CI) 

Adjusted* RR (CI) Simulation 

adjusted* RR (CI) 

 

No complication 

 

Referenceb 

 

Referenceb  

 

Referenceb  

 

Referenceb  

 

Referenceb  

 

Referenceb  

Pre-eclampsia:       

PE02c 5.16 (4.87 to 

5.46) 

5.16 (4.87 to 

5.46) 

5.83 (4.52 to 7.53) 5.83 (4.51 to 7.52) 2.37 (1.89 to 2.97) 2.37 (1.89 to 2.97) 

PE03d 1.67 (1.48 to 

1.89) 

1.67 (1.48 to 

1.89) 

2.27 (1.43 to 3.58) 2.36 (1.43 to 3.58) 1.83 (1.35 to 2.47) 1.83 (1.35 to 2.47) 

PE04e 1.22 (1.05 to 

1.41) 

1.22 (1.05 to 

1.41) 

11.87 (9.52 to 14.79) 11.90 (9.55 to 14.84) 1.75 (1.29 to 2.38) 1.75 (1.29 to 2.38) 

PE05f 4.35 (3.80 to 

4.98) 

4.35 (3.80 to 

4.98) 

10.10 (6.38 to 15.99) 10.09 (6.38 to 15.97) 6.81 (5.06 to 9.16) 6.80 (5.06 to 9.16) 

PE06g 3.70 (3.21 to 

4.27) 

3.70 (3.21 to 

4.27) 

64.04 (53.58 to 

76.55) 

63.87 (53.43 to 

76.35) 

3.67 (2.49 to 5.42) 3.67 (2.49 to 5.41) 
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Placental 

abruption: 

      

PA02c 4.93 (4.66 to 

5.22) 

4.93 (4.66 to 

5.22) 

3.25 (2.21 to 4.78) 3.24 (2.20 to 4.77) 6.99 (6.15 to 7.94) 6.98 (6.15 to 7.93) 

PA03d 1.42 (1.29 to 

1.56) 

1.42 (1.29 to 

1.56) 

1.62 (1.00 to 2.61) 1.62 (1.00 to 2.62) 3.57 (3.05 to 4.17) 3.57 (3.05 to 4.17) 

PA04e 1.00 (0.51 to 

1.98) 

1.00 (0.51 to 

1.98) 

11.79 (4.37 to 31.83) 11.98 (4.45 to 32.27) 1.35 (0.34 to 5.37) 1.35 (0.34 to 5.39) 

PA05f 4.11 (3.56 to 

4.75) 

4.11 (3.56 to 

4.75) 

6.39 (3.16 to 12.92) 6.33 (3.13 to 12.80) 10.12 (7.86 to 13.02) 10.11 (7.86 to 13.01) 

PA06g 5.40 (4.16 to 

7.01) 

5.40 (4.16 to 

7.01) 

10.47 (3.37 to 32.51) 10.50 (3.39 to 32.59) 10.80 (6.49 to 18.00) 10.84 (6.50 to 18.05) 

       

Small-for-

gestational age: 

      

SGA02c 4.94 (4.67 to 

5.22) 

4.94 (4.67 to 

5.22) 

2.89 (1.92 to 4.35) 2.89 (1.92 to 4.35) 7.00 (6.16 to 7.94) 6.99 (6.16 to 7.93) 

SGA03d 1.26 (1.10 to 

1.44) 

1.26 (1.10 to 

1.44) 

1.51 (0.77 to 2.97) 1.50 (0.76 to 2.96) 4.02 (3.34 to 4.83) 4.03 (3.35 to 4.84) 

SGA04e 1.62 (1.42 to 

1.84) 

1.62 (1.42 to 

1.84) 

4.30 (2.78 to 6.66) 4.31 (2.78 to 6.67) 2.39 (1.83 to 3.11) 2.38 (1.83 to 3.11) 

SGA05f 4.63 (4.00 to 

5.36) 

4.63 (4.00 to 

5.36) 

5.73 (2.33 to 14.09) 5.72 (2.33 to 14.06) 8.18 (6.07 to 11.03) 8.19 (6.07 to 11.04) 

SGA06g 3.66 (2.86 to 

4.69) 

3.66 (2.86 to 

4.69) 

32.68 (19.87 to 

53.74) 

32.89 (19.98 to 

54.13) 

9.69 (6.60 to 14.25) 9.64 (6.56 to 14.18) 

       

Perinatal death:       
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PD02 c 4.93 (4.67 to 

5.22) 

4.93 (4.67 to 

5.22) 

2.34 (1.82 to 3.00) 2.34 (1.82 to 3.00) 10.69 (9.23 to 12.39) 10.68 (9.21 to 12.37) 

PD03d 1.34 (1.21 to 

1.48) 

1.34 (1.21 to 

1.48) 

1.52 (1.14 to 2.02) 1.52 (1.14 to 2.02) 5.14 (4.30 to 6.14) 5.14 (4.30 to 6.15) 

PD04e 3.00 (2.22 to 

4.05) 

3.00 (2.22 to 

4.05) 

1.29 (0.32 to 5.17) 1.29 (0.32 to 5.17) 2.80 (0.91 to 8.61) 2.81 (0.91 to 8.66) 

PD05f 4.65 (3.76 to 

5.76) 

4.65 (3.76 to 

5.76) 

8.09 (4.72 to 13.85) 8.09 (4.72 to 13.85) 16.19 (10.89 to 

24.07) 

16.14 (10.87 to 

24.00) 

PD06g 4.22 (3.61 to 

4.93) 

4.22 (3.61 to 

4.93) 

5.23 (3.36 to 8.14) 5.22 (3.36 to 8.14) 12.72 (8.90 to 18.18) 12.71 (8.90 to 18.17) 

a complications included are pre-eclampsia, placental abruption, small-for-gestational age and stillbirth; b uncomplicated term birth; c  

uncomplicated preterm birth; d term birth without primary complication; e term birth with primary complication; f preterm birth without primary 

complication; g preterm birth with primary complication  

*Adjusted for ethnicity, maternal age at first-birth, smoking status at first-birth, socioeconomic status at first-birth, time period of first-birth, 

inter-pregnancy interval, and change of father between first and second birth. 
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Appendix F Supplementary material for Publication Three 

 

 

 

  

Supplementary Figure S4.1 Directed acyclic graph (DAG) of the structure of collider-stratification bias with 

interaction between the exposure and the unmeasured confounder U. The exposure maternal age A affects 

early pregnancy loss L, which is also affected by the independent risk factor U, inducing a back-door pathway 

between exposure A and the outcome of stillbirth S. When there is an interaction between A and U (depicted 

by dashed line), there is an increase in the prevalence of early pregnancy loss L for those that are exposed 

to both the exposure maternal age A and the unmeasured confounder U.  
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Supplementary Figure S4.2 Directed acyclic graph (DAG) of the structure of collider-stratification bias. The 

exposure maternal age A affects pregnancy loss L, which is also affected by the independent risk factor U, 

inducing a back-door pathway between exposure A and the outcome of stillbirth S. Here, there is a true effect 

of maternal age A on the outcome of stillbirth S.   
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Supplementary Figure S4.3 Risk of stillbirth according to maternal age based on a non-parametric 

regression model with locally weighted scatterplot smoothing to capture the nonlinearity of the association 

between maternal age and the outcome of stillbirth. 
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Supplementary Figure S4.4 Collider-stratification bias of ORAS|L=0 under the true null effect of maternal age on stillbirth for women aged 35-39 years. Average 

odds ratio assuming with πL= 0.20 and varying input parameters for πU and the selection effects (ORUL and ORUS). Each scenario was simulated 100 times.  
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Supplementary Figure S4.5 Average odds ratio (OR) for the association between the exposure maternal age A and the outcome of stillbirth S over 100 

simulations assuming a true null effect the and input of one unmeasured confounder U by each maternal year.  
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Supplementary Table S4.1 Average odds ratio (OR) and 95% simulation intervals (SIs) for the association between the exposure maternal age A and the 

outcome of stillbirth S over 100 simulations assuming a true null effect and the input of one unmeasured confounder U.  

Selection effects Average OR for maternal age on stillbirth (95% SI) 

πL πU ORUL and ORUS 20-24 25-29 30-34 35-39 40+ 

        

0.128 0.15 1.5 1.00 (0.98 to 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.01) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.00) 

  2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.96 (0.94 to 0.98) 

  3.0 1.00 (0.99 to 1.02) 1.00 (0.99 to 1.01) Ref 0.98 (0.98 to 0.99) 0.94 (0.92 to 0.96) 

        

 0.30 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 to 0.99) 

  2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.94 (0.92 to 0.96) 

  3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.97 to 0.99) 0.92 (0.90 to 0.94) 

        

 0.50 1.5 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.01) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 to 0.99) 

  2.5 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.94 (0.92 to 0.96) 

  3.0 1.00 (1.00 to 1.01) 1.01 (1.00 to 1.01) Ref 0.98 (0.98 to 0.99) 0.93 (0.91 to 0.94) 

        

0.20 0.15 1.5 0.99 (0.98 to 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01) 

  2.0 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00) 
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  2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.96 (0.94 to 0.99) 

  3.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.98 (0.97 to 0.99) 0.95 (0.93 to 0.97) 

        

 0.30 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01) 

  2.0 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.97 (0.94 to 0.99) 

  2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.95 (0.92 to 0.97) 

  3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.97 to 0.99) 0.93 (0.91 to 0.95) 

        

 0.50 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.01) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 to 0.99) 

  2.5 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.95 (0.93 to 0.98) 

  3.0 1.00 (0.99 to 1.01) 1.01 (1.00 to 1.01) Ref 0.98 (0.97 to 0.99) 0.93 (0.91 to 0.95) 

        

0.30 0.15 1.5 1.00 (0.98 to 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.02) 0.99 (0.96 to 1.02) 

  2.0 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.01) 

  2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.01) 0.96 (0.94 to 0.99) 

  3.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.95 (0.93 to 0.98) 

        

 0.30 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.02) 

  2.0 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.75 to 1.26) 

  2.5 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.95 (0.92 to 0.98) 

  3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.97 to 0.99) 0.94 (0.91 to 0.96) 
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 0.50 1.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.02) 1.00 (0.97 to 1.03) 

  2.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01) 

  2.5 1.00 (0.99 to 1.01) 1.01 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.96 (0.94 to 0.99) 

  3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.97 to 0.98) 0.94 (0.92 to 0.96) 

ORAS|L=0 odds ratio for the association between the exposure maternal age A and the outcome stillbirth S when early pregnancy loss L is set to 0; SI simulation 

intervals; πL early pregnancy loss; πU unmeasured confounder; ORUL odds ratio for the association between the unmeasured confounder U and early 

pregnancy loss L; ORUS odds ratio for the association between the unmeasured confounder U and stillbirth S 
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Supplementary Table S4.2 Average odds ratio (OR) and 95% simulation intervals (SI) for the biased association between maternal age A and stillbirth S over 

100 simulations for one single unmeasured U, assuming a true null effect of maternal age A on stillbirth S and an interaction between U and the exposure of 

maternal age A.  

Selection effects Average OR for maternal age on stillbirth (95% SI) 

πL πU ORUL, ORUS ORAU 20-24 25-29 30-34 35-39 40+ 

        

0.128 0.15 1.5 0.99 (0.98 to 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.01) 

  2.0 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00) 

  2.5 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 to 0.99) 

  3.0 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.96 (0.93 to 0.97) 

        

 0.30 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.02) 

  2.0 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00) 

  2.5 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (1.00 to 1.01) 0.96 (0.94 to 0.98) 

  3.0 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.95 (0.93 to 0.97) 

        

 0.50 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 1.00  (0.98 to 1.02) 

  2.0 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.96 to 1.00) 

  2.5 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (1.00 to 1.01) 0.97 (0.95 to 0.99) 

  3.0 0.99 (0.98 to 1.00) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.95 (0.93 to 0.97) 

        

0.20 0.15 1.5 0.99 (0.98 to 1.01) 0.99 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.97 to 1.01) 
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  2.0 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.00) 

  2.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.96 (0.93 to 0.98) 

  3.0 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 0.99 (0.98 to 1.00) 0.94 (0.92 to 0.96) 

        

 0.30 1.5 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01) 

  2.0 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 to 0.99) 

  2.5 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.94 (0.92 to 0.96) 

  3.0 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 0.99 (0.98 to 1.00) 0.92 (0.90 to 0.94) 

        

 0.50 1.5 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.99 (0.96 to 1.01) 

  2.0 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.97 (0.95 to 0.99) 

  2.5 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.94 (0.92 to 0.96) 

  3.0 0.99 (0.98 to 1.00) 1.00 (0.99 to 1.00) Ref 0.99 (0.98 to 1.00) 0.92 (0.90 to 0.94) 

        

0.30 0.15 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.01) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.96 (0.93 to 0.99) 

  2.5 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.93 (0.90 to 0.96) 

  3.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.98 (0.97 to 0.99) 0.90 (0.88 to 0.92) 

        

 0.30 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.00) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.00) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.94 (0.92 to 0.97) 

  2.5 1.00 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 0.99 (0.98 to 1.00) 0.91 (0.88 to 0.93) 

  3.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 0.98 (0.97 to 0.99) 0.87 (0.84 to 0.89) 
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 0.50 1.5 0.99 (0.98 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.98 (0.95 to 1.00) 

  2.0 1.00 (0.99 to 1.01) 1.00 (0.99 to 1.01) Ref 1.00 (0.99 to 1.01) 0.95 (0.92 to 0.97) 

  2.5 1.00 (0.99 to 1.01) 1.01 (1.00 to 1.01) Ref 0.99 (0.98 to 1.00) 0.92 (0.89 to 0.94) 

  3.0 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) Ref 0.98 (0.98 to 0.99) 0.88 (0.86 to 0.90) 

ORAS|L=0 odds ratio for the association between the exposure maternal age A and the outcome stillbirth S when early pregnancy loss L is set to 0; SI simulation 

intervals; πL early pregnancy loss; πU unmeasured confounder; ORUL odds ratio for the association between the unmeasured confounder U and early 

pregnancy loss L; ORUS odds ratio for the association between the unmeasured confounder U and stillbirth S; ORAU odds ratio for the association between the 

advanced maternal age A and the unmeasured confounder U 
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Supplementary Table S4.3 Average odds ratio (OR) and 95% simulation intervals (SIs) for the association between the exposure maternal age A and the 

outcome of stillbirth S over 100 simulations assuming a true effect and the input of one unmeasured confounder U.  

Selection effects Average OR for maternal age on stillbirth (95% SI) 

 20-24 25-29 30-34 35-39 40+ 

      

Original Cohort (OR 95% CI) 1.16 (1.05 to 1.29) 0.98 (0.90 to 1.17) Ref 1.23 (1.11 to 1.37) 1.74 (1.42 to 2.12) 

        

πL πU ORUL and ORUS 20-24 25-29 30-34 35-39 40+ 

        

0.128 0.15 1.5 0.94 (0.93 to 0.95) 0.94 (0.93 to 0.95) Ref 1.21 (1.20 to 1.23) 1.71 (1.67 to 1.74) 

  2.0 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.22 to 1.35) 1.69 (1.66 to 1.71) 

  2.5 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.20 (1.19 to 1.22) 1.67 (1.64 to 1.69) 

  3.0 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96) Ref 1.19 (1.18 to 1.21) 1.62 (1.60 to 1.65) 

        

 0.30 1.5 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.22) 1.69 (1.66 to 1.72) 

  2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.95) Ref 1.21 (1.19 to 1.22) 1.67 (1.64 to 1.69) 

  2.5 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.21) 1.62 (1.60 to 1.65) 

  3.0 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96) Ref 1.19 (1.18 to 1.20) 1.58 (1.55 to 1.60) 

        

 0.50 1.5 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.67 (1.65 to 1.71) 

  2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.21 (1.20 to 1.22) 1.66 (1.64 to 1.69) 

  2.5 0.95 (0.94 to 0.96) 0.95 (0.95 to 0.96) Ref 1.20 (1.19 to 1.21) 1.61 (1.59 to 1.63) 
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  3.0 0.95 (0.94 to 0.96) 0.95 (0.95 to 0.96) Ref 1.19 (1.18 to 1.20) 1.57 (1.55 to 1.59) 

        

0.20 0.15 1.5 0.94 (0.93 to 0.95) 0.94 (0.93 to 0.95) Ref 1.21 (1.20 to 1.23) 1.70 (1.67 to 1.74) 

  2.0 0.94 (0.93 to 0.95) 0.94 (0.93 to 0.95) Ref 1.21 (1.19 to 1.22) 1.69 (1.66 to 1.72) 

  2.5 0.94 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.20 (1.19 to 1.21) 1.66 (1.63 to 1.69) 

  3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.19 (1.18 to 1.20) 1.63 (1.60 to 1.66) 

        

 0.30 1.5 0.94 (0.92 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.22) 1.69 (1.66 to 1.72) 

  2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.95) Ref 1.21 (1.19 to 1.22) 1.66 (1.63 to 1.69) 

  2.5 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.21) 1.62 (1.60 to 1.65) 

  3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.96) Ref 1.18 (1.17 to 1.20) 1.58 (1.56 to 1.61) 

        

 0.50 1.5 0.94 (0.93 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.69 (1.66 to 1.72) 

  2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.21 (1.20 to 1.22) 1.65 (1.62 to 1.68) 

  2.5 0.95 (0.94 to 0.96) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.21) 1.62 (1.60 to 1.64) 

  3.0 0.95 (0.94 to 0.96) 0.95 (0.95 to 0.96) Ref 1.19 (1.18 to 1.20) 1.58 (1.56 to 1.61) 

        

0.30 0.15 1.5 0.94 (0.93 to 0.96) 0.94 (0.93 to 0.95) Ref 1.21 (1.20 to 1.23) 1.69 (1.66 to 1.73) 

  2.0 0.94 (0.93 to 0.96) 0.94 (0.94 to 0.95) Ref 1.21 (1.19 to 1.22) 1.67 (1.64 to 1.71) 

  2.5 0.94 (0.93 to 0.96) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.22) 1.66 (1.62 to 1.70) 

  3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.95) Ref 1.20 (1.18 to 1.21) 1.63 (1.60 to 1.67) 

        

 0.30 1.5 0.94 (0.92 to 0.95) 0.94 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.68 (1.65 to 1.72) 
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  2.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.20 (1.19 to 1.22) 1.66 (1.63 to 1.69) 

  2.5 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.19 (1.18 to 1.21) 1.63 (1.60 to 1.66) 

  3.0 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.96) Ref 1.18 (1.17 to 1.20) 1.59 (1.56 to 1.63) 

        

 0.50 1.5 0.94 (0.93 to 0.95) 0.95 (0.94 to 0.95) Ref 1.21 (1.20 to 1.23) 1.68 (1.64 to 1.71) 

  2.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.96) Ref 1.21 (1.19 to 1.22) 1.67 (1.63 to 1.70) 

  2.5 0.95 (0.93 to 0.96) 0.96 (0.95 to 0.96) Ref 1.20 (1.18 to 1.21) 1.63 (1.60 to 1.66) 

  3.0 0.95 (0.93 to 0.96) 0.95 (0.94 to 0.96) Ref 1.18 (1.17 to 1.19) 1.59 (1.55 to 1.62) 

ORAS odds ratio for the association between the advanced maternal age A and the outcome of stillbirth S; SI simulation intervals; πL early pregnancy loss; πU 

unmeasured confounder; ORUL odds ratio for the association between the unmeasured confounder U and early pregnancy loss L; ORUS odds ratio for the 

association between the unmeasured confounder U and stillbirth S; ORAS odds ratio for the association between the advanced maternal age A and the 

outcome of stillbirth S  
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Appendix G Supplementary material for Publication Four 

 

 

Supplementary Table S5.1 Average odds ratio (OR) and 95% simulation intervals (SIs) for 

the mediator-outcome confounding (Scenario 1) on the association between the exposure 

maternal obesity OB and the outcome of caesarean birth delivery CS with a mediator of pre-

eclampsia PE (assuming a true null direct effect) over 100 simulations and the input of one 

unmeasured confounder U.   

Selection effects Average OR for maternal obesity on 
caesarean delivery (95% SI) 

 

πU ORU.PE and ORU.CS  

   

0.15 1.5 1.03 (1.02 to 1.02) 

 2.5 1.03 (1.03 to 1.03) 

 3.5 1.03 (1.03 to 1.03) 

   

0.30 1.5 1.03 (1.02 to 1.03) 

 2.5 1.03 (1.03 to 1.03) 

 3.5 1.03 (1.03 to 1.04)  

   

0.50 1.5 1.03 (1.02 to 1.03) 

 2.5 1.03 (1.03 to 1.04) 

 3.5 1.04 (1.04 to 1.05)  

   

SI simulation intervals; πU unmeasured confounder; ORU.PE odds ratio for the association 
between the unmeasured confounder U and the mediator of pre-eclampsia; ORU.CS odds 
ratio for the association between the unmeasured confounder U and caesarean section 
delivery 
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Supplementary Table S5.2 Average odds ratio (OR) and 95% simulation intervals (SIs) for 

the mediator-outcome confounding affected by the exposure (Scenario 2) on the association 

between the exposure maternal obesity OB and the outcome of caesarean birth delivery CS 

with a mediator of pre-eclampsia PE (assuming a true null direct effect) over 100 simulations 

and the input of one unmeasured confounder U.   

Selection effects Average OR for maternal obesity on 
caesarean delivery (95% SI) 

 

πU ORU.PE, ORU.CS and OROB.U  

   

0.15 1.5 1.04 (1.03 to 1.04) 

 2.5 1.06 (1.06 to 1.06) 

 3.5 1.08 (1.07 to 1.08) 

   

0.30 1.5 1.04 (1.04 to 1.04) 

 2.5 1.06 (1.06 to 1.07) 

 3.5 1.08 (1.08 to 1.09) 

   

0.50 1.5 1.04 (1.04 to 1.04) 

 2.5 1.07 (1.07 to 1.07) 

 3.5 1.10 (1.09 to 1.10) 

   

SI simulation intervals; πU unmeasured confounder; ORU.PE odds ratio for the association 
between the unmeasured confounder U and the mediator of pre-eclampsia; ORU.CS odds 
ratio for the association between the unmeasured confounder U and caesarean section 
delivery; OROB.U odds ratio for the association between the exposure of maternal obesity and 
the unmeasured confounder U 
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Supplementary Table S5.3 Average odds ratio (OR) and 95% simulation intervals (SIs) for 

the exposure-mediator confounding affected by the exposure (Scenario 3) on the association 

between the exposure maternal obesity OB and the outcome of caesarean birth delivery CS 

with a mediator of pre-eclampsia PE (assuming a true null direct effect) over 100 simulations 

and the input of one unmeasured confounder U.   

Selection effects Average OR for maternal obesity on 
caesarean delivery (95% SI) 

 

πU ORU.PE and ORU.OB  

   

0.15 1.5 1.04 (1.04 to 1.04) 

 2.5 1.08 (1.08 to 1.08) 

 3.5 1.13 (1.12 to 1.13) 

   

0.30 1.5 1.04 (1.04 to 1.04) 

 2.5 1.10 (1.09 to 1.10) 

 3.5 1.16 (1.15 to 1.16) 

   

0.50 1.5 1.05 (1.04 to 1.05) 

 2.5 1.11 (1.11 to 1.11) 

 3.5 1.17 (1.17 to 1.18)  

   

SI simulation intervals; πU unmeasured confounder; ORU.PE odds ratio for the association 
between the unmeasured confounder 
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Simulation code 

library(boot) 

library(foreach) 

#Scenario 1: Mediator-outcome confounding 

#n   sample size 128000 
#pe  prevalence of preeclampsia (2.75) based on observed data  
#pU  prevalence of U 
#or1  odds ratio for the OB->PE effect (OR1.99)based on observed data 
#or2  odds ratio for the U-> PE effect (varied) 
#bY  baseline odds of outcome based on MNS 
#or3  odds ratio for the PE-> CS effect (OR2.39) based on observed data 
#or4  odds ratio for the U-> CS effect (varied) 
 
 
res1=foreach(i=1:100,.packages=c("MASS","sandwich","lmtest","tidyverse","Rlab","dpl
yr","matrixStats"),.combine=rbind) %dopar% { 
 n=128000;pe=0.0275;pU=0.50;or1=1.99;or2=1.5;bY=0.3454;or3=2.39;or4=1
.5 
     set.seed(i)  
 bias <- data.frame("id" = 1:n) %>% 
  mutate(obesity = rbinom(n,size=1,prob=0.20), 
     bPE = plogis(log(pe) + log(or1)*obesity), 
   b_PE = bPE / (1 - bPE), 
                U = rbern(n, pU),  
                prob_PE = plogis(log(b_PE) + log(or2)*U), 
   PE = rbern(n, prob_PE),  
                pCS = plogis(log(bY) + log(or3)*PE+ log(or4)*U), 
               CS = rbern(n, pCS))   
       log_model <- glm(formula = CS ~ obesity, family = binomial(link = "logit"), data 
= bias) 
       ct=coeftest(log_model, vcov = sandwich)  
       ci=confint(ct)  
       c(ct[-1,1],ci[-1,1],ci[-1,2]) 
} 
 
    meanf = function(myvar,index){return(mean(myvar[index],na.rm=TRUE))} 
    set.seed(123) 
    myboot = boot(data=res1,statistic=meanf,R=500) 
 
    ORmean = boot(data=res1[,1],statistic=meanf,R=500) 
    exp(ORmean$t0) 
    ORCI = boot.ci(ORmean, conf=0.95,type="perc") 
    exp(ORCI$perc[,4:5]) 
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Mod1 <- paste("OR ", formatC(exp(ORmean$t0),digits=2,format="f")," 
(",formatC(exp(ORCI$perc[,4]),digits=2,format="f"), 
 ",",formatC(exp(ORCI$perc[,5]),digits=2,format="f"),")",sep="") 
Mod1 
 
#Scenario 2: Mediator-outcome confounding affected by the exposure 
 
#n   sample size 128000 
#pe  prevalence of preeclampsia (2.75) based on observed data 
#pU  prevalence of U 
#or1  odds ratio for the OB-> PE effect (OR1.99)based on observed data 
#or2  odds ratio for the U-> PE effect (varied) 
#bY  baseline odds of outcome based on MNS 
#or3  odds ratio for the PE-> CS effect (OR2.39) based on observed data 
#or4  odds ratio for the U-> CS effect (varied) 
#or5  odds ratio for the OB-> U effect (varied) 
 
res2=foreach(i=1:100,.packages=c("MASS","sandwich","lmtest","tidyverse","Rlab","dpl
yr","matrixStats"),.combine=rbind) %dopar% { 
 n=128000;pe=0.0275;pU=0.3;or1=1.99;or2=1.5;bY=0.3454;or3=2.39;or4=1.
5;or5=1.5 
      set.seed(i)  
 bias <- data.frame("id" = 1:n) %>% 
  mutate(obesity = rbinom(n,size=1,prob=0.20), 
     bPE = plogis(log(pe) + log(or1)*obesity), 
   b_PE = bPE / (1 - bPE), 
                U = rbern(n, pU),  
   prob_PE = plogis(log(b_PE) + log(or2)*U + log(or5)), 
  PE = rbern(n, prob_PE),  
               pCS = plogis(log(bY) + log(or3)*PE+ log(or4)*U), 
               CS = rbern(n, pCS))   
       log_model <- glm(formula = CS ~ obesity, family = binomial(link = "logit"), data 
= bias) 
       ct=coeftest(log_model, vcov = sandwich)  
      ci=confint(ct)  
      c(ct[-1,1],ci[-1,1],ci[-1,2]) 
} 
 
    meanf = function(myvar,index){return(mean(myvar[index],na.rm=TRUE))} 
    set.seed(123) 
    myboot = boot(data=res2,statistic=meanf,R=500) 
 
    ORmean = boot(data=res2[,1],statistic=meanf,R=500) 
    exp(ORmean$t0) 
    ORCI = boot.ci(ORmean, conf=0.95,type="perc") 
    exp(ORCI$perc[,4:5]) 
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Mod2 <- paste("OR ", formatC(exp(ORmean$t0),digits=2,format="f")," 
(",formatC(exp(ORCI$perc[,4]),digits=2,format="f"), 
 ",",formatC(exp(ORCI$perc[,5]),digits=2,format="f"),")",sep="") 
Mod2 
 
#Scenario 3: Exposure-mediator confounding 
 
#n   sample size 128000 
#pe  prevalence of preeclampsia (2.75) based on observed data 
#pU  prevalence of U 
#or1  odds ratio for the OB->PE effect (OR1.99) based on observed data 
#or2  odds ratio for the U-> PEeffect - vary 
#bY  baseline odds of outcome based on MNS 
#or3  odds ratio for the PE->CS effect (OR2.39) based on observed data 
#or4  odds ratio for the U->OB effect - vary 
 
 
res3=foreach(i=1:100,.packages=c("MASS","sandwich","lmtest","tidyverse","Rlab","dpl
yr","matrixStats"),.combine=rbind) %dopar% { 
 n=128000;pe=0.0275;pU=0.15;or1=1.99;or2=1.5;or3=2.39;bY=0.3454;or4=1
.5; 
       set.seed(i)  
 bias <- data.frame("id" = 1:n) %>% 
 mutate( 
   U = rbern(n, pU),  
  p_obesity=plogis(log(0.2/(1-0.2)) + log(or4)*U) 
  obesity=rbern(n,p_obesity), 
     bPE = plogis(log(pe) + log(or1)*obesity), 
   b_PE = bPE / (1 - bPE),        
                prob_PE = plogis(log(b_PE) + log(or2)*U),  
   PE = rbern(n, prob_PE),  
               pCS = plogis(log(bY) + log(or3)*PE), 
                CS = rbern(n, pCS))   
       log_model <- bias %>% glm(formula = CS ~ obesity, family = binomial(link = 
"logit"),  data = .) 
      ct=coeftest(log_model, vcov = sandwich)  
       ci=confint(ct)  
       c(ct[-1,1],ci[-1,1],ci[-1,2]) 
} 
 
    meanf = function(myvar,index){return(mean(myvar[index],na.rm=TRUE))} 
    set.seed(123) 
    myboot = boot(data=res3,statistic=meanf,R=500) 
 
    ORmean = boot(data=res3[,1],statistic=meanf,R=500) 
    exp(ORmean$t0) 
    ORCI = boot.ci(ORmean, conf=0.95,type="perc") 
    exp(ORCI$perc[,4:5]) 
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Mod3 <- paste("OR ", formatC(exp(ORmean$t0),digits=2,format="f")," 
(",formatC(exp(ORCI$perc[,4]),digits=2,format="f"), 
 ",",formatC(exp(ORCI$perc[,5]),digits=2,format="f"),")",sep="") 
Mod3 
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Appendix H Supplementary material for Publication Five 

 

Supplementary Table S6.1 Framework for the application of simulation in studies that 

quantify bias using observational data 

Section/subsection  Recommendation 

 

1. Aim  

 

 

1.1 Purpose of the simulation Explain the background and clearly state the aim of the 

simulation study. 

 

1.2 Exposure(s) and outcome(s) Define the exposure(s), outcome(s), and other relevant 

variable(s) that will be included in the simulation study  

 

1.3 Target population Clearly define the population of interest to the study 

  

1.4 Type(s) of bias State the types of bias that the simulation model will be 

quantifying.   

 

2. Logic 
 

 

2.1 Graphs Describe the influence of bias using causal diagrams or 

direct acyclic graphs. 

  

3. Data 

 
 

3.1 Population Provide clear details of the base population.  

 

3.2 Data sources Clearly state the data sources that inform the simulation. 

This could be an observed cohort or data from previously 

published literature.   

 

3.3 Bias parameters Provide the parameters applied to the model that drive 

the influence of the bias 
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3.4 Data generation Report how probability distributions were assigned to the 

bias parameters.  

 

4. Implementation 

 
 

4.1 Analysis of simulation Clearly state the analysis methods applied to the 

simulation. Details should include all methods, results, 

diagnostics, and programming code used to implement 

the analysis.  

 

4.2 Report results of the 

simulation 

Restate the assumptions of the bias analysis and clearly 

report the results, focusing on whether the model 

explains the reported estimate.  

5. Reproducibility 

 
 

5.1 Model assumptions If assumptions of the model are summarised in the 

methods section, use online appendices to elaborate on 

details.   

 

5.2 Software  Provide a clear statement of the software used to conduct 

the simulation.  

 

5.3 Code sharing Make the code available, preferably online with the 

published paper.   
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Simulation code 

 
#   SIMULATION STUDY: BMI AND PTB FRAMEWORK EXAMPLE  
# 
# Underweight <18.5; Normal 18.5-24.9; Overweight 25-29.9; Obese >30 
#     
#   INSTALL PACKAGES & LIBRARIES 
# 
#install.packages("doParallel", repos="http://cran.r-project.org") 
#install.packages("foreach", repos="http://cran.r-project.org") 
#install.packages("boot", repos="http://cran.r-project.org") 
library(foreach) 
library(doParallel) 
library(boot) 
 
#   SET PARALLEL COMPUTING 
 
num.clusters=detectCores()-1 
registerDoParallel(num.clusters) 
getDoParWorkers() #Number of clusters used 
 
#    MISCARRIAGE AS A FUNCTION OF BMI 
 
# BMI~miscarriage association as per 
https://pubmed.ncbi.nlm.nih.gov/35232386/ 
# x BMI in whole levels from 15 to 40 
# y Proportion of miscarriage 
x1 <- seq(15, 40, 1) 
y1 <- 
100*c(0.21,0.21,0.205,0.205,0.20,0.20,0.19,0.19,0.195,0.20,0.20,0.20
5,0.21,0.22,0.23,0.23,0.24,0.24,0.245,0.25,0.25,0.26,0.26,0.27,0.27,
0.27) 
 
#Model for miscarriage based on BMI 
#Local regression smoother. Smoothness controlled by "span" 
model <- loess(y1~x1,span=2/3)  
summary(model) 
 
#New data with a finer granularity 
x2 <- seq(15, 40, 0.01) #new BMI  
p2 <- predict(model,newdata=x2) #prediction of miscarriages at these 
new BMI 
 
#Plot - good fit  
plot(x1, y1, xlab = "maternal BMI", ylab = "Proportion of 
miscarriage", main = "Proportion of miscarriage by BMI") 
lines(x2, p2)  
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#Check BMI at which miscarriage is lowest 
x2[p2==min(p2)] #21.96 BMI  
min(p2) #19.43  
 
#Function to estimate theoretical probability of miscarriage 
assuming risk does not increase until the aforementioned BMI of 
21.96 
BMI.to.misc <- function(BMIvec,min.BMI,min.risk){ 
 misc=predict(model,newdata=BMIvec) 
 misc[BMIvec<=min.BMI]=misc[BMIvec>min.BMI]=0 
 misc[BMIvec>min.BMI]=misc[BMIvec>min.BMI]-min.risk 
 return(misc) 
} 
 

#Plot - good fit from BMI of 21.96 

min.risk=min(p2) 

plot(x1, y1, xlab = "Maternal BMI", ylab = "Proportion of 
miscarriage", main = "Proportion of miscarriage by BMI",pch=19, 
cex.lab=1.5, col.lab="blue", axes=F, frame.plot=TRUE) 

lines(x1, 
min.risk+BMI.to.misc(BMIvec=x1,min.BMI=x2[p2==min(p2)],min.risk=min(
p2)), pch=19) #Very good fit. 

 
#   SET SIM PARAMETERS 
# mean of normally distributed exposure. 
BMI.mean=26.02 ## Derived from observed data 
 
# sd standard deviation of normally distributed exposure 
BMI.sd=5.59 ## Derived from observed data 
 
 
#   SIMULATION MODEL  
 
#BMI -> Miscarriage <- U -> PTB   
 
#       BMI->M->U<-PTB 
#n   sample size 125000 (close match to selected sample from 
observed data) 
#pEPL  prevalence of M set to 20% - represents a common 
statistic for miscarriage 
#pU  prevalence of U - range from moderate to high (20:50) 
#min.bpL Minimum risk of early pregnancy loss set to 19.43 
(derived from Bernoulli model)  
#or1  odds ratio for the U-> EPL effect range from RR of 
1.5;2;3 
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#or2  odds ratio for the U->PTB effect range from RR of 1.5;2;3 
#bY  baseline prevalence of PTB based on MNS (set to 7.38%) 
 
 
results=foreach(i=1:100,.packages=c("MASS","sandwich","lmtest","tidy
verse","Rlab","dplyr","matrixStats"),.combine=rbind) %dopar% { 
   rboundednorm <- function(n, mymean, mysd, min = 15, max = 40) { 
    a = pnorm(c(min, max), mymean, mysd) 
    z = runif(n, a[1], a[2]) 
    qnorm(z, mymean, mysd)} 
 n=128000;pU=0.50;min.bpL=19.43;or1=3.5;bY=0.738;or2=3.5 
      set.seed(i)  
 bias <- data.frame("id" = 1:n) %>% 
 mutate(BMI= rboundednorm(n, mymean=BMI.mean, mysd=BMI.sd),  

bMiscarriage = (min.bpL + 
BMI.to.misc(BMIvec=BMI,min.BMI=x2[p2==min(p2)],min.risk=
min(p2)))/100,b_Miscarriage = bMiscarriage / (1 - 
bMiscarriage),  

            U = rbern(n, pU),  
 prob_Miscarriage = plogis(log(b_Miscarriage) +               
log(or1)*U),  

   Miscarriage = rbern(n, prob_Miscarriage), #miscarriage 
            pPTB = plogis(log(bY) + log(or2)*U), 
            PTB = rbern(n, pPTB))  %>% #preterm birth 
    mutate(BMI_cat = cut(BMI,breaks=c(15, 18.5, 25, 30,Inf),  

labels=c("underweight","normal", "overweight", "obese"),         
include.lowest=TRUE),BMI_cat = relevel(BMI_cat, ref 
="normal"))  

 #fit a logistic model  
log_model <- bias %>% glm(formula = PTB ~ BMI_cat, family = 
binomial(link  = "logit"),data = ., subset = Miscarriage==0) 

      ct=coeftest(log_model, vcov = sandwich)  
      ci=confint(ct)  
      c(ct[-1,1],ci[-1,1],ci[-1,2]) 
} 
 

    meanf = 
function(myvar,index){return(mean(myvar[index],na.rm=TRUE))} 
    myboot = boot(data=results,statistic=meanf,R=500) 
 
    ORmeanUnderweightboot = 
boot(data=results[,1],statistic=meanf,R=500) 
    exp(ORmeanUnderweightboot$t0) 
    ORCIUnderweightboot = boot.ci(ORmeanUnderweightboot, 
conf=0.95,type="perc") 
    exp(ORCIUnderweightboot$perc[,4:5]) 
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    ORmeanOverweightboot = 
boot(data=results[,2],statistic=meanf,R=500) 
    exp(ORmeanOverweightboot$t0) 
    ORCIOverweightboot = boot.ci(ORmeanOverweightboot, 
conf=0.95,type="perc") 
    exp(ORCIOverweightboot$perc[,4:5]) 
 
    ORmeanObeseboot = boot(data=results[,3],statistic=meanf,R=500) 
    exp(ORmeanObeseboot$t0) 
    ORCIObeseboot = boot.ci(ORmeanObeseboot, conf=0.95,type="perc") 
    exp(ORCIObeseboot$perc[,4:5]) 
 

#bind results into one line 
SimulationResults <- paste("Underweight OR ", 
formatC(exp(ORmeanUnderweightboot$t0),digits=2,format="f")," 
(",formatC(exp(ORCIUnderweightboot$perc[,4]),digits=2,format="f"), 
 ",",formatC(exp(ORCIUnderweightboot$perc[,5]),digits=2,format=
"f"),")"," Overweight OR ", 
formatC(exp(ORmeanOverweightboot$t0),digits=2,format="f"), 
      " 
(",formatC(exp(ORCIOverweightboot$perc[,4]),digits=2,format="f"),","
,formatC(exp(ORCIOverweightboot$perc[,5]),digits=2,format="f"),")"," 
Obese OR ",  
      
formatC(exp(ORmeanObeseboot$t0),digits=2,format="f"),"(",formatC(exp
(ORCIObeseboot$perc[,4]),digits=2,format="f"),",",formatC(exp(ORCIOb
eseboot$perc[,5]),digits=2,format="f") 
      ,")",sep="" ) 
SimulationResults     
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Appendix I Media release
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