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Abstract—In order to improve the classification accuracy, state-
of-the-art CNNs usually involve large and complex convolutional
layers. However, for certain applications, e.g. Internet of Things
(IoT), where such CNNs are to be implemented on resource-
constrained platforms, the CNN architectures have to be small
and efficient. To deal with this problem, reducing the resource
consumption in convolutional layers has become one of the most
significant efforts when designing CNNs. In this work, a multi-
objective optimisation approach is proposed to trade-off between
the amount of computation and network accuracy by using Multi-
Objective Evolutionary Algorithms (MOEAs). The size and num-
ber of convolution kernels used are proportional to computational
resource consumption of CNNs. Therefore, this paper considers
reducing the computational resource consumption by reducing
the size of kernels in convolutional layers. In addition to kernel
size unconventional kernel shapes are investigated and results
show these clearly improve performance over using traditionally
square convolution kernels alone. The main contributions of
this paper are therefore a methodology to significantly reduce
computational cost of CNNs, based on unconventional kernel
shapes, and provide different trade-offs for specific use cases.
The experimental results further demonstrate that the proposed
method achieves large improvements in resource consumption
with no significant reduction in network performance. Compared
with the benchmark CNN, the best trade-off architecture shows
a reduction in multiplications of up to 4.06X and with slight
increase in classification accuracy on CIFAR-10 dataset.

Index Terms—Convolutional Neural Networks, Evolutionary
Computation, Deep Learning, Multi-Objective Evolutionary Op-
timisation

I. INTRODUCTION

Deep Neural Networks (DNNs) are biologically-inspired

computing systems which consist of internal connections be-

tween multiple layers of artificial neurons. In recent years,

DNNs have drawn increasing attention in various application

domains, such as image processing, speech recognition and

many other challenging Artificial Intelligence (AI) tasks [1].

In particular, Convolutional Neural Networks (CNNs) have

successfully gained outstanding performance in image classi-

fication and video recognition [2]–[4]. In general, the common

CNN architecture usually consists of convolutional layers and

pooling layers in between its input layer and fully-connected

output layer. Compared with the conventional fully-connected

neural network, neurons in a convolutional layer are only con-

nected with several neurons in the previous layer. Specifically,

any neuron in the feature map of a convolutional layer is a

linear combination of neurons in the receptive field which

is defined by a convolution kernel in the previous layer [5],

[6]. The state-of-the-art achievements of designing CNN ar-

chitectures have demonstrated significant improvements on

network classification accuracy on various benchmark datasets,

such as GoogleNet [7] and AlexNet [8]. In order to get the

best accuracy on specific tasks, the computational complexity

of the network grows exponentially and this brings new

challenges of executing it on resource-constrained platforms.

Based on the analysis by [9], several computationally low-cost

network architectures can still achieve reasonable accuracy

on state-of-the-art benchmark datasets. The motivation to find

CNN architectures that can achieve high accuracy and keep

computational resource usage at a minimum is therefore high.

Multi-objective evolutionary algorithms (MOEAs) are today

one of the most commonly used methodologies in solving

hard optimisation problems where two or more (multiple)

conflicting objectives must be satisfied simultaneously [10].

MOEAs aim to generate a set of possible solutions (so-

called population) in a single run of the algorithm. In recent

years, there have been several research studies focusing on

optimising neural network typologies and their connection

weights. These approaches have demonstrated that using evo-

lutionary algorithms to evaluate neural network topology can

achieve competitive performance on state-of-the-art bench-

mark datasets [11]–[13].

In this article, we apply MOEAs to the optimisation of feed-

forward CNN architectures for use in resource-constrained

scenarios. In order to achieve a high classification accu-

racy, state-of-the-art CNN architectures are extremely com-

plex. For example, AlexNet [8] requires billions of multiply-

accumulation (MAC) operations to process a single image.

In general, convolutional layers are the most computationally

expensive ones, where the resource consumption in each layer

is proportional to the number and sizes of the convolution

kernels. In order to minimise the resource consumption and

retain the network accuracy while processing the CNNs on

the target hardware platform, we use the fast Non-dominated

Sorting Genetic Algorithm (NSGA-II) [14] to explore the

design space for the feed-forward CNN architecture and

produce the best trade-off between network complexity and



classification accuracy. Our proposed method is focusing on

optimising convolutional layers using combinations of various

unconventional shapes and sizes of kernels, while keeping the

network depth constant. The proposed method is tested on

widely-used benchmarks, MNIST [15], Fashion-MNIST [16]

and CIFAR-10 [17], and compared with conventional CNNs.

The paper is organised as follows: Section II gives an

overview of the current approaches of optimising feed-forward

neural network architecture, as well as optimising learning

algorithms and hyperparameters. Section III describes the

design methodology that implements NSGA-II to explore the

design space of CNN architecture and explains its features.

Section IV shows several test experiments with varying bench-

mark datasets and provides a proof-of-concept of the perfor-

mance of the proposed method. Finally, Section V concludes

the paper and discusses further works.

II. RELATED WORK

This section introduces a review of the current approaches

of automatic optimisation techniques that are used to find

good solutions by network topology optimisation, such as

connection weights, network structure.

A. Optimisation of Network Architecture

Evolutionary Algorithms (EAs) are widely used in optimisa-

tion problems with complex fitness landscapes. The main idea

of optimising artificial neural networks using EAs is to evolve

the synaptic weights and connections of the network [13].

NEAT [18] is a method that uses genetic algorithms (GAs) to

change both connection weights and network structure. Their

proposed method encodes each neuron and synaptic weight

in the genotype. For each iteration, the GA can either add

additional neurons to the network or adjust the input/output

connections of a neuron. This method allows the GA to

find out the best network topology for the target task. A

hypercube-based NeuroEvolution of Augmenting Typologies

(HyperNEAT) method has shown advantages when optimising

weights for CNNs [19], [20]. However, due to the lager search

space of CNN topologies, this method requires huge amounts

of computational resources. Therefore, this method is difficult

to scale up to state-of-the-art deep neural network architec-

tures, because of their size. G. Morse and K. Stanley [21]

compared evolutionary algorithms with the stochastic gradient

descent (SGD) method for weight optimisation of ANNs. Their

results demonstrate that using an evolutionary algorithm to

optimise weights achieves competitive results, compared with

the traditional SGD method.

It is therefore reasonable to consider GAs to be a suit-

able method for optimising network topology. However, for

network weight optimisation, GAs show almost the same

performance as SGD through back-propagation. Therefore, in

order to search for efficient neural network architectures and

updating network weights at the same time, a combination of

GAs and SGD methods have been investigated in recent years.

Real et al. [22] apply GAs to CNN design, where the model is

trained by SGD through back-propagation and the architecture

is optimised by simple GA. They initialise the starting point

as a small model which only consists of a single pooling

layer. With each evolutionary step, the model is augmented

by adding more convolution layers. Their approach is only

focusing on network accuracy, therefore, the result shows

that as the network accuracy is increased, the computational

effort required is increased dramatically. CoDeepNEAT [23]

is a further extension of NEAT [18] where the population

is separated into two sub-sets: module and blueprint. The

module chromosome is a graph that represents a small ANN

and the blueprint chromosome is a graph where each mode

contains a pointer to a particular module species. During the

evolution, the two sub-sets are combined together to build a

larger network, where each mode in the blueprint is replaced

with a module chosen randomly from the species to which that

mode points. Their results show that the network designed by

CoDeepNEAT can achieve competitive accuracy in image clas-

sification problems with faster training speed. Kim et al. [24]

use a multi-objective evolutionary algorithm (MOEA) to trade-

off between classification accuracy and run-time. They adopt

NSGA-II to explore the Pareto front of the design space. The

network architecture is decoded into two categories: number

of outputs in each layer and the total number of convolution

layers. Their experimental results show that multi-objective

optimisation can further reduce the run-time and achieve better

accuracy compared with human-expert design. L. Xie and

A. Yuille [11] present a GA solution for searching large-

scale CNNs. In their work, the GA is applied to designing

the network structure, where the connectivity of each layer

is encoded by a binary string representation. This method

can be easily modified for different network architectures and

includes different types of layers and connectivity.

Apart from using GAs to optimise the CNN architecture by

pre-processing the initial populations, such as pre-defining the

layer functionalities and connectivity, there are also some GA-

based fully automatic architecture design methods addressed

in recent years, e.g. Sun et al. [25]. Their design methodology

contains a building block that directly using a skip layer

to replace the convolutional layer. The skip layer contains

two convolutional layers and one skip connection, where the

skip connection connects the input of the first convolutional

layer to the output of the second convolutional layer. Then,

a GA is applied to searching suitable connections of skip

layers and pooling layers. Finally, fully-connected layers are

added to the tail of the CNN. Similarly, Suganuma et al. [12]

proposes using Cartesian Genetic Programming (CGP) [26]

to represent deep neural network architectures and to use

highly functional modules as the node functions to reduce

the search space. There are six different node functions in

their design, including convolutional blocks, residual blocks,

max and average pooling, etc. The CGP encodes CNNs as

directed acyclic graphs with a two-dimensional grid of nodes.

Their results demonstrate that the architectures built by CGP

outperform most of the hand-designed modules and provide a

good trade-off between classification accuracy and the number

of parameters.



B. Unconventional Convolutions

Traditional CNN designs use square kernels to detect image

features. This design method brings significant challenges for

computational systems, because the number of arithmetic op-

erations increases exponentially as the network size increases.

In order to reduce computational resource usage and speed

up large CNNs, recent research using unconventional kernel

shapes has focused on approximating existing square-kernel

convolutional layers for network compression and acceler-

ation. Recent approaches [27]–[29] have demonstrated that

some of the 2-D square convolution kernels can be factorised

into two 1-D kernels. For example, if a convolutional layer

contains a set of n × n 2-D kernels, where n represents the

kernel height and width, it can be factorised as a sequence of

two layers with n × 1 and 1 × n kernels, which uses fewer

computations. Therefore, the 1-D convolution approximation

can significantly accelerate the classification speed as well as

reducing the number of network parameters. Similarly, Jin et

al. [30] introduce this into the training phase by factorising

a conventional 3-D convolution kernel into three consecutive

1-D kernels. Their results show that by factorising the 3-

D convolution layers, the network can be accelerated by

approximately a factor of two while sustaining similar or

better classification accuracy than using conventional 3-D

convolution kernels.

Another approach to design the convolutional layer is to

use multiple sizes of kernels in one layer. GoogleNet [7] is

one of the most accurate CNNs on state-of-the-art benchmark

datasets. In order to increase the network accuracy, their work

introduces an inception module to increase the network depth

and width. Firstly, the inception module contains multiple

differently-sized convolution kernels, as well as max pooling

operations. Different types of kernels are computing in parallel

and extract features at multiple scales. After that, feature maps

from different kernels are concatenated to form the input of

the next module. In order to reduce the computational effort,

a 1×1 kernel convolution is inserted into the inception module

for dimension reduction. Hence, the network can grow deeper

and wider with reasonable increase in computational resource

usage. Szegedy et al. [31] modify the inception module, where

the 7 × 7 convolution kernels are replaced by a sequence

of 7 × 1 and 1 × 7 kernels, so that the overall computing

resources are reduced when compared with the original design.

Ding et al. [32] propose Asymmetric Convolution Blocks

(ACBs) to replace the conventional convolution kernels. Typi-

cally, ACBs replace the conventional convolutional layer with

three parallel layers, where these layers contain n×n, n× 1

and 1×n kernels respectively. Finally, the outputs from each

layer are summed up to enrich the feature space.

III. METHODOLOGY

This work considers how the classification accuracy of

CNNs can be improved (or kept the same) while significantly

reducing the computational resources required. Literature of

previous investigations suggests that using different shapes

of convolution kernels can improve the network performance

by detecting multi-scale features from input images [32].

In this section, an analysis into how the size and shape

of the convolution kernels are processed regarding to their

computational resource consumption is conducted. Then, a

set of different shapes of convolution kernels is designed to

be used in convolutional layers. The MOEA used is NSGA-

II [14] to automatically discover efficient network architecture

by finding the trade-off between the computational complexity

and module classification accuracy on the three benchmark

datasets.

A. Computational Resource Consumption

For state-of-the-art CNN architectures, the computationally

most expensive parts are the convolutional layers [9]. In a

feed-forward CNN, the convolutional layers are used to extract

features from input images. The conventional 2-D convolution

process is illustrated in Fig. 1. Mathematically, the formulae

for calculating a single feature map by convolution operation

can be described as (1),

O:,:,oc =

IC∑

i=1

I:,:,i ⊗K:,:,oc (1)

where O:,:,oc is an output feature map of the convolutional

layer in the oc-th channel, I is the input image of the

convolutional layer with IC channels, K is the set of 2-

D convolution kernels in current layer and ⊗ represents the

convolution operation. It can be seen from the equation,

the calculation consists of repeatedly accumulating multiple

kernels to form a number of feature maps, which represent

the different characteristics of the input image.

Processing a CNN in hardware requires multiply-

accumulation (MAC) operations to obtain the output feature

maps. In order to improve the classification accuracy of CNNs,

state-of-the-art CNN architectures have become increasingly

complex, therefore, it is necessary for CNN designs to consider

their computational resource consumption.

For a convolutional layer, the number of MAC processes

is contingent on the size of the convolution kernels, number

of kernels and the size of the output feature maps. It can be

calculated using following equation:

Operationconv = Oh ×Ow ×Oc ×Kh ×Kw ×Kc (2)

where Oh and Ow indicate the height and width of the

output feature maps and Oc represents the number of output

feature maps, i.e. output channels. Similarly, Kh, Kw and Kc

indicate the height, width and the number of the convolution

kernels in the corresponding layer. In the conventional design

methodology of CNNs, feature maps and convolution kernels

are always square, which means the height and width of the

convolution kernels and feature map are the same.

In a CNN, the fully-connected layer takes the output of the

previous convolution processes and predicts the best classifi-

cation that is labelled to describe the image. Equivalent to (2),

the number of operations in the fully-connected layer of a

specific CNN can be calculated as:

Operationfc = Oh ×Ow ×Oc ×Ni (3)



(a) (b)

(c)

Fig. 1: (a) An example of sliding a 3× 3 convolutional kernel

across the input image. (b) A conventional 3×3 square kernel

that is used to extract features from the input image. (c)

Example of a conventional convolutional layer with multiple

square kernels.

where the Oh, Ow and Oc indicate output feature maps from

the last convolutional or pooling layer and Ni is the number

of neurons in the fully-connected layer.

As can be seen from (2) and (3), the convolutional layer

requires more MAC operations than the fully-connected layer.

Therefore, reducing the number of MAC operations can

significantly reduce the computational resource consumption

overall. This is important to allow state-of-the-art CNNs

to be processed on resource-constrained platforms, such as

FPGAs and embedded devices. Apart from the convolutional

layers and fully-connected layers, the CNN architecture also

involves other layers, including average pooling, max pooling

or batch normalisation. For instance, average pooling is used to

calculate the average number of pixels in the kernel and max

pooling is proposed to find the maximum number of input

pixels, which are smaller than operations for convolutional

layers in real cases.

B. Mixed Unconventional Kernels

In this work, in order to minimise the hardware costs while

maintaining the CNN classification accuracy, the MAC oper-

ations in the convolutional layers are minimised by reducing

the kernel sizes, i.e. the product of Kh and Kw in (2). For

example, a 2-D 3× 3 convolution kernel can be replaced by a

3×1 kernel followed by 1×3 kernel, which reduces the number

of operations from 9 to 6. However, previous research suggests

that the replacement is not equivalent as it does not work as

well on some of the lower level layers [31], and not all possible

3× 1 kernels are captured by the decomposition. Hence, such

a substitution requires the network to have extra kernels or

layers to compensate, which may potentially increase again

the computational complexity. Therefore, the first question to

investigate here is what kinds of kernels can be replaced by

smaller ones in a convolutional layer. In addition, without

adding an additional convolution kernels, it is investigated

whether the conventional 2-D square kernels can be directly

replaced by more generic sizes of m×n shape kernels. Finally,

the best combination of different shapes and sizes of kernels

for each convolutional layer is considered.

Utilising different kernel sizes allows the network to extract

features at multiple scales [7]. It is becoming more popular for

state-of-the-art CNN architectures to use small kernels, such

as 3×3 and 5×5. Therefore, the largest kernel selected for the

network architecture proposed here has a size of 5×5. In order

to find the best combination of kernel shapes in a convolutional

layer, conventional square kernels and 1-D kernels are used as

well as other sizes of kernels, such as 5 × 3 and 1 × 1. In

total there are 9 different sizes of kernels considered here, the

largest being 5 × 5 and the smallest one 1 × 1, as shown in

Fig. 2.
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Fig. 2: (a) The set of unconventional kernels. The number of

operations required to compute each of the unconventional

kernels can be calculated by kernel height × width. (b)

Format of the genotype: The Red and Green Lines shows

two different individuals which represent different connections

between different size and shape of kernels.

Previous approaches have shown that it is possible to use a

series of kernels with differing sizes to better handle multiple-

scale objects in a convolutional layer [7]. Rather than using



conventional square kernels, this work puts the set of 1-D

stripe kernels into a single convolutional layer. This is so that

the network can operate in parallel on different sizes with the

most accurate detailing, 1 × 1, to the biggest kernels, 5 × 5.

Then, all feature maps generated from the different kernels

are concatenated together into a single output tensor in order

to form the input of the next stage. Padding strategies are

applied to make sure that the output feature maps from each

set of unconventional kernels will have the same resolution as

others. Then, the concatenation are used to combine the output

feature maps from each set of unconventional kernels into one

output tensor. The overall architecture of the proposed design

can be viewed as Fig. 3.

Fig. 3: Overall design of the convolutional layer which in-

volves multiple sizes of kernels to produce different feature

maps. If the strides of each type of kernel are the same, using

the padding method, the output from each set of kernels will

be the same as other kernels. Therefore, the final output from

this layer can be concatenated into a single tensor with no

additional computation operation required.

C. Multi-Objective Evolutionary Optimisation

Following the convolutional layer design methodology from

the previous section, it is difficult to define the optimal kernel

sizes required to replace the conventional square kernels in

a given CNN architecture. The new methods described here

propose to use the non-dominated sorting genetic algorithm

(NSGA-II) to explore the kernel size design space of the

CNN architecture. NSGA-II is one of the most popular multi-

objective optimisation algorithms which uses a fast non-

dominated sorting approach and diversity preservation [14].

The approach of optimising for Pareto optimality makes it

possible to trade-off between network accuracy and hardware

resource consumption. An overview of optimising a given

CNN architecture is shown in Fig. 4.

In the optimisation loop, each of the possible unconventional

kernel shapes is identified with its kernel ID that represents

a specific kernel. As shown in Fig. 4, the optimisation loop

takes a given conventional CNN architecture as its input.

The kernels from all layers of the input CNN are encoded

in the genotype. As we are focusing on optimising the

Given a conventional 

CNN architecture

Initialise the parent 

population

Evaluate the fitness

Select new parent

Training the network by 

stochastic gradient descent 

with training dataset

Decode the genotype to 

network architecture 

configuration

Rank parent population 

and offspring together
Calculate the number of 

operations of target 

network and test the 

classification accuracy on 

evaluation data

Generate offspring by 

mutation

Fig. 4: Overview of the multi-objective optimisation loop. The

method selects a set of unconventional kernel shapes replacing

the original (conventionally used) square kernels in a given

CNN architecture. Each individual is trained on a training data

set. Then, the fitness is calculated and assigned based on the

classification accuracy on the evaluation data set (objective 1)

and the number of arithmetic operations (objective 2). NSGA-

II searches for the Pareto front that trades-off between of

number operations and model classification accuracy.

convolutional layers, other hyperparameters of the network

are kept the same as in the input CNN, e.g. other types of

layers, stride, activation function and number of layers. The

initial parent population of NSGA-II is generated by randomly

replacing the original square kernels with randomly selected

unconventional kernel sizes for all convolutional layers in the

network. After the initial parent population is created, the first

offspring population is generated by mutation operation, which

changes the shape of randomly selected kernels based on a

given probability. In this case, the genetic representation only

consists of a single chromosome, a vector encoding the kernel

shapes. Crossover operation is not used in this case.

Then, the fitness of each individual in the population is

evaluated by calculating the number of operations in the

convolutional layers and testing the classification accuracy

of the trained model on a validation set. The architecture

generated by NSGA-II is trained using stochastic gradient

descent (SGD), using a model training dataset. In this design,

one of the fitness measures of NSGA-II is the classification

accuracy which is defined as the Top-1 accuracy of trained

model on the test dataset. Another fitness is the summation of

MAC operations required to compute all of the convolutional

layers in the network, which is calculated by (2).

Finally, NSGA-II ranks the fitness of each individual by

using a non-dominated sorting approach and a diversity

preservation strategy to ensure selection with elitism and a

uniform spread of solutions. In non-dominated sorting, each



solution p has two entities: the first is domination count, the

number of solutions that dominate p; the second is the number

of solutions that p dominates. All solutions will be sorted

according to each solution’s domination count into multiple

ranking levels. Diversity preservation is achieved by adopting

a crowding distance comparison. So that, when there are

two solutions with the same domination level, the one that

resides in less densely populated points of the solution space

is selected [33]. Following this, half of the individuals which

have higher rank will be selected as the parent population for

the next generation.

IV. EXPERIMENTAL SETUP AND RESULTS

Each individual’s fitness needs to be evaluated separately

by training and testing the resulting network. State-of-the-art

CNN architectures may require extremely large computational

budgets for processing the networks. Hence, the aim in this

paper is to show the improvement of the proposed method

compared with conventional convolutional layers in terms of

trade-off between computation costs and classification accu-

racy. As an example, the LeNet-5 architecture, is used here as

the benchmark network to illustrate the improvement achieved

by our proposed method. To evaluate the capability and the

full potential for scalability of the proposed method, it is also

tested on deeper CNN architectures.

A. Experimental Settings

The benchmark CNN architecture is built based on the

Lenet-5 architecture [2]. The original Lenet-5 consists of two

convolutional layers and two max-pooling layers, a fully-

connected layer and a classification layer. In order to improve

the classification accuracy of the network, we increase the

number of kernels in each of the convolutional layer and nodes

in the fully-connected layers. The overall architecture is shown

in Fig. 5, which is used as the benchmark topology to test the

proposed method.

The optimisation method is applied to three different

datasets, MNIST, Fashion-MNIST and CIFAR-10. MNIST and

Fashion-MNIST consist of a training set of 60,000 images and

a test set of 10,000 images. Each image in the two MNIST

sets is a 28×28 grayscale image, associated with a label from

10 different classes. CIFAR-10 is split into a training set of

50,000 images and a test of 10,000 images. Each image in

the CIFAR set is a 32× 32 pixel RGB image, associated with

a label from 10 different classes. The network is trained on

the training sets and evaluated in the test set, which is one of

the fitness measures of the proposed method. The number of

operations is calculated by the total number of multiplications

in two convolutional layers, the second objective measure used

here. All of the networks are trained by SGD method and use

the Adam optimiser [34] with a learning rate of 1e-3. The

softmax cross-entropy loss is used as the loss function. Each

model is trained for 30 epochs.

In order to explore the Pareto front of the CNN architecture,

the optimisation loop is set to run 100 generations for a

population size of 25 individuals. There is only one type of

Input Image

Conv _1

MaxPool _1

Conv_2

MaxPool _2

FC_1

Classification

5 × 5 × 32, stride = 1, padding = same

5 × 5 × 64, stride = 1, padding = same

Nodes = 512

2 × 2 , stride = 2

2 × 2, stride = 2

Fig. 5: The benchmark CNN used to test our optimisation

method. The benchmark CNN is based on the Lenet-5 archi-

tecture. The network consists two 2-D convolutional layers,

which contain 32 and 64 kernels respectively. All of the kernels

have dimensions of 5×5 and the stride is 1. Each convolutional

layer is followed by a max pooling one with dimensions of

2 × 2 and a stride of 2. There is a fully-connected layer

connected to the output of the second max pooling layer that

has 512 nodes. Finally, a classification layer is used to predict

the best classification label applied to the image.

chromosome. Hence, only mutation is used as the genetic

operator with the mutation rate set to 0.1.

B. Experimental Results

The proposed method is evaluated on CIFAR-10 dataset

using two optimisation objectives, number of multiplications

in convolutional layers and network classification accuracy.

In this experiment, the training dataset is created by ran-

domly selecting 40,000 images from the training set, and

the remaining 10,000 images are used for fitness evaluation.

Finally, architectures found are trained on the training set for

100 epochs and classification accuracy is tested on test set.

To prevent overfitting, a weight decay of 10e − 4 and data

augmentation have been used for training the networks. The

data augmentation used is based on [35], that is padding 4

pixels on each side and randomly crop a patch from the padded

image or its horizontally flipped version. In order to handle the

colour image inputs, the input layer of the benchmark network

is modified as 3-channel input.

After configuring the benchmark network to accept colour

images, the total number of multiplications required for the

convolutional layers further increases to 15,564,800, and the

classification error is 17.63% on CIFAR-10. The optimisation

loop has a population of 25 individuals and was run for

a 100 generations. The computational time of the proposed

method in CIFAR-10 dataset takes about 6 days by using

a NVIDIA Tesla V100. The experimental result is shown in

Fig 6. Three different architectures from the set of solutions

are chosen as reference points. The first reference point, Ref.



1, has the highest accuracy. The second reference point is

one which involves significantly less computational resource

while still featuring high accuracy. The third reference point

is the trade-off solution closest to the origin between number

of multiplications and classification accuracy. .

Fig. 6: The optimisation result of the proposed method after

100 generations on CIFAR-10.

Then, the proposed method is tested on MNIST and

Fashion-MNIST datasets. With the same training settings, the

benchmark network has a classification accuracy of 98.92%

on MNIST and 98.92% on Fashion-MNIST. Both benchmark

networks require a total of 10,662,400 multiplications in their

convolutional layers. The computational time of the proposed

method in MNIST and Fashion-MNIST datasets takes about

6 days by using a NVIDIA Tesla V100. The optimisation

results are shown in fig 7. There are three reference solutions

that have been selected from each set of solutions using

the same approach as before: the first reference solution

features the highest accuracy, the second reference solution

uses less resources while featuring high accuracy, and the third

reference solution has the closest-to-origin trade-off between

number of multiplications and classification accuracy.

Three architectures from each dataset are then re-trained

on the whole training set and the classification accuracy is

evaluated on the test set which contains 10,000 examples.

Each architecture is re-trained for 100 epochs with weight

decay and data augmentation. All of them are trained by using

Adam optimiser [34] with initial learning rate of 0.001 and the

learning rate is reduced by factor of 10 at 30th epoch. After

re-training and testing, the results are shown on Table I. The

comparison between the benchmark network and reference

point is shown in Table I.

V. CONCLUSION AND FURTHER WORK

In this paper, we proposed a generic Multi-objective Evo-

lutionary Algorithm (MOEA)-based approach for optimising

the size and efficiency of CNN architectures by introducing

unconventional (non-square) kernel shapes and combining

(a)

(b)

Fig. 7: (a) The optimisation result of the proposed method after

100 generations on MNIST. (b) The optimisation result of the

proposed method after 100 generations on Fashion-MNIST.

TABLE I: Comparison between the benchmark network and

solutions found by the proposed method on CIFAR-10,

MNIST and Fashion-MNIST datasets. Three reference points

are selected from optimised results for each dataset.

Dataset Model Accuracy Acc. improve Reduction in Mults.

MNIST

Benchmark 98.92% - -
Ref 1 99.56% 0.64% 2.15x
Ref 2 99.54% 0.62% 3.13x
Ref 3 99.49% 0.57% 7.02x

Fashion-MNIST

Benchmark 92.12% - -
Ref 1 93.14% 1.02% 2.95x
Ref 2 93.07% 0.95% 4.24x
Ref 3 92.79% 0.67% 9.15x

CIFAR-10

Benchmark 82.37% - -
Ref 1 83.75% 1.38% 2.71x
Ref 2 82.54% 0.17% 4.06x
Ref 3 80.84% -1.53% 7.14x

different sizes of convolution kernels. The proposed method

automatically generates combinations of these unconventional

kernels that are used to replace the set of one-size square



convolution kernels produced by a conventional approach. The

optimisation by MOEA provides a trade-off solution space

between computational resources and classification accuracy,

which is unique to such algorithms. The results show that a sig-

nificant reduction in the computational resource consumption

with negligible sacrifice of (and sometimes slightly increased)

performance.

The proposed method has been tested on commonly-used

benchmarks, MNIST, Fashion-MNIST and CIFAR-10 datasets

with CNN architectures. As can be seen from the results, the

proposed method achieves significant improvements in com-

putational resource consumption, sometimes with increases

in classification accuracy, over conventional designs using

square kernels only. Trading off accuracy with computational

complexity of resource consumption in CNNs running in

resource-constrained environments is a real-world problem.

The significant reduction of computational resources achieved

here allows deep CNN architectures to be more efficiently

implemented on many resource-constrained platforms, such

as Field Programmable Gate Arrays (FPGAs) and embedded

devices. The methodology of adapting kernel shapes shows

promise to be further generalised in the future, particularly

with new devices featuring relevant hardware to execute, e.g.,

sparse matrix multiplications, efficiently.
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