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A Systematic Trajectory Tracking Framework for
Robot Manipulators: An Observer-Based

Non-Smooth Control Approach

Linyan Han, Jianliang Mao, Member, IEEE, Chuanlin Zhang, Senior Member, IEEE,

Robert W. Kay, Robert C. Richardson, and Chengxu Zhou

Abstract—The mechanical design of a robot often influ-
ences the choice of control strategy, especially for high-
dimensional manipulator systems with multiple inputs and
outputs. Striking a balance between hardware and soft-
ware, it remains a significant challenge to design a con-
trol framework that is both easy to implement and high-
performing. This paper addresses this concern by develop-
ing a systematic control architecture for trajectory tracking
problems, focusing solely on position measurements. The
approach involves constructing a dynamic model of the
manipulator in joint space through parameter identifica-
tion techniques. A non-smooth observer is then devised
to estimate unmeasured states, unknown disturbances,
and uncertain nonlinear functions in real-time, which are
incorporated into a non-smooth feedback control design
to provide a control solution. The stability of the system
is ensured using the homogeneous system theory and
Lyapunov theorems. To validate the effectiveness and feasi-
bility of the proposed tracking control approach, extensive
evaluations are conducted on a six-degree-of-freedom (6-
DoF) manipulator, including tests for tracking performance
and repeatability.

Index Terms—robot manipulator, trajectory tracking, po-
sition feedback, non-smooth control, dynamics control.

I. INTRODUCTION

MOTIVATED by the demand for superior performance,

continuous trajectory tracking control is paramount in

a broad spectrum of tasks, e.g., reaching tasks [1] and the

repair of disabled satellites [2]. This necessity distinguishes it

from point-to-point control, which concentrates solely on the
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accuracy of the final position. To attain exceptional tracking

precision, numerous methodologies have been devised in re-

cent years, including both independent joint control and multi-

variable control [3]. Nevertheless, certain challenges remain

inadequately addressed in these studies. The independent joint

control method treats each joint of the robot individually

and considers the coupling effects as external disturbances,

akin to the philosophy of a single-input/single-output (SISO)

system [4], [5]. Given that the inherent coupling characteristics

of robotic systems are predominantly nonlinear and exert a

substantial influence on robot performance, the oversimplified

approach of independent joint control can impose restrictions

on its applicability in systems that are strongly coupled

and highly dynamic. Conversely, the multi-variable control

methods offer the advantage of delivering rigorous system

performance analysis, alongside ensuring the stability of the

closed-loop system. This control structure presents a more

holistic and integrative approach compared to independent

joint control.

The majority of multi-variable control methodologies, such

as Proportional-Derivative (PD) control with gravity compen-

sation [6], [7] and Inverse Dynamics Control (IDC) [8], [9]

rely heavily on full state feedback, necessitating measurements

of both joint position and velocity. In practical applications,

encoders provide highly precise joint position measurements.

However, joint velocity measurements are commonly obtained

by calculating the difference between position data, leading to

noise and measurement errors [10]. Consequently, the overall

performance of the system may be compromised, as the

noise inherently limits the controller gains and restricts the

achievable bandwidth. To obviate the need for joint velocity

measurements, several techniques for developing an efficient

tracking controller based on available measurement data have

been proposed. For instance, a specific category of adaptive

output feedback controllers for robots devoid of velocity

measurements was developed in [11]–[13]. In [14], an output

feedback PID regulator with an integral action was formulated,

guaranteeing the global asymptotic stability for position track-

ing control of robots. However, these aforementioned studies

are primarily concerned with the stability analysis of robotic

systems in the presence of disturbances. The robustness of

these systems is generally achieved at the expense of nominal

control performance [15].

Observer-based output-feedback control offers an alternative
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solution to overcome the limitations of the before-mentioned

methods. Several observer techniques have been developed

since the 1960s, such as unknown input observer (UIO) [16],

disturbance observer (DOB) [17], extended state observer

(ESO) [18] and generalized proportional integral observer

(GPIO) [19]. These observers are combined with advanced

feedback control to form observer-based control, which is used

to compensate unmodeled dynamics and external disturbances

and has been widely applied in robotics [20]–[23]. In [24],

a nonlinear observer was employed to estimate both joint

velocity and unknown disturbances simultaneously, utilizing a

neural network to handle uncertain nonlinear functions. Simi-

larly, the method in [25] exploited an adaptive fuzzy controller

to estimate the nonlinear functions. These findings present an

effective strategy for achieving position control for robots.

However, they merely guarantee that the system is uniformly

bounded, signifying that the system state trajectories converge

near the equilibrium as the time approaches infinity. For tasks

requiring high-speed and high-accuracy performance, these

outcomes may not be sufficiently efficient.

A more potent alternative that provides rapid response,

disturbance rejection, and high-precision capabilities is finite-

time stabilization [26], which is essentially realized via a non-

smooth control technique. Non-smooth control stands as a

nonlinear control methodology that bridges the gap between

smooth control and discontinuous control, demonstrating sig-

nificant success across a wide spectrum of applications [27],

[28]. It has been reported in [29] that a non-smooth observer

is capable of estimating unknown disturbances and system

states concurrently, exhibiting numerous advantages such as

finite-time convergence and improved estimation accuracy.

This makes it a more desirable choice for strategies aimed

at achieving both high-precision and high-speed control for

robot manipulators.

In summary, our objective is to establish a systematic

tracking control framework that encompasses modeling, dis-

turbance estimation and compensation, as well as non-smooth

feedback control for robot manipulators to tackle the chal-

lenges mentioned earlier. Toward this end, we initially employ

a parameter identification method to reconstruct the nomi-

nal dynamic model. Subsequently, a non-smooth observer is

deployed to estimate unknown disturbances. In this context,

both the modeled dynamics and estimated disturbances can

be efficiently compensated through a feedforward approach.

Additionally, the non-smooth feedback domination design is

implemented to alleviate the impact of unmodeled dynamics

and inestimable disturbances. The efficacy of the proposed

approach is validated through rigorous theoretical analysis

and extensive experiments conducted on trajectory tracking

tasks using a real 6-DoF robot manipulator. The primary

contributions of this paper are summarized as follows:

• Compared to traditional inverse dynamics control meth-

ods, the proposed control approach integrates model

identification, disturbance estimation, and non-smooth

feedback domination techniques, making it more capable

of achieving high-precision control of robot manipulators.

• In contrast to the backstepping design approach suggested

by [25], [30], this trajectory tracking framework employs

a non-recursive design procedure [31], which is more

practical to implement, particularly for robotic systems

with multiple inputs and multiple outputs.

• From a theoretical perspective, the finite-time conver-

gence of the trajectory tracking error is realized, and

the stability analysis is conducted through the application

of homogeneous system theory in conjunction with a

Lyapunov function.

The paper is structured as follows. Section II presents the

motivation, while Section III encompasses the main results,

including modeling, observer design, and controller design.

In Section IV, we evaluate the performance of the proposed

approach in terms of precision, robustness, and repeatability.

Section V concludes the paper, and the main stability analysis

is provided in the Appendix.

II. MOTIVATION

This section provides a discussion on existing control meth-

ods, highlighting their limitations and motivating our work to

address the issues raised in the previous section.

A. Standard Inverse Dynamics Control

In the joint space, the dynamic equation of an n-DoF robot

manipulator with all revolute joints can be formulated as

M(q)q̈+C(q, q̇)q̇+ g(q) + fric = τ + τ e (1)

where q, q̇, q̈ ∈ R
n represent joint position, velocity and

acceleration, respectively. M(q) ∈ R
n×n denotes the sym-

metric, positive-definite matrix, C(q, q̇) ∈ R
n×n represents

the Coriolis and centrifugal matrix, g(q) ∈ R
n is the vector

of gravitational forces, and fric ∈ R
n is the friction forces.

The unknown external disturbance is denoted by τ e ∈ R
n and

the control input torque is denoted by τ ∈ R
n.

By defining x1 = q and x2 = q̇, system (1) can be

rearranged as
{

ẋ1 = x2,

ẋ2 = M(x1)
−1

τ + f(x1,x2) + d
(2)

where

f(x1,x2) = −M(x1)
−1 (C(x1,x2)x2 + g(x1) + fric) (3)

and d ∈ R
n is defined as

d = M(x1)
−1

τ e. (4)

It should be noted that matrix M(x1) is full-rank, allowing

the determination of its inverse matrix for any manipulator

configuration.

Given the desired trajectory xr and its derivatives ẋr (first

derivative) and ẍr (second derivative), the tracking error can

be defined as z1 = x1 − xr and z2 = x2 − ẋr. Taking into

account (2), the error dynamics can be described as
{

ż1 = z2,

ż2 = f(x1,x2) +M−1(x1)τ + d− ẍr.
(5)
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Fig. 1. Block scheme of systematic control framework, which mainly includes three parts: modelled dynamics identification, disturbance estimation
and compensation as well as unmodelled dynamics and inestimable disturbance suppression. The system identifier provides the nominal model
of robots. The non-smooth observer is used to estimate disturbances, which is compensated in the feedforward action. The non-smooth feedback
controller is employed to suppress unmodeled dynamics and inestimable disturbances.

Following the concept of inverse dynamics control, also

referred to as computed-torque control [3], the control law

τ can be expressed as

τ = M(x1)(−f(x1,x2) + ẍr −Kpz1 −Kdz2) (6)

where Kp and Kd are diagonal positive definite matrices.

Substituting (6) into (5) yields the differential equation for

the position error dynamics:

ż2 +Kdz2 +Kpz1 = d. (7)

It should be noted that the implementation of this control

protocol requires the online computation of the inertia matrix

M(x1) and the nonlinear term f(x1,x2), as the control law

is based on the current system state. However, this real-

time calculation may impose significant constraints on the

software and hardware architecture of the system. Therefore, it

is natural to consider reducing the online computation burden

associated with this control approach.

Furthermore, in (7), if d = 0, the homogeneous error

equation ż2 + Kdz2 + Kpz1 = 0 represents asymptotically

stable error dynamics. While it is possible to obtain a nominal

dynamic model of robot manipulators using advanced param-

eter identification techniques to achieve intact cancellation

of dynamic terms, the model typically exhibits a level of

uncertainty due to unmodeled dynamics, unknown external

payloads, and imperfect knowledge of mechanical parameters.

Consequently, full compensation is impractical, i.e., the posi-

tion error will asymptotically converge to a bounded region.

B. Robust Inverse Dynamics Control

To enhance tracking accuracy, several robust inverse dynam-

ics control (RIDC) methods were reported in [32], [33]. One

such technique is the disturbance observer-based technique,

which incorporates a nonlinear disturbance observer [34] into

the inverse dynamics controller, thereby endowing the control

system with robustness. The nonlinear disturbance observer is

designed as follows:
{

d̂ = Ld(x2 −P),

Ṗ = M(x1)
−1

τ + f(x1,x2) + d̂
(8)

where Ld = LT
d > 0 is the matrix gain of the nonlinear

disturbance observer to be designed, P is the auxiliary state

and d̂ is the estimation corresponding to d. Subsequently,

according to (6), the RIDC law is designed as

τ = M(x1)(−f(x1,x2)− d̂+ ẍr −Kpz1 −Kdz2). (9)

Compared to (6), the controller (9) incorporates an ad-

ditional term, representing the estimated disturbance d̂ in

the feedforward action. This illustrates that RIDC has the

capability to compensate for the disturbance itself. Following

a similar treatment as in (7), the error dynamics for RIDC can

be formulated as follows:

ż2 +Kdz2 +Kpz1 = d̃ (10)

where d̃ = d− d̂.

A comparison between (7) and (10) reveals that RIDC

exhibits the reduced position error compared to the standard

IDC, as the magnitude of the term leading to tracking error

is diminished. However, RIDC still necessitates online calcu-

lation of the feedforward compensation action. Consequently,

it is highly desirable to design a control framework for robot

manipulators that not only improves tracking accuracy and

response time but also alleviates the burden of online compu-

tation. This serves as the motivation for our investigation into

the corresponding solution.

III. MAIN RESULTS

In this section, we present a systematic control framework

for robot manipulators that satisfies the requirements of im-

proving tracking accuracy, response time, and reducing online
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computation burden. The main components of this framework

are described as follows:

• Modelled Dynamics Identification: System identifica-

tion techniques (Section III-A) are employed to achieve

precise cancellation control of the modelled dynamics for

the feedforward compensation.

• Disturbance Estimation and Compensation: Non-

smooth observer techniques (Section III-B) are utilized

to estimate disturbances, which are then feedforward

compensated.

• Unmodelled Dynamics and Inestimable Disturbance

Suppression: Non-smooth feedback domination design

(Section III-C) is adopted to suppress unmodelled dy-

namics and inestimable disturbances.

The resulting block scheme of the control framework is

depicted in Fig. 1. Before delving into the details of this

framework, we first present an assumption and some notations

that will be used.

Assumption 1: The desired trajectory xr and its derivatives

ẋr and ẍr are known to be continuous and bounded.

Notations:

• x = [x1, x2, . . . , xn]
T denotes an n-dimensional vector,

where xi represents the ith component of x with i =
1, 2, . . . , n.

• sigr(x) =
[
⌊x1⌉

r, ⌊x2⌉
r, . . . , ⌊xn⌉

r
]T

, where ⌊xi⌉
r ≜

sign(xi)|xi|
r with r ≥ 0.

• ⟨a⟩N represents a saturation function with a threshold

N > 0, given by:

⟨a⟩N =

{
sign(a)N if |a| > N
a if |a| ≤ N

• ⟨x⟩N is defined as ⟨x⟩N =
[
⟨x1⟩N , ⟨x2⟩N , . . . , ⟨xn⟩N

]T
.

A. System Identification

The relationship between the motion of the robot manipula-

tor and the joint torques can be described using the Newton-

Euler formulation, as shown in (1). To begin with, we assume

that there are no external disturbances (τ e = 0). Based on the

linearity in the parameters, we can express the dynamic model

(1) in a linear form with a set of dynamic parameters:

M(q)q̈+C(q, q̇)q̇+g(q)+fric = Ys(q, q̇, q̈)πs = τ (11)

where Ys(q, q̇, q̈) ∈ R
n×s is a regressor function of q, q̇, q̈,

and πs ∈ R
s is a set of standard parameters. Each component

of πs typically corresponds to 14 standard parameters per joint

(see [29] for details). However, note that not all 14 dynamic

parameters per joint may appear in (11). To account for this,

we can rewrite (11) in a more compact form by exploiting the

column linear dependency of Ys to reassemble the parameter

set πs [35] as:

τ = Y(q, q̇, q̈)π (12)

where Y(q, q̇, q̈) ∈ R
n×r represents a subset of the maximum

linearly independent columns of Ys, and π ∈ R
r is a set of

base parameters. It is notable that the dimension of πs and π

satisfies r ≤ s = 14n. If we have access to measurements of

q, q̇, q̈, and τ along an excitation trajectory at time instants

t1, . . . , tN , we can have

T = Yπ (13)

where T = [τ (t1)
T
τ (t2)

T
· · · τ (tN )

T
]T, Y =

[Y(t1)
T
Y(t2)

T
· · ·Y(tN )

T
]T. Computing (13) using a

least-squares approach [36] gives us the solution:

π = (YTY)−1YTT . (14)

This completes the process of parameter identification. For

the computation of M(q), C(q, q̇)q̇, and g(q), please refer

to [29] for detailed explanations.

B. Non-Smooth Observer Design

Although direct access to disturbances is not available, we

can utilize the model knowledge obtained from the identifica-

tion technique in subsection III-A to estimate them. Therefore,

we construct a non-smooth observer based on (5) as follows:






˙̂z1 = ẑ2 + ℓL1sig
m2(z1 − ẑ1),

˙̂z2 = ⟨f̂⟩N +M−1(x1)τ + ẑ3 − ẍr

+ ℓ2L2sig
m3(z1 − ẑ1),

˙̂z3 = ℓ3L3sig
m4(z1 − ẑ1)

(15)

where L1,L2,L3, and ℓ are the design parameters. The

variables ẑ1, ẑ2, and ẑ3 represent estimations corresponding to

z1, z2, and d, respectively. The term ⟨f̂⟩N = f(⟨x̂1⟩N , ⟨x̂2⟩N ),
where x̂1 = ẑ1 + xr and x̂2 = ẑ2 + ẋr. The exponents

mi = 1 + (i− 1)σ for (i = 2, 3, 4), with σ ∈ (− 1

3
, 0).

It is worthy of noting that the non-smooth observer (15)

is expected to outperform the nonlinear disturbance observer

(8) due to the inclusion of the non-smooth term sigα(·).
This results in higher estimation accuracy and faster response.

Furthermore, while the framework of the non-smooth observer

may resemble the standard extended state observer (ESO) [18],

they are fundamentally different. One notable distinction is

that the non-smooth observer separately estimates nonlinear

dynamics and disturbances, whereas ESO combines them into

a single lumped estimate, which can lead to adverse effects.

For instance, known nonlinear dynamics may exhibit large

amplitudes during transient processes. To achieve better es-

timation performance, the gain of ESO needs to be increased,

leading to noise amplification.

C. Non-Smooth Feedback Controller Design

With the availability of system states, disturbances, and

nonlinear functions from system identification (Section III-A)

and the non-smooth observer design (Section III-B), we can

now proceed to propose the non-smooth controller to achieve

the high-performance control objective. The detailed design

procedure is explained below.

First, by denoting z̄1 = z1 and z̄2 = z2

ℓ
, then system (5)

can be transformed into the following form:






˙̄z1 = ℓz̄2,

˙̄z2 =
f(x1,x2) +M−1(x1)τ + d− ẍr

ℓ
.

(16)
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(a)

(b)

Fig. 2. Experimental platform. (a) System architecture. (b) Hardware
diagram.

To enable offline pretreatment of feedforward dynamics, we

replace x1,x2 in the nonlinear term f(x1,x2) with xr, ẋr,

denoted as f̃ = f(xr, ẋr). Considering (15), the nonlinear

feedforward compensation can be expressed as Mu∗, where

u∗ = −f̃ − ẑ3 + ẍr. (17)

Furthermore, the stabilizing nonlinear control action is

designed as Mℓ2vc, with

vc = −K1sig
1+2σ(ˆ̄z1)−K2sig

1+2σ
1+σ (ˆ̄z2) (18)

where K1 and K2 are parameters to be designed, and ˆ̄z1 and
ˆ̄z2 are intermediate states defined as ˆ̄z1 = ẑ1 and ˆ̄z2 = ẑ2/ℓ.

Finally, combining (17) and (18), the non-smooth controller

can be expressed as follows:

τ = M(ℓ2vc + u∗). (19)

Before concluding this section, we provide a theorem of the

main results:

Theorem 1: Considering the dynamic model (1) for the

robotic system, under Assumption 1, the proposed non-smooth

controller (17) - (19), in conjunction with dynamic parameter

identification (14) and the non-smooth observer (15), guaran-

tees that the trajectory tracking error of the closed-loop system

will converge to a bounded region within a finite time.

Proof: Please refer to the Appendix for a detailed proof.

IV. EXPERIMENTAL EVALUATIONS

This section presents several experiments conducted with

a 6-DoF robot manipulator (the XB4 robot manufactured by

ROKAE Technology Co., Ltd, as shown in Fig. 2) to illustrate

the robustness and effectiveness of the proposed algorithm1.

1Please refer to the supplementary material for a video demonstration
of the evaluation details.
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Fig. 3. Desired trajectories. (a) 2-D desired trajectory. (b) 3-D desired
trajectory. (c) Joint trajectories of the 2-D curve. (d) Joint trajectories of
the 3-D curve.

TABLE I
CONTROL GAINS USED ON XB4 ROBOT

Controllers Parameters

NSC

L1 = diag{8, 8, 5, 5, 5, 5} L2 = diag{50, 50, 40, 40, 40, 40}
L3 = diag{300, 300, 200, 200, 200, 200} ℓ = 10 σ = −0.1
K1 = diag{5, 5, 5, 25, 25, 20} K2 = diag{1, 1, 1, 15, 15, 15}

DSTC

Ld = diag{35, 35, 35, 35, 35, 35}
K1 = diag{50, 50, 50, 100, 100, 100}

K2 = diag{6, 6, 6, 15, 15, 15}
K3 = diag{25, 25, 25, 50, 50, 50}

RIDC

Kp = diag{1000, 1000, 1000, 10000, 10000, 10000}
Kd = diag{40, 40, 40, 50, 50, 50}
Ld = diag{35, 35, 35, 35, 35, 35}

IDC
Kp = diag{1000, 1000, 1000, 10000, 10000, 10000}

Kd = diag{40, 40, 40, 50, 50, 50}

(a) (b)

Fig. 4. Payload on end-effector. (a) 0.25 kg. (b) 1.2 kg.

A. Experimental Testbed

The experimental testbed consists of three parts: the servo

drive module, the mechanical body and the motion control

module, as illustrated in Fig. 2. Specifically, the Beckhoff

motion controller acts as the EtherCAT communication master,

and the servo driver with EtherCAT communication function

acts as the EtherCAT slaves, which is responsible for con-

necting with the servo motor to form a servo axis group.

The servo driver operates in cyclic synchronous torque mode

and is connected with the Beckhoff motion controller through

EtherCAT serial topology to realize real-time high-speed data

exchange. The mechanical body consists of six joints and a

payload fixed to the manipulator’s end-effector. In the motion

control module, the proposed algorithm is implemented in
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Matlab/Simulink via a model-based design (MBD) approach.

The TE1400 module is used to import the C++ file generated

by MBD into the Beckhoff controller, and the algorithm

module is verified using TwinCAT software.

Fig. 5. Tracking errors over joint space using NSC, DSTC, RIDC, and
IDC under Case I, respectively.

Fig. 6. Comparison of Cartesian space errors using NSC, DSTC, RIDC,
and IDC under Case I, respectively.

TABLE II
CASE I: QUANTITATIVE RESULTS OF FOUR CONTROLLERS

MRMSEJ(deg) MRMSEC(mm)

NSC 0.008 0.04

DSTC 0.01 0.06

RIDC 0.02 0.08

IDC 0.09 0.25

B. Experiment 1: Application in Tracking Control Tasks

In this experiment, various working conditions are consid-

ered to evaluate the tracking performance of the non-smooth

control (NSC) algorithm. These conditions include tracking 2-

D and 3-D curves under light-load and low-speed conditions,

as well as high-speed and heavy-load conditions. Additionally,

comparisons with vanilla inverse dynamics control (IDC)

and robust inverse dynamics control (RIDC) under the same

working conditions are also reported. Meanwhile, we also

introduce the model-based super-twisting sliding mode control

method reported in [37] for a deeper experimental comparison.

To alleviate chattering, a nonlinear disturbance observer is

introduced to this sliding mode control design. This composite

control method is defined as DSTC, where the disturbance

observer is designed as (8), and the DSTC law is designed as






τ = M(x1)(−f(x1,x2) + ẍr −K2sig
1
2 (s))

+M(x1)(−ω −K1z2 − d̂)

ω̇ = K3sign(s)

(20)

with K1, K2, K3 being diagonal positive definite matrices

and s = K1z1 + z2 being the sliding surface. The parameters

for NSC, DSTC, RIDC and IDC are summarized in Table I.

Fig. 7. Tracking errors over joint space using NSC, DSTC, RIDC, and
IDC under Case II, respectively.

Fig. 8. Comparison of Cartesian space errors using NSC, DSTC, RIDC,
and IDC under Case II, respectively.

TABLE III
CASE II: QUANTITATIVE RESULTS OF FOUR CONTROLLERS

MRMSEJ(deg) MRMSEC(mm)

NSC 0.01 0.05

DSTC 0.02 0.09

RIDC 0.04 0.1

IDC 0.07 0.42

1) Case I: tracking 2-D curves under light load and low

speed: In Case I, we perform tracking of 2-D curves under

light load and low speed conditions. The 2-D curve is depicted

in Fig. 3(a), and the corresponding joint angles are depicted

in Fig. 3(c). Additionally, an extra payload with a weight of

0.25 kg is attached to the end-effector of the XB4 robot, as

shown in Fig. 4(a). Fig. 5 illustrates the tracking error for the

entire joint-space trajectory under the four control methods.

The root mean square (RMS) performance index is adopted

to quantitatively evaluate these control algorithms. For joint

space, we computed RMS for each joint and then took the

maximum. Here, we use MRMSEJ to define the performance

index. As summarized in Table II, the performance index

MRMSEJ is computed, resulting in values of 0.008 deg for

NSC, 0.01 deg for DSTC, 0.02 deg for RIDC, and 0.09 deg

for IDC. Since the robot performs tasks in Cartesian space,
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we further evaluate our method in Cartesian space. Similarly,

the performance index is defined as MRMSEC for Cartesian

space. MRMSEC values for NSC, DSTC, RIDC, and IDC

are 0.04 mm, 0.06 mm, 0.08 mm, and 0.25 mm, respectively.

Both Fig. 5 and Fig. 6 demonstrate that NSC achieves higher

precision tracking compared to DSTC, RIDC and IDC.

Fig. 9. Tracking errors over joint space using NSC, DSTC, RIDC, and
IDC under Case III, respectively.

Fig. 10. Comparison of Cartesian space errors using NSC, DSTC,
RIDC, and IDC under Case III, respectively.

TABLE IV
CASE III: QUANTITATIVE RESULTS OF FOUR CONTROLLERS

MRMSEJ(deg) MRMSEC(mm)

NSC 0.02 0.09

DSTC 0.05 0.17

RIDC 0.04 0.25

IDC 0.36 0.84

2) Case II: tracking 3-D curves under light load and low

speed: Similar to Case I, we evaluate the NSC method in

tracking desired 3-D curves, as shown in Fig. 3(b), with their

corresponding mapping in joint space illustrated in Fig. 3(d).

Figs. 7-8 show the tracking error results in joint space and

Cartesian space. As shown in Table III, in joint space, the

maximum RMS components for NSC, DSTC, RIDC, and IDC

are 0.01 deg, 0.02 deg, 0.04 deg, and 0.07 deg, respectively.

In Cartesian space, these values are 0.05 mm for NSC, 0.09
mm for DSTC, 0.1 mm for RIDC, and 0.42 mm for IDC.

3) Case III: tracking 2-D curves under heavy load and high

speed: In this working condition, we increased the payload to

1.2 kg (see Fig. 4(b)) and tripled the joint velocities compared

to Case I. Figs. 9 and 10 demonstrate that NSC is more

robust compared to DSTC, RIDC and IDC. The tracking

error of RIDC and IDC is significantly larger, as observed

when comparing Figs. 5-6 and Figs. 9-10. The corresponding

numerical results in joint space are 0.02 deg for NSC, 0.05

deg for DSTC, 0.04 deg for RIDC, and 0.36 deg for IDC,

while in Cartesian space, the values are 0.09 mm for NSC,

0.17 mm for DSTC, 0.25 mm for RIDC, and 0.84 mm for

IDC, as shown in Table IV.

Fig. 11. Tracking errors over joint space using NSC, DSTC, RIDC, and
IDC under Case IV, respectively.

4) Case IV: tracking 3-D curves under heavy load and high

speed: In this case, we change the tracking trajectory to a 3-D

curve compared to Case III. The relevant results are depicted

in Figs. 11-12. The relevant numerical analysis results in joint

space are 0.03 deg for NSC, 0.05 deg for DSTC, 0.08 deg for

RIDC, and 0.12 deg for IDC, while in Cartesian space, the

values are 0.11 mm for NSC, 0.18 mm for DSTC, 0.32 mm

for RIDC, and 0.43 mm for IDC, as shown in Table V.

Fig. 12. Comparison of Cartesian space errors using NSC, DSTC,
RIDC, and IDC under Case IV, respectively.

TABLE V
CASE IV: QUANTITATIVE RESULTS OF FOUR CONTROLLERS

MRMSEJ(deg) MRMSEC(mm)

NSC 0.03 0.11

DSTC 0.05 0.18

RIDC 0.08 0.32

IDC 0.12 0.43

C. Experiment 2: Repeatability Test

We make a further evaluation on the proposed control

method by conducting a repeatability test. We choose the 2-

D position (449.95,−0.03) mm of the robotic end-effector as

the target position and repeat this operation by six times. As
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shown in Fig. 13, the green ‘⋆’ represents the target location,

the black solid ‘⋄’ corresponds to the actual locations of the

robot, the red solid ‘◦’ denotes the center point of the six real

positions, and the black dotted circle represents the smallest

circle that encloses the total actual positions. Moreover, the

target position is denoted by ‘a’ and the repeatability is

denoted by ‘r’. It is obvious that r is approximately equal

to 0.015 mm, satisfying the requirements of repeatability.

449.96 449.98 450

x (mm)

-0.04

-0.02

0

0.016

0.05

y
 (

m
m

)

trial 1

trial 2

trial 3

trial 4

trial 5

trial 6

target

center

circle

a

r

Fig. 13. Repeatability test result.

V. CONCLUSION

This paper has presented a systematic trajectory tracking

control framework for robot manipulators, specifically de-

signed to address the challenges of estimation and tracking

issues using only position signals. The proposed control ar-

chitecture ensures a high level of tracking performance within

the closed-loop system. The effectiveness of the approach

was validated through a series of tests, including the tracking

of 2-D and 3-D trajectories at varying speeds and loads, as

well as repeatability tests for individual points. Comparative

experiments with standard IDC, RIDC and DSTC clearly

demonstrate that the proposed approach outperforms them in

terms of precision, robustness, and reliability. Looking ahead,

our future work will focus on enhancing the safety of robot

operations and developing an efficient fault-tolerant controller

to handle situations where position sensors are absent.

APPENDIX

To begin with, the essential lemma is given for better

explanation in Section III.

Lemma 1: [38] Let a, b > 0. For any c > 0, gives ∀u, v ∈
R : |u|a|v|b ≤ a

a+b
c|u|a+b + b

a+b
c

−a
b |v|a+b.

Proof : Define e1 = z1− ẑ1, e2 = z2−ẑ2

ℓ
, e3 = d−ẑ3

ℓ2
. Then,

according to (5) and (15), the estimation error dynamics can

be obtained by







ė1 = ℓ(e2 − L1sig
m2(e1)),

ė2 = ℓ(e3 − L2sig
m3(e1)) + ℓ−1

(
f − ⟨f̂⟩N

)
,

ė3 = −ℓL3sig
m4(e1) +

ḋ

ℓ2
.

(21)

Denote e =
[
eT1 , e

T
2 , e

T
3

]T
, then we can reformulate (21) as

the following compact form

ė = ℓΨ+Λ+Ξ (22)

where Ψ =





Ψ1

Ψ2

Ψ3



, Λ =





Λ1

Λ2

Λ3



, Ξ =





Ξ1

Ξ2

Ξ3



, Ψ1 = e2 −

L1sig
m2(e1), Ψ2 = e3−L2sig

m3(e1), Ψ3 = −L3sig
m4(e1),

Λ1 = 0, Λ2 = f−⟨f̂⟩N
ℓ

, Λ3 = 0, Ξ1 = 0, Ξ2 = 0, Ξ3 = ḋ

ℓ2
.

Consider a Lyapunov function as

Ve = (⌊e⌉
1−σ

2
κ )TP1⌊e⌉

1−σ
2

κ (23)

where κ = (1, . . . , 1
︸ ︷︷ ︸

n

, 1 + σ, . . . , 1 + σ
︸ ︷︷ ︸

n

, 1 + 2σ, . . . , 1 + 2σ
︸ ︷︷ ︸

n

),

⌊e⌉
1−σ

2
κ =

[

(sig
1−σ

2
1 (e1))

T, (sig
1−σ

2
1+σ (e2))

T, (sig
1−σ

2
1+2σ (e3))

T

]T

,

and P1 is a positive definite and symmetrical matrix satisfying

AT
1 P1 +P1A1 = −I with A1 =





−L1 I 0

−L2 0 I

−L3 0 0



.

Computing the time derivative of Ve along (22) gives

V̇e = ℓ

3∑

i=1

n∑

j=1

∂Ve

∂ei,j
Ψi,j +

n∑

j=1

∂Ve

∂e2,j
Λ2,j +

n∑

j=1

∂Ve

∂e3,j
Ξ3,j .

(24)

In light of the Homogeneity theory [31], Ve is essentially

homogeneous of degree 2−σ, expressed as Ve ∈ H2−σ . In ad-

dition, it can also be concluded that (
∑3

i=1

∑n
j=1

∂Ve

∂ei,j
Ψi,j) ∈

H2, ∂Ve

∂e2,j
∈ H1−2σ , Λ2,j ∈ H1+2σ , ∂Ve

∂e3,j
∈ H1−3σ .

subsequently, referring to [39], one can conclude that

(ℓ
∑3

i=1

∑n
j=1

∂Ve

∂ei,j
Ψi,j +

∑n
j=1

∂Ve

∂e2,j
Λ2,j) ∈ H2 =⇒

(ℓ
∑3

i=1

∑n
j=1

∂Ve

∂ei,j
Ψi,j +

∑n
j=1

∂Ve

∂e2,j
Λ2,j) ≤ −(αℓ −

α̌)V
2

2−σ
e with α > 0 and α̌ > 0.

As for the third item in (24), we can employ Lemma 1 to

obtain that

n∑

j=1

∂Ve

∂e3,j
Ξ3,j ≤

n∑

j=1

(|
∂Ve

∂e3,j
|

2
1−3σ )

1−3σ
2 (γ

2
1+3σ )

1+3σ
2

≤

n∑

j=1

1− 3σ

2
|
∂Ve

∂e3,j
|

2
1−3σ + 3(1 + 3σ)γ

2
1+3σ

≤ άV
2

2−σ
e +∆1

(25)

where γ = sup|Ξ3,j | for j = 1, . . . , n, ά ≥ 1 − 3σ and

∆1 ≥ 3(1 + 3σ)γ
2

1+3σ .

Combining (24) and (25), we have

V̇e ≤ −(αℓ− α⋆)V
2

2−σ
e +∆1

(26)

where α⋆ = α̌+ ά. Thus, it can be concluded that the system

state estimation error will converge to a bounded region Ω0 ={

e | Ve(e) ≤ ( ∆1

αℓ−α⋆ )
2−σ
2

}

within a finite time.
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Subsequently, substituting (19) into (16) yields






˙̄z1 = ℓz̄2,

˙̄z2 = ℓvc +
f − f̃ + d− ẑ3

ℓ

= ℓ(vc − vs + vs) +
f − f̃ + d− ẑ3

ℓ

= ℓvs + ℓ(vc − vs) +
f − f̃ + d− ẑ3

ℓ

(27)

where vs = −K1sig
1+2σ(z̄1)−K2sig

1+2σ
1+σ (z̄2).

Denote z̄ =
[
z̄T1 , z̄

T
2

]T
. Then, rewriting (27) leads to

˙̄z = ℓ
(

Az̄+

[
0

I

]

vs +

[
0

I

]

(vc − vs)
)

+

[
0

f−f̃+d−ẑ3

ℓ

]

(28)

with A =

[
0 I

0 0

]

.

Consider a Lyapunov function candidate similar to (23) as

Vc = (⌊z̄⌉
1−σ

2
κ1

)TP2⌊z̄⌉
1−σ

2
κ1

(29)

with κ1 = (1, . . . , 1
︸ ︷︷ ︸

n

, 1 + σ, . . . , 1 + σ
︸ ︷︷ ︸

n

), P2 is a positive

definite and symmetrical matrix satisfying (A − H2)
TP2 +

P2(A−H2) = −I with H2 =

[
0 0

K1 K2

]

.

Take the derivative of Vc, where the first two items are

treated similarly to (24), so we have

V̇c ≤− (αℓ− ᾱ1)V
2

2−σ
c +

∂Vc

∂z̄T2
ℓ(vc − vs)

+
∂Vc

∂z̄T2

f − f̃ + d− ẑ3

ℓ

(30)

with ᾱ1 > 0.

From the theoretical analysis in [39], we can obtain

∂Vc

∂z̄T2
ℓ(vc − vs) ≤

α

2
ℓV

2
2−σ
c + α̃ℓV

2
2−σ
e , (31)

∂Vc

∂z̄T2

f − f̃ + d− ẑ3

ℓ
≤ ά1V

2
2−σ
c +∆2 (32)

where α̃, ά1 and ∆2 are positive constants.

Combining (30), (31) and (32), we have

V̇c ≤ −(
α

2
ℓ− ᾱ)V

2
2−σ
c + α̃ℓV

2
2−σ
e +∆2 (33)

with ᾱ = ᾱ1 + ά1.

Construct a Lyapunov function candidate as

V =
r0Vc

r0 + 1− Vc

+
βµVe

µ+ 1− Ve

(34)

where r0, β and µ are positive constants and need to fulfill

some necessary conditions. Following the results in [39], we

can further obtain

V̇ ≤ −γ1(V
2

2−σ
c + V

2
2−σ
e ) + ∆ (35)

where γ1 > 0 and ∆ > 0. Therefore, it can be deduced that

the trajectory tracking error of the closed-loop system will

converge to a region near zero in a finite time [39].

This completes the proof. ■
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