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Stability of quantized vortices in two-component condensates
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Multiply quantized vortices (MQVs) within single-component Bose-Einstein condensates are unstable and
decay rapidly. We show that MQVs can be stabilized by adding a small number of atoms of a second species
to the vortex cores, and that these atoms remain in the vortex core as the system evolves. A consequence of the
stabilization is that nearby corotating vortices can orbit in the opposite sense to their individual rotations when
enough of the second species is present. This has implications concerning the imaging of vortices, as well as
quantum turbulence and vortex nucleation in two-component condensates, such as those involving mixtures of
87Rb and 133Cs.

DOI: 10.1103/PhysRevResearch.5.033201

I. INTRODUCTION

The most striking property of quantum fluids (superfluid
4He, atomic Bose-Einstein condensates, polariton conden-
sates, etc.) is the existence of a macroscopic complex wave
function �(x, t ), where x is the position and t is time. If
we write the wave function as � = |�|ei� in terms of its
amplitude |�| and phase �, then the density n and the velocity
v of the superfluid are [1]

n(x, t ) = |�(x, t )|2, v(x, t ) = h̄

M
∇�(x, t ), (1)

where h̄ is the reduced Planck’s constant and M is the mass of
the relevant boson. The wave function imposes constraints on
the rotational motion. Whereas rotation in ordinary (classical)
fluids takes the form of eddies of arbitrary size and circu-
lation, rotation in superfluids is quantized, occurring around
special points (in two dimensions) or lines (in three dimen-
sions) called quantized vortices. At these special points, the
density n is exactly zero, hence the phase � is not defined:
Quantized vortices are therefore phase defects. Within a su-
perfluid, the circulation � of the velocity along a closed path
C is either zero if the region inside C does not include any
vortex, or an integer multiple � of the quantum of circulation
κ = 2π h̄/M [1],

� =
∮

v · dr = �κ, (2)
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if the region inside C includes a vortex of quantization � (since
� must be continuous, � must take on integer values). This
condition strongly constrains the velocity field around the
vortex axis. Vortices with |�| = 1 are commonly referred to as
singly quantized vortices (SQVs), whereas |�| > 1 are called
multiply quantized vortices (MQVs) (� is commonly called
the “charge” of the vortex). Since the angular momentum and
the kinetic energy carried by a vortex are proportional to �

and �2, respectively, MQVs are energetically unstable [2–4] in
simple homogeneous superfluids [5]; any MQV with charge
� will rapidly decay into � SQVs carrying the same total
angular momentum. This decay is the result of an energetic
instability in the spectrum of the vortex, i.e., the vortex pos-
sesses a normal mode with negative energy. In the presence
of a dissipation mechanism, the amplitude of this mode will
grow eventually causing the central vortex to split up. In large
enough systems, the surrounding bath of sound waves can also
act as a reservoir for the vortex to dissipate energy into, al-
lowing MQVs to split even when the governing equations are
energy-conserving. In this case, the spectrum of the vortex
contains an unstable mode with complex frequency which
grows spontaneously; see, e.g., [6–12].

The possibility of stabilizing inherently unstable MQVs
has been explored by using inhomogeneous trapping po-
tentials to force the spatial distribution of superfluid matter
[2] and by manipulating the superfluid via electromagnetic
field fluctuations [13]. A third possibility is based on two-
component condensates [14,15]. These systems can consist
of different atoms [16], different isotopes of the same atom
[17], or even different hyperfine states of the same isotope
[18,19]. It has been suggested that in such systems [20–24]
the overlapping second component can slow down or even
prevent the decay of MQVs [5] of the first component. As
we shall see, spatial separation is relevant to our problem.
Two distinct modes of spatial separation exist [25,26]: Sep-
aration arising from the geometry of the trapping potentials,
and separation resulting from the immiscibility of the two
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components [27], a property characterized by the intercom-
ponent interactions. Kuopanportti et al. [5] suggested how to
stabilize MQVs in a tightly confined two-dimensional 87Rb
and 41K mixture confined within a rotating harmonic trap.
They successfully stabilized � = 2 MQVs with both attractive
and repulsive intercomponent interactions by a clever distribu-
tion of the secondary component. In each case, the secondary
component was distributed in such a way that the energetic
favorability of MQV decay was not sufficient to overcome
the intercomponent interactions: The MQVs were effectively
“propped up” and could not decay. Unfortunately, the scope
of this technique is limited by the tightness of the trapping
potential: The vortex core was comparable in size to the size
of the entire condensate.

In this work, we propose a method of stabilizing MQVs
which exploits the spatial separation of mixtures with highly
repulsive intercomponent interactions. We shall show that, by
letting the second component concentrate inside the vortex
core of the first component, the energetic advantage of vortex
decay can be offset. To best facilitate stabilization of MQVs,
it is paramount to choose a condensate mixture such that
both components are self-repulsive and the intercomponent
repulsion is large. A mixture of 87Rb and 133Cs atoms meets
both requirements and is realizable in the laboratory [16].
Rather than a conventional harmonic trap, we consider the
problem in a potential trap with a wide, flat bottom and steep
walls, which allows for condensates that are homogeneous in
the bulk [28,29]. The advantage of such large circular bucket
potentials is that the vortex core profiles remain unchanged
as they move about the condensate, unlike what happens in a
tightly bound system, making our results independent of the
trap’s details.

It has recently been argued that placing atoms of a second
species inside the vortex core endows the vortex with a mass
[30], such that the effective equations of motion for the vortex
positions become second order in time derivatives (compared
to the one-component case where they are only first order in
time). This has been shown to have interesting consequences,
such as radial oscillations of precessing vortices [31], reverse
precession of a vortex in a harmonic trapping potential [32,33]
and the recombination of nearby vortex pairs [34]. The latter
is indicative of the stability of MQVs in two-component con-
densates. One of the principal aims of this work will be to
elucidate the mechanism behind this enhanced stability. We
go beyond the model presented in [31] by performing a full
linear stability analysis that accounts for the dissipation of
vortex energy into sound.

II. THE SYSTEM

A. Governing equations

The equations of motion of a trapped two-dimensional two-
component condensate are

ih̄∂t�1 = [K̂1 + V (x) + G1|�1|2 + G12|�2|2 − μ̃1]�1

ih̄∂t�2 = [K̂2 + V (x) + G2|�2|2 + G12|�1|2 − μ̃2]�2,
(3)

where � j are the macroscopic wave functions for the compo-

nents j = 1, 2, μ̃ j are the chemical potentials, K̂ j = − h̄2

2Mj
∇2

are the kinetic energy operators, Gj are the two-dimensional

(2D) self-interaction parameters, and G12 is the 2D inter-
species interaction parameter. The 2D trapping potential V (x)
[where x = (x, y)] is taken to be a cylindrical box-trap of ra-
dius rB and height V0. It is convenient to assume the circularly
symmetric form

V (x) = V (r) = V0

1 + (V0 − 1)ea(rB−r)
, (4)

where r2 = x2 + y2. Assuming that V0 is larger than both
chemical potentials, the two species are essentially confined
in the region r < rB; within this region, V (r) is negligible.
The quantity a is a smoothing parameter. We assume the
system is sufficiently low temperature that thermal noise and
dissipation can be neglected. The assumption of an effec-
tively two-dimensional system can be satisfied in practice by
imposing a strong confinement of both components in the
vertical direction, e.g., a harmonic potential with frequency
ωz � μ̃ j/h̄, such that the dynamics in the extra dimension are
frozen out (see Appendix A).

The system of equations (3) can be derived from the fol-
lowing action:

S =
∫

dtd2x

⎡⎣∑
j

(ih̄�∗
j �̇ j − H j ) − HI

⎤⎦, (5)

where the free-energy density for each component j
and interspecies interaction energy density are defined,
respectively, as

H j = �∗
j [K̂ j + V (x) − μ̃ j]� j + Gj

2
|� j |4,

HI = G12|�1|2|�2|2. (6)

Since independent phase rotations of �1 and �2 are symme-
tries of S , we obtain two conserved currents

∂t n j + ∇ · (n jv j ) = 0, (7)

where n j = |� j |2 is the number density of component j, and
v j = h̄

Mj
∇arg(� j ) is its velocity. In a closed system, one can

integrate over space to find that the number of atoms in each
species, Nj = ∫

n jd2x, is conserved by the evolution dictated
by (3). Hereafter, we fix the number of atoms in the first
component N1 and treat η = N2/N1 as our variable.

An approximate expression for the ground-state solution
of Eqs. (3) is provided by the Thomas-Fermi approximation:
Neglecting the kinetic energy terms, within the trap [where
V (r) � 0] the steady-state solutions of (3) satisfy

G1n1 + G12n2 − μ̃1 = 0, G2n2 + G12n1 − μ̃2 = 0. (8)

Since the two components are immiscible for G12 >
√

G1G2

[27], we can assume that component 2 is confined to the region
A2 = πr2

0 and component 1 occupies the remaining space
A1 = π (r2

B − r2
0 ). We then have n1 = N1/A1 and n2 = N2/A2

so that the chemical potentials are approximately

μ̃1 = G1N1

A1
, μ̃2 = ηG2N1

A2
. (9)

In this work, we consider systems with a vortex in �1 and no
vortex in �2. In the stationary state, solutions of (3) are of the
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form

�1(r, θ ) =
√

n1(r)ei�θ , �2(r) =
√

n2(r), (10)

where � is the winding number of the vortex. The corre-
sponding velocity field is v1 = h̄�

M1r êθ , where êθ is the unit
vector in the azimuthal direction. For simplicity, we focus
on the case � = 2; however, we expect our conclusions to
extend to vortices of higher winding numbers. In particular,
the stabilization mechanism we discuss in Sec. III B (which
involves filling in the vortex core with a second component)
will be qualitatively the same for different m and �. The main
difference will be that vortices with larger � have a larger core
region, hence we anticipate that more second components will
be needed to stabilize the system in that case.

B. Dimensionless variables

In the rest of the paper, we express the governing
equations (3) in dimensionless form using the following char-
acteristic units of length, time, and density:

ξ1 = h̄√
μ̃1,0M1

, τ1 = h̄

μ̃1,0
, n0 = μ̃1,0

G1
, (11)

where μ̃1,0 = μ̃1(η = 0) is the chemical potential of species
1 in the vortex state when species 2 is absent. In other words,
we perform the following rescalings:

r

ξ1
→ r,

t

τ1
→ t,

V

μ̃1,0
→ V,

� j

n1/2
0

→ � j, (12)

so that (3) becomes

i∂t�1 =
[
−1

2
∇2 + V (x) + |�1|2 + g12|�2|2 − μ1

]
�1,

i∂t�2 =
[
− 1

2m2
∇2 + V (x) + g2|�2|2 + g12|�1|2 − μ2

]
�2,

(13)

where we have defined the new dimensionless parameters,

μ j = μ̃ j

μ̃1,0
, g2 = G2

G1
, g12 = G12

G1
, m2 = M2

M1
. (14)

Note the true total number of atoms can be recovered from
Nj = ∫

d3x|� j |2 in these units by multiplying by a factor of
h̄2/M1G1 = d1/

√
8πa1, where d1 is the width of species 1

in the vertical direction, and a1 is its scattering length (see
Appendix A).

Since ξ1� (where ξ1 is the healing length of the condensate
1 for η = 0) is the characteristic core size of an �-vortex, in
the new units the vortex core now has radius ∼�. Furthermore,
since the density of condensate 1 approaches n0 far from the
vortex axis where n2 → 0, in the new units the bulk value of
n1 will approach μ1.

C. Parameters

In these units, the problem depends only on m2, g2, g12,
the parameters in the trapping potential, and the chemical
potentials μ j . The latter are related to the total number of
atoms in the ground state (see the next section). The s-wave
scattering lengths for the 87Rb and 133Cs mixture [35] are

a1 = 100a0, a2 = 280a0, and a12 = 650a0 [26], where a0 is
the Bohr radius, and hereafter the subscripts 1 and 2 refer, re-
spectively, to the 87Rb and 133Cs components. In Appendix A,
we show that when both species are subject to the same strong
vertical confinement, the dimensionless interaction parame-
ters are g2 = 2.04 and g12 = 5.65. The mass ratio is simply
m2 = 133/87. For the trapping potential, we fix a = 5 and
V0 = 5 so that there is essentially a hard wall located at
r = rB. For the trap radius, we pick rB = 40 so that the trap is
not too small to prohibit the instabilities under consideration
but not so large that the problem becomes computationally
impractical.

D. Stationary solutions

To solve for the stationary profiles n1,2, we evolve (13)
in imaginary time τ = it . This amounts to making the re-
placement i∂t → −∂τ in (3). Starting from a sensible initial
condition, the population of the higher-energy modes will then
decrease exponentially with increasing τ , leaving essentially
only the ground state at late times. Since the anticipated
densities are independent of the azimuthal coordinates, the
speed of the computation is increased by working in polar
coordinates. We therefore solve the following coupled set of
equations,

∂τY1 =
(∇2

r

2
− �2

2r2
− V (r) + μ1 − |Y1|2 − g12|Y2|2

)
Y1,

∂τY2 =
( ∇2

r

2m2
− V (r) + μ2 − g2|Y2|2 − g12|Y1|2

)
Y2, (15)

where ∇2
r = ∂2

r + 1
r ∂r and Yj = |� j | = √

n j . We work on a
radial grid r = [�r, rB + 5] with �r = 0.056 25 such that
there are 800 radial points, and we use an imaginary time
step �τ = 4 × 10−4. The evolution is performed using a
fourth-order Runge-Kutta algorithm with the radial deriva-
tives approximated using finite-difference stencils.

The first step is to fix a value for N1 against which
we can compare the effect of increasing η. This value is
determined by solving (15) for η = 0, using the fact that
μ1(η = 0) = 1, and integrating over the resulting profile to
get N1 = ∫

d2xn1(η = 0). For rB = 40 and � = 2, we have
N1 � 4824. Again, since this is the atom number in dimen-
sionless variables, one must multiply by the dimensionless
ratio d1/

√
8πa1 to find the true total number of atoms.

The second step is to choose an initial condition when the
second component is added. We start by considering the case
in which no vortex is present (� = 0) with component 2 local-
ized in the center of the system and component 1 surrounding
it. A subtlety of the problem is that if we want to keep N1,2

fixed, the chemical potentials must vary to accommodate these
constraints. A priori, we do not know the values of μ1,2 and
must determine them during the imaginary-time evolution.
We start by guessing their values using the Thomas-Fermi
approximation (9), which in dimensionless units gives μ1 =
N1/π (r2

B − r2
0 ) and μ2 = ηg2N1/πr2

0 . Since we consider η to
be very small, we take 1 as our initial guess for the value
of μ1 and invert the first relation to find the value of r0.
The second relation provides a guess for μ2. The densities
are then n1(r0 < r < rB) = μ1 and n2(r > r0) = μ2/g2. We
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FIG. 1. Density profiles for species 1 (left) and species 2 (right) for various η values (indicated in the figure legend on the right). The vortex
axis r = 0 is on the left and the trap’s boundary is at r = rB = 40. The other parameters are � = 2, and N1 � 4824 (the dimensionless number
of atoms of species 1 when η = 0). The inset on the left panel shows a closeup of the vortex axis. Component 2 occupies the vortex core where
the density of component 1 goes to zero. As the proportion of component 2 increases, the vortex core region widens. The inset on the right
panel shows how the chemical potentials vary with η.

evolve these profiles forward in imaginary time, renormaliz-
ing �1,2 after each time step to keep the values of N1,2 fixed.
After a long time, the system will have relaxed to its lowest
energy state; however, there will be residual time dependence
due to the fact that the chemical potentials were chosen incor-
rectly. We can use this time dependence to infer the shift in μ j

using Yj (τ + �τ ) = e−δμ j�τYj (τ ), so that the true chemical
potentials are μ1 = 1 + δμ1 and μ2 = ηg2N1/πr2

0 + δμ2, re-
spectively. The evolution is terminated once the changes δμ1

and δμ2 over a time step are both less than 10−6. This is
suitably small given that μ j ∼ O(1) for both species, and it
is computationally feasible when solving for a large range of
η values.

In the third step, we imprint a vortex by setting � 	= 0 in
(15), taking the ground states obtained from step 2 as the
initial condition. We evolve again in imaginary time (using
the same termination criterion) to find the stationary vortex
solutions, and we update the chemical potentials accordingly.

In Fig. 1, we present the resulting density profiles n1,2 as a
function of r for a vortex with � = 2. We see that component
2 stays inside the core of the vortex in component 1, and its
effect is to widen the core. It is remarkable that even the small
values of η which we consider here have such a significant
effect. This widening becomes more significant as η increases.
We also display the variation of the chemical potentials with
η in the inset of the right panel. μ1 increases with η by a very
small amount due to the repulsive effect of species 2 inside the
vortex core. This forces more of the N1 particles into the bulk
of the condensate, increasing the mean value of the density in
this region. μ2 increases much more obviously with η since
N2 is increasing and therefore the density of species 2 must
go up accordingly. Note, however, that μ2 does not vanish as
η → 0. This is because there is a contribution of the curvature
of n2 to the chemical potential. Indeed, solving the equation in
(15) for Y2 in the limit r → 0 gives the relation μ2 = (g2n2 −
n′′

2/2m2n2)|r=0. This does not go to zero as n2 → 0 since the
ratio n′′

2/n2 stays finite in this limit.

III. LINEAR ANALYSIS

Having found the stationary vortex solutions to (13), we
determine their stability by analyzing the normal modes of
the system. It is well known that MQVs in one-component
condensates spontaneously decay into clusters of SQVs and
that this instability can be attributed to an unstable mode of
the linearized equations of motion [8]. We now outline how
this analysis can be extended to two-component condensates,
and we demonstrate that, for sufficiently high values of η, this
mode can be stabilized.

A. Bogoliubov method

Let δψ j be small fluctuations about � j and write the fol-
lowing ansatz:⎡⎢⎢⎣

δψ1

δψ2

δψ∗
1

δψ∗
2

⎤⎥⎥⎦ =
∞∑

m=−∞
eimθ

⎡⎢⎢⎣
u1ei�θ

u2

v1e−i�θ

v2

⎤⎥⎥⎦, (16)

with u j and v j functions of r, t , and m, where m is the
azimuthal wave number. When the equations of motion (13)
are linearized, since neither n1,2 nor v1,2 depends on θ , each
m component evolves independently of the others. Due to
the symmetries u∗

j (m) = v j (−m) and v∗
j (m) = u j (−m), we

can restrict our attention to m � 0 modes without loss of
generality. The fluctuations |U 〉 = (u1, u2, v1, v2)T obey the
following coupled set of equations:

i∂t |U 〉 = L̂|U 〉. (17)

The operator L̂ is

L̂ =

⎡⎢⎢⎣
D+

1 ε n1 ε

ε D2 ε g2n2

−n1 −ε −D−
1 −ε

−ε −g2n2 −ε −D2

⎤⎥⎥⎦, (18)
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where

D±
1 = −1

2

[
∇2

r − (� ± m)2

r2

]
+ V + 2n1 + g12n2 − μ1,

D2 = − 1

2M2

[
∇2

r − m2

r2

]
+ V + 2g2n2 + g12n1 − μ2, (19)

and the coupling between fluctuations of both species is deter-
mined by ε = g12

√
n1n2. Note that for immiscible fluids, the

region of overlap of the two components is small. ε will be
small in this region and zero everywhere else. The fields uj

and v j are related to the azimuthal Fourier components of the
density field by

δn j,m = √
n j (u j + v j ), (20)

such that when resumming over m, the complete density fluc-
tuation is real-valued. The equations in (17) can be derived
from the action SBdG = ∫

dtd2xLBdG, where

LBdG = iu∗
1u̇1 − iv∗

1 v̇1 + iu∗
2u̇2 − iv∗

2 v̇2 − HBdG,

HBdG = HBdG,1 + HBdG,2 + HBdG,int,

HBdG,1 = u∗
1D+

1 u1 + v∗
1D−

1 v1 + n1(u∗
1v1 + u1v

∗
1 ),

HBdG,2 = u∗
2D2u2 + v∗

2D2v2 + g2n2(u∗
2v2 + u2v

∗
2 ),

HBdG,int = ε[(u∗
1 + v∗

1 )(u2 + v2) + c.c.]. (21)

SBdG is invariant when each of the fields u j and v j simultane-
ously undergoes the same phase rotation. The corresponding
conserved quantity is the Bogoliubov norm,

NBdG = 〈U |γ 0|U 〉 ≡
∑

j

∫
d2x(|u j |2 − |v j |2), (22)

where γ 0 = diag(1, 1,−1,−1) is the zeroth gamma matrix.
Notice that due to the presence of the cross-terms with co-
efficient ε in (21), excitations of species 1 can be converted
into excitations of species 2 and vice versa. However, the total
number of excitations, as measured by NBdG, is conserved.

Since the background is stationary, we can further decom-
pose the fluctuations into the separate frequency components,

|U (r, t )〉 =
∫ ∞

−∞

dω

2π
aω(t )|Ũ (r; ω)〉, (23)

where aω and |Ũ 〉, respectively, satisfy

i∂t aω = ωaω, ω|Ũ 〉 = L̂|Ũ 〉. (24)

The first equation is solved by aω ∝ e−iωt up to an arbitrary
constant, while the second must be solved numerically. The
Hamiltonian for stationary modes is related to the Bogoliubov
norm via HBdG = ∫

d2xHBdG = ωNBdG. Therefore, a positive
frequency mode with negative norm (or a negative frequency
mode with positive norm) has negative energy. The sign of
the energy plays an important role in the discussion of the
instability.

To solve the second equation in (24) computationally, we
write the radial derivative terms using finite-difference sten-
cils on a discrete r-grid, and then find the eigenvalues and
eigenfunctions of the resulting matrix L̂. The eigenfunctions
are normalized so that |Re[NBdG]| = 1, which gives an un-
ambiguous normalization condition for all solutions obtained.

We place a Dirichlet boundary condition at large r, although
this does not play a significant role as it is applied in a region
where V (r) is large, hence modes with energy lower than
the barrier height quickly decay to zero inside this region. A
discussion of the boundary conditions at r = 0 can be found
in Appendix B.

In Fig. 2, we present the eigenvalues ω as a function of η for
� = 2 and rB = 40. There are two distinct types of excitation.
Bulk excitations (shown in black) predominantly occupy the
region outside of the vortex core and are associated with col-
lective excitations of the condensate or phonons at low wave
numbers. Indeed, in panel (c), it can be seen that these modes
have a large oscillatory component in the large-r region. They
have positive energy (HBdG > 0) and are largely unaffected
by increasing η, which influences only the vortex core. There
is a second class of excitation, which we refer to as vortex
modes. These have negative energy (HBdG < 0) at low η and
are mainly localized around the vortex axis, as illustrated in
panel (c). In panel (a), we see that there is only one such mode
for the � = 2 vortex represented by the red line. Since this
mode occupies the same region as component 2, it is strongly
affected when η is increased. Indeed, the frequency of the
vortex mode in panel (a) can be seen to decrease rapidly even
for relatively small amounts of component 2. In the presence
of a dissipation mechanism, these modes will be excited since
they lower the total energy of the system, i.e., they are an
energetic instability.

When Re[ω] of the vortex mode crosses that of a bulk exci-
tation, the two couple to produce a complex-conjugate pair of
modes with vanishing Bogoliubov norm. This leads to the ap-
pearance of isolated bubbles in Im[ω] in panel (b). The mode
with Im[ω] > 0 represents a dynamical instability, that is, the
central vortex spontaneously sheds its energy into a sound
wave in the bulk even without a dissipation mechanism. This
does not violate energy conservation since the total energy
of the mode encoding this behavior is zero (HBdG = 0). The
complex-conjugate mode describes the time-reversed process,
i.e., absorption of a sound wave by the central vortex. In panel
(d), we show how the waveforms of the two modes in panel
(c) combine to produce the real and imaginary parts of the
instability.

Note that for large enough rB (larger than considered here),
i.e., in the limit in which finite-size effects become negligible,
the bubbles in Im[ω] eventually merge into a continuum [10].
In that case, there is a dynamical instability at η = 0 for all
larger trap sizes and, in particular, in the infinite system limit.

We also show in Fig. 3 the effect of increasing η on the
waveform of the vortex mode around the vortex axis. The
main feature is that the amplitude of the mode at r = 0 is
suppressed as the number of atoms in species 2 is increased.
This will be addressed in the next section.

For large η, the vortex mode has a frequency lower than
all positive frequency bulk excitations. At a critical η value,
which we call ηc [the black dot in Fig. 2(a)], the frequency
of the vortex mode changes sign. Since the Bogoliubov norm
of this mode is negative, the energy of the vortex mode is
positive for η > ηc and it will no longer get excited when
a dissipation mechanism is included. Furthermore, since the
negative frequency bulk excitations have negative norm, they
have positive energy and the vortex mode cannot mix with
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FIG. 2. On the left, we display the eigenvalues ω of (17) as a function of η for m = � = 2 and rB = 40, with the real part in panel (a) and
the imaginary part in panel (b). For clarity, both panels (a) and (b) are split into two regions for small and large values of η. The modes whose
frequency is approximately independent of η (solid black horizontal lines) are bulk excitations (phonons) which are not affected by component
2 in the vortex core. The mode whose frequency decreases with η (solid red) is an excitation of the vortex core and has negative norm for
all frequencies. When the vortex mode crosses a bulk excitation mode, the two modes couple with each other to produce a pair of complex
conjugate modes (solid green) with zero norm and complex frequency ω. At a critical value ηc (marked as a solid black dot), the frequency of
the vortex mode (red line) changes sign. On the right, we display some example mode functions for the vortex mode. In panel (c), we pick an
η value slightly to the left of the third instability bubble in panel (b). The solid black (red) curve corresponds to the bulk (vortex) excitations of
component 1 with the frequency indicated. The dashed curves of the same color correspond to component 2. In panel (d), we pick the η value
at the peak of the third instability bubble and display the real and imaginary parts of the growing mode. Comparing panels (c) and (d), we see
that the vortex mode enters mainly the real part of the unstable eigenmode while the bulk excitation is captured by the imaginary part. Time
evolution then causes these waveforms to rotate into each other via the factor e−iωt multiplying them, which is a manifestation of the coupling
between vortex mode and bulk excitation.

these modes to produce a dynamical instability with zero
energy. Above ηc, the system is stabilized by the presence of
the second component. This stabilization will also occur in
an infinite system. Although the phonon spectrum is contin-
uous in that case, what is relevant is that when the system
crosses ηc, the vortex mode energy is not the correct sign
to produce an eigenmode with complex frequency. In that
case, we expect there to be a series of avoided crossings
with the ω < 0 phonons, although an explicit demonstration
is beyond the computational grid sizes probed in this work.
The next section will explore the mechanism underpinning
this stabilization, while Sec. IV will demonstrate stability via
a full numerical simulation of (13).

From Fig. 2(a), we find the value ηc = 5.933 × 10−4. Since
the value obtained will depend in general on the resolution
used in the numerics, we estimate that the infinite resolution
limit would yield the value ηc = 5.936 × 10−4 (details are in
Appendix C). Note that this value is also specific to an � = 2
vortex in a trap of a radius rB = 40 and will in general depend
on both these parameters. Due to computational cost, we do
not study this dependence here.

A computation of the mode energy in (21) gives insight
into the behavior around ηc. In Fig. 4, we integrate the (vortex
mode) energy density components in (21) over space and plot
as a function of η. The total energy HBdG is negative at low
η except inside finite windows where it is vanishing due to
the dynamical instability. At the edge of these windows, the

amplitudes of the normalized mode diverge, as reflected in
the components of HBdG, but they do so in a way that keeps
the total energy finite. The energy of species 2 fluctuations
HBdG,2 is always positive while the interaction energy HBdG,int

between fluctuations of each species is always negative. The
energy of species 1 fluctuations HBdG,1 is initially negative but
becomes positive around η = 2.33 × 10−4. Correspondingly,
the maximum amplitude of the vortex mode waveform shifts
outwards into a region where it has positive energy density
(see Fig. 3). Since HBdG,int is close to the value of −2HBdG,2,
the total mode energy is still negative even when HBdG,1 = 0.
Interestingly, in this regime, the energetic instability of the
vortex mode is a result of the interaction between fluctuations
of the two species, rather than being an inherent property
of the vortex in species 1 alone. Increasing η further, the
total energy changes sign at ηc. This coincides with HBdG,1

exceeding the value of HBdG,2.

B. WKB method

To interpret why the vortex mode is shifted to lower fre-
quency with increasing η, we apply a WKB method. This
method has been demonstrated to give insight into the phys-
ical origin of vortex instabilities [11] as well as providing
reasonable estimates of the unstable mode frequencies [12].
Following the procedure outlined in [12], we first write a
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FIG. 3. Variation of the vortex mode waveform with η. In partic-
ular, we display the modulus of uj + v j , which is the combination
appearing in formula (20) for density fluctuations. The main effect
of the second component is to reduce the amplitude of excitations of
species 1 on the vortex axis. The shift in the maximum of |u1 + v1|
between η = 2 × 10−4 and 3 × 10−4 is responsible for HBdG,1 be-
coming positive in Fig. 4, since the waveform moves into a region of
positive energy density.

FIG. 4. Vortex mode energy densities in (21) integrated over
space. The total energy smoothly increases from negative to positive,
except in finite windows where it vanishes due to the dynamical
instability. The change in sign of the total energy is associated with
the energy of fluctuations in species 1 exceeding that of species 2.

WKB ansatz, [
u j

v j

]
=

[
A j (r)

B j (r)

]
ei

∫
p(r)dr, (25)

where p is the local component of the wave vector in the radial
direction, and we assume |p2| � |∂r p|, |pA j | � |∂rA j |, and
similarly for B j . Taking only the leading-order contributions
and eliminating the four amplitudes, Eq. (24) becomes

D1(k1)D2(k2) = ε2k2
1k2

2 , (26)

where

D1(k1) = �2 − n1k2
1 − k4

1/4,

D2(k2) = ω2 − g2n2k2
2 − k4

2/4,
(27)

and � = ω − m�/r2 is the frequency in the frame rotating
with the vortex. We have also defined a pair of effective wave
vectors by

k2
1 = p2 + m̃2

1

r2
, M2k2

2 = p2 + m̃2
2

r2
, (28)

where the effective azimuthal numbers are

m̃2
1 = m2 + �2 + 2r2(n1 + g12n2 − μ1),

m̃2
2 = m2 + 2M2r2(g2n2 + g12n1 − μ2). (29)

Hence, we can identify the condition in (26) as two coupled
dispersion relations describing excitations of components 1
and 2, respectively, interacting through a small overlap region
where ε is nonzero. As a first approximation, we study the
noninteracting case with ε → 0. We are particularly interested
in the fluctuations of component 1 (since this is where the
instability arises) which approximately satisfy D1(k1) � 0.
This condition has two sets of solutions for p that are decou-
pled from each other. The first type are evanescent over the
whole system, whereas the second can propagate. We are only
interested in the second type. These are determined by

p2 + W+ = 0, W+ = −2
√

n2
1 + �2 + 2n1 + m̃2

1

r2
. (30)

Points where p = 0 correspond to turning points, i.e., radial
locations where an incoming wave instantaneously comes to
rest before reversing its direction and propagating back out
[12]. We can therefore view W+ as an effective potential; when
W+ < 0 these waves are propagating, while for W+ > 0 they
are evanescent.

To see the effect of adding a second component, one can
expand the m̃2

1 term in W+:

W+ = −2
√

n2
1 + �2 + 4n1 − 2μ1 + m2 + �2

r2
+ 2g12n2.

(31)

In the absence of the second component, this potential has
a cavity located about r = 0 where waves with correct fre-
quency can become trapped as bound states These states
approximately satisfy cos I � 0 [12], where I = ∫

cav
p dr is

the phase integral inside the cavity in the vortex core (see
Appendix D for a further discussion). When a second species
is present inside the vortex core, the final term in (31) creates
a bulge in the potential around r = 0 (as shown in Fig. 5),
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FIG. 5. The potential W+ from (31) with m = � = 2 for an ex-
ample frequency ω = 0.75. In the WKB approximation, excitations
of component 1 propagate when W+ < 0. Excitations of the vortex
are bound states inside the cavity centered on the axis, and they
correspond to the central vortex splitting into a cluster. A second
component in the vortex core induces a bulge in the cavity, decreas-
ing the amount of space for vortex excitations. As the bulge grows
in size, the vortex excitation decreases its frequency until, for large
enough η, there are no positive frequency modes that fit inside the
cavity.

thereby decreasing the amount of space the mode has to fit
in the cavity. This bulge inhibits wave propagation in the
immediate vicinity of the vortex axis, explaining the feature
of Fig. 3 where the amplitude of the waveform drops on the
vortex axis with increasing η. Conventional wisdom gained
from the 1D Schrödinger equation in quantum mechanics
would dictate that this should raise the frequency of the bound
state, but this is not the case here, as we now illustrate.

To solve the resonance condition in the cavity, one should
compute I (ω) for all frequencies that probe the cavity before
finding the one that solves cos I = 0. For small η, we show in
Appendix D that the integral near the bottom of the cavity (for
m = � = 2) can be expanded as

I (ω) = π (ω0 − ω)

|2g12n′′
2,0|1/2

+ O[(ω0 − ω)2], (32)

where ω0 is the maximum frequency that probes the cavity,
and n′′

2,0 is the curvature of the density of component 2 on
the axis. This expression demonstrates that I decreases as ω

increases, i.e., ∂ωI < 0. More generally, the reason for this
difference with the standard Schrödinger picture (in which
∂ωI > 0) is that the vortex mode in the WKB picture is on the
lower branch of the dispersion relation where � < 0 (which
is related to the negative norm of the mode). On this branch,
the root with p > 0 has negative group velocity ∂pω < 0,
i.e., decreasing ω increases the value of p. Therefore, since
increasing η will decrease p through the final term in (31), the

frequency of the bound state decreases to keep I fixed at the
value satisfying the resonance condition.

Although the WKB method correctly predicts the decrease
of the vortex mode frequency with increasing ω, it fails at
providing the quantitative value. This is to be expected since
the approximation works best for high frequencies in regions
where the background functions change gradually. Indeed,
in [12], the WKB estimates are practically indistinguishable
from numerical calculations for bulk excitations, while for the
vortex mode (which occupies a region where the background
density quickly changes) the WKB estimate differs notably
from the numerics. When η 	= 0, the frequency is lower than
the η = 0 case and the bulge in W+ makes background vari-
ations more significant. Both of these features decrease the
quantitative power of the WKB approximation.

IV. NUMERICS

Having gained an understanding of the instability mecha-
nism from the linear theory, we now perform a series of fully
nonlinear simulations of (13). The first goal will be to demon-
strate explicitly the stabilization mechanism, showing that for
high η values the � = 2 vortex fails to split. We then move on
to discuss a by-product of the stabilization mechanism: The
counter-rotating orbital motion of a pair of corotating vortices.

A. One component

We first evolve (3) for η = 0, i.e., when the second species
is absent. For our spatial grid, we take x ∈ [−(rB + 5), rB +
5] and similarly for y with N = 512 spatial points. We take
�t = 5 × 10−3 and evolve using a split-step Fourier method
for 2 × 105 steps in time, saving every 200th frame. For the
initial condition, we seed the stationary vortex profile for � =
2 and rB = 40 with the unstable mode of amplitude |aω(t =
0)| = 10−3. We note that the corresponding resolution in the
radial direction is 256 points, which differs from the value of
800 used in Sec. II D. The reduced resolution slightly shifts
the location of the instability bubbles in Fig. 2. Hence, for
consistency, we repeat the procedure in Secs. II D and III A
for �τ = 5 × 10−3 and 256 radial grid points when producing
the initial condition, since we want to precisely seed the mode
that is unstable in our nonlinear simulations. A comparison of
the normal mode spectra at different resolutions can be found
in Appendix C.

The results are shown in Fig. 6. Panels (a)–(c) show the
density at early, intermediate, and late times, with constant
density contour superimposed in red/white, and panels (d)–(f)
show the phase at the same times. In panels (a) and (d) the
vortex is close to its stationary profile, while in panels (b)
and (e) a deformation of the central vortex can be seen. In
panels (c) and (f) the central vortex has split into two � = 1
vortices. The density contours indicate that this splitting is
accompanied by the production of a bulk excitation, namely a
sound wave with m = 2. At sufficiently late times, the vortices
move back into the center due to finite system effects studied
in [11]. Since our focus is on the splitting mechanism, we
do not discuss this behavior further here. In the presence of
dissipation, the initial splitting described here continues and
the vortices separate widely, as we show in Sec. IV D.
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(a) (b) (c)

(d) (e) (f)

(g)

(h)

(i)

(j)

FIG. 6. Splitting of a vortex with � = 2 when η = 0. The density is displayed in panels (a)–(c) at three different times. The constant density
contours are set at 0.95 (red outer contour) and 0.05 (white inner contours). These help indicate the vortex splitting and the production of an
m = 2 sound wave in the bulk of the condensate. Panels (d)–(f) indicate the phase at the same times. In panel (g), we show the variation of
the modulus of the m = 0 and 2 Fourier components of the density with time. The m = 2 mode grows exponentially before saturating and
decaying due to finite-size effects [11]. The vertical black lines indicate the times t = 600, 825. We display various components of the energy
in panels (h)–(j), showing that the vortex splitting is associated with a decrease (increase) in incompressible (compressible/quantum) energy.

In panel (g), we perform a Fourier decomposition of the
density n = (2π )−1

∫
dθ eimθ nm [36] and display modulus of

the Fourier components m = 0, 2 at the location r = 1.37.
This location corresponds to the peak of the radial waveform
nm=2(r). At first, the m = 2 mode grows exponentially in line
with the prediction of Fig. 2. Around t = 800, the m = 2
mode reaches a maximum amplitude and starts to decay as
the vortices move back into the center. Near the maximum
amplitude of nm=2, we also observe the nonlinear effect of
the unstable mode on the m = 0 component. This is simply
the backreaction of the growing mode onto the background
density profile, which can be physically understood as the
condensate filling in the center as the vortices move apart.

The instability is associated with a decrease of incompress-
ible (vortex) energy and an increase in compressible (sound
wave) energy. The energy of the system can be decomposed
as

E = Ekin + Eq + Epot + Eint, Ea =
∫

d2x Ea,

Ekin = 1

2
n|∇�|2, Eq = 1

2
|∇√

n|2, (33)

where the kinetic energy Ekin is associated with a nonvanish-
ing velocity field and the quantum energy Eq results from
density variations. Epot = V n and Eint = n2/2 are the usual
potential and interaction energy densities, respectively. The
kinetic energy can be further split into compressible and
incompressible parts by defining u = √

n∇� and writing
u = uc + ui, where the incompressible part obeys ∇ · ui = 0.

Operationally, the compressible part can be found by per-
forming a Fourier transform F , projecting u onto the wave
vector k, and computing the inverse Fourier transform F−1.
That is, uc = F−1[k(k · Fu)/||k||2] and ui = u − uc. Since
uc and ui have zero overlap, the kinetic energy can be written
Ekin = Ec + Ei, with Ec = ∫

d2x uc and similarly for Ei. We
display Eq, Ei, and Ec in panels (h), (i), and (j), respectively.
The incompressible energy decreases as the vortices move
apart (into a lower-energy configuration) and the compressible
and quantum energies increase in response. The two vertical
black lines in the rightmost panels correspond to the times in
panels (b) and (c), respectively.

B. Two components

To assess the effect of adding a small amount of com-
ponent 2 inside the vortex core of component 1, we repeat
the simulation of the last section for various values of η. In
particular, we start from the stationary profiles for condensates
1 and 2 and perturb the system by inserting the unstable mode
with an amplitude 10−3. The values of η chosen correspond
to the peaks of Im[ω] in the stability windows at the chosen
resolution.

In Fig. 7, we display the densities of species 1 and species
2 for four values of η at the same times depicted as the
η = 0 case in Fig. 1. As η increases, we clearly see that
the vortices have separated less at a given instant of time
when compared with the single-component system, thereby
demonstrating the stabilizing effect of the second species.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

FIG. 7. The densities n1,2 = |�1,2|2 for various η at the same times shown in Fig. 1. In each panel, the density of component 1 is shown
on the left (corresponding color bar, bottom left) and component 2 on the right (bottom right) The constant density contours for component 1
are set at 0.9 (red outer contour) and 0.005 (white inner contours) and help indicate the vortex splitting. As η is increased, the central vortex in
component 1 is less deformed at a given time, while the density of component 2 increases, becoming more and more visible on the color scale.

Since the minute separation becomes less and less transparent
from the density plots with increasing η, we show in Fig. 8 the
growth of the m = 2 mode in the vortex core. Here, we clearly

FIG. 8. Growth of the m = 2 unstable mode for various η values.
For each η, we look at the time dependence of the mode at the spatial
location where n1,m=2 has maximum amplitude (which is around r ∼
1.6–1.9). As η increases, the oscillation frequency and growth rate
decrease in accordance with the linear prediction of Fig. 2.

see that both the oscillation frequency and the growth rate
decrease with increasing η. The values of Re[ω] and Im[ω]
correspond to those predicted by the linear analysis in Fig. 2
(see Appendix C for an explicit comparison).

C. Orbit reversal

In general, the unstable mode in the spectrum of the MQV
is associated with its splitting into a cluster of SQVs, whose
distribution is determined by the m-fold symmetry of the un-
stable mode. In single-component systems, the cluster rotates
in the direction of the net winding of the system, since each
vortex essentially moves under the collective influence of all
the others. The story is not so simple when a second compo-
nent is added. The orbital frequency of the resulting cluster
is given by Re[ω]/m, with Re[ω] the oscillation frequency of
the unstable mode. Hence, the frequency inversion for η > ηc

seen in Fig. 2 is associated with the reversal of the cluster’s
orbital motion. We demonstrate this now with a numerical
simulation.

We choose a series of η values where the vortex is dy-
namically stable. Note here that dynamical stability below ηc

results from finite-size effects for certain ranges of rB, while
above ηc it persists for all trap sizes, as shown by Fig. 2. Using
the same resolution as the previous section, we now seed the
stationary vortex profile with the vortex mode of amplitude
|aω(t = 0)| = 2. Due to the large amplitude, in all cases we
observe a sudden burst of sound from the central vortex as
the system relaxes through nonlinear interactions. After this
initial burst, we observe a stably orbiting vortex pair in the
center of the trap surrounded by small noise. In Fig. 9, we
display snapshots of the density profiles of the two species at
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

FIG. 9. Vortex pair motion for various η values at three different times. In each of the four columns, the left plot depicts |�1|2 (color bar
bottom left) and the right plot |�2|2 (color bar bottom right). Each row corresponds to the time indicated on the left. The direction of the
vortices is indicated with a red arrow, and one of the vortices is marked with a white cross to help illustrate the motion. In panels (a1)–(a3)
the pair complete less than half a full orbit in the counterclockwise sense between each snapshot. In panels (b1)–(b3) the motion is also
counterclockwise with lower orbital frequency. In panels (c1)–(c3) the motion is clockwise with low orbital frequency, and in panels (d1)–(d3)
the motion is clockwise and slightly faster. The change in direction of the orbit is associated with a low-density region between the vortex pair
in component 1 and a high-density region in the same area in component 2.

three different times. The red arrows indicate the direction of
the orbital motion. For the two leftmost columns, the orbital
motion is counterclockwise, corresponding to Re[ω] > 0 for
the vortex mode below ηc. The atoms of species 2 are shared
between the two � = 1 vortices in the pair and track their
motion. Conversely, the orbital motion is clockwise on the two
rightmost columns, corresponding to Re[ω] < 0 above ηc.

For large η we find that a region of depleted density in
component 1 persists between the two separated vortices and
is occupied by component 2. We interpret this as the result
of the waveforms in Fig. 3. For η = 0, the maximum value of
the waveform on the vortex axis nonlinearly excites the m = 0
mode as the vortices separate, causing atoms to fill in the space
between them. For large η, the waveform decreases approach-
ing r = 0, suppressing the nonlinear excitation of m = 0 in
that region. Physically, the presence of component 2 on the
vortex axis prevents excitations in component 1 propagating
there, which means there is nothing to increase the value of
the density of component 1 at r = 0 as the vortices separate.

D. Dissipation

In the presence of a dissipation mechanism, an MQV in a
one-component condensate will still decay even if the vortex
mode does not couple to any bulk excitations. The reason is
that the vortex mode has negative energy, hence its excitation
lowers the total energy of the system, as required by the dis-
sipation. The same is not necessarily true in a two-component

system, as we now show, since the vortex mode has a positive
energy above ηc.

In Fig. 10, we present results of three simulations per-
formed with damping. The initial conditions in panels (a), (b),
and (c) are, respectively, the final frames of the simulations
shown in Figs. 7(a), 9(a), and 9(d), corresponding to the same
η values indicated at the top of the figures. These correspond,
respectively, to the lowest fraction of η simulated, which are
unstable [panel (a)] and stable [panel (b)] when γ1 = 0, and
the largest η value simulated above ηc [panel (c)]. As η is
small, damping applied to atoms of the second species will
quickly reduce N2 to zero. Hence, we only apply damping
to the first component. This is achieved by replacing i∂t by
(i − γ1)∂t in (13), taking the value γ1 = 5 × 10−2.

In Figs. 10(a1)–10(a3), the initial condition is a dynami-
cally unstable vortex mode with low amplitude. In the three
snapshots, we observe the central MQV splitting into a pair
of SQVs rotating counterclockwise with equal amounts of
second component in the two cores. During the splitting, the
second species remains confined to the vortex cores, rather
than being dispersed across the system.

In panels (b1)–(b3), the initial condition is two nearby
SQVs surrounded by noise. The noise is quickly damped
out and the vortices spiral out in the counterclockwise sense
with decreasing orbital frequency. In this regime, the vortices
orbit in accordance with the regular point-vortex dynamics
[1], which dictates that the orbital frequency is approximately
� = 2/s2, where s is the separation between vortices, with the
atoms of species 2 playing a negligible role in the dynamics.
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

FIG. 10. Vortex pair dynamics with damping for various η. In panels (a1)–(a3), atoms of the second species stay confined to the SQV
vortex cores when the MQV decays. In panels (b1)–(b3) the vortices spiral out in an η independent manner, with the species 2 atoms tracking
the motion of the vortex cores. In panels (c1)–(c3), η is above the critical fraction, hence the system lowers its energy by recombining into a
single, central MQV.

In accordance with this expectation, the dynamics observed
for t > 300 at η = 3.4 × 10−5 [i.e., after the last frame shown
in panel (a)] also follow the point-vortex behavior. From this,
we conclude that the modified dynamics in two component
condensates is absent when species 2 atoms are split into
distinct parcels which occupy the separate vortex cores. In
other words, the stabilization is a feature of a single parcel
of species 2 atoms shared across the vortices.

To support this conclusion, in panels (c1)–(c3) we take
such a configuration as our initial condition. The correspond-
ing vortex mode at this η value has positive energy, hence
the separation of vortices (while retaining a single parcel of
species 2 atoms) is associated with an energy gain relative
to the stationary MQV. As the system evolves, the vortices
orbit in the clockwise sense and damping reduces the vortex
separation to lower the energy of the system. At late times,
we recover a stationary, central MQV. This demonstrates that
MQVs seeded with species 2 atoms above a critical fraction
can be inherently stable objects even when a dissipation mech-
anism is present.

V. DISCUSSION

The results presented here show that, in a two-component
condensate confined in a bucket trap in the immiscible regime,
multiply quantized vortices (MQVs) in the first component
can be stabilized when a relatively small number of atoms
of the second component collect in the vortex core. We have
found that if the fraction η of atoms of the second component
is small, the growth rate of the dynamically unstable mode
which causes vortex splitting is smaller than when the second
component is absent. We found that there exists a critical

fraction ηc above which vortex decay is energetically un-
favorable. Hence, for η > ηc, MQVs are stabilized even in
the presence of a dissipation mechanism since it would cost
energy to separate them. A consequence of the stabilization
mechanism is that nearby corotating vortices can orbit in
the opposite sense to their individual rotations when enough
atoms of the second component are shared across the cores.

The parameters that we have used in this model were
chosen such that an experiment would be reasonably feasible.
The greatest challenge in performing this experiment would
be creating a trapping potential profile that directly matches
what we have used here; however, since the first realization
of a uniform trapping potential [37], advancements have been
made in generating homogeneous condensates [38,39], with
traps of the size of ≈100 µm. We also expect this phenomenon
to persist in harmonic traps since the instability is a feature of
the vortex core rather than the details of the trapping potential
(see, e.g., [10] for an example where the normal mode spectra
of MQVs in harmonic and boxlike trapping potentials are
qualitatively the same in one-component condensates).

Our results stand in contrast to those in [40], where a
miscible, two-component condensate (with equal mass and
self-interaction parameters) was shown to be more unstable
than vortices in one-component condensates. This is a result
of the region where spin waves have negative energy density
extending outside the vortex core. It is an interesting parallel
then that in the opposite case, where the mixtures are im-
miscible, MQVs can be made more or completely stable. We
comment that our findings in Fig. 2 are also reminiscent of
excitations of coreless vortices in spinor BECs; see, e.g., [41].
There, one of the spin sublevels (containing no vortex) fills
the core of an � = 2 vortex in one of the other sublevels. This
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system also contains a vortex mode that can cause a dynamical
instability, and increasing the total magnetization (analogous
to our parameter η) is seen to suppress the dynamical insta-
bility by reducing the magnitude of vortex mode energy. An
important difference is that in our case, there is a critical η

value where the vortex mode energy changes sign (implying
its excitation does not lower the energy of the system), which
does not happen in [41].

Our results further demonstrate that even in dynamic sce-
narios, the atoms of the second component remain attached to
the vortex cores rather than becoming scattered about the trap.
Therefore, the proposed method of MQV stabilization could
provide a solution to the problem of destructive imaging, as
suggested in [42]. The most common method to image a con-
densate is absorption imaging, which consists of illuminating
the cold gas with a laser and measuring the shadow cast by ab-
sorption [43]. Although this method provides a detailed image
of the condensate, irradiating the system drastically changes
its energy and dynamics, and in the worst case destroys the
condensate [44]. It is also possible to remove a small fraction
of the atoms of a specific component of a condensate from a
trap and to image them independently [45]. If one stabilized
vortex cores with a second component, the use of a specific
microwave pulse could outcouple only secondary component
atoms, resulting in an image describing vortex core locations
without affecting the dynamics of the primary component. As
this stabilization has proven robust, vortex cores undergoing
rapid motion could be reliably imaged and tracked.

An added consequence of the stabilization is that MQVs
(and also SQVs) are endowed with an extra degree of freedom
relative to one-component condensates where an excited vor-
tex can only radiate sound. Here, the extra degree of freedom
is the excitations of the second component, which would al-
low for more complicated interactions in systems containing
more than one vortex. This situation has some analogy with
superfluid 3He, where vortices may have a double vortex core
whose rotational symmetry about the vortex axis is broken
[46]. By creating a natural ribbon, the double vortex structure
would help the definition of superfluid helicity [47].

Another interesting question relates to the dynamics of
vortices in 3D condensates. If atoms of the second component
are unevenly distributed along a pair of nearby vortex fila-
ments, different segments of the vortex filament could feasibly
orbit in opposite directions. This may induce vortex reconnec-
tions, with potential consequences for superfluid turbulence in
two-component mixtures. We note that a similar system was
studied in [48] where the second species was made to flow
along the vortex core of the primary condensate.

A further possibility we raise involves the nucleation of
vortices containing atoms of the second component. In a sys-
tem of species 1 atoms in which vortices are absent, a small
amount of species 2 could be added close to the edge of the
trapping potential where the density drops to zero. Rotating
the condensate would lead to vortex nucleation close to the
edge of the trap, and it is feasible such vortices would carry
atoms of the second species. Furthermore, as we have seen, for
large enough proportions of atoms in species 2, MQVs can be
energetically preferable to SQVs, raising the intriguing possi-
bility of nucleating vortices with large winding numbers. To
achieve this, the effect of dissipation on species 2 atoms would

need to be much smaller than on species 1 atoms, otherwise
the former would dissipate out of the system. In that case, one
could imagine creating a lattice of MQVs on timescales before
dissipation of the second species became significant.

Finally, since the vortex mode has vanishing oscillation
frequency at the critical fraction ηc, it would be interesting to
investigate the nonlinear dynamics in the vicinity of this value
to see if static (i.e., nonorbiting) configurations of vortices can
be constructed.
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APPENDIX A: DIMENSIONAL REDUCTION

The action for the two-component system in three-
dimensional (3D) space is

S3D =
∫

dtd2x

⎡⎣∑
j

(
ih̄�3D

j
∗
�̇3D

j − H3D
j

) − H3D
I

⎤⎦,

with

H3D
j = �3D

j
∗[

K̂3D
j + V 3D

j (x) − μ̃3D
j

]
�3D

j + G3D
j

2

∣∣�3D
j

∣∣4
,

HI = G3D
12

∣∣�3D
1

∣∣2∣∣�3D
2

∣∣2
.

We now assume a tight confinement in the vertical (z) direc-
tion and seek an action governing the dimensionally reduced
dynamics in the (x, y) plane. To this end, we write

V 3D
j (x, y, z) = V (x, y) + 1

2
Mjω

2
j z

2, μ̃3D
j = μ̃ j + h̄ω j

2
,

where V (x, y) and μ̃ j are the 2D bucket trap and chemical
potentials in the main text, and the z-dependent piece of
V 3D

j is a harmonic trap of frequency ω j . The breakdown of
the chemical potential in this way amounts to assuming that
the z-dependent piece of the wave function is the ground
state if we also assume μ̃ j � h̄ω j and �3D

j (x, y, z, t ) =
�2D

j (x, y, t ) f j (z). The 3D action can then be split as S3D =
Sz + S , where Sz ∼ O(h̄ω j ) and S ∼ O(μ̃ j ). The vertical part
is

Sz =
∫

dtd2x
∣∣�2D

j

∣∣2
∫

dz
∑

j

×
(

h̄ω j

2
| f j |2 − h̄2

2Mj
|∂z f j |2 − 1

2
Mjω

2
j z

2| f j |2
)

,
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whose variation yields

h̄2

2Mj
∂2

z f j +
(

h̄ω j

2
− 1

2
Mjω

2
j z

2

)
f j = 0, (A1)

which has solutions

f j (z) = e−z2/2d2
j , d2

j = h̄

Mjω j
. (A2)

The f j can then be inserted into the 2D action and the z
integrals evaluated. Terms involving |�2D

j |2 (including the
derivative term), |�2D

j |4, and |�2D
1 �2D

2 |2 are proportional to
the following z integrals:∫

dz f 2
j = d j

√
π,

∫
dz f 4

j = d j

√
π/2, (A3)

and ∫
dz f 2

1 f 2
2 = d12

√
π, d−2

12 = d−2
1 + d−2

2 . (A4)

Finally, we obtain the action in (5) once we make the identifi-
cations

� j = (d j
√

π )
1
2 �2D

j (A5)

and

Gj = G3D
j√

2πd j

, G12 = d12G3D
12√

πd1d2
. (A6)

The interaction parameters are related to the scattering lengths
a j through [35]

G3D
j = 4π h̄2a j

Mj
, G3D

12 = 2π h̄2a12

M12
, (A7)

where M12 = M1M2/(M1 + M2) is the reduced mass of
the two species. The dimensionless parameters defined in
Sec. II C become

g2 = d1M1a2

d2M2a1
, g12 = d12M1a12√

2d2M12a1

, (A8)

or in terms of the harmonic trapping frequencies,

g2 =
√

M1ω2

M2ω1

a2

a1
, g12 = 1 + M1/M2√

1 + M1ω1
M2ω2

a12√
2a1

. (A9)

The vertical confinement applied to the two species is the
same provided M1ω

2
1 = M2ω

2
2. In this case, we find

g2 =
(

M1

M2

)3/4 a2

a1
, g12 = 1 + M1/M2√

1 + (M1/M2)1/2

a12√
2a1

.

The s-wave scattering lengths for the 87Rb and 133Cs mixture
are a1 = 100a0, a2 = 280a0, and a12 = 650a0 [26], where a0

is the Bohr radius [35]. Using M1/M2 = 87/133, we obtain
the values

g2 = 2.04, g12 = 5.65, (A10)

which are the values quoted in the main text.

APPENDIX B: BOUNDARY CONDITIONS

As r → 0, we have n1 → 0 and ε → 0. The fields u1 and
v1 each obey the Schrödinger equation, whose regular solu-
tions are of the form

u1 ∼ Jm+�(α+r), v1 ∼ Jm−�(α−r), (B1)

with α2
± = 2(1 − g12n2 ± ω). Thus, the boundary conditions

are

m = � : u1(r = 0) = ∂rv1|r=0 = 0,

m = −� : ∂ru1|r=0 = v1(r = 0) = 0,

|m| 	= � : u1(r = 0) = v1(r = 0) = 0. (B2)

The fields u2 and v2 remained coupled to one another, al-
though they do decouple from u1 and v1. To find their
asymptotic form, we can expand in power series about r = 0
and apply the method of Frobenius. Writing

u2 =
∞∑

n=0

b+
n rn+p+

, v2 =
∞∑

n=0

b−
n rn+p−

, (B3)

the equations of motion become

∞∑
n=0

[(n + p+)2 − m2]b+
n rn+p+

+
∞∑

n=2

[β+b+
n−2 − 2g2n2b−

n−2]rn+p+ = 0,

∞∑
n=0

[(n + p−)2 − m2]b−
n rn+p−

+
∞∑

n=2

[β−b−
n−2 − 2g2n2b+

n−2]rn+p− = 0, (B4)

with β± = 2(μ2 − 2g2n2 ± ω). The first term in the series
yields the values of p±. The regular solutions are each given
by p± = |m|. Hence the asymptotics at the origin are u2 ∼ r|m|
and v2 ∼ r|m| leading to the boundary conditions

m = 0 : ∂ru2|r=0 = ∂rv2|r=0 = 0,

m 	= 0 : u2(r = 0) = v2(r = 0) = 0. (B5)

APPENDIX C: RESOLUTION

From the procedure outlined in Sec. II D, we obtain the
chemical potentials μ0

j = μ j + �μ j , where μ j is the true
value that one would obtain in the continuum limit. By check-
ing for a range of resolutions, we observe that the error �μ j

scales linearly with ετ = �τ and εr = �r2. This error will
offset the normal mode frequencies calculated in Fig. 2, and
therefore the value of ηc obtained from looking where the
vortex mode has zero frequency.

We account for this offset using the following linear per-
turbation theory argument. We start with the resolution used
to produce Fig. 2, ε0

τ = 4 × 10−4 and ε0
r = (45/800)2, and we

expand the vortex mode frequency in the vicinity of the zero
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crossing,

ω = ω0 + ∂ηω
0
(
η − η0

c

)
, (C1)

where η0
c is our prediction for the critical η value at this resolu-

tion and ω0 = 0 by definition. The gradient ∂ηω
0 is measured

from Fig. 2. Now consider a change in the resolution. The
expansion above to leading order becomes

ω = ω0 + δω + ∂ηω
0
(
η − η0

c

)
, (C2)

where δω is the shift in the value of ω at η0
c . Solving ω = 0

gives the new value of ηc,

ηc = η0
c − δω

∂ηω0
. (C3)

Now, to compute ηc at infinite resolution, we need to estimate
δω as we take ετ and εr to zero. To do this, we use the fact that
ω depends linearly on ετ and εr , and we expand the value of
ω at η0

c ,

ω
(
η0

c

) = ω0
τ

(
ετ − ε0

τ

) + ω0
r

(
εr − ε0

r

)
, (C4)

with

ω0
τ ≡ ∂ω

∂ετ

∣∣∣∣
ε0
τ ,ε0

r

, ω0
r ≡ ∂ω

∂εr

∣∣∣∣
ε0
τ ,ε0

r

. (C5)

We can estimate these gradient terms by independently vary-
ing the resolutions away slightly from their initial values.
Once ω0

r and ω0
τ are known, the frequency shift at infinite

resolution is given by

δω = −ω0
τ ε

0
τ − ω0

r ε
0
r . (C6)

The expression for ηc in the continuum limit is therefore

ηc = η0
c + ω0

τ ε
0
τ + ω0

r ε
0
r

∂ηω0
. (C7)

Using η0
c = 5.933 × 10−4, we estimate the true value to be

ηc = 5.936 × 10−4.
When performing the nonlinear simulations of Sec. IV, it

was not computationally feasible to use the same resolution
used for Fig. 2. In Fig. 11, we compare the spectrum for �τ =
4 × 10−4 and 800 radial points (red curves) with the same for
�τ = 5 × 10−3 and 256 radial points (black lines). Bulk ex-
citations (horizontal lines) are insensitive to the change since
they occupy a region where there are a large number of grid
points. The main difference is in the vortex mode frequency,
since this mode is covered by far fewer grid points at lower
resolution. This leads to a slight displacement of the instability
bubbles in the plot of Im[ω]. We also show with black dots the
values of Re[ω] and Im[ω] extracted from the full numerics,
namely Fig. 8. We observe good agreement for all η values,
although the largest η point is displaced slightly above its true
value on the plot of Im[ω]. We interpret this as being due to
finite-size effects similar to those studied in [11], which onset
earlier for this particular mode and make it more difficult to
extract the growth rate.

FIG. 11. Normal-mode spectra for resolutions �τ = 4 × 10−4

and 800 radial points (red) used in Fig. 2, and �τ = 5 × 10−3 and
256 radial points (black) comparable to that used in Sec. IV.

APPENDIX D: SMALL r INTEGRAL

Here we evaluate the phase integral inside the vortex core
in the small r approximation. The integral is

I =
∫ r+

r−

√−W+dr. (D1)

For W+(0) > 0, r± are the smallest r values for which W+ =
0, while for W+(0) < 0, r− = 0 and r+ is the smallest r value
for which W+ = 0. Close to the axis, we can expand W+
treating r as small,

W+ = (m − �)2

r2
− 2(1 − g12n2,0 − ω) + g12n′′

2,0r2

+ (4n′′′′
1,0 + 2n′′′′

2,0)r4/4! + O(r6), (D2)

where we have expanded n1,2 up to and including quartic order
terms. Since the small r behavior of component 1 is n1 ∼ r2�,
we assume at this stage that we have an � = 2 vortex so that
n′′′′

0,1 	= 0. To perform the calculation for � 	= 2, one would
need to retain larger terms in the r expansion. The unstable
mode for the doubly quantized vortex occurs for m = � = 2,
hence we can write W+ in the form

W+ = 2ω − 2U − αr2 + βr4, U = 1 − g12n2,0,

α = −g12n′′
2,0, β = (4n′′′′

1,0 + 2n′′′′
2,0)r4/4!, (D3)

where α and β are positive constants. For small enough η,
the minimum of W+ will be located in the region where this
expansion is valid. The minimum is r0 = √

α/2β and the
value of the potential there is W0 = 2(ω − ω0), where ω0 =
U + α2/8β is the maximum frequency which propagates in
the cavity and is positive for small η. Now we evaluate the
cavity integral for ω close to ω0. For this we expand W+ this
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time around r0,

W+ = W0 + 2α(r − r0)2. (D4)

In this approximation, r± = r0 ± √−W0/2α. We can then
compute I ,

I =
∫ r+

r−
dr

√
−W0 − 2α(r − r0)2,

= −W0√
2α

∫ 1

−1
dz

√
1 − z2 = − πW0

2
√

2α
, (D5)

which can be written as

I (ω) = π (ω0 − ω)

|2g12n′′
2,0|1/2

+ O[(ω0 − ω)2], (D6)

as stated in (32) of the main text. It is also instructive to write
ω0 as

ω0 = 1 − g12
(
n0,2 + n′′

0,2r2
0/4

)
, (D7)

where the term in parentheses is slightly smaller than the value
of n2 at r0. Since n2 increases with η, we deduce that ω0

decreases as η is increased from 0.
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