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ABSTRACT The electrified hybrid shipboard power system with high-level integration of renewable energy
resources and energy storage system has become the new trend for the all-electric ship (AES) configuration.
However, the traditional rule-based energy management system (EMS) is not able to fulfill the increasingly
complex control requirements, and amore advanced EMS control algorithm is required to handle themultiple
power sources and even achieve optimal energymanagement control. This paper proposes a supervisory-level
EMS with an improved adaptive model predictive control (AMPC) strategy to optimize the power split
among the hybrid power sources and to reduce the total cost of ownership (TCO) of vessel operation, which
considers not only the fuel and emission costs but also the power source degradation. In order to achieve real-
time implementation, the AMPC-based EMS software has been developed and deployed to a programmable
logic controller (PLC) hardware. The prototyping controller verification tests have been performed with a
hybrid fuel cell-fed shipboard power system hardware-in-the-loop (HIL) plant in the lab environment. Three
typical tugboat load profiles with power fluctuations are implemented as case studies. Lastly, a cost studywas
performed to compute the economic benefits for a ten-year long-term vessel operational cycle. The proposed
AMPC-based EMS is robust and effective, which can achieve up to 12.19% TCO savings compared to those
of a traditional rule-based control strategy.

INDEX TERMS All-electric ship, hybrid shipboard power microgrid, adaptive model predictive control,
energy management control system.

I. INTRODUCTION
With increasingly strict environmental rules and regula-
tions [1], [2], the all-electric ship becomes one of the most
promising solutions to comply with these new requirements.
The DC-grid shipboard power system has shown its advan-
tage of higher efficiency in power distribution and allows for
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more flexible designs and modes of operation that simplify
the integration of different types of renewable power sources,
such as fuel cells and batteries. However, this type of hybrid
power integration has greatly increased the complexity of
the power system and control requirements [3]. The energy
management system (EMS), the essential control system for
marine vessel operation, is the brain of a shipboard power
system to handle different aspects of vessel operations. The
traditional EMS, usually with a rule-based control strategy,
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has limitations in managing the multiple power devices
operation, as well as considering fuel efficiency, reducing
emissions and extending the device lifetime. An advanced
energy management control algorithm is required to handle
the increasing complexity of the power system under different
operation modes, and also to achieve optimal control.

A hierarchical control scheme has been widely accepted
as an industrial standard for shipboard EMS [4]. In this
multilevel control framework, the primary and secondary
control levels handle the instantaneous load sharing among
the hybrid power devices and system local coordination,
which has been explored in the authors’ earlier research
work [5]. In this study, a tertiary-level EMS is proposed to
optimize the power allocation for hybrid power devices and
minimize the total cost of ownership (TCO) for a shipboard
power system.

According to optimization theory, tertiary-level energy
control can be classified as rule-based or optimization-
based EMS [6]. The researchers presented in-depth reviews
of marine energy management systems [7], [8], [9]. Rule-
based EMSs have been widely used in the marine industry.
Nonetheless, their performance is largely contingent on the
researchers’ knowledge and engineering experience. Rule-
based systems encounter challenges in achieving the optimal
control [10]. Global optimization EMSs are typically unsuit-
able for real-time control, as prior operation information is
generally unattainable. Thus, the global optimization EMSs
are usually employed to validate the control strategies [11].
Equivalent consumption minimization strategy (ECMS) is
a real-time optimization-based algorithm. Yet, it is only
focused on fuel consumption without considering the energy
reserved for the future or degradation of energy sources [12].
Model predictive control (MPC) is capable for handling
constrained multi-variable problems with system estimation
features and has been extensively implemented in land-based
or electric vehicle (EV) powermanagement applications [13].
Nevertheless, marine power systems differ significantly
due to frequent load fluctuations and abrupt disturbances
originating from the oceanic environment. Shipboard power
system has its own special features and requirements, and
MPC is one of the most promising optimal control strategies
for marine applications.

In [14], the researchers presented an MPC-based ship
power management controller to coordinate sources and
loads based on future demand dynamically. A shipboard
centralized MPC is proposed to optimize the coordination
of the energy storage and diesel gen-sets (DGs) [15].
Hou et al. [16] designed pre-filtering MPC and coordinated
control MPC method for ship power system to address the
power flow tracking between super-capacitors and battery
devices, and at the same time to achieve energy saving under
various operating constraints. In [17], the MPC algorithm is
combined with particle swarm optimization (PSO) control
for the ship power management to achieve power-sharing
between different power sources andmaintain the DC voltage
stability. An adaptive MPC algorithm was developed in [18]

to handle the marine load fluctuations, improve system
efficiency and reduce mechanical wear and tear. A financial
model has been proposed to minimize the system operation
cost, including hydrogen fuel cost and the cold-ironing
cost [19], [20].

The main benefit of the MPC approach lies in its capacity
to optimize the present time slot while also considering
upcoming time slots. This inherent ability allows it to adapt
well to highly dynamic systems.While MPC-based strategies
are effective, most existing works only focus on one or two
control criteria, aiming to enhance either system efficiency or
dynamic performances. However, there is a gap in the field for
a multi-objective optimization EMS, one that addresses not
only dynamic power supply but also optimal fuel efficiency,
emissions reduction, and overall power device preservation.
Moreover, in real-time implementation, ensuring robust
control performance amidst frequent load fluctuations and
sudden disturbances poses a significant challenge.

In this paper, an adaptive model predictive control
(AMPC)-based approach has been proposed to achieve
multi-objective energy management control. Compared to
existing studies on hybrid shipboard EMS control, the main
contributions of this paper are as follows:

• An improved real-time EMS based on AMPC is pro-
posed to provide an optimal power allocation between
different power sources of the hybrid shipboard power
plant to achieve minimum costs and in a novel control
architecture for marine systems.

• A prototyping EMS controller has been developed and
deployed to a programmable logic controller (PLC)
hardware, and verified with a hardware-in-the-loop
(HIL)-based plant.

• A case study is conducted on a targeted tugboat to
validate the robustness of the proposed EMS control
performance using three typical operational shipload
profiles with power fluctuations.

• The control performance is measured through economic
benefits that incorporates not just fuel efficiency, but
also emission limits and power devices lifetime. Prior
researches have been more focused on a single control
criteria. A cost study is performed and the total cost of
ownership for 10 years of long-term vessel operation
has been calculated and compared with traditional EMS
approaches.

This paper is organized as follows: the hybrid shipboard
power system model is built and the shipload profile is
defined in Section II. The proposed AMPC-based optimal
EMS is presented in Section III. The HIL verification tests
and a cost comparison study are performed and analyzed in
Section IV. Conclusions are finally drawn in Section V.

II. SHIPBOARD POWER SYSTEM PLANT MODEL
A. SHIPBOARD POWER SYSTEM CONFIGURATION
In this study, a DC-grid hybrid shipboard power system is
configured and modeled to verify the proposed EMS control
performance. The parameters of the power devices refer to
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FIGURE 1. DC-distributed shipboard power system single line diagram.

those of tugboat from the Flagships project. The flagships is
a commercial project of ABB, who provides the power and
propulsion solution [21]. The demo shipboard power system
configuration single line diagram is shown in Figure 1.
Due to the marine special reconfigurability and redundancy
requirements, this shipboard power plant comprises two sets
of 200kW fuel cells, two battery arrays with capacity of
113 kWh each and two 410kW DGs as the back-up power
sources.

This plant model operates on a HIL platform. The dynamic
performance of each power system component is validated
against a full-scale actual power plant facility presented in
the authors’ previous work [5].

B. HYBRID SHIPBOARD POWER SYSTEM MATHEMATICAL
MODEL
The mathematical model of the demo shipboard power
system is built in this section, which includes the fuel cells,
batteries, and DGs as the power sources. The propulsion
load and ship hotel loads of the vessel are represented with
controllable current sources. The system model is given as
follows.

1) Fuel cell model:
The proton-exchange membrane fuel cell (PEMFC) is
the most mature technology over other types of fuel cell
and is configured as the main power supply device in
this study. The voltage of a PEMFC elementary cell can
be written as follows [22]:

Vcell = Enernst − Vact − Vconc − Vohm (1)

Vfc = Nfc × Vcell (2)

where Vcell is the voltage of a PEMFC elementary
cell, Enernst is the equilibrium voltage, Vact is the
activation over-potential, Vconc is the concentration
over-potential, Vohm is the ohmic over-potential, Vfc is
the voltage of PEMFC stack, and Nfc is the number of
cells in series.

2) Diesel gen-set (DG) model:
DGs serve as the back up power in this demo system.
The system consists of four main sections: fuel injec-
tion and diesel engine,synchronous generator (SG),
governor, and automatic voltage regulator (AVR) [23].
The mathematical models of each part of DG are
formed as follows:

• Fuel injection and diesel engine is presented by a
time delay and the coupling shaft model, as in [24],
[25]. The simplified model in s domain is given by

Tm(s)
uω(s)

=
Ken · e−td ·s

tes+ 1
(3)

Jeq ·
dωm

dt
= Tm − Te − kfeq · ωm (4)

where ωm is the mechanical speed, uω is the
control signal from the speed governor, Tm is the
mechanical torque developed by the engine, Jeq is
the equivalent inertia of the entire system, kfeq is
the equivalent friction coefficient,Ken is the engine
gain, td is a delay representing the time elapsed
from the fuel injection until the torque is developed
at the engine shaft, and te is the time constant of the
fuel injection.

• Synchronous generator (SG) is considered without
damper windings for the sake of simplifying the
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model. And its d-q rotating reference frame is
given by

Vd = −rs · id + Lq · ωe · iq + Ld ·
did
dt

+Msf ·
dif
dt
(5)

Vq = −rs · iq − Ld · ωe · id + Lq ·
diq
dt

+Msf · ωe · if (6)

Vf = rf · if + Lf ·
dif
dt

−Msf ·
did
dt

(7)

Te = (Ld − Lq) · id · iq +Msf · iq · if (8)

where Vd , Vq, id , iq are the output voltages
and currents in the d-q rotating reference frame
respectively, Vf and if are the field excitation
voltage and current respectively, rs and rf are
the stator winding and field winding internal
resistances respectively, Ld and Lq are the stator
inductance in the d-axis and q-axis respectively, Lf
is the inductance of the field, Msf is the mutual
inductance between the field winding and the
d-axis stator winding, and Te is the electromagnetic
torque.

• Governor is responsible for regulating the engine
speed and maintaining the constant output fre-
quency within the desired limits under different
loading conditions. This governor also has the
structure of a PI controller with the droop function
implemented. This model can be given by

uω = (ω∗
en − ωen − kdr,freq · uω)(KPω +

KIω
s

)

(9)

where KPω and KIω are the proportional and
integral gains of the governor PI controller, and
ωen is the engine nominal speed and ω∗

en is the
reference, and kdr,freq is the speed droop gain that
equals (mdr ·ωen), andmdr is the static droop slope.

• Automatic voltage regulator (AVR) is to man-
age the terminal voltage (Uv) of the SG under
different load conditions. This AVR is modeled
as a first-order system, representing a power
converter controlled by a PI controller [23], and is
given by

Vf =
kconv

tconvs+ 1
· (Uv − kdr,vVf ) (10)

Uv = (KPv +
KIv
s
) · (V ∗

t − Vt ) (11)

whereKPv andKIv are the proportional and integral
gains of the AVR PI controller, kconv and tconv are
the converter gain and time constant, and V ∗

t and
Vt are the reference and measured RMS output
line voltage. kdr,v is the DC voltage droop rate for
DC-distributed power system.

TABLE 1. Parameters for the DC-distributed demo vessel.

3) Battery model:
Batteries are used to enhance the dynamic performance
and shave the peak loads of the power system. The
open circuit voltage (OCV) is defined distinctively for
discharging and charging at a specified state-of-charge
(SoC) due to the hysteresis effect [29]. The total voltage
drop from OCV is then modeled here based on the
first-order equivalent circuit to account for the internal
resistance and polarization (OCV relaxation).

Vterm = VOCV − IRe − Vp, (12)

where Vterm is the terminal voltage of the cell, VOCV is
the cell OCV, I is the current rate of the cell (positive
for discharging and negative for charging), Re is
the electrical resistance (responsible for instantaneous
voltage drop together with Cp, after the application of
load) and Vp is the voltage drop across the polarization
circuit. At any instant, Vp across the parallel RC circuit
is represented by the voltage drop acrossRp or Cp. So,
the equation can be arranged by

Vp(t)
Rp

+ Cp
dVp(t)
dt

= I (t) (13)

where the total circuit current I of IRp and ICp, IRp is
the current across polarization resistance, and ICp is the
current across polarization capacitance.
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FIGURE 2. Simulated fuel cell system net efficiency and fuel flow rate.

FIGURE 3. SFOC and SNOX of Perkins 2506C (410kW).

Transfer function after Laplace transform is as

Vp(s) = I (s)
Rp

1 + sRpCp
(14)

So that the steady-state response of terminal voltage
Vterms−s to a given current is given by

Vterms−s = VOCV − I (Re + Rp) = VOCV − IRti (15)

where Rti = Re+Rp is the total cell internal resistance.
Battery SoC is intrinsically divided into two types:
instantaneous SoC (SoCinst ) and nominal SoC
(SoCnom), both based on Ah counting. Nominal
SoC is derived from nominal capacity based on
standard discharging conditions as suggested by the
manufacturer, while instantaneous SoC is based on the
available instantaneous discharge capacity given by:

SoCnom(ti) = SoCnom(ti−1) −
Istep(ti−1)tstep

Cnom
(16)

SoCinst (ti) =
(1 − SoCnom(ti−1))Cnom

Cstepavail(ti−1)

−
Istep(ti−1)tstep
Cstepavail(ti−1)

(17)

where, Istep is the current at a given time step,
tstep is the sampling time of battery management
controller, and Cstepavail is the capacity available for
Istep. Instantaneous SoC is useful in indicating the
capacity available at a given time step and operating
conditions.

4) System Measurement:
The system model is capable of generating data for the
fuel consumption, emissions and power device lifetime
count.

• Hydrogen (H2) fuel consumption during the oper-
ation period is given by

FCH2 =

∫ tf

t0
ṁh(Pfc,i)dt (18)

where FCH2 is the fuel consumption of hydrogen,
t0 and tf are the beginning and the end time
stamp of ship operation respectively. ṁh is the
specific device hydrogen flow rate (g/s) at loading
condition of Pfc,i. The device efficiency and
hydrogen flow rate are almost a linear function of
the loaded power, as shown in Figure 2.

• Marine diesel oil (MDO) fuel consumption is
totally different from the hydrogen fuel with fuel
cell devices. As shown in Figure 3, the specific
fuel consumption (sfc) for a marine diesel engine
system can be written as:

sfc =
ṁf
PB

(19)

where ṁf is the fuel flow rate in kg/s, and PB is
the ship engine brake power in W . The different
prime movers usually have their own specific fuel
oil consumption (SFOC) curve, which is referred
to Perkins 2506C diesel engines in this study [27].

• Green House Gas (GHG CO2) emissions are also
taken into account, which is proportional to the
fuel consumption. The quantity of GHG can be
calculated by multiplying fuel consumption with
fuel specific emission rate corresponding to the
specific type of fuel used [30]:
- - Marine diesel oil (MDO): 3.206 tons ofCO2 per

ton of oil consumed.
- - Heavy fuel oil (HFO): 3.114 tons ofCO2 per ton

of oil consumed;
- - Light fuel oil (LFO): 3.151 tons of CO2 per ton

of oil consumed;
In this study, the MDO fuel is selected if DG
power is activated. To simplify the analysis, other
emissions such as NOx or SOx are not taken into
consideration.

The selected power system parameters and device costs for
this demo vessel are shown in Table 1.

III. ADAPTIVE MODEL PREDICTIVE CONTROL
(AMPC) FOR EMS
MPC algorithm is one of the most promising control methods
for real-time shipboard power system applications. The
classical MPC optimizer relies on a linear-time-invariant
(LTI) dynamic model to predict system future behaviour
(a relevant study can be found in the authors’ previous
work [31]). However, in actual practice, due to the nonlinear
nature of shipboard power plant model and load fluctuations
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in marine environment, LTI prediction accuracy is degraded.
During the verification test, theHIL plant and communication
protocol are introduced, the expected control performance
becomes unacceptable. In order to ensure the efficacy of
EMS and attain robust control, an adaptive model predictive
control (AMPC) approach is proposed. This approach aims
to develop a multi-objective EMS for the shipboard power
system to minimize the overall TCO of vessel operation,
including fuel consumption, emissions penalties, and power
device degradation.

A. PROPOSED ADAPTIVE MPC-BASED EMS
ARCHITECTURE
The AMPC approach solves the optimization problem over
the prediction horizon by generating the control sequence
at each time step. The number of elements in the control
sequence is defined by the control horizon. And only
the first components of the control decision sequence
will be implemented in the power system. The prediction
window moves to the next step and repeats the computation
process [32]. The AMPC is proposed to make the controller
insensitive to prediction errors and achieve robust control
performance. AMPC addresses the degradation by adapting
the prediction model for changing operating conditions,
which allows the model parameters to evolve with time.
In this study, Matlab/Model Predictive Control Toolbox
software is implemented. At each control interval, the AMPC
optimizer updates the plant model and nominal conditions.
Once updated, the model and conditions remain constant over
the prediction horizon.

A unique hierarchical supervisory control architecture is
designed, as shown in Figure 4, which consists of a load
prediction block, a linearized state-space system model,
a mode selection module, and an AMPC-based real-time
optimizer [32]. The load prediction block is to estimate the
future power load (P̂load_dmd ), which is the pre-condition for
the power and energy management control system design.
The mode selection block designates the vessel operation
mode and online power devices according to the predicted
power load profile (P̂load_dmd ) and the system states (such
as battery SoCi). The selected operation mode (δ(k)), the
system state signals (x(k)) and the estimated state (x̂(k)) are
the input variables to the AMPC-based PMS optimization
controller at time instant k . Optimal power allocation for
different power sources (u(k)) is expected from the controller
outputs. In addition, to verify the robustness of the proposed
AMPC-based EMS algorithm, shipload power fluctuations
(d(k)) are introduced according to the Sea State conditions.

B. POWER SYSTEM LOAD PROFILES
An accurate marine load prediction model is a prerequisite
for the system to achieve optimal operation. A data-driven
load prediction framework has been developed in authors’
previous work [33]. However, due to the limited available
operational data of the targeted tugboat needed for the

FIGURE 4. Hierarchical supervisory control architecture for proposed
AMPC-based EMS.

FIGURE 5. Pre-defined power load profile for demo vessel operation.

prediction, three typical tugboat load profiles are utilized in
place of predicted load profiles, to verify the performance of
the proposed EMS algorithm [30], [34], [35]. The shipload
profiles (Pload ) are shown in Figure 5. The tugboat operation
can be categorized into three different working conditions:
(1) transit , (2) standby or idle, and (3) ship assist . The tugboat
starts to transit to the work location where the power load
demand is around 30% of the total rated power onboard,
followed by a standby period near the work location. And
then, the tugboat enters the working zone for ship assisting
operation, where peak load is required. When the assisting
work is completed, the tugboat transits to the next work
location or sails back to the harbor. The entire operating cycle
is 3 hours (10800s) for this case study. The working process
is similar, while variations exist in shipload demands and
tasks. The average power load stands at about 10611 kW
for Profile 1, 16810 kW for Profile 2, and 17880 kW for
Profile 3.

Other shiploads, such as hotel or service loads, tend to be
stable, usually exhibiting a consistent demand. In addition,
the power requirements for the hotel and other onboard
loads are typically minimal compared to the propulsion load,
particularly for vessel types such as tugboats. Therefore, the
impact of these other shiploads is not considered in this study.
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FIGURE 6. (a) Shipload power fluctuations, (b) zoom-in fluctuations, and
(c) frequency spectrum.

C. SHIPLOAD FLUCTUATIONS
The shipload fluctuations and disturbances are the norm in
the marine ocean environment, greatly impacting the control
system performance. In this study, power load fluctuations
(d(k)) are introduced into the shipload profile to evaluate
further the effectiveness and robustness of the proposed
power and energy management strategy.

The effects of fluctuations on the shipboard power plant
largely depend on the motor control method. Different types
of shipload fluctuations can be found in the literature [18]:

• Fluctuations from the impact of the first-order wave at
the encounter-wave frequency;

• Fluctuation from the in-and-out-of-water effect;
• Fluctuations from propeller rotation at the propeller-
blade frequency.

Shipload fluctuations and disturbances are complex
mechanical-electric power conversion processes of ship
dynamics [33]. The propeller characteristics, including thrust
Tprop, torque Qprop and power Pload are highly nonlinear
function of motor shaft speed nprop, water density ρ and
propeller diameter Dprop, which can be given by [36]

Tprop = sgn(nprop)βlossρn2propD
4
propKT

Qprop = sgn(nprop)βlossρn2propD
5
propKQ

Pload = 2πnpropQprop (20)

where KT and KQ are thrust and torque coefficients, which
are defined by advance coefficient, pitch ratio, expanded
blade-area ratio and number of blades. βloss is the loss factor
when the propeller goes in and out of the water.

In addition, the targeted demo tugboat usually operates
along the coastal sea area and the sea state is considered calm.
The World Meteorological Organization (WMO) Sea State

TABLE 2. Power disturbances parameters based on sea state I.

1 is used to estimate the amplitude of the disturbances for
the targeted tugboat system [37]. In this study, to simplify
the shipload fluctuation estimation, a 10Hz high-frequency
power load is introduced, reflecting the rapid rotation of
the propeller on the shaft. Additionally, a 0.1Hz low-
frequency load is utilized to mimic the disturbances caused
by ocean water wavemovements [38]. The power disturbance
parameters are selected according to Table 2. It is about 5%
of the average power load for low-frequency disturbances
and 10% of the average load for high-frequency fluctuations.
Hence the total is about 15% disturbances of the average load
power. The in-and-out-of-water fluctuation can be ignored
due to the calm sea condition (βloss = 1 ).
The simulation results of the power fluctuations can be

found for both the time and frequency domains in Figure 6.
Large fluctuations are observed due to the propeller rotational
motion and regular wave encounters.

D. STATE-SPACE MODEL
An LTI discrete-time, state-space (SS) model is needed for
use as the basis for AMPC. The SS model can be given by

1) Fuel cell model:
The main power device fuel cell dynamics can be
approximated as a first-order system in s-domain. The
linearized model can be given by

Pfc,i = ηfc,i ·
1

τfc,is+ 1
· Ufc,i (21)

where Pfc,i is actual power drawn from the ith fuel cell.
Ufc,i is the power reference point of this specific fuel
cell. ηfc,i is the electrical efficiency and τfc,i is the fuel
cell time constant according to the product data-sheet.

2) Diesel gen-set (DG) model:
DG dynamics is also presented by a first-order system:

Pgen,i = ηgen,i ·
1

τgen,is+ 1
· Ugen,i (22)

where Pgen,i is actual power drawn from the ith DG.
Ugen,i is the DG power reference. ηgen,i is the electrical
efficiency and τgen,i is the time constant of the DG.

3) Battery model:
The battery model is simplified and the SoC can be
determined as [12]

˙SoCi =
Pbatt,i

Qn · 3600
(23)

where Qn is the battery nominal capacity. Pbatt,i is the
ith power output during charging (Pbatt,i > 0) and
discharging (Pbatt,i < 0).
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FIGURE 7. Rule-based Mode Selection Logic Flow Chart. Where ∧ is the AND logic, and ∨ is the OR logic.

4) Shipboard load model:
The total delivered power on the common DC bus from
the shipboard power plant can be presented as [39]:

Psupply =

Nfc∑
n=1

Pfc,i +
Ngen∑
n=1

Pgen,i +
Nbatt∑
n=1

ηbatt,i · Pbatt,i

(24)

where Psupply is the sum of the power supply from
all the power sources. ηbatt,i is the battery electrical
efficiency. Nfc, Ngen and Nbatt are the total number of
the power devices, and they are 2 for each type.
The total delivered power is able to meet the load
demand by considering the transmission losses and a
tiny time delay [39]. The relationship between the load
demand and supply can be given by

Pload_dmd = ηdt ·
1

τdts+ 1
· Psupply (25)

where Pload_dmd is the total load demanded power,
ηdt is the drive-train efficiency for transmission losses,
τdt is the drive-train time constant.

The entire hybrid power plant system state-space represen-
tation can be formed as follows:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (26)

with

x =



Pfc,1
Pfc,2
SoC1
SoC2
Vdc_act
Pgen,1
Pgen,2

Pload_dmd


, u =



Ufc,1
Ufc,2
Pbatt,1
Pbatt,2
Vdc_ref
Ugen,1
Ugen,2


, y = x

where x is the state variables, u is the control variables, and y
is the output variables. A, B, C , are the state matrices which
represent the plant model. Pbatt,i is the power reference for
battery systems. The DC voltage is to be defined by the power
and energy management controller as Vdc_ref , and Vdc_act is
the actual DC voltage feedback.

E. MODE SELECTION
Three different operation modes can be selected for this
targeted vessel: zero emission mode (ZEO), hybrid mode
(HYB), and pure diesel mode (DGS). In real application,
DGs and fuel cells are not supposed to run in parallel under
normal operation, and the HYB is only allowed in emergency
cases. An example of such a case is when DGs are not
able to produce full power. Therefore, the proposed optimal
energy management control algorithm will be implemented
and tested in ZEO and DGS mode only in this study.

For traditional EMS operation, the mode is determined by
the vessel operator manually. With the improved optimized
EMS strategy, the mode selection module is to define the
vessel operation mode and the number of online power
devices according to the shipload profile and the system
states. Figure 7 shows the mode selection logic table. The
selected mode (δ(k)) and system state signals (x(k)) are the
inputs to the AMPC controller at time instant k . Control
variables (u(k)) are the generated power allocation commands
for each power source. The power devices are to run only
when it is necessary to. The objective of the mode selection
module is to minimize the power device operating time so as
to reduce the device degradation and the number of power
equipment replacements during a long-term operation cycle.

ZEO is the default mode for normal vessel operation,
which only enables the fuel cells and batteries as the power
sources. Fuel cells are the main power supply, and the
batteries support the load dynamics and peak load demand.
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Due to the slow dynamic responses of fuel cell devices,
the batteries need to be always online to absorb the load
variations. In ZEO operation, the fuel cells are under power
control mode, and the system DC voltage is determined by
batteries. The primary fuel cell is always online, and the
secondary fuel cell module will be switched on during peak
load or when the battery SoC is below the safety margin(10%
in this case study).

When the fuel cell device or hydrogen infrastructure is not
available, the system will be switched to DGS mode. Similar
to ZEO mode, the DGs are replacing the fuel cells to provide
the main supply. The secondary DG will switch on during the
peak load or low battery SoC. The primary DG terminal AC
voltage determines the DC-bus voltage with a diode rectifier,
and the batteries are under power control mode.

F. OPTIMIZATION EMS PROBLEM FORMULATION
The core of theAMPCoptimizer is to define the cost function,
which is formulated by a quadratic function that leads to
minimizing the total cost of the multiple control objectives.
It penalizes the deviation of the actual output from the
reference input over the prediction horizon. The cost function
for the proposed AMPC-based EMS is given by Equation 27,
as shown at the bottom of the page.
Np and Nc are the prediction and control horizon, α1 − α8

are the weighting factors for penalizing the control reference
tracking errors while β1 − β7 are the weighting factors to
compensate the sudden control action changes within the
control horizon. P∗

xx are the optimal power reference of the
particular power devices. For fuel cells, the system efficiency
curve is almost a linear line and the optimal working range

is between 20% to 80% of the total capacity. In this study,
P∗
fc,i is set at 50% (100kW ) as the optimal reference point,

as shown in Figure 2, to make sure that the fuel cells are
always workingwithin the optimal operating range. However,
it is quite different for DGs. P∗

gen,i are set at this most fuel-
efficient point, about 75% of the diesel gen-sets total capacity,
where SFOC is at the lowest in Figure3. Therefore, 300kW
is selected as the optimal reference for DG in this case study.
Since theGHG is proportional to the MDO consumption, it is
also the optimal emission-efficient point. δ(k) is the operating
mode, and there are two modes for selection: ZEO and DGS.
v(δ(k)) is the switch signal vector to control the power source
equipment to be on or off, which means power reference to
be placed either at the optimal set point (the power device is
ON ) or zero (the power device isOFF). For battery operation,
SoC∗

i are set to the mid-range between the SoC limits (50%)
to ensure the SoC of the battery is under the safe range
without being over-charged or discharged. V ∗

dc is set to 580
VDC as systemDC-bus voltage.Pload_dmd is the actual power
load profile to ensure that the load demand can be met.

G. SYSTEM CONSTRAINTS
• Power balance constraint: The total power supply and
demand shall be balanced, which has been defined in
Equation 24.

• Power source loading constraints:

Pfc,i_min < Pfc,i < Pfc,i_max
Pbatt,i_min < Pbatt,i < Pbatt,i_max
Pgen,i_min < Pgen,i < Pgen,i_max
SoCi_min < SoCi < SoCi_max (28)

min J =

Np∑
j=1

{+α1[P∗

fc,1(k + j)v(δ(k))(1) − Pfc,1(k + j)]2 + α2[P∗

fc,2(k + j)v(δ(k))(2) − Pfc,2(k + j)]2

+ α3[SoC∗

1 (k + j) − SoC1(k + j)]2 + α4[SoC∗

2 (k + j) − SoC2(k + j)]2

+ α5[V ∗
dc(k + j) − Vdc(k + j)]2 + α6[P∗

gen,1(k + j)v(δ(k))(3) − Pgen,1(k + j)]2

+ α7[P∗

gen,2(k + j)v(δ(k))(4) − Pgen,2(k + j)]2 + α8[P∗
load_dmd (k + j) − Pload_dmd (k + j)]2}

+

Nc∑
j=1

{β1[1Ufc,1]2 + β2[1Ufc,2]2 + β3[1Pbatt,1]2 + β4[1Pbatt,2]2

+ β5[1Vdc_ref ]2 + β6[1Ugen,1]2 + β7[1Ugen,2]2} (27)

with

δ(k) =


1 ZEO (Pload_dmd < 180 kW AND SoCi ≥ 10%)
2 ZEO (Pload_dmd ≥ 180 kW OR SoCi < 10%)
3 DGS (Pload_dmd < 340 kW AND SoCi ≥ 10%)
4 DGS (Pload_dmd ≥ 340 kW OR SoCi < 10%)

v(δ(k)) =


[1 0 0 0] if δ(k) = 1
[1 1 0 0] if δ(k) = 2
[0 0 1 0] if δ(k) = 3
[0 0 1 1] if δ(k) = 4
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where for the 200kW fuel cell device used in this study,
the power operating range is between 20kW to 180 kW.
The maximum charging and discharging rate of the
batteries are defined as 2C so that the operating range
will be from -226 kW to 226 kW, and the batteries SoC
is from 10-90%. The generator capacity is up to 410kW.

• Power source ramp rate constraints:

|Pfc,i(k + 1) − Pfc,i(k)|
1tramp

< Rfc,i_max

|Pgen,i(k + 1) − Pgen,i(k)|
1tramp

< Rgen,i_max (29)

where Rfc,i_max and Rgen,i_max are the maximum rate
of change in power of fuel cell and DG devices,
respectively. 1tramp is the ramp time for energy source
devices. The ramp limit is set to 10kW/s for fuel cells and
20kW/s for DGs according to the devices data-sheets.

IV. HARDWARE-IN-THE-LOOP VERIFICATION WITH
IMPROVED AMPC-BASED EMS CONTROLLER
The proposed EMS controller is prototyped and its perfor-
mance is tested with a HIL setup in the lab environment.

A. HIL TESTBED SETUP AND EMS CONTROLLER
PROTOTYPING
Control system tests can be expensive, time-consuming
and even potentially unsafe if it is used with an actual
hardware plant. Therefore, a software-based plant model is
considered to replace the actual system and different working
conditions. In this study, a HIL setup has been built to verify
the proposed control system behaviour, which can provide
real-time hybrid shipboard power system responses, and also
connect the controller and the system plant model with a real
communication protocol. HIL testing is to ensure the high
quality of control software by simulating the entire real-time
hardware environment.

In this study, the hybrid shipboard power system math-
ematical model has already been introduced in Section II.
The developed system plant model is built and runs on
the Speedgoat target machine, which provides real-time
dynamics of the shipboard power plant as well as the Fieldbus
communication interface. The prototypedAMPC-based EMS
controller is developed, converted to C language and then
deployed to a programmable logic controller (PLC)-based
embedded hardware. The B&R brand PLC X20CP3586
is used for this case study. The topology diagram for
this HIL setup is shown in Figure 8. Profinet has been
set up for this real-time testbed in the lab environment
according to the actual industrial Fieldbus standard, as shown
in Figure 9.
Speedgoat target machine is equipped with a powerful

FPGA that can provide high-bandwidth and ultra-low latency.
However, the HIL plant response rate is limited by the PLC
cyclic time and the communication protocol transmission
bandwidth. In real vessel operation, it is not necessary to set
the PLC cyclic task time too small, since it is pointless to send

FIGURE 8. HIL topology scheme.

FIGURE 9. HIL setup in lab environment.

the commands faster than the power devices can respond.
In this study, the PLC cyclic time is set to 100 ms, which is
in line with the actual marine power control requirements.

B. RULE-BASED EMS TESTING RESULTS
The rule-based energy management algorithm is reliable,
simple and cheap. Therefore, it has been implemented in the
real marine vessel for decades. In this study, a rule-based
EMS is tested as a benchmark with three different shipload
profiles under two operating modes (ZEO and DGS). The
verification testing results can be found in Figure 10 to
Figure 12 for three shipload profiles respectively.

In ZEO mode, the fuel cells are selected as the main
power sources, while the batteries are to support the dynamic
response and shave the peak load. Both of the fuel cell
modules are online in parallel regardless of the shipload
demands or system states. Rule-based EMS controller is only
to limit the loading and ramp limits of the fuel cell device
according to the product data-sheet provided by the supplier.
The battery system is to supply the rest of the power demands
to fulfill the total shipload profile.

In DGS mode, the diesel gen-sets are switched on
according to load demand. When the primary DG is loaded
above the threshold line (85%), the secondary DG will be
started up to support the peak load; when the average loading
is below the stopping threshold (15%) of the total capacity,
the secondary DG will stop and go offline.
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It worth noting that battery systems are mainly discharged
to provide peak load demand and enhance the system
dynamics. With the shipload Profile 1, the peak load demand
reach up to 500kW, but it does not last for too long and
the battery initial SoC can be started from 50%. For Profile
2 and 3, more stored battery energy has been consumed
due to the long peak loading period. A higher initial SoC
is required to ensure the battery system is working under
the safe operating range (10-90%). The initial SoC for
Profile 2 and 3 cannot be too low (70% is set for the case
study) to complete the entire tests.

C. CLASSICAL MPC-BASED EMS VERIFICATION
TEST RESULTS
ClassicalMPC-based EMS strategy is also implemented [31],
which is used to compare with the proposed improved AMPC
strategy. The problem formulation is similar as the proposed
AMPC, which uses a linear-time-invariant (LTI) dynamic
model to predict future system behaviour. However, the
SS model input is not required to specify the prediction
model when computing the optimal plant manipulated
variables. Due to the sensitivity to the prediction errors,
the classical MPC is only performed in Matlab/Simulink
environment. The simulation results for MPC-based EMS
are shown in Figure 13 to 15 for all the three shipload
profiles.

In ZEO mode, the primary fuel cell supports the power
demand throughout the vessel operation. The secondary fuel
cell is only online during the peak load, or the battery SoC
is under the safety margin. With the great help of battery
systems, the power output of the primary fuel cell is flattened
regardless of the load variation, which improves the system
stability and is beneficial to device lifetime extension.

In DGSmode, only onemainDG is needed tomeet the load
demand together with the battery banks for all three shipload
profiles. The power drawn from the DG system is smoothed.
Battery sources are here to enhance the system dynamics and
shave the peak load.

Furthermore, the shipload profiles have their patterns and
the average load is also at different power levels, therefore
it is difficult to use one common MPC controller to handle
different ship operating tasks. Usually the operating mode
and vessel work conditions are requested by the ship operator.
The corresponding EMS controller will be enabled for
implementation. Six EMS controllers are needed in this case
study, with 3 shipload profiles and 2 working modes to
fulfill the multiple ship operation tasks. The weights for the
proposed MPC-based EMS controllers are shown in Table 3.

In summary, the dynamic responses of the shipboard
power system have been greatly improved than rule-based
approach. The power output from the main power sources
is smooth and stable. The stability of the entire system has
been strengthened. The average power is tracking closer to
the optimal working point, and energy efficiency in improved.
The total operation time has been cut down for fuel cell
devices, and the huge device replacement cost is expected

TABLE 3. Proposed MPC-based EMS weight factors for three profiles
under two operating modes.

to be reduced. The battery SoC for different profiles is able
to adjust automatically within a safe operating range. The
TCO of the vessel operation can be reducedwith the proposed
MPC-based EMS control. The classical MPC approach lays
the foundation for further improvement and development.
A more detailed cost study will be presented in Section IV-E.

D. AMPC-BASED EMS WITH DISTURBANCES
VERIFICATION TEST RESULTS
In order to demonstrate the further improvement and
robustness of the proposed AMPC-based EMS, verification
tests have been performed against the HIL plant with the
shipload power fluctuations, which has been discussed in
Section III-C. The verification test results are shown in
Figure 16 to Figure 18 for the three shipload profiles.

In ZEO mode, the primary fuel cell maintains a stable
power output with limited load variation. The secondary fuel
cell is only online during the peak load or when battery SoC is
at a low level. The battery systems support the peak demands
and absorb most of the shipload fluctuations. The proposed
AMPC-based EMS helps to improve the system stability and
reduce the fuel cell device operating time.

In DGS mode, only one DG is needed to fulfill the
entire three profiles’ shiploads. The DG output power is
smooth and no DG startup or shutdown operation is required.
The batteries function as the energy buffer to enhance the
system dynamics and peak loading capability. Majority of the
shipload fluctuations are absorbed by battery systems.

The weight factors tuning is key for AMPC-based EMS
controller design. However, the tuning process is complicated
and time consuming. For different shipload profiles and
operating modes, the weightage might be different. Usually,
a heavy weightage is assigned to the variables that are
required to have better tracking performance. In this study,
the power load demand (α8) needs to have a heavy weight
to balance the power flow between supply and demand. The
weight factors for battery SoC reference (α3 and α4) are
multiplied by a factor of 106, so that SOC value (between
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FIGURE 10. Rule-based EMS simulation test for hybrid shipboard demo vessel with load Profile 1: (a) ZEO mode; and (b) DGS
mode.

FIGURE 11. Rule-based EMS simulation test for hybrid shipboard demo vessel with load Profile 2: (a) ZEO mode; and (b) DGS
mode.
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FIGURE 12. Rule-based EMS simulation test for hybrid shipboard demo vessel with load Profile 3: (a) ZEO mode; and (b) DGS
mode.

FIGURE 13. Classical MPC-based EMS Simulation test for hybrid shipboard demo vessel with load Profile 1: (a) ZEO mode; and (b)
DGS mode.
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FIGURE 14. Classical MPC-based EMS simulation test for hybrid shipboard demo vessel with load Profile 2: (a) ZEO mode;
and (b) DGS mode.

FIGURE 15. Classical MPC-based EMS simulation test for hybrid shipboard demo vessel with load Profile 3: (a) ZEO mode;
and (b) DGS mode.
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FIGURE 16. AMPC-based EMS HIL verification test for hybrid shipboard demo vessel with disturbances for load Profile 1:
(a) ZEO mode; and (b) DGS mode.

TABLE 4. Proposed AMPC-based EMS weight factors for three profiles
under two operating modes.

0 to 1) can be of a similar order of magnitude as other
state variables expressed for power (106 W ). In addition,
the weights to penalize the control actions for both the fuel
cells and DGs (β1 and β2) are set to a relatively higher
value to mitigate abrupt changes. Lower weighting factors
are set for the battery power (β3 and β4), since batteries
are to handle shipload power fluctuations with fast response
time.

Similar to the classical MPC-based EMS strategies,
multiple EMS controllers are needed to fulfill the different
ship operation tasks. The weight factors for both ZEO and
DGS mode are shown in Table 4.

It is worth noting that during the tuning process, shipload
Profile 2 and 3 can share the same controller weight
factors without any control feature losses. This means the
AMPC-based EMS can handle both shipload Profiles 2 and
3 with the same controller. The reason is that these two
working profile patterns are similar and the average power
demand does not have many gaps (about 6.37% deviation).
Therefore, the AMPC-based EMS is able to handle small load
fluctuations and even different ship operating tasks as long as
it is within the safety margin. Robust control is achieved, and
only four controllers are required instead of six for this case
study.

In addition, the AMPC-based EMS control also has
the capability to adjust the battery SoC during the vessel
operation. For both ZEO and DGS mode, the battery initial
SoC for three profiles all start from 50%. While for the
rule-based EMS, a valid initial SoC condition should be
fulfilled to ensure the completion of the vessel operational
cycle.

On the other hand, based on the testing results shown
in Figure 13- 18, there is no necessity to activate the
secondary power source under DGS mode operations. This is
attributable to the fact that a single primary DG is sufficient to
fulfill the power shipload profiles. Running both DG and FC
simultaneously is not a typical procedure in vessel operations.
This is also the reason that HYBmode is not required in EMS
optimization operations.

Nevertheless, the model predictive control algorithm is not
perfect. The computation cost is high due to the intensive
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FIGURE 17. AMPC-based EMS HIL verification test for hybrid shipboard demo vessel with disturbances for load Profile 2:
(a) ZEO mode; and (b) DGS mode.

FIGURE 18. AMPC-based EMS HIL verification test for hybrid shipboard demo vessel with disturbances for load Profile 3:
(a) ZEO mode; and (b) DGS mode.

calculations required. And the controller design is more
complex and time-consuming. During the verification testing,
the average CPU load of the selected B&R X20 series PLC

can climb to 85%, which is considered a high level. On the
other hand, the traditional rule-based method only requires an
average CPU load of 27%. Hence, if the AMPC-based EMS
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TABLE 5. Vessel operating comparison: ZEO mode.

TABLE 6. Vessel operating comparison: DGS mode.

is adopted, a PLC with a greater calculation capacity might
be necessary.

E. COST COMPARISON STUDIES
With the help of the AMPC-based EMS, the power drawn
from the main source devices is smoothed. The load
fluctuations and disturbances are mostly absorbed by the
battery systems, and the main power devices are to provide
the average shipload demands. Unlike the rule-based energy
management control, there are no specific initial conditions
required for the shipboard power system. The proposed
AMPC-based EMS not only greatly improves the entire
power network stability but is also beneficial to the device
lifetime extension, especially for fuel cell systems.

In addition, during the verification tests for the three
case study profiles, the total fuel consumption and power
device usage hours are recorded. A 10 years of long-term
TCO for vessel operation is calculated. It is assumed that
there are 50 working weeks per year for the target vessel,
and each week comprises 6 working days and 4 work task
cycles per day, making up 36,000 operating hours in total for
10 years operation. The hydrogen fuel cost, MDO fuel cost,
the emission penalty forMDO fuel, and the total power device
capital cost are all considered. The TCO for both ZEO and
DGS modes can be compared according to the Table 5 and 6.

In ZEO mode, hydrogen fuel cost remains the same level
across all three EMS strategies. However, optimization-based
EMS significantly reduces the operating hours of fuel cell
devices. It eliminates the need for device replacement over
a 10-year operating cycle (the fuel cell lifetime is about
25,000 hours [26]). In contrast, one device replacement
is required for rule-based approach. And a considerable
total cost reduction can be achieved. AMPC algorithm
exhibits the highest performance among the three EMS
strategies, which can achieve 12.19% TCO saving for Profile
1 operation, 9.39% and 3.93% cost reduction for Profile 2 and
3 respectively. With the current battery system size, it can

support the Profile 1 operation for 14.85 years. This implies
no device replacement is needed during the standard 10-years
vessel operation cycle. However, the batteries can only last up
to 9.85 years for Profile 2, and 9.09 years for Profile 3. One
replacement is required for the batteries within the 10-years
operation period. In real practice, the vessel will not only
work for one ship operating task. Usually, it is a combination
of the above three or even incorporate additional profiles.
Therefore, there is huge potential to achieve higher TCO
savings by avoiding battery replacements in actual vessel
operations.

In DGS mode, it can be seen that one DG system is
powerful enough to support the entire load demand according
to the verification tests with the help of optimization-based
method. There is no DG startup or shutdown operation, and
the power output is smoothed by the energy storage battery
devices. However, the fuel efficiency improvement is not
significant, as is the TCO savings. Themain reason is because
the optimization-based algorithm heavily use the battery
systems, which is a relatively more ‘expensive’ power source
compared with MDO. Rule-based EMS control is a reliable
and cost-effective control method for traditionalMDO-fueled
vessels and has been widely accepted by the marine market
for decades. The main advantages with MPC and AMPC
approaches for DGS mode operation mainly come from the
system stability improvements and dynamic performances
rather than the economic benefits.

V. CONCLUSION
In this paper, a supervisory optimization-based EMS has been
proposed with an adaptivemodel predictive control approach,
which is able to handle the load fluctuations and improve the
system stability and minimize the TCO of vessel operation.

Compared with the traditional rule-based EMS control, the
proposed AMPC algorithm is able to achieve savings of up to
12.19% of TCO and zero power device replacement through
the 10 years of vessel operation cycle under ZEO mode.
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The beauty of the proposed AMPC algorithm is the ability
to balance the components of fuel consumption, emission
and device usage as a whole to find a total minimum,
and the TCO savings are significant. However, the cost
reduction is not that evident under DGS mode. Although the
AMPC-based EMS is able to reduce someMDO fuel cost and
emissions penalty under some load profiles, battery devices
are heavily used. Therefore, the overall savings in TCO is
meagre. However, according to the latest class rules and
regulations, a fairly high number of the existing fleet would
need to undergo design or operational changes to improve
their carbon intensity to reach the minimum compliance. It is
possible to observe that up from 43% to 71% of the vessels
would fall under categories D or E of the Carbon Intensity
Index (CII) mechanism by 2026 [40]. Consequently, ship
owners and shipbuilding industries must evaluate retrofits
to improve ship maintenance and operations. The turning
fromMDO towards clean energy, such as hydrogen, becomes
an inevitable movement to achieve lower carbon footprint.
MDO-fueled vessels will slowly lose their dominant position
and be completely replaced by other clean energy-fueled
vessels eventually. Therefore, the proposed AMPC-based
optimal EMS will become more critical and meaningful for
actual practice in the near future.

The failure mode operation is not included in this study due
to the page limitation. Future work to be done may include a
comprehensive failure modes and effects analysis (FMEA)
which encompasses consideration for fault tolerance and
black-out recovery schemes during the emergency operation.
In addition, in the pursuit of precise energy management
control, an accurate shipload prediction has emerged as
a prerequisite for system optimization. The authors have
proposed a data-driven workflow to build a load prediction
model for ship propulsion system [33]. Yet, the available
data is still insufficient for effective load profile estimation
training. Further studies are anticipated in vessel operational
data collection and shipload profile predictionmodelling. The
predicted shipload profile can be derived from the prediction
model, and then serve as the input reference to optimization-
based EMS. The rolling-basis test should be engaged so that
the ‘living’ load model can generate continuous profile data
to mimic real-world ship operation scenarios.
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