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Abstract

Background: Machine learning (ML)–driven clinical decision support (CDS) continues to draw wide interest and investment
as a means of improving care quality and value, despite mixed real-world implementation outcomes.

Objective: This study aimed to explore the factors that influence the integration of a peripheral arterial disease (PAD) identification
algorithm to implement timely guideline-based care.

Methods: A total of 12 semistructured interviews were conducted with individuals from 3 stakeholder groups during the first
4 weeks of integration of an ML-driven CDS. The stakeholder groups included technical, administrative, and clinical members
of the team interacting with the ML-driven CDS. The ML-driven CDS identified patients with a high probability of having PAD,
and these patients were then reviewed by an interdisciplinary team that developed a recommended action plan and sent
recommendations to the patient’s primary care provider. Pseudonymized transcripts were coded, and thematic analysis was
conducted by a multidisciplinary research team.

Results: Three themes were identified: positive factors translating in silico performance to real-world efficacy, organizational
factors and data structure factors affecting clinical impact, and potential challenges to advancing equity. Our study found that the
factors that led to successful translation of in silico algorithm performance to real-world impact were largely nontechnical, given
adequate efficacy in retrospective validation, including strong clinical leadership, trustworthy workflows, early consideration of
end-user needs, and ensuring that the CDS addresses an actionable problem. Negative factors of integration included failure to
incorporate the on-the-ground context, the lack of feedback loops, and data silos limiting the ML-driven CDS. The success criteria
for each stakeholder group were also characterized to better understand how teams work together to integrate ML-driven CDS
and to understand the varying needs across stakeholder groups.

Conclusions: Longitudinal and multidisciplinary stakeholder engagement in the development and integration of ML-driven
CDS underpins its effective translation into real-world care. Although previous studies have focused on the technical elements
of ML-driven CDS, our study demonstrates the importance of including administrative and operational leaders as well as an early
consideration of clinicians’ needs. Seeing how different stakeholder groups have this more holistic perspective also permits more
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effective detection of context-driven health care inequities, which are uncovered or exacerbated via ML-driven CDS integration
through structural and organizational challenges. Many of the solutions to these inequities lie outside the scope of ML and require
coordinated systematic solutions for mitigation to help reduce disparities in the care of patients with PAD.

(JMIR Form Res 2023;7:e43963) doi: 10.2196/43963
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Introduction

Background
The development of machine learning (ML)–driven clinical
decision support (CDS) has been rising sharply in the last decade
[1,2]. These tools aim to improve health care delivery by
enhancing medical decisions with targeted clinical knowledge,
patient information, or other information that clinicians can use
in conjunction with their own medical knowledge and expertise
[3]. Although CDS can improve quality of care and lower health
costs, many integrations fail. Thus far, research has found that
CDS is most effective at improving health care process (rather
than outcome) measures, such as improving the ordering of
preventive and treatment services or increasing user knowledge
about a medical condition. However, the efficacy of CDS in
reducing clinician workload and improving clinical and
economic outcomes is more mixed [4-6]. Significant barriers
remain in the successful integration of CDS [7,8].

Importantly, much of the clinical ML literature is dominated
by in silico algorithm accuracy research [9], with comparatively
few studies focusing on real-world integrations that affect patient
care [10]. A systematic review of CDS systems found that more
than one-third of the systems did not improve clinical practice
when implemented [11]. Understanding of translational barriers
is limited by the scarcity of research that goes beyond a
quantitative assessment of algorithm effectiveness [12].
Qualitative investigations of algorithm integration after
successful in silico performance are needed to develop a
theoretical understanding of the factors that influence integration
failure and success; however, few are available [12-14].

ML-driven CDS is increasingly recognized as being part of a
larger sociotechnical system, which includes not only the
technology but also the complex social and organizational
structures within which the technology is integrated [15]. This
interaction between technology and social structure involves
many different teams and stakeholders, but only 30% of the
scarce qualitative data concerning CDS come from stakeholders
besides clinicians (eg, regulators, managers, and developers)
[16].

Objectives
This study aimed to explore the factors that stakeholder groups
perceive to influence the integration of ML-driven CDS and to
improve our understanding of the needs and aspirations of a
wider sample of stakeholders involved in the development and
integration of ML-driven CDS. The study was motivated by the
need to better understand diverse stakeholder needs to improve
algorithm documentation, communication, and training

materials, which are crucial for the safe and responsible use of
ML-driven CDS [17,18]. In this study, our stakeholder groups
were clinical, operational, and technical in nature, and the tool
we considered was an algorithm used to identify symptomatic,
asymptomatic, and inadequately treated peripheral arterial
disease (PAD), to facilitate timely guideline-based PAD care.
An additional goal for the integration of ML-driven CDS was
to improve equity in PAD management.

Our primary objective was to determine the factors that influence
the integration of ML-driven CDS to identify patients with PAD
more effectively and equitably for intervention. Our secondary
objective was to evaluate the goals and aspirations of ML-driven
CDS across stakeholder groups.

Methods

Setting
This study analyzes the integration of a previously developed
and validated algorithm to identify patients with PAD using
revascularization procedure data, encounter diagnoses, and
clinician specialty information for encounter programs [19].
The algorithm was originally developed by an interdisciplinary
team as a part of a research project. In April 2021, senior leaders
at a single academic medical network, an integrated care system
of community and specialist health care providers, tasked the
affiliated Institute for Health Innovation (IHI) to implement the
algorithm in collaboration with the regional Population Health
Management Office (PHMO). IHI is an organization focused
on developing and implementing impactful health and health
care innovations, whereas the PHMO is an entity that manages
value-based contracts and care management programs.

The IHI provided project management and technical support
for ML-driven CDS integration. The PHMO provided
administrative and operational oversight as well as a pharmacist
to help with medication prescription interventions. Cardiologists
and vascular surgeons were the initial target users of ML-driven
CDS. The PAD algorithm had already undergone in silico
validation using retrospective data, demonstrating the validity
and potential utility of the algorithm. Prospective validation of
the algorithm was conducted in a separate study and will be
presented in future work. The primary goal of the ML-driven
CDS integration was to identify patients with progressing PAD
for intervention by their primary care provider (PCP) to prevent
downstream complications, including cardiovascular and limb
events (eg, amputations). In addition, health system leaders
sought to improve equity in the treatment of PAD and decrease
disparities in limb and cardiovascular complications.
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PAD Algorithm and Workflow
PAD affects approximately 10 million Americans but remains
significantly underdiagnosed in primary care settings [20].
Diagnosis and procedure data are often missing, making it
challenging to identify patients with PAD for disease
management programs [21,22]. Care is also fragmented across
many different specialties (ie, primary care, cardiology, vascular
surgery, and podiatry), leading to confusion among patients and
poor coordination of care. Ultimately, many patients with PAD
do not benefit from evidence-based interventions [19]. For
example, a recent analysis from the American Heart
Association’s Statistics Committee [20] reported that only 6%
to 18% of patients who underwent limb amputation or died of
a complication of PAD were on appropriate statin therapy. In
the United States and elsewhere, rates of guideline-directed
interventions for PAD, such as statin therapy, have also been
reported to be particularly low among minority ethnic groups
and patients with limited resources, contributing to disparities
in health outcomes [20,23]. This study defines patients with
PAD not on statin therapy as being inadequately treated.

During data collection for this qualitative study, the ML-driven
CDS was run weekly on all adult patients with a clinical
encounter with a PAD-associated International Classification
of Diseases code in the past week within the health institution.
Only patients within the institution’s care management program
were included as part of this study and represented
approximately two-thirds of the weekly ML-driven CDS output.
The care management program includes >100,000 patients at
this institution and is inclusive of a variety of private and public
insurance plans, including Medicare, Medicare Advantage,
Medicaid, and employee health plans, as well as the enrollment
of underinsured or uninsured patients. More than 1000 patients

were identified each week, and the medical charts of these
patients were reviewed by an interdisciplinary team in a weekly
process called Population Rounding (trademarked by Duke
Health). During this pilot phase, patients with upcoming PCP
appointments were prioritized. This approach aimed to increase
the saliency of communication for PCPs, as they prepared for
patient appointments to increase the probability of PCP
intervention. After preliminary screening, approximately 20 out
of 30 selected patients were reviewed in the rounding
discussions, which took place for 60 minutes via Zoom (Zoom
Video Communications). As described in the original paper
[21], PAD was confirmed using the ankle-brachial index, and
a history of prior revascularization or lower-extremity
amputation was used to indicate symptomatic PAD. For each
patient, the interdisciplinary team identified potential gaps in
care, especially in preventive interventions such as statin use,
smoking cessation, or additional specialty care. If the team
agreed on specific treatment recommendations, a personalized
message was sent through the electronic health record (EHR)
to the patients’ PCP. No best-practice alerts or other pop-up
notifications were used. Of the patients presented during the
rounds, approximately two-thirds of patients discussed received
an intervention. This Population Rounding model (Figure 1)
had been used previously by the PHMO for chronic kidney
disease and other chronic conditions [24] and was developed
with inspiration from the telemedical ward model in the United
Kingdom [25] as well as more traditional care management
programs in the United States [26]. The Population Rounding
model is novel in its ability to integrate a predictive model to
identify patients, interdisciplinary rounding sessions, and the
ability to make referrals and enroll patients in identified
population health programs.

Figure 1. Population Rounding workflow that aggregates data across sites for interdisciplinary teams to review high-risk patient cases and send
personalized recommendations to primary care physicians. PCP: primary care provider.

Study Design and Data Collection
This study was conducted in accordance with the COREQ
(Consolidated Criteria for Reporting Qualitative Research)
checklist (Multimedia Appendix 1) [27]. All 12 stakeholders

directly involved in the algorithm integration were interviewed
using a videoconferencing platform. All invitations to participate
in the study were accepted. Of the 12 participants, 5 (42%) were
from the technology team, 5 (42%) were from the operations

JMIR Form Res 2023 | vol. 7 | e43963 | p. 3https://formative.jmir.org/2023/1/e43963
(page number not for citation purposes)

Wang et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


team, and 2 (17%) were from clinical end users. The individual
roles included within each stakeholder group are described in
Table 1.

Semistructured interview guides were developed for the
technical, operational, and clinical stakeholder groups

(Multimedia Appendix 2). To address the primary aim of this
study, questions for each participant explored the factors
influencing the integration of a PAD identification algorithm
to implement timely guideline-based care. To address the
secondary aim of this research, questions targeting personal
success criteria for integration were asked to each participant.

Table 1. Stakeholders interviewed.

Stakeholder, n (%)Included rolesStakeholder group

2 (17)Vascular surgeon and primary care providerClinical end users

5 (42)Administrative leader, nurse, operational leader, and clinical pharmacistHealth systems operations (PHMOa)

5 (42)Program manager, data engineer, and data scientistHealth technology team

aPHMO: Population Health Management Office.

Interviews lasting 45 to 60 minutes were conducted by SMW,
a medical undergraduate and public health postgraduate, and
HDJH, an ophthalmology resident and implementation science
doctoral student. Besides the participants, nobody else was
present for the interviews, and no repeat interviews took place.
Audio recordings were pseudonymized and digitally transcribed
to create field notes. SMW and HDJH are formally trained in
qualitative research methods and practice clinically in the United
States and the United Kingdom, respectively. The interviewers
were introduced to each participant before and at the outset of
each interview. Neither SMW nor HDJH had relationships with
the team implementing the PAD algorithm that preceded the
project. To foster consistency of approach, the first 5 interviews
were conducted by SMW and HDJH together, with the later 7
interviews completed by SMW or HDJH alone. The
Nonadoption, Abandonment, and Challenges to the Scale-Up,
Spread, and Sustainability framework and iterative review by
the multidisciplinary authorship team informed the development
of interview guides. The Nonadoption, Abandonment, and
Challenges to the Scale-Up, Spread, and Sustainability
framework was selected because it outlines technology
implementation factors at the policy, organizational, and practice
levels [28]. Participants consented to the audio recording, were
informed about the confidentiality of their responses, and
received no compensation. Data saturation did not affect the
sampling approach [29]. This was because the pilot stage of
integration at which interviews took place meant that only a
relatively small group of stakeholders had interacted with the
algorithm, and therefore, interviewing them all was feasible.

Data Analysis
An inductive approach was used for data analysis [30]. The
interviewers (SMW and HDJH) reviewed the digital
transcriptions along with audio recordings to ensure accuracy
and begin data familiarization. Two members of the team (SMW
and HDJH) coded the first 4 transcripts independently and then
met to discuss their independent approaches and cocreate a
single codebook of higher-order categories (eg, health care
workforce), containing several codes (eg, available skill sets
and disciplines; Multimedia Appendix 3). The new codebook
was used independently by both researchers for the remaining
interviews and was updated iteratively through consensus, where

data fell outside the present codes. NVivo 12.0 (QSR
International Pty Ltd) facilitated the coding and analysis process.

Following the coding process, SMW and HDJH engaged in an
initial thematic analysis independently at first and then together
[30]. This initial thematic analysis was then shared and revised
collectively with additional coauthors to assess thematic
saturation and draw on various academic, technical, clinical,
and operational perspectives. Thematic saturation was
determined to be met after an initial analysis with 10 interviews,
and no further interviews were required [31]. Findings were not
directly fed back to the participants but will support the ongoing
implementation of the PAD algorithm and other ML-driven
CDS.

Ethical Considerations
As per the institution’s Health Institutional Review Board
Quality Improvement definition and protocols, this study met
the criteria for quality improvement, and the study was not
submitted for ethical approval by the institutional review board
(Multimedia Appendix 4). Although implicit written consent
was received through email exchanges before each interview,
standardized consent forms were not used. Participants provided
informed consent through review of the participant information
sheet (Multimedia Appendix 5), agreement to provide time for
the interview, and agreement to have the interview recorded.

Results

Overview
The analysis revealed 2 themes related to the factors that
influence the integration of a PAD identification algorithm to
implement timely care and 1 theme related to equitable
guideline-based care: (1) positive factors translating in silico
performance to real-world efficacy, (2) organizational factors
and data structure factors affecting clinical impact, and (3)
potential challenges to advancing equity with ML.

Theme 1: Positive Factors Translating In Silico
Performance to Real-World Efficacy

Overview
This theme is related to the successful translation of an
ML-driven CDS validated in silico to create a real-world clinical
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impact. The following four positive factors were identified: (1)
clinical leadership, (2) trustworthy workflows, (3) early
consideration of end-user needs, and (4) targeting an actionable

problem. Each factor is described in the following sections, and
representative quotations are presented in Textbox 1.

Textbox 1. Positive factors translating in silico algorithm performance to real-world efficacy.

Early consideration of end-user needs

• “The first set of impacts are the hope that primary care physicians find these recommendations useful. And maybe they don’t adopt all of them.
But they read all of them. And they consider all of them and then make a determination based on that recommendation... so with population
health, always residing first with the primary care physician, or anchoring, first around the primary care physician.” [Operational stakeholder]

• “I think the big learnings from PAD are probably going to be how to represent this data, like how to build out that dashboard for consumption,
that’ll be a lot of back and forth with the stakeholders that are going to be using it. They don’t want clinicians to have to go to a separate tool to
consume model results. They don’t want to have to open another dashboard that should be in Epic already.” [Technical stakeholder]

• “We’ll have to navigate through that [physician receptiveness] and really understand how our clinicians want to receive this information about
things that they might want to consider doing differently with their patients.” [Operational stakeholder]

• “You want to focus on the patient in the room and not all the freaking alerts that you’re trying to excuse. It’s very distracting... I don’t know what
the right answer is or how to make it user friendly, but to keep the patient first and foremost, and they’re in my room, they get my attention. Not
the computer screen, right?” [Clinical stakeholder]

• “I hate BPA’s [Best Practice Alerts] or they pop up in EPIC charts three times- I just close them so their utility is gone. But anyway, to be
thoughtful about how to design the way they interact with us and remind because I know they’re trying to help our practice, so I want the help.”
[Clinical stakeholder]

Targeting an actionable problem

• “I mean, it [the algorithm] has to solve a real problem. Like, I’m not interested in models that in a clinical sense, identify data that I could just
identify in the course of my daily work. I don’t need a model to pull out someone’s, you know, this, that or the other risk, if that risk is either
otherwise obvious or not actionable... So that’s one major thing is it has to have a use to it that was generated with clinicians in mind, in partnership
with physicians, and also it has to be shown to actually work.” [Clinical stakeholder]

• “From a model standpoint, how do we get the workflow set up to start helping patients today, really.” [Technical stakeholder]

• “So at a macro level for population health, so far, there seems to be one thing that most strongly contributes...to better health outcomes at a macro
level. And that is regular access to primary care. We see that the more primary care that our patients regularly complete or obtain, the better
outcomes and better quality, the greater cost efficiency, less avoidable utilization. Just that one behavior, or that one process measure. If we can
help primary care practices, keep their patients coming regularly, and support high quality primary care visits, all the many other good things are
gonna happen.” [Operational stakeholder]

Clinical leadership

• “The difference in [algorithm] performance is negligible compared to the difference that a good physician champion makes, or a good intervention
plan makes. Those are by far and away the most important things to the success of a project. The actual model itself is, as much as I might delude
myself or whatever, it’s actually not that important.” [Technical stakeholder]

• “Dr XXX [redacted identifier] obviously was very aware, she was kind of the one that spearheaded [the integration] and wanted to get this going.
So I think you know, [targeting clinical need] is her role. I’m sure with her specialty, she probably realized that it was an area that needed more
attention.” [Operational stakeholder]

Trustworthy workflows

• “If you can do like 80% of the accuracy of the best model, but you have a good clinical team who are willing to implement it and to give feedback
and to develop interventions that are tailored specifically for the right people. I’ll take that 80% every single time. There’s no question.” [Technical
stakeholder]

• “So I personally would probably like to see some citations too, kind of show where it’s [the machine learning (ML)–driven clinical decision
support (CDS)] coming from. But if it has made it to the level that IHI and PHMO are considering it, I think probably most clinicians have some
faith in the fact that it’s been endorsed and reviewed and kind of is considered standard of practice.” [Clinical stakeholder]

• “I think we figured out, this [workflow] is the way to roll any new specialty into it [using an ML-driven CDS] and we have a very good structure
in place. And I think we know like, we know the things we need to identify to kind of get our initial data report, you know that sort of stuff and
then, once we have that, just put it on its legs and see if it’s gathering the patients, we need. So I think, because we have so much experience with
it, when we want to bring on a new specialty for rounds, it’s not so daunting because we know exactly what we need to do because we’ve been
doing it now for a while.” [Operational stakeholder]

• “And we, over the last three or four years have been moving into expanding our competencies and partnerships with community based organisations,
first of all screening for and understanding non clinical barriers to health, social barriers to health, but partnering with organisations in the
community, who can help address those barriers, if we can coordinate the patient over to that resource.” [Operational stakeholder]
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Early Consideration of End-User Needs
Almost all technology and operational stakeholders mentioned
the importance of the early consideration of end-user needs.
Early consideration of end-user needs ensured that there were
appropriate data inputs to generate the desired outputs, the
ML-driven CDS tool did not create an undue burden of use, and
the algorithm was built to prompt specific interventions. The
ML-driven CDS tool for PAD has 2 sets of end users: primary
users are Population Rounding team members who interact
directly with the product to identify interventions and secondary
users are the PCPs who receive recommendations from the
Population Rounding team. Both user groups were actively
considered during the design of the algorithm. For example,
because the Population Rounding team members had a high
degree of technical literacy, they prioritized the visibility of all
relevant data over the simplicity of the user interface.
Consequently, a relatively data-heavy dashboard was designed
to comprehensively deliver information that the Population
Rounding team member leading rounds (the vascular surgeon)
might need to drive interdisciplinary discussions and
decision-making.

Along these same lines, because the PCPs were already
burdened with managing multiple chronic and acute conditions,
the workflow was designed such that more work was not created
for the PCPs. For example, instead of interrupting a PCP’s clinic
visit with alerts or notifications within the EHR, intervention
recommendations were sent to the PCP before the patient visit.
Notifying a PCP in advance also gives PCPs an opportunity to
prepare for conversations with patients.

Targeting an Actionable Problem
As ML-driven CDS systems become increasingly prominent in
health care, clinical and operational stakeholders emphasized
the importance of developing an ML-driven CDS focused on
facilitating clinical decision-making around an actionable
problem. They expressed frustration that the algorithm outputs
associated with many ML-driven systems did not change clinical
care or impact outcomes. The technology team similarly echoed
that they relied on clinician input to help them design the product
in a meaningful way. When technology team members were
asked about their vision of success for the project, they cited
the importance of algorithm performance but also expressed
the desire to see real-world improvements in long-term clinical
outcomes.

Clinical Leadership
Multiple stakeholders across groups spoke about the importance
of strong clinical leadership in both the initial product design
process and integration of the final product. Technical team
members emphasized that a perfectly performing algorithm

would not create the desired outcomes in a clinical setting if
there was no strong leadership to help tailor, implement, and
provide feedback on the ML-driven CDS:

The difference in performance is negligible compared
to the difference that a good physician champion
makes, or a good intervention plan makes. [Technical
stakeholder]

In our case, the same clinical leader who developed the initial
algorithm led the Population Rounding sessions with the PHMO.
This longitudinal leadership commitment was identified in
interviews as a critical factor in successfully transitioning from
in silico algorithm performance to the real-world clinical use
of the product.

Trustworthy Workflows
Participants also emphasized that the workflow in which the
algorithm was integrated was more important than the accuracy
of the algorithm. In this project, the PHMO Population Rounding
workflow was identified as a key factor that enabled project
success. This well-established interdisciplinary approach
requires significant resources and personnel, whereby the team
manually reviews each patient chart identified by the algorithm
to tailor recommendations to the PCPs. The synchronous,
interdisciplinary nature of Population Rounding allows for rapid
communication across teams and allows teams to nimbly
respond to obstacles that arise because it includes representatives
of different stakeholder groups. For example, PHMO team
members can draw on their preexistent community partnerships
to manage social barriers to health. Furthermore, including a
vascular specialist as the leader of this process lends credibility
to the ML-driven CDS and workflow. PCPs who received
recommendations downstream from the Population Rounding
were familiar with the specialist and the specialist’s expertise
in the management of PAD. This specialist’s recognized “stamp
of approval” allowed PCPs to trust recommendations without
personal familiarity with the ML-driven CDS or relevant
performance metrics.

Theme 2: Organizational and Data Structure Factors
Affecting Clinical Impact

Overview
The next theme captures the organizational and data structure
factors that shape the clinical impact of the PAD algorithm. The
following three negative factors were identified: (1) failure to
incorporate on-the-ground context, (2) the lack of feedback
loops, and (3) data silos. Each factor is described in the
following sections, and representative quotations are presented
in Textbox 2.
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Textbox 2. Organizational factors and data structure factors affecting clinical impact.

Failure to incorporate on-the-ground context

• “This is a really high risk patient like I’m really concerned about this person, but it’s all the things that you can’t pull into an algorithm. Like is
this person compliant with their medications? What social drivers are they dealing with? That’s why we think of our provider referrals.” [Operational
stakeholder]

• “Yeah, we have a social drivers wheel [theoretical framework describing social determinants of health]. But that wheel is only as good as the
number of people who are doing SDH screening and populating the wheel currently.” [Operational stakeholder]

Lack of feedback loops

• “You know, I think probably the biggest feedback that can give confidence in the algorithm was when we do get a response from a provider, and
they thank us, or we can go back in and we see that the patient got referred to smoking cessation, or that, you know, a suggestion that we gave
was actually implemented or was considered.” [Operational stakeholder]

Data silos

• “One potential thing that can be difficult for these models is: patients who have a long established medical history versus those that don’t, and
differentiating between 1) somebody who doesn’t have a long medical history because they are a newer patient or they have (just) established
care at [this institution] versus 2) one who seeks the majority of their care outside of [this institution] and just come to [this institution] for, for
example, like an inpatient stay or something like that.” [Technical stakeholder]

• “About 20% of our population does not have data. We support primary care physicians at other practices that use different EMRs, different
medical records, okay, and we are blind. So we will be over-selecting and over-serving 80% and under-selecting and under-serving 20% of our
population because of a structural dynamic here in the United States. Despite all the investment and health IT there is this effect of don’t share
any data with anybody until it’s absolutely necessary.” [Clinical stakeholder]

• “And I should also say those even worse, those 20% [who we don’t have data on], or a higher proportion of them are older, coming from an
economically higher social deprivation index, higher disease burden, non-white... Conflict between efficacy of the model and performance and
the equity of its distribution or application.” [Operational stakeholder]

Failure to Incorporate On-the-Ground Context
Exercise, nutrition, smoking, and medication adherence are
critical components of the management of PAD, and clinicians
expressed concern about adopting the algorithm to make
intervention recommendations without knowing more about
these factors. Operational stakeholders acknowledged that even
with a highly accurate ML-driven CDS, frontline PCPs had an
additional context that was not captured by the algorithm. PCPs
understood the barriers faced by individual patients, such as
why a patient might be hesitant to try a new medication or why
they might not be able to see a specialist more often. The
algorithm’s potential impact was limited by the inability to
account for the barriers patients faced in managing PAD.

Lack of Feedback Loops
Adoption of the algorithm was also limited by the lack of a
feedback loop between the actions that users took in response
to the interventions recommended, on the one hand, and patient
outcomes associated with these actions, on the other hand. After
PCPs were sent tailored recommendations from the Population
Rounding team, there was no automated feedback loop in place
to track patient-level outcomes. Clinical stakeholders were
concerned that they lacked visibility on whether interventions
recommended to PCPs were acted upon, ignored, or even seen.
Clinical stakeholders on the Population Rounding team did not
learn whether PCPs had made the recommended change in a
patient’s care until the patient’s next review, which often did
not occur for many months. Even in cases where the PCP acted
on a recommendation provided by the Population Rounding
team, there was another layer of unknown patient willingness
or ability to adhere. All the stakeholders spoke about the need

for better feedback loops for PCPs to share their reasons for not
accepting algorithmically shaped recommendations by
Population Rounding team members. For example, PCPs shared
that they often did not accept Population Rounding team
members’ recommendations to promote statin use, as this was
particularly challenging for PCPs to do with patients who had
a bad experience with the medications in the past.

Operational stakeholders had to manually review a patient’s
chart to follow up on the effectiveness of the intervention
recommendations. Reviews were planned for every 6 months
to assess outcomes. This timing was meant to allow the clinical
team to understand if changes were needed to better
communicate with PCPs or if the recommendations themselves
needed to be changed. Without this type of feedback,
opportunities to improve ML-driven CDS and workflow are
difficult to identify. Operational stakeholders expressed an
interest in developing an internal feedback system that would
provide feedback in a way that minimized the additional burden
on the PCP. The IHI technical team is now exploring an
approach to automatically track PCP order placement for statins
or smoking cessation referrals.

Data Silos
A key theme discussed by all stakeholder groups was the
concern of inequitable outcomes because of the challenges in
aggregating data across siloed systems. Specifically, this relates
to the lack of documentation and capture of data for patients
who either did not receive a substantial amount of care at this
institution or whose PCPs used EHRs that did not interface with
the institution’s system. The inability to capture and aggregate
data for these patients limited the utility of the PAD algorithm.
However, patients who received health care across multiple
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sites or in more rural settings were thought to be more likely to
have significant socioeconomic disadvantages.

Although this observation is framed here as a barrier to the
impact of the PAD algorithm, it is also a potential source of
inequity. Clinical and operational stakeholders recognized that
about 20% of patients who did not have EHR data were
effectively invisible to the algorithm:

So we will be over-selecting and over-serving 80%
and under-selecting and under-serving 20% of our
population because of a structural dynamic.
[Operational stakeholder]

However, clinical and operational stakeholders feared that the
algorithm could potentially worsen inequities by not serving
patients whose EHRs were inaccessible.

Theme 3: Potential Challenges to Advancing Equity
With ML

Overview
The ML-driven CDS for PAD was perceived as a tool that could
be used to advance equity and reduce disparities in care.
Nevertheless, three challenges to advancing health equity
emerged in many interviews: (1) difficulty in identifying
impactable patients, (2) missing social context and (3) insurance
restrictions. Each challenge is described in the following
sections, and the representative quotations are presented in
Textbox 3.

Textbox 3. Potential challenges to advancing equity.

Difficulty in identifying impactable patients

• “The one piece... that we’ve not really been able to tap into yet is impact-ability. So you have this cohort of people who would benefit from this
service, but what factors of them really make them good candidates to be intervened upon? Sometimes when you’re dealing with chronic complex
diseases, when it progresses beyond a certain point, you know, there’s not a lot that you can do to intervene.” [Operational stakeholder]

• “I would think that the model’s design can be internally equitable, but how it’s used or applied might still require that discipline or deliberative
consideration of whether the service itself is equitable.” [Technical stakeholder]

Missing social context

• “I think we’re really so limited to what’s available in the electronic health record and or claims. So the things we can’t see are social drivers right
now.” [Clinical stakeholder]

• “There’s this commonly understood notion that only 20% of our healthcare outcomes are really driven by clinical interventions inside the clinic
and the other 80% is a mix of various uncontrollable or controllable factors uncontrollable like background genetics, or split controllable factors
related to social drivers of health or the geography of opportunity where people reside.” [Operational stakeholder]

• “This is a group, a subgroup, that certainly has a high burden of social barriers to health that in addition to having ample access to primary care,
high quality primary care, the ability of keeping our neighbors connected with the community and the resources is going to be an interesting
place for us to grow in to.” [Operational stakeholder]

• “So we can look at race and sex and ethnicity and say, you know, is the model for whatever reason, showing higher you know in one race versus
another and one sex versus another. Yeah, we have the ability to do that in post, but I unfortunately don’t really know how the model determines
one way or the other, or biases one way or the other. I imagine it ignores it completely, but that’s not always true.” [Technical stakeholder 1]

Insurance restrictions

• “However, our contracts, our relationships with payers attribute or designate a set of patients, and put them in a population that they say we are
accountable to.” [Operational stakeholder]

• “But if I look across my entire pocket population, and just like that had PAD, they’re not all going to be attributed to one of our value-based care
arrangements. So who’s going to be taking care of those patients?” [Operational stakeholder]

• “So like patients who aren’t eligible for [Duke Well], they have trouble kind of intervening on those patients.” [Technical stakeholder 2]

Difficulty Prioritizing Impactable Patients
Operational stakeholders discussed the challenge to advancing
health equity—wanting to intervene on all identified patients
but only having a limited number of hours and resources
available per week. The ML-driven CDS tool for PAD can be
run on all patients in a population, but only a small number of
high-risk patients can be reviewed each week. Stakeholders
described the difficult trade-offs they had to make when
considering how to select patients to prioritize for Population
Rounding. Given that this project was a pilot meant to
demonstrate value and secure sustaining investment, clinical
and operational stakeholders wanted to prioritize patients who

seemed the most “impactable.” Patient “impact-ability” was
operationalized by requiring a patient to have a PCP appointment
within 1 week of the Population Rounding review. This
approach maximized the saliency of communication for PCPs
and increased the probability of action as the PCPs prepared
for upcoming appointments but limited the algorithm’s impact
on patients with minimal access to PCP care. All stakeholder
groups recognized the potential need to revise how patients
were prioritized for Population Rounding after the pilot period.

Missing Social Context
Operational and clinical stakeholders noted that they were
conscious of the fact that patients with PAD from historically
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marginalized populations face significant barriers to care and
that the ML-driven CDS tool might be less effective for
marginalized patients. These stakeholders recognized that this
was an important limitation of the current integration approach.
The PAD algorithm uses data routinely captured in the EHR
and medical claims and does not incorporate granular
information related to social determinants that account for many
of the barriers to care. As described above in Theme 2 (Failure
to Incorporate On-the-Ground Context subtheme), PCPs who
understood individual patients’ social context could augment
the algorithm to better tailor interventions. However, gaps in
data on social determinants of health limited how well the
PHMO could efficiently target social support services.
Operational stakeholders saw an opportunity to enhance the
ability to advance equity by supplementing the output of the
ML-driven CDS tool for PAD with information about the social
determinants of health and barriers to care. This could enable
tailored medical interventions for PAD to be coupled with social
support services to address barriers to accessing care related to
the interventions.

Insurance Restrictions
Another challenge to advancing health equity is the way in
which insurance agreements vary. Only a subset of insurance

plans covered the full range of clinical capabilities and resources
leveraged by the Population Rounding workflow. For example,
some insurance agreements covered care management or
pharmacist support, whereas others did not. This disparity in
clinical service coverage means that not all patients are eligible
for Population Rounding. For the initial pilot period, eligibility
was limited to specific insurance plans, thus limiting the
potential benefits of the ML-driven CDS tool for PAD. Although
the proportion of patients at high risk of PAD ineligible for
Population Rounding because of insurance coverage was
unknown to interviewees, interviewees expressed concern that
not all high-risk patients could benefit from the program. The
algorithm can be easily run on tens or hundreds of thousands
of patients; however, resource constraints related to insurance
status could reinforce inequities in access to care.

Stakeholder Group Comparison
The secondary aim of this study was to identify differences in
project aspirations across stakeholder groups. All interviewees
were asked to describe their own vision of success for the
ML-driven CDS tool for PAD, and clinical, operational, and
technical stakeholders had different aspirations. Short data
excerpts are summarized in Textbox 4.

Textbox 4. Differences in stakeholder aspirations.

Clinical

• “Performs well and reproducibly in a contemporary timeframe”

• “Portable to different health systems to facilitate multicenter research or for other centers to identify PAD patients”

• “Less preventable [adverse] events”

• “I definitely need to be more educated and on top of kind of identifying peripheral artery disease”

Operational

• “Drive down health care costs”

• “Team using the model is comfortable”

• “PCPs are often, if not always, considering the recommendations”

• “We’re able to work with primary care providers”

• “Identifying impactable patients”

• “Measurable reduction or measurable increase”

Technical

• “Minimizing downtime”

• “Streamline the process”

• “Improve efficiency”

• “Data is consumable and useful for clinicians”

• “Built in all the monitoring for the inputs and it’s generating outputs as we expect”

Clinical stakeholders aspired to reduce “preventable” events
related to PAD and promote clinical education, research, and
dissemination to other sites. Operational stakeholders aspired
to reduce health care costs and improve the clinical outcomes.
Notably, almost all operational stakeholders hoped that the
project would build trust between the PHMO and PCPs and that

PCPs would act on recommended interventions. In addition,
operational stakeholders hoped that clinical users would become
comfortable working with the ML-driven CDS. Finally,
technical stakeholders aspired to minimize downtime, streamline
the workflow process for clinical users, and improve the overall
efficiency of how the data were consumed. Technical
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stakeholders emphasized the importance of creating an algorithm
that generated appropriate outputs and being able to monitor
and respond to changes in algorithm behavior.

Discussion

Principal Findings
In this study, we conducted interviews with members of the
technical, operational, and clinical stakeholder groups to explore
the positive and negative factors of the integration of a PAD
identification algorithm to implement timely guideline-based
care. We advanced insights related to three themes: (1) positive
factors of translating in silico ML-driven CDS performance to
real-world efficacy, (2) organizational factors and data structure
factors affecting clinical impact, and (3) challenges to advancing
equity with ML. We also highlighted nuanced differences in
goals and aspirations across stakeholder groups to better
understand how transdisciplinary teams work together to
integrate ML-driven CDS.

This study is unique in several important ways. First, although
there are qualitative research studies examining ML integration
into clinical care, almost all prior studies have focused on the
experience of clinicians [32-34]. One study did incorporate
patient perspectives, and another study included clinician and
developer perspectives [35,36]. Although there are a few
examples examining non–ML-driven CDS integration, to our
knowledge, this is the first study to incorporate technical,
operational, and clinical stakeholder perspectives on ML-driven
CDS integration [37,38]. Given that technology adoption
decisions are often made at the organizational leadership level
[28], it is critical to understand how administrative and
operational leaders perceive the risks and benefits of ML-driven
CDS integration.

Second, although there is an extensive and growing body of
literature surrounding the potential for bias in ML-driven CDS
integrated into clinical care, prior work has focused on the
quantitative measurement of bias within algorithms [39,40].
This focus on the algorithm itself results in technical
recommendations to minimize bias, such as thoughtfully
selecting algorithm outcome labels and scrutinizing algorithm
inputs [41,42]. To our knowledge, this is the first study closely
examining the structural and organizational, rather than
technical, challenges to advancing equity through integration
of ML-driven CDS into clinical care. Although there may be
opportunities to improve the PAD algorithm, the study surfaced
several opportunities to improve the ability of the algorithm to
help close disparities in the care experienced by patients with
PAD.

Despite a growing consensus about the necessity of
understanding ML-driven CDS as a part of larger sociotechnical
systems, most ML research in health care continues to focus on
the technical aspects of algorithms. The ML-driven CDS is only
1 component of the workflow, and all integrations of ML require
close attention to the nontechnical aspects of the workflow from
a larger system’s standpoint. Our study found that across
stakeholder groups, the factors that led to successful translation
of in silico algorithm performance to real-world impact were

largely nontechnical, given adequate efficacy in retrospective
validation. A technical stakeholder stated the following:

The actual model itself is, as much as I might delude
myself or whatever, is actually not that important.

Our findings emphasize that high-quality care and health
outcomes are shaped by the adoption of a network of
stakeholders and the ways in which they work together [43-45].
Therefore, ML-driven CDS integration must target
organizational structures, cultures, and aspirations [46]. Our
study showed how this can be successfully accomplished, even
when accounting for the needs of primary (clinicians who
participated in Population Rounding) and secondary users (PCPs
caring for patients with PAD). Our findings build upon recent
work on ML integration in the inpatient setting, which revealed
the importance of engaging the range of clinicians who provide
care for patients in both the early and severe stages of disease
[47]. A key strategy that drove alignment was the consistent
clinical leadership of a downstream specialist in the
conceptualization, planning, and execution phases of the
ML-driven CDS project. A technical stakeholder expressed
eagerness to compromise on algorithm performance for more
engagement from expert clinicians (refer to “Trustworthy
workflows” in Textbox 1). However, this suggests that
high-resource health care delivery settings that bring together
clinical and technical experts to integrate ML-driven CDS are
most likely to succeed [48]. In contrast, low-resource settings
that do not have ML developers to work hand in hand with
clinicians may struggle to successfully integrate ML-driven
CDS.

Our study also emphasized the importance of workflow design
and providing support in a familiar and trustworthy manner to
frontline clinicians. The Population Rounding workflow was
described as a critical component of success because it did not
increase alert fatigue for PCPs (refer to “Early consideration of
end-user needs” in Textbox 1). Pop-up alerts in EHR are often
dismissed, do not improve care [49-52], and contribute
significantly to physician burnout [53,54]. The personalized
interventions sent by the vascular specialist addressed immediate
gaps in care and educated PCPs on how to care for other patients
at high risk of PAD (refer to “Clinical stakeholder group” in
Textbox 4). The Population Rounding workflow also relieved
PCPs of the need to understand technical details of the PAD
algorithm. Each case was reviewed by an interdisciplinary team,
and because the vascular specialist led the communication with
PCPs, the recommendations were perceived as trustworthy.
This was different from a sepsis algorithm that placed nurses
as primary ML-driven CDS users who sent recommendations
to more expert secondary users (emergency department
physicians) [33]. In this case, although the treatment
recommendations were aligned with federal quality measures,
physicians often questioned the recommendations, and nurses
developed novel approaches to navigate collaborative sepsis
management.

Although the PAD algorithm was not visible to PCPs, the
ML-driven CDS integration serves as an important example of
how ML algorithms can support frontline clinicians. In many
contexts, ML serves the interests of organizational leaders to
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extract value from frontline clinicians [35]. Workers were
surveilled, and algorithms were used as tools to influence
decision-making and behavior on the front lines. A few
characteristics of the PAD system mitigated these concerns.
First, the PCPs retained autonomy in making clinical treatment
decisions for their patients. Clinical and operational stakeholders
valued the role of PCPs because they understood that PCPs
knew patients in a way that the ML-driven CDS system could
not account for. An operational stakeholder explained that PCPs
know best how to treat high-risk patients because of “all the
things that you can’t pull into an algorithm.” Second, as
described above (Textbox 4), the interests of the PCPs were
aligned with the Population Rounding team. The vascular
specialist and PCPs worked for the same organization and cared
for similar patients. Third, the clinical and operational
stakeholders understood that the PAD system could not be
effective without strong buy in from the PCPs. A clinical
stakeholder described the following:

...the biggest feedback that can give confidence in the
algorithm was when we do get a response from a
[PCP] provider, and they thank us.

Trust in the algorithm was ultimately tied to how PCPs
responded to recommendations sent by the Population Rounding
team. This qualitative analysis identified a gap in built-in
feedback loops, which was communicated to the technical team
for improvement in the future.

Although the ML-driven CDS system for PAD was seen as a
potential opportunity to address health disparities, our study
highlighted several important challenges to advancing equity
through the use of ML. None of the challenges discussed by
stakeholders were specific to how the algorithm was built but
pertained to data and organizational structures. First, both
clinical and operational stakeholders recognized that a
substantial proportion of patients would remain underserved
because they did not have sufficient data to run the algorithm.
However, these susceptible patients were invisible. Second,
clinical and operational stakeholders recognized that there was
a significant social context missing from the data. Certain social
support services were available, but without richer information
about individual patient needs, the Population Rounding team
was unable to address the potential barriers to PAD treatment.
As described above in Theme 2 (Failure to Incorporate
On-the-Ground Context), the lack of social context heightened
the role of PCPs, who had additional visibility into patients’
lives and highlighted a larger systemic need for improved
documentation of social drivers. Although a more complex
algorithm using natural language processing on clinicians’notes
was subsequently developed to address this challenge [19], the
presented version of the algorithm used was chosen [21] for
this study because of the ease of integration within IT systems.
Finally, there were concerns among all stakeholder groups
regarding the criteria used to identify impactable patients. Only
patients with certain insurance plans were eligible for Population
Rounding, and the pilot period focused on patients with
upcoming PCP appointments. Patients at high risk for PAD who
were not covered by a subset of insurance plans or patients
without established access to primary care would not
immediately benefit from ML-driven CDS. Taken together,

these challenges present a stark reality for teams hoping to
advance equity through the use of ML. The most susceptible
patients, without robust data, without well-resourced insurance
plans, and without regular access to care, are the least likely to
benefit. These challenges will not be solved through technical
innovations but will require structural changes in access to
health care.

Limitations
This study had several important limitations. First, this study
did not include all relevant stakeholder groups affected by the
ML-driven CDS for PAD. This decision was made because the
early stage of integration meant that many of these stakeholders
were yet to experience the effects of the PAD algorithm. Missing
from our stakeholder cohort were patients whose care is
impacted by the algorithm, payers, regulators, and policy
makers. Second, although our study involved a broad group of
stakeholders, there were limited clinical end users involved,
and this was a single-site study, thus lacking external validation.
Different sites may encounter different factors that influence
the success of ML-driven CDS integration. Our study examined
an ML algorithm that was internally built and is not currently
planned for use on external sites; therefore, such an external
validation was outside the scope of this study. Third, many
organizations primarily adopt ML built by external EHR or
third-party vendors, which are designed with a greater focus on
spread across organizations and marketability [55]. By focusing
on a custom-built algorithm within a single site, the findings of
this study may overlook other factors related to the adoption of
an externally built ML system, such as technical difficulties
across different EHR systems, decentralized leadership, and a
lack of trust by clinical users. Our Population Rounding
workflow may not generalize to other workflow configurations;
but we have attempted to maximize the generalizability of our
data and findings through a detailed description of the tool,
setting, and actors involved as well as an open and reflexive
description of the researchers and their roles. Through this
approach it may be that abstractions of the findings reported
here, reinterpreted by local experts, will be more applicable to
disparate contexts and ML-driven CDS than the PAD algorithm
itself. Future studies are necessary to better delineate the
variations between internally built versus externally procured
systems to better guide integration. Fourth, our ML-driven CDS
tool was well developed and previously validated in our study;
thus, the results may not be generalizable to models that are
technically poorly developed but may be insightful in translating
successful in silico models into clinical care. Finally, our study
was conducted during the first 4 weeks of the launch of the
ML-driven CDS–informed Population Rounding process. Future
work is needed to examine how quantitative results and the
qualitative factors presented in this study change with time as
the use of the algorithm evolves.

Conclusions
Newly developed ML-driven CDS health care solutions continue
to increase. Although many stakeholders are involved in the
development, integration, and use of these systems, little is
known about how these different stakeholder groups approach
ML. In this qualitative study, technical, clinical, and operational
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stakeholders were interviewed to surface factors influencing
successful integration of a ML-driven CDS for PAD. The
following 3 themes emerged from the interviews: positive
factors translating in silico performance to real-world efficacy,
organizational factors and data structure factors affecting clinical
impact, and challenges to advancing equity with ML. Findings
highlight 3 potential best practices. First, health systems should
invest in nurturing multistakeholder care delivery models that

can be fertile ground for ML-driven CDS. Second, technical
experts should be embedded among the clinical and operational
stakeholders who drive the development and implementation
of ML-driven CDS. Third, all team members should be mindful
of the structural and environmental challenges that marginalize
populations. Multidisciplinary perspectives must surface and
address these challenges to enable ML-driven CDS to advance
equity.
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