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Abstract: Accurate and reliable measurement of real-world walking activity is clinically relevant,
particularly for people with mobility difficulties. Insights on walking can help understand mobility
function, disease progression, and fall risks. People living in long-term residential care environments
have heterogeneous and often pathological walking patterns, making it difficult for conventional
algorithms paired with wearable sensors to detect their walking activity. We designed two walking
bout detection algorithms for people living in long-term residential care. Both algorithms used
thresholds on the magnitude of acceleration from a 3-axis accelerometer on the lower back to classify
data as “walking” or “non-walking”. One algorithm had generic thresholds, whereas the other used
personalized thresholds. To validate and evaluate the algorithms, we compared the classifications
of walking/non-walking from our algorithms to the real-time research assistant annotated labels
and the classification output from an algorithm validated on a healthy population. Both the generic
and personalized algorithms had acceptable accuracy (0.83 and 0.82, respectively). The personalized
algorithm showed the highest specificity (0.84) of all tested algorithms, meaning it was the best
suited to determine input data for gait characteristic extraction. The developed algorithms were
almost 60% quicker than the previously developed algorithms, suggesting they are adaptable for
real-time processing.

Keywords: wearable sensors; locomotion; algorithm design; accelerometer; older adults

1. Introduction

Measurement of walking activity in long-term residential care environments is impor-
tant for understanding mobility function, assessing the effects of interventions, tracking dis-
ease progression, monitoring the risk of falling, and identifying unmet mobility needs [1–3].
People living in long-term-care homes often have mobility issues, which are typically the
result of aging or neurological or musculoskeletal disorders. The risk of falling for people
living in long-term care is substantially higher than for people living in the community,
with the average fall rate for people living in long-term care found to be between 1.5 and
2.75 times per year [4–6]. Falls are a common cause of many problems including bone
fractures, loss of confidence in mobility, and high healthcare costs [7,8]. Many countries
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predict a growing population of older adults, which in turn predicts an increased incidence
of mobility-impacting diseases and conditions [9–12]. Although we can measure and assess
gait in controlled lab environments, there are numerous benefits to measuring walking in
habitual environments or the “real-world” [13–16]. Measures of walking in the real world
give a more truthful representation of a person’s walking ability, which usually differs from
the walking ability displayed in the lab. Furthermore, real-world walking measurements
can be used to evaluate the activity level, physical independence, and fall risk of a person.

To quantify gait characteristics for medically or socially relevant insights it is impera-
tive to first accurately identify when a person is walking. Algorithms can process walking
data to determine macro and micro gait metrics [17]. Macro gait metrics include walking
volume, pattern, and variability, whereas micro-level outcomes include pace, rhythm,
variability, asymmetry, and postural control. The gait metrics can be used to diagnose
disease (and disease progression), evaluate risk, and determine suitable treatments. It is
therefore important that the gait characteristics are accurate, which in turn, means that
the walking bout data used to extract gait characteristics must be accurate. Attempting to
extract gait characteristics from non-walking data will produce nonsensical results which,
when included with gait characteristics derived from actual walking, confounds the overall
results and findings [15,18]. As such, high specificity in identifying walking bouts is vital
to accurate and reliable outcomes.

Many gait identification algorithms have been developed for wearable sensors such as
accelerometers and inertial measurement units (IMU) to isolate walking bouts in the real-
world [15,19,20]. IMUs consist of a 3-axis linear accelerometer and 3-axis gyroscope. The
gyroscope data provides more information on body motion and orientation, which is useful
for identifying gait. However, gyroscopes have a substantially higher power consumption
than accelerometers, which reduces the battery life of the wearable sensor [21]. Furthermore,
incorporation of gyroscope data increases the complexity of the algorithm due to sensor
fusion. Some walking activity algorithms use IMUs on each of the lower body segments
and, in addition to identifying walking, can produce a full kinematic analysis of gait.
Algorithms have also been developed for use with a limited sensor set, such as: one IMU
on the thigh [22,23]; one IMU on a foot [24,25]; and one 3-axis accelerometer on the lower
back [26,27]. Limited sensor sets have quicker set-up times and reduce the burden on the
user, which is particularly important for older persons and those who have age-related
diseases. A recent study found that wearable sensors on the lower back had high comfort
and acceptability for a varied clinical population [28]. It is important to note that the exact
position and orientation of the sensor(s) impacts the recorded signal and therefore the
quality of the results [29]. Analytical pipelines of concurrent and sequential algorithms
designed for these set-ups can identify multiple gait characteristics like walking speed, gait
asymmetry, and stride length. Most of these algorithms have been developed and validated
for a specific target population such as healthy young adults, older people, people with
Parkinson’s disease, or cerebral palsy [30–33]. Due to differences in gait characteristics,
mobility capacity and performance, algorithms designed for a specific population are not
necessarily suitable for a different population.

Identifying walking bouts for people living in long-term residential care is challenging
due to generally low activity, slow walking speeds, halting gait patterns, short walking
bouts, and reliance on walking aids which can alter gait characteristics and acceleration
patterns [34,35]. The population of people living in long term care is heterogeneous, with
many different conditions manifesting a variety of mobility impairments [36,37]. In general,
most residents’ gait can be characterized by slow walking. Slower walking speeds are
challenging for previously developed algorithms, with slower speeds generally producing
more errors in walking bout detection [15]. Furthermore, cognitive impairment, which can
impact mobility, is quite present in this population [38]. No walking detection algorithm
has yet been developed or validated on this population.

A variety of approaches are employed in gait detection algorithms, including generic,
personalized, and machine learning techniques. Generic algorithms are “out-of-the-box”
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or standard designs that can be used immediately within the target population. At most,
the height or leg length of the person is needed to derive spatial gait characteristics (i.e.,
step or stride length). Personalized algorithms incorporate some characteristic(s) of the
individual in the processing which requires a form of calibration [39–41]. The most complex
variety of walking detection algorithms are those that use machine learning to improve
their walking bout detection accuracy [42–45]. Although the machine learning algorithms
can be accurate, they also require a substantial amount of time and training data to be
useful. Furthermore, they have comparatively higher computational power requirements
when compared to non-machine learning algorithms. For off-line data processing, high
computational expense can be managed by powerful computers or cloud-based computing.
However, low computational costs are very beneficial for on-line processing, allowing
the sensor and processor to be packaged in one wearable device and producing real-time,
useable outputs such as predicting and alerting the wearer of an imminent risk of falling.

Walking bout detection algorithms based on accelerometer data from the lower back
have been developed and tested in a variety of populations with promising results. In
2014, Iluz et al. developed a walking bout detection algorithm for people with Parkinson’s
disease [18]. They band pass filtered the acceleration signals between 0.5 and 3 Hz with the
assumption that gait typically occurs between these frequencies. A 5-s running window
on the vertical and anterior–posterior acceleration was convoluted with a 2 Hz sinusoidal
signal, for which the local maxima in the resultant signal represented a gait cycle. Windows
containing 2–15 steps were classified as gait. The accuracy of this algorithm at detecting
walking bouts was not reported, but was later evaluated against gold standard lab based
data collection through the Mobilise-D consortium which found a specificity above 0.94
in multiple cohorts including Parkinson’s disease, multiple sclerosis, and healthy older
adults [15]. Paraschiv-Ionescu et al. later developed a walking detection algorithm based on
the magnitude (or 3D norm) of the acceleration signal which was low pass filtered [46]. The
improved version of their algorithm, developed a year later, employed multiple smoothing
and enhancement stages to the acceleration magnitude [47]. Peaks in the signal above
a fixed threshold in the original algorithm, or a personalized threshold in the revised
version, were considered heel strikes. The time between heel strikes was compared to a
second adaptive threshold to determine steps and thus walking bouts. For a cohort of
stroke patients, the specificity of the original and revised algorithms were 0.85 and 0.93,
respectively. Both the Paraschiv-Ionescu et al. algorithms had specificity above 0.94 in the
cohorts examined through Mobilise-D [15]. Although the state-of-the-art walking bout
detection algorithms discussed here have high sensitivity, we identify two limitations. The
first is that these algorithms have not been validated in a very slow-walking population,
such as people living in long-term care homes. Secondly, there is no information on
the computational expense of these algorithms. We can assume that windowing and
repeated filters or smoothing functions will result in somewhat computationally expensive
algorithms.

The aim of this study was to develop and validate a computationally inexpensive al-
gorithm to reliably detect walking in the residential care home environment. We developed
both a generic and personalized algorithm to determine if incorporating the individual’s
walking data in the processing would improve walking bout identification. To improve
robustness of the gait classifier, we made the algorithm independent of the accelerometer
orientation, ensuring that improper placement of the accelerometer in the real-world would
not lead to significant data loss.

2. Materials and Methods
2.1. Data Collection

We recruited 27 participants from four long-term care facilities as a sub-study of
the “Staying UpRight” study [4]. All participants gave informed consent as approved
by the New Zealand (NZ) Health and Disability Ethics Committee (Approval number
18/NTB/151/AM03). Inclusion criteria were people living in long term care and over
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65 years of age. Participants were excluded if they received psychogeriatric, respite or
palliative care, or were acutely unwell or immobile. We made note of any walking aids the
participant used during the study. The demographics are presented in Table 1.

Table 1. Demographics of the participants included in the final data analysis (21 of 27 were included).

Participant Age (Years) Height (m) Weight (kg) Sex Walking Aid(s)

1 93 1.58 52 Female None

2 104 1.68 53 Male None

3 81 1.57 62 Female None

4 94 1.65 57 Female None

5 68 1.65 118 Female Stick, right hand

6 69 1.75 83 Male Walking frame

7 77 1.78 109 Male Walking frame

8 85 1.55 47 Female Walking frame

9 87 1.61 37 Female Walking frame

10 88 1.74 82 Male Walking frame

11 81 1.48 64 Female Walking frame

12 80 1.78 102 Male Walking frame

13 83 1.60 56 Female Walking frame

14 89 1.61 61 Female Walking frame

15 94 1.71 74 Male Walking frame

16 97 1.75 68 Male Walking frame

17 79 1.71 90 Male Walking frame

18 88 1.73 73 Male Walking frame

19 81 1.50 52 Female Walking frame

20 85 1.65 48 Female Walking frame

21 65 1.54 75 Male Walking frame, Right Ankle Brace
and Orthotic shoe

At the care home, a trained research assistant attached a 3-axis linear accelerometer
(AX3, Axivity Ltd., Newcastle upon Tyne, UK) to the participant using a hydrogel adhesive
and covered with a surgical grade adhesive dressing (OPSITE Flexifix™ or Hypafix™,
Smith + Nephew Ltd., Watford, UK). The wearable accelerometer was placed in-line with
the 5th lumbar vertebrae and orientated such that its long axis was parallel with the spine.
Accelerometery data were recorded at 100 Hz with a ±8 g range and accelerometer signals
were transformed to a horizontal-vertical coordinate system [48]. The AX3 accelerometer
has been validated for its suitability in capturing high-resolution data for long-term anal-
ysis [45,49,50]. We first collected a validation dataset with the assistance of two research
assistants who were familiar with the care home environment and the participants. The
protocol, visualized in Figure 1, took between 10 and 15 min to complete. Data collection
began with the participant seated in the care home. The participant was then asked to
stand up from their bed, walk along a corridor at their own pace, sit down in a chair, and
rest for as long as they wanted, before standing up and retracing their path to the original
starting point where they sat down again. Meanwhile, one research assistant used a digital
form (Table S1) to record the timings and type of activity. Activities were categorised
according to eight specific labels. For the purposes of this study, the two activity categories
of “Moving in corridor” and “Moving in confined space” were labelled as walking and all
other categories were considered non-walking. The research assistant recorded the clock
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time (in hour:minute:second format) when the participant began a new type of activity,
such as “transition—sit-to-stand”, and also noted the type of activity. Throughout the
protocol, a second research assistant used a video camera (HC-V720, Panasonic, Osaka,
Japan) with a frame rate of 25 Hz to record the lower half of the participant.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

categorised according to eight specific labels. For the purposes of this study, the two ac-

tivity categories of “Moving in corridor” and “Moving in confined space” were labelled 

as walking and all other categories were considered non-walking. The research assistant 

recorded the clock time (in hour:minute:second format) when the participant began a new 

type of activity, such as “transition—sit-to-stand”, and also noted the type of activity. 

Throughout the protocol, a second research assistant used a video camera (HC-V720, 

Panasonic, Osaka, Japan) with a frame rate of 25 Hz to record the lower half of the partic-

ipant. 

We manually synchronized the accelerometer, research assistant labels, and video 

data. At the start of the protocol a research assistant aimed the video camera at the wear-

able sensor on the participant’s back while a mobile phone with the time displayed in 

hour:minute:second format was held in view of the camera. The second research assistant 

then tapped the accelerometer three distinct times with their finger to generate a synchro-

nization signal across all datatypes. 

We also collected a “real-world” continuous dataset over 7 days using the same wear-

able sensor set-up, but with no video or hand annotations. Participants wore the sensor 

throughout the 7-day period and were asked to continue their daily activities as normal. 

These real-world data were primarily used for the “personalized” algorithm detailed in Sec-

tion 2.3. Before processing, the 7-day data were cleaned using a custom built MATLAB 

(v2021b, Mathworks, Nattick, MA, USA) graphic user interface. We could identify and cor-

rect for periods wherein the wearable sensor was removed, replaced in a new orientation, 

or suffered data loss. 

 

Figure 1. The validation protocol used for this study, wherein participants started seated, stood, 

walked through a bedroom and hallway, sat down on a chair, then retraced their journey. 

2.2. Data Annotation 

The 3-axis accelerometer data from the validation dataset was aligned with the research 

assistant labels of “walking” or “non-walking” at every timepoint. We matched the video 

frames of the wearable sensor being tapped to the corresponding spikes in the sensor’s lin-

ear acceleration data. Using the time shown on the mobile phone in the video when the 

accelerometer was tapped, we aligned the written timings of activity to the accelerometer 

frames. This 2-step sequence matched the activity labels with the accelerometer frames. We 

then designated walking activity as binary 1, and all other activity as binary 0. 

2.3. Algorithm Design 

The algorithm identifies periods of walking using thresholds with the magnitude of 

the linear acceleration in all 3 axes. We developed two versions of the algorithm: one that 

used a generic threshold and one that used a personalized threshold. There are only two 

differences between the two algorithms, so we will therefore start with a description of 

the generic threshold algorithm, hereby referred to as the generic algorithm. 

We described the generic algorithm visually in Figure 2 and provide the code in the 

supplementary files. We filtered the 3-axes of linear acceleration with a 4th order, zero-lag 

low pass Butterworth filter with a cut-off frequency of 0.25 Hz, then subtracted the filtered 

data from the raw data to centre the accelerations around 0 g while maintaining frequency 

content of the data caused by movement. We calculated the magnitude (or 3D norm) of all 

Figure 1. The validation protocol used for this study, wherein participants started seated, stood,
walked through a bedroom and hallway, sat down on a chair, then retraced their journey.

We manually synchronized the accelerometer, research assistant labels, and video
data. At the start of the protocol a research assistant aimed the video camera at the
wearable sensor on the participant’s back while a mobile phone with the time displayed
in hour:minute:second format was held in view of the camera. The second research
assistant then tapped the accelerometer three distinct times with their finger to generate a
synchronization signal across all datatypes.

We also collected a “real-world” continuous dataset over 7 days using the same
wearable sensor set-up, but with no video or hand annotations. Participants wore the
sensor throughout the 7-day period and were asked to continue their daily activities as
normal. These real-world data were primarily used for the “personalized” algorithm
detailed in Section 2.3. Before processing, the 7-day data were cleaned using a custom
built MATLAB (v2021b, Mathworks, Nattick, MA, USA) graphic user interface. We could
identify and correct for periods wherein the wearable sensor was removed, replaced in a
new orientation, or suffered data loss.

2.2. Data Annotation

The 3-axis accelerometer data from the validation dataset was aligned with the research
assistant labels of “walking” or “non-walking” at every timepoint. We matched the video
frames of the wearable sensor being tapped to the corresponding spikes in the sensor’s
linear acceleration data. Using the time shown on the mobile phone in the video when the
accelerometer was tapped, we aligned the written timings of activity to the accelerometer
frames. This 2-step sequence matched the activity labels with the accelerometer frames. We
then designated walking activity as binary 1, and all other activity as binary 0.

2.3. Algorithm Design

The algorithm identifies periods of walking using thresholds with the magnitude of
the linear acceleration in all 3 axes. We developed two versions of the algorithm: one that
used a generic threshold and one that used a personalized threshold. There are only two
differences between the two algorithms, so we will therefore start with a description of the
generic threshold algorithm, hereby referred to as the generic algorithm.

We described the generic algorithm visually in Figure 2 and provide the code in the
supplementary files. We filtered the 3-axes of linear acceleration with a 4th order, zero-lag
low pass Butterworth filter with a cut-off frequency of 0.25 Hz, then subtracted the filtered
data from the raw data to centre the accelerations around 0 g while maintaining frequency
content of the data caused by movement. We calculated the magnitude (or 3D norm) of all
three axes to create a single signal indicating overall acceleration, which is compared to the
global threshold of 0.05 g. The global threshold is essentially the minimum 3D magnitude
at which any type of activity could occur. We determined this threshold through pilot
studies with substantial visual inspection on all participants data. Comparison of the 3D
signal to the global threshold creates a binary data series where 0 indicates datapoints
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less than the threshold and 1 represents data exceeding the threshold. The binary signal
was smoothed with a Gaussian-weighted moving average filter to provide an estimate of
activity likelihood with reference to the previous and future data. The “activity likelihood”
signal better captures the possibility of activity by compensating for datapoints which
dip below or rise above the global threshold for very short periods of time. A Gaussian
filter was used for equal weighting of previous and upcoming data, with closer datapoints
having a higher weight than further away datapoints.
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We used the binary signal to identify every period of non-walking or “gap”. We
then examined the smoothed “activity likelihood” signal during the gap, and counted the
number of datapoints less than 0.2 g which was then compared to the “Minimum gap
threshold” of 50 frames. If more than 50 datapoints were below the 0.2 threshold, the gap
was retained and considered as “no activity”. If less than 20 of the “activity likelihood”
datapoints fell below the 0.2 threshold, the gap was removed and the data labelled as
“activity”. At this stage, we had the start and end frames of every gap and therefore bout of
activity.

The 2nd last stage of the algorithm is to include or reject each identified bout of
activity as walking. In each bout, we examined the Gaussian smoothed 3D magnitude
of the acceleration data in comparison to a heuristic threshold of 0.4 g. The purpose of
this threshold is to remove non-walking activities like sit-stand transitions. If less than
2.5% of the smoothed 3D magnitude data is above the 0.4 g threshold, then the activity is
considered walking and the bout is included. Conversely, if more than 2.5% of the data is
above the 0.4 g threshold, it is considered non-walking activity and rejected. At the end of
this stage, we have the start and end frames for every identified bout of walking.

The final stage of the algorithm rejected walking bouts that were less than the mini-
mum duration. For the purposes of further analysis, we set the minimum walking bout
duration to 2 s. Walking bouts shorter than 2 s were rejected. The output of the algorithm
was both the start and end frames of each walking bout and a binary signal wherein 1
represents walking and 0 represents non-walking.

In the personalized algorithm we replaced the “generic threshold” with a threshold
value determined by the participant’s data and we also modified the “minimum gap
threshold”. The minimum threshold for activity was found as the median of the 3D
magnitude in a 24 h period. Theoretically, we are more often stationary than we are in
movement, therefore the median acceleration value over a 24 h period should indicate the
baseline of no movement. In this study, we found the median for each participant from day
3 of the real-world data. We chose to use the data from day 3 to determine the median as
no participants suffered data loss or anomalies on this day, and each participant had time
to acclimate to the feeling of the sensor on their back. This personalized threshold replaced
the “generic” threshold value in the algorithm. The “minimum gap threshold” was set to
100 frames, as pilot testing showed the original value of 50 frames was too conservative
when combined with the personalized threshold (see Figure 2.)

2.4. Algorithm Validation and Performance Evaluation

To validate and evaluate both versions of the presented algorithm, we included com-
parison to the research assistant annotations and a previously validated “walking bout
detection” algorithm. For the purposes of this manuscript, the research assistant annotated
walking bouts were considered as the “ground truth”. The walking bout detection algo-
rithm developed by Hickey et al. [42] was validated with a young, able-bodied population
through comparison with chest-mounted camera footage. For simplicity, we will refer to
the algorithm developed by Hickey et al. [42] as the “Reference” algorithm.

For a comprehensive and quantitative evaluation of the algorithms, we applied tra-
ditional evaluation of binary classifiers matrix to compare each of the algorithms to the
ground truth. The evaluation metrics were based on the prediction of the algorithm in
comparison to the “ground truth” of the research assistant labelled data. Our evaluation of
binary classifiers included the basic ratios: sensitivity (true positive rate), specificity (true
negative rate), precision (positive predictive value), and negative predictive value. We also
calculated the accuracy and F1 score. Figure 3 presents a confusion matrix to illustrate how
we calculated the evaluation metrics. For every participant, we ran analysis on the binary
output from each of the algorithms and quantified evaluation metrics. We then averaged
the results across participants. We chose to average over participants to ensure that the
trial duration was not incorporated in the final evaluation and that the effectiveness of the
algorithm was weighted equally for each participant.
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Finally, we also compared the run time of each of the algorithms. The run time of
the codes were measured with MATLAB’s built-in tic and toc functions. We recorded the
run time of each algorithm thrice for each participant’s data and then averaged across the
three attempts. We then divided each participants average run time by the number of data
points and multiplied by 6000 to determine the processing time per 10 min of data. We
used 2-sample t-tests to investigate significant differences in processing time between the
algorithms. Finally, we averaged the processing time per minute of data over participants
to find the average processing time per 10 min of data (6000 frames) for each of the three
algorithms.

3. Results

The final dataset used for analysis included 20 participants, the demographics of
whom are summarized in Table 1. Seven of the original 27 participants were excluded from
data analysis due to issues found in their validation data. Five participants suffered from
data loss and were removed from the analysis. A further participant was excluded due to
inadequate attachment of the accelerometer, which resulted in the sensor hanging upside
down for a portion of the trial. A final participant exhibited highly unusual accelerometer
data which resulted in no walking bouts identified by the developed algorithms. The
non-standard accelerations were caused by either inadequate attachment of the sensor or
the participant’s additional walking aids: an orthotic shoe and ankle orthosis on the right
leg. We included their data in the analysis in Tables S2–S4, but excluded the participant
in the following analysis due to uncertainty in the cause of the unusual accelerometer
data. In some trials, the research assistant mistakenly tapped on the phone, rather than the
accelerometer. In these trials, we visually inspected the video and accelerometer data to
align the activity labels with the frames of the wearable sensor.

We present representative data of a participant in Figure 4. Visual inspection showed
both the generic and personalized algorithms were relatively good at identifying the start
and end of each walking bout. However, the generic algorithm sometimes incorrectly con-
sidered non-walking activity (i.e., transitions between standing and sitting) to be walking.
The personalized algorithm was more conservative than the generic algorithm, which was
seen by fewer misclassifications of sit-stand transitions, but increased misclassification of
slower walking. The reference algorithm was more likely to classify stationary data as
walking compared to the generic and personalized algorithms. Overall, the walking bouts
identified by the three algorithms were similar to the research assistant labelled walking
bouts.
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Figure 4. Representative data and walking bout classification from the validation protocol for a single
participant. The shaded boxes represent the walking bout as identified by the research assistant (top),
and generic, personalized, and reference algorithms (second to fourth plots).

We illustrated the quantitative results for each algorithm across participants as a
boxchart (Figure 5) and the means with standard deviation for each algorithm in Table 2.
The generic algorithm and the references algorithm had very similar sensitivity values
(0.90 and 0.89 respectively). The lower sensitivity of the personalized algorithm indicates
the algorithm was a little conservative in classifying walking data, in agreement with the
finding drawn from Figure 4. The specificity of the generic algorithm was the lowest of the
algorithms (0.74), which supports the earlier statement that the generic algorithm was more
likely to classify sit-stand transitions as walking. Similarly, the personalized algorithm had
the highest specificity of the algorithms (0.84) indicating it had fewer misclassification of
sit-stand transitions. Although the personalized algorithm excelled in precision, we found
it had the worst negative predictive value. The generic algorithm was the least precise,
although it shared mean negative predictive value with the reference algorithm. The
accuracy and F1 score were similar across all algorithms, although the box chart indicated
the reference algorithm had the least spread for accuracy.

Table 2. The evaluation metrics of the generic, personalized, and reference algorithms, averaged over
participants.

Generic Personalized Reference

Mean s.d Mean s.d Mean s.d

Sensitivity (True Positive Rate) 0.90 0.08 0.81 0.13 0.89 0.11

Specificity (True Negative Rate) 0.74 0.12 0.84 0.13 0.80 0.11

Precision (Positive Predictive Value) 0.82 0.11 0.87 0.11 0.85 0.11

Negative Predictive Value 0.85 0.12 0.77 0.13 0.85 0.14

Accuracy 0.83 0.09 0.82 0.09 0.85 0.09

F1 0.86 0.09 0.83 0.09 0.87 0.10
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Figure 5. Boxchart of the metrics used to evaluate the efficacy of the walking bout detection algo-
rithms.

Both the generic and personalized algorithms had significantly shorter processing
times than the references algorithm (Figure 6) and Table 3. There was no significant
difference in processing time between the generic and personalized algorithms (p = 0.50).
We found p < 0.01 when independently comparing the reference algorithm to generic and
personalized algorithm.
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Figure 6. The processing time for each of the algorithms. Each algorithm’s processing time has been
fit with the line of best fit (linear regression).

Table 3. Mean processing time per 6000 frames (time is in milliseconds).

Generic Personalized Reference

Mean 3.31 3.13 7.59

s.d. 0.39 0.36 0.64
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4. Discussion

The primary goal of this study was to determine if we could accurately and reliably
measure walking bouts using computationally efficient algorithm in a heterogenous pop-
ulation of people with mobility limitations living in residential care environments. Our
results show that both of our developed algorithms were able to reliably detect walking
bouts compared to the ground truth of research assistant labels. Unobtrusively and reliably
measuring walking activity of people in long-term care is a valuable tool for understanding
disease progression and the impact of interventions, as well as guiding treatment and
therapy plans.

We found the developed algorithms performed similarly to the reference algorithm,
with some differences between all three. The reference algorithm was the most likely to
include non-walking data within correctly identified walking bouts. That is to say, the
reference algorithm had the poorest performance at detecting short breaks in walking bouts.
Low specificity, or labelling non-walking data as walking, causes noise and issues when
determining gait outcomes (such as walking speed, initial contact timings, or step length)
because the algorithms will attempt to calculate gait characteristics from data that has
none of the characteristics of walking data. The algorithms developed and described in
this manuscript were generally very good at excluding non-walking data within walking
bouts, and accurately identifying the start and end of confirmed walking bouts. The
generic algorithm was the least conservative of the algorithms, which was indicated by
high sensitivity and low specificity. The personalized algorithm was the most conservative
at classifying walking bouts. The high specificity of the personalized algorithm is highly
desirable for extracting gait characteristics as it reduces the noise and errors that are
introduced by including non-walking data in the analysis. Otherwise, the results of the
three algorithms were somewhat comparable and showed acceptable consensus with
research assistant labelling.

All algorithms misclassified some transition data (i.e., sit–stand) as walking. Tran-
sitioning between standing and sitting incurs high linear accelerations, which causes
misclassifications by all algorithms. Visually, there are no repeating cyclic patterns during
transitions as there is in walking. However, none of the presented algorithms look for
repeating patterns. The developed algorithms could implement an additional threshold
or check to reject transition data as walking. A simple maximum magnitude threshold
implemented in tandem with the minimum magnitude threshold may improve rejection of
transitions. An alternative technique would be inclusion of gyroscope data, which was not
measured by our sensors.

Incorporating gyroscope data with the linear acceleration could improve the perfor-
mance of both developed algorithms. Specifically, the gyroscope data gives information
on trunk orientation, which could be used to represent a facet of walking. Older adults
exhibit a trunk flexion angle relatively close to upright when walking (average 6.3 degrees
for men, and 7.0 degrees for women) [51]. The trunk orientation could be compared to a
personalized threshold to classify if the trunk angle is within normal limits for walking. The
position classification would then be included in the processing step to reject non-walking
activity in the developed algorithms. The trunk angle threshold may also be derived from
participant data, improving the individualization of the classifier. However, including
gyroscope data would not only increase the processing time, but require different hardware.
We think including gyroscope data would be worthwhile as improved accuracy would be
worth a small increase in processing time.

The threshold of the personalized algorithm was found from a separate data set, which
may have resulted in unsuitable threshold values. The dataset used for determining the
personalized threshold was recorded on a different day, with no guarantee the measurement
unit was positioned exactly as it was for the validation data collection. Furthermore, the
participant may have had different gait patterns between the data collections. If the
threshold was derived from a participant’s “bad” day, then the thresholds may not match



Sensors 2023, 23, 8973 12 of 17

with data from a “good” day. An adaptive personalized threshold which is determined
from the most recent data may overcome this issue.

All thresholds and limits, except the personalized minimum activity threshold, were
determined through human reasoning. In piloting, we tested numerous values for each
threshold and limit. Through participant-level visual comparison of the data at every step,
we evaluated the various threshold values. We chose the thresholds that appeared to work
well with all participants and were neither overly conservative nor generous. It is highly
likely that the thresholds and limits were suboptimal. Further investigation into the most
appropriate thresholds and limits is warranted. In addition to finding more appropriate
generic thresholds, we may also find personalized thresholds more suitable than generic
thresholds. In general, the use of adaptive or personalized thresholds increase robustness of
the algorithm, which is particularly important for irregular or unstable gait patterns [15,47].

The population for which these algorithms are designed is a heterogenous population,
which explains the large spread of classification evaluation metrics. People living in long
term care will typically share some gait characteristics such as slow walking. However,
the variety of medical conditions and mobility issues that are present in the population
mean there is a wide range of gait patterns. The majority of participants included in this
study used a walking frame to complete the protocol and yet each of their acceleration
patterns were visibly different. We found that the developed algorithms were far more
suitable for some participants than others. For example, the developed algorithms were
unable to identify walking bouts in the data of participant 21, who walked with a walking
frame and orthotic shoe with ankle orthosis on the right leg. We cannot be certain if the
developed algorithms performed poorly for this participant due to poor sensor attachment
or unusual patterns in the acceleration data. If we were to group the participants by gait
characteristics, we may discover which gait metrics improve the efficacy of the algorithms
and which gait characteristics are difficult for the algorithm to handle. Unfortunately, we
did not measure gait characteristics so cannot perform this analysis.

4.1. Limitations

Due to methodical difficulties, there were apparent inaccuracies in the research-
assistant-labelled data that we believe may have impacted the results and subsequent
interpretation. We illustrated an example of inaccurate research-assistant-labelled walking
bouts in Figure 7. From visual inspection of this participant’s data, we found that the
research assistant labelled walking bouts do not overlap with actual periods of walking
which we identified by the low frequency fluctuations in linear acceleration. We suggest
two likely causes of the inaccuracy: synchronization error, and difficulty cataloguing the
precise timings of activities. The former is due to difficulty matching the accelerometer
frames to the research assistant labels, which had a few contributing factors. The time
shown on the mobile phone in the video data varied in precision, sometimes displaying the
time to the nearest second and other times to the closest minute. In trials where the time
was shown to the nearest minute, it was not trivial to match the seconds of the research
assistant labels to the video and wearable sensor data. In trials where the phone was
mistakenly tapped instead of the accelerometer, we visually compared accelerometer data
with both the video and research assistant labels. The start and stop times of the walking
bouts identified from visual inspection of the linear acceleration may not have matched
precisely with the start and stop times of the research assistant labels.

The difficulty of cataloguing the precise timings of the activities in real time manifested
in a multiple ways. Firstly, the research assistants noted times to the nearest second,
whereas the accelerometer measured time in tenths of a second (0.01 s). Therefore, there is
uncertainty as to which activity is being performed for nine frames of the accelerometer data.
Furthermore, and perhaps more importantly, it was difficult for the research assistants to
notice and record small details in walking bouts due to human reaction times. A participant
may take a short break during their walking, which is challenging for the research assistant
to note down in real time. In addition, identifying the exact time the participant transitions
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between activities is very difficult to do visually. For example, the research assistant used
their best judgement to determine when the participant started walking from standing.
These challenges result in less accurate labelling, which impacts the assessment of the
algorithms.
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Considering the difficulties in obtaining highly accurate research assistant labelled
data, it is possible that we have underestimated the performance of the developed algo-
rithms. The most impactful of these difficulties is the disagreement between the algorithms
and labelled data when short breaks in walking occur. Visual inspection of the acceleration
and video data shows the algorithms identified true short breaks in some walking bouts
that were labelled by the research assistant as walking. As such, a number of true negatives
were incorrectly evaluated as false negatives, which primarily implies underestimation
of the negative predictive value as well as a slightly underestimated true positive and
negative rate. To improve the quality of our evaluation, we could relabel the data using the
recorded videos; however, such a task is extremely time intensive and subject to human
error and was therefore not included in this study. Future work may find it worthwhile to
relabel the data.

4.2. Computational Cost and Processing Time

The processing time and therefore computational cost of the developed algorithms
were far less than that of the reference algorithm. The main difference in computational
cost was likely due to the different techniques used in the initial estimate of walking bouts.
The Hickey et al. algorithm initially assessed the data for activity using small windows,
requiring multiple repetitions of the analysis technique. Our developed algorithms initially
processed the data as a single vector, requiring no repetition or segmentation of the data.
Shorter processing time (and lower computational cost) of an algorithm makes it more
suitable for on-board processing as it is less draining on the battery and requires fewer
resources. Although this is helpful for a personal device to estimate walking at the end of
each day, our algorithms would require some modification to estimate walking bouts in
real time.
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4.3. Future Considerations

Adapting our presented algorithms for real-time use is possible, but would require
some fundamental changes. It is likely that the data would need to be sectioned for process-
ing. In addition to identifying the optimal window size and style (such as overlapping or
adjacent), consideration must be paid to how the Gaussian smoothing and filtering impact
the data. New thresholds may be needed to adapt for changes in the processed signal.

Finally, our algorithms are not reliant on the orientation of the wearable sensor but
they do necessitate good adhesion to the skin. The algorithm combines all three axes of
linear acceleration into one vector, which is used for processing. As such, the algorithm
results should be unchanged if the sensor was placed in any other orientation. We have
not yet tested this theory. However, it is important that the wearable sensor remains in
place—if the accelerometer can move relative to the skin, the linear accelerations will be
changed and the algorithms are less likely to properly detect walking bouts.

5. Conclusions

In conclusion, our developed algorithms were able to measure walking bouts in a
real-world environment for people living in long-term care with acceptable accuracy and
reliability. Our generic algorithm was less conservative than the personalized algorithm,
but both were able to identify short breaks in walking. Both algorithms were able to
identify the start and end of the walking bouts with high accuracy, although sit-to-stand
and stand-sit-transitions were sometimes mislabelled as walking. Our results showed
good agreement between the developed algorithms, reference algorithm, and ground truth
(research-assistant-labelled data), but also highlighted difficulties and inaccuracies of real-
time human annotation of activities. We were also able to decrease processing time and
computational complexity compared to a previously validated algorithm from Hickey et al.
Going forward, we can optimize the generic and personalized thresholds of the algorithms
and consider adaptation for real-time implementation.
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