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Introduction: The utilisation of artificial intelligence (AI) augments intraoperative
safety, surgical training, and patient outcomes. We introduce the term Surgeon-
Machine Interface (SMI) to describe this innovative intersection between
surgeons and machine inference. A custom deep computer vision (CV)
architecture within a sparse labelling paradigm was developed, specifically
tailored to conceptualise the SMI. This platform demonstrates the ability to
perform instance segmentation on anatomical landmarks and tools from a
single open spinal dural arteriovenous fistula (dAVF) surgery video dataset.
Methods: Our custom deep convolutional neural network was based on SOLOv2
architecture for precise, instance-level segmentation of surgical video data. Test
video consisted of 8520 frames, with sparse labelling of only 133 frames
annotated for training. Accuracy and inference time, assessed using F1-score
and mean Average Precision (mAP), were compared against current state-of-
the-art architectures on a separate test set of 85 additionally annotated frames.
Results: Our SMI demonstrated superior accuracy and computing speed
compared to these frameworks. The F1-score and mAP achieved by our
platform were 17% and 15.2% respectively, surpassing MaskRCNN (15.2%, 13.9%),
YOLOv3 (5.4%, 11.9%), and SOLOv2 (3.1%, 10.4%). Considering detections that
exceeded the Intersection over Union threshold of 50%, our platform achieved
an impressive F1-score of 44.2% and mAP of 46.3%, outperforming MaskRCNN
(41.3%, 43.5%), YOLOv3 (15%, 34.1%), and SOLOv2 (9%, 32.3%). Our platform
demonstrated the fastest inference time (88ms), compared to MaskRCNN
(90ms), SOLOV2 (100ms), and YOLOv3 (106ms). Finally, the minimal amount of
training set demonstrated a good generalisation performance –our architecture
successfully identified objects in a frame that were not included in the training
or validation frames, indicating its ability to handle out-of-domain scenarios.
Discussion: We present our development of an innovative intraoperative SMI to
demonstrate the future promise of advanced CV in the surgical domain.
Through successful implementation in a microscopic dAVF surgery, our
framework demonstrates superior performance over current state-of-the-art
segmentation architectures in intraoperative landmark guidance with high
sample efficiency, representing the most advanced AI-enabled surgical inference
platform to date. Our future goals include transfer learning paradigms for
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scaling to additional surgery types, addressing clinical and technical limitations for
performing real-time decoding, and ultimate enablement of a real-time
neurosurgical guidance platform.
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1. Background

Intraoperative application of Artificial Intelligence (AI) is a

rapidly advancing area in surgical innovation. AI technology

offers various capabilities within the operating room, such as

automating workflows and aiding in intraoperative decision-

making (1, 2). The ultimate objective is to leverage AI’s potential

to learn, interpret, predict, and solve problems by training

Machine Learning (ML) algorithms. These algorithms can

process vast amounts of real-world data and guide decisions

comparable to those of expert surgeons (3). We have introduced

the term Surgeon-Machine Interface (SMI) to describe the

advanced and innovative fusion of surgeons and machine

interfaces, creating a new realm of collaboration. Computer

Vision (CV) plays a pivotal role in facilitating interaction with

intraoperative data, enabling machines to comprehend surgical

images and videos (4). It also serves as the foundation of current

endeavours in intraoperative landmark guidance. However, the

availability of literature and regulatory-approved devices for real-

time AI-based anatomical landmark labelling is limited,

indicating that this technology is still in its early stages (5, 6).

Nevertheless, recent advancements in artificial neural networks

(ANNs), a subfield of ML and the backbone of deep learning

(DL), show promise in enabling AI to achieve even higher levels

of performance in this field (5, 6).

In a surgical setting, there are two crucial CV tasks: recognition

and tracking. Object recognition employs machine learning (ML) to

identify objects within an image, similar to human perception.

When combined with an object localization algorithm, object

detection can be achieved. This algorithm generates a bounding

box that encompasses the object and provides a label for it.

However, in surgical applications, where anatomical structures

have intricate contours and unclear boundaries, a single bounding

box may not accurately capture the desired area (7). Object

segmentation addresses this limitation by producing pixel-wise

masks that offer a detailed labelling of individual objects within an

image (8). There are two types of segmentation: semantic

segmentation groups similar pixels into a single classification,

while instance segmentation distinguishes and segments each

individual entity. In essence, instance segmentation allows for the

pixelwise classification of individual objects within a surgical field,

whether they are anatomical structures or surgical instruments.

Although, it is the most preferred recognition technique for

intraoperative guidance (9), previous attempts have been limited to

segmenting rigid surgical instruments (10), as opposed to

anatomical structures, which are often characterised by semi-rigid

boundaries and thus pose a more difficult segmentation task.
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Although few, there have been some platforms and clinical

evidence in general surgery that attests to the accuracy and the

significance of AI software in an intraoperative setting (7, 9, 11–

14). Neurosurgery, at the forefront of cutting-edge technology, has

witnessed numerous advancements in AI applications; however,

these applications are limited to surgical phase recognition (15),

detection and surveillance (16), diagnosis (17, 18), endovascular

navigation (16), training and preoperative planning (2, 16, 19–21),

intraoperative imaging, and workflow automation (22). To our

knowledge, there is no other literature or technological reports that

demonstrate a scalable surgical video analysis system in

neurosurgery. In this study, we aim to demonstrate the most

advanced surgical CV architecture to-date, and for the first time

applied to a neurosurgical context. Although a fully functioning

SMI will incorporate real-time implementation with a user

interface, in this manuscript we seek to introduce the core

technology for the conceptualisation of our future real-time

enabled SMI. We demonstrate our custom instance segmentation

core architecture and prediction model in a proof-of-concept for

open spinal dural arteriovenous fistula (dAVF) surgery.
2. Methodology

2.1. Developing the AI framework

Our first prototype framework consisted of three parallel

components (Figure 1). (1) A single frame would be processed

through Mask Region-based Convolutional Neural Network

(MaskRCNN) training, producing class-agnostic boxes. We train

MaskRCNN in a supervised manner on a few annotated frames.

(2) We augment the prediction capability of MaskRCNN by

including temporal information from Colourisation, an

unsupervised technique to learn the frame-wise feature

correlation. Specifically, we extract the unsupervised feature flow

from Colourisation. Then we use it to propagate the instance

mask from the previous frame to the consecutive frames serving

as complementary predictions. (3) Propagation via feature flow

also yields pseudo ground truth instance segmentation to further

improve our Mask R-CNN model. To filter out the noisy label,

we build a rolling updated memory bank to collect high-quality

predictions and score the incoming pseudo prediction. Only

examples above the threshold will be used to fine-tune the Mask

R-CNN model. If few annotated labels are present, only process

(1) and (2) will take place. This architecture rendered inadequate

results with anatomical landmarks being poorly demarcated as

shown in Figure 2. The major issue was that the embedding flow
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FIGURE 1

The initial mask-RCNN architecture.

FIGURE 2

Poorly demarcated annotation using colourisation technique.
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from colourisation is biassed to the low-level texture. Tracking

without mid and high-level features is fragile in the challenging

case.
Frontiers in Surgery 03
Our next attempt was to utilise SOLOv1 architecture with

Kanade-Lucas-Tomasi (KLT) tracking system, as Figure 3. In

SOLOv1, the image is divided into a grid and objects are
frontiersin.org
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FIGURE 3

Initial SOLOv1 architecture.
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located for every cell in the grid. Instance category and instance

mask are computed in parallel across the grid. Since frame-by-

frame instance segmentation has a disadvantage of lacking

temporal information we embedded a KLT tracking system into

the segmentation system to recognize the objects moving across

video. The tracking system generates initial feature points over

the masks in the first frame. KLT feature tracker tracks these

feature points crossing the video. The identity of a

segmentation is determined by a majority vote over all the

feature points.
FIGURE 4

Current modified SOLOv2 architecture. (A) Input video frame, (B) Model outp

Frontiers in Surgery 04
To account for the challenges faced with our previous instance

segmentation frameworks, we developed a novel segmentation

algorithm (Figure 4) based on the state-of-the-art SOLOv2

architecture, a dynamic and fast framework for real-time object

detection. In SOLOv2, the mask head is further decomposed into

2 branches, namely, feature branch and dynamic convolution

kernel branch. Instead of forwarding the feature map directly

through another layer of convolution, the feature map is used to

learn a dynamic convolution head, which is a kernel map that

convolves with the feature map to output the final mask
ut predictions, (C) Refined predictions.
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prediction. However, in our experiments we face a practical

limitation of the SOLOv2 framework and obtain many false

positive detections. To alleviate this issue, we customise the

framework to refine this low confidence but plausible detections

into high confidence and obtain higher performance in instance

segmentation (Figure 4).

All algorithms were constructed on Ubuntu 20.04.4 LTS

(x86_64; Canonical Ltd., London, United Kingdom) and

developed using the Detectron2, a Pytorch object detection

library in Python (Language).
2.2. Dataset preparation

A single test video of spinal dAVF surgery was recorded with

Zeiss Opmi Pentero 800 (Carl Zeiss AG, Jena, Germany) at The

Hospital of the University of Pennsylvania. This video constitutes

8,520 frames. A trainee neurosurgeon (RB) annotated 133 frames

using Computer Vision Annotation Tool (CVAT 7.4.0; Irvine,

California, United States). 133 frames were sampled every 30

frames within the first 1.5 min of the surgical video (in-domain).

These frames consist of the operator dissecting the arachnoid

and separating the two abnormal dorsal spinal arteries (part of

the dural AVF) with a blunt probe, dissector, and micro-scissors

followed by the temporary clipping a dorsal spinal artery with an

aneurysm clip after. Any ambiguities with anatomical structure

were clarified by an attending neurosurgeon (VPB).
TABLE 1 Accuracy and computing speed of our SMI architecture and
other commonly reported frameworks in literature.

F1 F1 (iou 50) mAP mAP50 Inference
time (ms)

SOLOv2 0.031 0.09 10.4 32.3 100

YOLOv3 0.054 0.15 11.9 34.1 106

MaskRCNN 0.152 0.413 13.9 43.5 90

Our SMI 0.17 0.442 15.2 46.3 88

Bold values are results from novel architecture.
2.3. Statistical analysis

To assess segmentation accuracy and computing speed, we

applied different frameworks to the single surgical video and

validated it across 85 frames. These frames were uniformly

sampled every 3.33 s from entire 4.73 min of the video. The

validation set comprised of 27 frames which were in-domain and

58 of these frames that were out-of-domain frames, which was a

hold-out test set as a temporal partition from the same video.

The in-domain frames constitute unlabelled frames within the

period of the training set as opposed to the out-of-domain

frames that were unlabelled frames after the last time period of

the training set. In these out-of-domain frames, the surgeon

irrigated the surgical field, suctioned pools of blood outside the

dura, manipulated the arteries with a suction and blunt probe,

and finally removed the aneurysm clip with the applier. Instance

segmentation was performed by MaskRCNN + Feature Pyramid

Networks (FPN), SOLOv2 + R101DCN, SparseRCNN, YOLOv3,

and our SOLOv2-based modified architecture. We then

calculated certain metrics to measure precision for each of these

architectures: mean Average Precision (mAP), and F1 score.

Accuracy was tested on in-domain frames, which were part of

the validation set, as well as out-of-domain frames which were

not part of the test or validation set. Furthermore, we evaluated

the inference time for the computing speed of each of the networks.

All these frameworks were processed in a single computer on

Ubuntu 20.04.4 LTS (x86_64; Canonical Ltd., London, United
Frontiers in Surgery 05
Kingdom) with GeForce RTX 2080 Ti (NVIDIA, Santa Clara,

United States) mounted. Statistical analysis was all performed

using the Detectron2 (software).
3. Results

Our SMI framework outperformed any other known

frameworks reported in literature for intraoperative landmark

guidance in terms of accuracy and computing speed as shown in

Table 1. F1-score and mAP of our model was 17% and 15.2%

respectively, in comparison to the original SOLOv2 architecture

which was 3.1% and 10.4%, YOLOv3 with 5.4% and 11.9%, and

MaskRCNN with 15.2% and 13.9%, respectively. Taking into

consideration detections that surpassed the Intersection over

Union (IoU) threshold of 50%, our SMI had F1-score of 44.2%

and mAP of 46.3%. This was followed by the MaskRCNN

architecture with F1-score of 41.3% and mAP of 43.5%, YOLOv3

with 15% and 34.1%, and finally SOLOv2 with 9% and 32.3%

respectively.

Qualitatively, our SMI architecture was successful in identifying

objects in both in-domain frames (Figures 5A,B) and out-of-

domain frames (Figures 6A,B), which indicates a good

generalisation based on training on a quarter of the full surgical

video. Our in-domain frame predictions demonstrated a high

mAP score of >0.50 for anatomical structures and surgical tools

and achieved >0.30 for distractions such as pool of blood. Most

importantly, it was able to identify the blunt probe which was

not annotated in the ground truth frame and was also able to

predict a segment of the artery that was not annotated

(Figure 5B). Identification of objects in out-of-domain frames

also demonstrated visually promising results and high accuracy

(Figure 6B). To highlight, the model was able to identify the

suction as a different instrument in the out-of-domain frames,

even though it has never seen the object before within the

training set (Figure 6B).

The computation speed of our SMI was the fastest amongst all

other frameworks (Table 1) with inference time of 88 ms, followed

by MaskRCNN (90 ms), SOLOv2 (100 ms), and YOLOv3 (106 ms).
4. Discussion

This study introduces an advanced surgical platform that

utilises instance segmentation for intraoperative guidance. The

obtained results demonstrate the feasibility of our SMI
frontiersin.org

https://doi.org/10.3389/fsurg.2023.1259756
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


FIGURE 5

In-domain segmentation frames. (A) Ground truth frame of in-domain segmentation. (B) Prediction frame of in-domain segmentation.

FIGURE 6

Out-of-domain segmentation frames. (A) Ground truth frame of out-of-domain segmentation. (B) Prediction frame of out-of-domain segmentation.
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framework for real-time application in spinal dAVF surgeries and

its potential for adaptation to other neurosurgical cases. Our

developed framework for the guidance system surpasses

previously described frameworks in the literature in terms of

precision and computational speed. Prior efforts in the field of

general surgery demonstrated various elements of utility;

however, none reports segmentation of both anatomical

landmarks and surgical tools intraoperatively. Moreover, all

segmentation efforts in general surgery are limited to YOLOv3-

based bounding boxes and semantic segmentation techniques.

Nakanuma et al. recently published a feasibility trial

(J-SUMMIT-C-01) for a YOLOv3-based object detection

framework to be used for intraoperative guidance in laparoscopic

cholecystectomy (LC). Although they used the YOLOv3

framework, they were able to demonstrate an objective usefulness

of an AI-powered surgical guidance platform (11, 12). In

addition, Liu et al. provided supporting evidence that their

YOLOv3 based framework identified anatomical structures within

LC more accurately than their trainees and senior surgeons (13).
Frontiers in Surgery 06
Laplante et al., Madani et al., and Mascagni et al., on the other

hand, utilised a semantic segmentation method to successfully

determine safe and danger zones for surgical dissection and

labelling anatomical structures relevant in LC (7, 14). Moving

forward, Kitaguchi and his team developed an instance

segmentation model but they have only classified surgical

instruments in laparoscopic colorectal surgeries (9). In

neurosurgery, Bouget et al. reports an attempt to identify

intraoperative tools by an outdated method of semantic labelling

and shape-based detection using supervised-vector machine

(SVM) training (22), which has been further improved by

Kalavakonda et al., with binary and instance segmentation

approach (23). Therefore, our study reports the first and the

most advanced use of instance segmentation in the surgical field

to date.

Our extensive experience and previous failed attempts have

significantly contributed to the development of a scalable

segmentation framework in surgery. We have encountered

challenges related to colourisation, the MaskRCNN architecture,
frontiersin.org
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SOLOv1, and KLT feature trackers, which have informed our

understanding of these issues. After careful evaluation, we opted

to modify the SOLOv2 architecture due to its superior

performance compared to counterparts like YOLOv3 (24).

Moreover, another compelling reason to use SOLOv2 was due to

its ease of debugging. With SOLOv2, it becomes possible to

visualize the features for each grid point, considering various

kernel choices. This ability enhances the network’s expressive

power, allowing for a deeper understanding of the underlying

processes and facilitating effective troubleshooting. Ultimately,

through extensive experimentation and framework modifications,

we have successfully established a platform that facilitates the

swift adoption of new segmentation frameworks for improved

outcomes.

Additionally, we have gained valuable insights into the use of

more objective metrics for instance segmentation. While mean

Average Precision (mAP) has been commonly endorsed in

clinical literature, its susceptibility to false positives makes it

less suitable as a metric for instance segmentation in the

surgical field (25). Instead, metrics such as the F1-score,

precision, and recall provide a more accurate evaluation (25).

Nakanuma et al. used the DICE coefficient as a metric for

accuracy; however, we have incorporated this into our loss

function (12).

In this study, we present a novel comparison of sample

efficiency among different intraoperative CV architectures, which,

to our knowledge, is the first attempt of its kind in the literature.

To measure sample efficiency, we calculated a ratio for each

version of our SMI framework. This ratio represents the

percentage of total available data used for training compared to

the percentage used for testing, while achieving the same level of

segmentation accuracy. Our findings reveal a positive trend in

reducing the reliance on training annotation (Figure 7),
FIGURE 7

Comparison of sample efficiency across the versions of our SMI.
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distinguishing our study from previous efforts in utilising CV for

intraoperative guidance, which have shown limited exploration in

this particular area.
4.1. Limitations

There are some technological limitations in our platform. An

unknown object inserted in the surgical field, such as a metal

clip, can interfere with landmark recognition. This issue has not

been previously reported or addressed in the existing literature.

The current algorithms used in surgery are supervised and

primarily designed for two-dimensional analysis of a three-

dimensional surgical field. However, in the presence of unknown

objects that occlude the known objects, these algorithms may

encounter difficulties in recognition. In this study, we have not

evaluated the performance of the algorithms in cases involving

occlusion by unknown objects. In addition to occlusion, there is

a significant translation of the view when the microscope is

moved, which impacts the tracking of the algorithm. Specifically,

we plan to incorporate considerations for translation in out-of-

frame surgeries and for instances where the anatomy is obscured

by surgical tools. We intend to address both these issues in the

next update of our algorithm. Lastly, we observed instances

where frames or anatomical structures appeared blurry

interfering with recognition and tracking. This blurriness can be

attributed to the inherent challenges of object detection in

microscopic surgery, where the lens may be out-of-focus.

Additionally, anatomical structures can appear hazy due to fluid

or bleeding. To mitigate these issues, we intend to enhance our

model’s ability to recognise such barriers and refrain from

providing anatomical predictions when these barriers are

identified.
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We evaluated the architecture on a single surgical video from

one patient. However, to ensure the clinical applicability of the

platform, it is essential to conduct further multi-centred trials

involving multiple patients and various types of surgeries.

However, previous research by Tokuyaso et al. has reported poor

concordance among surgeons when labelling anatomical data.

Therefore, to minimise bias and subjectivity (7, 26), we plan to

involve multiple experts in annotating the surgical images and

assess the inter-rater reliability. Additionally, it is important to

note that spinal dAVF surgery is a microscopic procedure that

does not currently allow our platform to provide superimposed

guidance during surgery, as seen in many laparoscopic studies

(7, 11, 12). To address this limitation, our research group is

currently exploring an upgraded architecture that can process

sparsely labelled data from multiple patients who have undergone

endoscopic microvascular decompression (MVD) surgery (27).
4.2. Future directions

Our plans involve developing our network to overcome the

technological limitations associated with identifying unknown

objects, visual obstruction by tools, and out-of-focus frames

(7, 11). To address the issue of unknown objects, we propose the

network to adapt to and recognise previously unseen objects. For

accurate tracking, our objective is to implement video-based

segmentation that enables continuous tracking even when objects

appear and disappear within the frame whilst retaining

information about object trajectories and make more informed

predictions. Furthermore, we aim to develop task-driven

segmentation, as segmentation itself can be an ill-posed task,

even with the availability of ground truth annotations. By

implementing these advancements, we aim to address the

technological limitations and enhance the performance and

versatility of our network for intraoperative guidance.

In future updates, our goal is to incorporate both spatial and

temporal annotation by utilizing a combination of semantic,

instance, and phase recognition techniques, which were not

explored in this study due to its scope limitations. By integrating

these techniques effectively, we anticipate significant

improvements in both the accuracy of spatial annotation and the

overall understanding of surgical procedures. This expanded

annotation approach holds great potential in providing valuable

insights for surgery, including early error detection, surgical

decision support, and performance feedback in complex

neurosurgical cases. These advancements have the potential to

enhance surgical care by enabling a more comprehensive analysis

of surgical procedures and facilitating continuous improvement

in surgical outcomes (28–30).

As demonstrated with a previous version of our architecture

(27), we are currently extending our framework to be used in

endoscopic surgeries that involve decompression of cranial nerves

at the skull base. In the preliminary work, we conduct

experiments using multiple patient videos and leverage Few-Shot

Learning techniques within a sparsely labelled paradigm (27).

The need for numerous expert annotations and validation poses
Frontiers in Surgery 08
a challenge for the generalisation of our framework across

various surgical cases and specialties. Therefore, we are currently

exploring different models of unsupervised learning techniques to

improve the utilisation of sparsely labelled datasets and sample

efficiency. With transfer learning capabilities of our CV

methodology, we are actively scaling the core technology for

future iterations and further development of the SMI.

Addressing these limitations provides an outlook that can have

a revolutionising impact on global neurosurgery, by improving the

standard of neurosurgical care and training. Our ongoing study

exemplifies the foundational technology behind a SMI, a concept

that aims to enhance patient outcomes and provide better

training opportunities.
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