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(57) ABSTRACT 

A method of training an artificial neural network (ANN) 
involves receiving a likelihood distribution map as a teacher 
image, receiving a training image, moving a local window 
across sub-regions of the training image to obtain respective 
sub-region pixel sets, inputting the sub-region pixel sets to 
the ANN so that it provides output pixel values that are 
compared to output pixel values of corresponding teacher 
image pixel values to determine an error, and training the 
ANN to reduce the error. A method of detecting a target 
structure in an image involves scanning a local window 
across sub-regions of the image by moving the local window 
for each sub-region so as to obtain respective sub-region 
pixel sets, inputting the sub-region pixel sets to an ANN so 
that it provides respective output pixel values that represent 
likelihoods that respective image pixels are part of a target 
structure, the output pixel values collectively constituting a 
likelihood distribution map. Another method for detecting a 
target structure involves training N parallel ANNs on either 
(A) a same target structure and N mutually different non
target structures, or (B) a same non-target structure and N 
mutually different target structures, the ANNs outputting N 
respective indications of whether the image includes a target 
structure or a non-target structure, and combining the N 
indications to form a combined indication of whether the 
image includes a target structure or a non-target structure. 
The invention provides related apparatus and computer 
program products storing executable instructions to perform 
the methods. 

84 Claims, 21 Drawing Sheets 
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MASSIVE TRAINING ARTIFICIAL NEURAL 
NETWORK (MTANN) FOR DETECTING 

ABNORMALITIES IN MEDICAL IMAGES 

The present invention was made in part with U.S. Gov- 5 

emment support under USPHS Grant No. CA62625 and 
Army Grant No. DAMD 17-96-1-6228. The U.S Govern
ment may have certain rights to this invention. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

10 

The invention relates generally to the field of 
computerized, automated assessment of medical images, 
and more particularly to methods, systems, and computer 15 
program products for computer-aided detection and 
computer-aided detection of abnormalities (such as lesions 
and lung nodules) in medical images (such as low-dose CT 
scans) using artificial intelligence techniques (such as arti
ficial neural networks, ANNs). 20 

2 
3. S. Sane et al., "Mass screening for lung cancer with 

mobile spiral computed topography scanner," The Lancet 
351, 1242-124 (1998). 

4. M. Kaneko, K. Eguchi, H. Ohmatsu, R. Kakinuma, T. 
Naruke, K. Suemasu, and N. Moriyama, "Peripheral lung 
cancer: Screening and detection with low-dose spiral CT 
versus radiography," Radiology 201, 798-802 (1996). 

5. C. I. Henschke et al., "Early Lung Cancer Action Project: 
Overall design and findings from baseline screening," The 
Lancet 354, 99-105 (1999). 

6. J. W. Gurney, "Missed lung cancer at CT: Imaging 
findings in nine patients," Radiology 199, 117-122 
(1996). 

7. F. Li, S. Sane, H. Abe, H. MacMahon, S. G. Armato III, 
and K. Doi, "Missed lung cancers in low-dose helical CT 
screening program obtained from a general population," 
(submitted to Radiology 2002). 

8. S. Yamamoto, I. Tanaka, M. Senda, Y. Tateno, T. Iinuma, 
T. Matsumoto, and M. Matsumoto, "Image processing for 
computer-aided diagnosis of lung cancer by CT (LDCT)," 
Systems and Computers in Japan 25, 67-80 (1994). 

9. T. Okumura, T. Miwa, J. Kako, S. Yamamoto, M. 
Matsumoto, Y. Tateno, T. Iinuma, and T. Matsumoto, 
"Image processing for computer-aided diagnosis of lung 
cancer screening system by CT (LDCT)," In Proc. SPIE, 
3338, 1314-1322 (1998). 

10. W. J. Ryan, J.E. Reed, S. J. Swensen, and J.P. F. Sheedy, 
"Automatic detection of pulmonary nodules in CT," In 
Proc. Computer Assisted Radiology, pp. 385-389 (1996). 

The present invention also generally relates to computer
ized techniques for automated analysis of digital images, for 
example, as disclosed in one or more of U.S. Pat. Nos. 
4,839,807; 4,841,555; 4,851,984; 4,875,165; 4,907,156; 
4,918,534; 5,072,384; 5,133,020; 5,150,292; 5,224,177; 25 

5,289,374; 5,319,549; 5,343,390; 5,359,513; 5,452,367; 
5,463,548; 5,491,627; 5,537,485; 5,598,481; 5,622,171; 
5,638,458; 5,657,362; 5,666,434; 5,673,332; 5,668,888; 
5,732,697; 5,740,268; 5,790,690; 5,832,103; 5,873,824; 
5,881,124; 5,931,780; 5,974,165; 5,982,915; 5,984,870; 
5,987,345; 6,011,862; 6,058,322; 6,067,373; 6,075,878; 
6,078,680; 6,088,473; 6,112,112; 6,138,045; 6,141,437; 
6,185,320; 6,205,348; 6,240,201; 6,282,305; 6,282,307; 
6,317,617; 

30 11. K. Kanazawa, M. Kubo, N. Niki, H. Satoh, H. Ohmatsu, 
K. Eguchi, and N. Moriyama, "Computer assisted lung 
cancer diagnosis based on helical images," In Image 
Analysis Applications and Computer Graphics: Proc. Int. 
Computer Science Conf., pp. 323-330 (1995). 

35 12. M. L. Giger, K. T. Bae, and H. MacMahon, "Comput
erized detection of pulmonary nodules in computed 
tomography images," Investigative Radiology 29, 
459-465 (1994). 

as well as U.S. patent applications Ser. Nos. 08/173,935; 
08/398,307 (PCT Publication WO 96/27846); Ser. Nos. 
08/536,149; 08/900,189; 09/027,468; 09/141,535; 09/471, 
088; 09/692,218; 09/716,335; 09/759,333; 09/760,854; 
09/773,636; 09/816,217; 09/830,562; 09/818,831; 09/842, 
860; 09/860,574; 60/160,790; 60/176,304; 60/329,322; 40 

09/990,311; 09/990,310; 60/332,005; 60/331,995; and 
60/354,523; 

as well as co-pending U.S. patent applications (listed by 
attorney docket number) 215752US- 730-730-20, 
216439US-730-730-20, 218013US-730-730-20, and 45 

218221 US-730-730-20; 

as well as PCT patent applications PCT/US98/15165; 
PCT/US98/24933; PCT/US99/03287; PCT/US00/41299; 
PCT/US0l/00680; PCT/US0l/01478 and PCT/US0l/ 

50 
01479, 

all of which documents are incorporated herein by refer
ence. 

The present invention includes use of various technolo
gies referenced and described in the above-noted U.S. 55 

Patents and Applications, as well as those described in the 
documents identified in the following List of References that 
are cited throughout the specification: 

LIST OF REFERENCES CITED IN TEXT 

1. R. T. Greenlee, M. B. Hill-Harmon, T. Murray, and M. 
Thun, "Cancer statistics, 2001," CAA Cancer Journal for 
Clinicans 51, 15-36 (2001). 

2. R. T. Heelan, B. J. Flehinger, M. R. Melamed, M. B. 

60 

Zaman, W. B. Perchick, J. F. Caravelli, and N. Martini, 65 

"Non-small-cell lung cancer: Results of the New York 
screening program," Radiology 151, 289-293 (1984). 

13. S. G. Armato III, M. L. Giger, J. T. Blackbur, K. Doi, and 
H. MacMahon, "Three-dimensional approach to lung 
nodule detection in helical CT," In Proc. SPIE, 3661, 
553-559 (1999). 

14. S. G. Armato III, M. L. Giger, C. J. Moran, J. T. 
Blackbur, K. Doi, and H. MacMahon, "Computerized 
detection of pulmonary nodules on CT scans," Radio
graphies 19, 1303-1311 (1999). 

15. S. G. Armato III, M. L. Giger, and H. MacMahon, 
"Analysis of a three-dimensional lung nodule detection 
method for thoracic CT scans," In Proc. SPIE, 3979, 
103-109 (2000). 

16. S. G. Armato III, M. L. Giger, and H. MacMahon, 
"Automated detection of lung nodules in CT scans: Pre
liminary results," Medical Physics 28, 1552-1561 (2001). 

17. J.P. Ko and M. Betke, "Automated nodule detection and 
assessment of change over time-preliminary experience," 
Radiology 218, 267-273 (2001). 

18. S. Sane, F. Li, Z.-G. Yang, S. Takashima, Y. Maruyama, 
M. Hasagawa, J.-C. Wang, S. Kawakami, and T. Honda, 
"Results of three-year mass screening programme for 
lung cancer using mobile low-dose spiral computed 
tomography scanner," British Journal of Cancer 84, 
25-32 (2001). 

19. S. R. Sternberg, "Grayscale morphology," Computer 
Vision, Graphics, and Image Processing 35, 333-355 
(1986). 

20. J. H. M. Austin, N. L. Muller, P. J. Friedman, D. M. 
Hansell, D. P. Naidich, M. Remy-Jardin, W.R. Webb, and 



US 6,819,790 B2 
3 

E. A. Zerhouni, "Glossary of terms for CT of the lungs: 
Recommendations of the nomenclature committee of the 
Fleischner Society," Radiology 200, 327-331 (1996). 

21. S. G. Armato III, F. Li, M. L. Giger, H. MacMahon, S. 

4 
37. K. Suzuki, I. Horiba, K. Ikegaya, and M. Nanki, "Rec

ognition of coronary arterial stenosis using neural net
work on DSA system," Systems and Computers in Japan 
26, 66-74 (1995). 

Sane, and K. Doi, "Performance of automated CT nodule 
detection on missed cancers from a lung cancer screening 
program," (submitted to Radiology 2002). 

22. K. Arakawa and H. Harashima, "A nonlinear digital filter 
using mufti-layered neural networks," In Proc. IEEE Int. 
Conf. Communications, 2, 424--428 (1990). 

5 38. K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, 
"Computer-aided diagnosis system for coronary artery 
stenosis using a neural network," In Proc. SPIE, 4322, 
1771-1782 (2001). 

23. L. Yin, J. Astola, and Y. Neuvo, "A new class of 
nonlinear filters-neural filters," IEEE Trans. Signal Pro
cessing 41, 1201-1222 (1993). 

10 

39. K. Funahashi, "On the approximate realization of con
tinuous mappings by neural networks," Neural Networks 
2, 183-192 (1989). 

40. A. R. Barron, "Universal approximation bounds for 
superpositions of a sigmoidal function," IEEE Trans. 
Information Theory 39, 930-945 (1993). 24. L. Yin, J. Astola, and Y. Neuvo, "Adaptive multistage 

weighted order statistic filters based on the back propa
gation algorithm," IEEE Trans. Signal Processing 42, 
419-422 (1994). 

15 41. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 
"Learning representations of back-propagation errors," 
Nature 323, 533-536 (1986). 

25. H. Hanek and N. Ansari, "Speeding up the generalized 
adaptive neural filters," IEEE Trans. Image Processing 5, 
705-712 (1996). 

26. K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, "A 
recurrent neural filter for reducing noise in medical X-ray 
image sequences," In Proc. Int. Conf. Neural Information 
Processing, 1, 157-160 (1998). 

20 

27. K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, "Noise 25 

reduction of medical X-ray image sequences using a 
neural filter with spatiotemporal inputs," In Proc. Int. 
Symp. Noise Reduction for Imaging and Communication 
Systems, pp. 85-90 (1998). 

28. K. Suzuki, I. Horiba, and N. Sugie, "Training under 30 

achievement quotient criterion," In Neural Networks for 
Signal Processing X, pp. 537-546 (IEEE Press, 
Piscataway, N.J., 2000). 

29. K. Suzuki, I. Horiba, and N. Sugie, "Signal-preserving 
training for neural networks for signal processing," In 35 

Proc. IEEE Int. Symp. Intelligent Signal Processing and 
Communication Systems, 1, 292-297 (2000). 

30. K. Suzuki, I. Horiba, and N. Sugie, "Neural filter with 
selection of input features and its application to image 
quality improvement of medical image sequences," In 40 

Proc. IEEE Int. Symp. Intelligent Signal Processing and 
Communication Systems, 2, 783-788 (2000). 

31. K. Suzuki, I. Horiba, and N. Sugie, "Efficient approxi
mation of a neural filter for quantum noise removal in 
X-ray images," (to be published in) IEEE Trans. Signal 45 

Processing 50 (2002). 
32. I. Horiba, K. Suzuki, and T. Hayashi, "Image processing 

apparatus for performing image converting process by 
neural network," U.S. Pat. No. 6,084,981 (filed in 1996). 

42. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, in 
Learning internal representations by error propagation, 
Vol. 1 of Parallel Distributed Processing (MIT Press, MA, 
1986), Chap. 8, pp. 318-362. 

43. K. Suzuki, I. Horiba, and N. Sugie, "Designing the 
optimal structure of a neural Filter," In Neural Networks 
for Signal Processing VIII, pp. 323-332 (IEEE Press, 
Piscataway, N.J., 1998). 

44. K. Suzuki, I. Horiba, and N. Sugie, "A simple neural 
network pruning algorithm with application to filter 
synthesis," Neural Processing Letters 13, 43-53 (2001). 

45. K. Suzuki, I. Horiba, and N. Sugie, "Simple unit-pruning 
with gain-changing training," In Neural Networks for 
Signal Processing XI, pp. 153-162 (IEEE Press, 
Piscataway, N.J., 2001). 

46. D. P. Chakraborty and L. H. L. Winter, "Free-response 
methodology: Alternate analysis and a new observer
performance experiment," Radiology 174, 873-881 
(1990). 

47. C. E. Metz, "ROC methodology in radiologic imaging," 
Invest. Radiology 21, 720---733 (1986). 

48. C. E. Metz, B. A. Herman, and J.-H. Shen, "Maximum 
likelihood estimation of receiver operating characteristic 
(ROC) curves from continuously-distributed data," Stat. 
Med. 17, 1033-1053 (1998). 

49. J. A. Hanley and B. J. McNeil, "A method of comparing 
the areas under receiver operating characteristic curves 
derived from the same cases," Radiology 148, 839-843 
(1983). 

50. S. Haykin, Neural Networks-a comprehensive 
foundation, 2nd ed. (Prentice-Hall, Upper Saddle River, 
N.J., 1999). 

33. K. Suzuki, I. Horiba, and N. Sugie, "Edge detection from 
noisy images using a neural edge detector," In Neural 
Networks for Signal Processing X, pp. 487-496 (IEEE 
Press, Piscataway, N.J., 2000). 

34. K. Suzuki, I. Horiba, and N. Sugie, "Neural edge 
detector -a good mimic of conventional one yet robuster 
against noise-," Lecture Notes in Computer Science, 
Bio-Inspired Applications of Connectionism 2085, 
303-310 (2001). 

50 51. W. Zhang, K. Doi, M. L. Giger, Y. Wu, R. M. Nishikawa, 
and R. A. Schmidt, "Computerized detection of clustered 
microcalcifications in digital mammograms using a shift
invariant artificial neural network," Medical Physics 21, 
517-524 (1994). 

55 52. H.-P. Chan, S.-C. B. Lo, and B. Sahiner, "Computer
aided detection of mammographic microcalcifications: 
pattern recognition with an artificial neural network," 
Medical Physics 22, 1555-1567 (1995). 

35. K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, "Extrac
tion of the contours of left ventricular cavity, according 60 

with those traced by medical doctors, from left ventricu
lograms using a neural edge detector," In Proc. SPIE, 
4322, 1284-1295 (2001). 

36. K. Suzuki, I. Horiba, N. Sugie, and M. Nanki, "Contour 
extraction of the left ventricular cavity from digital sub- 65 

traction angiograms using a neural edge detector," (to be 
published in) Systems and Computers in Japan 33 (2002). 

53. S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. 
Freedman, and S. K. Mun, "Artificial convolution neural 
network for medical image pattern recognition," Neural 
Networks 8, 1201-1214 (1995). 

54. W. Zhang, K. Doi, M. L. Giger, R. M. Nishikawa, and 
R. A. Schmidt, "An improved shift-invariant artificial 
neural network for computerized detection of clustered 
microcalcifications in digital mammograms," Medical 
Physics 23, 595-601 (1996). 



US 6,819,790 B2 
5 

55. B. Sahiner, H.-P. Chan, N. Petrick, D. Wei, M. A Helvie, 
D. D. Adler, and M. M. Goodsitt, "Classification of mass 
and normal breast tissue: A convolution neural network 
classifier with spatial domain and texture images," IEEE 
Trans. on Medical Imaging 15, 598-610 (1996). 

56. M. N. Gurcan, B. Sahiner, H.-P. Chan, L. Hadjiiski, and 

6 
protocol of 120 kVp, 25 mA (11) or 50 mA (27 scans), 
10-mm collimation, and a 10-mm reconstruction interval at 
a helical pitch of two (Ref 18). The pixel size was 0.586 mm 
for 33 scans and 0.684 mm for five scans. Each recon-

5 structed CT section had an image matrix size of 512x512 
pixels. The 38 scans consisted of 1057 sections, and 
included 38 "missed" nodules that represent biopsy
confirmed lung cancers and were not reported during the 

N. Petrick, "Selection of an optimal neural network 
architecture for computer-aided detection of 
microcalcifications-Comparison of automated optimiza
tion techniques," Medical Physics 28, 1937-1948 (2001). 10 

initial clinical interpretation (Ref. 7). 

Technical details of a known scheme have been published 

The contents of each of these references, including patents 
and patent applications, are incorporated herein by refer
ence. The techniques disclosed in the patents, patent appli
cations and other references can be utilized as part of the 
present invention. 

DISCUSSION OF THE BACKGROUND 

Lung cancer continues to rank as the leading cause of 
cancer death among Americans and has expected to cause 
157,400 deaths in the United States in 2001 (Ref. 1). Some 
evidence suggests that early detection of lung cancer may 
allow more timely therapeutic intervention and thus a more 
favorable prognosis for the patient (Refs. 2, 3). The sensi
tivity of helical computed tomography (CT) for lung nodule 
detection is significantly superior to that of conventional CT. 
Accordingly, screening programs for lung cancer with low
dose helical CT have been carried out in the United States 
and Japan (Refs. 4, 5). With helical CT, a number of CT 
images are acquired during a single CT examination. 

Radiologists have to read many CT images. This may lead 

previously in Refs 13-16, in which lung nodule identifica
tion proceeds in three phases: two-dimensional (2D) 
processing, followed by three-dimensional (3D) analysis, 
and then the application of classifiers. A gray-level thresh-

15 olding technique is applied to a 2D section of a CT scan for 
automated lung segmentation. Modifications to the resulting 
lung segmentation regions are made by use of a rolling-ball 
technique (Refs. 19, 8) that eliminates the trachea and 
main-stem bronchi when they are erroneously included 

20 within the lung regions. 

A multiple gray-level-thresholding technique is applied to 
the segmented lung volume. Individual structures are iden
tified by grouping of spatially contiguous pixels that remain 
in the volume at each of 36 gray-level thresholds. Because 

25 a nodule is defined radiologically as any well-demarcated, 
soft-tissue focal opacity with a diameter less than 3 cm (Ref. 
20), a structure is identified as a nodule candidate if the 
volume of the structure is less than that of a 3-cm-diameter 

30 
sphere. 

The categorization of nodule candidates as "nodule" or 
"non-nodule" is based on a combination of a rule-based 

to "information overload" for the radiologists. Furthermore, 
radiologists may miss many cancers during interpretation of 
CT images in a lung cancer screenings (Refs. 6, 7). 

35 
Therefore, a computer-aided diagnosis (CAD) scheme for 
detection of lung nodules in low-dose CT images has been 
investigated as a useful tool for lung cancer screening. 

classifier and a series of two linear discriminant classifiers 
applied to a set of nine 2D and 3D features extracted from 
each nodule candidate. The features are 3D gray-level-based 
features, 3D morphological features, and 2D morphological 
features: (1) the mean gray level of the candidate, (2) the 
gray-level standard deviation, (3) the gray-level threshold at 
which the candidate was identified, ( 4) volume, (5) 

40 
sphericity, ( 6) radius of the sphere of equivalent volume, (7) 
eccentricity, (8) circularity, and (9) compactness. 

Many investigators have developed a number of methods 
for the automated detection of lung nodules in CT scans, 
based on morphological filtering (Refs. 8, 9), geometric 
modeling (Ref. 10), fuzzy clustering (Ref. 11), and gray
level thresholding (Refs. 12-17). Giger et al. (Ref. 12) 
developed an automated detection scheme based on multiple 
gray-level thresholding and geometric feature analysis. 45 
Armato et al. (Refs. 13-16) extended the method to include 

In this CAD scheme, the multiple gray-level-thresholding 
technique initially identified 20,743 nodule candidates in 
1057 sections of LDCT images (Ref 7). Then a rule-based 
classifier followed by a series of two linear discriminant 
classifiers was applied for removal of some false positives, 

a three-dimensional approach and linear discriminant analy
sis. 

A major problem with certain known CAD schemes for 
lung nodule detection is a relatively large number of false 
positives, which cause difficulty in the clinical application of 
the CAD scheme. A large number of false positives are likely 
to disturb the radiologist's task in lung nodule detection and 
interpretation, thus lowering the efficiency of the radiolo
gist's task with the CAD scheme. In addition, radiologists 
may lose their confidence in using the CAD scheme. 
Therefore, it is very important to reduce the number of false 
positives as much as possible, while maintaining a high 
sensitivity. 

A database used in a study discussed throughout this 
specification included 38 non-infused, low-dose thoracic 
helical CT (LDCT) scans acquired from 31 different patients 
who participated voluntarily in a lung cancer screening 
program between 1996 and 1998 in Nagano, Japan (Refs. 3, 
18, 7). The CT examinations were performed on a mobile 
CT scanner (CT-W950SR; Hitachi Medical, Tokyo, Japan). 
The scans used for this study were acquired with a low-dose 

thus yielding a detection of 41 (82.0%) of 50 nodules 
together with 1,078 (28.4 per case and 1.02 per section) false 
positives (Ref. 21). In this study, all 50 nodules and all 1078 

50 false positives were used; the 1078 false positives included 
in this evaluation were considered as "very difficult" false 
positives. 

Recently, in the field of signal processing, nonlinear filters 
based on a multilayer artificial neural network (ANN), called 

55 neural filters, have been studied. In the neural filter, the 
multilayer ANN is employed as a convolution kernel. The 
neural filters can acquire the functions of various linear and 
nonlinear filters through training. It has been demonstrated 
that the neural filters can represent an averaging filter, 

60 weighted averaging filters, weighted median filters, morpho
logical filters, microstatistic filters, generalized-weighted
order statistical filters, an epsilon filter, and generalized 
stack filters (Refs. 22-25). In the applications of the neural 
filters to reduction of the quantum mottle in X-ray fluoro-

65 scopic and radiographic images, it has been reported that the 
performance of the neural filter was superior to that of the 
nonlinear filters utilized in medical systems and a well-
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known nonlinear filter (Refs. 26-32). The performance of 
the neural filter was superior to that of the conventional 
nonlinear filters. 

8 
through N-th artificial neural networks, N being an integer 
greater than 1, that have been trained on either (A) a same 
target structure and first through N-th mutually different 
non-target structures, or (B) a same non-target structure and On the other hand, in the field of computer vision, a 

supervised edge detector based on a multilayer ANN, called 5 first through N-th mutually different target structures, the 
first through N-th artificial neural networks being configured 
to output first through N-th respective indications of whether 
the image includes a target structure or a non-target struc
ture; and a combiner configured to combine the first through 

a neural edge detector, has been developed (Refs. 33-36). 
The neural edge detector can acquire the function of a 
desired edge detector through training. It has been reported 
that the performance of the neural edge detector on edge 
detection from noisy images was far greater than that of the 
conventional edge detectors such as the Canny edge 
detector, the Marr-Hildreth edge detector, and the Ruckel 
edge detector (Refs. 33, 34). In its application to the contour 
extraction of the left ventricular cavity in digital 
angiography, it has been reported that the neural edge 15 

detector can accurately detect the subjective edges traced by 
cardiologists (Refs. 35, 36). 

10 N-th indications to form a combined indication of whether 

SUMMARY OF THE INVENTION 

First, the invention provides a method of training an 
20 

artificial neural network including network parameters that 
govern how the artificial neural network operates, the 
method having the steps of receiving at least a likelihood 
distribution map as a teacher image; receiving at least a 
training image; moving a local window across plural sub-

25 
regions of the training image to obtain respective sub-region 
pixel sets; inputting the sub-region pixel sets to the artificial 
neural network so that the artificial neural network provides 
output pixel values; comparing the output pixel values to 
corresponding teacher image pixel values to determine an 

30 
error; and training the network parameters of the artificial 
neural network to reduce the error. 

Second, the invention provides a method of detecting a 
target structure in an image by using an artificial neural 
network, the method having the steps of scanning a local 35 
window across sub-regions of the image by moving the local 
window for each sub-region, so as to obtain respective 
sub-region pixel sets; inputting the sub-region pixel sets to 
the artificial neural network so that the artificial neural 
network provides, corresponding to the sub-regions, respec- 40 
tive output pixel values that represent likelihoods that 
respective image pixels are part of a target structure, the 
output pixel values collectively constituting a likelihood 
distribution map; and scoring the likelihood distribution 
map to detect the target structure. 45 

Third, the invention provides an apparatus for detecting a 
target structure in an image, the apparatus having a network 
configured to receive sub-region pixel sets from respective 
sub-regions of the image, and to operate on the sub-region 
pixel sets so as to produce a likelihood distribution map 50 
including output pixel values that represent likelihoods that 
corresponding image pixels are part of the target structure. 

Fourth, the invention provides a method for detecting a 
target structure in an image, the method having the steps of 
training first through N-th artificial neural networks, N being 55 

an integer greater than 1, on either (A) a same target 
structure and first through N-th mutually different non-target 
structures, or (B) a same non-target structure and first 
through N-th mutually different target structures, the first 
through N-th artificial neural networks being configured to 60 

output first through N-th respective indications of whether 
the image includes a target structure or a non-target struc
ture; and combining the first through N-th indications to 
form a combined indication of whether the image includes 

the medical image includes a target structure or a non-target 
structure. 

The invention further provides various combinations of 
the foregoing methods and apparatus. 

The invention further provides computer program prod
ucts storing program instructions for execution on computer 
systems, which when executed by the computer systems, 
cause the computer system to perform the inventive method 
steps. 

In particular embodiments and applications of the present 
invention to which the scope of the claims should not be 
limited, none, one or more of the following may apply: 

the image may be a medical image; 
the target structure may be an abnormality in the medical 

image; 
the non-target structures may be normal anatomical struc

tures in the medical image; 
the network may be configured to receive sub-region pixel 

sets from respective consecutively physically overlap
ping sub-regions of the medical image that are dis
placed by a predetermined distance; 

the predetermined distance may be a pixel pitch value in 
the medical image, so that successive sub-regions are 
offset from each other by a separation distance of 
adjacent pixels in the medical image; and/or 

the artificial neural network provides the respective output 
pixel values that represent the likelihoods that the 
respective medical image pixels are part of an abnor
mality. 

Other objects, features and advantages of the invention 
will become apparent to those skilled in the art when reading 
the following Detailed Description with reference to the 
accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the invention and many 
of the attendant advantages thereof will be readily obtained 
as the same becomes better understood by reference to the 
following detailed description when considered in connec
tion with the accompanying drawings, in which like refer-
ence numerals refer to identical or corresponding parts 
throughout the several views, and in which: 

FIG. l(a) illustrates an architecture of an exemplary 
massive training artificial neural network (MTANN) in 
conjunction with a training portion that trains the network by 
adjusting network parameters. (The training portion is some
times considered to be part of the network itself.) 

FIGS. l(b), l(c) and l(d) illustrate two flow charts and a 
schematic block diagram of an MTANN's training phase, 
according to a preferred embodiment of the present inven
tion. The block diagram of FIG. l(d) adopts the convention 
that teacher images are "forced" into the outputs of the 
neural network in order to adjust network parameters; more 

a target structure or a non-target structure. 
Fifth, the invention provides an apparatus for detecting a 

target structure in an image, the apparatus having first 

65 literally the teacher images are input to a training portion 
(see FIG. 1 (a) element 102) that for simplicity is not 
illustrated in FIG. 1 (d). 
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corresponding output images, of ten trained MTANNs with 
training cases, in a consistency test. 

FIGS. l(e) and l(t) illustrate a flow chart and a schematic 
block diagram of an MTANN's execution ( operational) 
phase, according to a preferred embodiment of the present 
invention. 

FIGS. 2(a) and 2(b) show, respectively, examples of 
nodules and non-nodules used as training cases for training 
an actual embodiment of the inventive MTANN. 

FIG. 13 illustrates four nodules (non-training cases) in the 
top row, and ten sets of corresponding output images of the 

5 ten trained MTANNs, in a validation test. 

FIGS. 3(a) and 3(b) show output images of an embodi
ment of the MTANN for nodule candidates of the nodules 
and non-nodules, respectively, shown in FIGS. 2(a) and 10 

2(b ), in training cases; the images illustrate results obtained 
with a consistency test. 

FIGS. 14(a) and 14(b) show, respectively, ten sets of 
non-nodules (four cases in each group) and ten sets of 
corresponding output images of the ten trained MTANNs, in 
a validation test. 

FIGS. 15(a) and 15(b) show, respectively, FROC curves 
of trained MTANNs 1-5 and 6-10, for 40 nodules and 978 
false positives, in a validation test. 

FIG. 16 shows FROC curves of embodiments of the 
FIGS. 4(a) and 4(b) illustrate, respectively, ten nodules 

and ten corresponding output images of the embodiment of 
the MTANN, for non-training cases in a validation test. 15 Multi-MTANNs obtained with various numbers of 

MTANNs, for 40 nodules and 978 false positives, in a 
validation test. The FROC curve of the Multi-MTANN 
including ten MTANNs indicates 100% nodule detection 
sensitivity and a reduction of false-positive rate from 1.02 to 

FIGS. 5(a) and 5(b) illustrate, respectively, fifteen false
positives (non-nodules) and fifteen corresponding output 
images of an embodiment of the MTANN, for non-training 
cases in a validation test. The top, second, and third row 
show typical examples of peripheral vessels, medium-size 
vessels, and part of normal structure and soft-tissue 
opacities, respectively. In the third row, the first two images 
are large vessels of the hilum, the trachea, and the bronchi; 

20 0.08 per section. 

the last three images are opacities caused by the partial 
volume effect between the lung region, including pulmonary 25 

vessels and soft tissue. 
FIG. 6 is a histogram of scores for forty nodules (white 

bars) and 1068 non-nodules (gray bars) in a validation test, 
which were different from training cases of ten nodules and 
ten non-nodules. 30 

FIG. 7 is a FROC curve of an actual embodiment of the 
MTANN indicating 100% nodule detection sensitivity with 
a simultaneous a reduction in the false-positive rate from 
1.02 to 0.35/section, for 40 nodules and 1068 false positives 

35 
in a validation test. 

FIG. 17 is a chart showing the number of remaining false 
positives obtained by a Multi-MTANN at a sensitivity of 
100%, obtained with various numbers of MTANNs. The 
number of false positives reported by a known CAD scheme 
was reduced from 978 to 85 by use of the Multi-MTANN 
including ten MTANNs. 

FIG. 18(a) shows original images of vessels (which are 
normal structures) input to an MTANN that had been trained 
on input images containing medium-size vessels (also nor
mal structures) in vertical and horizontal directions. FIG. 
18(b) shows the output images of the trained MTANN. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

In describing preferred embodiments of the present inven
tion illustrated in the drawings, specific terminology is 
employed for the sake of clarity. However, the invention is 
not intended to be limited to the specific terminology so 

FIGS. 8(a) and 8(b) show, respectively, comparisons of 
ROC curves and Az values and the mean absolute error of 
the training set, obtained with various numbers of training 
sub-regions in a validation test. 

FIG. 9(a) shows the effect of the number of training 
epochs on the generalization ability of an actual embodiment 

40 selected, and it is to be understood that each specific element 
includes all technical equivalents that operate in a similar 
manner to accomplish a similar purpose. Moreover, features 
and procedures whose implementations are well known to 
those skilled in the art, such as initiation and testing of loop 

of the MTANN: As the number of training epochs increased, 
the Az value representing the generalization ability did not 
decrease, while the training error decreased. FIG. 9(b) 
further shows how nodule detection sensitivity ( true 
positives) as a function of false positives, improves with the 
number of sub-regions even if consecutive sub-regions are 
sparsely sampled and not maximally overlapping: FIGS. 
9(c) and 9(d) show shaded object pixels, in sub-regions used 50 
in the training that yielded the results in FIG. 9(b). 

45 variables in computer programming loops, are omitted for 
brevity. 

FIG. 10 is a schematic block diagram illustrating an 
exemplary architecture of a multiple massive training arti
ficial neural network (Multi-MTANN). In a preferred 
embodiment, each MTANN is trained using a different type 55 
of non-nodule, but with the same nodules so that each 
MTANN acts as an expert for distinguishing nodules from a 
specific type of non-nodule. The performance of plural 
MTANNs is integrated by a logical AND operation. 

The present invention provides various image-processing 
and pattern recognition techniques in arrangements that may 
be called a massive training artificial neural networks 
(MTANNs) and their extension, Multi-MTANNs. The 
invention is especially useful in reducing false positives in 
computerized detection of lung nodules in low-dose CT 
images. A preferred embodiment of the MTANN includes a 
modified multilayer ANN that can directly handle image 
pixels. 

The exemplary MTANN is trained by use of input images 
together with the desired teacher images containing a dis
tribution representing the likelihood of a particular pixel 
being a nodule (lesion). To achieve high performance, the 
MTANN is trained by using a large number of overlapping 
sub-regions that are obtained by dividing an original input 
image. The output image is obtained by scanning an input 
image with the MTANN: the MTANN acts like a convolu
tion kernel of a filter. A nodule ( abnormality) is distin-

FIG. 11 shows two nodules (top row) used as training 60 

cases for training an actual embodiment of the Multi
MTANN, and ten sets of output images of ten trained 
MTANNs; the ten MTANNs were trained separately with 
different types of non-nodules, as shown in FIGS. 12(a) and 
12(b). 65 guished from a non-nodule (normal anatomical structure) by 

a score defined from the output image of the trained 
MTANN. 

FIGS. 12(a) and 12(b) illustrate, respectively, ten sets of 
non-nodules (two examples in each group), and ten sets of 
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FIG. l(a) illustrates an architecture of an exemplary 
massive training artificial neural network (MTANN) 100 in 
conjunction with a training portion 102 that trains the 
network by adjusting network parameters. (The training 
portion is sometimes considered to be part of the network 5 
itself.) It is understood that the functions of the elements 
may be implemented in software on a general purpose 
computer, as well as in the hardware elements shown in FIG. 
l(a). 

Briefly, during the training phase, sub-regions 105A, 
10 

105B ... of training medical images 104 are input to the 
MTANN 100 while one or more teacher likelihood distri
bution maps (loosely called "teacher images") 106A, 
106B ... ( collectively, "106") are input to training portion 
102. MTANN 100 outputs a likelihood distribution map 
(loosely called an "output image") 108. In block 110, 

15 

training portion 102 compares the pixel values of the 
MTANN's likelihood distribution map 108 to the values of 
the pixels in teacher likelihood distribution map 106. Block 
112 calculates errors between the pixels being compared, 
and block 114 adjusts MTANN parameter values to mini-

20 

mize the error. 
The MTANN is preferably implemented using a three

layer artificial neural network (ANN). The number of layers 
is preferably at least three, because a two-layer ANN can 

25 
solve only linear problems. A three-layer ANN structure 
(including one hidden layer) is a particularly preferred ANN 
structure because three-layer artificial neural networks can 
realize any continuous mapping (function). The links con
necting the nodes in the artificial neural network need not be 

30 
of any special design or arrangement; however, the network 
parameters, the weights or multipliers that characterize the 
links, are preferably adjusted during a network training 
phase as described in this specification. 

12 
from abnormalities. The pixels of the training medical image 
are input to the MTANN in accordance with steps 204 
through 208. 

In step 204, a local window begins to scan across the 
training medical image. In step 204, the local window moves 
from one sub-region 105 (see FIG. l(d)) of the training 
medical image to another, preferably one pixel distance at a 
time. A set of pixel values in the sub-region currently in the 
local window are acquired in step 206, and are stored in step 
208. In the loop including steps 204 through 208, the local 
window scans across the rows of the training medical image 
in a manner shown in FIG. l(d). 

Sets of input pixel values that were stored in the loop 
204-208 are then input to the MTANN in step 210, which 
calculates pixel values (step 212) in accordance with net
work parameters. Network parameters include, for example, 
multipliers in the links between neural network nodes. The 
calculated pixel values are output from the MTANN as an 
MTANN likelihood distribution map 108 (FIG. l(a)). 

The MTANN likelihood distribution map's pixels are 
calculated to be a likelihood that a corresponding "object 
pixel" 400 (see FIG. l(d)) from the training medical image 
is part of an abnormality. The likelihood distribution map 
may be loosely referred to as an "output image" even though 
it is not strictly an image in the sense of a photograph of a 
structure. The description of the likelihood distribution map 
as an "image" is valid, inasmuch as its pixel values may be 
represented graphically to emphasize which parts of the 
original training medical image are abnormal and which 
parts are normal. For example, pixels that are more likely 
part of abnormalities can be made brighter and pixels that 
are less likely to be abnormalities can be made darker. 

Referring again to FIG. l(b), step 222 illustrates the 
reception of one or more teacher likelihood distribution 
maps (also called "teacher images"). As shown by broad 
bi-directional arrow 201, the teacher likelihood distribution 
maps 106 should correspond to the training medical images 
104 discussed above, because the training process involves 

During the operational (execution) phase, medical images 35 
104 are input to the trained MTANN 100, which provides a 
likelihood distribution map (output image) 108. Filter 120 
filters the MTANN's likelihood distribution map 108 to 
form a score that element 122 compares to a threshold in 
order to arrive at a decision. 

FIGS. l(b), l(c) and l(d) illustrate two flow charts and a 
schematic block diagram of an MTANN's training phase, 
according to a preferred embodiment of the present inven
tion. The block diagram of FIG. l(d) adopts the convention 
that teacher images are "forced" into the outputs of the 45 
neural network to adjust network parameters; more literally 
the teacher images are input to a training portion 102 (see 
FIG. l(a) element 102) that for simplicity is not illustrated 

40 
a progressively finer tuning of MTANN network parameters 
so that the MTANN 100 reliably recognizes the abnormali
ties that are known to exist in the training medical images. 

in FIG. l(d). 
As briefly described above, MTANN 100 involves a 50 

training phase and an execution (or operational) phase. FIG. 
l(a) illustrates elements that are used in either or both 
phases, with the understanding that elements and steps used 
in one phase need not necessarily be present or executed in 
the other phase. For example, the training portion 102 may 55 

be omitted from products that have already been trained and 
are merely desired to be used operationally (FIGS. l(e), 
l(t)). Conversely, filter 120 and threshold element 122 are 
not involved in the training phase (FIGS. l(b), l(c), l(d)), 
but are discussed with reference to the execution 60 

( operational) phase. 
Referring to the FIG. l(b) flow chart in conjunction with 

the FIG. l(a) block diagram, during a training phase, pixels 
from training medical images 104 are received in step 502. 
A given training medical image 104 may include an 65 

abnormality, no abnormalities, or set of both abnormalities 
and normal structures that are desired to be distinguished 

In a preferred embodiment, training portion 102 receives 
a first teacher likelihood distribution map 106A (FIG. l(a)) 
showing a distribution of pixel intensities representing the 
likelihood that that particular pixel is part of an abnormality. 
In a particular preferred embodiment, that distribution is 
likely to follow a two-dimensional Gaussian distribution 
pattern, preferably with a standard deviation proportional to 
a size of the abnormality. Further, training portion 102 
receives a second teacher likelihood distribution map 106B 
(FIG. l(a)) that is "blank" or "black," representing a distri
bution of pixel intensities when that particular pixel is not 
part of an abnormality. 

In FIG. l(b), the training portion iteratively acquires a 
pixel from the teacher likelihood distribution map(s) 106 
that corresponds to a object pixel in the training medical 
image (step 224) and stores that pixel as a teacher pixel in 
preparation for a pixel comparison (step 226). 

Step 228 involves comparison of pixel value differences 
(error) between (A) the likelihood distribution map 108 the 
MTANN in response to the training medical image 104, and 
(B) the teacher likelihood distribution map 106. This step is 
performed by comparison and error calculation blocks 110, 
112 in training portion 102 of FIG. l(a). 

Step 230 shows the calculation of corrections to the 
MTANN' s existing network parameters in order to minimize 
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an error between the MTANN's output and the teacher map. 
Step 232 shows the application of the corrections to the 
existing network parameters so as to form adjusted network 
parameters. These two steps are performed by parameter 
adjustment block 114 in training portion 201 of FIG. l(a). 5 

14 
with the local window iteratively moving from sub-region to 
sub-region, preferably one pixel's distance at a time, as 
shown in FIG. l(f). 

When the loop has been completed, the entire medical 
image ( or all that is desired to be scanned) has been scanned. 
Control passes to step 514, which indicates how a filter 120 
(FIG. l(a)) filters the MTANN's likelihood distribution map 
108 to arrive at a score. Finally, threshold block 122 com
pares a threshold value to the score to arrive at a decision 

Decision block 234 determines if a stopping condition for 
the training phase has been fulfilled. The stopping condition 
may involve a counting of a certain number of iterations of 
the training loop with respective medical images and teacher 
likelihood distribution maps. Alternatively, the stopping 
condition can involve stopping the training when error 
adjustments have been reduced to beneath a certain 
threshold, indicating that further training is unnecessary or 
even counter-productive. 

10 concerning the detection of an abnormality in the medical 
image, as illustrated by step 516. 

If the stopping condition is not fulfilled, control returns to 15 

step 210 so that further sets of pixel values can be input to 
the MTANN. If the stopping condition is fulfilled, the 
training phase is ended (block 299), after which time the 
execution phase of FIGS. l(e) and l(f) may begin. 

The flowchart of FIG. l(c) illustrates an alternative 20 

embodiment of the training method shown in FIG. l(b). The 
two methods differ in whether the MTANN processes a set 
of medical image pixels after an entire set is stored (FIG. 
l(b)), or whether the MTANN processes the medical image 
pixels "on the fly" (FIG. l(c)). 25 

FIG. l(c) avoids the need for FIG. l(b)'s storage steps 
208,226. FIG. l(c) also avoids FIG. l(b)'s "tight" iterative 
loops 204/206/208 and 224/226. Instead, FIG. l(c) executes 
a "wider" pair of loops "204/206/210/212+228/230/232" 

30 
and "224+228/230/232." Otherwise, the steps that are com
mon to the two training methods are essentially the same, 
and discussion of the common steps is not repeated. 

Turning now to a description of the execution 
(operational) phase, the training portion 102 (FIG. l(a)) is 

35 
not active, or even not present. Also, the medical images 104 
that are input to MTANN 100 are not training medical 
images with known and verified abnormalities, but generally 
are "new" medical images that have not been used to 
previously train the MTANN. However, filter element 120 

40 
and threshold element 122 are used during the execution 
phase. 

FIGS. l(e) and l(f) illustrate a flow chart and a schematic 
block diagram of an MTANN's execution ( operational) 
phase, according to a preferred embodiment of the present 45 
invention. 

The foregoing procedure may be repeated for each medi-
cal image ( or plural portions of a same medical image), as 
indicated by the return path from step 516 to step 502. When 
there is no more medical image information to be analyzed, 
the execution phase is completed (block 599). 

The exemplary MTANN includes a modified multilayer 
ANN that can directly handle input gray levels and output 
gray levels. This embodiment is in contrast to many con
ventional ANNs, which commonly input image discretely
valued features as distinguished from continuous-valued 
image pixels. Many conventional ANNs are usually 
employed as a classifier that handles classes as distinguished 
from the gray levels that are handled by the inventive 
MTANN. Of course, the invention should not be limited to 
levels that are "gray" in the sense of being a shade between 
black and white; use of color pixels also lies within the 
contemplation of the present invention. 

In the exemplary embodiment of the MTANN described 
herein, image processing or pattern recognition is treated as 
the convolution on an image with the modified ANN in 
which the activation functions of the units in the input, 
hidden, and output layers are a linear function, a sigmoid 
function, and a linear function, respectively. 

In a particular preferred embodiment, the activation func
tion of output layer 600 (FIG. l(f)) is a linear function, as 
distinguished from step functions, the sign function or 
sigmoid functions. The choice of a linear function in the 
output layer comports with the feature of the invention, that 
the output of the artificial neural network is not a binary 
decision, class, diagnosis, or other discrete-value 
conclusion, but may constitute a continuous-value element 
such as a picture element of arbitrarily fine precision and 
resolution. Here, continuous-value means essentially means 
that a pixel may take on any of a variety of values so that a 
pixel is for practical purposes represented as an analog 
entity, even though it is recognized that digital computers 
have a finite number of bits allocated to represent entities 

Referring to the execution phase flow chart of FIG. l(e), 
step 502 shows the reception of a medical image 104 for 
input to the MTANN 100. It is generally not known in 
advance whether structures in the medical image for execu
tion contain abnormalities or merely normal structures. 

50 such as pixels. 

A loop including steps 504, 506, 508, 510 and 512 
correspond generally to steps 204, 206, 208, 210, and 212 of 
the training phase (FIG. l(b)), except that the medical image 
that is being operated on is not a training medical image. 

In FIG. l(e), step 504 illustrates the moving of a local 
window from one sub-region of the medical image to a 
subsequent sub-region. The sub-regions have respective 
"object pixels" shown in FIGS. l(d) and l(f). Step 506 
shows how sets of pixels from a present sub-region are 
acquired through the local window, and step 508 represents 
the input of those pixel sets to the MTANN. Step 510 shows 
that the MTANN calculates an output pixel value for each 
window location (sub-region), with step 512 assigning that 
pixel value to an output pixel location in an output likelihood 
distribution map that corresponds to the object pixel for that 
sub-region. The loop of steps 504 through 512 is repeated, 

In a particular preferred embodiment analyzing low-dose 
CT scans and corresponding output images, a pixel is 
represented by 12 bits representing a gray scale tone. 
However, other degrees of precision and resolution, and 

55 multi-dimensional pixels such as color pixels, are also 
contemplated by the invention. 

In contrast to the described embodiment, the activation 
function of output layer units of conventional ANNs is 
commonly a sigmoid function. However, a preferred 

60 embodiment of the invention employs a linear output unit 
activation function instead of a sigmoid function one 
because the characteristics of ANN are significantly 
improved in the application to the continuous mapping 
issues dealing with continuous values in image processing 

65 (Refs. 37, 38, 34), for example. 
The basic architecture and operation of the embodiments 

of the MTANN having been described above, the following 
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discussion provides more detail concerning the MTANN and 
certain explanations of its design. Of course, the scope of the 
claims should not be limited by particular applications of the 
invention or demonstrations of its success. 

The pixel values of the original images are normalized 
5 

16 
where: 

Ii is a delta value that may be computed, for example, as 
in Refs. 41, 42, and may be represented by: 

aE aE a[L 
0=-=--ax a[L ax 

first. The pixel values in a local window Rs are input to the 
MTANN: the inputs to the MTANN are a normalized pixel 
value g(x, y) of an original image and spatially adjacent 
normalized pixel values. Although the most common use of 
a multilayer ANN is as a classifier that determines whether 

10 

a certain pixel belongs to the class, such as normal or 
abnormal, the output of the MTANN is not a class, but a 
continuous value, which corresponds to the object pixel (for 
example, center pixel) in the local window, represented by 15 

f L is an activation function of the unit in the output layer 
(according to the preferred embodiment of the invention, 
preferably a linear function), 

X is the input value to the activation function, 
ri is the learning rate, and 
Om H denotes the output (0) of the m-th unit in the hidden 

(H) layer. 
By use of the delta, the corrections of any weights can be 

derived in the same way as the derivation of the back
propagation algorithm. 

f(x,y)=NN{I(x,y)}=NN{g(x-i,y-j)/i,j ERJ (Eqn. 1: Teacher Value) 

where: 

f(x, y) denotes the estimate for the desired teacher value, 
x and y are the indices of coordinates, 

NN { ·} is the output of the modified multilayer ANN, 

I (x, y) is the input vector to the modified multilayer ANN, 

g(x, y) is the normalized pixel value, and 

Rs is the local window of the modified multilayer ANN. 
In a preferred embodiment, only one unit is employed in 

the output layer. The desired teacher values and thus the 
outputs of the MTANN are changed according to the appli
cation; when the task is distinguishing nodules from non
nodules, the output represents the likelihood that a given 
output pixel is part of a nodule. 

All pixels in an image may be input by scanning the entire 
image with the MTANN. The MTANN, therefore, functions 
like a convolution kernel of a filter. In a particular preferred 
embodiment, the local window of the MTANN is shifted one 
pixel's distance at a time to cover successive sub-regions of 
the input image. 

The MTANN is trained so that the input images are 
converted to the desired teacher images. The MTANN may 
be trained in the following manner. 

In order to learn the relationship between the input image 
and the desired teacher image, the MTANN is trained with 
a set of input images and the desired teacher images by 
changing of the weights between the layers. The error E to 
be minimized by training is defined by: 

(Eqn. 2: Error) 

where: 

p is a training pixel number, 
T(p) is the p-th training pixel in the teacher images, 

f<Pl is the p-th training pixel in the output images, and 

P is the number of training pixels. 
The MTANN may be trained by any suitable technique 

known to those in the art. In one embodiment, a modified 
back-propagation algorithm of Ref. 37 may be derived for 
the arrangement described above, in the same way as the 
standard back-propagation algorithm of Refs. 41, 42. In this 
embodiment, the weight correction ti. W of the weight W 
between the m-th unit in the hidden layer and the unit in the 
output layer O is represented by: 

(Eqn. 3: Weight Correction) 

For distinguishing between nodules and non-nodules, the 
desired teacher image contains a distribution representing 

20 the likelihood of being a nodule. That is, a teacher image for 
nodules should contain a certain distribution, the peak of 
which is located at the center of the nodule; and that for 
non-nodules should contain zero. As the distance increases 
from the center of the nodule, the likelihood of being a 

25 nodule decreases; therefore, a two-dimensional Gaussian 
function with standard deviation Or at the center of the 
nodule is used as the distribution representing the likelihood 
of being a nodule, where Or may be determined as a measure 
representing the size of a nodule. 

30 
FIG. 1 illustrates the training for one nodule image. First, 

the image displaying a nodule at the center is divided into a 
large number of overlapping sub-regions. The consecutively 
adjacent sub-regions in the input image differ just by a 
pixel's separation distance. In other words, a sub-region 
overlaps with and differs by one pixel's separation distance 

35 

40 

45 

50 

55 

from four adjacent sub-regions. The size of the sub-region 
corresponds to that of the local window R5 of the MTANN. 

All pixel values in each of the sub-regions are input to the 
MTANN. However, only one pixel in the teacher image is 
selected at the location in proportion to the displacement (or 
shift) of the central pixel in the input sub-region, and is 
entered into the output unit in the MTANN as the teacher 
value. By presenting each of the input sub-regions together 
with each of the teacher values, the MTANN is trained. The 
training set {I}, {T} for each nodule or non-nodule image 
may be represented by the following equations: 

{T", T,2 , ... , T,p, ... , T,NT}={T,(x-i,y-j) 
li,j ERT} (Eqn. 4: Training Set) 

where: 
s is the image (case) number, 
Rr is the training region, 
Nr is the number of pixels in Rr, and 
Ts(x, y) is the teacher image. 
Thus, a large number of input sub-regions overlap each 

other, and the corresponding teacher values in the teacher 
image are used for training. The MTANN is trained with 
massive training samples to achieve high generalization 

60 ability. 
The MTANN is robust against variation in patterns, 

especially shifting of patterns, because it is trained with 
numerous shifted patterns. The MTANN learns the essential 
features for nodules without the dependence on shifted 

65 locations. 
After training, the MTANN outputs the highest value 

when a nodule is located at the center of the input region of 
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the MTANN, a lower value as the distance increases from 
the center, and zero when the input region is a non-nodule. 

The preferred embodiment of the output filter forms a 
score in the following manner. 

When an original image for the sth case is entered into the 
trained MTANN for testing, the output image for the sth case 
is obtained by scanning of the original image with the 
trained MTANN. A nodule is distinguished from a non
nodule by a score S defined from the output image of the 
trained MTANN: 

S, = I fc(a-;x,y)xf,(x,y) (Eqn. 5: Score of output image) 

x,yERE 

where: 

Ss is the score for the s'h case, 
RE is the region for evaluation, 

fs(x, y) is the output image for the s'h case, 
x is arithmetic multiplication, and 
f G ( a; x, y ) is a two-dimensional Gaussian function with 

standard deviation a. 
This score represents the weighted sum of the estimate for 

the likelihood of being a nodule near the center, i.e., a higher 
score indicates a nodule, and a lower score indicates a 
non-nodule. Other methods for determining a score can be 
employed. For example, the score may be calculated by 
averaging pixel values in the region RE in the output image 
of the MTANN. 

Results of a study for a particular application of the 
MTANN are presented as follows. 

The database used in this experiment consisted of 1057 
LDCT images (512x512 pixels) obtained from 38 scans, 
which included 50 nodules. 

Ten nodules and ten false positives were used as the 
training cases for the MTANN. Examples of the training 
cases with the region of 40 by 40 pixels are shown in FIG. 
2. Typical nodules included a pure ground-glass opacity 
(pure GGO; 40% of nodules in the database), solid nodule 
(32%), and mixed GGO (28%), and also dominant false 
positives such as medium-size vessels and peripheral vessels 
from the false positives reported by the known CAD 
scheme. 

The majority of false positives can be classified as periph
eral vessels (40% of false positives), medium-size vessels 
(30%), soft-tissue opacities including the opacities caused 
by the partial volume effect between the lung region and the 
diaphragm (20%), and part of normal structures in the 
mediastinum, including large vessels in the hilum (10%). 

A three-layer ANN structure may be employed in the 
modified multilayer ANN, because any continuous mapping 
can be approximately realized by three-layer ANNs (Refs. 
39, 40). 

18 
training run for one training set. The training converged with 
a mean absolute error of 11.2%. The training took 29.8 hours 
on a PC-based workstation (CPU: Pentium IV, 1.7 GHz), 
and the time for applying the trained MTANN to nodule 

5 candidates was negligibly small. 
After training, a method for designing an ANN (see Refs. 

43-45) was applied to the trained MTANN. 
The redundant units in the hidden layer were removed on 

the basis of the effect of removing each unit on the training 
10 error, and then the MTANN was retrained to recover the 

potential loss due to the removal. Each process was per
formed alternately, resulting in a reduced architecture in 
which redundant units were removed. As a result, the 

15 optimal number of units in the hidden layer was determined 
as 22 units. 

The results of applying the trained MTANN to nodule 
candidates in training cases, which corresponds to a consis
tency test, are shown in FIG. 3. Before applying the trained 

20 MTANN, regions outside the lung regions reported by the 
lung segmentation algorithm of a known scheme for lung 
nodule detection (Refs. 13-16) were set to -1000 HU. The 
nodules in the output image of the MTANN are represented 
by light distributions near the center, whereas the output 

25 images for false positives (non-nodules) are almost dark. 
It is apparent that the distinction between nodules and 

non-nodules in the output images of the MTANN is superior 
to that in the original images. Therefore, the MTANN learns 
important features related to the input images and the 

30 teacher images. 
The trained MTANN was applied to nodule candidates in 

all of the 1068 non-training test cases for a validation test. 
The execution time was very short: only 1.4 seconds for 

35 
1000 nodule candidates. 

The results for non-training cases in the validation test are 
shown in FIGS. 4 and 5. In the output image of the MTANN 
for nodules, the nodules are represented by light distribu
tions. The output images for peripheral vessels and medium-

40 size vessels are almost dark, as shown in FIG. 4. Because 
70% of false positives are peripheral and medium-size 
vessels, it is possible to reduce the large number of false 
positives by using the output images of the MTANN. 

However, the output images for part of a normal structure 
45 indicate relatively lighter small regions. In addition, the 

output images for soft-tissue opacities are almost light. 
Thus, the trained MTANN was not effective for these false 
positives that included part of normal structures and soft-

50 
tissue opacities. 

The scoring method was applied to the output images of 
the MTANN in a validation test, in which a=4.0 by trial and 
error. 

The local window of the MTANN may be selected to be 55 

nine by nine pixels. The number of units in the hidden layer 
was 25 initially. Thus, the numbers of units in the input, 
hidden, and output layers were 81, 25, and 1, respectively. 

FIG. 6 shows the distribution of the scores for 40 nodules 
and 1068 non-nodules, which are different from training 
cases of ten nodules and ten non-nodules. Although the two 
distributions overlap, it is possible to distinguish some 
non-nodules from nodules. 

The performance of the MTANN is evaluated by free-The standard deviation of the two-dimensional Gaussian 
function was determined as 5.0 pixels, which corresponds to 
the average effective diameter of the nodules. 

The matrix size of the training region was select to be 19 
by 19 pixels. 

The input CT images were normalized such that -1000 
HU (Hounsfield units) is zero and 1000 HU is one. 

With the parameters above, the training of the MTANN 
was performed on 500,000 epochs. One epoch means one 

60 response receiver operating characteristic (FROC) curves 
(see Ref. 46), which are generated by plotting of the nodule 
detection sensitivity as a function of the number of false 
positives per section, as shown in FIG. 7. A66% (706/1068) 
reduction of false positives (non-nodules) was achieved 

65 without reducing the number of true positives: a sensitivity 
of 100% (40/40) with 0.35 false positives per section was 
achieved. 
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The number of false positives per section FPS is defined 
by: 

FPS=--~~~~ 

(
TFP-FPT) 

SECx TFP 

RFP (Eqn. 6: FPS) 

where: 
RFP is the number of remammg false positives after 

application of a false-positive reduction method, 
SEC is the number of sections, 
TIP is the total number of false positives reported by the 

CAD scheme, 
x is arithmetic multiplication, and 

20 
adequate training. Therefore, a large number of epochs are 
required for training of the MTANN. In Table 1, the total 
numbers (20x19x19 and 2xl.8xl09

) of samples (sub
regions) and iterations of the MTANN are far greater than 

5 those (20 and 2x105
) of the conventional ANN, which 

indicates clearly the massive training required by the 
MTANN. These 3.6 billion iterations of massive training 
lead to the high performance of the MTANN, whereas the 
conventional ANN can be trained with only 200,000 

10 
iterations, and yielded an Az value of 0.53. 

This large number of iterations did not cause overtraining, 
because Az values obtained with test cases, representing the 
generalization ability, did not decrease as the number of 
training epochs increased, while the error of the training 
cases decreased, as shown in FIG. 9(a). 

FPT is the number of false positives used as training 15 The effect on performance of "thinning out" trammg 
cases. 

The false-positive rate was improved from 1.02 to 0.35 
false positives per section, while maintaining sensitivity. 
This constitutes a significant improvement in the nodule 
detection scheme in CT because all false positives in the 
validation test are considered as "very difficult" false posi
tives. Moreover, the nodules used in this study are consid
ered as "very difficult" nodules because 38 cancers "missed" 
by radiologists are included. 

sub-regions was investigated. Here, "thinning out" denotes 
"sparse sampling" of sub-regions, as compared with sub
regions that are consecutively maximally overlapping 
(shifted by the minimal separation distance of immediately 

20 adjacent pixels). FIG. 9(b) shows how nodule detection 
sensitivity (true positives) as a function of false positives, 
improves with the number of sub-regions. Reference is 
made to FIGS. 9(c) and 9(d) which show shaded object 
pixels, in the 3x3 pixel sub-regions used for training. 

In order to gain insight into such a high performance of 25 

the MTANN, the effect of the number of training sub
regions on performance was investigated, evaluating perfor
mance using receiver operating characteristic (ROC) analy-

Using the 100 sub-regions in the pattern shown in FIG. 
9(c) yielded an Az=0.86, and using the nine sub-regions in 
the pattern shown in FIG. 9(d) yielded anAz=0.81. FIG. 9(b) 
presents these two curves with the Az=0.92 found when 
using 361 maximally overlapping consecutive sub-regions, sis (Refs. 47, 48). FIG. 8 shows the ROC curves and the 

areas under the ROC curves (Az value) (Ref. 49). The results 
show that the performance of the MTANN decreased as the 
number of training sub-regions decreased. However, there 
was no increase in Az value when the size of the training 
sub-region was increased from 19x19 to 25x25. This is the 
reason for employing 19x19 as the size of the training 
sub-region. This result leads to the conclusion that the 
reason for the high performance of the MTANN is the large 
number of training samples used. 

The performance in the case of a small number of training 
sub-regions was not caused by insufficient training, because 
the mean absolute error of the training set was very small, 
as shown in FIG. 8(b). 

Table 1 shows the comparison of the MTANN and the 
conventional ANN in terms of the total number of training 
samples (sub-regions) and the total number of iterations 
used for training with ten nodules and ten non-nodules. 

TABLE I 

MTANN (Invention) Conventional ANN 

Nodule Non-nodule Nodule Non-nodule 

Number of 10 10 10 10 
training cases 
Number of sub- 19 X 19 19 X 19 
regions per 
case 
Number of 5.0 X 105 5.0 X 105 1.0 X 104 1.0 X 104 

training epochs 
Total number 1.8 X 109 1.8 X 109 1.0 X 105 1.0 X 105 

of iterations 

Because a large number of sub-regions that overlapped 
each other were used for training in the MTANN, the total 
number of training samples of the MTANN was far greater 
than that of the conventional ANN (Ref. 50), which included 
the shift-invariant neural network and the convolution neural 
networks (Refs. 51-56). 

In general, the greater the number of training samples, the 
greater the number of iterations required to perform 

30 
previously presented in FIG. 8(a). Thus, it may be concluded 
that efficient training can be performed using thinned out 
(sparsely sampled) sub-regions in the training region. 

Thus, the invention provides a novel pattern recognition 
technique based on an artificial neural network, which may 
be called a massive training artificial neural network 

35 (MTANN), especially useful for reduction of false positives 
in computerized detection of lung nodules in low-dose CT 
images. Results demonstrate that the MTANN reduces false 
positives while maintaining sensitivity. 

The MTANN and the Multi-MTANN are particularly 
40 useful for improving the specificity (reducing false 

positives) of a computer aided diagnosis (CAD) scheme for 
lung nodule detection, while maintaining sensitivity (true 
positives). To improve sensitivity, the MTANN may be 
applied to the initial step of a CAD scheme for detection of 

45 nodules. 

50 

55 

Briefly, the MTANN is trained to distinguish between 
typical nodules and typical non-nodules (normal tissues and 
structures). The trained MTANN is then applied to a medical 
image such as a CT image (section). Gaussian filtering is 
performed on the trained MTANN's output image (or map), 
to arrive at a score that is compared to a threshold to arrive 
at a decision. 

A multiple gray-level-thresholding technique initially 
identified 20,743 nodule candidates in 1057 CT sections 
with a sensitivity of 86% ( 43/50). An MTANN that had been 
trained to distinguish between nodules and medium-size 
vessels was applied to 1057 original CT images. Then 
Gaussian filtering and thresholding together with removal of 
small and large region were applied to the output images of 

60 the trained MTANN. Results showed that 14,267 nodule 
candidates including all 50 nodules were identified: a sen
sitivity of 100% (50/50) with 13.5 false positives per 
section, was achieved. Therefore, the sensitivity of a known 
CAD scheme was improved from 86% to 100%, while the 

65 number of nodule candidates is reduced from 20,743 (19.6 
false positives per section) to 14,267 (13.5 false positives 
per section). 
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It has thus been demonstrated that the inventive MTANN 
is able to improve the sensitivity of a CAD scheme for lung 
~odule det~ction. Therefore, both the sensitivity ( true posi
tive detect10n) and the specificity (false positive reduction) 
of CAD schemes are improved by use of a combination of 5 

the MTANN for nodule candidate detection and a first level 
of distinguishing between nodules and non-nodules and the 
Multi-MTANN for an enhanced level of distin~uishing 
between nodules and non-nodules. 

The inventive MTANN can handle three-dimensional 10 

volume data by increasing the numbers of input units and 
hidden units. Thus, the MTANN is applicable to new 
modalities such as multi-slice CT and cone-beam CT for 
computerized detection of lung nodules. 

The inventive MTANN is also to perform many different 15 

t~sks for distinction, classification, segmentation, and detec
tion of normal regions and/or lesions in various CAD 
schemes in medical images, such as detection and classifi
c_ation of lung nodules in chest radiography and CT; detec
tion and classification of clustered microcalcifications and 20 

masses in mammography, ultrasonography, and magnetic 
resonance imaging (MRI); detection and classification of 
polyps in CT colonography; and detection and classification 
of skeletal lesions in bone radiography. 

Another inventive embodiment is now described: The 25 

multiple massive training artificial neural network (Multi
MTANN) includes plural units of the MTANN described 
above. 

A single MTANN is effective for distinguishing between 
nodules and peripheral and medium-size vessels. However, 30 

other non-nodules, such as large vessels in the hilum, 
soft-tissue opacities caused by the diaphragm or the heart, 
parts of normal structures, and some other abnormal 
opacities, prove more problematic. Compared to the Multi
MTANN, it is difficult for a single MTANN to distinguish 35 

between nodules and various such types of non-nodules 
because the capability of a single MTANN is limited com
pared to the Multi-MTANN. 

In order to distinguish between nodules and various types 
of 1:1-on-nodules, the Multi-MTANN extends the capability of 40 

a smgle MTANN. The architecture of an exemplary Multi
MTANN is shown in FIG. 10. 

The illustrated exemplary Multi-MTANN includes plural 
(here, N) MTANNs arranged in parallel in an MTANN array 
1000. In a preferred embodiment, each MTANN is trained 45 

by using a different type of normal anatomical structure 
(some~imes referred to herein a non-lesion or a non-nodule), 
but with the same abnormality (lesion or nodule). Each 
MTANN acts as an expert for distinguishing between abnor
malities (nodules) and its specific type of normal anatomical 50 

str1;1cture (n~n~nod1;1le ). For example, a first MTANN may be 
tramed to distmguish nodules from medium-size vessels· a 
second MTANN may be trained to distinguish nodules fr~m 
soft-tissue opacities caused by the diaphragm; and so on. 
Various normal structures that may be distinguished include: 55 

large vessels in the hilum, 
large vessels with opacities, 
medium-sized vessels, 
small vessels, 
soft-tissue opacities caused by a heart, 
soft-tissue opacities caused by a diaphragm, 
soft-tissue opacities caused by a partial volume effect 

between peripheral vessels and the diaphragm, 

60 

22 
At the output of the MTANNs are respective filters in a 

filter array 1020 that perform a scoring function on the 
li~elihood distribution maps (output images) that are pro
vided by the MTANNs. The filters in filter array 1020 
correspond gener~lly to MTANN filter 120 (FIG. l(a)). In a 
preferred embodiment, the same scoring method may be 
applied to the output of each MTANN. 

At the output of the filter/scoring element array 1020 is a 
threshold element array 1022 whose individual elements 
correspon~ generally to threshold element 122 (FIG. l(a)). 
Thresholdmg of the score for each MTANN is performed to 
distinguish between a nodule and the type of non-nodule that 
is specifi~ to that MTANN. The threshold elements in array 
1022 arnve at N respective decisions concerning the pres
ence of an abnormality. 
. The performance of the N MTANNs is then merged or 
~ntegrated, for example, by a logical AND operation, shown 
m FIG. 10 by a logical AND operator 1024. Because each 
MTANN expertly eliminates a specific respective type of 
non-nodule with which that particular MTANN is trained 
the multi-MTANN eliminates a larger number of fals~ 
positives than does any single MTANN. The operation of the 
logical AND element depends on the training of the various 
MTANNs. 

The Multi-MTANN may be trained in the following 
manner. In a preferred embodiment, each MTANN is trained 
independently by a same abnormality (nodule) but with 
diff~rent normal structures (non-nodules). 

F1rst, the false positives (non-nodules) reported by the 
CAD scheme for lung nodule detection in CT are classified 
into a ~umber of groups. The number of groups may be 
determmed by the number of obviously different kinds of 
false positives. 

In a preferred embodiment, typical non-nodules in each 
~roup are selected as training cases for a particular respec
tive MTANN, whereas typical nodules are selected as train
ing c_ases for all MTANNs. The original images of nodule 
candidates are used as the input images for training. The 
teacher image is designed to contain the distribution for the 
likelihood of being a nodule, i.e., the teacher image for 
nodules contains a two-dimensional Gaussian distribution 
with standard deviation ar; and that for non-nodules con
tains zero (-1000 HU (Hounsfield units)). 

Ea~h MT~N ~s _trained by a modified back-propagation 
algonthm with trammg cases. Then, the input images and the 
desired teacher image are used to train each MTANN in the 
same way as a single MTANN is trained. The MTANN acts 
as an expert for the specific type of non-nodules after 
training. 

The outputs of the MTANNs may be scored as follows. 
The output from each trained MTANN is scored indepen
dently. The score Sn,s for the n'h trained MTANN is defined 
as: 

Sn,s = I fc(a-n; x,y) X fn,Ax, y) 
(Eqn. 7: Score of output images) 

x,yERE 

where: 
RE is the region for evaluation, 
f n)x, y) is s'h output image (case) of the n'h MTANN, 
x is arithmetic multiplication, and 
ffG(an; x, y) is a two-dimensional Gaussian function with 

standard deviation an. 
abnormal opacities, 
focal infiltrative opacities, 
and other normal anatomical structures. 

65 . The parameter_ an may be determined by the output 
images of the tramed MTANN with training cases. Distin
guishing between nodules and the specific type of non-
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nodules is performed by thresholding of the score with a 
threshold en for the n-th trained MTANN. 

The distinctions of the expert MTANNs are combined by 
use of a logical AND operation such that each of the trained 
MTANNs maintains the detection of all nodules, but 
removes some of the specific type of non-nodules, and thus 
various types of non-nodules can be eliminated. 

The invention envisions that the logical AND function 
may be performed in at least two ways. First, a logical AND 
combiner may provide an indication of an abnormality 
(lesion or nodule), only if all the individual MTANNs 
indicate an abnormality. Alternatively, the logical AND 
combiner may provide an indication of no abnormality (no 
lesion or no nodule), only if all the individual MTANNs 
indicate no abnormality. 

The first embodiment of the logical AND combiner, in 
which the AND function indicates an abnormality only when 
all MTANNs indicate an abnormality, is preferred in most 
circumstances. However, this preference depends on the 
training of the individual MTANNs: the first embodiment is 
preferred when the MTANNs are trained with different 
non-lesions but with the same lesions. However, when the 
MTANNs are trained with different lesions but with the 
same non-lesions, the alternative realization of the AND 
function is appropriate. 

Usually, the variation among abnormalities (lesions, 
nodules) is small, and the variation among normal structures 
is large, so that the first embodiment is generally preferred. 
However, in many applications, such as when the abnor
malities are interstitial opacities, the alternative embodiment 
is preferred. The choice of implementations of the AND 
function is based on the anatomical structures involved and 
the corresponding MTANN training. 

As an alternative to the embodiment shown in FIG. 10, it 

24 
The results of applying each of the trained MTANNs to 

nodule candidates in training cases, which corresponds to a 
consistency test, are shown in FIGS. 11 and 12(b). The 
nodules in the output images of the MTANNs are repre-

5 sented by light distributions at the center, whereas the output 
images for false positives (non-nodules) are relatively dark. 

The trained multi-MTANN was applied to nodule candi
dates in all of 978 non-training test cases, which were 
different from training cases of ten nodules and 100 non-

10 nodules. The results for non-training cases in a validation 
test are shown in FIGS. 13 and 14(b). The output images of 
MTANNs for nodules are represented by light distributions. 
The output images for false positives are relatively dark 
around the center, as shown in FIG. 14(b). The output 
images for large vessels in the hilum (sixth row), soft-tissue 

15 opacities (ninth row), and abnormal opacities (tenth row) are 
also dark, whereas the single MTANN trained for vessels 
(MTANN No. 1 to No. 5) were not effective for these false 
positives. 

The scoring method was applied to the output images of 
20 the trained MTANNs in the validation test, where an was 

empirically determined as 0.5 to 5.5 by use of the training 
cases. The performance of the MTANN was evaluated by 
FROC curves, as shown in FIG. 15. The FROC curve 
expresses the nodule detection sensitivity as a function of 

25 the number of false positives per section at a specific 
operating point, which is determined by the threshold en. 
The performance of the MTANNs varied considerably, 
because the FROC curves were obtained with all non
training false positives (non-nodules). The MTANN trained 

30 with dominant false positives such as medium-size and 
peripheral vessels seems to have a better overall perfor
mance for all false positives (non-nodules). 

is possible to form a "merged image" by adding all the 
individual MTANNs' images, and then apply scoring/ 
filtering and thresholding to the single merged image. 35 

However, the performance of the FIG. 10 embodiment is 
superior to that of the alternative embodiment. If the per
formances are combined by a linear operation such as pixel 
addition, performance is not as high. An important advan
tage of the FIG. 10 embodiment is to combine the different 40 

performances of the MTANNs by thresholding with differ
ent threshold values tailored to each performance. 

FROC curves of the Multi-MTANNs obtained with vari
ous number of MTANNs are shown in FIG. 16. When the 
Multi-MTANN employed ten MTANNs, 91 % (893/978) of 
false positives (non-nodules) were removed without a reduc
tion in the number of true positives: a sensitivity of 100% 
(40/40) with 0.08 false positives per section was achieved. 
FIG. 17 shows the number of remaining false positives of 
the multi-MTANN at the sensitivity of 100% obtained with 
various number of MTANNs. Therefore, the false-positive 
rate was improved from 1.02 to 0.08 false positives per 
section while maintaining sensitivity. Results of a study for a particular application of the 

Multi-MTANN are presented as follows. Thus, the Multi-MTANN reduced a large number of false 
positives compared to a single MTANN, and the Multi
MTANN is useful for reducing false positives in CAD 
schemes for lung nodule detection in low-dose CT. 

MTANN can detect normal structures in addition to 
detecting abnormalities (lesions, nodules). FIG. 18(a) shows 

The false positives (non-nodules) reported by a known 45 

CAD scheme were classified into ten groups, and thus the 
Multi-MTANN employed ten MTANNs. Ten nodules and 
ten non-nodules were used as the training cases for each 
MTANN. Therefore, ten nodules and 100 non-nodules were 
used for training the Multi-MTANN. 50 original images of vessels (normal structures) input to an 

MTANN that had been trained on input images containing 
medium-size vessels (normal structures) in vertical and 
horizontal directions. FIG. 18(b) shows the output images of 

Examples of the training cases in 40 by 40 pixel regions 
are shown in FIGS. 11 and 12(a). Non-nodules for MTANN 
No. 1 to No. 5 ranged from medium-size vessels to small 
peripheral vessels. Non-nodules for MTANN No. 6 to No. 
10 were large vessels in the hilum, relatively larger-size 55 

vessels with some opacities, soft-tissue opacities caused by 
the partial volume effect between peripheral vessels and the 
diaphragm, soft-tissue opacities caused by the diaphragm or 
the heart, and some abnormal opacities (focal infiltrative 
opacities), respectively. All parameters of the multi- 60 

MTANN were the same as the parameters of the single 
MTANN. 

the trained MTANN, demonstrating that the MTANN can 
effectively detect medium-size vessels in the vertical and the 
horizontal directions. MTANNs trained in this manner are of 
particular use as components of a multi-MTANN. 

The inventive system conveniently may be implemented 
using a conventional general purpose computer or micro
processor programmed according to the teachings of the 
present invention, as will be apparent to those skilled in the 
computer art. Appropriate software can readily be prepared 
by programmers of ordinary skill based on the teachings of 
the present disclosure, as will be apparent to those skilled in 

The training of each MTANN was performed on 500,000 
epochs. The trainings converged with a mean absolute error 
between 6.9% and 14.7%. Each of the trainings took 29.8 
hours on a PC-based workstation (CPU: Pentium IV 1.7 
GHz). 

65 the software art. 
In a particular preferred embodiment, the artificial neural 

network was programmed in software using the C program-
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ming language on a Linux based machine. Of course, other 
suitable programming languages operating with other avail
able operating systems may be chosen to implement the 
invention. 

26 
The invention may be applied to virtually any field in 

which a target pattern must be distinguished from other 
patterns in image(s). The MTANN distinguishes target 
objects ( or areas) from others by using pattern (feature) 

A general-purpose computer may implement the method 5 differences: artificial neural networks, trained as described 
above, can detect target objects (or areas) that humans might 
intuitively recognize at a glance. For example, the invention 
may be applied to these fields, in addition to the medical 

of the present invention, wherein the computer housing 
houses a motherboard which contains a CPU ( central pro
cessing unit), memory such as DRAM (dynamic random 
access memory), ROM (read-only memory), EPROM 
(erasable programmable read-only memory), EEPROM 

10 
( electrically erasable programmable read-only memory), 
SRAM (static random access memory), SDRAM 
(synchronous dynamic random access memory), and Flash 
RAM (random access memory), and other optical special 
purpose logic devices such as ASICs (application-specific 
integrated circuits) or configurable logic devices such GAL 15 

(generic array logic) and reprogrammable FPGAs (field 
programmable gate arrays ). 

The computer may also include plural input devices, ( e.g., 
keyboard and mouse), and a display card for controlling a 
monitor. Additionally, the computer may include a floppy 20 

disk drive; other removable media devices (e.g. compact 
disc, tape, and removable magneto-optical media); and a 
hard disk or other fixed high density media drives, connected 
using an appropriate device bus such as a SCSI (small 
computer system interface) bus, an Enhanced IDE 25 

(integrated drive electronics) bus, or an Ultra DMA (direct 
memory access) bus. The computer may also include a 
compact disc reader, a compact disc reader/writer unit, or a 
compact disc jukebox, which may be connected to the same 
device bus or to another device bus. 30 

As stated above, the system includes at least one computer 
readable medium. Examples of computer readable media 
include compact discs, hard disks, floppy disks, tape, 
magneto-optical disks, PROMs (e.g., EPROM, EEPROM, 
Flash EPROM), DRAM, SRAM, SDRAM, etc. Stored on 35 

any one or on a combination of computer readable media, 
the present invention includes software for controlling both 
the hardware of the computer and for enabling the computer 
to interact with a human user. Such software may include, 
but is not limited to, device drivers, operating systems and 40 

user applications, such as development tools. 
Such computer readable media further includes the com

puter program product of the present invention for perform
ing the inventive method herein disclosed. The computer 
code devices of the present invention can be any interpreted 45 

or executable code mechanism, including but not limited to, 
scripts, interpreters, dynamic link libraries, Java classes, and 
complete executable programs. 

Moreover, parts of the processing of the present invention 
may be distributed for better performance, reliability, and/or 50 

cost. For example, an outline or image may be selected on 
a first computer and sent to a second computer for remote 
diagnosis. 

The invention may also be implemented by the prepara
tion of application specific integrated circuits (ASICs) or by 55 

interconnecting an appropriate network of conventional 
component circuits, as will be readily apparent to those 
skilled in the art. 

imaging application that is described above: 

Detection of other vehicles, white line lane markers, 
traffic signals, pedestrians, and other obstacles in road 
images, 

Detection of eyes, mouths, and noses in facial images, 

Detection of fingerprints in "dust" images, 

Detection of faulty wiring in semiconductor integrated 
circuit pattern images, 

Detection of mechanical parts in robotic eye images, 
Detection of guns, knives, box cutters, or other weapons 

or prohibited items in X-ray images of baggage, 

Detection of airplane shadows, submarine shadows, 
schools of fish, and other objects, in radar or sonar 
images, 

Detection of missiles, missile launchers, tanks, personnel 
carriers, or other potential military targets, in military 
images, 

Detection of weather pattern structures such as rain 
clouds, thunderstorms, incipient tornadoes or 
hurricanes, and the like, in satellite and radar images, 

Detection of areas of vegetation from satellite or high
altitude aircraft images, 

Detection of patterns in woven fabrics, for example, using 
texture analysis, 

Detection of seismic or geologic patterns, for use in oil or 
mineral prospecting, 

Detection of stars, nebulae, galaxies, 
structures in telescope images, 

And so forth. 

and other cosmic 

The various applications of detection, exemplified in the 
list above, can be succeeded by a distinction of one specific 
target structure from another specific structure, once they 
have been detected. For example, after a fingerprint is 
detected in a "dust" image, the detected fingerprint can be 
compared to suspects' fingerprints to verify or disprove the 
identify of the person leaving the detected fingerprint. 

More generally, the inventive MTANN can identify target 
objects ( or areas) in images, if there are specific patterns ( or 
features) that represent those objects or areas. The patterns 
or features may include: 

texture, 

average gray level, 

spatial frequency, 
orientation, 
scale, 
shape, 
and so forth. 

60 Thus, it is seen that the functionality and applicability of the 
inventive MTANN extends far beyond analysis of medical 

The invention is embodied in trained artificial neural 
networks, in arrangements for training such artificial neural 
networks, and in systems including both the network portion 
and the training portions. Of course, the invention provides 
methods of training and methods of execution. Moreover, 
the invention provides computer program products storing 
program instructions for execution on a computer system, 65 

which when executed by the computer system, cause the 
computer system to perform the methods described herein. 

images. 
Numerous modifications and variations of the present 

invention are possible in light of the above teachings. For 
example, the invention may be applied to images other than 
low-dose CT lung images. Further, the particular technique 
of training the artificial neural network, the particular archi-
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tecture of the artificial neural network, the particular filtering 
of the output of the artificial neural network, the particular 
likelihood distribution used in a training teacher image, and 
the particular training medical images, may be varied with
out departing from the scope of the invention. Of course, the 5 

particular hardware or software implementation of the 
invention may be varied while still remaining within the 
scope of the present invention. It is therefore to be under
stood that within the scope of the appended claims and their 
equivalents, the invention may be practiced otherwise than 10 

as specifically described herein. 
What is claimed as new and desired to be secured by 

Letters Patent of the United States is: 
1. A method of training an artificial neural network 

including network parameters that govern how the artificial 15 

neural network operates the method comprising: 

receiving at least a training image including plural train
ing image pixels; 

28 
receiving the Gaussian distribution map having a standard 

deviation proportional to a size of the abnormality. 
7. The method of claim 2, wherein the local window 

moving step includes: 

scanning the local window across consecutively physi
cally overlapping sub-regions of the training medical 
image by moving the local window a predetermined 
distance for each sub-region. 

8. The method of claim 7, wherein the local window 
moving step includes: 

scanning the local window across the consecutively 
physically overlapping sub-regions of the training 
medical image by moving the local window a prede
termined distance equal to a pixel pitch value in the 
training medical image, so that successive sub-regions 
are offset from each other by a separation distance of 
adjacent pixels in the training medical image. 

receiving at least a likelihood distribution map as a 
teacher image, the teacher image including plural 
teacher image pixels each having a pixel value indi
cating likelihood that a respective training image pixel 

9. A method of detecting an abnormality in a medical 
20 image by using an artificial neural network, the method 

is part of a target structure; 
moving a local window across plural sub-regions of the 

25 
training image to obtain respective sub-region pixel 
sets; 

inputting the sub-region pixel sets to the artificial neural 
network so that the artificial neural network provides 
output pixel values; 

comparing the output pixel values to corresponding 
teacher image pixel values to determine an error; and 

training the network parameters of the artificial neural 
network to reduce the error. 

2. The method of claim 1, wherein: 
the training image receiving step includes receiving at 

least a training medical image; and 

30 

35 

comprising: 

training the artificial neural network using the method of 
claim 2; 

scanning a local window across consecutively physically 
overlapping sub-regions of the medical image by mov
ing the local window a predetermined distance for each 
sub-region, so as to obtain respective sub-region pixel 
sets; 

inputting the sub-region pixel sets into the artificial neural 
network so that the artificial neural network provides, 
corresponding to the sub-regions, respective output 
pixel values that each represent a likelihood that 
respective medical image pixels are part of an 
abnormality, the output pixel values collectively con
stituting a likelihood distribution map; and 

scoring the likelihood distribution map to detect the 
abnormality. the local window moving step includes moving the local 

window across the plural sub-regions of the training 
medical image to obtain the respective sub-region pixel 
sets. 

10. An artificial neural network including network param-
40 eters that govern how the artificial neural network operates, 

the artificial neural network being trained by the steps of: 
3. The method of claim 2, wherein the step of receiving 

at least a training medical image includes: 
receiving one or more training medical images that 

include an abnormality and a normal anatomical struc- 45 

ture. 
4. The method of claim 3, further comprising: 
coordinating the step of receiving at least an abnormality 

likelihood distribution map and the step of receiving at 
50 

least a training medical image, so that: 
(1) when the training medical image includes an 

abnormality, the teacher image pixel values represent 
likelihoods that corresponding training medical image 
pixels are part of an abnormality; and 

(2) when the training medical image does not include an 
abnormality, the teacher image pixel values represent 
an absence of an abnormality at corresponding training 
medical image pixel locations. 

55 

5. The method of claim 4, wherein, when the training 60 
medical image includes an abnormality, the step of receiving 
the teacher image includes: 

receiving a Gaussian distribution map whose pixels have 
respective pixel values that represent a likelihood that 
the pixel is part of an abnormality. 

6. The method of claim 5, wherein the step of receiving 
a Gaussian distribution map includes: 

65 

receiving at least a training image including plural train
ing image pixels; 

receiving at least a likelihood distribution map as a 
teacher image, the teacher image including plural 
teacher image pixels each having a pixel value indi
cating a likelihood that a respective training image 
pixel is part of a target structure; 

moving a local window across plural sub-regions of the 
training image to obtain respective sub-region pixel 
sets; 

inputting the sub-region pixel sets to the artificial neural 
network so that the artificial neural network provides 
output pixel values; 

comparing the output pixel values to corresponding 
teacher image pixel values to determine an error; and 

training the network parameters of the artificial neural 
network to reduce the error. 

11. The artificial neural network of claim 10, wherein: 

the training image receiving step includes receiving at 
least a training medical image; and 

the local window moving step includes moving the local 
window across the plural sub-regions of the training 
medical image to obtain the respective sub-region pixel 
sets. 
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12. The artificial neural network of claim 11, wherein the 
step of receiving at least a training medical image includes: 

receiving one or more training medical images that 
include an abnormality and a normal anatomical struc
ture. 

13. The artificial neural network of claim 12, trained by 
the additional steps of: 

5 

30 
19. The computer program product of claim 18, wherein: 

the training image receiving step includes receiving at 
least a training medical image; and 

the local window moving step includes moving the local 
window a across the plural sub-regions of the training 
medical image to obtain the respective sub-region pixel 
sets. coordinating the step of receiving at least an abnormality 

likelihood distribution map and the step of receiving at 
least a training medical image, so that: 

(1) when the training medical image includes an 
abnormality, the teacher image pixel values represent 
likelihoods that corresponding training medical image 
pixels are part of an abnormality; and 

20. The computer program product of claim 19, wherein 
the step of receiving at least a training medical image 

10 includes: 

(2) when the training medical image does not include an 15 

abnormality, the teacher image pixel values represent 
an absence of an abnormality at corresponding training 
medical image pixel locations. 

14. The artificial neural network of claim 13, wherein, 
when the training medical image includes an abnormality, 20 

the step of receiving the teacher image includes: 
receiving a Gaussian distribution map whose pixels have 

respective pixel values that represent a likelihood that 
the pixel is part of an abnormality. 

15. The artificial neural network of claim 14, wherein the 25 

step of receiving a Gaussian distribution map includes: 
receiving the Gaussian distribution map having a standard 

deviation proportional to a size of the abnormality. 
16. The artificial neural network of claim 11, wherein the 

local window moving step includes: 30 

rece1vmg one or more training medical images that 
include an abnormality and a normal anatomical struc
ture. 

21. The computer program product of claim 20 storing 
further program instructions for execution on the computer 
system, which when executed by the computer system, 
cause the computer system to train an artificial neural 
network having network parameters that govern how the 
artificial neural network operates by performing the addi
tional steps of: 

coordinating the step of receiving at least an abnormality 
likelihood distribution map and the step of receiving at 
least a training medical image, so that: 

(1) when the training medical image includes an 
abnormality, the teacher image pixel values represent 
likelihoods that corresponding training medical image 
pixels are part of an abnormality; and 

(2) when the training medical image does not include an 
abnormality, the teacher image pixel values represent 
an absence of an abnormality at corresponding training 
medical image pixel locations. 

scanning the local window across consecutively physi
cally overlapping sub-regions of the training medical 
image by moving the local window a predetermined 
distance for each sub-region. 

17. The artificial neural network of claim 16, wherein the 
local window moving step includes: 

22. The computer program product of claim 21, wherein, 
when the training medical image includes an abnormality, 

35 the step of receiving the teacher image includes: 
receiving a Gaussian distribution map whose pixels have 

respective pixel values that represent a likelihood that 
the pixel is part of an abnormality. 

scanning the local window across the consecutively 
physically overlapping sub-regions of the training 
medical image by moving the local window a prede
termined distance equal to a pixel pitch value in the 
training medical image, so that successive sub-regions 
are offset from each other by a separation distance of 
adjacent pixels in the training medical image. 

23. The computer program product of claim 22, wherein 
40 the step of receiving a Gaussian distribution map includes: 

receiving the Gaussian distribution map having a standard 
deviation proportional to a size of the abnormality. 

24. The computer program product of claim 19, wherein 

45 
18. A computer program product storing program instruc

tions for execution on a computer system, which when 
executed by the computer system, cause the computer sys
tem to train an artificial neural network having network 
parameters that govern how the artificial neural network 
operates by performing the steps of: 

50 
receiving at least a training image including plural train-

ing image pixels; 
receiving at least a likelihood distribution map as a 

teacher image, the teacher image including plural 
teacher image pixels each having a pixel value indi-

55 
eating a likelihood that a respective training image 
pixel is part of a target structure; 

the local window moving step includes: 
scanning the local window across consecutively physi

cally overlapping sub-regions of the training medical 
image by moving the local window a predetermined 
distance for each sub-region. 

25. The computer program product of claim 24, wherein 
the local window moving step includes: 

scanning the local window across the consecutively 
physically overlapping sub-regions of the training 
medical image by moving the local window a prede
termined distance equal to a pixel pitch value in the 
training medical image, so that successive sub-regions 
are offset from each other by a separation distance of 
adjacent pixels in the training medical image. moving a local window across plural sub-regions of the 

training image to obtain respective sub-region pixel 
sets; 

26. A method of detecting a target structure in an image 

60 by using an artificial neural network, the method compris-
inputting the sub-region pixel sets to the artificial neural 

network so that the artificial neural network provides 
output pixel values; 

comparing the output pixel values to corresponding 
teacher image pixel values to determine an error; and 65 

training the network parameters of the artificial neural 
network to reduce the error. 

ing: 
scanning a local window across sub-regions of the image 

by moving the local window for each sub-region, so as 
to obtain respective sub-region pixel sets; 

inputting the sub-region pixel sets to the artificial neural 
network so that the artificial neural network provides, 
corresponding to the sub-regions, respective output 
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pixel values that represent likelihoods that respective 
image pixels are part of a target structure, the output 
pixel values collectively constituting a likelihood dis
tribution map; and 

scoring the likelihood distribution map to detect the target 5 

structure. 
27. The method of claim 26, wherein: 
the image is a medical image; 

the target structure is an abnormality m the medical 
10 

image; 

the scanning step includes scanning the local window 
across sub-regions of the medical image; 

the artificial neural network provides the respective output 
pixel values that represent the likelihoods that the 15 

respective medical image pixels are part of an abnor
mality; and 

the scoring step includes scoring the likelihood distribu
tion map to detect the abnormality. 

28. The method of claim 27, wherein the scanning step 20 

includes: 

32 
the target structure 1s an abnormality m the medical 

image; 
the mechanism for scanning includes means for scanning 

the local window across sub-regions of the medical 
image; 

the artificial neural network is configured to output the 
respective output pixel values that represent the likeli
hoods that the respective medical image pixels are part 
of an abnormality; and 

the mechanism for scoring includes means for scoring the 
likelihood distribution map to detect the abnormality. 

36. The artificial neural network system of claim 35, 
wherein the mechanism for scanning includes: 

means for scanning the local window across consecu
tively physically overlapping sub-regions of the medi
cal image by moving the local window a predetermined 
distance for each sub-region, so as to obtain respective 
sub-region pixel sets. 

37. The artificial neural network system of claim 36, 
wherein: 

the predetermined distance is a pixel pitch value in the 
medical image, so that successive sub-regions are offset 
from each other by a separation distance of adjacent 
pixels in the medical image. 

scanning the local window across consecutively physi
cally overlapping sub-regions of the medical image by 
moving the local window a predetermined distance for 
each sub-region, so as to obtain respective sub-region 
pixel sets. 

38. The artificial neural network system of claim 36, 
25 wherein the means for scoring includes: 

29. The method of claim 28, wherein: 

the predetermined distance is a pixel pitch value in the 
medical image, so that successive sub-regions are offset 

30 
from each other by a separation distance of adjacent 
pixels in the medical image. 

a filter configured to filter the output pixel values in the 
likelihood distribution map. 

39. The artificial neural network system of claim 38, 
further comprising: 

a comparing mechanism for comparing results of the 
means for filtering to at least a threshold value to detect 
the abnormality. 30. The method of claim 28, wherein the scoring step 

includes: 

filtering the output pixel values in the likelihood distri
bution map. 

40. The artificial neural network system of claim 38, 
wherein the filter is configured to filter the output pixel 

35 values with a Gaussian function. 

31. The method of claim 30, further comprising: 
comparing results of the filtering to at least a threshold 

value to detect the abnormality. 
32. The method of claim 30, wherein the filtering step 40 

includes: 
filtering the output pixel values with a Gaussian function. 
33. The method of claim 28, wherein the artificial neural 

network includes: 
an output layer including units having linear activation 45 

functions. 
34. An artificial neural network system, comprising: 
an artificial neural network configured to detect a target 

structure in an image; 
a scanning mechanism configured to scan a local window 

across sub-regions of the image by moving the local 
window for each sub-region, so as to obtain respective 
sub-region pixel sets: 

50 

an inputting mechanism configured to input the sub- 55 
region pixel sets to the artificial neural network so that 
the artificial neural network provides, corresponding to 
the sub-regions, respective output pixel values that 
represent likelihoods that respective image pixels are 
part of the target structure, the output pixel values 60 
collectively constituting a likelihood distribution map; 
and 

a scoring mechanism configured to score the likelihood 
distribution map to detect the target structure. 

35. The artificial neural network system of claim 34, 65 

wherein: 
the image is a medical image; 

41. The artificial neural network system of claim 36, 
wherein the artificial neural network includes: 

an output layer including units having linear activation 
functions. 

42. A computer program product storing program instruc
tions for execution on a computer system, which when 
executed by the computer system, cause the computer sys
tem to detect a target structure in an image by using an 
artificial neural network by performing the steps of: 

scanning a local window across sub-regions of the image 
by moving the local window for each sub-region, so as 
to obtain respective sub-region pixel sets; 

inputting the sub-region pixel sets to the artificial neural 
network so that the artificial neural network provides 
corresponding to the sub-regions respective output 
pixel values that represent likelihoods that respective 
image pixels are part of a target structure, the output 
pixel values collectively constituting a likelihood dis
tribution map; and 

scoring the likelihood distribution map to detect the target 
structure. 

43. The computer program product of claim 42, wherein: 
the image is a medical image; 
the target structure is an abnormality in the medical 

image; 
the scanning step includes scanning the local window 

across sub-regions of the medical image; 
the artificial neural network provides the respective output 

pixel values that represent the likelihoods that the 
respective medical image pixels are part of an abnor
mality; and 
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the scoring step includes scoring the likelihood distribu
tion map to detect the abnormality. 

44. The computer program product of claim 43, wherein 
the scanning step includes: 

scanning the local window across consecutively physi- 5 

cally overlapping sub-regions of the medical image by 
moving the local window a predetermined distance for 
each sub-region, so as to obtain respective sub-region 
pixel sets. 

45. The computer program product of claim 44, wherein: 10 

the predetermined distance is a pixel pitch value in the 
medical image, so that successive sub-regions are offset 
from each other by a separation distance of adjacent 
pixels in the medical image. 

46. The computer program product of claim 44, wherein 15 

the scoring step includes: 

filtering the output pixel values in the likelihood distri
bution map. 

47. The computer program product of claim 46 storing 
20 

program instructions for execution on the computer system, 
which when executed by the computer system, cause the 
computer system to detect a target structure in an image by 
using an a artificial neural network by performing the 
additional steps of: 

25 
comparing results of the filtering to at least a threshold 

value to detect the abnormality. 
48. The computer program product of claim 46, wherein 

the filtering step includes: 
filtering the output pixel values with a Gaussian function. 30 

49. The computer program product of claim 44, wherein 
the artificial neural network includes: 

an output layer including units having linear activation 
functions. 

50. An apparatus for detecting a target structure in an 35 

image, the apparatus comprising: 
a network configured to receive sub-region pixel sets from 

respective sub-regions of the image, and to operate on 
the sub-region pixel sets so as to produce a likelihood 
distribution map including output pixel values that 40 

represent likelihoods that corresponding image pixels 
are part of the target structure. 

51. The apparatus of claim 50, wherein: 
the image is a medical image; 
the target structure is an abnormality in the medical 

45 

image; and 
the network is configured to receive the sub-region pixel 

sets from the respective sub-regions of the medical 
image, and to operate on the sub-region pixel sets so as 50 
to produce the likelihood distribution map including 
the output pixel values that represent the likelihoods 
that corresponding medical image pixels are part of the 
abnormality. 

52. The apparatus of claim 51, comprising: 
a pixel set generation mechanism configured to apply to 

the network sub-region pixel sets from respective con
secutively physically overlapping sub-regions of the 
medical image. 

55 

53. The apparatus of claim 52, wherein the network 60 
operates in accordance with network parameters, and the 
apparatus further comprises: 

a training portion configured to train the network param
eters in accordance with (a) teacher image pixel values 
that represent a likelihood distribution of pixels por- 65 

traying a detected abnormality, and (b) a training period 
likelihood distribution map that includes output pixels 

34 
produced by the network operating on at least one 
training medical image, the output pixels respectively 
representing likelihoods that corresponding medical 
image pixels are part of the abnormality. 

54. The apparatus of claim 53, wherein: 
the network is further configured to receive, during a 

training period, sub-region pixel sets from respective 
consecutively physically overlapping sub-regions of 
the at least one training medical image, and to operate 
in accordance with the network parameters on the 
sub-region pixel sets so as to produce the training 
period likelihood distribution map. 

55. An apparatus for detecting an abnormality in a medi
cal image, the apparatus comprising: 

first through N-th artificial neural networks constituting 
respective apparatus formed in accordance with any of 
claims 52, 53 or 54, N being an integer greater than 1, 
that have been commonly trained on a same abnormal
ity and on first through N-th mutually different normal 
structures, the first through N-th artificial neural net
works being configured to output first through N-th 
respective indications of whether a structure in the 
medical image is an abnormality or a normal anatomi
cal structure; and 

a combiner that is configured to combine the first through 
N-th indications to form a combined indication of 
whether the structure in the medical image is an abnor
mality or a normal anatomical structure. 

56. A method for detecting an abnormality in a medical 
image, the method comprising: 

training first through N-th artificial neural networks con
stituting respective apparatus formed in accordance 
with any of claims 52, 53 or 54, N being an integer 
greater than 1, on a same abnormality and on first 
through N-th mutually different normal an anatomical 
structures, the first through N-th artificial neural net
works being configured to output first through N-th 
respective indications of whether the medical image 
includes an abnormality or a normal anatomical struc
ture; and 

combining the first through N-th indications to form a 
combined indication of whether the medical image 
includes an abnormality or a normal anatomical struc
ture. 

57. The apparatus of any of claims 52, 53 or 54, wherein: 
the network constitutes an artificial neural network. 

58. The apparatus of claim 57, wherein the artificial neural 
network includes: 

an output layer including at least one unit having a linear 
activation function. 

59. The apparatus of either of claims 53 or 54, wherein the 
likelihood distribution constitutes: 

a Gaussian function centered about a center of a portrayal 
of a detected abnormality. 

60. The apparatus of claim 59, wherein: 
a standard deviation of the Gaussian function varies with 

a size of the portrayal of the detected abnormality. 
61. The apparatus of claim 52, further comprising: 
a filter configured to receive the likelihood distribution 

map from the network and to provide a score whose 
value indicates whether the medical image includes an 
abnormality. 

62. The apparatus of claim 52, wherein the pixel set 
generation mechanism comprises: 

a scanning mechanism configured to scan a local window 
across an input image by moving the local window a 
predetermined distance for each sub-region. 
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63. The apparatus of claim 62, wherein: 

the predetermined distance is a pixel pitch value in the 
input image, so that successive sub-regions are offset 
from each other by a separation distance of adjacent 
pixels in the input image. 

64. A method for detecting a target structure in an image, 
the method comprising: 

5 

training first through N-th artificial neural networks, N 
being an integer greater than 1, on either (A) a same 
target structure and first through N-th mutually differ- 10 

ent non-target structures, or (B) a same non-target 
structure and first through N-th mutually different tar
get structures, the first through N-th artificial neural 
networks being configured to output first through N-th 
respective indications of whether the image includes a 15 

target structure or a non-target structure; and 
combining the first through N-th indications to form a 

combined indication of whether the image includes a 
target structure or a non-target structure. 

65. The method of claim 64, wherein: 
the image is a medical image; 
the target structure is an abnormality m the medical 

image; 

20 

the non-target structures are normal anatomical structures; 25 

the training step includes training the first through N-th 
artificial neural networks on either (A) a same abnor
mality and first through N-th mutually different normal 
anatomical structures, or (B) a same normal anatomical 
structure and first through N-th mutually different 30 

abnormalities, the first through N-th artificial neural 
networks being configured to output first through N-th 
respective indications of whether the medical image 
includes an abnormality or a normal anatomical struc
ture; and 35 

the combining step includes combining the first through 
N-th indications to form a combined indication of 
whether the medical image includes an abnormality or 
a normal anatomical structure. 

66. The method of claim 65, wherein the training step 40 

includes: 
training first through N-th artificial neural networks on the 

same abnormality and on the first through N-th mutu
ally different normal anatomical structures. 

67. The method of claim 66, wherein the combining step 45 

includes: 

36 
large vessels in the hilum; 
large vessels with opacities; 
medium-sized vessels; 
small vessels; 
soft-tissue opacities caused by a heart; 
soft-tissue opacities caused by a diaphragm; 
soft-tissue opacities caused by a partial volume 

between peripheral vessels and the diaphragm; 
abnormal opacities; and 
focal infiltrative opacities. 

effect 

71. A computer program product storing program instruc
tions for execution on a computer system, which when 
executed by the computer system, cause the computer sys
tem to detect a target structure in an image by performing the 
steps of: 

training first through N-th artificial neural networks, N 
being an integer greater than 1, on either (A) a same 
target structure and first through N-th mutually differ
ent non-target structures, or (B) a same non-target 
structure and first through N-th mutually different tar-
get structures, the first through N-th artificial neural 
networks being configured to output first through N-th 
respective indications of whether the image includes a 
target structure or a non-target structure; and 

combining the first through N-th indications to form a 
combined in indication of whether the image includes 
a target structure or a non-target structure. 

72. The computer program product of claim 71, wherein: 
the image is a medical image; 
the target structure is an abnormality in the medical 

image; 
the non-target structures are normal anatomical structures; 
the training step includes training the first through N-th 

artificial neural networks on either (A) a same abnor
mality and first through N-th mutually different normal 
anatomical structures, or (B) a same normal anatomical 
structure and first through N-th mutually different 
abnormalities, the first through N-th artificial neural 
networks being configured to output first through N-th 
respective indications of whether the medical image 
includes an abnormality or a normal anatomical struc
ture; and 

the combining step includes combining the first through 
N-th indications to form a combined indication of 
whether the medical image includes an abnormality or 
a normal anatomical structure. providing a combined indication of an abnormality using 

a logical AND combiner. 
68. The method of claim 67, wherein the combining step 

includes: 

73. The computer program product of claim 72, wherein 

50 
the training step includes: 

first through N-th artificial neural networks on the same 
abnormality and on the first through N-th mutually 
different normal anatomical structures. 

providing a combined indication of an abnormality, only 
if all first through N-th respective indications indicate 
an abnormality. 

69. The method of claim 65, wherein: 
74. The computer program product of claim 73, wherein 

55 the combining step includes: 
the training step includes training first through N-th 

artificial neural networks on the same normal anatomi
cal structure and on the first through N-th mutually 
different abnormalities; and 

the combining step includes providing a combined indi- 60 

cation of a normal anatomical structure, only if all first 
through N-th respective indications indicate a normal 
anatomical structure. 

70. The method of claim 65, wherein the training step 
includes training the artificial neural networks using a nor- 65 

mal anatomical structure include at least one from a group 
including: 

providing a combined indication of an abnormality using 
a logical AND combiner. 

75. The computer program product of claim 74, wherein 
the combining step includes: 

providing a combined indication of an abnormality, only 
if all first through N-th respective indications indicate 
an abnormality. 

76. The computer program product of claim 72, wherein: 
the training step includes training first through N-th 

artificial neural networks on the same normal anatomi
cal structure and on the first through N-th mutually 
different abnormalities; and 
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the combining step includes providing a combined indi
cation of abnormal anatomical structure, only if all first 
through N-th respective indications indicate a normal 
anatomical structure. 

77. The computer program product of claim 72, wherein 5 

he training step includes training the artificial neural net
works using a normal anatomical structure include at least 
one from a group including: 

large vessels in the hilum; 

large vessels with opacities; 
medium-sized vessels; 

small vessels; 

soft-tissue opacities caused by a heart; 

soft-tissue opacities caused by a diaphragm; 

soft-tissue opacities caused by a partial volume effect 
between peripheral vessels and the diaphragm; 

abnormal opacities; and 

10 

15 

focal infiltrative opacities. 20 
78. An apparatus for detecting a target structure m an 

image, the apparatus comprising: 
first through N-th artificial neural networks, N being an 

integer greater than 1, that have been trained on either 
(A) a same target structure and first through N-th 25 

mutually different non-target structures, or (B) a same 
non-target structure and first through N-th mutually 
different target structures, the first through N-th artifi
cial neural networks being configured to output first 
through N-th respective indications of whether the 30 

image includes a target structure or a non-target struc
ture; and 

a combiner configured to combine the first through N-th 
indications to form a combined indication of whether 
the medical image includes a target structure or a 35 

non-target structure. 
79. The apparatus of claim 78, wherein: 

the image is a medical image; 

the target structure is an abnormality in the medical 
40 

image; 

the non-target structures are normal anatomical structures; 

the first through N-th artificial neural networks have been 
trained on either (A) a same abnormality and first 
through N-th mutually different normal anatomical 45 

structures, or (B) a same normal anatomical structure 
and first through N-th mutually different abnormalities, 

38 
the first through N-th artificial neural networks being 
configured to output first through N-th respective indi
cations of whether the medical image includes an 
abnormality or a normal anatomical structure; and 

the combiner is configured to combine the first through 
N-th indications to form the combined indication of 
whether the medical image includes an abnormality or 
a normal anatomical structure. 

80. The apparatus of claim 79, wherein: 

the artificial neural networks have been trained on a same 
abnormality and first through N-th mutually different 
normal anatomical structures. 

81. The apparatus of claim 80, wherein the combiner 
includes: 

a logical AND combiner that provides a combined indi
cation of an abnormality. 

82. The apparatus of claim 81, wherein the combiner 
includes: 

a logical AND combiner that provides a combined indi
cation of an abnormality, only if all first through N-th 
respective indications indicate an abnormality. 

83. The apparatus of claim 79, herein: 

the artificial neural networks have been trained on a same 
normal anatomical structure and first through N-th 
mutually different abnormalities; and 

the combiner includes a logical AND combiner that 
provides a combined indication of a normal anatomical 
structure, only if all first through N-th respective indi
cations indicate a normal anatomical structure. 

84. The apparatus of claim 79, wherein the artificial neural 
networks have been trained on a normal anatomical structure 
include at least one from a group including: 

large vessels in the hilum; 

large vessels with opacities; 
medium-sized vessels; 

small vessels; 

soft-tissue opacities caused by a heart; 

soft-tissue opacities caused by a diaphragm; 

soft-tissue opacities caused by a partial volume effect 
between peripheral vessels and the diaphragm; 

abnormal opacities; and 

focal infiltrative opacities. 

* * * * * 


