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Abstract 

I propose the concept of inefficient plunges to characterize asymmetric deviations of the market price 

from the efficient price with the aim of examining the efficient market hypothesis. To gauge market 

inefficiency, I present an asymmetric Fads model, which allows for both inefficient plunges in the 

transitory component and a switching variance in the permanent component by embedding a Markov-

switching process in an unobserved components model. Applying the model to the S&P 500 and the 

FTSE 350 reveals that inefficient plunges are deep, steep, and transient. This finding suggests that 

market inefficiency is a regime-dependent and asymmetric phenomenon, meaning that although the 

U.S. and U.K. stock markets are efficient during normal times, they are considerably below efficient 

prices during crises. Overall, the asymmetric Fads model proposed in this study supports the adaptive 

market hypothesis and casts doubt on the efficient market hypothesis. 
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1. Introduction 

I present an asymmetric Fads model to capture the evolution of stock market inefficiency, which is 

defined as the deviation of the market price from the efficient price. Assuming that the efficient price 

follows a random walk process with a drift, this model reveals regime-dependence and asymmetry 

in market inefficiency: negative deviations during crises tend to be deep and steep, whereas positive 

deviations during non-crisis (normal) periods are negligible. In fact, although the efficient price drops 

during crashes due to expectations of lower future cash flows, the market price tends to overreact 

and drop even further, such that it negatively deviates from the efficient price. I call these negative 

deviations of the market price from the efficient price “inefficient plunges”, a new concept that is 

similar to the idea of “negative bubbles”, proposed in a few recent studies, since they both refer to 

negative deviations of the market price from a hypothetical price. However, there is a distinction 

between these two concepts. Inefficient plunges in this study are defined as negative deviations from 

the efficient price, aiming to better gauge stock market inefficiency in the U.S. and U.K., whereas 

negative bubbles have been defined as negative deviations from the fundamental price.1 

This study, by characterizing inefficient plunges, evaluates the Adaptive Market Hypothesis (AMH) 

proposed by Lo (2004, 2019) against the Efficient Market Hypothesis (EMH) put forth by Samuelson 

(1965) and Fama (1970). The EMH argues that since the market price encompasses all information 

currently available, the future price is unpredictable, and so the market price follows a random walk 

process with a drift, which is referred to as the Random Walk Hypothesis (RWH). This hypothesis 

is entirely built on the Rational Expectations Hypothesis (REH), put forth by Muth (1961) and Lucas 

(1978), which postulates that all investors have rational expectations. However, contrary to the REH, 

behavioural finance suggests that because of biases such as panic and overreaction amid crises and 

greed and overconfidence amid speculative bubbles, a sizeable portion of investors are not always 

rational (Simon, 1955; Arrow, 1982), and hence the market cannot always be efficient (Russell and 

Thaler, 1985). For instance, the Over-Reaction Hypothesis (ORH) proposed by De Bondt and Thaler 

(1985) demonstrates that investors have a tendency to overreact to events, especially negative news. 

Considering the above disagreement, the AMH aims to reconcile the EMH with behavioural finance 

by describing a framework in which rationality and irrationality forces coexist and investors are not 

unboundedly and unchangingly rational. The main hypothesis of this framework states that market 

rationality and, consequently, market inefficiency do not remain constant but instead evolve over 

time. This hypothesis is supported by a growing empirical literature that applies a rolling window 

                                                 
1 The efficient price is not necessarily equal to the fundamental price because the efficient price can exceed the 

fundamental price by the size of positive bubbles. 
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analysis to demonstrate time-variation in market inefficiency, particularly during crisis periods (see, 

e.g., Lim et al., 2008; Anagnostidis et al., 2016; Ito et al., 2016; Noda, 2016; Hill and Motegi, 2019). 

Moreover, according to the established literature on speculative bubbles, which imposes a positive 

sign on bubbles, the occurrence of speculative bubbles is consistent with the REH and EMH. Hence, 

the market price that might contain positive bubbles must still be efficient. In this sense, Blanchard 

and Watson (1982), Tirole (1985), and Diba and Grossman (1988) present a model named Rational 

Bubbles to rationalize the formation of speculative bubbles. Nevertheless, a few theoretical models 

suggest that withdrawal of rational but uninformed investors and binding financial constraints cause 

negative bubbles to form during crises (see, e.g., Barlevy and Veronesi, 2003; Yuan, 2005; Cao et 

al., 2016; Emery, 2021), and a handful of empirical studies affirm the possibility of negative bubbles 

during crises, when the market price is lower than its fundamental value (see, e.g., Yan et al., 2012; 

Goetzmann and Kim, 2018). As a result, given the rationality of positive bubbles, one of the main 

culprits of market inefficiency can be attributed to negative bubbles during crises. 

Based on the empirical literature mentioned above, there is a consensus about the EMH: the market 

price does not follow a random walk process with a drift, and the market is not always efficient, in 

particular during crises. However, there are still some unresolved questions about the dynamics of 

market inefficiency. In this regard, this study investigates whether market price deviations from the 

efficient price, which measure market inefficiency, are regime-dependent and asymmetric. To this 

end, I augment the conventional Fads model by taking asymmetric price deviations into account. In 

the proposed Unobserved Components (UC) model, I decompose the market price into its permanent 

and transitory components. The permanent component is specified as a random walk process with a 

drift to reflect the dynamics of the efficient price. Thus, the transitory component, by construction, 

stands for market inefficiency. To accommodate the asymmetry, I incorporate inefficient plunges in 

the transitory component and a concomitant switching variance in the permanent component by using 

a Markov-switching process. Under this setup, therefore, inefficient plunges characterize asymmetric 

market inefficiency during high-variance states. I then evaluate how well the proposed model, which 

I refer to as the asymmetric Fads model, explains stock market stylized facts, including asymmetric 

inefficiency and asymmetric volatility. 

By applying the model to inflation-adjusted S&P 500 and FTSE 350, this study documents regime-

dependence and asymmetry in market inefficiency since the plunging coefficients are -7.07 for the 

U.S. and -5.81 for the U.K. stock markets, with standard errors of 1.04 and 1.27. The likelihood ratios 

for testing the asymmetry are 47.4 and 17.2, respectively, which are far greater than the critical value 

of 10.8 for a conservative 0.1% significance level. Inefficient plunges are deep, steep, and transient, 

which means they reach a notable depth of 10% to 15% during crises, survive the arbitrage process 

for a notable duration of 4.8 and 5.9 months for the U.S. and U.K. stock markets, and then shrink 
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and finally disappear within a couple of additional months, such that the expected duration is short 

for crisis periods and long for non-crisis periods. As a result, although the S&P 500 and FTSE 350 

are efficient during normal times, they are remarkably below efficient prices during crisis periods, 

which comprise at least 20% of their sample. This finding draws a conclusion in favour of the AMH 

of Lo (2004, 2019) over the EMH of Samuelson (1965) and Fama (1970) and supports time-variation 

in market inefficiency with spikes during crises that has been previously recognized indirectly by 

using a rolling window analysis in a few studies. 

Moreover, the observed time-variation in the drift term (inflation-adjusted long-run return) for the 

S&P 500 hints at the presence of positive bubbles in the permanent component. Also, the observation 

of significant inefficient plunges in the transitory components of both stock markets is in accordance 

with the possibility of negative bubbles; however, inefficient plunges are likely larger in magnitude 

than negative bubbles because the former are negative deviations from the efficient price while the 

latter are defined as negative deviations from the fundamental. 

Finally, the asymmetric Fads model, by allowing for inefficient plunges and a concomitant switching 

variance, captures the following stock market’s stylized facts: (1) deep and steep inefficient plunges 

accord with the asymmetric return distribution, meaning that returns are negatively skewed because 

downturns are sharper than upturns (Campbell and Hentschel, 1992; Hong and Stein, 2003; Adrian 

and Rosenberg, 2008, among others). (2) Inefficient plunges that appear alongside concomitant high-

variance states are consistent with asymmetric volatility, implying that the onset of episodes of high 

volatility coincides with episodes of large negative returns (Nelson, 1991; Glosten et al., 1993; Jones 

et al., 2004; Avramov et al., 2006; Bollerslev et al., 2006; Liu et al., 2012; among others). (3) The 

fact that transient inefficient plunges are followed by rebounds that take a few months to fill the gaps 

between market and efficient prices aligns with volatility clustering, indicating that large fluctuations 

in prices are typically followed by further large fluctuations (Engle, 1982, 2004; Bollerslev, 1986), 

which occur more frequently during downturns (Ning et al., 2015). 

This study makes contributions to the literature in two ways. First, it repurposes the UC model with 

Markov-switching to introduce and characterize the new concept of inefficient plunges, with the aim 

of examining the EMH. To my knowledge, this study is the first to capture asymmetric deviations of 

the market price from the efficient price by choosing to model at log levels rather than in differences. 

Second, the existing empirical literature on testing the EMH is insufficient to identify the nature of 

the time-variation in market inefficiency. By contrast, this study explicitly establishes that market 

inefficiency is asymmetric and pinpoints the level of market inefficiency at any given moment during 

crises or normal periods, in contrast to previous works that only provided an approximation of market 

inefficiency by performing correlation or random walk tests based on a rolling window analysis. 



5 

 

The remainder of this paper is organized as follows: Section 2 provides a review on the literature. 

Section 3 describes the data and methodology and justifies the specification of the asymmetric Fads 

model. Section 4 presents the results and robustness tests, and Section 5 provides the concluding 

remarks. 

2. Literature review 

This study lies at the crossroads of four branches in the literature of finance, including the Efficient 

Market Hypothesis (EMH), the Adaptive Market Hypothesis (AMH), Rational Bubbles, and the Fads 

model; each is discussed in this section. 

The EMH, proposed by Samuelson (1965) and Fama (1970), states that the market price reflects all 

available public information. Hence, the price is unpredictable, and no investor can outperform the 

market since the future movement of the price depends only on the newly released information. If 

this is the case, the market price follows a random walk process with a drift, what is referred to as 

the RWH, or weak form of the EMH. 

Empirically, although many studies have explored the RWH for different stock markets by using unit 

root, correlation, or variance ratio tests, Durusu-Ciftci et al. (2019) cite a lack of agreement about 

dynamics of stock market efficiency. The reason for such a debate is that the bulk of the literature 

has tested the RWH under the dubious assumption that market efficiency is an absolute all-or-nothing 

measure that remains constant over time, while it actually appears to be a fuzzy, rather than a binary, 

and time-varying phenomenon (Campbell et al., 1998; Lim and Brook, 2011, Ito et al., 2016). 

Theoretically, EMH relies heavily on the REH, which was originally introduced by Muth (1961) and 

later popularized by Lucas (1978). The REH states that since all investors have rational expectations, 

the market price implied by the investors’ behaviour is essentially the same as the price predicted by 

the theoretical model. In contrast, behavioural finance and economics argue that a sizable number of 

investors in the market are not rational (Simon, 1955; Kahneman and Tversky, 1979; Arrow, 1982; 

among others). In this context, the irrationality reflects itself in various forms of behavioural biases, 

including panic during crises and greed during speculative bubbles, each of which results in market 

inefficiency. As an illustration, De Bondt and Thaler (1985) presented the ORH, which propounds 

the idea that investors overreact to unexpected news. These overreactions contradict the EMH and 

advocate predictability because extreme movements in stock prices will be followed by subsequent 

price movements in the opposite direction. 

The AMH, first introduced by Farmer and Lo (1999) and later formalized by Lo (2004, 2019), tries 

to reconcile the EMH with behavioural finance and economics by establishing a framework in which 

rationality and irrationality forces coexist. In this framework, investors are not unboundedly rational 
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and they have a tendency to find satisfactory heuristic solutions, which are not necessarily optimal, 

to economic challenges. Since the solution of the old regime is not suitable for the new one, investors 

need to adapt their heuristics when the regime changes. This adaptation involves trial and error and 

inevitably behavioural biases in a sizable number of investors, who constitute an irrationality force 

that moves the price away from the efficient level. Inversely, the rest of the investors, who are rational 

and take advantage of arbitrage opportunities, form a rationality force that brings the price back to 

its efficient level. As a result, the AMH describes the confrontation between forces of rationality and 

irrationality. For example, during normal times, rationality predominates over irrationality, such that 

the market price is efficient. Conversely, irrationality prevails over rationality during crisis times and 

leads to a panic-driven deviation from efficiency. Afterwards, once the panic recedes, rationality will 

dominate again, and the market price will revert to its efficient level. This narrative attributes market 

inefficiency to market irrationality, whose magnitude is determined by the proportion of irrational 

investors in the market. 

The AMH raises questions asking to what extent the irrationality force is stronger than the rationality 

force and how long the inefficient price survives the arbitrage process. The EMH and behavioural 

finance respond to these questions in two opposite directions. The former insists that the irrationality 

force is negligible and the inefficient price disappears immediately, but the latter maintains that the 

irrationality force is substantial and the inefficient price lasts for a notable period.2 In response, the 

EMH proponents counter-argue that even if individual irrationality does exist, its effect on the market 

price is negligible as irrational investors account for a small portion of the market and arbitrageurs 

immediately bring the price back to the efficient level. This counter-argument is rejected by Russell 

and Thaler (1985), who state that the presence of some rational agents is not sufficient to guarantee 

the existence of a rational expectations equilibrium. Furthermore, Kindleberger (1989) and Lo (2004) 

provided some anecdotal examples of speculative bubbles, manias, and panic during market crashes, 

which suggest persistent deviations of the market price from the efficient price and thus cast doubt 

on market rationality at the aggregate level. 

The AMH proposes that the composition of the market is changing over time because investors with 

different attitudes and levels of irrationality are entering and leaving the market. Therefore, the level 

of market irrationality and, accordingly, market inefficiency are not constant but instead evolve over 

time. A rapidly growing literature within this context, by relaxing the assumption of constant market 

efficiency, supports the AMH and casts doubt on the EMH (Lim and Brook, 2011). For example, by 

applying a rolling window analysis, Ito and Sugiyama (2009) and Hill and Motegi (2019) document 

a time-variation in market inefficiency, particularly during financial crises, in the U.S. and U.K. stock 

                                                 
2 In this sense, Grossman and Stiglitz (1980) argue that a perfectly efficient market is impossible because traders do 

not have any incentive to acquire costly information unless there is a profit-making arbitrage opportunity. 
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markets. Similarly, Lim et al. (2008), Anagnostidis et al. (2016), and Ito et al. (2016) demonstrated 

that financial crises adversely affect the level of efficiency in the European, Asian, and American 

stock markets. Lastly, Kim et al. (2011), Noda (2016), Le Tran and Leirvik (2019), and Mattera and 

Di Sciorio (2022) constructed time-varying indices for market inefficiency or return predictability 

by using methods that rely on overlapping or non-overlapping rolling windows. Overall, although 

the methods used in all the above studies are based on rolling window analysis, which is not able to 

exactly determine the extent to which the market is inefficient at any given moment in time, they all 

suggest that the market inefficiency is time-varying. 

According to the third branch of the literature, speculative bubbles are defined as positive deviations 

of the market price from the fundamental price that are followed by a burst. For instance, Tulip Mania 

in 1637, the dot-com bubble in the late 1990s, and the real estate bubble in 2005 are three of the most 

notorious bubbles in which asset prices skyrocketed to unreasonably high levels and then collapsed. 

In this context, Blanchard and Watson (1982), Tirole (1985), and Diba and Grossman (1988) present 

the model of Rational Bubbles, as implied by the name, to rationalize the formation of speculative 

bubbles. According to Rational Bubbles, speculative bubbles occur even if all investors have rational 

expectations and are aware that the bubble will eventually burst. 

For clarification, consider a simple example given by Blanchard and Watson (1982), in which the 

speculative bubble either survives by growing at a rate higher than the risk-free rate with probability 

𝕡 or bursts with probability (1 − 𝕡). Clearly, the conventional risk-return trade-off holds true in this 

example because an investor who tolerates the risk of bursting the bubble can be compensated with 

a return higher than the risk-free rate. Speculative bubbles, therefore, are not necessarily inconsistent 

with rationality (Arrow, 1982), because the market price may rationally deviate from its fundamental 

value when investors expect that the speculative bubble will grow further. On this basis, most of the 

literature on speculative bubbles, by imposing a positive sign on bubbles, implicitly rules out the 

possibility of negative bubbles.3 Given this restriction, Blanchard and Watson (1982), Tirole (1985), 

Diba and Grossman (1988), Adam and Szafarz (1992), Lux and Sornette (2002), and Basse (2021), 

among others, substantiate the rationality of speculative bubbles. Therefore, even if the market price 

contains positive bubbles, it must still be efficient, and hence, negative bubbles during crises can be 

one of the potential determinants of market inefficiency and predictability. 

Negative bubbles are defined as negative deviations of the market price from the fundamental. Few 

studies have explored negative bubbles. In particular, Yan et al. (2012) applied the Johansen et al. 

(2000) rational expectation bubbles model to the S&P 500, and Goetzmann and Kim (2018) analysed 

                                                 
3 Few studies allow for both positive and negative bubbles, where asset prices might deviate from their fundamentals 

in either a positive or negative direction (see, e.g., Lux, 1995; Shiller, 2000). 
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101 global stocks to characterize a pattern of crash-and-rebound, which describes how large drops 

can lead to the formation of negative bubbles and how they are typically followed by strong rebounds. 

According to their results, the return following a crash is, on average, 10% higher than normal times. 

This 10% extra rise during the rebound is indeed the mirror image of the excessive drop (negative 

bubbles) during the crash. In a recent study, Emery (2021) has extended the adverse selection model 

of Akerlof (1970) to show that asymmetric information can lead to negative bubbles. The results of 

this study and a few other theoretical works (see, e.g., Barlevy and Veronesi, 2003; Yuan, 2005; Cao 

et al., 2016) demonstrate that a large withdrawal of rational but uninformed investors from the market 

and/or binding financial constraints can lead to a negative bubble to form during crashes. 

The Fads model is a trend-cycle decomposition to examine the possibility of deviations of the market 

price from its fundamental price, which are caused by noisy traders who, based on fashions, fads, 

and sentiments, bid the price away from the fundamental (Shiller et al., 1984; Summers, 1986; Fama 

and French, 1988; Poterba and Summers, 1988; among others). In the conventional Fads model, the 

permanent component usually stands for the fundamental value and is specified as a random walk 

process with a drift. The transitory component (also known as the Fads component) is specified as 

an autoregressive process of order one or two to allow for potential mean-reversion. The estimation 

of a close-to-unity autoregressive coefficient in this setup suggests that market price deviations from 

the fundamental, measured as the Fads component, are transitory but persistent. Indeed, a significant 

and persistent Fads component rejects the EMH since it implies that the market price deviates from 

the fundamental price and slowly returns to it, which induces autocorrelation in returns, enables 

investors to make a predictable profit, and accordingly supports predictability. 

The conventional Fads model, however, does not distinguish between positive and negative bubbles 

since it is subject to two caveats. The first caveat is that the Fads model imposes the transversality 

condition to dismiss the potential presence of positive bubbles inside the permanent component.4 

Consequently, the Fads model tends to confuse the permanent component with the fundamental price, 

whereas there are many studies stating that positive bubbles are not only possible but also rational. 

Hence, the Fads model ignores that the permanent component might exceed the fundamental price 

by the size of a positive bubble, which is fuelled by speculative activities during the boom phase of 

the bubble. As a result, given that Rational Bubbles and the Fads component are two distinct features 

(Camerer, 1989), and U.S. and U.K. stock markets exhibit traces of both (Schaller and Van Norden, 

2002), unaccounted for positive bubbles in the conventional Fads model confound the measurement 

                                                 
4 The efficient price is the sum of the fundamental price (the sum of discounted expected dividends) and speculative 

bubble (the present value of the expected resale price). The transversality condition requires that the present value 

of the expected resale price converge to zero as time goes to infinity. 
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of the permanent and transitory components. To tackle this shortcoming, one can consider requiring 

the permanent component to stand for the efficient price rather than the fundamental price. 

The second shortcoming of the Fads model is that it disregards the asymmetry in deviations of the 

market price from the permanent component, while there is sufficient evidence suggesting that large 

and steep price movements tend to be downward rather than upward (Yuan, 2005). As a result, the 

Fads model is unable to characterize negative deviations as one of the main determinants of market 

inefficiency. In addition, although a few variants of the Fads model have introduced asymmetry into 

the UC model, since these models are specified in differences, they are unable to characterize the 

asymmetric deviations from efficiency, which calls for modelling at levels. For example, Turner et 

al. (1989) and Liu et al. (2012) allow for the asymmetry by including a Markov-switching process 

for the mean and variance of returns, and Kim and Kim (1996) allow for the asymmetry by including 

two independent Markov-switching processes, each accounting for one of the switching variances of 

shocks to the permanent and transitory components of returns. 

Moreover, Turner et al. (1989) and Liu et al. (2012) exclude the transitory component that is essential 

for characterizing price deviations from the efficient price, and Kim and Kim (1996), while including 

a transitory component, do not account for the asymmetry in price deviation. Additionally, the former 

studies assume that the expected return remains constant within each regime, while the latter imposes 

a more restrictive assumption that the expected return is constant across all regimes. Their findings, 

anyhow, indirectly support the concept of asymmetric deviations because the former gives a hint that 

returns during high-variance states are much lower than returns during low-variance states, and the 

latter estimates a transitory component that is often negative. 

3. Data and Methodology 

This study uses monthly data of the S&P 500 index from 1948M1 to 2022M12 and the FTSE 350 

index from 1986M1 to 2022M12, obtained from Bloomberg. I apply models to these indices without 

dividends reinvested, yet the results are not sensitive to the choice of dividend reinvestment. I adjust 

each monthly index for inflation by dividing it by the consumer price index of the corresponding 

country. For robustness tests, I also use nominal indices at daily, weekly, and monthly frequencies. 

Regarding the application of the trend-cycle decomposition in finance and economics, the bulk of 

studies have used different versions of the UC models of Harvey (1985) and Clark (1987). The 

conventional Fads model, particularly, is a UC model that discards the possibility of asymmetric 

price deviations from efficiency, even though they seem plausible. Meanwhile, several studies in 

economics have applied the UC model with Markov-switching to explain business cycle asymmetries 

(see, e.g., Kim and Nelson, 1999a), and few studies in finance have used the UC model with Markov-

switching to examine regime-dependent returns (Turner et al., 1989; Liu et al., 2012) and transient 
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Fads (Kim and Kim, 1996). With this in mind, I augment the Fads model to address its shortcomings 

and, more importantly, to repurpose the UC model with Markov-switching to examine the EMH. 

I decompose the market price into the permanent and transitory components, which correspond to 

the efficient price and inefficient plunges, respectively. I preserve positive bubbles, together with the 

fundamental price, in the permanent component and specify it as a random walk process with a drift.5 

The transitory component (also called the Fads component) is specified as an autoregressive process 

of order two to account for the potential persistency during the price rebound. To accommodate the 

asymmetry, I incorporate inefficient plunges in the transitory component and a switching variance in 

the permanent component by employing a Markov-switching process of Hamilton (1989). I cast the 

model in a state-space form with Markov-switching to estimate it by using Kim's (1994) approximate 

maximum likelihood method.6 I test the main model against symmetric alternatives based on a set of 

pairwise comparisons of the log likelihood values of competing models. 

3.1. The asymmetric Fads model 

Within a univariate model of trend-cycle decomposition, consider Eq. (1), in which the actual market 

price is decomposed into a permanent and a transitory component: 

 𝑝𝑡 = 𝑝𝑡
𝑒 + 𝑝𝑡

𝑖  (1) 

where the observable series, denoted by 𝑝𝑡, is the natural log of the market index. 𝑝𝑡
𝑒 and 𝑝𝑡

𝑖 are 

unobserved permanent and transitory components, which play the roles of the efficient price and 

inefficient plunges. Considering the possibility of speculative bubbles, the efficient price can contain 

positive bubbles, and hence it is not necessarily equal to the fundamental price. For this reason, the 

permanent component in this study characterizes the efficient price rather than the fundamental price. 

3.1.1. The permanent component (efficient prices) 

Given that speculative bubbles are rationalized by Blanchard and Watson (1982), Diba and Grossman 

(1988), and other scholars, the efficient price in this setup still follows a random walk process with 

                                                 
5 According to the present value model and the law of iterated expectations, the efficient price is the sum of two 

elements: the fundamental price that is the sum of discounted expected dividends and the speculative bubble that is 

the discounted expected resale price at infinity. There are four rationales for keeping these two elements as a single 

unit inside the permanent component. First, the specification of the efficient price (the sum of the fundamental and 

the positive bubble) is given as a random walk with a drift, whereas there is no clear specification for each separately. 

Second, based on Blanchard and Watson (1982), the fundamental price and the positive bubble are not independent 

as they both increase during bubble formation and drop together during the burst. Thus, I circumvent decomposing 

them since it is exceedingly challenging, if not impossible. Third, Camerer (1989) warns against the confusion of 

Rational Bubbles with the Fads component. Hence, my model places positive deviations from fundamental, along 

with the fundamental price, inside the permanent component to characterize the efficient price and places negative 

deviations from efficiency in the transitory component to characterize inefficient plunges. Fourth, this study aims 

to examine the effect of negative deviations, rather than positive bubbles, on stock market inefficiency. 
6 See Appendices A and B, Kim and Nelson (1999b) and Hamilton (1994), which explain how to make the Kalman’s 

(1960) filter operable. 
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a drift. Hence, similar to Fama and French (1988), Poterba and Summers (1988), and Eraker (2008), 

I specify the permanent component as follows: 

 𝑝𝑡
𝑒 = 𝜇𝑡−1 + 𝑝𝑡−1

𝑒 + 𝜀𝑝𝑒,𝑡 (2) 

where 𝜀𝑝𝑒,𝑡~𝑁(0, 𝜎𝑝𝑒
2 ) is the shock to the permanent component and is explained further in Section 

3.1.3. In this setting, 𝜇𝑡 is the drift term that represents the long-run return and might be time-varying 

since, due to changes in expectations about future cash flows, long-run episodes of bull and bear 

markets are observed in the U.S. and U.K. stock markets. Accordingly, I specify the long-run return 

as a random walk: 

 𝜇𝑡 = 𝜇𝑡−1 + 𝜀𝜇,𝑡 (3.a) 

where 𝜀𝜇,𝑡~𝑁(0, 𝜎𝜇
2) is the shock to the long-run return and is assumed to be uncorrelated with 𝜀𝑝𝑒,𝑡. 

Alternatively, following Summers (1986), Poterba and Summers (1988), Turner et al. (1989), among 

others, I can model the long-run return as a constant rate: 

 𝜇𝑡 = 𝜇 (3.b) 

I run a version of the proposed model for each of the two above specifications for long-run return 

presented in Eq. (3.a) and Eq. (3.b). Nevertheless, I advocate the model with stochastic drift for two 

reasons. First, a stochastic drift in the form of a random walk, by capturing the time-variation in the 

long-run return, enables the model to characterize speculative bubbles. Second, the random walk is 

more robust to misspecifications and provides more flexibility (Antolin-Diaz et al., 2017). 

3.1.2. The transitory component (inefficient plunges) 

Like Kim and Kim (1996), the transitory component comprises an autoregressive process of order 

two with coefficients 𝜑1 and 𝜑2. However, to accommodate asymmetric price deviations, I consider 

that shocks to the transitory component are a mixture of asymmetric and symmetric shocks. Thus, I 

incorporate an unobservable, first-order, and two-state Markov-switching process into the transitory 

component, which I call the asymmetric Fads component: 

 𝑝𝑡
𝑖 = 𝜋𝑖𝑆𝑡 + 𝜑1 𝑝𝑡−1

𝑖 + 𝜑2 𝑝𝑡−2
𝑖 + 𝜀𝑝𝑖,𝑡  (4) 

where 𝜀𝑝𝑖,𝑡~𝑁(0, 𝜎
𝑝𝑖
2 ) is the typical shock to the transitory component, and 𝜋𝑖 is the inefficient plunge 

coefficient that measures the magnitude of inefficient plunges and is expected to be negative. The 

state of the stock market is denoted by 𝑆𝑡, an indicator that distinguishes between crisis periods when 

𝑆𝑡 = 1 and normal times when 𝑆𝑡 = 0. This indicator will be determined endogenously as it evolves 

according to the Markov-switching process as in Hamilton (1989): 

 Pr[ 𝑆𝑡 = 1|𝑆𝑡−1 = 1] = 𝑝 (5) 

 Pr[ 𝑆𝑡 = 0|𝑆𝑡−1 = 0] = 𝑞 (6) 
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In this approach, 𝑝 and 𝑞 determine the transition probabilities. 𝑝 is the probability of staying in the 

crisis, and thus, (1 − 𝑝) is the probability of transitioning from the crisis to a normal state. Similarly, 

𝑞 is the probability of staying in the normal state, and thus, (1 − 𝑞) is the probability of transitioning 

from the normal state to a crisis state. In this setting, the term 𝜋𝑖𝑆𝑡 gauges the excessive drop in price 

(inefficient plunge) during crises, which has a role similar to the negative bubble in the model of Yan 

et al. (2012), adopted from the model of bubbles and crashes presented by Johansen et al. (2000). 

3.1.3. The variance-covariance matrix of shocks 

In this model, I maintain the assumption that all shocks (also known as innovations) are white noise, 

normally distributed, and also uncorrelated with each other. Regarding the variance of shocks to the 

permanent component, I follow the approach of Turner et al. (1989), Kim and Kim (1996), and Liu 

et al. (2012) who include a Markov-switching variance in the model. In this sense, 𝜀𝑝𝑒,𝑡~𝑁(0, 𝜎𝑝𝑒
2 ) 

is allowed to have a switching variance that is higher during crises than during normal periods: 

 𝜎𝑝𝑒
2 = 𝜎𝑝𝑒,0

2 (1 − 𝑆𝑡) + 𝜎𝑝𝑒,1
2 (𝑆𝑡)            (7) 

where 𝜎𝑝𝑒,1
2  and 𝜎𝑝𝑒,0

2  are variances of shocks to the permanent component during crises and normal 

periods, respectively. I employ a single Markov-switching process for both inefficient plunges in the 

transitory component and the variance of shocks in the permanent component because asymmetric 

volatility implies a concomitant occurrence of price fall and volatility jump. Regarding the variance 

of shocks to the transitory component, 𝜀𝑝𝑖,𝑡~𝑁(0, 𝜎
𝑝𝑖
2 ) is assumed to have a constant variance since 

the plunging coefficient in Eq. (4) accounts for the asymmetry in the price deviations. For robustness 

tests, however, I consider that this variance is also regime-dependent as follows: 

 𝜎
𝑝𝑖
2 = 𝜎

𝑝𝑖,0
2 (1 − 𝑆𝑡) + 𝜎

𝑝𝑖,1
2 (𝑆𝑡)            (8) 

where 𝜎
𝑝𝑖,1
2  and 𝜎

𝑝𝑖,0
2  are variances during crises and normal times.  

Lastly, all shocks are assumed to be uncorrelated in this study. Given all the assumptions I made for 

the three shocks in this model, the variance-covariance matrix of shocks is: 

 [

𝜀𝑝𝑒,𝑡

𝜀𝑝𝑖,𝑡

𝜀𝜇,𝑡

]~ 𝑁(𝟎3×1, [

𝜎𝑝𝑒
2 0 0

0 𝜎𝑝𝑖
2 0

0 0 𝜎𝜇
2

]) (9) 

Concerning correlations, merely for the sake of robustness tests, I allow for correlation between each 

pair of shocks as specified in Appendix A. Favourably, the results presented in Appendix C indicate 

that these three correlations are all insignificant. 
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4. Results and discussion 

I estimate several alternative models to test for asymmetry in the form of inefficient plunges in the 

transitory component and/or a switching variance in the permanent component using a set of pairwise 

comparisons of log likelihood values. As shown in the first two rows of Tables 1 and 2 and explained 

in Table A in Appendix A, each of the sixteen models is denoted by an identifier and a descriptor. 

The descriptor consists of two major parts. The first part expresses the model specification regarding 

the asymmetry in the transitory component as well as the asymmetry of the variance in the permanent 

component. And the second part determines whether the drift term (long-run return) is specified as a 

random walk process or a constant. For example, the identifier of the proposed model is 1a, and its 

descriptor is denoted by “A (IP-SV)-RW”, which means that this model accounts for the Asymmetry 

by allowing for both Inefficient Plunges in the transitory component and a Switching Variance in 

the permanent component. In this model, the term “RW” hints that the long-run return is specified in 

the form of a Random Walk process. To give more examples, the descriptor “A (IP)-Con” states that 

model 2b accounts for the Asymmetry by allowing for Inefficient Plunges but not the asymmetry of 

the variance, and the descriptor “A (SV)-Con” expresses that model 3b accounts for the Asymmetry 

by allowing for a Switching Variance but not the asymmetry in the transitory component. The term 

“Con” also says these models impose a Constant long-run return. 

Tables 1 and 2 report parameters and log likelihood values estimated by several models for the S&P 

500 and FTSE 350. The results of the asymmetric Fads model substantiate inefficient plunges since 

the plunging coefficients are 𝜋𝑖 = −7.07 for the U.S. and 𝜋𝑖 = −5.81 for the U.K. stock markets, 

with small standard errors of 1.04 and 1.27 and likelihood ratios of 47.4 and 17.2, respectively, which 

are much greater than the critical value of 10.8 for a 0.1% significance level. The switching variance 

of shocks to the permanent component during crises is 𝜎𝑝𝑒,1
2 = 5.682 for the U.S. and 𝜎𝑝𝑒,1

2 = 5.732 

for the U.K. markets, which are notably greater than their counterpart values of 𝜎𝑝𝑒,0
2 = 2.402 for the 

U.S. and 𝜎𝑝𝑒,0
2 = 1.782 for the U.K. during normal periods.7 

For the S&P 500, the transition probability reported in column 1a of Table 1 is low (𝑝 = 0.793) for 

crisis periods and high (𝑞 = 0.956) for normal periods; as a result, the expected duration is short (4.8 

months) for crises and long (22.7 months) for normal periods. For the case of the FTSE 350, column 

                                                 
7 In the presence of a Markov-switching process, testing hypotheses based on the likelihood ratio statistics is non-

standard as the nuisance parameter is not identified under the null hypothesis and the asymptotic distribution of the 

likelihood ratio test does not follow a standard 𝜒2 distribution. Few studies have proposed several computationally 

burdensome simulation-based or bootstrap-based methods to test for Markov-switching that are operable for simple 

models (see, e.g., Hansen, 1992; Garcia, 1998; Di Sanzo, 2009). Because of the sixteen alternative models estimated 

for each stock market, to avoid computational burden, I maintain the use of the non-standard likelihood ratio test. 

In addition, likelihood ratios derived for testing asymmetry are extremely large and leave very little, if not no, doubt 

that market price deviations are asymmetric. 
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1a of Table 2 reports that transition probabilities are 𝑝 = 0.832 and 𝑞 = 0.923; hence, the expected 

duration is short (5.9 months) for crises and long (13.0 months) for normal periods. Additionally, the 

sum of autoregressive coefficients in the cyclical component (𝜑1 + 𝜑2) is 0.72 for the U.S. and 0.34 

for the U.K. stock markets, implying a relatively persistent Fads component in both markets. 

Figures 1 and 2 plot the permanent and transitory components of these two stock markets. The top-

left panels demonstrate that the gaps between market prices and efficient prices are negligible during 

upturns but are noticeable during downturns. The top-right panels, by plotting these gaps, show that 

inefficient plunges are deep, almost always negative, and transient since the gaps between the market 

and efficient prices tend to emerge and vanish quickly. The depth of inefficient plunges reaches 10% 

and even 15% during crisis periods, which often coincide with NBER and ECRI recession dates for 

the U.S. and U.K. economies. A plunge continues for 4.8 months in the U.S. and 5.9 months in the 

U.K. stock markets, on average, and thereafter the corresponding gap shrinks and disappears within 

a couple of additional months. In this sense, the magnitude of inefficient plunges in the S&P 500 and 

FTSE 350 during 25% and 20% of their sample sizes, respectively, exceeds a threshold of 6% that is 

chosen only for illustrative purposes. By taking a neutral position about potential market exuberance 

during periods of speculative bubbles, I conclude that the U.S. and U.K. stock markets are inefficient 

at least 20% of the time that corresponds to downturns. Lastly, the bottom-right panels of Figures 1 

and 2 display the probabilities of inefficient plunges accompanied by high-variance states. 

Overall, results are in line with the AMH of Lo (2004) and in opposition to the EMH of Fama (1970). 

I highlight that deviations of U.S. and U.K. market prices from efficient prices, which measure the 

level of market inefficiency, are substantial, regime-dependent and asymmetric. This result supports 

the ORH of De Bondt and Thaler (1985), who report asymmetry in overreaction, as well as the results 

of rolling window analysis applied by Ito and Sugiyama (2009), Ito et al. (2016), Le Tran and Leirvik 

(2019), and Hill and Motegi (2019), who suggest that U.S. and U.K. stock markets are not efficient 

during crises. Furthermore, Synchrony of inefficient plunges in the transitory component and jumps 

in variance in the permanent component during crisis periods suggest that excessive price drops and 

volatility jumps occur concomitantly, hinting at the asymmetric volatility suggested by Turner et al. 

(1989), Nelson (1991), Jones et al. (2004), Avramov et al. (2006), and Liu et al. (2012.). 

4.1. Inefficient plunges in the transitory component 

To test if the plunging coefficient is significant (𝜋𝑖 ≱ 0), I compare the log likelihoods for proposed 

models 1a and 1b, which account for the asymmetry by allowing for both inefficient plunges in the 

transitory component and a switching variance in the permanent component, with the log likelihood 

values for nested models 3a and 3b, which account for the asymmetry by allowing only a switching 

variance in the permanent component. For the S&P 500, by comparing log likelihoods of -2493.6 
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and -2492.5 for non-nested models 1a and 1b, presented in Table 1, with those values of -2517.3 and 

-2514.7 for nested models 3a and 3b, I report notable likelihood ratios of 47.4 and 44.4. For the FTSE 

350, I compare log likelihoods of -1221.5 and -1218.9 for non-nested models 1a and 1b in Table 2 

with values of -1230.1 and -1228.0 for nested models 3a and 3b and report likelihood ratios of 17.2 

and 18.2. Since all likelihood ratios are greater than the critical value of 10.8 for a 0.1% significance 

level, I state that deviations of the actual market price from the efficient price, as a measure of market 

inefficiency, are regime-dependent and asymmetric in both stock markets. 

Moreover, comparing log likelihood values of -2508.7 and -2506.0 for models 2a and 2b with those 

of -2560.4 and -2557.9 for symmetric models 4a and 4b presented in Table 1 for the S&P 500, and 

likewise comparing log likelihood values of -1240.5 and -1236.6 for models 2a and 2b with those of 

-1269.6 and -1265.2 for symmetric models 4a and 4b presented in Table 2 for the FTSE 350 reaffirm 

the presence of asymmetry in the form of inefficient plunges. The corresponding likelihood ratios 

are 103.4 and 103.8 for the U.S. and 58.2 and 57.2 for the U.K. stock markets, all exceedingly greater 

than the 0.1% critical value of 10.8. 

4.2. Switching variance in the permanent component 

To test if the switching variance differs across regimes (𝜎𝑝𝑒,1
2 ≠ 𝜎𝑝𝑒,0

2 ), I compare the log likelihood 

values of proposed models 1a and 1b with those of their nested models 2a and 2b, which account for 

the asymmetry by allowing only inefficient plunges in the transitory component. I corroborate the 

hypothesis of switching variance by deriving likelihood ratios of 30.2 and 27.0 for the S&P 500 and 

38.0 and 35.4 for the FTSE 350, which are all greater than the 0.1% critical value of 10.8. Similarly, 

the likelihood ratios of 86.2 and 86.4 for the S&P 500 and 79.0 and 74.4 for the FTSE 350, derived 

by comparing log likelihoods for models 3a and 3b with those reported for symmetric models 4a and 

4b, reaffirm the presence of a switching variance in the permanent component. If one compares the 

likelihood ratios of the two pairwise comparisons stated above, such as comparing 30.2 with 86.2 for 

the U.S. market or comparing 38.0 with 79.0 for the U.K. market, it is clear that the likelihood ratios 

for testing the hypothesis of switching variance are lower for the pairwise comparison of models in 

which inefficient plunges are included. This result identifies inefficient plunges as an alternative for 

switching variance to explain the asymmetry. 

To differentiate two sources of asymmetry (inefficient plunges and switching variance), I compare 

models 2a and 2b with their competing models 3a and 3b. Although these models are non-nested, 

comparing their log likelihoods highlights the importance of including both inefficient plunges and 

a switching variance to characterize stock market dynamics. Conducting this comparison for the S&P 

500 hints that models with inefficient plunges perform better than models with a switching variance 
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in maximizing the log likelihood function. Conversely, models with a switching variance outperform 

models with inefficient plunges for the FTSE 350. 

4.3. Time-varying long-run return 

To inspect the time-variation in the U.S. and U.K. inflation-adjusted long-run return, I compare the 

log likelihoods of -2493.6 and -1221.5 for model 1a in Tables 1 and 2 with those values of -2495.1 

and -1222.4 for the nested model 1b′, whose result is presented in Tables C1 and C2 in Appendix C. 

Since the likelihood ratios of 3.0 for the U.S. and 1.8 for the U.K. are not larger than the critical value 

of 3.84 for a 5% significance level, it appears that a random walk process with a deterministic drift 

is sufficient to capture the dynamics of the efficient price in these two stock markets. 

However, the estimation of 𝜎𝜇 = 0.05 for the standard deviation of shocks to the inflation-adjusted 

long-run return, with a standard error of 0.02, along with the bottom-left panel of Figure 1, implies 

a considerable time-variation in the U.S. inflation-adjusted long-run return because it wanders away 

from its annual average of 4.8% due to long-run episodes of bull and bear markets. Namely, the 

inflation-adjusted long-run return gradually declined from 10% in the 1950s to -5% in the 1970s and 

early 1980s, which corresponds to the episode of high Fed fund rates and the Volcker mandate. Then 

it returned to rates near its average of 4.8% in the late 1980s and early 1990s. Afterward, the return 

soared to an unreasonable rate of 15% in the late 1990s, resulting from the dot-com bubble. With the 

exception of the low rates in the aftermath of the 2007–09 financial crisis, the inflation-adjusted long-

run return has been between 4% and 10% from the early 2000s until now. For the FTSE 350, the 

estimated standard deviation of shocks to the long-run return is 𝜎𝜇 = 0.03, with a standard error of 

0.02. The bottom-left panel of Figure 2 shows that the inflation-adjusted long-run return of the FTSE 

350 continually declined from 15% in the mid-1980s to 6% in the early 2010s and then later to a 

desperately low rate of 2.5% in the early 2020s. This declining long-term return is attributable to the 

fact that the U.K. stock market comprises traditional constituents, which are companies with fewer 

growth opportunities compared to those in the U.S. stock market. 
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4.4. Robustness tests 

Applying alternative models and using the daily and weekly S&P 500 and FTSE 350 indices confirm 

that the results obtained in this study are robust to changes in model specifications and frequencies. 

Both the plunging coefficient and switching variance are significant in both markets, regardless of 

the assumption about the long-run return, the variance of shocks to the transitory component, and the 

correlations between shocks. For example, I relax the assumption of constant variance for shocks to 

the transitory component by applying Eq. (8) and running models 1c and 1d, where the asymmetry 

is accounted for by allowing inefficient plunges in the transitory component as well as two switching 

variances of shocks to the permanent and transitory components. Comparing the log likelihoods for 

models 1a and 1b, presented in Tables 1 and 2, with those of models 1c and 1d in Tables C1 and C2 

in Appendix C verifies that this variance is not switching. Further, the results of models 1e, 1f, and 

1g, each of which allows for one of the correlations between each pair of shocks, suggest that they 

are all insignificant. 

It may be criticized as being too restrictive to impose a single Markov-switching process to account 

for both inefficient plunges in the transitory component and a switching variance in the permanent 

component. This assumption, however, seems innocuous considering the evidence given in Figure 

C1 in Appendix C, which juxtaposes the probability of inefficient plunges implied by model 2a with 

the probability of high-variance states implied by model 3a for the S&P 500 and FTSE 350. The 

dynamics of these two probabilities are quite similar, suggesting that inefficient plunges and switches 

in variance occur concomitantly, although jumps in variance seem more persistent than inefficient 

plunges. 

The results remain unchanged for higher data frequencies. By applying the main models to the daily 

and weekly S&P 500 and FTSE 350, whose results are presented in Tables C3 and C4 in Appendix 

C, I confirm the frequency-independence of the main finding. Finally, regarding the order of the 

autoregressive process in the transitory component, I estimate models with an autoregressive process 

of order one, which bear almost the same results as those in models with order two. Comparing the 

log likelihood of model 1a with an autoregressive process of order two to that of its counterpart 

model with an autoregressive process of order one yields likelihood ratios of 6.6 for the S&P 500 

and 0.0 for the FTSE 350. For the sake of coherence, therefore, I use the model with an autoregressive 

process of order two for both markets.8 

                                                 
8 These results and other results of applying several models to monthly indices with dividends reinvested and 

monthly nominal indices (not adjusted for inflation) are available upon request. 
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5. Concluding remarks 

I define the new concept of inefficient plunges as negative deviations of the actual market price from 

the efficient price to measure the level of market inefficiency. To establish regime-dependence and 

asymmetry in market inefficiency, I present an asymmetric Fads model in which inefficient plunges 

in the transitory component and a concomitant switching variance in the permanent component are 

both allowed for by employing a Markov-switching process. 

By applying the proposed model to the monthly inflation-adjusted S&P 500 and FTSE 350, I report 

substantial inefficient plunges in the U.S. and U.K. stock markets. The switching variance of shocks 

to the permanent component during crisis periods is considerably greater than its value during normal 

periods in both stock markets. The expected duration is relatively short (4.8 months for the U.S. and 

5.9 months for the U.K.) for crisis periods and long (22.7 months for the U.S. and 13.0 months for 

the U.K.) for normal periods. 

Since the estimated inefficient plunges are deep, often negative, steep, and transient, I conclude that 

market inefficiency is regime-dependent and asymmetric, meaning that although the U.S. and U.K. 

stock markets are efficient during normal times, they are far below efficient prices during crises. 

These results support the AMH against the EMH and also suggest the possibility of negative bubbles. 

Concerning limitations, this study does not identify a specific driver for market inefficiency, yet in 

diagnosing inefficient plunges as a symptom, it hints at three potential competing drivers: market 

irrationality, market unawareness, and financial frictions that are proposed by a few studies explained 

briefly in the literature review. In addition, since this study aims to examine the influence of negative 

deviations on market inefficiency, it remains silent about potential market exuberance during periods 

of speculative bubbles, when the market price positively deviates from its fundamental. However, 

given that speculative bubbles are rationalized in the Rational Bubbles model, positive deviations do 

not appear to be inconsistent with efficiency. Lastly, the proposed model can be applied to examine 

the asymmetry in a variety of financial markets, such as stocks, futures, options, and currencies. Also, 

developing a model to incorporate both positive and negative bubbles is a worthy proposal for future 

research. 
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Figures 

 

  
(a) Estimated efficient price (left) and inefficient plunges (right) 

  

(b) Long-run return (left) and probabilities of asymmetric deviations (right)  

Figure 1: The results of the asymmetric Fads model for the S&P 500 
Notes: 

(1) All panels plot the results of model 1a with the descriptor A (IP-SV)-RW. 

(2) The top panels plot permanent and transitory components. 

(3) The bottom-left panel plots inflation-adjusted long-run return (trend growth of price). 

(4) The bottom-right panel plots the plunging probabilities. 

(5) The shaded areas are the NBER recession dates. See Table D1 in Appendix D for details. 
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(a) Estimated efficient price (left) and inefficient plunges (right) 

  

(b) Long-run return (left) and probabilities of asymmetric deviations (right)  

Figure 2: The results of the asymmetric Fads model for the FTSE 350 
Notes: 

(1) All panels plot the results of model 1a with the descriptor A (IP-SV)-RW. 

(2) The top panels plot permanent and transitory components. 

(3) The bottom-left panel plots inflation-adjusted long-run return (trend growth of price). 

(4) The bottom-right panel plots the plunging probabilities. 

(5) The shaded areas are the ECRI recession dates. See Table D2 in Appendix D for details. 
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Tables 

Table 1: Estimated parameters of different models for the S&P 500 

Models 1a 1b 2a 2b 3a 3b 4a 4b 

Parameters A (IP-SV)-RW A (IP-SV)-Con A (IP)-RW A (IP)-Con A (SV)-RW A (SV)-Con S-RW S-Con 

𝜎𝑝𝑒,0 2.40 (0.41) 2.71 (0.30) 3.44 (0.10) 3.43 (0.09) 2.95 (0.40) 2.91 (0.29) 4.26 (0.10) 4.25 (0.11) 

𝜎𝑝𝑒,1 5.68 (0.46) 5.86 (0.43) – – 5.53 (0.37) 5.52 (0.36) – – 

𝜎𝑝𝑖,0 1.81 (0.44) 1.42 (0.43) 0.03 (0.85𝑖) 0.17 (0.85𝑖) 0.15 (5.94) 0.42 (1.33) 0.09 (0.86) 0.14 (0.91) 

𝜎𝑝𝑖,1 – – – – – – – – 

𝜎𝜇   0.05 (0.02) – 0.00 (0.01) – 0.00 (0.01) – 0.00 (0.01) – 

𝜇 T-V 0.42 (0.11) T-V 0.37 (0.12) T-V 0.54 (0.13) T-V 0.33 (0.14) 

𝜑1 0.56 (0.09) 0.52 (0.09) 0.68 (0.06) 0.68 (0.06) 0.60 (1.13) 0.61 (0.42) 0.62 (4.17) 0.62 (2.31) 

𝜑2 0.16 (0.07) 0.19 (0.08) 0.10 (0.06) 0.10 (0.06) 0.12 (3.21) 0.14 (0.51) 0.10 (4.12) 0.12 (2.01) 

𝜋𝑖 -7.07 (1.04) -6.93 (1.03) -10.42 (0.67) -10.41 (0.67) – – – – 

𝑝 0.79 (0.07) 0.80 (0.07) 0.48 (0.08) 0.48 (0.08) 0.95 (0.02) 0.95 (0.02) – – 

𝑞 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) – – 

Log likelihood  -2493.6 -2492.5 -2508.7 -2506.0 -2517.3 -2514.7 -2560.4 -2557.9 

(a) T-V means that the model considers a time-varying state variable for the corresponding parameter. 

(b) The standard errors of the estimated parameters are in parenthesis. Those with the letter 𝑖 for models 2a and 2b are imaginary numbers. 

(c) Numerical values for parameters denoted by 0.00 are respectively 0.000005 for model 2a, 0.0007 for model 3a, and 0.0007 for model 4a. 

Notes: 

(1) The estimation period runs from 1948M1 to 2022M12. I estimate 16 models, each of which is denoted by an identifier and a 

descriptor. The descriptor consists of two parts. The first part expresses the specification of the model regarding the asymmetry, 

and the second part determines the specification of the long-run return. For example, the descriptor of model 1a is denoted by 

“A (IP-SV)-RW”, which means this model allows for the Asymmetry by including both Inefficient Plunges in the transitory 

component and a Switching Variance in the permanent component. In this model, the long-run return is specified in the form of 

a Random Walk process. See the first paragraph of Section 4 and Table A in Appendix A for further explanation. 

(2) To test for asymmetry in the transitory component, I compare the log likelihood values for models 1a and 1b, in which the 

asymmetry is accounted for by including both inefficient plunges in the transitory component and a switching variance in the 

permanent component, with those values for models 3a and 3b, in which the asymmetry is accounted for by including only a 

switching variance in the permanent component. A pairwise comparison of the log likelihoods of -2493.6 and -2492.5 reported 

for models 1a and 1b with values of -2517.3 and -2515.7 for models 3a and 3b, respectively, favours the asymmetric Fads models 

over asymmetric variance models. The corresponding likelihood ratios of 47.4 and 44.4 are substantially greater than the critical 

value of 10.8 for a 0.1% significance level. 

(3) Additionally, comparing the log likelihoods for asymmetric models 1a, 2a, and 3a with the log likelihood of the symmetric 

model 4a supports the presence of the asymmetry in the form of both inefficient plunges in the transitory component and a 

switching variance in the permanent component. The corresponding likelihood ratios of 133.6, 103.4, and 86.2 are substantially 

greater than the critical value of 10.8 for a 0.1% significance level. 

(4) I also assessed the asymmetry by comparing two competing models. Models 2a and 2b allow for the asymmetry by including 

only inefficient plunges in the transitory component, while models 3a and 3b allow for the asymmetry by including only a 

switching variance in the permanent component. Although these models are non-nested, by comparing the log likelihood values 

of -2508.7 and -2506.0 reported for models 2a and 2b with values of -2517.3 and -2514.7 for models 3a and 3b, I highlight the 

importance of including a switching variance in addition to the inefficient plunges. 

(5) 𝜎𝑝𝑖,1is estimated in model 1c, where I relax the assumption of constant variance for shocks to the transitory component. The 

result, presented in Table C1 in Appendix C, shows that this variance does not switch when the inefficient plunges are included. 
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Table 2: Estimated parameters of different models for the FTSE 350 

Models 1a 1b 2a 2b 3a 3b 4a 4b 

Parameters A (IP-SV)-RW A (IP-SV)-Con A (IP)-RW A (IP)-Con A (SV)-RW A (SV)-Con S-RW S-Con 

𝜎𝑝𝑒,0 1.78 (0.37) 1.89 (0.37) 3.59 (0.16) 2.89 (0.45) 0.05 (1.32) 1.50 (0.99) 3.92 (0.41) 0.03 (1.01) 

𝜎𝑝𝑒,1 5.73 (0.48) 5.65 (0.48) – – 5.48 (0.40) 5.63 (0.45) – – 

𝜎𝑝𝑖,0 1.55 (0.28) 1.53 (0.27) 0.06 (0.76𝑖) 2.05 (0.61) 2.17 (0.17) 1.50 (1.25) 1.93 (0.61) 4.40 (0.15) 

𝜎𝑝𝑖,1 – – – – – – – – 

𝜎𝜇   0.03 (0.02) – 0.00 (0.01) – 0.02 (0.01) – 0.00 (0.04) – 

𝜇 T-V 0.39 (0.16) T-V 0.14 (0.14) T-V 0.61 (0.14) T-V 0.15 (0.05) 

𝜑1 0.33 (0.11) 0.35 (0.11) 0.74 (0.10) 0.73 (0.09) 0.69 (0.10) 0.43 (0.99) 0.93 (0.04) 1.03 (0.05) 

𝜑2 0.01 (0.10) 0.02 (0.11) 0.07 (0.09) 0.11 (0.07) 0.17 (0.09) 0.21 (0.37) -0.19 (0.12) -0.06 (0.05) 

𝜋𝑖 -5.81 (1.27) -6.30 (1.33) -11.19 (1.13) -11.35 (1.04) – – – – 

𝑝 0.83 (0.07) 0.83 (0.07) 0.44 (0.13) 0.49 (0.13) 0.92 (0.04) 0.92 (0.04) – – 

𝑞 0.92 (0.03) 0.93 (0.03) 0.96 (0.01) 0.97 (0.01) 0.92 (0.03) 0.92 (0.03) – – 

Log likelihood  -1221.5 -1218.9 -1240.5 -1236.6 -1230.1 -1228.0 -1269.6 -1265.2 

(a) T-V means that the model considers a time-varying state variable for the corresponding parameter. 

(b) The standard errors of the estimated parameters are in parenthesis. That with the letter 𝑖 for model 2a is an imaginary number. 

(c) Numerical values for parameters denoted by 0.00 are respectively 0.00000002 for model 2a, and 0.004 for model 4a. 

Notes: 

(1) The estimation period runs from 1986M1 to 2022M12. I estimate 16 models, each of which is denoted by an identifier and a 

descriptor. The descriptor consists of two parts. The first part expresses the specification of the model regarding the asymmetry, 

and the second part determines the specification of the long-run return. For example, the descriptor of model 1a is denoted by 

“A (IP-SV)-RW”, which means this model allows for the Asymmetry by including both Inefficient Plunges in the transitory 

component and a Switching Variance in the permanent component. In this model, the long-run return is specified in the form of 

a Random Walk process. See the first paragraph of Section 4 and Table A in Appendix A for further explanation. 

(2) To test for asymmetry in the transitory component, I compare the log likelihood values for models 1a and 1b, in which the 

asymmetry is accounted for by including both inefficient plunges in the transitory component and a switching variance in the 

permanent component, with those values for models 3a and 3b, where the asymmetry is accounted for by including only a 

switching variance in the permanent component. A pairwise comparison of the log likelihoods of -1221.5 and -1218.9 reported 

for models 1a and 1b with values of -1230.1 and -1228.0 for models 3a and 3b, respectively, strongly favours the asymmetric 

Fads models over asymmetric variance models. The corresponding likelihood ratios of 17.2 and 18.2 are substantially greater 

than the critical value of 10.8 for a 0.1% significance level. 

(3) Additionally, comparing the log likelihoods for asymmetric models 1a, 2a, and 3a with the log likelihood of the symmetric 

model 4a supports the presence of the asymmetry in the form of both inefficient plunges in the transitory component and a 

switching variance in the permanent component. The corresponding likelihood ratios of 96.2, 58.2, and 79.0 are all substantially 

greater than the critical value of 10.8 for a 0.1% significance level. 

(4) I also assessed the asymmetry by comparing two competing models. Models 2a and 2b allow for the asymmetry by including 

only inefficient plunges in the transitory component, while models 3a and 3b allow for the asymmetry by including only a 

switching variance in the permanent component. Although these models are non-nested, by comparing the log likelihood values 

of -1240.5 and -1236.6 reported for models 2a and 2b with values of -1230.1 and -1228.0 for models 3a and 3b, I highlight the 

importance of including a switching variance in addition to the inefficient plunges. 

(5) 𝜎𝑝𝑖,1is estimated in model 1c, where I relax the assumption of constant variance for shocks to the transitory component. The 

result, presented in Table C2 in Appendix C, shows that this variance does not switch when the inefficient plunges are included. 
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Supplementary Appendix to 

Asymmetric Fads and Inefficient Plunges: Evaluating        

Adaptive vs. Efficient Market Hypotheses 
Mohammad Dehghani†,* 

Appendix A: Univariate state-space model with Markov-switching 

For estimation, I cast the asymmetric model specified in Eq. (1) to Eq. (9) into a state-space form. 

The observation equation, the transition equation, and variance covariance matrix of error terms are: 

 [𝑝𝑡] = [1 1 0 0]

[
 
 
 

𝑝𝑡
𝑒

𝑝𝑡
𝑖

𝑝𝑡−1
𝑖

𝜇𝑡 ]
 
 
 

+ [0] (A.1) 

 

[
 
 
 

𝑝𝑡
𝑒

𝑝𝑡
𝑖

𝑝𝑡−1
𝑖

𝜇𝑡 ]
 
 
 

= [

0
𝜋𝑖𝑆𝑡

0
0

] + [

1 0 0 1
0 𝜑1 𝜑2 0
0 1 0 0
0 0 0 1

]

[
 
 
 
𝑝𝑡−1

𝑒

𝑝𝑡−1
𝑖

𝑝𝑡−2
𝑖

𝜇𝑡−1]
 
 
 

+ [

𝜀𝑝𝑒,𝑡

𝜀𝑝𝑖,𝑡

0
𝜀𝜇,𝑡

] (A.2) 

 [

𝜀𝑝𝑒,𝑡

𝜀𝑝𝑖,𝑡

0
𝜀𝜇,𝑡

]~ 𝑁(𝟎4×1,

[
 
 
 
 
𝜎𝑝𝑒

2 0 0 0

0 𝜎
𝑝𝑖
2 0 0

0 0 0 0
0 0 0 𝜎𝜇

2]
 
 
 
 

 (A.3.a) 

In the above model, I consider the natural log price multiplied by 100 as the observed series (𝑝𝑡). In 

this setup, I take a stochastic long-run return (𝜇𝑡) that evolves according to a random walk process. 

To test for asymmetry, I derive the symmetric model by imposing 𝜋𝑖 = 0 on the unrestricted model 

to compare the log likelihoods of the nested and non-nested models. In Eq. (A.3.a), all shocks are 

assumed to be uncorrelated. However, as described in Eq. (A.3.b) for robustness tests, I allow for 

correlation between each pair of shocks: 
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 (A.3.b) 

where 𝜌𝑝𝑒,𝑝𝑖 stands for the correlation between shocks to the permanent and transitory components; 

𝜌𝑝𝑒,𝜇 stands for the correlation between shocks to the permanent component and the long-run return; 

and 𝜌𝑝𝑖,𝜇 denotes the correlation between shocks to the transitory component and the long-run return. 

                                                 
† Alliance Manchester Business School. Email adresses: mohammad.dehghani@manchester.ac.uk. 

* Corresponding author. See the website: https://sites.google.com/view/mohammaddehghani for data and code. For 

details about the method and parameter constraints, see the comments in the MATLAB code. 
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Table A: Specification of 16 models for stock market index 

Model name Tables and Figures 

Model 1a: Asymmetric (IP-SV)-RW 

Model 1b: Asymmetric (IP-SV)-Con (3 states variables) 

Model 1b′: Asymmetric (IP-SV)-Con (4 state variables) 

Model 1c: Asymmetric (IP-SVPT)-RW 

Model 1d: Asymmetric (IP-SVPT)-Con 

Model 1e: Asymmetric (IP-SVPT)-RW-Corr1 

Model 1f: Asymmetric (IP-SVPT)-RW-Corr2 

Model 1g: Asymmetric (IP-SVPT)-RW-Corr3 

Tables 1, 2, Figures 1, 2 

Tables 1, 2 

Tables C1, C2 

Tables C1, C2 

Tables C1, C2 

Tables C1, C2 

Tables C1, C2 

Tables C1, C2 

Model 2a: Asymmetric (IP)-RW 

Model 2b: Asymmetric (IP)-Con 

Tables 1, 2, Figure C1 

Tables 1, 2  

Model 3a: Asymmetric (SV)-RW 

Model 3b: Asymmetric (SV)-Con 

Model 3c: Asymmetric (SVPT)-RW 

Model 3d: Asymmetric (SVPT)-Con 

Tables 1, 2, Figure C1 

Tables 1, 2 

Tables C1, C2 

Tables C1, C2 

Model 4a: Symmetric-RW 

Model 4b: Symmetric-Con 

Tables 1, 2  

Tables 1, 2  

 

Notes: 

(1) I estimate sixteen models. I denote each model with an identifier and a descriptor. The descriptor consists of two 

major parts. The first part expresses the specification of the model regarding the asymmetry in the transitory 

component as well as the asymmetry of the variance of shocks in the permanent component. The second part states 

whether the drift term (long-run return) is specified as a random walk process or a constant. For example, the 

identifier of the main model is 1a, and its descriptor is “A (IP-SV)-RW”, which means that this model accounts for 

the Asymmetry by including both Inefficient Plunges in the transitory component and a Switching Variance in the 

permanent component. The term “RW” also hints that the long-run return is specified as a Random Walk. 

(2) The last part of correlated models 1e, 1f, and 1g shows which non-zero correlation is allowed for. For example, 

model 1e, which is denoted by “A (IP-SV)-RW-Corr1”, means that the model allows for the correlation between 

shocks to the permanent and transitory components (𝜌𝑝𝑒,𝑝𝑖). Similarly, model 1f allows for the correlation between 

shocks to the permanent component and the long-run return (𝜌𝑝𝑒,𝜇), and model 1g permits the correlation between 

shocks to the transitory component and the long-run return (𝜌𝑝𝑖,𝜇). 

(3) We present the results of the bold models applied to the S&P 500 and FTSE 350 in Tables 1 and 2, and the rest 

are presented in Tables C1 and C2 in Appendix C. 

(4) The proposed model in this study is similar to the model presented by Kim and Nelson (1999a), which was 

applied to the U.S. GDP in the economics literature. 

(5) The proposed model in this study is closest to the models presented by Turner et al. (1989), Kim and Kim (1996), 

and Liu et al. (2012), but with two important distinctions. First, while my model is suitable to capture the asymmetric 

deviations from efficiency since it is specified at log levels, their models are not designed to explore the EMH since 

they are specified in differences. Second, Turner et al. (1989) and Liu et al. (2012) exclude the Fads (transitory) 

component, and Kim and Kim (1996) do not account for the asymmetry in the Fads component. These shortcomings 

are addressed in my model by incorporating both inefficient plunges in the transitory component and a switching 

variance in the permanent component. 

(6) The conventional Fads model is similar to symmetric models 4a and 4b. 
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Appendix B: Approximate maximum likelihood and constraints 

For asymmetric models in the presence of the Markov-switching process of Hamilton (1989), I use 

Kim's (1994) approximate maximum likelihood method to make the Kalman’s (1960) filter operable. 

For more explanation, see chapters 4 and 5 of Kim and Nelson (1999b) and chapters 13 and 22 of 

Hamilton (1994). For symmetric models, I use the maximum likelihood method, performed by using 

the Kalman filter as explained in chapters 2 and 3 of Kim and Nelson (1999b) and chapter 5 of 

Hamilton (1994). 

I need to impose a set of constraints on parameters, which are explained thoroughly in the second 

part of Appendix B. I consider a set of initial values for parameters as well as state variables. For the 

former, the initial values for parameters are presented in Tables B1 and B2 in Appendix B. For the 

latter, I select the first observation for the permanent component, zero for the transitory component, 

and 4.8% for the annual long-run return to determine the prior values for the corresponding state 

variables. The prior variances of state variables are set to be 10. The results are robust to changes in 

the prior values of state variables and their variances. For example, I used a wilder guess by setting 

the variances of state variables equal to 1000 and could find the same estimation for parameters. 

Parameters constraints 

I employ a numerical optimization procedure to maximize the approximate log likelihood function 

subject to a set of constraints. Hence, I impose constraints on some of the coefficients, probabilities, 

and standard deviations of shocks. To this end, I account for constraints by using a transformation 

function, 𝑇(𝜔), which transforms a vector of unconstrained parameters 𝜔 = [𝜔1, … ,𝜔10]′ to a vector 

of constrained parameters 𝛺 = [𝛺1, … , 𝛺10]′ presented below: 

 𝛺 = [𝜎𝑝𝑒,0, 𝜎𝑝𝑒,1, 𝜎𝑝𝑖 , 𝜎𝜇 , 𝜇, 𝜑1, 𝜑2, 𝜋𝑖, 𝑝, 𝑞]′ (B.1) 

where 𝛺 = 𝑇(𝜔) is the vector containing parameters and 𝑇(𝜔) is a vector function, whose elements 

are transformation functions 𝑇𝑖(𝜔) for 𝑖 = 1, … , 10. Since performing unconstrained optimization 

with respect to 𝜔 is equivalent to performing constrained optimization with respect to 𝛺, I adopt an 

unconstrained optimization with respect to the vector 𝜔, where the objective (approximate log 

likelihood) function is considered as a function of the transformation function. I define each element 

of the transformation function as follows.  

First, for coefficients and standard deviations of shocks that must be positive, I use an exponential 

transformation suggested by Kim and Nelson (1999b). For example, 

 𝜎𝑝𝑒,0 = 𝑒𝑥𝑝(𝜔1) (B.2) 

In Eq. (B.2), 𝜎𝑝𝑒,0 is the standard deviation (square root of variance) of shocks to the permanent 

component during normal times, which must be positive. Similarly, for other standard deviations, 
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including 𝜎𝑝𝑒,1, 𝜎𝑝𝑖, and 𝜎𝜇  that are positive and for the coefficient 𝜋𝑖 that is expected to be negative, 

I apply an exponential transformation. For example, 𝜋𝑖 = −𝑒𝑥𝑝(𝜔12) ensures a negative plunging 

coefficient. 

Second, to have transition probabilities in the [0 1] interval, we exert the following transformations: 

 𝑝 =
𝑒𝑥𝑝(𝜔13)

1 + 𝑒𝑥𝑝(𝜔13)
   and   𝑞 =

𝑒𝑥𝑝(𝜔14)

1 + 𝑒𝑥𝑝(𝜔14)
 (B.3) 

Third, for coefficients of the autoregressive process of order two, I need to set the values of 𝜑1 and 

𝜑2 within the stationary region that means the roots of the lag polynomial (1 − 𝜑1𝐿 − 𝜑2𝐿
2 = 0) 

must lie outside the unit circle. In this sense, I apply the transformations proposed by Morley et al. 

(2003): 

 𝜑1 = 2𝜅1   and   𝜑2 = −(𝜅1
2 + 𝜅2)  (B.4.a) 

where 𝜅1 and 𝜅2 are determined as follows: 

 𝜅1 =
𝜔10

1 + |𝜔10|
   and   𝜅2 =

(1 − |𝜅1|) × 𝜔11

1 + |𝜔11|
+ |𝜅1| − 𝜅1

2 (B.5.a) 

For these two coefficients of the autoregressive process, one can take two alternative transformations 

proposed by Kim and Nelson (1999b): 

 𝜑1 = 𝜅1 + 𝜅2   and   𝜑2 = 𝜅1 × 𝜅2 (B.4.b) 

where 𝜅1 and 𝜅2 are determined below: 

 𝜅1 =
𝜔10

1 + |𝜔10|
   and   𝜅2 =

𝜔11

1 + |𝜔11|
 (B.5.b) 

However, these two transformations impose a further restriction that the roots of the autoregressive 

polynomial are real numbers. Hence, I apply Eq. (B.4.a) and Eq. (B.5.a) as restrictions on coefficients 

of the autoregressive process of order two. 

Fourth, for correlation coefficients, I consider Eq. (B.6): 

 𝜌𝑝𝑒,𝑝𝑖 =
𝜔18

1 + |𝜔18|
 (B.6) 

where 𝜌𝑝𝑒,𝑝𝑖 is the correlation between shocks and clearly satisfies the condition −1 < 𝜌𝑝𝑒,𝑝𝑖 < 1.  

It is worth noting that inefficient plunges (negative bubbles) do exist no matter whether the constraint 

on the plunging coefficient is imposed or not. Indeed, the phenomenon of inefficient plunges is such 

a pronounced feature of the U.S. and U.K. stock markets that excluding its corresponding constraints 

(𝜋𝑖<0) does not change the estimated parameters. 
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Appendix B: Tables of initial values for parameters 

Table B1: Initial values (after-transformation) for the model parameters used for the S&P 500 

Models 1a 1b 2a 2b 3a 3b 4a 4b 

Parameters A (IP-SV)-RW A (IP-SV)-Con A (IP)-RW A (IP)-Con A (SV)-RW A (SV)-Con S-RW S-Con 

𝜎𝑝𝑒,0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

𝜎𝑝𝑒,1 1.50 1.50 – – 1.50 1.50 – – 

𝜎𝑝𝑖,0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

𝜎𝑝𝑖,1 – – – – – – – – 

𝜎𝜇   0.75 – 0.75 – 0.75 – 0.75 – 

𝜇 T-V 0.75 T-V 0.75 T-V 0.75 T-V 0.75 

𝜑1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

𝜑2 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 

𝜋𝑖 -1.8 -1.8 -1.8 -1.8 – – – – 

𝑝 0.70 0.70 0.70 0.70 0.70 0.70 – – 

𝑞 0.90 0.90 0.90 0.90 0.90 0.90 – – 

Notes:  

(1) The results of all models are robust to the choice of the initial values for each parameter. 

(2) I use the same initial values for almost all models. For models 1a, 1b, 3a, and 3b, I select higher initial values 

for variances during crises (1.502). 
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Table B2: Initial values (after-transformation) for the model parameters used for the FTSE 350 

Models 1a 1b 2a 2b 3a 3b 4a 4b 

Parameters A (IP-SV)-RW A (IP-SV)-Con A (IP)-RW A (IP)-Con A (SV)-RW A (SV)-Con S-RW S-Con 

𝜎𝑝𝑒,0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

𝜎𝑝𝑒,1 1.50 1.50 – – 1.50 1.50 – – 

𝜎𝑝𝑖,0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

𝜎𝑝𝑖,1 – – – – – – – – 

𝜎𝜇   0.75 – 0.75 – 0.75 – 0.75 – 

𝜇 T-V 0.75 T-V 0.75 T-V 0.75 T-V 0.75 

𝜑1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

𝜑2 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 

𝜋𝑖 -1.8 -1.8 -1.8 -1.8 – – – – 

𝑝 0.70 0.70 0.70 0.70 0.70 0.70 – – 

𝑞 0.90 0.90 0.90 0.90 0.90 0.90 – – 

Notes:  

(1) The results of all models are robust to the choice of the initial values for each parameter. 

(2) I use the same initial values for all models that are the same as the initial values for the S&P 500. For models 

1a, 1b, 3a, and 3b, I select higher initial values for variances during crises (1.502). 
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Appendix C: Additional figures 

 

  
(a) Probabilities estimated separately for model 2a in the left and for model 3a in the right (S&P 500) 

  

(b) Probabilities estimated separately for model 2a in the left and for model 3a in the right (FTSE 350) 

Figure C1: Synchrony of probabilities of inefficient plunges and high variance states 
Notes: 

(1) The top-left and bottom-left panels plot probabilities of asymmetric deviations in model 2a, which allows for only inefficient 

plunges in the transitory component. 

(2) The top-right and bottom-right panels plot probabilities of asymmetric variance in model 3a, which allows for only switching 

variance in the permanent component. 

(3) The shaded areas are the NBER and ECRI recession dates in the top and bottom panels, respectively. See Tables D1 and D2 

in Appendix D for details. 
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Appendix C: Additional tables 

Table C1 (Continue of Table 1): Estimated parameters of different models for the S&P 500 

Models 1b′ 1c 1d 1e 1f 1g 3c 3d 

Parameters A (IP-SV)-Con A (IP-SVPT)-RW A (IP-SVPT)-Con A (IP-SV)-RW-C1 A (IP-SV)-RW-C2 A (IP-SV)-RW-C3 A (SVPT)-RW A (SVPT)-Con 

𝜎𝑝𝑒,0 2.72 (0.30) 2.44 (0.40) 2.72 (0.30) 2.98 (0.61) 2.41 (0.42) 2.46 (0.30) 2.85 (0.32) 2.89 (0.70) 

𝜎𝑝𝑒,1 5.88 (0.43) 5.18 (1.02) 5.71 (0.87) 2.83 (2.06) 5.69 (0.45) 5.70 (0.44) 5.53 (0.35) 5.53 (0.34) 

𝜎𝑝𝑖,0 1.42 (0.43) 1.78 (0.43) 1.41 (0.43) 3.54 (1.86) 1.82 (0.44) 1.77 (0.37) 0.68 (0.88) 0.50 (3.18) 

𝜎𝑝𝑖,1 – 2.84 (1.58) 1.88 (2.09) – – – 0.02 (0.95) 0.24 (1.02) 

𝜎𝜇  – 0.05 (0.03) – 0.06 (0.03) 0.05 (0.02) 0.05 (0.02) 0.00 (0.01) – 

𝜇 – T-V 0.41 (0.11) T-V T-V T-V T-V 0.54 (0.14) 

𝜑1 0.53 (0.09) 0.58 (0.09) 0.53 (0.10) 0.65 (0.10) 0.57 (0.09) 0.56 (0.08) 0.53 (0.36) 0.56 (0.48) 

𝜑2 0.19 (0.08) 0.16 (0.06) 0.19 (0.08) 0.12 (0.06) 0.16 (0.07) 0.17 (0.07) 0.16 (0.28) 0.18 (0.46) 

𝜋𝑖 -6.96 (1.04) -6.91 (1.07) -6.85 (1.10) -7.00 (1.07) -7.10 (1.05) -7.08 (1.04) – – 

𝑝 0.80 (0.06) 0.78 (0.08) 0.79 (0.07) 0.73 (0.08) 0.80 (0.06) 0.79 (0.06) 0.95 (0.02) 0.95 (0.02) 

𝑞 0.96 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 0.96 (0.01) 

𝜌𝑝𝑒,𝑝𝑖 – – – 
-0.63 (0.39) 

0.71 (0.45𝑖) 
– – – – 

𝜌𝑝𝑒,𝜇 – – – – 
0.49 (1.50)                  

0.42 (1.56𝑖) 
– – – 

𝜌𝑝𝑖,𝜇 – – – – – 0.50 (2.18𝑖) – – 

Log likelihood  -2495.1 -2493.5 -2492.5 -2493.1 -2493.6 -2493.6 -2517.2 -2514.7 

(a) T-V means that the model considers a time-varying state variable for the corresponding parameter. 

(b) The standard errors of the parameters are reported in parenthesis. Those with the letter 𝑖 for models 1e, 1f, and 1g are imaginary numbers. 

(c) The numerical value for the parameter denoted by 0.00 is 0.00006 for model 3c. 

Notes: 

(1) The estimation period runs from 1948M1 to 2022M12. See Table 1 for the main results and explanations. 

(2) Model 1b′ is another version of model 1b with similar estimations of parameters. Since in the former, we treat the drift term 

(constant long-run return) as a state variable and in the latter, the drift term is estimated as a parameter, model 1b′ is fully nested 

in model 1a, but model 1b is not. Comparing log likelihood values of -2493.6 and -2495.1 suggests that a random walk with a 

deterministic drift is sufficient to capture the dynamics of the efficient price. 

(3) The term “SVPT” for models 1c and 1d says that the Switching Variance is allowed for two variances, one for shocks to the 

Permanent component and another for shocks to the Transitory component. Hence, models 1c and 1d account for the asymmetry 

by including inefficient plunges in the transitory component, one switching variance in the permanent component, and another 

switching variance in the transitory component. For these two models, I relax the assumption of constant variance for shocks to 

the transitory component by including a switching variance for these shocks based on Eq. (8). The result shows that the variance 

of shocks to the transitory component is not switching. In particular, comparing the log likelihoods of -2493.6 and -2492.5 for 

models 1a and 1b in Table 1 with the values of -2493.5 and -2492.5 for models 1c and 1d bears likelihood ratio values of 0.2 and 

0.0, confirming that the variance of shocks to the transitory component is not switching. 

(4) To test for asymmetry in the form of inefficient plunges, I compare the log likelihood values for models 1c and 1d, in which 

the asymmetry is accounted for by including both inefficient plunges in the transitory component and two switching variances 

for shocks to the permanent and transitory components, with those values for models 3c and 3d, in which the asymmetry is 

accommodated only by including two switching variances for shocks to the permanent and transitory components. A pairwise 

comparison of the log likelihoods of -2493.5 and -2492.5 reported for models 1c and 1d with values of -2517.2 and -2514.7 for 

models 3c and 3d, respectively, favours the asymmetric Fads models over asymmetric variance models. The corresponding 

likelihood ratios of 47.0 and 43.8 are substantially greater than the critical value of 10.8 for a 0.1% significance level. 

(5) Comparing the log likelihood of -2493.6 for the proposed model in column 1a of Table 1 with values of -2493.1, -2493.6, 

and -2493.6 for correlated models 1e, 1f, and 1g ensures that the correlations between shocks (𝜌𝑝𝑒,𝑝𝑖, 𝜌𝑝𝑒,𝜇, and 𝜌𝑝𝑖,𝜇) are all 

negligible as the corresponding likelihood ratios are 1.0, 0.0, and 0.0. 
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Table C2 (Continue of Table 2): Estimated parameters of different models for the FTSE 350 

Models 1b′ 1c 1d 1e 1f 1g 3c 3d 

Parameters A (IP-SV)-Con A (IP-SVPT)-RW A (IP-SVPT)-Con A (IP-SV)-RW-C1 A (IP-SV)-RW-C2 A (IP-SV)-RW-C3 A (SVPT)-RW A (SVPT)-Con 

𝜎𝑝𝑒,0 1.96 (0.36) 1.84 (0.35) 2.00 (0.33) 1.79 (0.36) 1.77 (0.36) 1.80 (0.06𝑖) 0.05 (1.17) 1.36 (0.53) 

𝜎𝑝𝑒,1 5.73 (0.48) 5.96 (0.47) 5.89 (0.49) 6.47 (0.93) 6.70 (0.47) 5.74 (0.46) 5.85 (0.37) 5.79 (0.36) 

𝜎𝑝𝑖,0 1.46 (0.28) 1.58 (0.25) 1.54 (0.26) 0.99 (1.54) 1.53 (0.28) 1.54 (0.25) 2.19 (0.16) 1.66 (0.49) 

𝜎𝑝𝑖,1 – 0.03 (2.09) 0.16 (2.66) – – – 0.00 (0.82) 0.00 (0.30) 

𝜎𝜇   – 0.03 (0.02) – 0.03 (0.02) 0.02 (0.01) 0.03 (0.02) 0.03 (0.01) – 

𝜇 – T-V 0.38 (0.17) T-V T-V T-V T-V 0.64 (0.13) 

𝜑1 0.33 (0.11) 0.32 (0.09) 0.35 (0.11) 0.32 (0.10) 0.32 (0.11) 0.33 (0.11) 0.65 (0.09) 0.48 (0.27) 

𝜑2 0.01 (0.11) -0.00 (0.09) 0.01 (0.11) -0.01 (0.13) 0.01 (0.10) 0.01 (0.10) 0.21 (0.09) 0.31 (0.16) 

𝜋𝑖 -6.15 (1.33) -6.32 (1.16) -6.95 (1.16) -6.64 (1.37) -5.75 (1.32) -5.81 (1.27) – – 

𝑝 0.83 (0.07) 0.83 (0.07) 0.83 (0.07) 0.82 (0.07) 0.84 (0.06) 0.83 (0.07) 0.92 (0.04) 0.93 (0.04) 

𝑞 0.93 (0.03) 0.93 (0.02) 0.94 (0.02) 0.93 (0.02) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03) 

𝜌𝑝𝑒,𝑝𝑖 – – – 
0.67 (2.22) 

-0.64 (0.95) 
– – – – 

𝜌𝑝𝑒,𝜇 – – – – 
-0.96 (0.35)                  

0.98 (0.12) 
– – – 

𝜌𝑝𝑖,𝜇 – – – – – 0.52 (10.04𝑖) – – 

Log likelihood  -1222.4 -1221.1 -1218.7 -1220.8 -1220.5 -1221.4 -1228.7 -1226.8 

(a) T-V means that the model considers a time-varying state variable for the corresponding parameter. 

(b) The standard errors of the parameters are reported in parenthesis. Those with the letter 𝑖 for the model 1g are imaginary numbers. 

(c) Numerical values for parameters denoted by 0.00 are respectively -0.004 for model 1c, 0.001 for model 3c, and 0.0005 for model 3d. 

Notes: 

(1) The estimation period runs from 1986M1 to 2022M12. See Table 2 for the main results and explanations. 

(2) Model 1b′ is another version of model 1b with similar estimations of parameters. Since in the former, we treat the drift term 

(constant long-run return) as a state variable and in the latter, the drift is estimated as a parameter, model 1b′ is fully nested in 

model 1a, but model 1b is not. Comparing log likelihood values of -1221.5 and -1222.4 suggests that a random walk with a 

deterministic drift is sufficient to capture the dynamics of the efficient price. 

(3) The term “SVPT” for models 1c and 1d says that the Switching Variance is allowed for two variances, one for shocks to the 

Permanent component and another for shocks to the Transitory component. Hence, models 1c and 1d account for the asymmetry 

by including inefficient plunges in the transitory component, one switching variance in the permanent component, and another 

switching variance in the transitory component. In these two models, I relax the assumption of constant variance for shocks to 

the transitory component by including a switching variance for these shocks based on Eq. (8). The result shows that the variance 

of shocks to the transitory component is not switching. In particular, comparing the log likelihood values of -1221.5 and -1218.9 

for models 1a and 1b in Table 2 with the values of -1221.1 and -1218.7 for models 1c and 1d bears likelihood ratios of 0.8 and 

0.2, confirming that the variance of shocks to the transitory component is not switching. 

(4) To test for asymmetry in the form of inefficient plunges, I compare the log likelihood values for models 1c and 1d, in which 

the asymmetry is accounted for by including both inefficient plunges in the transitory component and two switching variances 

for shocks to the permanent and transitory components, with those values for models 3c and 3d, in which the asymmetry is 

accommodated only by including two switching variances for shocks to the permanent and transitory components. A pairwise 

comparison of the log likelihoods of -1221.1 and -1218.7 reported for models 1c and 1d with values of -1228.7 and -1226.8 for 

models 3c and 3d, respectively, favours the asymmetric Fads models over asymmetric variance models. The corresponding 

likelihood ratios of 17.6 and 14.6 are greater than the critical value of 10.8 for a 0.1% significance level. 

(5) Comparing the log likelihood of -1221.5 for the proposed model in column 1a of Table 2 with values of -1220.8, -1220.5, 

and -1221.4 for correlated models 1e, 1f, and 1g ensures that the correlations between shocks (𝜌𝑝𝑒,𝑝𝑖, 𝜌𝑝𝑒,𝜇, and 𝜌𝑝𝑖,𝜇) are all 

negligible as the corresponding likelihood ratios are 1.4, 2.0, and 0.2. 
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Table C3: Estimated parameters of different models for the weekly and daily S&P 500 

Models 1a (weekly) 1b (weekly) 1a (daily) 1b (daily) 

Parameters A (IP-SV)-RW A (IP-SV)-Con A (IP-SV)-RW A (IP-SV)-Con 

𝜎𝑝𝑒,0 1.38 (0.03) 1.38 (0.03) 0.50 (0.02) 0.51 (0.02) 

𝜎𝑝𝑒,1 3.38 (0.10) 3.39 (0.10) 1.64 (0.03) 1.64 (0.03) 

𝜎𝑝𝑖,0 0.19 (0.10) 0.19 (0.10) 0.34 (0.03) 0.33 (0.03) 

𝜎𝑝𝑖,1 – – – – 

𝜎𝜇   0.00 (0.001) – 0.00 (0.001) – 

𝜇 T-V 0.18 (0.03) T-V 0.04 (0.005) 

𝜑1 0.19 (0.08) 0.19 (0.08) 1.13 (0.03) 1.14 (0.03) 

𝜑2 0.49 (0.09) 0.49 (0.09) -0.24 (0.03) -0.25 (0.03) 

𝜋𝑖 -2.54 (0.26) -2.56 (0.27) -0.37 (0.04) -0.38 (0.05) 

𝑝 0.90 (0.01) 0.91 (0.01) 0.96 (0.004) 0.96 (0.004) 

𝑞 0.97 (0.01) 0.97 (0.01) 0.99 (0.001) 0.99 (0.001) 

Log likelihood  -7981.8 -7977.0 -23173.1 -23171.7 

(a) T-V means that the model considers a time-varying state variable for the corresponding parameter. 

(b) The standard errors of the estimated parameters are in parenthesis. 

(c) Numerical values for parameters denoted by 0.00 are respectively 0.00006 for model 1a (weekly) and 0.0006 for model 1a (daily). 

Notes:  

(1) The estimation period runs from 1948W1 to 2022W52 and from 1948D1 to 2022D251 for daily data. 

(2) For weekly data, the log likelihood values of models 3a and 3b are -8026.0 and -8021.2, respectively. Hence, the likelihood 

ratio for testing inefficient plunges is 88.4 for model 1a and 88.4 for model 1b. 

(3) For daily data, the log likelihood values of models 3a and 3b are -23230.3 and -23235.8, respectively. Hence, the likelihood 

ratio for testing inefficient plunges is 114.4 for model 1a and 128.2 for model 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

 

Table C4: Estimated parameters of different models for the weekly and daily FTSE 350 

Models 1a (weekly) 1b (weekly) 1a (daily) 1b (daily) 

Parameters A (IP-SV)-RW A (IP-SV)-Con A (IP-SV)-RW A (IP-SV)-Con 

𝜎𝑝𝑒,0 1.59 (0.06) 1.58 (0.06) 0.66 (0.02) 0.66 (0.02) 

𝜎𝑝𝑒,1 4.25 (0.32) 4.23 (0.32) 1.80 (0.04) 1.80 (0.04) 

𝜎𝑝𝑖,0 0.20 (0.12) 0.20 (0.12) 0.20 (0.04) 0.20 (0.04) 

𝜎𝑝𝑖,1 – – – – 

𝜎𝜇   0.00 (0.001) – 0.00 (0.001) – 

𝜇 T-V 0.12 (0.04) T-V 0.04 (0.01) 

𝜑1 0.08 (0.08) 0.07 (0.08) 0.95 (0.10) 0.92 (0.10) 

𝜑2 0.51 (0.08) 0.51 (0.08) -0.27 (0.09) -0.27 (0.09) 

𝜋𝑖 -3.11 (0.47) -3.10 (0.45) -0.86 (0.14) -0.88 (0.14) 

𝑝 0.84 (0.04) 0.83 (0.03) 0.96 (0.01) 0.96 (0.01) 

𝑞 0.97 (0.01) 0.97 (0.01) 0.99 (0.01) 0.99 (0.01) 

Log likelihood  -4093.6 -4088.5 -12259.4 -12255.2 

(a) T-V means that the model considers a time-varying state variable for the corresponding parameter. 

(b) The standard errors of the estimated parameters are in parenthesis. 

(c) Numerical values for parameters denoted by 0.00 are respectively 0.002 for model 1a (weekly) and 0.0002 for model 1a (daily). 

Notes:  

(1) The estimation period runs from 1986W1 to 2022W52 for weekly data and from 1986D1 to 2022D251 for daily data. 

(2) For weekly data, the log likelihood values of models 3a and 3b are -4114.6 and -4110.2, respectively. Hence, the likelihood 

ratio for testing inefficient plunges is 42.0 for model 1a and 43.4 for model 1b. 

(3) For daily data, the log likelihood values of models 3a and 3b are -12295.0 and -12291.2, respectively. Hence, the likelihood 

ratio for testing inefficient plunges is 71.2 for model 1a and 72.0 for model 1b. 
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Appendix D: Business cycle dates 

Table D1: Dates of the U.S. Business Cycles (Peak and Trough) 

N ECRI* NBER** Description 

1 1957M8-1958M4 1957M8-1958M4 -- 

2 1960M4-1961M2 1960M4-1961M2 -- 

3 1969M12-1970M11 1969M12-1970M11 -- 

4 1973M11-1975M3 1973M11-1975M3 First Oil Crisis 

5 1980M1-1980M7 1980M1-1980M7 Second Oil Crisis 

6 1981M7-1982M11 1981M7-1982M11 Early 1980s recession 

7 1990M7-1991M3 1990M7-1991M3 Early 1990s recession 

8 2001M3-2001M11 2001M3-2001M11 Early 2000s recession 

9 2007M12-2009M6 2007M12-2009M6 Global crisis and recession 

10 2020M2-2020M4 2020M2-2020M4 COVID-19 recession 

* Economic Cycle Research Institute 

** National Bureau of Economic Research 

 

Table D2: Dates of the U.K. Business Cycles (Peak and Trough) 

N ECRI* NIESR** Description 

1 - 1951M3-1952M8 -- 

2 - 1955M12-1958M11 -- 

3 - 1961M3-1963M1 -- 

4 1974M9-1975M8 1973M1-1975M3 First Oil Crisis 

5 1979M6-1981M5 1979M2-1982M4 Second Oil Crisis 

6 - 1984M1-1984M3 -- 

7 - 1988M4-1992M2 Early 1990s recession 

8 1990M5-1992M3 - Early 1990s recession  

9 2008M5-2010M1 - Global crisis and recession 

10 2019M10-2020M4 - COVID-19 recession 

* Economic Cycle Research Institute 

** National Institute of Economic and Social Research 
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