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Abstract (English language version) 40 

 41 

1. The expansion of oil palm agriculture across Southeast Asia has caused significant biodiversity 42 

losses, with the reduction in habitat heterogeneity that accompanies the conversion of forest to oil palm 43 

being a major contributing factor. However, owing to their long commercial lifespan, oil palm 44 

plantations can support relatively high levels of vegetation complexity compared to annual crops. There 45 

is therefore potential for the implementation of management strategies to increase vegetation 46 

complexity and associated within-plantation habitat heterogeneity, enhancing species richness and 47 

associated ecosystem functioning within productive oil palm landscapes.  48 

2. This study focusses on two species of assassin bugs Cosmolestes picticeps and Sycanus dichotomus, 49 

which are important agents of pest control within oil palm systems. Using a Before-After Control-50 

Impact experimental manipulation in Sumatra, Indonesia, we tested the effect of three alternative 51 

herbicide spraying regimes and associated vegetation complexity treatments on assassin bug numbers. 52 

Our treatments encompass a range of current understory vegetation management practices used in oil 53 

palm plantations and include removing vegetation only in areas key to harvesting (“Normal”), removing 54 

all understory vegetation (“Reduced”), and allowing native vegetation to regrow naturally 55 

(“Enhanced”). We assessed both the long-term (18 months) and short-term (within 2 weeks) effects of 56 

our treatments following herbicide spraying.  57 

3. Pre-treatment, we found high numbers of assassin bugs of both species in all plots. Long-term post-58 

treatment, the abundance of both C. picticeps and S. dichotomus declined in Reduced understory plots, 59 

although this decline was only significant for C. picticeps (98%). In contrast, there were no significant 60 

differences in the post-treatment abundance of either species in the short-term.  61 

4. These results suggest that the long-term decline in assassin bug abundance was likely to be caused 62 

by loss of vegetation, rather than any immediate effects of the herbicide spraying. Our findings have 63 

clear management implications as they demonstrate that maintaining vegetation in oil palm understories 64 

can benefit an important pest control agent. 65 

 66 
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(Indonesian language version) 70 
 71 

 72 
1. Ekspansi pertanian kelapa sawit di Asia Tenggara telah menyebabkan hilangnya keanekaragaman 73 

hayati secara signifikan, dengan berkurangnya heterogenitas habitat yang menyertai konversi hutan 74 

menjadi kelapa sawit menjadi salah satu faktor penyebabnya. Namun, karena umur komersialnya yang 75 

panjang, perkebunan kelapa sawit dapat mendukung tingkat kompleksitas vegetasi yang relatif tinggi 76 

dibandingkan tanaman tahunan. Oleh karena itu, terdapat potensi penerapan strategi pengelolaan untuk 77 

meningkatkan kompleksitas vegetasi dan heterogenitas habitat perkebunan, meningkatkan kekayaan 78 

spesies dan fungsi ekosistem terkait dalam lanskap kelapa sawit yang produktif. 79 

2. Penelitian ini berfokus pada dua spesies kepik pembunuh Cosmolestes picticeps dan Sycanus 80 

dichotomus, yang merupakan agen penting pengendalian hama dalam sistem kelapa sawit. Dengan 81 

menggunakan manipulasi eksperimental Sebelum-Sesudah Kontrol-Dampak di Sumatera, Indonesia, 82 

kami menguji pengaruh tiga cara penyemprotan herbisida alternatif dan perlakuan kompleksitas 83 

vegetasi yang terkait terhadap jumlah kepik pembunuh. Perlakuan kami mencakup serangkaian praktik 84 

pengelolaan vegetasi lantai yang saat ini digunakan di perkebunan kelapa sawit, termasuk 85 

menghilangkan vegetasi hanya di area yang penting untuk dipanen (“Normal”), menghilangkan semua 86 

vegetasi lantai (“Reduced”), dan membiarkan vegetasi asli tumbuh kembali secara alami (“Enhanced”). 87 

Kami menilai efek jangka panjang (18 bulan) dan jangka pendek (dalam 2 minggu) dari perlakuan yang 88 

kami berikan setelah penyemprotan herbisida. 89 

3. Dari masa pra-perlakan, kami menemukan sejumlah besar kepik pembunuh dari kedua spesies di 90 

seluruh plot. Setelah perlakuan dalam jangka panjang, kelimpahan C. picticeps dan S. dichotomus 91 

menurun pada plot vegetasi lantai “Reduced”, meskipun penurunan ini hanya signifikan pada C. 92 

picticeps (98%). Sebaliknya, tidak ada perbedaan signifikan dalam kelimpahan kedua spesies setelah 93 

perlakuan dalam jangka pendek. 94 

4. Hasil ini menunjukkan bahwa penurunan kelimpahan kepik pembunuh dalam jangka panjang 95 

kemungkinan besar disebabkan oleh hilangnya vegetasi, dan bukan akibat langsung dari penyemprotan 96 

herbisida. Hasil studi kami menunjukkan bahwa memelihara vegetasi lantai dalam lahan kelapa sawit 97 

dapat memberikan manfaat bagi agen pengendalian hama yang penting. 98 

 99 

 100 

 101 



1 Introduction 102 

 103 

A growing human population and increasing per-capita demand for cheaper vegetable oil has 104 

led to the rapid expansion and intensification of vegetable oil-producing crops globally (Foley 105 

et al., 2005; Phalan et al., 2013; Wilcove & Koh, 2010). Due to its versatile uses and high 106 

productivity in comparison to other oil crops, palm oil has become the most widely produced 107 

vegetable oil worldwide, with the crop playing an increasingly important role in global food 108 

security and biofuel supply (Tan et al., 2009; Tilman et al., 2011). Nowhere is the growth in 109 

oil palm agriculture more evident than in Southeast Asia, a region that produces 89% of the 110 

world’s palm oil, and where oil palm plantation area has increased almost fourfold since the 111 

turn of the 21st century (FAO, 2023). Indonesia, the world’s leading producer of palm oil, is at 112 

the forefront of this production boom; here the palm oil industry has grown to become an 113 

invaluable contributor to the country’s economic growth and national development 114 

(Gatto et al., 2015; Purnomo et al., 2020). However, as plantations are commonly established 115 

at the direct expense of biodiverse rainforest habitat, this expansion has also caused major 116 

deforestation and associated biodiversity loss in the region (Edwards et al., 2014; Fitzherbert 117 

et al., 2008; Gaveau et al., 2019; Turubanova et al., 2018). It is estimated that 54% of 118 

Indonesia’s 14.6 million hectares of oil palm plantations have been directly established on 119 

previously forested land (Vijay et al., 2016).  120 

 121 

While retaining remaining forest habitats is vital for supporting tropical biodiversity (Gibson 122 

et al., 2011; Phalan et al., 2011), an increased awareness of the negative impacts of palm oil 123 

production means there is growing pressure on the oil palm industry to develop sustainable 124 

management practices that improve biodiversity within plantations (Austin et al., 2017; 125 

Roundtable on Sustainable Palm Oil (RSPO), 2020). One of the major drivers of biodiversity 126 

loss resulting from habitat conversion is the simplification of vegetation, both in terms of 127 

overall species richness and structural complexity (Drescher et al., 2016; Foster et al., 2011). 128 



Although oil palm plantations are significantly less complex than forests, their long 25–30 year 129 

commercial lifespan and infrequent tillage (only occurring immediately pre-replanting) means 130 

they have the potential to develop considerably higher levels of understory vegetation 131 

complexity in comparison to annual vegetable oil-producing crops, such as soybean and 132 

rapeseed (Barcelos et al., 2015; Corley & Tinker, 2015; Luskin & Potts, 2011; Meijaard et al., 133 

2018). For example, Luke, Purnomo et al. (2019) found that mature oil palm plantations in 134 

Sumatra, Indonesia can support an understory vegetation layer consisting of 120 different fern 135 

and flowering plant species. An established understory may act as a nectar source for 136 

pollinators, a food source for herbivores, provide cover for predatory species and benefit 137 

temperature-sensitive taxa by buffering the ground-level microclimate (Hinsch, 2013; Luskin 138 

& Potts, 2011; Norman & Basri, 2010), potentially having a net positive impact on overall 139 

levels of biodiversity and ecosystem functioning. 140 

 141 

Few studies have investigated the impacts on biodiversity of local-scale management practices 142 

that enhance understory complexity in oil palm plantations. Instead, the majority of research 143 

that has been carried out on management for heterogeneity within oil palm has focussed on 144 

increasing complexity at the landscape-scale, such as through retaining or replanting native 145 

trees in fragments (as in Lucey & Hill, 2012; Lucey et al., 2014; Teuscher et al., 2016; Zemp 146 

et al., 2019) or along rivers (as in Gray et al., 2015, 2016; Luke, Slade et al., 2019; Woodham 147 

et al., 2019; Mullin et al., 2020; Pashkevich et al., 2022; Williamson et al., 2020). Given that 148 

guidance on local-scale management practices is already included in certain sustainability 149 

certification guidelines (such as those highlighted within Principle 7 of the Roundtable on 150 

Sustainable Palm Oil’s Principles and Criteria (RSPO, 2018)), and that such practices are likely 151 

to be relatively easily and cheaply adapted to fit with future updated guidelines, it is of key 152 

importance that the outcomes of such practices are better understood. This is important not 153 



only to maximise yield, but to also minimise the costs of production to biodiversity and the 154 

wider environment.  155 

 156 

The use of herbicides to control weeds, as a means to improve access for harvesting, as well as 157 

to maximise light, water, and nutrient availability for the crop, is common practice in oil palm 158 

agriculture. This typically involves either targeted spraying around individual palms and along 159 

pathways, as is common practice in industrial plantations, or non-targeted blanket spraying 160 

which is common in small-holding plantations (Corley & Tinker, 2015; Lee et al., 2014; 161 

Rutherford et al., 2011; Wibawa et al., 2007). In addition to impacting understory vegetation 162 

(e.g., Luke, Purnomo et al. (2019) reported that understory floral species richness increased by 163 

as much as 43% in non-sprayed plantation plots), there is evidence that reduced herbicide 164 

application can lead to higher faunal abundance and diversity. This includes increased web-165 

building spider abundance (Spear et al., 2018), ground-dwelling ant abundance (Hood et al., 166 

2020), understory insect family richness (Darrass et al., 2019), leopard cat activity (Hood et 167 

al., 2019), and more abundant and diverse belowground macrofauna (Ashton-Butt et al., 2018). 168 

With many of these taxa being directly associated with important ecosystem services, such as 169 

pest control, decomposition, and nutrient cycling, reduced herbicide application also has the 170 

potential to enhance the level of ecosystem functioning within plantations. Therefore, reducing 171 

herbicide application within oil palm agriculture is not only a potentially practical and cost-172 

effective way to increase plantation-wide understory vegetation heterogeneity, but also has the 173 

potential to positively impact wider biodiversity and alleviate some of the negative ecological 174 

impacts associated with agricultural expansion. 175 

 176 

The Reduviidae (assassin bugs) are a large and biologically diverse family of predacious 177 

insects, with approximately 7,000 species described globally (Gil-Santana et al., 2015). Many 178 

of these species play important roles as pest control agents within tropical agriculture, including 179 

in oil palm plantations, where, due to their polyphagous nature, they prey on a wide variety of 180 



insect pests, including the two main groups of oil palm defoliators present in Southeast Asia: 181 

nettle caterpillars (Lepidoptera: Limacodidae) and bagworms (Lepidoptera:  182 

Psychidae) (Ambrose, 2003; Cheong et al., 2010; Jamian et al., 2016; Wood, 2019; Zulkefli 183 

et al., 2004). For many years, synthetic pesticides were used to control pest numbers in oil 184 

palm, however, their usage has now been largely phased out due to the wide-scale development 185 

of pest resistance, secondary poisoning of non-target organisms, and potential risks to human 186 

health (Gill & Garg, 2014; Wilby & Thomas, 2002). Integrated Pest Management (IPM) has 187 

become an increasingly important alternative strategy for pest control in oil palm agriculture 188 

(Wood, 2002). IPM ultimately aims to complement, reduce, or replace the application of 189 

pesticides, through careful monitoring of pests, targeted control strategies, and enhanced 190 

natural biocontrol by key native predator species (Kogan, 1998; Toth, 2009), including assassin 191 

bugs. It is therefore important from both a conservation and yield perspective to understand 192 

how understory vegetation complexity within oil palm plantations affects assassin bugs. 193 

 194 

In this paper, we investigate the impacts of three oil palm understory management strategies 195 

on two species of assassin bugs (Cosmolestes picticeps Stål, 1859 and Sycanus dichotomus 196 

Stål, 1866), both of which are generalist predators and widely cited as effective pest control 197 

agents within Southeast Asian agroecosystems (Norman et al., 1998; Sulaiman & Talip, 2021). 198 

To do this, we use a large-scale and long-term Before-After Control-Impact (BACI) 199 

management experiment that has varied levels of herbicide applications with resultant effects 200 

on understory vegetation complexity in mature industrial oil palm. As applications of 201 

herbicides could affect assassin bug communities both long-term (through impacts on 202 

understory vegetation structure), and in the immediate short-term (through direct toxicity of 203 

herbicide exposure), we specifically investigate both long- and short-term effects, asking the 204 

following key questions:  205 

 206 



1) What are the long-term (18 months after treatment) effects of varying understory 207 

vegetation treatments on the abundance of Cosmolestes picticeps and Sycanus 208 

dichotomus?  209 
 210 

2) What are the short-term (within two weeks after treatment) effects of herbicide 211 

application on the abundance of Cosmolestes picticeps and Sycanus dichotomus?  212 

 213 

2 Materials and Methods   214 

 215 

2.1 Study Site 216 

 217 

Data for this study were collected in industrial oil palm plantations owned and managed by PT 218 

Ivo Mas Tunggal, a subsidiary company of Golden Agri Resources (GAR), with technical input 219 

from Sinar Mas Agro Resources and Technology Research Institute (SMARTRI) in Riau 220 

Province, Sumatra, Indonesia (N0 55.559, E101 11.619) (Figure 1). The area surrounding the 221 

plantations is dominated by oil palm agriculture and human infrastructure; the nearest intact 222 

forest (Siak Kecil Forest) is 60 km away, and the nearest degraded forest is 15 km away. The 223 

region has a wet tropical climate, with an average annual rainfall of 2,350 mm (average 224 

monthly rainfall figures for the data collection period are shown in Supplementary Figure 1 225 

(SF1)).  226 

 227 

The study was conducted across two neighbouring plantation estates (Ujung Tanjung and 228 

Kandista) (Figure 1), both of which are RSPO certified, with GAR being an active member of 229 

the RSPO since 2005. The plantations were planted between 1988 and 1993 (see 230 

Supplementary Table 1 for exact planting dates for each experimental plot), meaning oil palms 231 

were mature (aged 20 – 27 years) at the time of data collection in 2013, 2014 & 2015. Across 232 

the two estates, oil palms were planted in staggered rows at a density of 136 palms/ha, or 233 

approximately 8 m apart. The sites used in this study make up the Biodiversity and Ecosystem 234 

Function in Tropical Agriculture Understory Vegetation Project (BEFTA-UVP). The BEFTA-235 

UVP is a long-term ecological experiment that investigates the effects of understory vegetation 236 



management in oil palm on biodiversity, ecosystem functioning, and yield (Luke et al., 2020). 237 

Project sites consist of eighteen plots, arranged into six triplets. Each plot measures 150 × 150 238 

m and is made up of a central 50 × 50 m core section and an outer buffer region. All plots are 239 

located at the ends of three neighbouring 300 × 1,000 m plantation planting blocks, such that 240 

the middle plot in each triplet is 155 m from each of the outer plots within the triplet. Triplets 241 

are separated by at least one kilometre (Figure 1). Each plot is established on flat ground, 10 – 242 

30 m above sea level, and is bordered by an unpaved road and drainage ditch on one end, and 243 

by neighbouring oil palm on the remaining three sides. A stream runs through two of the plots.  244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

Figure 1. Location of BEFTA-UVP plots within SMARTRI estates (Riau, Sumatra, Indonesia). The 18 

plots (orange squares) are arranged in triplets throughout the Ujung Tanjung, and Kandista Estates 

(coloured in green). The maps were created using ArcMap 10.5.1 (Environmental Systems Research 

Institute, 2017), and library “maps” in R statistical package (Brownrigg, 2021), with reference to maps 

produced by SMARTRI. [This figure has been adapted, with the permission of the authors, from a figure 

included in Luke et al. (2020)]. 

 



 268 

Plots were established in October 2012, with understory management treatments implemented 269 

in February 2014. The three plots within each of the six triplets were randomly allocated to one 270 

of three understory treatments (hence, there were a total of six plots for each understory 271 

treatment) (SF2), representing the range of common management strategies used within 272 

industrial and smallholder oil palm plantations:  273 

1. Normal understory vegetation complexity (hereafter referred to as “Normal”): This is 274 

standard industry practice used within the GAR estates and is how all plots were managed pre-275 

treatment. It involves an intermediate level of herbicide spraying, with harvesting paths and 276 

circles (1.5 m radius areas around individual palm bases) being sprayed three to five times 277 

annually. All other vegetation elsewhere in the plots is allowed to regrow naturally, except for 278 

woody shrubs and young trees, which are removed manually.  279 

 280 
2. Reduced understory vegetation complexity (hereafter referred to as “Reduced”): This 281 

is the highest intensity of understory vegetation management. It involves a high level of 282 

herbicide spraying, with all understory vegetation throughout the plots being sprayed three to 283 

five times annually, effectively killing all understory vegetation.  284 

 285 
3. Enhanced understory vegetation complexity (hereafter referred to as “Enhanced”): 286 

This is the lowest intensity of understory vegetation management. It involves no herbicide 287 

spraying and only limited hand-cutting of woody vegetation to keep harvesting paths and areas 288 

around palm bases open and accessible. Cutting first took place one year after treatments started 289 

and was then carried out at the same frequency as herbicide application in the other treatments.  290 

 291 

For full details of the effects of the BEFTA-UVP experiment set-up and effects of the 292 

treatments on understory plant communities, see Luke, Purnomo et al. (2019) and Luke et al. 293 

(2020). Herbicides used included Glyphosate (Rollup 480 SL), Paraquat Dichloride (Rolixone 294 



276 SL), metsulfuron-methyl (Erkafuron 20 WG), and Fluroxypyr (Starane 290 EC). Barring 295 

six days of geographically restricted pyrethroid based canopy fogging (see Pashkevich et al. 296 

(2022)) no insecticides were used in the plots throughout this study. Data collection was carried 297 

out during three separate time periods.  To assess long-term effects of treatment, we collected 298 

pre-treatment data in September 2013 and post-treatment data in September 2015 in all 299 

eighteen plots. To assess short-term effects of treatment, we collected data in February 2014, 300 

just before (within two weeks, and hereafter referred to as 2014-Pre) and just after (within two 301 

weeks, and hereafter referred to as 2014-Post) herbicide application in each of the six Normal 302 

and six Reduced treatment plots (SF2). We did not survey the six Enhanced treatment plots at 303 

this time, as Enhanced and Normal plots were the same at this point, owing to not enough time 304 

passing for our Enhanced treatment to take effect. 305 

 306 

2.2 Assassin Bug Surveys 307 

 308 

We surveyed adult Reduviidae of the species Cosmolestes picticeps and Sycanus dichotomus 309 

(the two most common/conspicuous assassin bug species found within the plantation sites 310 

according to local counterparts) along transects in the core of each study plot. Transect walks 311 

consisted of a recorder walking at a steady pace, counting any adult C. picticeps or S. 312 

dichotomus that were visible or flew up in front of the recorder (without deliberately disturbing 313 

vegetation) within a 5-m-sided cube of space in front of them. This meant that it was important 314 

that both species could be easily distinguished visually from each other and from other 315 

Reduviidae present within the plantations. This was only achievable for adult C. picticeps and 316 

S. dichotomus (Figure 2), meaning that earlier developmental stages (eggs and nymphs) were 317 

not recorded. Identifications were made following guidance from local counterparts. The 318 

transect was 200 m in length and followed the edge of the central 50 x 50 m core section within 319 

each plot, although we did not re-record areas of overlap at the end of the transect. Transects 320 

were walked between 9:00 and 17:00 and were not conducted when it was raining. Two repeat 321 



surveys of each plot were carried out on separate days in each sampling period, with total 322 

counts for each of the plots being averaged and rounded to the nearest whole number for 323 

analyses, except for 2014-Pre and 2014-Post, when time constraints meant that only one visit 324 

was possible per transect before and after treatment. Therefore, for our long-term analyses, the 325 

response variable was mean number of assassin bugs per 50 x 50 m transect over two days of 326 

sampling. For our short-term analyses, the response variable was number of assassin bugs per 327 

50 x 50 m transect. We found that there was variation in counts between the two repeat surveys 328 

in each plot, but with a significant correlation between counts (SF3). By averaging surveys, we 329 

therefore reduced some of the stochastic variation related to individual surveys. 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

2.3 Statistical Analyses 343 

 344 

We carried out all statistical analyses in R version 4.1.2 (R Core Team, 2021) using R Studio 345 

version 2021.09.1+372 (R Studio Team, 2021). For data wrangling and exploration, we used 346 

readxl (Wickham & Bryan, 2023), tidyverse (Wickham, 2019), data.table (Dowle & 347 

Srinivasan, 2023), and plyr (Wickham, 2016), following the data exploration procedure 348 

outlined by Zuur et al. (2010). For data visualisation we used cowplot (Wilke, 2020), lemon 349 

(Edwards et al., 2022), and ggplot2 (Wickham, 2016).  350 

 351 

Figure 2. Photo of adult A) Cosmolestes picticeps and B) Sycanus dichotomus, taken within the BEFTA-

UVP plots (credit Edgar Turner). Cosmolestes picticeps typically measures ~1.5 cm in body length and 

Sycanus dichotomus typically measures ~3 cm.   

 



We separately analysed the long-term and short-term impacts of understory vegetation 352 

treatment on C. picticeps and S. dichotomus using Bayesian generalised linear regression 353 

models (hereafter, GLMMs). We fitted GLMMs using brms (Bürkner, 2017) and the No-U-354 

Turn sampler (NUTS) algorithm in Stan (Carpenter et al., 2017). We fitted five candidate 355 

models for each response: a parent model (Time*Treatment), and four derivative models 356 

(Time+Treatment, a Time-only model, a Treatment-only model, and a null model), with ‘Time’ 357 

being a categorical variable with two categories representing different sampling time points: 358 

after treatment in Sept 2015 (A) and before treatment in Sept 2013 (B), and ‘treatment’ 359 

representing one of the three vegetation management types: Normal (N), Reduced (R) or 360 

Enhanced (E). We included Triplet as a random intercept effect in all models, to account for 361 

potential spatial autocorrelation, triplet-specific differences in environmental conditions and 362 

timing of sampling in our modelling. Triplet has six variables: UT1, UT2, UT3, K1, K2 K3, 363 

corresponding to the six triplets of BEFTA-UVP plots in Ujung Tanjung (UT) and Kandista 364 

(K) estates. As we were modelling count data, all models were fitted to Poisson distributions. 365 

We checked Poisson models for over-dispersion and found that they were not over dispersed 366 

(and therefore negative binomial models were not needed). We verified that negative binomial 367 

distributions did not improve model fits by calculating and comparing the leave-one-out cross-368 

validation information criterion (LOOIC) of these models to that of our Poisson-distributed 369 

models. Owing to the high proportion of zeros within our data set (particularly for S. 370 

dichotomus, with no individuals recorded in 58% of transects in the long-term data set and 42% 371 

of transects in the short-term data set), we also verified that zero-inflated models were not 372 

required.  373 

 374 

We ran all GLMMs for 50,000 iterations using four chains and a thinning rate of 10. We 375 

discarded the first 8000 iterations as warmup/burn-in samples and controlled the behaviour of 376 

the NUTS algorithm to decrease the number of divergent transitions (adapt_delta = 0.99). We 377 



fitted normal (0,10) priors on model intercepts, normal (0,10) priors on fixed effects, and 378 

normal (0,1) priors on the standard deviation of random effects. When testing negative 379 

binomial and zero-inflated models, we fitted gamma (0.01,0.01) priors on the negative 380 

binomial shape parameter and beta (0.1,0.1) priors on the zero-inflated parameter. We chose 381 

weakly informative priors, to regulate the posterior distributions of our models such that they 382 

were kept within a reasonable range of values (i.e., they did not stray too far from the 383 

underlying datasets). For details of each of the models fitted during analyses see Supplementary 384 

Table 2.  385 

 386 

We determined that mixing was sufficient by inspecting Markov chain Monte Carlo (MCMC) 387 

trace plots, ensuring that Rhat values were <1.1, the ratio of effect sample size to total sample 388 

size was >0.1, and no autocorrelation was present within the MCMC chains (Muth et al., 2018). 389 

We validated models by verifying that no patterns were present when Pearson residuals were 390 

plotted against fitted values, included covariates, and random effect levels. We then used 391 

posterior predictive checks to ensure that attributes of data that were simulated from each 392 

model accurately reflected the real dataset from which each model was generated. For example 393 

model validation plots see SF4–SF9. Model validation and posterior predictive checks required 394 

bayesplot (Gabry & Mahr, 2022) and tidybayes (Kay, 2023).  395 

 396 

After generating and validating all candidate models, we took an information criterion 397 

approach to choose a model of best fit. This model selection process involved calculating and 398 

comparing each model’s LOOIC. We selected the model with the lowest LOOIC as the optimal 399 

model (i.e., a model that explained the most variation in the data with the fewest parameters), 400 

unless the standard errors of the LOOIC overlapped with that of another candidate model, in 401 

which case we selected the model with fewer parameters as the optimal model (Gabry et 402 

al., 2019). If the null model was not the optimal model, we report model estimates and 95% 403 

credible intervals for fixed effect parameters, and used emmeans (Lenth et al., 2018) to conduct 404 



post-hoc analyses by computing estimated marginal means for each factor level and comparing 405 

these in a pairwise fashion. We concluded that factor levels were meaningfully different if the 406 

95% highest posterior density interval of the median point estimate calculated from our 407 

comparisons did not overlap with zero. 408 

 409 

3 Results 410 

 411 

Assassin bugs were relatively abundant throughout the plots, with a total of 622 individuals 412 

recorded across the three sampling periods (September 2013, February 2014, and September 413 

2015), representing an average density of 104 assassin bugs recorded per hectare. Across the 414 

study, C. picticeps was far more abundant (542 individuals, and 87% of total abundance) than 415 

S. dichotomus (80 individuals, and 13% of total abundance).  416 

 417 

3.1 Long-term effects of understory vegetation treatments 418 

 419 

436 assassin bugs (394 C. picticeps and 42 S. dichotomus) were recorded for use in long-term 420 

treatment analyses; 264 (239 C. picticeps and 25 S. dichotomus) in 2013 and 172 (155 C. 421 

picticeps and 17 S. dichotomus) in 2015. Per-plot abundance for C. picticeps was significantly 422 

affected by the interaction between sampling period and treatment type, with the maximum 423 

model (Cosmolestes Picticeps ~ Time*Treatment+ (1| Triplet)) being the optimal model (R2 = 424 

52.1 ± 5.7%) (Figure 3A). Post-hoc analyses showed that there were no differences in pre- and 425 

post-treatment abundances of C. picticeps for Enhanced (Model estimate (95% credible 426 

interval) for pre-Enhanced = 5.669 (3.592 – 8.488); for post-Enhanced = 6.458 (4.206 – 9.765)) 427 

and Normal (Model estimate (95% credible interval) for pre-Normal = 7.435 (4.886 – 10.884); 428 

for post-Normal = 6.162 (3.993 – 9.238)) treatments. However, for the Reduced treatment 429 

(Model estimate (95% credible interval) for pre-Reduced = 7.242 (4.681 – 10.832); for post-430 

Reduced = 0.116221 (0.005 – 0.619)), per-plot abundance of C. picticeps was 98% lower in 431 

2015 than in 2013 (average abundances of 1 and 45 respectively, across the six plots; Figure 432 



3E). In contrast, for S. dichotomus we found no significant effects of understory vegetation 433 

treatment, season, or the interaction between these variables, with the Null model being the 434 

optimal model (R2 = 6.3 ± 6.3%) (Figure 3B). This was despite per plot abundances of S. 435 

dichotomus in the Reduced treatment plots being 86% lower in 2015 than in 2013 (average 436 

abundances of 1 and 7 respectively, across the six plots; Figure 3E). 437 
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 459 

3.2 Short-term effects of understory vegetation treatment  460 

 461 

186 individuals (148 C. picticeps & 38 S. dichotomus) were recorded in the 2014 season: 114 462 

(91 C. picticeps & 23 S. dichotomus) immediately before treatment application, and 72 (57 C. 463 

Enhanced 

Normal 

Reduced

Treatment

A

C
o

sm
o

le
st

es
 p

ic
ti

ce
p

s 
av

e
ra

ge
 c

o
u

n
t

(p
er

 p
lo

t)

Sept 2013 Sept 2015

Season 

15

0

5 

10

0

10

20

30

40

50

60

Before After

Reduced
A

ss
as

si
n

 b
u

g 
co

u
n

t

0

10

20

30

40

50

Before After

Enhanced
50

40

30

20

10

0

A
ss

as
si

n
 b

u
g 

co
u

n
t

0

10

20

30

40

50

60

Before After

Normal

A
ss

as
si

n
 b

u
g 

co
u

n
t

Sycanus dichotomus

Cosmolestes picticeps

B

Sy
ca

n
u

s 
d

ic
h

o
to

m
u

s 
av

e
ra

ge
co

u
n

t
(p

e
r 

p
lo

t)

Sept 2013 Sept 2015

Season 

4

3

2

1

0

Optimal model: Cosmolestes picticeps ~
Time*Treatment+ (1| Triplet);
Pre-Reduced > Post-Reduced  

Optimal model: Sycanus dichotomus ~ 
1 + (1 | Triplet); No pairwise differences     

C

D

.
No. of Plots

5 4 3 2 1 

E

0

50

60

40

30

20

10

0

50

60

40

30

20

10

0

Figure 3. Average per-plot abundance of: A) Cosmolestes picticeps & B) Sycanus dichotomus both before 

(6 months pre-treatment) and after (18 months post-treatment) treatment in Enhanced, Normal and 

Reduced plots. Boxplots display median and interquartile ranges (IQR), and whiskers incorporate data that 

are 1.5*IQR. The mean abundance in each of the 18 plots (6 replicate plots per treatment) is represented 

by a dot; the size of the dot is determined by how many plots share the same abundance. Stacked bar graphs 

(C, D & E) illustrate total number of Cosmolestes picticeps and Sycanus dichotomus before and after 

treatment in each of the three treatment types.   

 



picticeps & 15 S. dichotomus) immediately after. For the immediate pre and post dataset, we 464 

found no effects of understory vegetation treatment, season, or the interaction of these variables 465 

on either C. picticeps or S. dichotomus, as the null model was the optimal model for both 466 

species (R2 = 10.1± 8.1% and R2 = 6.5 ± 6.3%) (Figure 4).  467 
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 492 

4 Discussion  493 

 494 

In this study, we tested whether different levels of understory vegetation management 495 

(“Normal” – herbicide spraying to remove understory vegetation only in areas key to 496 

harvesting, “Reduced” - spraying all understory vegetation, and “Enhanced” – no spraying and 497 

allowing understory vegetation to regrow naturally) affected two species of assassin bug (C. 498 

picticeps and S. dichotomus) in mature oil palm plantations. We found that assassin bugs were 499 
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Figure 4. Per-plot abundance of: A) Cosmolestes picticeps & B) Sycanus dichotomus for both immediately 

pre- and immediately post-treatment in Normal and Reduced plots. Boxplots display median and 

interquartile ranges (IQR), and whiskers incorporate data that are 1.5*IQR. The abundance in the 12 plots 

(6 replicate plots per treatment) is represented by a dot; the size of the dot is determined by how many plots 

share the same abundance. Stacked bar graphs (C & D) illustrate total number of Cosmolestes picticeps 

and Sycanus dichotomus before and after treatment in the two treatment types. 

 



common across our plots, with 622 individuals recorded throughout our study. C. picticeps was 500 

found to be far more abundant than S. dichotomus within the plots sampled (respective ratio 501 

6.8: 1); this matches well with figures presented by Jamian et al. (2016), the only other study 502 

that we could find to have recorded numbers of both species within oil palm agriculture. This 503 

is potentially due to S. dichotomus being considerably larger than C. picticeps, with large-504 

bodied insects often being rarer than smaller-bodied insects in ecosystems (Siemann et al., 505 

1996). We found a significant negative long-term effect of reduced understory vegetation on 506 

C. picticeps (per-plot abundance in Reduced vegetation treatments was 98% lower 18 months 507 

post-treatment than it was pre-treatment), but not for S. dichotomus numbers, although there 508 

was also a trend for S. dichotomus abundance to decline (86% decline over the same period). 509 

In contrast, there was no significant observed effect of the Enhanced vegetation treatment 510 

(where no herbicide was applied) on abundance of either species over the same time period. 511 

We also recorded no significant changes in assassin bug numbers immediately post treatment 512 

in 2014, indicating that there were no detectable immediate effects of herbicide spraying. 513 

 514 

4.1 Long-term effects of understory vegetation treatment  515 

 516 

The strong declines we observed in the abundance of C. picticeps in Reduced vegetation 517 

treatment plots, but not Normal or Enhanced vegetation plots, suggests that understory 518 

vegetation plays a vital role in the survival of this species. This may be a direct result of the 519 

structure provided by an established understory, as the leaves and stems of herbaceous plants 520 

often provide the primary substrate for assassin bug oviposition (Ambrose & Livingstone, 521 

1989). Furthermore, it is possible that eggs laid onto vegetation before herbicide application 522 

may have experienced reduced hatching success if plants died before nymphs emerged, with 523 

long-term effects on adult numbers. The lower abundance of C. picticeps in Reduced vegetation 524 

plots may also be linked to the fact that understory vegetation likely supplies a vital food source 525 

for assassin bugs, by providing resources for small invertebrate prey, as shown by previous 526 



findings from the BEFTA-UVP (Ashton-Butt et al., 2018; Hood et al., 2020; Spear et al., 2018), 527 

as well as work carried out by Darras et al. (2019) and Teuscher et al. (2016), who reported 528 

that a more diverse and structurally complex oil palm understory promoted higher invertebrate 529 

abundance and richness. The cover provided by understory vegetation may also be a factor, as 530 

it can act as a refuge from predation, as well as creating more favourable microclimatic 531 

conditions for assassin bugs, such as cooler temperatures and higher humidity. Finally, some 532 

assassin bug species, including C. picticeps, are known to supplement their diet with extrafloral 533 

nectar (Jamian et al., 2016); therefore, access to a more diverse floral understory might also 534 

result in higher assassin bug numbers. Overall, it is likely that a combination of mechanisms 535 

drive C. picticeps abundance within oil palm plantations, and that by removing understory 536 

vegetation, assassin bug survival, reproductive and immigration rates decrease, while 537 

relocation rates to more-favourable areas increase.  538 

 539 

Although the abundance of C. picticeps is significantly associated with the presence of 540 

understory vegetation, there was no clear observable difference between C. picticeps numbers 541 

in Normal and Enhanced vegetation plots. This could be because Normal vegetation plots only 542 

receive herbicide along access paths and in the area surrounding palms, and indicates that the 543 

levels of understory maintained in Normal plots are sufficient to support assassin bugs at 544 

abundances similar to those in Enhanced plots. This suggests that current herbicide 545 

management regimes in GAR plantations are not having a negative impact on assassin bug 546 

numbers. The lack of difference in understory vegetation complexity between Normal and 547 

Enhanced plots has also been recorded in other BEFTA-UVP studies. Indeed, Luke, Purnomo 548 

et al. (2019) found that the species richness and biomass of understory vegetation did not differ 549 

between the two treatment types more than a year after treatment, while studies in the system 550 

on different invertebrate taxa that recorded reduced abundance in Reduced vegetation plots 551 



(Hood et al., 2020; Spear et al., 2018), have also reported a lack of difference between Normal 552 

and Enhanced vegetation treatments.  553 

 554 

The lack of a significant difference in S. dichotomus abundance between treatments is most 555 

likely related to the lower overall numbers of S. dichotomus observed throughout our plots, 556 

making it harder to detect any significant effects of treatment. If true, this indicates that many 557 

of the factors that influenced the reduction in C. picticeps abundance are also likely to impact 558 

S. dichotomus. Indeed, previous research indicates that the ability to access, and preference for 559 

different within-plantation vegetation stratum is similar for both species (Jamian et al., 2016; 560 

Norman & Basri, 2010). However, it could also be that S. dichotomus, being considerably 561 

larger than C. picticeps, is more dispersive and therefore less affected by the spatial scale at 562 

which treatments were applied (150 x 150 m plots). Its size also means that its surface area to 563 

volume ratio is lower, potentially allowing it to be more robust to impacts mediated by changes 564 

in microclimate, such as increased aridity (Kühsel et al., 2017).  565 

 566 

4.2 Short-term effects of understory vegetation treatment 567 

 568 

There was no clear short-term effect of spraying herbicides on assassin bug numbers, 569 

suggesting that the herbicide spraying itself does not have an immediate effect on assassin 570 

bugs. This again indicates that factors associated with changes in understory vegetation 571 

complexity are more likely to be driving differences in assassin bug numbers in oil palm 572 

plantations. As we sampled very soon after spraying in the Reduced vegetation plots, much of 573 

the vegetation, although dead or dying, was still present, providing some benefit for foraging 574 

and as refuge from predation and microclimate. Similarly, any prey insects attracted by this 575 

vegetation may still have been present. However, as adult assassin bugs readily fly when 576 

disturbed, it is likely that many may have avoided direct contact with herbicides during 577 

spraying, potentially explaining this lack of effect. Furthermore, as it was only adults that were 578 



recorded, any potential toxic impact of herbicide application on flightless nymphs would not 579 

have been picked up in our short-term abundance figures. It must also be noted that due to 580 

logistical constraints, we were unable to carry out two surveys pre and post treatment in 2014, 581 

so it is possible that the lower numbers in this analysis could have reduced the chance of 582 

detecting any differences. Indeed, C. picticeps numbers were lower immediately post-treatment 583 

in the Reduced plots, although this difference was not detected statistically in our modelling. 584 

 585 

4.3 Management implications  586 

 587 

The results of this study have several management implications. As both C. picticeps and S. 588 

dichotomus are known to be effective predators of several major oil palm pests, the relatively 589 

high abundance we recorded indicates that both species are potentially important pest control 590 

agents in the plantations we studied, reflecting findings in oil palm systems in other parts of 591 

the tropics (Ahmad et al., 2020; Jamian et al., 2016; Norman & Basri, 2010). Given the drop 592 

in assassin bug numbers we detected within Reduced vegetation treatment plots, it is our advice 593 

that the blanket spraying of herbicides in oil palm plantations should be actively avoided. We 594 

instead suggest that plantations in which blanket spraying is standard practice (e.g., in many 595 

smallholdings (Lee et al., 2014)), should switch management practice to a targeted herbicide 596 

approach as a matter of priority. There is also a growing body of research that highlights the 597 

potential associated risk of herbicide application to human health (Abdul et al., 2021; Kim & 598 

Kim, 2020; Myers et al., 2016), so such a reduction in application is also likely to come with 599 

additional benefits for growers. Our findings also suggest that in order to enhance assassin bug 600 

numbers in oil palm, the implementation of more proactive management strategies, such as the 601 

planting of beneficial understory species, as highlighted in Jamian et al. (2016), are required. 602 

Owing to the role of assassin bugs as pest control agents (Ambrose, 2003), it is likely that if 603 

understory vegetation is maintained and assassin bug numbers are boosted, it could also result 604 

in enhanced pest control services and lower herbivory, with potential benefits to palm oil yield. 605 



This is in line with a growing pool of evidence that highlights the importance of floral diversity 606 

and structural complexity of vegetation for increasing the abundance of invertebrate predators 607 

and parasitoids of crop pests (Chaplin-Kramer et al., 2011; Landis et al., 2000; Langellotto & 608 

Denno, 2004; Wratten et al., 2002). It is therefore our recommendation that clear directives 609 

concerning reducing herbicide usage within oil palm crop matrices (either through limiting the 610 

frequency of general application or limiting application to distinct zones, i.e., access pathways) 611 

should be integrated within major certification and sustainability guidelines. For example, 612 

under Principle 7 of the Roundtable on Sustainable Palm Oil’s Principles and Criteria for the 613 

Production of Sustainable Palm (RSPO, 2020), a new sub-point within section 7.1 (Section 614 

criteria: Pests, diseases, weeds and invasive introduced species are effectively managed using 615 

appropriate Integrated Pest Management techniques) could be created. This would provide 616 

guidance on levels of herbicide usage, as well as highlight the importance of maintaining 617 

understory vegetation in boosting pest control agents within oil palm agriculture, citing this 618 

study as well as others published from the BEFTA UV Project (e.g., Spear et al., 2018, Hood 619 

et al., 2019 & Hood et al., 2020).  620 

 621 

Our findings highlight the importance of understory vegetation for supporting biodiversity in 622 

oil palm, as well as potential associated pest control benefits. Given that several ecological 623 

factors are likely driving these results, further research that aims to provide a clearer 624 

understanding of the weighting of such factors could help with directing future management 625 

strategy. More work is also required urgently to assess the practicality of implementing such 626 

lower intensity management across oil palm plantations, particularly the long-term impacts on 627 

pest numbers and yield. As herbicide applications can constitute a significant component of the 628 

costs of oil palm management (Levin et al., 2012), it is also possible that such a change could 629 

benefit profitability, while reducing any negative external effects of chemical applications on 630 

human health. With oil palm now grown on over 28 million hectares globally (FAO, 2022), 631 



these relatively simple changes to management practices have the potential to have widespread 632 

ecological benefits. 633 
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