
Journal of Optics

PAPER • OPEN ACCESS

Reflection by two level system: phase singularities
on the Poincaré hypersphere
To cite this article: Ben Lang et al 2023 J. Opt. 25 125403

 

View the article online for updates and enhancements.

You may also like
Geometric phases in 2D and 3D polarized
fields: geometrical, dynamical, and
topological aspects
Konstantin Y Bliokh, Miguel A Alonso and
Mark R Dennis

-

Robust and adjustable C-shaped electron
vortex beams
M Mousley, G Thirunavukkarasu, M
Babiker et al.

-

Measurement of the phase structure of
elliptically polarized undulator radiation
Yoshitaka Taira, Masaki Fujimoto, Shien
Ri et al.

-

This content was downloaded from IP address 80.1.103.166 on 08/11/2023 at 11:40

https://doi.org/10.1088/2040-8986/ad065a
/article/10.1088/1361-6633/ab4415
/article/10.1088/1361-6633/ab4415
/article/10.1088/1361-6633/ab4415
/article/10.1088/1367-2630/aa6e3c
/article/10.1088/1367-2630/aa6e3c
/article/10.1088/1367-2630/abb54a
/article/10.1088/1367-2630/abb54a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstzVYZZWBZqehlNzgu_3vJ3VKYGhK6Sfnelj5h4BFi3X1MY2cCnqg5pO_JBvG65kPogAVp6E6M1ZPj8EKM-gksmpEPOtZR0yZSXGHQTLvjGz-WeXi4y_j2QHsDAknpqrUKSZhfqSRxTyS1bLSPYdCNV8DnLy1azFiHUJStPhruQoGKvaTSD4lpGNSnnRiYyFlwSs5eNQ-rJ-Zk0k5paxtP3kxI0LDMiz5rKb2n1gde0Zo-tJO0HNHnO3J1TtXPGAsrMwjYFym12fNGAQ4BywDzGXFLeatMkOlvMDq5naZYnOrw1w5We&sai=AMfl-YSyAFN02yyASOFQZiFNQOHFhoOoWvhmSeFq3fDlSjO9dGyNuIJ7ZqJjxaLEoLRxrA6I8VnOfhxsRKvm9Bo&sig=Cg0ArKJSzLmAo_jL2qbl&fbs_aeid=[gw_fbsaeid]&adurl=https://www.edinst.com/products/micropl-upgrade/


Journal of Optics

J. Opt. 25 (2023) 125403 (6pp) https://doi.org/10.1088/2040-8986/ad065a

Reflection by two level system: phase
singularities on the Poincaré
hypersphere

Ben Lang1,∗, Edmund Harbord2 and Ruth Oulton2

1 George Green Institute for Electromagnetics Research, Faculty of Engineering, The University of
Nottingham, Nottingham, NG7 2RD, United Kingdom
2 Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and School of Electrical,
Electronic and Mechanical Engineering, University of Bristol, Bristol, BS8 1FD, United Kingdom

E-mail: ben.lang@nottingham.ac.uk

Received 13 June 2023, revised 2 October 2023
Accepted for publication 24 October 2023
Published 7 November 2023

Abstract
We consider the reflection of a photon by a two-level system in a quasi-one-dimensional
waveguide. The waveguide polarisation at the location of the two-level system and the transition
dipole are key determinants of the physics, controlling of the phase and amplitude of the
scattered light in both directions. In most cases full control is possible by tuning only one of
these two degrees of freedom. In reverse, this enables unique characterisation of the dipole from
measurements of the scattered light. Phase singularities occur where the reflection coefficient is
zero, with the (hyper-)spherical parameter space determining the dynamics of these singularities.
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(Some figures may appear in colour only in the online journal)

The exploration of quantum emitter systems coupled to
‘one-dimensional’ waveguide-like photonic structures has
developed into a wide field over the past few years. The mod-
ified photonic density of states allows near-perfect coupling
between quantum emitters in the waveguide that does not
decay with distance. Studies of arrays of atoms or quantum
emitters in such systems predict a rich variety of physics.
For instance, carefully positioned emitters are predicted to
show superradiance [1]. Unidirectional emission and scatter-
ing leads to symmetry breaking in the coupling of arrays of
atoms, and the formation of ‘dimers’ of many-body dark states
[2]. In those studies, one exploits the interference between
back-scattered and forward-scattered light. However, these
studies make a priori assumptions, for example that the phase
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change on reflection is always π [3], or only considering the
specific case of forward scattering for chiral emitters at spe-
cific points in the waveguide.

In this work we explore generalised complex dipole sys-
tems in a waveguide with generalised polarization texture. The
result is that one has signficant control over the phase and
amplitude of the scattered light, particularly in reflection. Such
generalized dipole properties will diversify the capabilites of
one-dimensional atom-chain systems, and relax the position-
ing requirements for those emitters.

For simplicity we consider the reflection of a photon
from just one two level system (TLS), a classic problem in
1D quantum optics [4]. A photon incident on the TLS can
be reflected, transmitted or scattered out of the waveguide,
i.e. lost (although in a 1D system these losses are assumed to
be small). These possibilities are summarised using complex
reflection and transmission coefficients, r, t, with |r|2 + |t|2 ⩽
1 with equality occurring only at zero loss. The situation is
depicted in figure 1(a).

The generalised nature of our study is that it includes both
the waveguide polarisation at the TLS location (which, even
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Figure 1. (a) Schematic cartoon of the scattering process. The input
is split between reflection, transmission and loss, with the
coefficients determined by the waveguide electric field at the
location of the TLS (red), and the transition dipole of the TLS
(black). (b) Polarisation structure in a simple waveguide, consisting
of a high-index rectangular block (grey) in air (white). Polarisation
ellipses are shown through a cut, with light propagating up the page
(frame arrow).

for simple waveguide is very sensitive to location, figure 1(b))
and the electric dipole of the TLS. Recently there has been
interest in so called ‘chiral’ coupling, which exploits the lon-
gitudinal component of the waveguide electric field to make
the TLS couple asymmetrically to the waveguide modes in
either direction [5–9]. Chiral coupling enables systems where
the reflection/transmission coefficients are different for light
incident on the TLS from either side. For example a TLS
decoupled from the forwards mode will have t=+1 for a
photon injected forwards, but a photon incident in the back-
ward direction may have t anywhere between +1 and −1
depending on the coupling strengths to the backward and loss
modes (the applications of t= 0 are discussed in [10, 11] and
t=−1 in [12, 13]).

The complex coefficients r and t depend on both the exact
location in the waveguide and the properties of the dipole.
In nanophotonic systems the electric E-field polarization at
any specific point varies such that one can describe a polar-
ization ellipse at each point [12]. The ellipse gives the rel-
ative magnitudes of the Ex and Ey components of the field
and their relative phase. Narrow optical fibres [5], rectangu-
lar ridges [8] and the focus points of lenses [14], all support a
range of polarisations at different locations in the mode cross
section. Ellipses depicting these polarisations for a simple
waveguide are shown in figure 1(b). This waveguide is square
cross section rod with dielectric constant 12 embedded in air.
We show how the polarisation ellipse varies with y at the ver-
tical centre of the waveguide (with x the propagation direc-
tion) for one guided solution, found using mpb [15]. While
even simple designs like this one offer a range of polar-
isations, complex designs can introduce other benefits. For
example photonic crystals can enhance the light–matter inter-
action strength resulting in suppressed losses and topology
based structures can suppress the backscattering from bends or

defects in the waveguide [16]. Generic photonic crystal wave-
guides have the highest light-matter coupling near the band
edge, but the least circular polarisation in this vicinity [17].
However, engineered designs can provide strong coupling and
a large degree of circular polarisation simultaneously [18–20],
typically by including an inflection-like point in the waveguide
dispersion.

The depicted example is typical of narrow waveguides, in
that we see purely linear E-field points, purely circular (C)
points, where the Ex and Ey components are equal and out of
phase by π/2, and arbitrary elliptical points in between those
two extremes. Unidirectional chiral coupling occurs when a
circular dipole emitter (ie a linear combination of dx and dy
dipole out of phase by π/2) is placed at a C point (the direc-
tion of emission is dictated by the sign of the phase between the
dipole components). However one can construct the arbitrary
complex dipole d= αdx+βdy. Our previous work [21], has
highlighted that even when emitters are placed at an elliptical
point, emission may be made unidirectional by matching the
helicity and eccentricity of the ellipse and the dipole, by put-
ting the long axes of the two ellipses orthogonal. This negates
the backscattered component so that only forward scattering
can occur.

We now explore the case where reflection is desired, by
considering an arbitrary dipole where the linear component is
able to couple to the backscattered direction. What is inter-
esting here is the phase of the reflection. While input-output
models give only a π phase shift to the backscattered light, we
show here that the orientation of the ellipse governs the phase
of the reflected light, giving rise to a rich structure. This is an
extremely useful property: it enables the phase to be controlled
using the dipole, or for the dipole to be measured by reading
the phase. Dipole-tuning of the phase delay when considering
a chain of atomsmeans that one is no longer constrained to pre-
cise positions of the emitters in a 1D chain. Also, by dynamic-
ally controlling the dipole ellipse orientation, one may control
the reflectivity in-situ.

We consider electric dipole interactions between the TLS
and the waveguide, and assume the input is a narrow-band
photon (narrow in frequency, long in time). The crucial para-
meters determining the single photon t, and r coefficients are
the local polarisation of the forwards (backwards) waveguide
mode at the TLS position Ef(b) and the electric dipole of the
TLS transition d. Both Ef and d are complex vectors in space.
Without loss of generality we assume a basis in which both
are 2D3. The time-reversal symmetry of Maxwell’s equations
requires that Ef = Eb

∗, which amounts to reversing the ellipse
arrowheads.

The r, t coefficients are given by [21]:

t= 1−
d ·E∗

f d
∗ ·Ef

D
, (1)

3 The electric field will typically have a complex 3D spatial texture. However,
only the field at the TLS location is relevant and it is at most 2D, as we can
choose a 2D coordinate system with basis vectors given by its real and ima-
ginary parts.
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r=−
d ·E∗

b d
∗ ·Ef

D
, (2)

with

D=
1
2

(
|d ·E∗

f |2 + |d ·E∗
b |2

)
+ ζ (d ·Gl ·d∗ + ih̄ϵ0δ) . (3)

We will assume resonance, and thus δ, the detuning
between the incident photon and the TLS transition frequency,
is set to zero. Gl is the Green’s function controlling the inter-
action of the TLS with non-guided modes [22], and the para-
meter ζ characterises the inverse of the waveguide mode coup-
ling strength to the TLS. For simplicity we set ζd ·Gl ·d∗ = L,
with L a scalar controlling loss. If the TLS is prepared in its
excited state the fraction of the radiated intensity (photon prob-
ability) to enter the guided modes is given by β =W/(W+L)
withW= 1

2 (|d ·E
∗
f |2 + |d ·E∗

b |2). Bymaking loss independent
of d we are implicitly assuming at least two loss modes, with
polarisations orthogonal at the TLS location.

Equations (1) and (2) apply to single photon inputs, and
weak coherent states with negligible two-photon probability.
If multiple photons arrive simultaneously the saturation of the
TLS can lead to entanglement between them [23], which is not
considered here.

First, we consider the case of a linear dipole. Here it is
well-known that the TLS acts as a mirror, with |r| approaching
unity for low loss [4]. However, the phase of the reflection has
received less attention.

It should first be clarified what is meant by ‘the phase of the
reflection’. Naturally this phase must be determined relative to
the phase of the input and at some particular location in space.
The location is important because the input signal (travelling
forwards) will have a phase that changes spatially like eikx,
while the backwards travelling reflection will instead evolve
as e−ikx. As the distance between the phase reference point
and the location of the reflecting TLS is increased the phase
of the reflection will change according to the additional round
trip distance—the mechanism of a Michelson interferometer.

However, if some arbitrary (but fixed) location is picked
at which to compare the input and output phases it is then
possible to calculate how changing other parameters alters the
phase of the reflected light.

Consider a TLS at a point of circular polarisation, Ef =
(1, i). Here the y component of the electric field is a quarter-
wave delayed relative to the x component. Thus a linear dipole
aligned along the y axis is effectively a quarter wavelength
‘further away’ than one along x. Here rotating a dipole some
angle∆θ, transforms the reflectivity as r= r0 exp(2i∆θ), with
r0 the reflectivity for ∆θ = 0. The mechanism is reminiscent
of a Michelson interferometer, where moving the mirror by
distance∆x delays the phase by the additional round-trip dis-
tance, (2∆x/λ)2π, depicted in figure 2. Here we effectively
move the mirror by rotating it.

This phase is physically meaningful. One could build a
interferometer with a rotating dipole replacing the moving
mirror and measure the effect. The phase may also be import-
ant in other contexts. For example, if multiple TLSs are
coupled to a single waveguide their spacing is of critical

Figure 2. (a) Michelson interferometer phase from mirror motion.
(b) Comparable effect from rotating a reflecting dipole to interact
with a delayed polarisation component.

importance, as it determines whether emission and scatter-
ing adds constructively or destructively, thereby controlling
the superradiance [25], dipole-dipole frequency shifts [26, 27],
reflectivity [28, 29] and interatom entanglement [30, 31]. But,
as we have just motivated, the phase delay is also dependent
on the transition dipoles, so that the effective emitter spacing
depends on how the TLS dipoles are oriented. Thus, the real-
isation of proposals that depend on the phase delay between
adjacent TLSs [32], is not determined entirely by the TLS
separation.

The ability of both distance and dipole orientation to control
phase motivates a mention of superconducting giant atoms.
While chirality normally exploits the relative phase between
two polarisation components at a single location, these giant
atoms achieve a similar effect by reaching spatially to exploit
the relative phase between two locations in thewaveguide [33].

Requiring that |Ef|= |d|= 1 for simplicity and neglect-
ing global phases both vectors can be written in the form:
[cos(θ),sin(θ)exp(iϕ)]. The angles θ, ϕ can be used to repres-
ent the vectors as points on the surface of the Poincaré sphere.
In the general case a dipole can be picked from anywhere on
the surface of this sphere. The aforementioned linear dipoles
comprise the equator, with circular dipoles at the poles and
ellipses elsewhere.

In figure 3(a) we fix a circular polarisation, and calculate
r for all possible dipoles. Each dipole, d, corresponds to a
point on the sphere with its own value of r. In the first column
of spheres the hue indicates the phase ∠r, with the opacity
indicating |r| [with r= |r|exp(i∠r)]. In the second column the
phase gradient is plotted. Following any line in the arrowhead
direction the phase changes by −2π in a complete cycle. The
Michelson-like phase motivated above appears on the equator.
We have set |Ef|= |d|= 1 and L= 0.01 to consider the situ-
ation where coupling to loss modes is weak compared to typ-
ical waveguide coupling. Such low loss is appropriate to, for
example, photonic crystal waveguide systems [34]. Due to
this low loss |r| is close to unity almost everywhere on the
sphere, becoming significantly less only when the dot products
|d∗ ·Ef|2 or |d∗ ·Eb|2 are comparable to L.
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Figure 3. r as a function of d. First column: hue (opacity) indicates
the phase (amplitude) of the reflection from the dipole on that point
of the Poincaré sphere, for the polarisation depicted on the left.
These polarisations are Ef = [i cos(nπ/12),sin(nπ/12)] with
(a)–(d) having n= (3,4,5,6) respectively. Second column:
streamlines indicating the phase gradient. In (d) the phase is
constant so streamlines cannot be plotted. Instead a key indicates the
locations of cardinal dipoles on the sphere. S1−3 mark the axes of
the stokes parameters [24].

Plotting the data on a sphere highlights important topo-
logical restrictions that are not obvious from inspection of
equation (1). The phase swirling about the equator directly
requires that in each hemisphere there is a dipole such that
r= 0. This can be seen from the figure, after fixing the equator
one cannot find a smooth function without at least one zero in
each hemisphere.

The zero points are phase singularities, a ubiquitous wave
phenomenon that occurs where a complex scalar field takes
value 0 at some location, with the phase angle varying by 2πm
in a circuit of the zero point [35, 36]. The total phase change
along a closed curve is equal to the

∑
n 2πmn with n counting

over the singularities enclosed. Thus, our 2π variation along
the equator is enough to ensure that both hemispheres contain
at least one phase singularity with r= 0.

With circular polarisation these points are the poles. At one
d∗ ·Ef = 0 and the dipole decouples from the forwards mode,
so the TLS cannot in any way interact with the input photon.
At the other d∗ ·Eb = 0 so that whatever the TLS does to the
photon it cannot involve any scatting to the backward mode
(hence r= 0).

Moving to parts (b, c, d) of the figure we vary the polar-
isation of the waveguide. This deforms the phase structures
continuously, preserving the two singularities until they mutu-
ally annihilate on the equator for a linear polarisation. This
highlights that for any polarisation there is a dipole that
decouples from the forward mode and another the backward
one (the singularities), with the two coinciding only for a linear
polarisation [21].

The phase gradient can be considered a vector field. As this
field lives on the sphere it is subject to the ‘hairy ball theorem’
which requires that it cannot be smooth and nonzero every-
where. The theorem name refers to a consequence of this, that
a hairy ball cannot be combed to have all the hair lie flat. More
precisely the theorem requires the total Poincaré-Hopf indices
of the vector field’s zero points equal the sphere’s Euler char-
acteristic of+2 [37]. The vector fields depicted by streamlines
in figure 3. each have two singular points where the vector
winds in a circle (the phase singularities), such circles have an
index of +1 irrespective of the arrowhead directions, so that
the pair has the required +2 total.

The polarisation is able to explore its own Poincaré sphere
of possible values, such that the space of Ef⊗d has the form
S2 ⊗S2, a ‘sphere of spheres’ which we term a Poincaré hyper-
sphere. This full space is depicted in figure 4, with the lar-
ger sphere indicating the polarisation and the smaller ones the
dipole. One sees that (starting from the north pole of the larger
sphere) stretching our initially circular polarisation brings the
polar phase singularities closer to one another, and that the line
of latitude moved along is determined by the latitude line on
the big sphere. Opposite points on the Poincaré sphere corres-
pond to orthogonal polarisations, so that one phase singularity
on each sub-sphere points to the centre of the larger sphere.
This corresponds to the d∗ ·Ef = 0 case. The other phase sin-
gularity’s location on each sub-sphere is given by reflecting
the first through the equator to set d∗ ·Eb = 0.

Taking a tangent, it is interesting to consider the geometry.
Ef and d are each 2D, giving us a total of 4 dimensions. A phase
singularity has 2 dimensions fewer than the space it is embed-
ded in, so that the singularities on our 2-spheres were pointlike
(0D), and in 3D space singularities represent lines of darkness
or silence in fields [38]. Our singularities in the 4D space are
2D surfaces. There are two such surfaces, each corresponding
to d∗ · (Ef or Eb) = 0. These surfaces map to spherical shells,
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Figure 4. Each small sphere denotes r as a function of d as in
figure 3. For each the polarisation, Ef used is indicated by its
location on the larger (wire frame) sphere.

and the intersection of the two maps to a circle. On this circle
both dipole and polarisation are linear and are orthongonal to
one another, for example resembling a ‘×’ in real space. The
circular nature of the intersection relates to the fact that the ‘×’
can be rotated freely, e.g. ‘+’.

Considering figure 4. notice that, barring those beading the
equator, all the smaller spheres contain the full colour spec-
trum. This indicates that for any fixed polarisation, except
exactly linear, any reflection phase is possible with the right
dipole.

The transmission, t can be equally assessed on the sphere
(or hypersphere). However t lacks the complex structure seen
in r. For themost part, a t equivalent of figure 3. simply shows a
phase of∠t= π in one hemisphere and∠t= 0 in the other, the
two separated by a |t|= 0 equator. This |t|= 0 equator can be
considered a phase singularity by re-introducing the detuning,
δ. For a fixed Ef, within the 3D space defined by d⊗ δ it takes
the form of a 1D line phase singularity, looped into a circle
(near the equator) in the δ= 0 slice.

The impact of the dipole in the reflected phase has poten-
tial application. Quantum dots (QDs), embedded in photonic
structures are a promising platform for sources of quantum
light, or quantum computing. Vertical coupling of light to
QDs from above the chip is one way to address them and
likely ideal for communications. In contrast, in-plane coup-
ling, where light is confined to on-chip waveguides allows for
an integrated design, suited to computing applications as the
light need not switch between free space and guided modes,
incurring losses. QD transition dipoles are confined to the xy
plane, with these dipoles evidencing the QD spin degree of
freedom that needs to be coupled to the light. Viewed side-
on any in-plane dipole looks the same (except the one aligned
with the viewer’s perspective, which cannot be seen at all),
which led to an initial assumption that it was necessary to
combine different perspectives to distinguish dipoles in plane

[39]. Surprisingly, such tricks are not needed: left and right
circular dipoles can be distinguished in-plane by the phase in
transmission [12, 13]. The results of this paper allow one to
also distinguish linear dipoles on chip. As seen in figure 3. the
reflected phase information is far more useful in determining
the dipole (location on the sphere) than the amplitude.

Beyond linear dipoles, it is usually possible, in principle, to
uniquely determine an arbitrary elliptical dipole throughmeas-
urements of r and t, assuming Ef and L are known. Assuming
Ef is not exactly linear, |r| is monotonic with respect to the dis-
tance between d and the nearest singularity (white point) on
the sphere, while ∠r is monotonic in the orthogonal direction.
So, given r, the only remaining uncertainty is whether d lies in
the northern hemisphere or is mirrored through the equator to
the corresponding southern point. For S3([a,b]) = 2Im(a∗b)
(third Stokes parameter), sign(t) = sign(L− 1

2S3(Ef)S3(d)),
so when 1

2 |S3(Ef)S3(d)|> L the phase in transmission reveals
the sign of S3(d), which corresponds to which hemisphere d
is in, completing the unique identification of the dipole.

In conclusion, we demonstrate a rich behaviour of the
single-photon reflection coefficient, r, of a complex dipole
TLS in a one-dimensional photonic waveguide. r is a complex
field supporting phase singularities that live on the Poincaré
(hyper)sphere. The existence of two dipoles for each polar-
isation such that r= 0 and the existence of a Michelson-
interferometer like phase gradient on the equator can both be
motivated by physical arguments. We showed that the two
effects are intimately linked, due to the topological constraints
faced by phase singularities living on the surface of a sphere.
The rich dependence of r on dipole and waveguide polarisa-
tion for a single TLS enables dipoles to be distinguished on
chip and will offer new avenues for exploitation of chains of
TLSs in waveguides.
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