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Drug discovery is a costly and time-consuming process with a very high failure rate.
Recently, click chemistry and computer-aided drug design (CADD) represent
popular areas for new drug development. Herein, we summarized the recent
updates in click and computational chemistry for drug discovery and
development including clicking to effectively synthesize druggable candidates,
synthesis and modification of natural products, targeted delivery systems, and
computer-aided drug discovery for target identification, seeking out and
optimizing lead compounds, ADMET prediction as well as compounds synthesis,
hopefully, inspires new ideas for novel drug development in the future.
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Introduction

Click chemistry, an efficient chemo-selective synthesis method for coupling molecular
fragments under mild reaction conditions, mainly includes Cu-catalyzed azide-alkyne
cycloaddition reaction (CuAAC), strain-promoted azide-alkyne cycloaddition reaction
(SPAAC), thiol-ene reaction, inverse electron demand Diels–Alder reaction (IEDDA),
hydrazone click chemistry and the newly emerging sulfur fluoride exchange (SuFEx)
reaction, has been a hot research topic in the field of chemistry since it was first reported
in 2001 (Zhang et al., 2021a; Ashe, 2022). Computer-aided drug design (CADD) has attracted
a lot of attention for its potential to accelerate and reduce the cost of the drug development
process (Wu et al., 2020). In addition, natural products provide a variety of lead compounds
and novel drugs, are worthy of further development. Furthermore, early and late-stage
development of new drugs may be slowed down by problems such as poor target selectivity or
side effects, toxicity, resistance, inappropriate physicochemical and pharmacokinetic
properties. Therefore, we summarized the recent applications of click and computational
chemistry in drug development such as click to effectively synthesize druggable candidates,
synthesis and modification of natural products, targeted delivery systems including
hydrogels, nanoparticles (NPs), carbon nanotubes (CNT), etc, and computer-aided drug
discovery including molecular docking and molecular dynamics to identify target, virtual
screening (VS.) and pharmacophore to found and optimize lead compounds, ADMET
prediction as well as compounds synthesis, which are making a splash in new drug
development, hopefully, providing new insights for the discovery of new drug from click
and computational chemistry.
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Click chemistry

Click to efficiently synthesize druggable
candidates

The transformation of the active compound skeleton is a magic
weapon for researchers to break through patent restrictions and
improve the activity of compounds in the development of new
drugs. Copper-catalyzed 1,3-dipolar cycloaddition (CuAAC) to
form 1,2,3-triazoles is the most popular reaction in click chemistry.
Recently, 1,2,3-triazole backbones with hydrogen bonds, moderate
dipole moments and enhanced water solubility had been widely used
to generate drug candidates of anti-tumor (Brown et al., 2022;
Elganzory et al., 2022; Mohammed et al., 2022; Oekchuae et al.,
2022; Oliveira et al., 2022; Mironov et al., 2023), anti-seizure
(Bhattacherjee et al., 2022), anti-diabetic (Dhameja et al., 2022),
anti-parasitic (Aljohani et al., 2022), anti-bacterial (Daher et al.,
2022; Mokariya et al., 2022; Nsira et al., 2022) and anti-viral
(Kutkat et al., 2022; Tatarinov et al., 2022) via CuAAC click
chemistry (Figure 1A).

Synthesis and modification of natural
products

Natural products have provide abundant resources for drug
discovery. Recently, click chemistry had been adopted for synthesis
and modification of natural products, for instances, SPAAC was used
to modularly generate Bcl-xL inhibitor (Brauer et al., 2022), adjust
PEG chain length and targeting moiety to further improve half-life as

well as targeting IL-4 to arthritic joint (Figure 1B) (Spieler et al., 2020).
It was reported that poly (globalide-co-ε-caprolactone) could be
functionalized with N-acetylcysteine side chains via thiol-ene
reaction (Guindani et al., 2019). Furthermore, IEDDA could be
used to introduce aromatic heterocycles (Figure 1C) (Xu et al.,
2020) and triazines (Zhang et al., 2021b). Similarly, the synthetic
efficiency of biosynthesis of anti-fungal drug candidate Ilicicolin H
increased 3 × 105 times via IEDDA (Figure 1D) (Zhang et al., 2019).
Moreover, 5-fluorouracil-coumarin conjugation (Figure 1E) as anti-
cancer drug candidate (ópez et al., 2022) and pH responsive
doxorubicin delivery polymers nano-particles (Wallat et al., 2018)
for treatment of breast and ovarian cancer were generated by
modification of natural products via CuAAC. In addition,
quercetin-gold quantum dots for adenocarcinoma treatment
(Pansare et al., 2022) and chondroitin sulfate-multiarmed PEG
hydrogels for skin tissue engineering (Sousa et al., 2022) had been
developed by modification of natural products (Figure 1F).

Targeted delivery systems

Existing drugs may have dis-advantages such as low selectivity,
long synthetic routes, poor stability and side effects, thence the
development of targeted delivery systems make great sense.
Recently click-generated hydrogels had broad applications in the
fields of anti-tumor (Ali et al., 2022; Bonardd et al., 2022), wound
repair (Basurto et al., 2022) and long term regeneration therapy (Jang
et al., 2021) via IEDDA, CuAAC,thiol-ene reaction, and SuFEx,
respectively. Biomimetic stiffening of cell-laden hydrogels via
sequential thiol-ene and hydrazone click reactions (Chang et al.,
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FIGURE 1
Recent updates in click chemistry for drug discovery and development. (A) Reaction formula of CuAAC and some recent applications of CuAAC for
developing drug candidates containing 1,2,3-triazoles ring. (B) An example of natural product modification to improve half-life and target IL-4 to arthritic joint
via SPAAC. (C) An example of introduction aromatic heterocycles via IEDDA. (D) An example of efficient synthesis of natural products via IEDDA. (E) An
example of the generation of anti-cancer drug candidate bymodification of the natural product coumarin via CuAAC. (F)Catalyst-free click chemistry to
generate chondroitin sulfate-multiarmed PEG hydrogels for skin tissue engineering. (G) An example of the generation of MSCs-mediated deep tumor delivery
of gold nanorod for anti-tumor therapy via SPAAC. (H) An example of polymer nanomicelle platform for cancer treatment via CuAAC. (I) An example of the
generation of silver nanoparticle-supported polymer-encapsulated carbon nanotubes (CNTs) via IEDDA for nonenzymatic glucose sensing and antimicrobial
activity applications.
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2021). Furthermore, nanoscale covalent organic frameworks (COFs)
(Guan et al., 2022), Nisin-shelled nanoemulsion (Hashad et al., 2022),
and MSCs-mediated deep tumor delivery of gold nanorod (Figure 1G)
(Yun et al., 2022) had been synthesized for anti-tumor therapy via
thiol-ene reactions, SPAAC, and SPAAC, respectively. Moreover, pH-
sensitive polysaccharide-gold nanorod conjugate (Hou et al., 2019)
and polymer nanomicelle platform (Figure 1H) (Liao et al., 2021) were
reported to treat cancers via hydrazone click reaction and CuAAC,
respectively. In addition, silver nanoparticle-supported polymer-
wrapped carbon nanotubes (CNT) (Cao et al., 2022) for non-
enzymatic glucose sensing and antimicrobial applications (Figure
1I), COF-based nanoreactors for click-activated pro-drug delivery
and precise anti-vascular therapy (Wang et al., 2022) had been
synthesized via IEDDA, these click chemistry-based targeting

strategies may find widespread application in drug delivery in the
future.

Computational chemistry in drug
discovery

To effectively and efficiently design and develop new drugs,
computational methods had been applied for drug design including
target identification, seeking out and optimizing lead compounds
prediction of pharmacokinetic and toxicological properties as well
as compound synthesis by molecular docking and molecular
dynamics, virtual screening, pharmacophore and ADMET
prediction. Novel quinazoline derivative 1 as tubulin

FIGURE 2
The recent updates of computational chemistry in target identification, lead compound discovery and ADMET prediction for drug development.
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polymerization inhibitor (Dwivedi et al., 2022), PARP-1 inhibitor 2
(Syam et al., 2022), CDK2 inhibitor 3 (Qayed et al., 2022), HDAC-1-
3 inhibitor 4 (Cheshmazar et al., 2022), VEGFR-2 inhibitor 5
(Taghour et al., 2022) were identified for cancer therapies.
Furthermore, AChE inhibitor 6 (Macedo Vaz et al., 2022) for
treatment of Alzheimer’s disease and Mtb RNAP inhibitor 7
(Mekonnen Sanka et al., 2022) for antitubercular and antimicrobial
treatment were deserve further study. Moreover, a lead compound 8 of
DDP4 inhibitor (Maslov et al., 2022) and acetamide derivative 9 (Zhou
et al., 2022) as P2Y14R antagonist were considered as drug candidates
for treating type 2 diabetes and gout, respectively. Additionally,
potential SARS-CoV-2 main protease inhibitor 10 (Dong et al.,
2023) and carbazole alkaloids from Murraya koenigii (Wadanambi
et al., 2023) were identified as a promising drug candidates for
inhibiting coronavirus infection. Surprisingly, it had been reported
a computationally guided asymmetric total synthesis of resveratrol
dimers, which possessed a wide range of biological activities such as
antioxidant, anti-tumor and cardiovascular activities (Nakajima et al.,
2022), suggesting that computationally guided organic synthesis may
be a powerful strategy to advance the chemistry of natural products
(Figure 2).

Conclusion and prospects

In the review, we summarized recent updates in click chemistry
for drug discovery and development, including chemical click
synthesis of druggable candidates, synthesis and modification of
natural products, targeted delivery systems. In addition, we
introduced updated computational chemistry in drug discovery
for target identification, discovery and optimization of lead
compounds, compounds synthesis and prediction of
pharmacokinetic and toxicological properties. Click chemistry is a
very powerful tool in drug discovery, in which the synthesis of 1,2,3-
triazole ring as a pharmacophore, bioisostere via CuAAC has great
potential in the drug design for a variety of diseases, however, 1,2,3-
triazole ring itself is not a commonly used pharmacophore, and it is
rare in marketed drugs, indicating that the use of 1,2,3-triazole as
drug molecules still has certain limitations. Furthermore, the
CuAAC reaction introduces copper species into biological systems
and organisms, leading to potential toxicity issues while many Cu
chelation sites may inhibit catalyst activity. Moreover, Copper-free
cycloaddition SPAAC reaction and IEDDA reaction have their own
issues: for example, they are susceptible to side reactions with
nucleophilic residues (e.g., thiol residues in glutathione), and the
reactive (electrophilic) nature of the requisite cyclic alkynes/alkenes
may result in poor regiospecificity. Although computer molecular
docking and molecular dynamics have important applications for
target identification, however, the protein used for molecular

docking may have a huge unknown difference from the protein in
the pathological state due to site mutation. Additionally, computational
chemistry needs to be combined with more biological activity test and
mechanism exploration. In a word, although click and computational
chemistry have shortcomings, which still hold a great and unnegligible
potential for drug discovery and development, hopefully, this review can
stimulate new ideas for the development of drugs with high selectivity,
low toxicity, good stability and their clinical application in the near
future.
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