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A B S T R A C T

We examined a procedure to elicit the tacit models underlying expert opinions on environmental factors that
affect the absolute yield benefits expected from the adoption of conservation agriculture (CA) practices in
southern Africa. The procedure is based on expert evaluation of the expected improvement in crop yield on
adoption of CA in a particular scenario or ‘state’, a state being a specified set of soil conditions captured by a
standard soil profile description from a specified agroecological zone (AEZ) of Zambia. Mixed groups of scientists
including soil scientists, agronomists, agricultural economists and other environmental scientists, facilitated by
experienced senior researchers, were presented with multiple subsets each of three states, and asked to rank the
states in each subset with respect to expected yield improvement under CA. The groups of scientists could be
divided into two sets. Each set comprised two groups, and the agreement on ranking between groups within each
set was larger than would be expected if the ranking were done at random. For both sets of groups the ranking
could be modelled with respect to properties of the soil, and the contrast between AEZ. The models revealed two
contrasting groups of conceptual assumptions. One group broadly expected larger absolute yield improvements
from conservation agriculture in settings where water is most likely to be limiting and the carbon status of the
soil is poor. By contrast, the other group expected larger improvements where water was less likely to be lim-
iting. These contrasting views are relevant to current discussions as to whether conservation agriculture, which
is promoted as a ‘climate smart’ strategy for cropping, is sufficiently attractive for smallholder producers in
conditions where crop production is already challenging, and whether the potential benefits in areas where
water availability is not of itself a common limitation should be considered. The elicited models could be
translated directly into competing hypotheses to be tested, perhaps in on-farm trials of conservation agriculture
practices over contrasting soils in the different AEZ. The method, based on modelling the ranking process, could
be of more general interest for the elicitation of expert opinion about complex soil, crop and environmental
systems.

1. Introduction

Conservation agriculture (CA) has been promoted as a strategy to
improve food security in sub-Saharan Africa in the face of climate
change (Thierfelder et al., 2017). Conservation agriculture entails zero
or minimum tillage to reduce soil disturbance, the maintenance of soil

cover by mulching, commonly with retained crop residues, and the
diversification of cropping systems by intercropping or the use of ro-
tations (Kassam et al., 2009). Uptake of CA in southern Africa has been
variable in its success (Kassam et al., 2015), and it has been suggested
(Giller et al., 2009) that CA has been over-promoted, as a panacea, at
least for smallholder producers. In particular Giller et al. (2009) suggest
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that greater attention should be paid to the physical and the socio-
economic settings in which CA is most likely to deliver benefits for
farmers who adopt it. They refer to the concept of the socio-ecological
niche for particular farm practices (Ojiem et al., 2006): the set of
conditions, physical, social and economic, which constrain the situa-
tions in which a practice is beneficial for farmers. Giller et al. (2009)
suggest that, among other factors, soil conditions may limit the po-
tential benefits from CA as an intervention, and so play a part in de-
fining its particular niche. There have been attempts to identify con-
ditions in which CA can be expected to be beneficial (e.g. Baudron
et al., 2015). However, while there are several experimental trials in-
corporating CA practices in southern Africa (e.g. Ligowe et al., 2017),
there is at present limited empirical evidence to support a robust de-
finition of the soil and related factors which constrain the socio-eco-
logical niche of CA. In this paper we explore the possibility of using
expert opinion, extracted through formal elicitation, as a basis for a
provisional identification of soil factors expected to influence the re-
sponse to CA.

In soil science and land evaluation, we must often make an assess-
ment of a site (e.g. its suitability for a particular crop) which, while in
principle deducible from its biophysical and chemical properties,
cannot be inferred in practice because of our partial understanding and
the sparsity of available data. In such a situation an expert may base a
judgement on their understanding and experience, effectively applying
a tacit model of the system in which different factors are weighted in-
tuitively. The value of such expert judgement for management of nat-
ural systems is widely recognized (e.g. McBride and Burgman, 2012;
Stanton et al., 2018). In this paper we examine how expert opinion
might be used to assess the expected benefits from the uptake of CA
based on site information which might be inferred from a soil map. The
approach which we examined entails the framing of elicitation ques-
tions in terms of ordinal measurement or ranking (e.g. Craig et al.,
2009) which requires the subjects to rank small subsets of cases with
respect to some property or possible outcome. These methods have
their origin in psychology, specifically in Thurstone (1927) laws of
comparative judgement which imply that one can infer implicit values
of the psychophysical stimulus induced by different cases (e.g. the
brightness of individual objects) from pairwise rankings of these ob-
jects. Methods to elicit expert opinion, or opinion of other special
groups such as patients, from ranking of cases have been widely used in
medicine and health economics (e.g. Craig et al., 2009; Ali and
Ronaldson, 2012).

Neslo and Cooke (2011) present a promising approach to model
individuals’ tacit evaluations of states of a system from ranked subsets.
This approach is based on the assumption that an individual making a
judgement (Neslo and Cooke, 2011 call such an individual a ‘stake-
holder’, we call them an ‘expert’) has a ‘utility’ for every state of the
system, and that these utilities are reflected in the rankings of all sub-
sets of states which the expert is asked to assess. Utility might therefore
relate to a benefit or risk associated with a particular state of the
system. Neslo and Cooke (2011) model the utilities of states as random
quantities using methods called probabilistic inversion, either inferring
different utilities for each state considered, or inferring the utility of
any state as a function of a covariate set. In the latter case the estimated
model could then be used to compute utilities for new cases where the
values of the covariates are known. We summarize the method of Neslo
and Cooke (2011) in the following theory section.

Neslo and Cooke (2011) presented an exemplar case study in which
the utility of different health states for individuals were evaluated by a
panel each of whom ranked subsets of states. The utility of particular
states was modelled as a function of properties of the health state (e.g.
individual mobility, or cognitive functioning). The approach was used
by Flari et al. (2011) to model the risk associated with nanotechnology-
enabled food products, by Halpern et al. (2013) to evaluate conserva-
tion management options for marine environments, to prioritize dif-
ferent exotic diseases which are potential threats to the Australian pig

industry (Brookes et al., 2014a,b) and to identify features of emerging
infectious diseases which make them threats to the safety of blood
transfusions (Neslo et al., 2017).

In the study reported in this paper we undertook an elicitation ex-
ercise with teams of scientists engaged in research into CA in southern
Africa. This was a desk-based study undertaken during a project
workshop, and was based on evaluation of soil information presented in
a standard format, rather than examination of soil profiles in the field.
The states evaluated in this study were soils from Zambia, drawn from
two of the country’s three agroecological zones (AEZ) following
Veldkamp et al. (1984). Each soil had a standardized profile descrip-
tion, based on legacy soil surveys undertaken in the country, and the
particular AEZ was also identified. Participants were asked to rank
subsets of these states with respect to the expected absolute improve-
ment in crop yield expected after CA had been adopted, and allowed to
establish. The approach of Neslo and Cooke (2011) was used to model
the latent utility of the different cases with respect to soil properties and
the agroecological zone. The utility is a variable, reflected in the
ranking of states on the expected yield improvement expected for a
particular soil in a specified AEZ on the introduction of CA practices.
The objective was to identify the soil factors that experts regarded as
important in making this evaluation, and to identify any conflicting
assessments of the suitability of particular soils in agroecological zones
for the promotion of CA. This would provide a provisional basis for
identifying the most promising conditions for CA or, in the event of
conflicting views, to identify the key competing hypotheses about the
environmental limitations which constrain, along with other factors,
the socio-ecological niche of CA implicit in expert opinion. This would
help to inform the research agenda for future experimental work.

2. Theory

In this section we summarize the methodology presented by Neslo
and Cooke (2011). We consider a number of possible ‘states of affairs’ or
states. In our study a ‘state’ is defined by a soil profile description,
standardized as described below, augmented where appropriate by
observations on specific physical limitations, and set in a specific
agroecological zone. There are N states in total in the analysis which we
represent by …a a a, , , N1 2 . We adapt Neslo and Cooke (2011) termi-
nology here, and assume that each expert has a tacit latent ranking
variable (lrv) for each state, which they reflect in their rankings of
subsets of the N states. The lrv of the jth state according to the kth
expert out of L is treated as a random variable and denoted by v a( )k j .
The lrv determines the predicted ranking of two states in a subset, thus
if

<v a v a( ) ( )k j k i

then we expect state aj to appear before state ai in any ranking by the
kth expert of a subset which contains both states. In this study we have
preferred to use an intuitive ranking in which the state expected to have
the largest benefit from CA is ranked first. The value of the lrv for this
state is therefore relatively small. For this reason we do not follow Neslo
and Cooke (2011) in calling the lrv a utility, because in conventional
usage a utility would be largest in the state with the largest expected
benefit from CA. We therefore define the utility of a state u a( )k j by

= −u a v a( ) ( ),k j k j (1)

we compute values of the lrv, and present them as utilities (e.g. in plots)
by a change of sign. It follows, then, that the utility of a state in our
model is a variable such that if >u a u a( ) ( )k j k i it follows that the kth

expert expects a larger yield benefit from the adoption of CA in a si-
tuation represented by state aj (with respect to climatic and soil con-
ditions) than is expected in a situation represented by state ai.

In the methodology of Neslo and Cooke (2011) we may estimate a
value of the lrv for each state considered by an expert, such that an
ordering of the states on the lrv values best approximates that expert’s
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ordering of the states in each subset. However, one may also compute
the lrv as a function of properties of the states. For simplicity consider a
single property of the state, a covariate which takes value cj for the jth
state. This might be a particular soil property in our case. The lrv of the
jth state according to the kth expert is modelled as a function of cj:

=v a α c( ) ,k j k j (2)

where αk is a coefficient, estimated empirically, for predicting the value
of the lrv from values of the variable c. The value of the coefficient is
found such that a ranking of the subsets of states based on the predicted
lrv values most closely matches the actual ranking made by the experts.
This approach based on covariates is of considerable practical use be-
cause it allows us to predict a value of the lrv for an unobserved state, h,
from the value of the covariate for that state, ch such that the predicted
value of the lrv is α ck h. If the potential benefit of CA practices at a site
increase with increasing values of the covariate, c, we therefore expect
αk to have a negative value, indicating that the larger the value of c for a
state the earlier we expect it to appear in rankings of subsets. We next
consider in more detail how the estimation of expert lrv values, or ap-
propriate coefficients to compute these from properties of the states, is
done.

We consider P overlapping subsets of the N states, each subset
comprising n of the states. For example, one might consider subsets
each of three states: = =S a a a S{ , , },1 1 8 4 2

=a a a S a a a{ , , }, { , , }2 3 4 3 7 3 5 . Note that one state can appear in more
than one subset. For every subset we consider R possible responses from
the elicited expert. As the response is an ordering of the states in the
subset, there are =R n! possible responses – distinct orderings of the
states.

We consider a ×P R matrix Tk which tabulates the kth expert’s re-
sponses for P ordered subsets. One element of the jth row of Tk is 1, the
remaining elements in the row are zero. The column which contains the
1 corresponds to the recorded response for the jth subset. One may
average the T matrices over a set of L responses to obtain the matrix

RQ :

R ∑=
=L

Q T1 .
l

L

l
1 (3)

The aim of the PI method is to find a set of values of the coefficients
= …α k L, 1, ,k which match as closely as possible the mean responses

recorded in RQ . This is done by a stochastic model under which the
coefficients are treated as random variables. One generates a (single)
realization of a simple random model for these values, and then finds a
set of projection weights which project from this sampled random
variable onto the distribution of the αk such that the difference between
the Q matrix implied by the values of the utilities computed from the
projected coefficients and the observed RQ is minimized. Two methods
are considered to find the projection weights. These are the IPF (Iterative
Proportional Fitting) algorithm (Fienberg, 1970) and the PARFUM

(Parameter Fitting for Uncertain Models) algorithm (Du et al., 2006).
The former always converges for ‘feasible’ RQ , i.e. one where the results
are entirely consistent with a particular set of real-valued lrv (i.e. or-
derings in overlapping subsets are consistent), and converges to a result
with desirable properties (the mutual information of the random
sample and the projected set of lrvs is minimized). Feasibility means, for
example, that if state al is ranked above state am in one subset then it is
ranked above that state in any other subset where both occur. However,
experts might not always achieve this, and may rank two similar states
inconsistently when they are compared with very different third states
in two subsets. The PARFUM algorithm converges in all cases, and may be
invoked when IPF fails to converge.

2.1. Algorithms

Both algorithms start with a set of m realizations of a random

variable (in the case illustrated here where there is just one coefficient
in the model for each expert), = …j mb , 1, ,j , which is proposed for the
values of the coefficient αk proposed for the kth expert. For the lth
realization one may compute an induced response matrix, Tl

I, and from
all m of these a corresponding matrix QI with the mean responses:

∑=
=m

Q T1 .
l

m

l
I

1

I

(4)

The objective of both algorithms is to obtain an ×m 1 vector of
projection weights, ϕ, which minimize the difference in some sense
between the observed mean responses in RQ and the values

∑=
=

ϕ lQ T[ ] .ϕ

l

m

l
1

I

(5)

The initial set of projection weights can be set to

= ⎡⎣ … ⎤⎦ϕ , , ,m m m
0 1 1 1 T

. These weights are then adjusted iteratively until
convergence. Once the algorithm has converged one may then examine
the projection weights and, for example, compute an estimate of the
mean of the coefficient αk as the weighted sum of the corresponding m
random values in = …k j mb [ ], 1, ,j weighted by the final set of pro-
jection weights. The details of the IPF and PARFUM algorithms are de-
scribed in the Appendix.

2.2. This study

As noted above, Neslo and Cooke (2011) use probabilistic inversion
methods to fit models in which each individual expert’s lrv for a state is
predicted as a function of covariates. One simple linear form of the
model, comparable to a simple linear regression, is given in Eq. (2)
above. Such a model allows one to predict the utility for that expert of
some new state, given values of the covariate. This model can be gen-
eralized to include more than one covariate, and to include categorical
predictors. In this study we evaluated how far the rankings participants
gave to states (soil within agroecological zones), with respect to abso-
lute benefits obtained from the adoption of conservation agriculture,
could be modelled as functions of properties of those states presented to
the participants in the elicitation.

3. Methods

3.1. Definition of states

3.1.1. Agroecological zones
We used the classification of Zambia into broad natural regions due

to Veldkamp et al. (1984). We follow Saasa (2003) in referring to these
as agroecological zones (AEZ), of which there are three. AEZ II is
sometimes subdivided into two subregions, but in this study we ignored
this distinction.

AEZ I comprises the major valleys (e.g. Luangwa, Gwembe and
Lusemfwa valleys) and southern parts of the Western and Southern
provinces of Zambia. It is characterized by small amounts of rainfall
(less than 800 mm a−1) and a medium to high risk of drought. The
growing season is typically 80–129 days in duration. In contrast, AEZ II,
comprising the sandveld plateau of the Central, Eastern Lusaka and
Southern provinces and the Kalahari sand plateau and Zambezi flood
plains of Western Province has a medium to low drought risk with
800–1000 mm a−1 rainfall. The duration of the growing season is ty-
pically 100–140 days. AEZ III, in the north of the country, has much
more rainfall (more than 1000 mm a−1). Because the drought risk in
AEZ III is very small, we did not consider any states situated in AEZ III.

The AEZ, either I or II, therefore entered into the definition of all
states in this study.

3.1.2. Soil profiles
A state in this study consists of a description of a soil profile set in a
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specific AEZ (I or II). We obtained six profile descriptions for states set
in AEZ I and eight for states set in AEZ II. Soil information provided was
consistent across all states. We provided a profile description truncated
at 1 m depth, with the depth of successive horizons provided and, for
each horizon, a textural class following the system used in Zambia
(Diestel, 1981). A Munsell colour code was given for each horizon and
the available water content, pH (measured in water) and organic matter
content (%). In addition we provided the Total Available Moisture
(TAM: available water in mm over the top metre of soil), and, along
with the TAM we named the TAM category as used by Bunyolo et al.
(1982):— Very high (TAM > 155), High (115 < ⩽TAM 155), Moderate
(75 < ⩽TAM 115), Low (35 < ⩽TAM 75), Very low (<35).

Muliokela (1995) lists general soil types characteristic of the AEZ of
Zambia, but these are not named according to any particular soil
classification. We used this list as a guide when assembling soil profile
descriptions from legacy sources. Our aim was not to provide specific
inferences about particular soils of interest, but rather to cover a range
of soil conditions so that expert utilities could be modelled as functions
of profile properties.

In addition to ensuring that we covered a range of soil conditions, it
was necessary to provide the full list of soil properties listed in the first
paragraph of this section. We were able to obtain descriptions for 11
soil profiles (out of a total of 14) from two sources, a compendium of
information on soil physical properties in Zambia including soil profile
descriptions and physical measurements (Maclean, 1970), and pedon
descriptions from the excursion guide for the XIth International Forum
on Soil Technology and Agrotechnology Transfer held in Zambia in
1985 (Woode, 1985). The extraction of information was fairly
straightforward. Where soil analytical results were presented for fixed
depth intervals alongside horizon-based descriptions, analytical data
were attributed to the horizon from the depth interval that occupied
most of the horizon. Soil organic matter (SOM) was recorded for each
horizon, and where the original source provided soil organic carbon
(SOC) SOM was obtained by the simple conversion = ×SOM SOC 1.72.
Although the proportions of organic carbon in SOM are known to vary,
this factor has been widely used in the calculation of SOC from direct
measurements of SOM, and so is appropriate for our purposes here
(Landon, 1991).

In three states (Soils 1, 2 and 3) it was necessary to form compound
profile descriptions by combining information from two sources where
descriptions, incomplete with respect to the properties we required,
corresponded to soils in the same AEZ, with comparable textures. These
soils had to be included so as to give reasonable coverage of soil con-
ditions expected in AEZ I. The sources were profile descriptions from a
soil survey (Commissaris, 1973) and from the soil map of Zambia
produced by Brammer (1976). Available water for the horizons was
obtained from general values given for textural classes by Landon
(1991), Table 6.12, inferring stone content from the profile descrip-
tions. Details on the sources for each soil used in the elicitation are
provided in the Supplementary Material to this paper (Table S1).

In addition to the information on each soil profile listed above, we
provided a soil class name. This was based on the source of the de-
scription, and we made no attempt to identify a soil class in a single
classification scheme. For most of the soil profiles described a classifi-
cation was provided according to the Soil Map of Africa classification of
D’Hoore (1964) — Lithosol, Vertisol, Ferruginous soil, Ferralitic soil,
Paraferralitic soil — or Soil Taxonomy of Soil Survey Soil Survey Staff
(1975) — Ultisol, Alfisol and Oxisol. Where one of these classifications
was not used we provided a texture-based short description (e.g ‘Loamy
sand over gravelly sandy clay loam’). When the source material allowed
some qualification or expansion of the simple class description this was
included (e.g. ‘Shallow Lithosol over saprolite’).

In some states the original profile description included specific
comments on physical limitations of the soil under cultivation (e.g.
noting that it is prone to capping). Where these occurred they were
added to the description of the state.

Each state was described on a ‘soil card’ which was headed with the
AEZ and soil class, along with all the information by horizon listed in
this section. In addition a schematic representation of the profile was
printed on the card, showing the horizons by depth scale. The cards
were produced using the graphics capabilities of theR platform (R Core
Team, 2017), and the aqp package for R (Beaudette et al., 2013) was
used to colour the horizons on the profile schematic according to the
Munsell colour codes. The soil cards are presented in the
Supplementary Information.

The soil descriptions used in the elicitation were circulated among
all facilitators in advance of the elicitation itself (see below) and ex-
amined by them, including three senior and experienced Zambian soil
scientists.

3.2. Preparation and execution

3.2.1. Materials, expert panels and facilitation
Having described a set of 14 states we then created 45 overlapping

subsets, each of three states. This number was selected so that each
state could appear, on average, in three subsets. Subsets were as-
sembled manually, examining plots of soil properties in order to avoid
‘dominated’ subsets in which one soil clearly had better properties over
all considered (e.g. larger TAM, pH and soil organic matter). At the
same time we attempted to define subsets so as to span a range of soil
conditions in each. Some of the subsets comprised states drawn from a
single AEZ, and some subsets included states drawn from both the AEZs
considered in this study. The list of subsets is provided in the
Supplementary Information (Table S2).

The ranking of each subset was to be done, not by individuals but by
six small groups each with 5 or 6 members and a facilitator. The fa-
cilitators were senior experienced scientists with expertise in soil sci-
ence with agronomic applications. All had significant experience of
research at post-doctoral level in sub-Saharan Africa, including inter-
actions with national extension services and leading roles on farmer-
oriented research and development programmes funded by agencies
including the World Bank, the European Union, the Southern African
Development Community, the United States Agency for International
Development and the United Kingdom Department for International
Development. Three of the facilitators were from Zambia, two from
Malawi and one from Zimbabwe. All were Co-Investigators on the
CEPHaS project (Strengthening Capacity in Environmental Physics,
Hydrology and Statistics for Conservation Agriculture Research, see
Acknowledgements) and are joint authors with the corresponding au-
thor of this paper. The groups consisted of CEPHaS project team
members attending the project’s Third Network Meeting in Lusaka (July
2019). All had expertise in soil science, agronomy, geophysics or hy-
drogeology, and the CEPHaS project is concerned with deploying this
expertise to understand impacts of CA on the water cycle. The groups
were set up to ensure that expertise at post-doctoral level in soil science
and agronomy was evenly distributed between groups, and that all
groups had similar numbers of Zambian participants with soil science
and agricultural education at graduate level. Other team members were
from the UK, Zimbabwe or Malawi. All groups included members with
experience at the interface of research and extension or of on-farm
participatory research in agronomy or soil science. Due to absence of
some of the project team members, the number of groups was reduced
from 6 to 5 on the day.

The general objectives of the elicitation exercise and the approach
were discussed in person by the corresponding author and the Zambia-
based facilitator team, and by email with members of the team based
outside Zambia. The facilitator team were not familiar with the PI ap-
proach at this stage, and the specific modelling method was not dis-
cussed in the group so that the facilitators would not, consciously, ap-
proach the group task in terms of constructing state rankings from some
function of soil properties.

Briefing notes were prepared in advance of the meeting, and shared
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and edited by the full facilitator team, before being shared with all
meeting participants a week before the elicitation. The briefing notes
(see Supplementary Material), set out the general objective of the eli-
citation, and the question that the team would be asked to consider
when ranking states in each subset (see Section 3.2.2 below). The
briefing notes also showed example soil cards, and an example of how a
particular ranking would be recorded on the response sheets. The
briefing notes also provided short summary notes on the soil classes
used, the definition of the TAM classes according to Bunyolo et al.
(1982) and the soil texture triangle used (Diestel, 1981).

3.2.2. Groupwork
Two and a half hours were allocated for the exercise. Prior to the

groupwork, the briefing notes were presented as a reminder, and an
opportunity was given for questions to be raised. The groups then went
to separate locations at the meeting venue, where, under the guidance
of the facilitator, they were reminded of the task. They considered each
subset of states in turn, and considered the following instruction:

In each case you should assume that the soil is currently under con-
ventional cultivation (ridges) for rainfed maize by a smallholder pro-
ducer. The producer adopts conservation agriculture (zero till, retention
of residues, and crop rotation). The question is: what absolute im-
provement in yield can he or she expect, averaged over varying seasons,
from the third season after introduction onward?

Participants were then reminded that the task was to rank the states
in each subset from the one with the largest absolute increase in yield
expected (or smallest decrease), to the one with the smallest absolute
increase (or largest decrease). As the previous sentence makes clear, it
was not assumed that CA would always result in an increased yield, a
yield reduction is possible. By ‘absolute’ yield increase is meant a
change in units of tonnes per hectare, as opposed to a proportional
increase (proportion of yield prior to adoption of CA). The following
comments in the task were included in the briefing notes:

Think about the following when making your rankings.

i. We are interested in the yield improvement (from season three to allow
for adjustment). In one particular case, where conditions are already
very good for smallholder rainfed production, and drought risk is
smaller, the absolute improvement may be smaller than for a case you
are comparing it with where water availability is limiting. The best soil
might therefore not automatically be highest-ranked, we are interested in
which soil has the greatest potential improvement.
ii. Information on cation exchange and nutrients such as P and K is not
provided (as it was not available for most cases). You may regard clay
content (texture group), pH and OM content as giving you, potentially,
proxy information on soil fertility.
iii. Consider how the soil might respond to cessation of tillage (risk of
capping) given its texture and the possibility of structural limitations
given texture.
iv. Consider how soil pH might limit responses of the soil biota to im-
proved conditions under CA, as well as crop response.

Each group was provided with printed copies of the briefing notes.
Each group also had a set of the soil cards, printed on stiff card and with
each state on an individual card. This allowed the groups each to ex-
tract the cards for each subset in turn, and to place these on a table or
the floor in the middle of the group to facilitate discussion. Each group
recorded its agreed ranking for each subset on a results sheet which was
returned at the end of the exercise.

3.3. Analysis

3.3.1. Exploratory analysis
Five groups, denoted A, B, C, D, E, participated in the elicitation.

One group (A) did not complete the task, this was for external reasons

(the facilitator had to leave for part of the assigned period) and its re-
sults are not considered further for purposes of modelling the ranking
process. In exploratory analysis of the results from the remaining
groups we computed a matrix to show pair-wise comparisons between
groups with respect to the proportion of subsets for which they agreed
on the ranking of all states. Under a null hypothesis in which the groups
rank states at random in each subset, the expected proportion of subsets
for which two groups would agree completely is =3!/3! 0.16̇2 . We
computed the 95% confidence interval for the proportion of agreed
rankings for each pair of groups using the method of Blaker (2000) as
implemented in the blakerci function in the PropCIs library (Scherer,
2018) for the R platform.

3.3.2. Modelling with PI algorithms
As reported below, there were larger levels of agreement on ranking

of states between groups than would be expected under random
ranking, but this was not true for every pair of groups. On the basis of
the level of agreement, groups B and C, and groups D and E could be put
together, the latter pair agreeing completely on the ranking of 19 of the
45 subsets, and the former two agreeing completely on the ranking of
18 of the subsets. For purposes of modelling with probabilistic inversion
we combined these two pairs of groups and extracted the responses for
the subsets on which they were in complete agreement on ranking.

The PI method was used to fit linear models for the lrv of each state.
The model can be expressed in general form as

= αv X , (6)

where v denotes a vector of fitted lrv for the N states, the matrix X is a
×N P design matrix which includes, in its P columns the values of the

covariates for the N states (e.g the values of soil pH in one column), and
α is a vector of length P which contains the model coefficients. The PI
method finds, by means of the IPF or PARFUM algorithms, values of the
coefficients in α which give the closest matching between the observed
rankings of states over all subsets and the rankings implied by the va-
lues of the lrv computed with Eq. (6).

The first step was to compute simple group lrv values for each state
within each group, B-C or D-E. This is equivalent to the general model
in Eq. (6) where the design matrix has N columns, one corresponding to
each state, and where the terms on the main diagonal are 1 and all
others are zero. In this case the elements of α are direct estimates of the
lrv for each state. The model does not allow us to compute the lrv for a
new, unobserved, state. It was found, for both groups, that the IPF al-
gorithm would not converge, so PARFUM was used. The next step was to
form predictive functions of the properties associated with each state,
with environmental variables appearing as predictors in the design
matrix X.

The first model we considered used a dummy variable, xAEZ, as the
covariate in X, which took the value 0 for all states in AEZ I and 1 for all
states in AEZ II. Under this model the corresponding coefficient in α is
the lrv for all states in AEZ II relative to the lrv of zero for all states in
AEZ I. Note that, if states in AEZ I are generally expected to have a
larger yield benefit from CA than states in AEZ II, then the lrv of AEZ I is
the smaller (the utility is the larger) and so the coefficient in α will have
a positive value.

It is necessary to assess the evidence that a particular covariate is
informative about the expert lrv for states in the examined subsets. To
do this we used a permutation method by which the sets of of covariate
values for the states were reallocated independently and at random to
state labels, and a value of αcwas re-estimated. This was repeated 1000
times, and the interval bounded by the 2.5th and 97.5th percentiles of
the 1000 estimates of the model coefficients in α were treated as a 95%
confidence interval for the coefficient under a null hypothesis in which
the variables in the design matrix X have no relationship to the expert
lrv values for the states. Note that this permutation approach is effec-
tively a random shuffling of the rows of the design matrix X. The values
of the covariates taken by a particular state are not separated from each
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other, and so correlations between the covariates are preserved.
If the permutation test described above gave a confidence interval

for the coefficient which excluded the estimated value, then AEZ was
retained in the model. The next step was to consider whether including
TAM improved the model fit. We fitted a model with =P 3 columns in
the design matrix, the first contained the AEZ dummy variable, the
second contained values of TAM for all states in AEZ I, and the third
contained values of TAM for all states in AEZ II. This is equivalent to a
linear model with separate slopes for the regression line for two levels
of a factor. The permutation method was applied to decide whether to
retain TAM as a predictor for each AEZ (it could be dropped for one but
retained for another). This process was then repeated for each of the
following covariates in turn: OMm (mean organic matter content over
the profile computed by weighting the value for each horizon by its
thickness), pHm (mean soil pH over the profile, computed in the same
way as OMm), and a dummy variable CMvF, the contrast between
coarse and medium textures soils (top horizon) and fine ones — in this
instance taking value 0 for Sand and Loamy Sand, and 1 for all other
texture classes. Each of these covariates was tested in turn in a model
with the dummy variable for AEZ included, and tested by the permu-
tation method. After this was complete a model was fitted with all
predictors selected in this way, and a permutation test was run to select
those to be retained in the final model.

4. Results

All four groups B, C, D and E completed the exercise. The proportion
of subsets on which each pair of expert groups agreed on all ranking
positions is shown in Table 1a, along with the 95% confidence interval
for this estimate. The closest agreement is between groups D and E, and
the next closest between groups B and C. There is also evidence of
agreement between groups B and D (the confidence interval for the
proportion of subsets on which there is agreement excludes the value
0.16̇), but the confidence intervals for the proportion of subsets with
complete agreement for pairs {C,D} and {C,E} include 0.16̇, the ex-
pected proportion under random ranking. For pair {B,E} the lower
confidence bound for the proportion is not distinguished from 0.16̇ at
two places of decimals. Further modelling was undertaken using the 19
subsets on which groups D and E agreed, and their common rankings of
these, and the 18 subsets on which groups B and C agreed.

Notes taken by observers showed that the time taken to complete a
ranking decreased as the exercise progressed. Groups spent between 7
and 14 min ranking the first subset, but between 1 and 2 min to rank
the 30th. This might be expected as the process becomes more familiar,
and also, having discussed the ranking of one particular state in one
subset, its ranking in others may be more quickly agreed. To test
whether time pressure or fatigue might result in more erratic ranking
later in the exercise we present in Table 1b a contingency table showing
the numbers of subsets in which groups B and C were in complete
agreement (row 1) and those on which they disagreed (row 2) from
among (column 1) the first 22 subsets and (column 2) subsets 23–45.
We present the corresponding contingency table for agreements be-
tween groups D and E in Table 1c. Note that there is no evidence of a

reduced rate of agreement between the groups in the second group of
subsets. A loglikelihood ratio test of the null hypothesis of random as-
sociation between the rate of agreement and the group of subsets was
conducted for each contingency table with the loglm command in the
MASS library for the R platform (Venables and Ripley, 2002). There
was no evidence to reject this null hypothesis in either case (p = 0.9 for
groups B and C; p = 0.44 for groups D and E).

Note that Group A completed rankings for 21 subsets, these are not
analysed further, except to note that the proportion of these on which
their rankings matched those of groups B, C and D were, respectively,
and with 95% confidence intervals shown in brackets, 0.57 [0.35,0.77],
0.38 [0.20,0.60], 0.29 [0.13,0.51] and 0.22 [0.15,0.55].

In Table 2 are shown the coefficients for models fitted to the
common responses of groups D and E. When AEZ only was considered
as a predictor of rankings (Model 1) the coefficient fell outwith the 95%
confidence interval for values under the null hypothesis obtained by the
permutation method. Note that the coefficient is negative, which im-
plies that the group expect larger absolute yield improvement under CA
in AEZ II than AEZ I. In model 2 the coefficients for TAM both fall
outside the 95% interval for the null hypothesis, and have opposite
signs. The signs imply that expected yield benefits are larger on soils

Table 1a
Proportion of 45 subsets in which groups agreed completely on ranking of
states, with the 95% confidence interval for these estimates shown in square
brackets.

B C D E

B 1.00 0.40 0.38 0.29
[0.26,0.55] [0.24,0.53] [0.17,0.44]

C 1.00 0.16 0.11
[0.07,0.29] [0.04,0.24]

D 1.00 0.42
[0.29,0.57]

Table 1b
Numbers of subsets in which group B and C are in complete agreement on
ranking among subsets 1–22 and 23–45.

Subsets Subsets
1–22 23–45

Complete agreement 9 9
Disagreement 13 14

Table 1c
Numbers of subsets in which group D and E are in complete agreement on
ranking among subsets 1–22 and 23–45.

Subsets Subsets
1–22 23–45

Complete agreement 8 11
Disagreement 14 12

Table 2
Models fitted to responses from groups D and E for the 19 subsets for which
they were in full agreement∗.

Model Predictor Estimated coefficient* 95% bounds†

1 AEZ −0.187 −0.185,0.187

2 AEZ −0.031 −0.100,0.084
TAM(AEZ I) 0.113 −0.098,0.087
TAM(AEZ II) −0.161 −0.097,0.085

3 AEZ −0.391 −0.100,0.078
OMm (AEZ I) 0.004 −0.102,0.080
OMm (AEZ II) −0.085 −0.103,0.081

4 AEZ −0.211 −0.103,0.081
pHm (AEZ I) 0.078 −0.104,0.083
pHm (AEZ II) −0.108 −0.100,0.079

5 AEZ −0.363 −0.116,0.108
CMvF (AEZ I) 0.010 −0.119,0.103
CMvF (AEZ II) 0.024 −0.117,0.106

6 AEZ 0.043 −0.082,0.070
TAM(AEZ I) 0.260 −0.081,0.071
TAM(AEZ II) −0.159 −0.084,0.069
pHm (AEZ II) 0.347 −0.082,0.069

∗Note that these model coefficients produce values of the lrv (negative utilities)
as they predict a ranking variable in which the state with the largest expected
yield benefit is ranked 1.

† From 1000 permutations.
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with a smaller available water content in AEZ I, but conversely, will be
larger on soils with a larger available water content in AEZ II. The re-
sults for models 3 and 5 show that the coefficients for mean profile
organic matter content and for the dummy variable distinguishing soils
with coarse or medium-textured topsoil from fine-textured topsoil fall
within the 95% interval obtained by permutation, so there is no evi-
dence that they account for the group’s rankings. However, there is
evidence (model 4) that the group expect larger absolute yield im-
provement on soils of smaller pH in AEZ II, but no pH effect in AEZ I.

When all the covariates which appeared informative in models 1 to
5 were combined in a single model there was evidence that all con-
tribute to the group’s ranking, although there is a change of sign in the
coefficient for pH, which may result from correlations between the soil
properties of the states (model 6). Within AEZ II pH and TAM are po-
sitively correlated. It therefore appears that, with TAM included in the
model, there is evidence that group D-E expects larger benefits from CA
on more acid soils.

A plot (Fig. 1) of the estimated group utilities for each state against
those obtained from model 6 in Table 2, (computed in each case from
the fitted lrv values following Eq. (1)), shows that these are generally
linearly related with the exception of states 4, 5 and 6. It is notable that
these are three states out of the four in total (the other is with state 14),
for which notes on the soil card recorded that the soil is at risk of
structural instability (puddling or capping). Note that states 14, 5 and 6
have very similar estimated expert utilities. This implies that, while the
soil properties used for modelling the expert rankings imply a small
benefit from CA for these soils, in AEZ I, the panel appears to interpret
these soils as being likely to benefit rather more from CA interventions
than others in AEZ I (states 1,2 and 3), possibly because CA specifically
protects soils against direct impact of rainfall that might cause pud-
dling, and the cultivations that might cause capping.

Table 3 presents model coefficients for the common responses of
groups B and C. Again, AEZ considered as a single covariate appears to
be predictive of the group rankings. However, the coefficient is positive
here, implying that group B-C expect a larger benefit from CA in AEZ I
than in AEZ II. This is contrary to the result for groups D-E (Table 2).
When TAM is considered as a predictor the coeffient for states in AEZ I
falls within the range obtained with random permutation, but there is
evidence that TAM is predictive of rankings for sites in AEZ II, the

positive sign implying that states where the soil has a large TAM will
have smaller benefits from CA. There are positive coefficients all out-
with the 95% intervals obtained by permutation for mean profile or-
ganic matter and for mean profile pH. The values of these coefficients
do not differ markedly between AEZ I and AEZ II, and imply that larger
benefits from CA are expected by this group in states with more acid
soils and smaller organic carbon content. The contrast between states
with coarse or medium and fine-textured topsoil appears to be pre-
dictive of ranking in AEZ II, with smaller benefits expected for the finer-
textured soils. All covariates which appeared to be predictive in the
single covariate models (in the separate AEZ), were included in a single
model. In this case some of the coefficients fell within the 95% interval
obtained by random permutation, so were dropped, leaving model 7.
Under this model there are differences between AEZ and effects of
profile mean pH and OM. The signs are unchanged from the earlier
models.

A plot of the estimated group utilities and the fitted utilities from
model 7 in Table 3, (again obtained by a change of sign from lrv values)
shows (Fig. 2) a linear relationship, with states 2 and 8 as outliers, both
given smaller utilities by the group than were predicted from the fitted
model. It is notable that state 2 is a shallow soil over saprolite, some-
thing not expressed in the covariates used for modelling, but which
might have affected the assessment made by group B-C of the site’s
potential.

5. Discussion

The model results presented in Tables 2 and 3 indicate that, for the
subsets in which they concurred, soil properties in the different states,
along with AEZ, were predictive of group rankings as cofficients for
some covariates fell outwith the 95% range obtained by permutation. It
was notable that, while the fitted utilities and those estimated for the

Fig. 1. Plot of (abscissa) estimated expert utilities for each state (negative
lrv value) against the predicted utilities (negative fitted lrv values, ordinate)
based on the selected function of soil properties, group D and E using subsets for
which they were in full agreement.

Table 3
Models fitted to responses from groups B and C for the 18 subsets for which they
were in full agreement∗.

Model Predictor Estimated coefficient* 95% bounds†

1 AEZ 0.136 −0.111,0.112

2 AEZ −0.023 −0.091,0.081
TAM(AEZ I) −0.038 −0.090,0.079
TAM(AEZ II) 0.119 −0.088,0.080

3 AEZ 0.100 −0.086,0.077
OMm (AEZ I) 0.237 −0.086,0.080
OMm (AEZ II) 0.276 −0.085,0.078

4 AEZ 0.017 −0.078,0.084
pHm (AEZ I) 0.280 −0.079,0.086
pHm (AEZ II) 0.372 −0.078,0.087

5 AEZ 0.172 −0.073,0.063
CMvF (AEZ I) 0.011 −0.069,0.067
CMvF (AEZ II) 0.166 −0.070,0.065

6 AEZ 0.348 −0.052,0.051
TAM(AEZ II) 0.001 −0.053,0.052
pHm (AEZ I) 0.319 −0.054,0.052
pHm (AEZ II) 0.526 −0.052,0.052
OMm (AEZ I) 0.614 −0.054,0.052
OMm (AEZ II) 0.230 −0.053,0.053
CMvF (AEZ II) −0.038 −0.054,0.053

7 AEZ 0.147 −0.062,0.068
pHm (AEZ I) 0.359 −0.063,0.068
pHm (AEZ II) 0.557 −0.063,0.064
OMm (AEZ I) 0.590 −0.063,0.069
OMm (AEZ II) 0.184 −0.065,0.065

∗Note that these model coefficients produce values of the lrv (negative utilities)
as they predict a ranking variable in which the state with the largest expected
yield benefit is ranked 1.

† From 1000 permutations.
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states directly were mostly consistent, differences could be explained by
particular features of the soil included in descriptive notes, in particular
the states where the soils have potential structural problems in the case
of group D-E.

A marked feature of these results is that, in so far as groups B and C
concurred in their assessment of subsets, they ranked them differently
to groups D and E in their consistent rankings. Broadly the models es-
timated by PI indicate that group D-E expected larger yield benefits
from CA states in which conditions for rain-fed production would be
most favourable (AEZ II with a smaller drought risk, and larger im-
provements for states with larger available water contents in AEZ II). In
contrast, group B-C expected larger benefits from CA in the more
drought-prone AEZ I, and on soils within AEZ II with smaller available
water content (TAM, model 2 in Table 3). Similarly, they expect larger
benefits from CA on soils with smaller organic matter content. The two
groups concur, in the final joint models (Table 2, model 6; Table 3,
model 7) in expecting larger benefits from CA on more acid soils. It is
important to remember that the task given the groups was to rank on
expected absolute improvement in yield under CA, while group D-E
expected larger yield benefits from CA in less droughty conditions and
soils with larger available water content but this does not mean they do
not expect CA to be advantageous in conditions more challenging for
rain-fed production.

Whilst participants from Zambia were distributed across all groups,
it is possibly significant that the facilitators for groups B and C (in
general expecting larger benefits from adoption of CA in AEZ I and on
soils with less available water and organic matter), were both from
Zambian institutions. The facilitators of groups D and E were from
Zimbabwean and Malawian institutions. Furthermore, the facilitator of
group A was also from a Zambian institution and it is notable that the
rankings for this group, in the subsets that they completed, were more
frequently in agreement with groups B and C (with a confidence in-
terval for the estimated proportion exceeding 0.16̇) than with groups D
and E (with a confidence interval for the estimated proportion in-
cluding 0.16̇). It is possible that this reflects common outlooks on CA
and its potential in a Zambian setting, within Zambian institutions.

The fundamental difference between groups B-C and D-E is whether
states in which factors such as water availability are expected to be
most challenging for crop production would have the largest absolute

benefit from CA adoption, or whether (without excluding the expecta-
tion that CA will be beneficial in these circumstances), larger benefits
are to be expected where conditions are more favourable for production
in general. It is interesting to note that the Zambian Agriculture
Research Institute (ZARI) is currently examining whether there are
benefits from CA adoption in AEZ III (Siulemba, pers. comm.), where
the drought risk is regarded as ‘almost nil’ (Saasa, 2003).

It is important to remember, of course, that we have here been
modelling expert opinion rather than experimental or observational
data. That there should be contrasting opinions is no surprise, parti-
cularly given the considerations in the previous paragraph. One value
of this approach is that it allows us to probe differing expert expecta-
tions in ways that should allow the establishment of hypotheses for
experimental testing. For example, both models of expert opinion in
this study expect there to be differences between AEZ with respect to
benefits from CA. Group D–E, in their model 6 (Table 2) appear to
hypothesize that there would be an interaction between AEZ and
available water in the profile, with larger benefits from CA over soils
with less available water in AEZ I, and larger benefits over soils with
more available water in AEZ II. Both groups appear to concur in ex-
pecting larger benefits from CA over acid soils, and group B-C appear to
expect larger benefits from CA adoption over soils with smaller organic
matter content.

On this basis one might design a network of on-farm trials, to test
some of these implicit hypotheses. For example, the hypotheses may be
stated as follows (where:

H1. The effects of CA on absolute yield improvement differ between
AEZ I and AEZ II, with (following groups B and C) a larger benefit on
AEZ I
H2. There is an effect of soil TAM on yield improvement on adop-
tion of CA.
H3. There is an interaction between soil TAM and AEZ (I or II), with
larger yield improvements on soils with smaller TAM in AEZ I, and
on soils with larger TAM in AEZ II (following groups D and E).

To test these hypotheses one requires a factorial design in which
soils with varying TAM are used in the contrasting AEZ. One might start
with a map of soil TAM inferred from the SoilGrids data (Hengl et al.,
2017) by means of pedotransfer functions applied to the basic soil
property data. Following Bunyolo et al. (1982) one would then identify
all locations in AEZ I and in AEZ II where expected TAM is low or very
low, and those where it is high or very high. One could then select equal
numbers of sites from the low-very low and high-very high TAM sites in
each of AEZ I ad AEZ II, aiming for sample balance with respect to other
soil properties such as pH by means of the the cube algorithm of Deville
and Tillé (2004) as implemented in the BalancedSampling library for
the R platform (R Core Team, 2017; Grafström and Lisic, 2016). It
would then be necessary to visit the sites on the ground, both to ensure
that the predicted values of the key soil properties are reasonably re-
liable and to obtain informed consent from a farmer at each site to
participate in the trial. At each site a field under conventional culti-
vation would be selected, and a set of adjacent plots would be estab-
lished, one to be maintained under conventional production and the
other for conversion to one or more CA strategies, perhaps following the
proposal of Rusinamhodzi et al. (2011) to employ a factorial design to
examine the joint effects of tillage practice, mulching and rotation.
Because of the factorial design at site-level it would then be possible to
analyse these data by an analysis of variance (reflecting the nested
structure of any sub-plots within each site) to test hypotheses H1, H2
and H3 above by examining, respectively, the main effect of AEZ, the
main effect of soil TAM (high or very high versus low or very low) and
the interaction of these two factors. Interactions with any factorial
design implemented at within-site level (e.g. factorial effects of tillage,
mulching and rotation), could also be examined.

It is likely that the diverging views that our elicitation uncovered

Fig. 2. Plot of (abscissa) estimated expert utilities for each state (negative
lrv value) against the predicted utilities (negative fitted lrv values, ordinate)
based on the selected function of soil properties, group B and C using subsets for
which they were in full agreement.
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among experienced scientists engaged with CA research in Southern
Africa reflects, in part, how the scientific literature on CA in the region
increasingly highlights the complexity of CA systems, and the need for
nuance in understanding and promoting them (Giller et al., 2009). It is
known that CA can have marked effects on crop yields where rainfall is
unreliable and soil fertility is poor (e.g. Thierfelder et al., 2015), and
studies have shown improved water infiltration under CA (e.g.
Thierfelder and Wall, 2012). However, Rusinamhodzi et al. (2011), in a
meta-analysis of CA studies in Southern Africa, found that while yields
improved under CA on well-drained soils, mulching could reduce yields
(due to waterlogging) under heavy rainfall. Benefits of CA were found
to be strongly dependent on the use of appropriate crop rotations, good
weed control and adequate plant nutrition. If nutrient supplies are non-
limiting then rainfall remains the main yield determinant, and no
treatments can offset the effects of extremes of drought or flooding.
Rusinamhodzi et al. (2011) recommended that the promotion of CA
required better targeting to those conditions where it had the greatest
potential. They also suggested the need for a network of long-term field
experiments to improve understanding of how these environmental
factors interact with aspects of the CA system. We suggest that the
approach outlined in this paper could be used, as exemplified in the
previous paragraph, to focus and prioritize the environmental factors
that such a network of experiments incorporates into its design. The
meta-analysis of Rusinamhodzi et al. (2011) also emphasizes the im-
portance of factors such as weed control and access to fertilisers. We
suggest that this elicitation process could be extended to consider such
management factors, and broader socio-economic drivers of the success
or failure of CA, and other agronomic interventions proposed to im-
prove cropping resilience under climate change.

This approach to dealing with expert opinion contrasts with ap-
proaches used in formal elicitation practice. The approach of Cooke
(1991) starts with a process of ‘calibrating’ experts on test problems, the
results being used to weight the divergent opinions from a panel when
forming an elicited output. In ‘behavioural elicitation’ (Reagan-
Cirincione, 1994; O’Hagan et al., 2006) the objective, in so far as pos-
sible, is to arrive at a consensus view after individual opinions have
been independently elicited and then shared, through a facilitated
process of discussion. While both these approaches are pragmatic when
the objective is an expert view to be used for a practical task, the case
study reported here is a reminder that experts, with considerable ex-
perience, can have very divergent views. The PI modelling approach
brings these into focus by starting with relatively simple ranking tasks,
and then looking for underlying explanatory factors of the ranking.
Where the objective is setting scientific priorities and developing hy-
potheses this may be more fruitful than the pursuit of consensus, or a
weighting approach that conceals, at least to some extent, divergent
views.

This is, to the best of our knowledge, the first example of the ap-
plication of this ranking and modelling approach to problems in soil
science and agronomy. We suggest that it could be of wider interest, for
example to illuminate the factors that experts bring to bear in judge-
ments about soil quality, which could be relevant to the long-standing

challenge of defining appropriate indicators for soil monitoring (Ritz
et al., 2009).

6. Conclusions

The process of ranking subsets of states, defined on soil and en-
vironmental properties, followed by modelling the latent utilities hy-
pothesized to underly the rankings, is a promising method by which to
extract the tacit model that experts deploy when making assessments.
In this study we have found contrasting views on the situations in which
the absolute yield improvements from the adoption of conservation
agriculture will be largest. This is consistent with, and may well reflect,
a growing awareness in the literature of the complexity of the factors
that influence yield responses to the adoption of CA. The different
modelled latent utilities of CA can be used to set up competing hy-
potheses, which could be tested experimentally in experiments, perhaps
on-farm, at locations selected to span the range of conditions with re-
spect to soil properties of interest (e.g. available water) in contrasting
agroecological zones.

The modelling procedure allowed us to make use of categorical and
continuous soil information from legacy sources. It was also possible, by
direct estimation of expert utilities, and comparison with utilities pre-
dicted from covariates, to highlight specific features of particular soils
(here the resilience of soil structure, particularly under cultivation)
which experts treated as significant.

While the use of expert opinion is essential in tackling many com-
plex problems related to soil management and crop production, this
study is a reminder that experts can have conflicting views, and we
suggest that this approach to modelling how those opinions are used in
the ranking task may be more informative than elicitation methods
which aim to produce a single outcome as a consensus or weighted
judgement.
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Appendix A. Appendix A. The IPF and PARFUM algorithms

A.1 The IPF algorithm. At the start of the hth iteration of the algorithm the current projection matrix, ϕh, is set equal to −ϕh 1. Within the hth
iteration we cycle through the = …p P1, 2, , subsets in turn. At the beginning of each of these P cycles we update the mean response matrix

∑=
=

ϕ lQ T[ ] ,ϕ
h p

l

m
h

l,
1

I

(7)

where ϕhis the current version of the projection matrix.
Within each of the P subsets we cycle through the = …l m1, 2, , realizations of the randomly-generated latent variables. If the response for the pth

subset in the jth realization is the rth out of the R responses for that subset then we compute
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and then substitute this value for the jth element of ϕh.
When the projection matrix ϕh has been updated over all realizations within the current subset we move to the ( +p 1) th subset. Once this has

been done over all subsets the final mean response matrix is computed as
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ϕ lQ T[ ] .ϕ
h

l

m
h

l
1

I

(9)

The algorithm is deemed to have converged if R=Q Qϕ
l within some degree of tolerance.

A. 2 The PARFUM algorithm. Within the hth iteration we cycle through the = …p P1, 2, , subsets in turn. In the PARFUM algorithm the projection
matrix ϕh is not updated continuously but once in every iteration. A separate projection matrix is computed for each realization a j

L, and the resulting
matrices are averaged over all realizations. We retain the separate projection vectors for the realizations within the hth iteration in the ×m P matrix
Φh. Within each of the P subsets we cycle through the = …l m1, 2, , realizations of the randomly-generated latent variables. If the response for the
pth subset in the jth realization is the rth out of the R responses for that subset then we compute a value for the projection matrix specific to this
subset and realization:

R= −

−
ϕj p j

p r
p r

Φ
Q

Q
[ , ] [ ]

[ , ]
[ , ]

.ϕh
h

h

1

1 (10)

When the projection matrix has been computed for all realizations within the current subset we move to the +p 1th subset. Once this has been
done over all subsets the updated projection vector is computed as the average of projection vectors computed for each subset:

=ϕ
P

Φ 11 ,h
h m (11)

where 1m is a vector length m of ones, and then the final mean response matrix is computed as

∑=
=

ϕ lQ T[ ] .ϕ
h

l

m
h

l
1

I

(12)

The algorithm is deemed to have converged if R≈Q Qϕ
h within some degree of tolerance.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.geoderma.2020.114545.
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