
LEARNING, PREDICTION AND

PLANNING WITH APPROXIMATE

FORWARD MODELS

Alvaro Ovalle Castañeda

School of Electronic Engineering and

Computer Science

Submitted in partial fulfillment of the requirements of the Degree of

Doctor of Philosophy

December 2022

ii

I, Alvaro Ovalle Castañeda, confirm that the research included within this thesis

is my own work or that where it has been carried out in collaboration with, or

supported by others, that this is duly acknowledged below and my contribution

indicated. Previously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge break any UK law, infringe any third

party’s copyright or other Intellectual Property Right, or contain any confidential

material.

I accept that the College has the right to use plagiarism detection software to

check the electronic version of the thesis. I confirm that this thesis has not been

previously submitted for the award of a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or

information derived from it may be published without the prior written consent

of the author.

Alvaro Ovalle Castañeda

23 December 2022

iii

Some of the material presented here has also appeared in the following publica-

tions:

Ovalle, A., and Lucas, S. M. (2020). Bootstrapped model learning and error

correction for planning with uncertainty in model-based RL. In 2020 IEEE

Conference on Games (CoG) (pp. 495-502). IEEE.

Ovalle, A., and Lucas, S. M. (2020). Modulation of viability signals for self-

regulatory control. In 2020 European Conference on Machine Learning: International

Workshop on Active Inference (pp. 101-113). Springer, Cham.

Ovalle, A., and Lucas, S. M. (2021). Predictive Control Using Learned State

Space Models via Rolling Horizon Evolution. In ICAPS 2021: Bridging the Gap

Between AI Planning and Reinforcement Learning (PRL).

Ovalle, A. (2021). An organismic inspired strategy for adaptive control. In ALIFE

2021: The 2021 Conference on Artificial Life. MIT Press.

Other publications not covered in this document:

Bamford, C., and Ovalle, A. (2021). Generalising Discrete Action Spaces with

Conditional Action Trees. In 2021 IEEE Conference on Games (CoG) (pp. 1-8).

IEEE.

iv

Abstract

The capacity to build internal representations of the world provides an agent

with the opportunity to use them to act in its surroundings more appropriately.

These internal representations may capture complex associations and keep track

of the state of the agent and the environment. One of the most striking aspects of

this phenomenon is that the agent may manipulate these internal representations

to consider the distant future, and to formulate plans likely to lead to beneficial

outcomes. Our treatment in this thesis considers this particular class of agents

referred to as model-based. The behaviour of these agents is not only contingent

upon the current sensory stream and their memory, but also based on hypothetical

future sensory streams that are produced from potential sequences of actions.

Throughout this thesis, there are two main themes that we explore and that

are fundamental for advancing our understanding of model-based agents. The

first is the agent’s uncertainty about its environment and how it influences its

decision-making. There are multiple aspects one could investigate about this

relation. We analyse two specific scenarios. The first illustrates how it is possible

to harness the agent’s uncertainty to devise error-correction schemes. In the

second, a probability distribution that defines the agent’s current model is used

to derive intrinsic utility signals to guide behaviour.

The other main theme that permeates this thesis is the question of what are

the aspects of the external world that should be stored and represented by an

internal model? This question has important consequences for the design of

learning objectives. As we will see in this thesis, we start with perhaps the most

conceptually intuitive way to frame a learning objective for acquiring a world

v

model. Namely, the assumption that the agentmust be able to predict as accurately

as possible its future observations. From this starting point, we progress towards

learning objectives that introduce additional prediction targets or constraints to

aim for a compressed and more essential representation of an observation. This

theme concludes by trying to gain some perspective on whether it is possible,

and even desirable, to attempt to have an internal model that tries to map the

external observations, as we start to consider information-theoretic notions of

relevance. Our results show that these design choices can have a profound effect

on performance, even when the planning machinery is identical, and demonstrate

the importance of building world models aligned with the agent’s behavioural

objectives.

vi

Acknowledgments

I would like to begin by expressing my gratitude to my main advisor, Professor

Simon Lucas. Throughout my Ph.D. journey and the process of writing this

thesis, he provided me with thoughtful feedback, comments, and suggestions. I

am immensely thankful for his patience and the freedom he granted me to pursue

my research. Additionally, I appreciate his efforts to encourage me to consider

the more pragmatic aspects of the work.

I also extend my thanks to the members of my committee, Dr. Jeremy Gow and

Dr. Laurissa Tokarchuk, who offered valuable feedback during the Ph.D. I am

indebted to my thesis examiners, Dr. Christoph Salge and Dr. Soren Riis, for

their rigorous and meticulous evaluations, which greatly enhanced the quality of

this work.

I am also grateful to the people within the Game AI group for creating such a

friendly and supportive environment. In particular I want to thank Ercument,

Martin, and Bamford for the stimulating discussions, the friendship, and the

laughter we shared.

I would also like to thank QMUL Research-IT for their technical support and

access to the HPC facility, as well as the EECS administrative staff for assistance

with bureaucratic matters.

A special thanks to Yumi, for being a source of peace.

Finalmente, quiero agradecer a mi familia por su amor y por su apoyo incondi-

cional. A mis padres, que siempre alentaron mi curiosidad. Este trabajo es para

ellos.

vii

Contents

List of Figures xii

List of Tables xviii

List of Repositories xix

Abbreviations xx

Glossary xxii

1 Introduction 1

1.1 Why to learn a model? . 3

1.2 The challenges of learning and acting with a model 5

1.3 Contributions . 8

1.4 Overview and Thesis Structure 9

2 Approximate Forward Models 12

2.1 Problem Formulation . 12

2.2 Relevant Work . 14

2.2.1 Simulators . 15

2.2.2 Pretrained Forward Models 16

2.2.3 Simultaneous Control and Model Learning 18

2.2.4 Implicit Dynamics Models or Implicit Planning 20

3 Learning, planning, and error-correction with ensembles 23

3.1 Introduction . 23

3.2 A Probabilistic Perspective on Neural Networks 25

viii

3.3 Statistical Bootstrapping . 28

3.4 Bootstrapped Transition Functions 30

3.4.1 Training via Bootstrapping 32

3.4.2 Prediction . 33

3.4.3 Error Correction . 34

3.5 Planning with Ensembles via Rolling Horizon 40

3.6 Experiments . 43

3.6.1 Environment . 43

3.6.2 Error-Correction in Minipacman 44

3.6.3 Model Learning . 44

3.6.4 Planning and game performance 47

3.7 Discussion . 48

4 Planning in Latent State Spaces with Generative Sequence Models 50

4.1 Introduction . 50

4.2 Model Taxonomy: from raw to latent spaces 53

4.2.1 Autoregressive models . 53

4.2.2 Deterministic State Space Model 54

4.2.3 Stochastic State Space Model 55

4.2.4 Recurrent State Space Model 55

4.3 Learning a State Space Model . 57

4.3.1 Dynamics and predictions 57

4.3.2 Representation . 58

4.3.3 Objective . 59

4.3.4 Training details . 59

4.4 Planning with State Space Models 62

4.5 Experiments . 64

4.5.1 Environment . 64

4.5.2 Results . 66

ix

4.6 Discussion . 69

5 Planning with Models of Value Functions 72

5.1 Introduction . 72

5.2 Models of State Value Functions 74

5.2.1 State Value Estimation . 75

5.3 Plan evaluation with State Value Functions 77

5.4 Experiments . 80

5.4.1 Environment . 80

5.4.2 Results . 81

5.5 Discussion . 87

6 Planning in Latent State Spaces with Non-reconstructive For-

ward Models 90

6.1 Introduction . 90

6.2 A brief detour into information bottlenecks 93

6.2.1 Predictive information . 94

6.2.2 Predictive information as a criterion for relevance 95

6.3 A Non-Reconstructive Predictive Model 97

6.4 Learning a Non-Reconstructive Model 99

6.4.1 Noise Contrastive Estimation for World Modelling 100

6.4.2 A Non-reconstructive State Space Model 102

6.5 Experiments . 105

6.5.1 Four-Room tasks . 105

6.5.2 Minipacman . 109

6.6 Discussion . 111

7 Learning and planning from self-regulating signals 114

7.1 Introduction . 114

7.2 Preferences, desires and surprisal minimisation 116

x

7.3 Model-free surprisal minimisation 119

7.4 Active Inference . 121

7.4.1 Expected Free Energy . 123

7.5 Self-regulating adaptive control 124

7.5.1 Expected Free Energy via Rolling Horizon 127

7.6 Experiments . 129

7.6.1 Simulation results . 131

7.7 Discussion . 133

8 Discussion 136

8.1 Outlook, limitations and future work 138

8.1.1 To learn or not to learn a model? 138

8.1.2 On rewards . 140

8.1.3 What to learn? . 141

8.1.4 Targets for non-reconstructive models 143

8.1.5 Goal, Drives, and Motivations 146

8.1.6 Architecture enhancements 147

8.2 Final words . 148

Appendices 149

A Preliminaries 149

A.1 Reinforcement Learning . 149

A.1.1 Value-based methods . 150

A.1.2 Model-Based Reinforcement Learning 151

A.2 Information Theory . 153

A.2.1 Self-Information . 153

A.2.2 Entropy . 153

A.2.3 Conditional Entropy . 154

A.2.4 Kullback-Leibler Divergence 154

xi

A.2.5 Mutual Information . 154

A.3 Variational Inference . 155

A.3.1 Deriving the ELBO via the log marginal likelihood 159

B Bootstrapped Transition Functions and Error-Correction Archi-

tecture 160

C Expected Free Energy with measurements E 162

D Novelty and salience 163

E Active Inference Implementation 165

F Drive decomposition 168

G State-Space Models architectures 169

G.1 Q-Model SSMs . 169

G.2 NR-SSMs . 170

G.3 Hyperparameters . 170

H InfoNCE 171

Bibliography 173

xii

List of Figures

3.1 The neural network can be interpreted as a conditional ? (~ |G, \).

For MLE and MAP, the networks obtain a point estimate for

parameters \ . 25

3.2 A graphical representation of the bootstrap method. The process

starts by resampling with replacement from an original pool of

observations (sample data). For each new group of samples an esti-

mator of interest is computed and then used to build the bootstrap

distribution. 29

3.3 An ensemble model as posterior sampling. Each network with

parameters \8 can be considered as a sample from the approximate

posterior @(\ |�). Gathering the predictions allows us to obtain a

predictive distribution of the next states and rewards ?\ (BC+1, AC |BC , 0C). 29

3.4 Bootstrapped Transition Functions. The flow starts with a joint

input, a concatenation of a frame observation, and an action. This

is processed through the multi-headed NN to produce different

predictions to form a single unified prediction (section 3.4.2). The

process continues by checking whether the prediction contains

errors and if that is the case the prediction is fixed (section 3.4.3). 31

3.5 BTF training. A minibatch of transitions is sampled from the

experience memory buffer which is used to train one or more of

the heads according to a Bernoulli mask. The image illustrates

three different instances of the training process. 32

xiii

3.6 Error-Correction flow. We obtain the candidate predictions

from each of the heads to consolidate their information into a

single-frame prediction. If this prediction contains errors then

the ensemble is used to extract information that can be used to fix

it and to generate a final corrected version. 36

3.7 Minipacman. The green cell corresponds to the agent, red to the

ghost, turquoise to the power pills, blue to the food still left in the

maze, and black to a cell where the food has been eaten. 43

3.8 Comparison of uncertainty-aware BTF agents against a non-

probabilistic agent with a single-headed model. The plots show

the performance in Minipacman with different planning horizons. 47

4.1 A graphical representation of an autoregressivemodel. The diamond-

shaped nodes and the circles indicate deterministic functions and

random variables respectively. 54

4.2 Deterministic state space model. The deterministic diamond

shapes nodes represent hidden states such as those modelled by a

recurrent neural network. The solid and dashed lines indicate the

generative and the inference processes respectively. 55

4.3 Stochastic state space model. Unlike in deterministic SSMs, the

hidden state B is represented by a random variable. 56

4.4 Recurrent stochastic state space model. This SSM incorporates

deterministic (ℎ) and stochastic (B) routes within the same archi-

tecture. 57

xiv

4.5 The integration of a recurrent state space model (RSSM) with

Rolling Horizon Evolution for online planning. a) The process

starts by sampling a seed action sequence. b) # candidate action

sequences are obtained from the application of genetic operators

to the original action sequence. c) Each of the action sequences is

used within the RSSM to simulate hypothetical trajectories and

gather their corresponding rewards to evaluate them. d) From

the top-ranked action sequence, we take the first action 01 which

is then executed by the agent in its actual environment. 63

4.6 The environment. There are two observation modalities. On the

left, the observations gathered by an agent cover the whole grid

and correspond to 7 × 7 cells (168 × 168 RGB pixels). On the

right, the agent only gets a local view of its immediate 3 × 3 cell

neighbourhood (28 × 28 RGB pixels). 65

4.7 The performance in the task over 500 episodes. The plots show

mean and standard deviation over three seeds for deterministic and

stochastic variations of the environment. Left: Global observations.

Right: Local observations. 66

4.8 Examples of ground truth (left column) and reconstructed (right

column) frames. Top: The agent can solve the task before an

accurate visual reconstruction has been learned. Middle: Another

example of the agent performing and modelling the task. In this

case, the spider acts as a stochastic element in the environment.

Bottom: An agent’s reconstruction of its local neighbourhood. . . 67

5.1 Structure of the state space model with Q-values as observations.

At each time step, the agent estimates potential Q-values which

then can be treated as if they were also observations. The SSM

learns the Q-values and can simulate them during planning. . . . 74

xv

5.2 Four-Room environment levels. Level 1: Classic formulation.

The agent (mouse) has to reach the goal located in one of the

other rooms (cheese). Level 2: It includes an adversarial stochastic

element (green snake) that moves randomly throughout the grid.

If the agent collides with it, it receives a reward of −1. Level 3:

In this level, the adversarial element moves purposely toward the

agent, as it plans its moves via the A* search algorithm. Level 4:

Both adversarial elements are included in the grid. 82

5.3 The results show the performance of the agents in each level

across 1000 episodes. We compare three different plan evaluation

criteria: (1) sum of rewards along the trajectory (SSM-R), (2)

Q-value in the last plan step plus rewards in the steps preceding

it (QSSM-RQ), and (3) sum of Q-values along the trajectory

(QSSM-Q). 83

5.4 Episodic return in Minipacman. The comparison shows the SSM

agent from chapter 4 (SSM-R), and the two agents introduced

in this chapter, Q-values (Q-values) and RSSM-RQ (Reward +

Q-value). We also include as a reference the error-corrected BTF

from chapter 3 that exhibited the best performance in this task. . 85

5.5 Scene of the Minipacman environment. The left frame shows the

ground truth and the right frame its reconstruction. 87

6.1 Level 1 results. Left: episodic return. Right: cumulative number

of steps in time. 106

6.2 Level 2 results. Episodic return. 107

xvi

6.3 Level 3 and 4 results. Top row: episodic return. Middle row:

success rate in time. It indicates the rate of episodes in which

the agent has reached the goal. Bottom row: cumulative return

in time. Initially, there is a steep decline as the agent starts to

learn a forward model and is unable to solve the task in most

of the episodes. The trend either stabilises or inverts as training

continues and the agent becomes more proficient. 108

6.4 Results in Minipacman. Episodic return. 109

6.5 Left: the frame shows the ground truth. Right: a reconstruction

from a decoder trained on top of a frozen non reconstructive

PR-SSM. 110

7.1 An extended idealised version of the perception-action loop. In

addition to the classic observation and action channels, the agent

also gathers other readings informing it about its internal state.

An example of this in biological organisms is the levels of oxygen,

blood pressure, or temperature. Note that we do not define these

viability variables and instead propose a simpler set-up with a

single binary variable indicating the structural integrity of the

agent. 125

7.2 The Flappy Bird environment. 130

7.3 The agent obtains a measurement E1 related to its viability in the

current environment. Initially, the agent cannot interpret this

measurement but as time passes it learns to associate the signal to

a specific internal state. 131

7.4 Performance of an Expected Free Energy (EFE) agent. The left

axis indicates the unobserved rewards as reported by the task

and the right axis is the number of time steps it survives in the

environment. The dotted line shows the average performance of

an SM-DQN after 1000 episodes. 132

xvii

7.5 Parameter \ in time, summarising the intra-episode sufficient

statistics of ?\ (E). 133

A.1 The reinforcement learning agent-environment loop. 149

xviii

List of Tables

2.1 Architecture comparison. : Aspect considered by the archi-

tecture. H#: It is either, mentioned by the authors as possible or

inferred from the paper, but not empirically confirmed. − : An

aspect not considered by the architecture. 22

3.1 Model learning. Top: Average next step accuracy by category and

type of forward model. Bottom: The proportion of frames that

satisfied exactly the constraints as observed in the environment.

The results report a single-headed agent and the multi-headed

BTF agents using different aggregation schemes and network

output. We can observe how the architectures that include the

error-correction schemes (EC) significantly increase the capacity

to fulfil the predictions according to what is expected by the actual

environment’s dynamics. 46

B.1 Hyperparameters. 161

xix

List of Repositories

Chapter 3: Learning, planning, and error-correction with ensembles

https://github.com/aovalle/btf

Chapter 4: Planning in Latent State Spaces with Generative Sequence Models

https://github.com/aovalle/ssm

Chapter 5: Planning with Models of Value Functions

https://github.com/aovalle/qssm

Chapter 6: Planning in Latent State Spaces with Non-reconstructive Forward

Models

https://github.com/aovalle/nr-ssm

Chapter 7: Learning and planning from self-regulating signals

https://github.com/aovalle/sr-ainf

https://github.com/aovalle/btf
https://github.com/aovalle/ssm
https://github.com/aovalle/qssm
https://github.com/aovalle/nr-ssm
https://github.com/aovalle/sr-ainf

xx

Abbreviations

ALE Arcade Learning Environment

BTF Bootstrapped Transition Functions

CNN Convolutional Neural Network

DQN Deep Q-Network

EFE Expected Free Energy

ELBO Evidence Lower Bound

FEP Free Energy Principle

GRU Gated Recurrent Unit

iLQR iterative Linear Quadratic Regulator

KL Kullback-Leibler

LSTM Long-Short Term Memory

MAP Maximum A Posteriori

MCMC Markov Chain Monte-Carlo

MCTS Monte-Carlo Tree Search

MDP Markov Decision Process

MLE Maximum Likelihood Estimation

MPC Model Predictive Control

NCE Noise Contrastive Estimation

NGE Neural Game Engine

NN Neural Network

POMDP Partially Observable Markov Decision Process

RHE Rolling Horizon Evolution

xxi

RL Reinforcement Learning

RNN Recurrent Neural Network

RPF Randomized Prior Functions

RSSM Recurrent State Space Model

SGLD Stochastic Gradient Langevin Dynamics

SMiRL Surprise Minimizing Reinforcement Learning

SSM State Space Model

VAE Variational Auto Encoder

xxii

Glossary

Active inference: mathematical framework to model sequential decision-making

problems and treats perception and action as inferential processes

Autoregressive model: statistical model that predicts a future value based on past

values.

Bellman equation: a recursive equation used in several fields, concretely in

reinforcement learning it is used to estimate a value function.

Bootstrapping: statistical technique to obtain a sampling distribution based on

resampling sampled data.

ELBO: stands for Evidence Lower Bound. Establishes a lower bound on the

log likelihood of given data.

Environment: in reinforcement learning, the environment is the medium in

which an agent interacts.

Expected free energy: measure for performing inference over an extended action

sequence.

Free energy: the information-theoretic notion of free energy refers to the upper

bound on surprisal.

Latent state: also known as hidden state. In Bayesian inference it refers to

unobserved variables.

Markov Decision Process: mathematical framework to model decision-making

problems.

Model: an abstract description of the dynamics of the system used to perform

some form of estimation. In this thesis we focus on models that forecast future

xxiii

values, and we will refer to them as world model, forward model, dynamics

model or internal model.

Observation: in this work an observation refers to an agent’s sensory input.

Policy: in reinforcement learning, a policy defines how an agent behaves in a

given state.

Posterior: updated belief after a new piece of data has been observed.

Prior: initial belief before a new piece of data has been observed.

Reinforcement learning: trial-and-error learning paradigm concerned with find-

ing behavioural policies intended to maximise a reward.

Representation: we are going to refer to representation as the set of features an

agent possesses that describe relationships between its sensory inputs.

Rolling horizon evolution: online planning method in which a number of candi-

date action sequences are evolved and ranked according to heuristic.

State space: set of variables that describe a system.

State space model: probabilistic graphical model that describes the dependencies

and relationships between

Surprisal: also known as surprise. In information theory, surprisal corresponds

to the inverse of a probability (e.g. − log?).

Value function: an estimate of the expected return from following a policy from

a given state.

Variational inference: method to frame Bayesian inference as an optimisation

problem.

1

1 Introduction

There are different strategies to try to solve sequential decision-making prob-

lems. Some of these depend on the initial information we have about our task

and decompose the larger problem into different underlying subproblems. For

example, we can have detailed knowledge about how a system reacts to specific

perturbations or how it is modified and changed. We refer more formally to this

knowledge as a model, which tells us about the system’s dynamics and how it

transitions between states. When we have this information the decision-making

problem can be solved through planning and search algorithms (Bellman, 1952,

1957; Howard, 1960; Hart et al., 1968; Bertsekas, 1995; Russell and Norvig, 2003;

Coulom, 2007). This involves that the chosen algorithm queries the model to

produce future trajectories, and because the dynamics are known, the agent can

plan and select a course of action that optimises the return.

However, we can also have a different scenario where knowledge about the

system’s dynamics is not available. In this case, we could, for example, proceed by

learning a model from pre-recorded data. This could be limiting when the data

is incomplete or biased towards certain regions of the state space. Alternatively,

we can opt for a more natural approach and let the agent gather and interact with

the environment directly. The latter case is common in online Reinforcement

Learning (RL) (Witten, 1977; Watkins, 1989; Rummery and Niranjan, 1994;

Sutton and Barto, 1998) in which the agent learns to act through trial-and-

error and refines a policy to guide its actions by continuously interacting with its

environment. Depending on our objectives we can learn both, a model and a

2

policy, or we could focus exclusively on learning a policy withmodel-freemethods.

That is, without explicitly considering the transition dynamics.

In this thesis, we take a look at these threads to consider the integration between

the planning and the learning problem as well as some of the challenges involved

in this integration. We focus on sequential decision-making problems formulated

as Markov Decision Processes (MDP). These have been addressed through a

variety of methods in dynamic programming and optimal control (Bellman,

1952; Bertsekas, 1995), reinforcement learning (Sutton and Barto, 1998) and

more recently active inference (Friston et al., 2012b). In principle model-based RL,

which has been experiencing a revival sustained by advances in deep learning (for

a survey about recent progress please see Moerland et al. (2022) and references

therein), combines these two problems. Classical formulations (Sutton, 1991)

go as follows. First, the agent accumulates data and creates a dynamics model

which then uses to estimate value functions and decide how to act. As the agent

continues to solve the task it gathers data to refine the dynamics model and the

value functions. Our concern in this thesis, however, is with online planning.

We construct agents that sample trajectories from the current step using an

approximate model of the dynamics, which then can be evaluated, ranked, and

selected. We merge techniques used in the planning community with those used

in density estimation and probabilistic modelling in deep learning. A successful

example of this merger is MuZero (Schrittwieser et al., 2020) which applied deep

learning for model building, value and policy estimation, and Monte-Carlo Tree

Search (MCTS) for planning. Despite this, work connecting these two research

communities remains relatively rare and has been the focus of recent workshops1.

Here we follow this direction. We develop new architectures for planning

in MDPs in discrete action spaces when the agent does not have knowledge

1 For example, the planning and reinforcement learning workshop series https://prl-
theworkshop.github.io aims to encourage cross-fertilisation between both areas. The work in
chapter 4 was presented in the 2021 edition.

3

of the dynamics. For the planning component, we rely on Rolling Horizon

Evolution (RHE) (Perez-Liebana et al., 2013), a look-ahead online trajectory

search algorithm. RHE is generic and makes few assumptions, but still requires

to commit to a state representation and a heuristic function to evaluate the

trajectories. As we will see throughout the thesis, these are two crucial aspects

for the integration between the learning and the planning stages.

We are going to continue this introductory chapter by expanding on some

reasons why an agent could benefit from acquiring a model, as well as some of

the technical and practical challenges involved. Based on this, we will state our

research questions and describe the structure of the thesis with our contributions.

1.1 Why to learn a model?
We will approach the sequential decision-making problem from the perspective

of the perception-action loop, which considers the existence of an agent embedded

within an environment where there is a bidirectional and continuous exchange of

information through two communication channels: a sensory channel necessary

to gather data, and an action channel that provides the agent some degree of

agency to modify the agent-environment dynamics. Essentially the agent uses

its actuators to steer a controlled system (e.g. the agent-environment coupling)

toward a desirable condition. This could be, for example, tomaintain a steady state,

the attainment of a goal state, or maximisation (minimisation) of a utility (cost).

Then the first question we could start asking is, what is the relationship between

the incoming information gathered from the sensory channel and the control

exerted by the actuator channel? It is possible to have open-loop controllers that do

not have an explicit dependence on the current or past states of the environment,

that is, they do not sense or acquire information about it. However, the essential

character of information as a resource for control, regulation or goal-seeking

behaviour has been identified in physics (Maxwell, 1871; Szilard, 1929; Lloyd,

4

1989; Sagawa and Ueda, 2012; Parrondo et al., 2015), cybernetics (Wiener, 1948;

Ashby, 1958; Carver and Scheier, 1981), control theory (Touchette and Lloyd,

2000, 2004; Cao and Feito, 2009) and information-theoretic approaches to the

perception-action loop (Klyubin et al., 2005; Polani, 2009; Still, 2009; Little and

Sommer, 2011; Tishby and Polani, 2011; Beer and Williams, 2015). In RL,

there are different parts involved in information storage. For instance, in the

parameters of the policy distribution, a tabular table with Q-values or the weights

of a neural network. Model-based RL allows us to be more deliberate about some

of the information stored by an agent. As we hinted in the opening paragraph,

the model encapsulates knowledge of the task, namely, how it evolves in time

and what potential consequences result from an action. What can we gain from

treating this knowledge explicitly?

There are several benefits that have been discussed as reasons to design anticipatory

agents with models of the dynamics. For instance, it could enable the capacity

to forecast events, anticipate consequences, evaluate possibilities, or visualise

different perspectives. From a more pragmatic and technical viewpoint, there are

also other potential advantages that have been conjectured or are under study:

• Interpretability: Similar to other areas in machine learning, the outcomes

from the learning systems can often be opaque and inaccessible. Having a

model allows us to simulate future trajectories and analyse the actions taken

by the agent based on expected consequences estimated by its model (van

der Waa et al., 2018).

• Generalisation: A major challenge in RL is to avoid overfitting and to

generalise to different environments (Cobbe et al., 2019; Farebrother et al.,

2020). Applying an agent to a different environment often requires the

agent to learn the new task at the expense of the previous one (Kirkpatrick

et al., 2017). Research in transfer learning focuses on reusing information

learned from one task on a different one (Taylor and Stone, 2009; Zhu et al.,

2023). It has been speculated that learning a model of the dynamics could

5

facilitate this transfer by disentangling the interactions between the agent

and the objects in the environment (van Seijen et al., 2020).

• Data efficiency: A major issue in RL is that algorithms require a vast

number of interactions with the environment. Moreover, in some domains,

it might be infeasible to collect large amounts of data. With a model, it is

possible to train the agent using simulated experience generated from the

model without interacting with the environment (Sutton, 1990; Gu et al.,

2016).

1.2 The challenges of learning and acting with

a model

When we started the work on this thesis, there were some exciting publications

where researchers had started to show how to learn dynamics models for large

state spaces. For instance, Chiappa et al. (2017) presented a non-interactive

learned simulator that predicted multiple steps into the future. Weber et al. (2018)

had introduced an architecture combining model-free and model-based paths.

The latter is capable of simulating a rollout which is then compressed to provide

additional context to the model-free path. Meanwhile, Ha and Schmidhuber

(2018) showed an agent capable of training its policy using simulated data. More

closely related to our work, was AlphaZero (Silver et al., 2017b). The architecture

learned value and policy estimates and combined them with MCTS to plan

in board games. Encouraged by these results, our original objective was to

use the learned approximate models as foundational tools to explore ideas on

intrinsic motivation, rather than becoming a core subject in our investigation.

However, when we started implementing our architectures we realised that they

were still impractical to pursue our initial ideas. At this point, the architectures

had problems dealing with stochastic environments or even with deterministic

6

moving objects. We also found that initially, we had to use coarse-grained

features rather than raw observations, as described in chapter 3. Moreover, we

stumbled over issues that had been known in the field. For example, trajectories

sampled from a learned model can diverge greatly from the true dynamics, which

makes planning over these trajectories essentially meaningless. This is because

the model is approximate, subject to updates, and therefore not entirely accurate.

This creates a difference between the predictions from the model and the actual

outcomes in the environment. These differences are further pronounced as new

predictions are generated from the previous ones leading to compound errors

(Talvitie, 2014, 2016). In addition, learning a model introduces new sources of

instability and error into a training process that is already fickle even without

a model (Mnih et al., 2015; Henderson et al., 2019; Dulac-Arnold et al., 2021).

Training a model is also more computationally expensive, takes longer to train and

the architectures are more complex than the model-free counterparts (Moerland

et al., 2022). Furthermore, for online planning, algorithms such as MCTS can

be slow as they traverse and visit the states sequentially.

Given this scenario, our research became restructured towards the question of

how to integrate learning and planning. This question is broad and naturally

involves several other questions. In this thesis, we have decided to take this

question and decompose it into a non-exhaustive subset of questions that we try

to address.

• How to plan?: This first question is related to the mechanics involved in

generating the rollouts and how they interact with the approximate model.

In our case, we made this question an algorithmic one, and it was motivated

by practical reasons. As mentioned briefly in this chapter, we opted for RHE

for the planning component. The algorithm is open-loop, which allows us

to parallelize and evaluate multiple paths. The algorithm also has minimal

dependencies from the model, the state representation, and a utility function.

This generality then allows us to adapt it to different kinds of models, but it

7

also leads us to ask:

– What representation to use with the planner?: We are going to

refer to representation throughout this work as the features an agent

possesses that describe relationships between its sensory inputs. It will

be a recurrent theme how to define what type of relationships the

agent should represent.

– How to evaluate the plans?: We need a way to evaluate and rank

according to their perceived worth. This is also learned and predicted

by the model. A natural starting point is to evaluate the plans according

to their cumulative reward. As we will see we can also use Q-values

(chapters 5 and 6) or surprisal (chapter 7).

• How to deal with inaccurate models?: not only it is expected that an

approximate model cannot fully capture the intricate dynamics of a complex

environment. The agent also has to act with a model that is refined contin-

uously because model-learning and decision-making occur intertwined in

the training process. This, together with how to choose a representation,

forms the central issues in our work. In chapter 3 we show a scheme used

to increase the accuracy of the predictions made by the model. However,

the fact that the model is inherently inaccurate has several ramifications.

– How to handle model uncertainty?: Rather than trying to make

the model’s predictions more accurate, we could instead acknowledge

the uncertainty in our knowledge and treat it as an element to be

modelled as well (chapter 4-7).

– How can the state of the model guide behaviour?: The agent’s

uncertainty can also be a highly informative signal itself. We show in

chapter 7, how an agent can use its model to estimate the current and

predicted uncertainty of its future inputs to make its decisions.

8

1.3 Contributions

The investigations motivated by the questions above resulted in the following

contributions:

• In chapter 3 we successfully introduced the first architecture that integrates

model-learning with planning via RHE. The novel contributions are the

multi-headed model-learning component that learns a predictive distribu-

tion of observations based on the statistical concept of bootstrapping, three

error-correction schemes for prediction, and the integration for online

planning.

• In chapter 4 we applied variational methods to learn dynamics models. The

models learned using these methods have been used previously to plan

in continuous action spaces (Hafner et al., 2019), as pre-trained models

for hybrid architectures (Buesing et al., 2018) or in classical approaches

to model-based RL (Hafner et al., 2020, 2022). We demonstrated how

these models can be learned and used online in discrete action spaces. We

introduced the SSM-RHE planner for latent sequences. At a technical level,

we improved the planner to execute N rollouts in parallel. We also showed

how the architecture can be adjusted to learn local forward models to cope

with partial observability on the spatial dimension.

• We extended the previous architecture to learn to predict and simulate

value functions. With this new functionality, we presented QSSM-RHE

in chapter 5, an online planner that uses either the predicted Q-values or

Q-values and rewards to evaluate the rollouts.

• In chapter 6 we derived an expression that is used as a training objective to

learn a non-reconstructive model. We also provided a way to approximate

this objective via contrastive methods from the representation learning

literature (van den Oord et al., 2019). Similar to the previous chapters, we

also integrated this novel model-learning component with the RHE planner.

9

• Within the context of active inference (Friston et al., 2016), in chapter 7 we

provided some arguments for differentiating between internal variables as a

consequence of incoming sensory signals and internal variables produced

from interoceptive signals. We argued this separation allows us to introduce

a scheme based on homeostatic considerations that give rise to a preference

distribution that could guide the agent’s behaviour in a self-supervised

manner. For the planning component, we introduce a RHE planner that

evaluates rollout sequences with the expected free energy.

1.4 Overview and Thesis Structure
The structure of the thesis is as follows. In chapter 2 we begin with a high-level

picture of how to approximate a model, and the basic problem formulation.

We also contextualise our work within the broader model-based reinforcement

learning literature.

We have hinted that one of the central issues of approximating a model is the

role of uncertainty. This might be the result of a model that is still learning

but it could also simply be because the model cannot match the complexity of

the environment. Naturally, some of the difficulties that concern us are how

to accommodate the uncertainty, how to model it or how should it influence

decision-making. In chapter 3 we present the first of our investigations where

we propose uncertainty-aware RL agents that plan already under the assumption

that their models are inaccurate and will lead to erroneous predictions. We

propose a scheme to train an ensemble of models that provides: (1) the capacity

to aggregate their predictions to increase the robustness of the model, and (2) to

obtain a predictive distribution to inform error-correction schemes to improve

both, model accuracy and agent performance.

While the architecture in chapter 3 assumes domain knowledge about some of

the constraints present in the environment, in chapter 4 we intended to take a

10

more general approach to the problem of learning a model. We learn to model

transition distributions explicitly with the intention of learning the structure of

the environment directly. We leveraged the machinery of variational inference

to structure the dynamics as a state space model (SSM). Amongst other reasons,

the move to this probabilistic framework allows us to describe the relationship

between a latent variable and an observed outcome. For the current context, a

latent variable captures essential aspects of the external observations. To integrate

it with the planner, although the learning objective is still to reconstruct external

observations, the planner receives a latent state or representation. Thus, unlike

the previous architecture in which the planner operates on the full predicted

observations, here the planner acts on a reduced latent space with abstract features

that take the place of the observation.

In chapter 5 we extend further the architecture from chapter 4. While in chapter

4 the agents learn the reward dynamics and use them to evaluate and rank

potential plans, in chapter 5 we extend the SSM to account for the dynamics

of the Q-values. This modification is intended to enhance the criteria used to

evaluate the plans. Compared to the rewards, the predicted Q-values provide a

richer signal about the desirability of selecting an action over others and provide

an estimate of future rewards beyond the planning horizon.

Chapter 6 is motivated by the question of what aspects of the environment should

be included in an approximate forward model. In the other chapters we intu-

itively worked with a learning objective focused on accuracy and reconstruction.

However, we could reformulate the objective to be predictive about the future

while ignoring as much information as possible from the past. That is, a forward

model could attempt to focus on capturing only information that is relevant for

the prediction of the future. We will ground this perspective on arguments from

information theory, physics, biology, and learning theory.

Chapter 7, chronologically, was developed after chapter 3 but conceptually it

11

resides at the end of this thesis. We now go beyond the mere integration between

model-learning and planning towards a more active involvement of the model

to steer the planning and decision-making process. While it is true that the

model was already involved, its role was that of a passive provider. It equipped the

planner with state and utility predictions. It did not, however, communicate what

it is describing in the sense that the actions taken by the agent shape the model to

a certain extent. It captures relations between the agent and the environment. As

such, the model offers additional information about the epistemic status of these

relations. In this chapter, we follow the active inference framework (Friston et al.,

2016). From the point of view of utility, active inference grounds it within the

statistical regularities of the agent-environment coupling. That is, as a product

of the agent’s own behaviour as opposed to ascribing it as an abstract property of

the environment. We provide a working example of how this utility emerges

in a self-supervised manner with a derivation distinguishing exteroceptive from

interoceptive signals.

We conclude with some remarks about our contributions, lessons learned, and

shortcomings in chapter 8.

12

2 Approximate Forward Models

2.1 Problem Formulation

The basic scenario that we are going to consider in this thesis is a characterisation

of the interaction between an agent and its environment. For the benefit of clarity,

at this moment we describe a generic formulation and introduce additional

assumptions as required in each chapter. For an overview of Reinforcement

Learning (RL) we direct the reader to appendix A.1.

We are going to portray the agent and the environment as discrete-time stochastic

processes. Within this context, we assume the existence of an unknown generative

process for the environment such that it specifies the rules for how it evolves

in time (..., GC , GC+1, ..., GC+=, ...). The agent interacts with the environment by

performing an action 0C at time C sampled from a policy c (i.e. 0C ∼ c (0 |·)). The

environment transitions to its next state GC+1 driven by the effect of its inherent

dynamics and the agent’s action upon it. Through its sensors, the agent gathers

some form of feedback. For RL, the standard assumption is the reception of an

observation >C+1 and a reward AC+1 to signal the utility or cost of executing an

action in a given state. Depending on the task the observation may correspond

to the full state of the environment (i.e. > = G) or it might just be a partial view

of it.

There are different types of world models that an agent can learn. But from the

scenario just outlined, a particularly useful model could describe to some extent

how the environment-agent interaction changes over time. If this is the case, we

13

can distinguish three main classes of dynamics models (Moerland et al., 2022):

• Forward model >̂C+1 = 5 (>C , 0C): Predicts the future observation given an

action carried out by the agent and the current observation.

• Inverse model 0̂C = 5 (>C+1, >C): Takes two consecutive observations and

predicts the action that took the agent from an observation >C to the next

one >C+1.

• Backward model >̂C+1 = 5 (>C , 0C): It is the counterpart to the forward model.

Given an observation, it predicts the previous observation and the action

that was taken from it.

In this work, we are going to concentrate on the approximation of forward

models. Throughout the document, we will also interchangeably refer to them as

world models or internal models. The type of environments that we will consider

have a large number of states. Thus, we must employ function approximators

such as neural networks, Gaussian Processes (Deisenroth and Rasmussen, 2011) or

Gaussian Mixture Models (Agostini and Celaya, 2010) to learn the dynamics. For

all our case studies we approximate the forward models through neural networks.

As we have seen from the categorisation, given an action and an observation/state

(>C , 0C), the objective is to learn a mapping to >C+1 via a function approximator 5\ ,

5\ (>C , 0C) = >̂C+1 (2.1)

We will see throughout the thesis that this mapping can be deterministic or

stochastic (i.e. >C+1 ∼ ?\ (>C+1 |>C , 0C)), depending on how the architecture is

constructed. The general idea is to frame model approximation as a supervised

(or self-supervised) learning problem. This is facilitated by the data points that

are collected by the agent as it interacts with the environment. The high-

level objective can then be roughly summarised as the minimisation of the

prediction error between the predicted observation >̂C+1 = 5\ (>C , 0C) and the actual

14

observation >C+1,

(5\ (>C , 0C) − >̂C+1)2 (2.2)

We are going to consider the approximation of a forward model and its utilisation

for planning as simultaneously occurring processes. As the agent learns the

forward mappings, it simulates future trajectories contingent on candidate plans

which lead to hypothetical interleaved sequences of observations and actions g =

(>0, 00, >1, ..., 0)−1, >)). Similar to the goal in model-free RL settings1, the agent

must maximise its rewards or equivalently, minimise its costs. The difference to

model-free scenarios is that this occurs along the simulated sequences, thus the

agent must try to find a trajectory that maximises the expected reward.

2.2 Relevant Work

There is a vast body of work on model-based decision-making. Several tech-

niques could be used to find an optimal trajectory according to the current

approximate dynamics model, among the most representative we could include

Model Predictive Control (MPC) (Richalet et al., 1978; Garcia and Morari, 1982),

Monte-Carlo Tree Search (MCTS) (Coulom, 2007; Browne et al., 2012), iterative

Linear Quadratic Regulator (iLQR) (Li and Todorov, 2004), Gaussian Processes

(Deisenroth and Rasmussen, 2011), RL (Sutton, 1990, 1991) or through a combi-

nation of these methods (Schrittwieser et al., 2020). We will not attempt to cover

all the studies done in the area, but instead, we try to provide a contextualisation

for the work that we present. Nevertheless, we direct the reader to Moerland

et al. (2022) for a recent and comprehensive review of aspects of the application

of models, model learning, and planning that extends beyond the scope of the

thesis.

1 Appendix A.1 offers a general overview of RL.

15

2.2.1 Simulators

We start with what is perhaps the most intuitive manner to learn a forward model.

Namely to take a literal interpretation of the forward model ansatz >̂C+1 = 5 (>C , 0C).

As we mentioned previously in the problem formulation, it is possible to interpret

all these objectives as supervised learning tasks. Here the percept or sensory data

point >C and the action 0C serve together as an input instance while >C+1 is the

correct label associated with this input. The case studies and simulations we

present in the next chapters are visual-based tasks with high dimensional inputs.

The percepts >C correspond to graphical observations from the frames, either with

some form of preprocessing or from raw pixels. Learning the relationships and

patterns that exist in these large observation spaces has proved to be challenging.

However, with the irruption of the deep convolutional networks and advances in

computing power, it became possible to consider this learning problem for raw

observations. Previously, some important efforts for modelling high-dimensional

visual inputs had consisted, for instance, in taking neighbouring patches from a

previous frame to predict a future patch at the next step. Bellemare et al. (2013,

2014) used a context tree based approach to generate frame predictions. A major

issue with these types of approaches is that there are factors, such as patch size,

that are domain dependent and susceptible to the size of the objects or the physics

of a particular environment that make these kinds of models ineffective. In Oh

et al. (2015), the authors proposed a convolutional neural network architecture

that could take the whole frame and thus alleviated some of the constraints

from previous efforts. To learn temporal dependencies the architecture takes a

sequence of four consecutive frames which, although common practice in RL, is

not adequate to capture long-term dependencies. Namely, correlations between

non-consecutive frames. The authors addressed this shortcoming in the same

paper with the introduction of a second architecture that used a Recurrent Neural

Network (RNN). A similar approach was followed in Chiappa et al. (2017) where

16

the architecture included an RNN to also provide a temporal context for the

prediction of a future frame. The work proposed a different training objective.

Instead of learning an objective based on next-step prediction, it predicted future

steps at three different intervals to try to capture more of the global dynamics

of the environment. But let us put into perspective the inclusion of the RNN

with the original and simplified forward model relation (>C , 0C) → >C+: . The

RNN provides additional input from which a future observation is predicted.

Thus the mapping is slightly altered to (>C , 0C , ℎC) → >C+: where ℎC is the RNN’s

internal state that transports information gathered from previous observations

and updated through time. We could increase the generality of this relation to

(2C , 0C) → >C+: where 2C simply accounts for the whole context that is available to

an agent.

2.2.2 Pretrained Forward Models

Although in essence, the architectures that we just described learned a forward

model, these were not harnessed by an agent to plan or learn a policy. Indeed,

these architectures did not even model the prediction of the reward signals, an

issue that was addressed in Leibfried et al. (2017). The analyses in these earlier

works were mostly centred around their prediction capabilities in deterministic

environments. InOh et al. (2015) the experiments also involved verifyingwhether

the trained model could encourage exploration and if it could serve as input for a

pre-trained model-free agent. Meanwhile, in Chiappa et al. (2017) the model was

used as a simulator of the environment for human play. Another characteristic

of these architectures is that the models were learned from static datasets that

had been previously generated by pre-trained agents and not simultaneously.

However, the breakthroughs and the lessons learned from this body of work

motivated a continuation in this direction and led to a subsequent integration

between the model and the agent. Similar to the simulators just discussed, these

17

architectures learned an expert model in advance rather than in conjunction

with the agent’s actions. A unifying theme in the architectures that we will

describe, is that the researchers attempted to investigate how to obtain robust

behavioural strategies despite the imperfections in the forwardmodel and the error

compounding. This remains an open question, and it is also one of the central

points of this thesis. In Racanière et al. (2017), the authors devised an architecture

(I2A) that integrated a pre-trained and fixed forward model with a model-free

agent to augment its performance. To take an action, the agent queried the model

to generate |A| simulated rollouts, where |A| corresponds to the cardinality of

the actions. Each of the rollouts was initialised with a different action. Then the

simulated experience was aggregated to obtain an embedding that was combined

to contextualise further the embedding from the current observation to finally be

used by the model-free agent. This line of work was continued in Buesing et al.

(2018) albeit with the introduction of some major changes. The architecture

was structured as a State Space Model (SSM). We will explore in more detail

this class of graphical models in chapter 4. For the moment, let us mention that

the crucial aspect of this structure is that we can establish a relationship between

an observation and a corresponding latent state. This is to be understood in a

probabilistic context. Latent or hidden variables refer to those that are not directly

observed. These variables are instead estimated from other observed or measured

variables, and they are used to capture properties of a system that are hard to

measure In the case of worldmodelling, this affords us an important interpretation.

We can define the latent space to be smaller than the space used by the observed

variables. For example, if we use a neural network to encode an image in a

much smaller latent space, then its latent representation could be considered a

compressed description of the image. Because this latent representation is more

compact it could encapsulate essential aspects of the observation if a decoder is

trained to reconstruct the latent code back into an observation. In more practical

terms, a compact representation can also improve the speed at which the rollouts

18

occur. Similar to the I2A architecture, the model-free agent aggregated the

simulated rollouts in an embedding to provide additional context for value and

policy estimation. Another important aspect of this work was the introduction

of a stochastic SSM to explicitly model the uncertainty in the transitions and to

abandon the assumption of deterministic environments and deterministic forward

models. To be more concrete, while other architectures learned a deterministic

function >C+1 = 5\ (2C , 0C), in this case, the architecture learned a density model

of the form ?\ (IC+1 |IC , 0C) from where a latent state can be sampled. There are

multiple levels at which the uncertainty of the model can be addressed. In the next

chapter, we describe a strategy based on ensembles to account for the uncertainty

at the level of the parameters of the model.

2.2.3 Simultaneous Control and Model Learning

The previous architectures considered a strict separation between the acquisi-

tion of a forward model and its use for finding good behavioural policies. The

two processes occurred detached from each other and it even was assumed the

availability of a pre-trained agent that could gather experience for training the

model. There are several benefits to gain from following this approach. Learning

a model from expert-generated data, especially in smaller state spaces, can pro-

mote that the model has adequate coverage and that it learns to capture a wide

array of situations. In addition, if we keep these two processes independent it

favours their stability. Either of these processes is already a challenging pursuit

by itself. Nonetheless, this separation between model learning and control could

be artificial and limiting. In complex and large environments it might not be

realistic to assume that a model of the world is complete and that it does not need

to be updated. Moreover, in most situations, it is not possible to gather expert

and diverse trajectories in advance that can be used to train the model. Several

recent works have attempted to treat model acquisition and control as interleaved

19

processes. Ha and Schmidhuber (2018) introduced a highly modular architecture

composed of a vision, a memory, and a control component.2 The vision compo-

nent used a Variational Auto Encoder (VAE) to capture spatial relationships, for

the memory an RNN passed its internal state together with the latent produced

by the VAE to model a transition distribution, and finally, a linear single layer

network was used to select an action. The authors also showed that the agent

could be trained inside the simulated world model. Other architectures such as

SimPle (Kaiser et al., 2020), Dreamer (Hafner et al., 2020), Dreamer v2 (Hafner

et al., 2022) or Slac (Lee et al., 2020) similarly acquire simultaneously a model

and train the agent’s policy within the world model which is reminiscent of

Dyna-Q (Sutton, 1990, 1991). SimPle implemented an architecture inspired

by Oh et al. (2015) with the inclusion of a VAE to estimate the distribution of

the next frame to handle stochasticity. To learn the agent’s policy it used policy

proximal optimisation (Schulman et al., 2017). On the other hand Dreamer,

Dreamer v2, and Slac build upon the action conditional SSMs introduced in

Racanière et al. (2017). The policies in Dreamer and Dreamer v2 are learned

with an actor-critic while a soft actor-critic (Haarnoja et al., 2018) is employed

for SLAC.

We have to make a distinction about how an agent could use an approximate

forward model. As we have seen in the examples above, in model-based RL it is

common to use the model to simulate a trajectory to provide data and estimate a

value, or a policy. When the agent acts in the environment, it does not explicitly

simulate the future, but compared to the model-free counterparts it follows a

policy that has incorporated a more refined notion of what may occur. Another

option is to explicitly simulate potential future trajectories and act according to

their potential payoff. The PlaNet architecture (Hafner et al., 2019) is an example

of this case. The architecture learns an SSM and selects among candidate plans

2 It is worth noting that the results presented in their paper follow from training the world
model (vision and memory components) separately from the controller. However, the authors
mentioned that it was possible to train them simultaneously.

20

via the Cross-Entropy method (Rubinstein, 1999). They tested their approach

in continuous motor tasks. Our work in chapter 4 could be considered an

exploration of this theme for discrete action spaces.

2.2.4 Implicit Dynamics Models or Implicit Planning

From the existing literature, it is also possible to distinguish a different group of

architectures that take a more direct path towards either, the modelling of the

interaction between the agent and the environment, or the look-ahead decision-

making. It is hard to categorise these approaches under a single unifying principle.

However a common thread among them, even with those that model aspects

of the forward dynamics, is that they are not concerned with modelling the

observations of the environment. Instead, these methods opt for the estimation of

elements that could exert a direct influence on their action selection. For instance,

in Vezhnevets et al. (2016), the agent’s policy consists of two modules. An action

plan module that for a horizon of size � produces a matrix of probabilities for

taking an action at a given time step, and a commitment module that decides

whether the agent should continue to follow the current action plan or if it should

abandon it and compute a different one. The assumption is that the agent can

generate a plan from a single observation at time C and then ignore the rest of

the observations until time C + : when its plan-commitment module determines

that it should gather and process an observation to update its plan. A different

instance of implicit planning occurs in the Value Iteration Networks (Tamar et al.,

2016). The learning scheme imposes an inductive bias by feeding a convolutional

network with a value and reward map in a recurrent manner to implement an

approximation of the value iteration algorithm. Some authors have also speculated

that a ConvLSTM could also be implementing a form of implicit planning (Guez

et al., 2019). Other architectures such as the Predictron (Silver et al., 2017a),

the Value Prediction Networks (Oh et al., 2017), treeQN (Farquhar et al., 2018)

21

or MuZero (Schrittwieser et al., 2020) learn dynamics models but sidestep the

issue of modelling the observations and instead focus on the prediction of RL or

planning artifacts that can assist during the decision making. For example, instead

of training a network to predict an observation, these architectures are trained to

predict the value function, the reward, the policy, or a backup function.

It remains largely underexplored in which scenarios it is convenient to limit the

architectures to model exclusively RL and planning artifacts, and in which the

observations, even if partially modelled, provide a necessary supervision signal.

In chapter 5 we combine the modelling of observations and action artifacts in

an agent with explicit planning capabilities. In chapter 6 however, we motivate

an information-theoretic treatment of relevance in model-based RL to limit the

amount of information an agent should take from the past to predict RL artifacts

and their future state.

22

A
rchitecture

Input Raw Pixels

Temporal Relations
Observation Dynamics
Reward Dynamics
Latent Transitions

Model Used for ControlSimultaneous Learning and Control
Robust to Stochastic DynamicsValue Estimation

Value Dynamics

Explicit Online Planning

Q
uad-T

ree
Factorisation

(B
ellem

are
etal.,2013)

-
-

H#

-
-

-

-
-

-
Skip

C
ontextT

ree
(B
ellem

are
etal.,2014)

-
-

-

-
-

-

-
-

-
Fram

e
Prediction

(O
h
etal.,2015)

-

-
-

-
-

-
-

-
R
ecurrentEnv.Sim

ulators(C
hiappa

etal.,2017)

-

-
-

-
-

-
-

Fram
e-R

ew
ard

Prediction
(Leibfried

etal.,2017)

-

-

-
-

-
-

-
-

Im
agination

A
ugm

ented
(R
acanière

etal.,2017)
-

-

-

H#

-
-

-

SSM
(B
uesing

etal.,2018)

-

-

-

W
orld

M
odels(H

a
and

Schm
idhuber,2018)

-

H#

-
-

-

Sim
Ple

(K
aiser

etal.,2020)

-
-

PlaN
et(H

afner
etal.,2019)

-
-

D
ream

er
(H

afner
etal.,2020)

-

-
D
ream

er
v2

(H
afner

etal.,2022)

-
-

SLA
C
(Lee

etal.,2020)

-
-

ST
R
AW

(V
ezhnevetsetal.,2016)

-
-

-

-

-

V
alue

Iteration
N
etw

orks(T
am

ar
etal.,2016)

-
-

-

-

-

-
Predictron

(Silver
etal.,2017a)

-

-

-

-
-

-
V
alue

Prediction
N
etw

orks(O
h
etal.,2017)

-

-

D
eep

R
epeated

C
onvLST

M
(G

uez
etal.,2019)

-
-

-

-

-

-
T
reeQ

N
(Farquhar

etal.,2018)

-
-

-

-
-

M
uZ

ero
(Schrittw

ieser
etal.,2020)

-

-

-

T
hisT

hesis

C
hapter

3
-

-

-

-

-

-

C
hapter

7
-

-

-

-

C
hapter

4

-

-

C
hapter

5

C
hapter

6

-

Table2.1:A
rchitecturecom

parison.
:A

spectconsidered
by

thearchitecture.H#
:Itiseither,m

entioned
by

theauthorsaspossibleorinferred
from

thepaper,butnotem
pirically

confirm
ed.−

:A
n
aspectnotconsidered

by
thearchitecture.

23

3 Learning, planning, and error-correction

with ensembles

3.1 Introduction

We start with the intuitive notion that to acquire a model of the environment that

is useful for decision-making we need a model that is accurate. Where accuracy

in this case means how well it can reconstruct the observations. For most tasks,

however, learning a faithful model that captures in detail the mechanics of the

environment is not attainable. Forward models not only have an epistemic

component related to a gap in knowledge that decreases as the agent continues

to learn. There is also an aleatoric aspect associated with the stochasticity of

the process that generates the dynamics (Kendall and Gal, 2017). Thus for most

situations, approximate forward models are inherently incomplete.

One of the most problematic aspects of this situation is that a prediction generated

by a model is composed from the predictions it generated before. A model might

essentially be useless for planning because even small flaws in the predictions will

compound in time (Talvitie, 2014, 2016). Since most research in model-based

RL has operated under the premise of learning accurate reconstructive models,

recent studies have focused on making the models more reliable. For example,

Racanière et al. (2017) designed an architecture with a model-based and a model-

free path, compressing a rollout generated by the model based path and using

it as additional context for the model-free controller. Buesing et al. (2018) and

24

Hafner et al. (2019) presented work on learning and executing forward models

completely in latent space. Ha and Schmidhuber (2018) showed how adding

noise during training can increase the robustness of the models learned by the

agent and in Asadi et al. (2019) they proposed a multi-step prediction scheme

to increase model accuracy. An alternative approach, sidestepped learning state

transitions and instead focused on modelling and simulating other aspects that

could help an agent make decisions such as value functions and future policy

(Schrittwieser et al., 2020).

In this section, we try to deal with some of the repercussions of planning with

imperfect forward models. We depart from the approaches just described. Here

we will not be specifically invested in finding improved representation mecha-

nisms intended to learn a more accurate model. Instead, it is assumed that the

agent must deal with faulty or incomplete models, and yet, it must plan and

act under uncertainty. The method we propose is multi-staged, (1) we apply

statistical bootstrapping techniques to approximate the predictive distribution of

state transitions by learning an ensemble of models through a single multi-headed

architecture.

The method we propose applies statistical bootstrapping techniques to approximate

the predictive distribution of state transitions by learning an ensemble of models

through a single multi-headed architecture. We devise and test three different

schemes to integrate the data from the distribution. We highlight the importance

of having a certain level of introspection into the different predictions made by the

ensemble, and how modelling a predictive distribution enables the construction

of error-correcting routines to increase the reliability of the predictions. For

the error-correcting procedures, we consider that the environment has certain

constraints that have to be satisfied by the predictions. If an initial prediction does

not satisfy those conditions, alternative predictions contained in the distribution

can inform how to adjust the original prediction. We test our approach on a

reduced version of Pacman in which the presence or absence of the interacting

25

elements (e.g. ghosts, power pills) serve as conditions to be fulfilled by the

predictions.

3.2 AProbabilistic Perspective onNeuralNetworks

Figure 3.1: The neural network can be interpreted as a conditional ? (~ |G, \). For MLE
and MAP, the networks obtain a point estimate for parameters \ .

Consider a dataset � = {(G (8), ~ (8))}#8 where G (8) ∈ - is an input (e.g. an image,

a pre-processed feature vector, and so on) and ~ (8) ∈ . is a label. A neural

network will try to find relationships or mappings between - and . through

parameters (i.e. weights) \ . This can be formally represented as a conditional

model parameterised by \ as

? (. |-, \) (3.1)

typically the objective is to train the network to minimise a loss function to find

a set of \ that maximises the likelihood of the data, assuming independent and

identically distributed samples,

26

\"!� = argmax
\
? (� |\)

= argmax
\

∏
8

? (~8 |G8, \)

this is known as Maximum Likelihood Estimation (MLE). After training, the

network has learned the set of assumptions that explains the dataset � given its

constraints. MLE tends to overfit and instead, we may decide to include a prior

over parameters to regularise them during training

\"�% = argmax
\
? (� |\)? (\)

= argmax
\

∏
8

? (~8 |G8, \)? (\)

this type of optimisation is called Maximum A Posteriori (MAP). Also note

that if we set the prior to a Gaussian with ` = 0 leads to L2 regularisation (i.e.

encouraging small weights), whereas a Laplacian prior would correspond to

L1 regularisation (i.e. encouraging sparsity). Using a uniform prior we would

recover MLE.

Once training has finished, the network can predict a label ~∗ given a new input

G∗ and estimated parameters (\"!� or \"�%)

? (~∗ |G∗, �) ≈ ? (~∗ |\, G∗) (3.2)

MLE and MAP both produce a single point estimate and not a full distribution of

\ , thus it is difficult to assess the level of uncertainty in the network predictions. It

would be desirable instead of only producing a single set of parameters we could

learn a distribution over them to get a more complete view of the distribution of

27

predictions itself. Prediction with a distribution of parameters would be calculated

as

? (~∗ |G∗, �) =
∫

? (~∗ |\, G∗)? (\ |.,-)3\ (3.3)

the expression implies that it is necessary to find the posterior ? (\ |.,-) which

involves the following marginalisation

? (�) =
∫

? (�, \)3\ (3.4)

as discussed in section A.3 the integral for most cases is intractable and requires

us to approximate the posterior using a surrogate distribution @(\ |�) ≈ ? (\ |�).

There are a few ways to proceed with the construction of a Bayesian neural

network and the approximation of this particular parameter distribution. For

example schemes based on variational inference (Blundell et al., 2015; Shridhar

et al., 2019), dropout (Gal and Ghahramani, 2016), Stochastic Gradient Langevin

Dynamics (SGLD) (Welling and Teh, 2011) and SGLD adaptive preconditioners

(Li et al., 2016), or Kronecker factorised Laplace approximation (Ritter et al.,

2018).

Researchers have noted that some of these techniques provide poor approxima-

tions to the posterior (Osband et al., 2018) or as we have experienced in some

unsuccessful instances of our experiments, they might be constrained to static

datasets and become unstable in online sequential problems such as those in RL.

Nonetheless, the construction of algorithms that can provide better approxima-

tions of the parameter distribution remains an active field of research.

28

3.3 Statistical Bootstrapping

For the work concerning this chapter, we focus our discussion on the potential of

bootstrapping ensemble methods to approximate the posterior parameter distribu-

tion of a neural network. The bootstrap method is a statistical technique intended

to assess the accuracy of a statistic or estimator of an unknown population pa-

rameter (Efron, 1979). In principle, one could establish the variability of the

estimator of interest by repeatedly sampling from the population itself. However,

this may not be feasible for situations in which we do not have unlimited access

to the population and instead, the only measurements at our disposal come from

a unique pool of sample data �. The underlying principle behind the bootstrap

method relies on the assumption that this sample data is representative of the true

population. Thus we can imagine the process of sampling randomly from the

population by treating the sample data as if it was the actual population. If the

number of samples is large enough, it can be possible to obtain a distribution that

approximates the sampling distribution of the estimator. The process consists of

the following steps (figure 3.2):

• From a sample data � of size # resample with replacement to obtain a

bootstrap sample �̃: of the same size. This process is repeated to get

bootstrap samples.

• Compute a statistic or estimator j∗
:
from each of the bootstrap samples.

• Build a bootstrap distribution with the estimators.

From the bootstrap distribution then it is possible to perform inference. For

example, by calculating confidence intervals or obtaining the standard error to

assess the variability across estimates.

29

Sample
Data

Estimator
j0

j∗2

j∗1

j∗
:

...

Bootstrap
Samples

Bootstrap
Estimators

Bootstrap
Distribution

Figure 3.2: A graphical representation of the bootstrap method. The process starts by
resampling with replacement from an original pool of observations (sample data). For
each new group of samples an estimator of interest is computed and then used to build
the bootstrap distribution.

Figure 3.3: An ensemble model as posterior sampling. Each network with parameters
\8 can be considered as a sample from the approximate posterior @(\ |�). Gathering the
predictions allows us to obtain a predictive distribution of the next states and rewards
?\ (BC+1, AC |BC , 0C).

30

3.4 Bootstrapped Transition Functions

We now contextualise the problem of approximating a parameter distribution

within RL and more specifically for learning a forward model. Consider the

model-based scenario described in appendix section A.1.2 where an agent has to

predict future observations and rewards by learning a state transition function

given by the conditional ? (BC+1 |BC , 0C), and a reward distribution ? (AC |BC+1, BC , 0C)

respectively.

A neural network is trained from data � = {B8, 08, B8+1, A8}#8 corresponding to the

transitions observed by the agent where B8 is the state, 08 the action, B8+1 the next

state and A8 the reward. In analogy to the set-up explained in section 3.2, the

input to the network is a concatenation of B8 and 08 and the outputs are the next

state B8+1 and reward A8 . Formally, we are interested in learning an approximation

@ of the following parameter posterior

@(\ |�) ≈ ? (\ |B8, 08, B8+1, A8) (3.5)

to get a predictive distribution

? (BC+1, AC |BC , 0C , �) ≈ E\∼@(\ |�) [?\ (BC+1, AC |BC , 0C)] (3.6)

figure 3.3 illustrates intuitively how to think about the samples \ ∼ @(\ |�). Each

of them is a different instance of a neural network parameterised by its own set

of \ and producing its outputs. After gathering all these outputs then it becomes

possible to construct a distribution and get relevant statistics and measures of

uncertainty.

We adapt the bootstrap method described in the previous section to find the

approximate posterior @(\ |�). Training an ensemble of different models sepa-

rately as exemplified in fig. 3.3 is a time-consuming process, therefore the neural

31

Figure 3.4: Bootstrapped Transition Functions. The flow starts with a joint input,
a concatenation of a frame observation, and an action. This is processed through the
multi-headed NN to produce di�erent predictions to form a single unified prediction
(section 3.4.2). The process continues by checking whether the prediction contains errors
and if that is the case the prediction is fixed (section 3.4.3).

network is designed with an architecture bias to train an ensemble of models

simultaneously. This is achieved by incorporating multiple output heads in the

architecture with each head generating an independent prediction of the next

state BC+1 and reward AC (figure 3.4). We refer to our approach as Bootstrapped

Transition Functions (BTF). The heads share common parameters in the initial

layers of the architecture but crucially each also possesses isolated parameters

from the rest of the network. Under this architecture, a predictive distribution

of state and reward transitions can be expressed as

? (BC+1, AC |BC , 0C , �) ≈
1

∑
:

? (BC+1, AC |BC , 0C , \:), \: ∼ @(\ |�) (3.7)

where \: is the combination of the shared parameters of the network and the

individual parameters of a head. Therefore we can consider each \: as a sample

from the posterior parameter distribution @(\ |�).

32

Figure 3.5: BTF training. A minibatch of transitions is sampled from the experience
memory bu�er which is used to train one or more of the heads according to a Bernoulli
mask. The image illustrates three di�erent instances of the training process.

3.4.1 Training via Bootstrapping

Throughout their interaction with the environment, the agents store the transi-

tions in an experience buffer. Every time a transition is stored, a Bernoulli binary

mask is attached to it to determine on which heads the transition is considered

during training and on which it is ignored. Thus to train the multi-headed

architecture via bootstrapping techniques, each head is trained with a different

group of sampled transitions as indicated by the masks (figure 3.5). Because

each head is trained on a different set of transitions, each of them, models an

individual approximation of future state and reward. The discrepancy in predic-

tions between the heads is reduced gradually as the training process continues,

indicating less uncertainty. Importantly, for new or rare states the heads may

predict different outcomes indicating a lack of familiarity and thus more un-

certainty in the face of novel situations. After training, the agent can assess the

confidence it holds about the predicted next state and reward by sending a new

state-action pair through each head and obtaining different predictions (i.e. the

bootstrap distribution). The architecture is trained to minimise a cross-entropy

loss between predictions and actual observations or rewards. The whole process

is summarised in algorithm 1. Appendix G describes additional details about the

architecture.

33

Algorithm 1: Bootstrapped Transition Functions
Input: Policy c , number of heads
Initialise: Replay buffer �, parameters \

1 for C . . .) do
2 Sample 0C ∼ c (0C |BC);
3 Observe BC+1, AC ∼ ? (BC+1, AC |BC , 0C);
4 if done then
5 4=E .A4B4C ();
6 end
7 Generate masks< ∼ �4A (, 0.5);
8 � ← � ∪ {B, 0, A, B′,<};
9 Sample B<, 0<, A<, B′<,<< ∼ �;
10 ~̂ = {B̂C+1, ÂC } = 5\ (B<, 0<);
11 Update model by minimising L\ (~̂, ~), backpropagating according to<

via SGD;
12 end

3.4.2 Prediction

As described in the previous section each head produces a unique output which

is expressed as ~̂: = {B̂:
C+1, Â

:
C } = 5\: (BC , 0C). But in addition, we also test a small

variation of the BTF architecture to include Randomized Prior Functions (RPF)

(Osband et al., 2018). These are simply neural networks with fixed untrainable

but randomly initialised weights. The purpose of including RPF in the output

is two-fold: (1) to mitigate one of the shortcomings of the bootstrap method,

which by itself does not include a mechanism to reflect uncertainty beyond what

it captures from the observed data. With a random network, it is possible to

induce artificial diversity in the outputs. (2) The prior acts as a regulariser. The

output of the BTF-RPF networks is computed as follows

~̂: = {B̂:C+1, Â
:
C } = 5\: (BC , 0C) + V?: (3.8)

where ?: corresponds to the prior for head : and V is the scaling factor.

To consolidate the different predictions generated by the heads we consider three

34

different prediction aggregation schemes:

• Average: computes the mean of the output values in the last layer of each

head and retrieves the class with the largest value:

B̂C+1, ÂC = argmax
2

[
1

∑
:

f

(
u(!)

)
:

]
2

(3.9)

Where u(!) is the vector of logits in the last layer ! of head : and 2 ∈

{0, . . . ,�}.

• Majority Voting: takes the most common prediction by obtaining the

mode over the output of each head:

B̂C+1, ÂC = mode
(
5\1, . . . , 5\

)
(3.10)

• Sampling: selects a prediction from the predictive distribution formed by

the output of each head:

B̂C+1, ÂC ∼ ?
(
BC+1, AC |BC , 0C ; [\:] :=1

)
(3.11)

3.4.3 Error Correction

There are several ways in which a trajectory simulated by a forward model

can deviate from the ground truth. A particular type of error is the lack of

cohesiveness between predictions done at the local and global levels. Consider

the example of a visual domain, in which a frame can be modelled by a factorised

distribution corresponding to individual sections of the frame such as a pixel, a cell,

or an object. A network is trained and learns about the representation of various

objects in the environment, such as a tree, a car, or a blue cell corresponding to a

portion of the sky. If the network predicts the occurrence of a tree in a portion

of the frame where only the sky occurs, the prediction of a tree in the frame is

35

not a surprising event by itself. However, when the prediction is taken globally,

the probability of a tree occupying that position is highly unlikely. Using this

abnormal and unlikely predicted frame to simulate further into the future may

lead to a subsequent string of predictions that degenerate rapidly. Thus in some

cases, it is useful to think in terms of the higher-level constraints that need to be

satisfied by a prediction.

We have decided to focus on two types of constraints intended to regulate the

number of objects of a certain class that should be present in a predicted frame.

The first of these constraints is when the frame is missing elements that should

be present. The second is when the frame contains multiple instances of an

element beyond the number that is expected. We describe how the ensemble can

leverage the uncertainty in the estimates via the bootstrap distribution to make

predictions that are more robust and with a higher chance of conforming to the

expectations of what is realistically possible in the environment. There are three

important assumptions. The first is that we know the type of objects that exist in

the environment. The second is that before the agent simulates a trajectory, it

has an expectation of the number of objects of a certain class that should occur

in the environment. The last assumption, is that the agent has memory to access

to its previous observations.

To show the potential advantage of having an ensemble to assist error-correction,

all corrections made to the frames are based on what is immediately accessible

to the agent: (1) its current and past observation and/or (2) its predictions. By

having not only a single point estimate but several candidate predictions, we can

establish mechanisms that search, compare and integrate observations gathered

from the heads into newly revised predictions that are more likely to satisfy the

criteria demanded by the constraints. Note that we will refer to an element as any

generic section in the frame such as a pixel, a cell, or an object.

The generic error-correction flow, as illustrated in figure 3.6, involves five steps:

36

Figure 3.6: Error-Correction flow. We obtain the candidate predictions from each of the
heads to consolidate their information into a single-frame prediction. If this prediction
contains errors then the ensemble is used to extract information that can be used to fix it
and to generate a final corrected version.

1. Each head generates a frame prediction.

2. Head predictions are consolidated into a unified prediction as described in

the previous section.

3. This prediction is verified to assess if it complies with the constraints required

for the prediction.

4. If it fails the conditions then the predictions generated by the ensemble are

analysed to extract information that can correct the frame.

5. Finally, a new version of the consolidated predicted frame is generated.

Correcting predictions with missing elements

This type of verification applies to situations where the aggregated prediction

does not include the presence of a particular element in any of the cells even

though it is expected. To correct the frame, every head is inspected for the

element. If a head has one or multiple predictions containing the element, the

37

positions where the element is located are stored in a shared vector along with

the locations coming from other heads. After all, heads have been examined, the

frame is corrected by inserting the missing element in a position selected from

the shared location vector. The selection is done either by taking the mode of

the location vector or by sampling from it, depending on the criteria used by

the network to predict the next state and reward. If the location vector is empty

because none of the heads predict the existence of the element then the position is

taken from the previous frame. Thus only for the first step in a simulated rollout,

the previous frame truly corresponds to the last observation gathered from the

environment. While for the rest of the steps it is taken from the previously

imagined frame. The pseudo-code of this mechanism is outlined in algorithm 2.

Algorithm 2: Error-correction for missing elements
Input: Unified frame prediction 5D , Multi-headed predictions 5\: , element 4,

constraint 2, last observed or imagined position ;?
1 if 4 in 5D < 2 then
2 Find positions in each 5\: where 4 is and store in p;
3 if p is not empty then
4 if sampling then
5 ?′ ∼ p;
6 else if average or voting then
7 ?′←<>34 (?0, . . . , ?#);
8 end
9 else
10 ?′← ;?;
11 end
12 Insert 4 in new position ?′ in unified frame 5D ;
13 ;? ← ?′;
14 end

Correcting predictions with additonal elements

The other situation we consider is when the prediction includes more elements

of a certain type than those anticipated. First, we find the locations where the

element is present in the unified predicted frame and store them in a vector

a. Then we locate the positions of the element in every head of the ensemble

38

and store them in a shared vector p. Similar to the unified frame prediction, a

head can also be predicting the existence of the element more times than those

specified by the constraints. The two vectors are then compared to identify and

separate the locations in the shared vector p that occur in a as well. From this

resulting vector, we select the position of the elements that will be preserved in

the unified prediction. The selection is done by either taking the mode or by

sampling from the vector.

After it has been determined which elements are preserved, then the next step

is to substitute those that have not been selected. This substitution can also be

assisted by the predictions contained in the heads. First, by gathering the location

of those elements in the unified frame and then, by extracting the predictions

done by each head in those locations. At the same time, only the predictions that

are different from the element that should be excluded are considered. Once

they have been gathered, the selection is again done by taking the mode or by

sampling one of the elements. Similar to the missing element routine when a

decision cannot be made due to an empty vector, the correction defaults to the

element occurring in the last frame, whether real or imagined (algorithm 3).

39

Algorithm 3: Error-correction for additional elements
Input: Unified frame prediction 5D , Multi-headed predictions 5\: , element 4,

constraint 2, last imagined or observed element ;4
Initialise: Vector v that will hold the elements that replace the copies

1 if 4 in 5D > 2 then
2 Find positions in 5D where 4 is and store in a;
3 Find positions in each 5\: where 4 is and store in p;
4 Check which values in a are in p and store in g;
5 if g is not empty then
6 if sampling then
7 6′ ∼ g;
8 else if average or voting then
9 6′←<>34 (60, . . . , 6#);

10 end
11 Remove 6′ from g;
12 for 68 ∈ g do
13 For each 5\: extract the element located at 68 and store in v;
14 if v is not empty then
15 if sampling then
16 E′ ∼ v;
17 else if average or voting then
18 E′←<>34 (E0, . . . , E#);
19 end
20 else
21 E′← ;4

22 end
23 Insert E′ in position 68 in unified frame 5D ;
24 ;4 ← E′;
25 end
26 end
27 end

40

3.5 Planning with Ensembles via Rolling Hori-

zon

For harnessing the predictive model acquired by the agent, we introduce an

ensemble error-correcting version of Rolling Horizon Evolution (RHE) (Perez-

Liebana et al., 2013). RHE is a real-time control and planning algorithm that

uses a forward model to search a space of trajectories g = (B0, 00, ..., B) , 0)) aiming

to find a policy that maximises a utility along the trajectory. A policy c in this

case is defined as an action-sequence 00:) of length) .

At each time step, RHE receives the current state B0 and generates an initial

random action sequence which is used to mutate and obtain a population of

% action-sequences. The mutator operator selects a step in the sequence with

probability ? and substitutes the current action with a different one by uniformly

sampling the action space. In addition here we apply the shift-bu�er enhancement

introduced in Gaina et al. (2017) that consists of seeding a new population with

the fittest action sequence of the previous time step, by shifting it one time step

to the left and appending a new random action at the end of the sequence to

preserve the length. The fitness of the action sequences is determined by the

amount of reward or utility each of them obtains using the forward model until

it reaches B) or an earlier terminal state. The action sequence with the highest

total reward along a simulated trajectory is selected. Then, the first action in the

sequence is executed in the real environment (algorithm 4). Thus the objective

of RHE is to find a policy that satisfies the following:

c (B0) = argmax
00:)

E

[
A (B0, 00) +

)∑
C=1

A (B̂C , 0C)
]

(3.12)

Also note that because this is a stochastic open-loop instance of planning, the

41

model takes the following form (cf. equation A.8)

? (B0, ..., B) |00, ..., 0)) = ? (B0)
)∏
C

? (BC+1 |BC , 0C) (3.13)

although research in RHE typically assumes access to a perfect simulator, the basic

mechanics of the algorithm remain unchanged if using imperfect approximate

forward models. However, it must be established from where RHE takes the

imagined states B̂ that it requires to operate. We make two main adaptations,

the first is the communication between RHE and the prediction aggregation

schemes described in section 3.4.2. In that manner, RHE seamlessly receives the

predicted future states and rewards. The second is that the RHE flow is extended

to include a condition for error-correction. In that case, the predicted state B̂ is

fixed and then immediately sent back to RHE.

42

Algorithm 4: Ensemble Rolling Horizon Evolution with inaccurate models
and error-correction
Input: Forward model ?\ , number of actions �, sequence length T,

population size P, mutation rate `
1 while true do
2 if not shift bu�er then
3 c ← 0C , . . . , 0T ∼ �0C (�);
4 else
5 Shift c to the left and add 0T ∼ �0C (�) at the end of the sequence;
6 end
7 for 8 . . .P do
8 if 8 > 0 then
9 c8 ←Mutate c with rate `

10 end
11 for ℎ . . .Tdo
12 Predict B̂ℎ+1 and Âℎ using eq. 3.9, 3.10 or 3.11 via ?\ ;
13 if error-correction then
14 B̂ℎ+1 ← 2>AA42C (B̂ℎ+1);
15 end
16 Save or update current return '(c (0:ℎ)

8
) = A (BC , 00) +

∑ℎ
:=1 A (B̂: , 0:);

17 end
18 end
19 Select fittest action sequence c ←<0Gc'(c);
20 Perform first action in the sequence 0 ← c (0) ;
21 Observe BC+1, AC ∼ ? (BC+1, AC |BC , 0);
22 end

43

3.6 Experiments

3.6.1 Environment

We assess the effects of the BTF with and without error-correction in Minipac-

man (Racanière et al., 2017) (figure 3.7). The environment is a reduced version

of Pacman and provides a simple minimal discrete control benchmark. The game

rules are as follows: an agent navigates through a maze eating food in the corri-

dors. The agent is chased by a semi-stochastic ghost who makes random moves

5% of the time. This active element of the environment introduces an additional

challenge for learning a forward model. The agent has to learn the dynamics

of an environment that includes elements that it cannot directly control. The

agent can also eat power pills. These give a 20 time-step period of immunity to

the agent and allow it the possibility to eat the ghost. The agent has a repertoire

of five actions: up, down, left, right, and no-operation. It also receives a reward

depending on specific game events. When the agent eats food it gets a reward

of 1. If it does not move or goes to a section of the corridor with no food left,

it does not receive a reward. It gets a reward of 3 for the power pills and 6 if it

manages to eat the ghost under the effects of the power pills. If the ghost kills

the agent the reward is -1 and the game terminates.

Figure 3.7: Minipacman. The green cell corresponds to the agent, red to the ghost,
turquoise to the power pills, blue to the food still left in the maze, and black to a cell
where the food has been eaten.

44

Besides the reward, the agent also receives an observation that reflects the current

state of the game. The format of the observation is an array of 15× 19× 3, where

the last number is the number of channels. Thus the observation contains a total

of 15× 19 cells. Each of them is associated with a different object: an agent, food,

power pills, a ghost, eaten cells, and inaccessible cells. The fact that we can treat

a cell as an object allows us to evaluate our error-correcting strategy as proof

of concept since unsupervised object detection for control tasks is still a nascent

area of research (Kulkarni et al., 2019; Watters et al., 2019; Anand et al., 2020).

3.6.2 Error-Correction in Minipacman

To test the performance of the proposed error-correcting algorithms, we fo-

cused on the most fundamental elements of the game: the agent and the ghost.

Predicted frames are checked against the constraints established for the game.

The constraints are simply the number of agents or ghosts counted from the

last real observation (or the last imagined observation). If an element is absent

or there is more than expected, the routines in algorithm 2 and algorithm 3

are invoked respectively. However, there is a small element-specific adjustment

done for algorithm 2. If the predicted frame initially contains more than a single

Pacman, then from the pool of copies to be discarded, it is verified if one of

them corresponds to the position where it was observed in the last frame. If the

condition is met then the cell is turned black, symbolising that the food there

has been eaten. Otherwise, they follow the original outline and take their values

from the last observed or imagined frame.

3.6.3 Model Learning

The first empirical evaluation considers the capacity to predict future state and

reward. We compared a non-probabilistic single-headed agent against six vari-

ations of BTF agents. Three of the agents operated with a forward model

45

trained through standard BTF while the other three also included a random prior

(BTF+RPF). For both groups, we tested the three mechanisms to consolidate

predictions defined by eq. 3.9, 3.10 and 3.11. All CNNs were trained for 50,000

steps using a random policy and then tested on their next step predictions over

100 episodes. The accuracy was measured by verifying the number of cells (for

objects) or reward class, that matched with the ground truth.

If we observe the upper section of table 3.1, the average accuracy in the entire

frame makes can be deceiving as all models seem to be close to each other.

This is because most of what the models have to predict has to do with the

general structure of the environment, namely the inaccessible cells and the

corridors. Nonetheless, the differences between them are easier to appreciate

by decomposing the accuracy by element category. Uncertainty-aware agents

are consistently able to predict the motor consequences of their actions to a

larger extent than when using a single-headed model. Although agents using

ensemble models predict Pacman position with great accuracy, all agents are less

adept at predicting the semi-stochastic behaviour of the ghost. Activating the

error-correcting routines has a positive effect on both categories. They allow

the agents to predict correctly the ghost movement up to 50% of the time.

Error-correcting mechanisms however provided something considerably more

critical. From the observations we had gathered on model prediction it was not

rare to find frames where Pacman was missing or cloned, hence justifying the

error-correction mechanisms proposed in this chapter. This was also a common

occurrence for the ghost. The bottom section of table 3.1 (i.e. Constraint

Fulfilment), refers to the proportion of frames that complied with the element

constraints imposed by the environment. Namely, the predicted frames that did

not miss or included extra elements compared to the real observation. There we

can observe that error-correcting mechanisms accurately included Pacman and

increased significantly the likelihood of removing or including the exact number

of ghosts that appear in the next time step.

46

Accuracy

Single Head Average Majority Voting Sampling
Boot RPF Boot RPF Boot RPF

Fruit 0.99583 0.99627 0.99617 0.99627 0.99638 0.99617 0.99617
Eaten cell 0.99598 0.99545 0.99261 0.99564 0.9926 0.99506 0.99174
Pacman 0.90284 0.99899 0.99899 0.99919 0.99939 0.99878 0.99777
Pacman (EC) - 0.99939 0.99979 0.99939 0.99979 0.99939 0.99959
Ghost 0.22980 0.36043 0.47513 0.35595 0.46303 0.34722 0.40053
Ghost (EC) - 0.49955 0.50134 0.49955 0.50179 0.49865 0.50179
Reward 0.9557 0.97356 0.97376 0.97519 0.97437 0.97112 0.97397
Frame 0.9962 0.99661 0.9966 0.99663 0.99661 0.9966 0.99658

Constraint Fulfilment

Fruit 0.86594 0.96433 0.98296 0.95127 0.98566 0.9548 0.97173
Pacman 0.90499 0.95564 0.99768 0.99654 0.99584 0.97429 0.99558
Pacman (EC) - 1.0 1.0 1.0 1.0 1.0 1.0
Ghost 0.31941 0.63119 0.85846 0.63407 0.86749 0.51388 0.7348
Ghost (EC) - 0.92741 0.9197 0.93 0.95096 0.94887 0.92379

Table 3.1: Model learning. Top: Average next step accuracy by category and type of
forward model. Bottom: The proportion of frames that satisfied exactly the constraints
as observed in the environment. The results report a single-headed agent and the multi-
headed BTF agents using di�erent aggregation schemes and network output. We can
observe how the architectures that include the error-correction schemes (EC) significantly
increase the capacity to fulfil the predictions according to what is expected by the actual
environment’s dynamics.

47

Figure 3.8: Comparison of uncertainty-aware BTF agents against a non-probabilistic
agent with a single-headed model. The plots show the performance in Minipacman with
di�erent planning horizons.

3.6.4 Planning and game performance

Wemeasured the performance of the agent in the game to analyse the impact that

the probabilistic models have when planning with simulated temporal sequences.

After the models were trained they were tested in combination with RHE for

several sequences as specified in table B.1 and evaluated for 10 episodes. We ob-

served that in general all bootstrapped models, given a choice of sequence length,

offered better performance than a non-probabilistic single-headed model (figure

3.8). At their peak, bootstrapped models without error-correction achieved a 2G

improvement and above 3G when enhanced with error-correction. All models

degraded in performance as horizon depth increases, however error-correcting

models tended to benefit more from longer sequences and managed to retain

proficiency even with 20-step sequences. For reference, RHE using a perfect

simulator achieves a mean score of 134.54.

We also noticed that BTF+RPF exhibits a more stable performance than BTF

alone. Combining these observations with those from the results in model learn-

ing, it is possible to speculate that the prior is indeed acting as a regularisation

mechanism. This could imply that during training the ensemble is more di-

verse in its predictions and therefore less susceptible to premature overconfident

estimations.

48

3.7 Discussion

The objective in this chapter was to investigate the potential benefits in perfor-

mance that learning a predictive distribution could grant us when we aggregate

the samples. Although in the literature there has been a large emphasis on pro-

ducing more accurate models, our results support conclusions reached in previous

work regarding the shortcomings of pursuing model accuracy for its own sake

(Talvitie, 2014). Producing highly accurate immediate predictions may still lead

to catastrophic failure if the accuracy measures we use are global and fail to cap-

ture how the essential components of the environment are modelled. Thus there

is a necessity to establish and study protocols to assess the quality of a model that

extends beyond global accuracy. Here we focused on evaluating the structural

consistency in the predictions given by the elements and objects that are relevant

to the dynamics of the environment. Compared to single prediction agents,

the results demonstrated that training a forward model capable of producing

multiple estimates as if they were samples from a distribution, leads to improved

performance. Moreover, we showed that it is possible to use these samples and use

them to produce an unified prediction enhanced by error-correction schemes in-

creasing stability in longer horizons. On a conceptual level, this may suggest that

frame coherence could be complementary to (granular) accuracy for correctly

planning in uncertain environments.

Although BTF without error-correction can be generically applicable to multiple

domains, BTF with error-correction is provided as a proof of concept, as it is

still limited in scope. There are several directions to reduce these limitations.

For instance, we have assumed prior knowledge of the constraints. It could be

possible to learn these constraints directly from data by training another neural

network to predict the presence or absence of elements according to the game

transitions and then to pass them to the error-correcting routines. Alternatively,

as we are going to see in the next chapter, a different route to generalise is to

49

model explicitly the transition distribution.

50

4 Planning in Latent State Spaces

with Generative Sequence Models

4.1 Introduction

In the previous chapter we considered an architecture in which the observa-

tions undergo a preprocessing step before they are passed on to the planner. In

Minipacman, the observation corresponds to colour-coded categories such as

a ghost, the agent, or empty space. The assumption is that the environment is

represented by cells corresponding to specific objects. This makes adapting the

error-correction schemes to other environment not straight-forward.

We can try to overcome these constraints and increase the generality of the

architecture by considering learning from raw pixels. Until recently, this proved

to be far from trivial, research on learning predictive models from raw inputs

has followed a progression starting from next frame prediction (Oh et al., 2015;

Chiappa et al., 2017) and joint frame-reward prediction (Leibfried et al., 2017)

where the results showed that it was possible to maintain a low prediction error

over long time-spans using modern deep learning architectures. Although these

results were obtained in non-controllable supervised settings further research led

towards combining the usage of a learned forward model to acquire a policy (Ha

and Schmidhuber, 2018; Buesing et al., 2018; Holland et al., 2019). In Holland

et al. (2019), the authors built upon the convolutional network from Oh et al.

(2015) integrating the imperfect learned model with a Dyna-style agent (Sutton,

51

1990). The agent updates the value function using not only real experience but

also simulated experience generated by the model. While this agent learned

temporal patterns by receiving a sequence of stacked frames as input, Ha and

Schmidhuber (2018) took a different approach. Their architecture consists of a

Variational Auto Encoder (VAE) in charge of identifying spatial patterns and a

Recurrent Neural Network (RNN) for extracting codes from temporal sequences.

The controller is relatively small and learns a policy on top of the other two

components. The authors showed that the controller was even capable of learning

a successful policy using only simulated experience. Notably, this architecture

and the slightly earlier approach presented in Buesing et al. (2018) modelled latent

state transition distributions. The concept of a latent variable is crucial for this

chapter and will also be used throughout the rest of the thesis. In a probabilistic

context, a latent or hidden refers to those that are inferred from observed variables

that can be directly measured. The application of sequential latent variable models

brought two major consequences: (1) the agents were better equipped to use

error-prone imperfect models as the uncertainty was explicitly modelled to a

certain extent, and crucially (2) the latent variables were used to reduce the

dimensionality of the observations. The latent space is specified to be smaller

than the pixel-space that defines the observations. Thus several observed variables

are aggregated to single latent variables. This has the effect that, for instance, if

the training objective is to reconstruct an observation, the latent space may store

essential features necessary to reconstruct it. Accordingly, it also discards a lot of

the data from the observation as the latent space is designed to be a compressed

version of it. This also has practical advantages, the sequential latent models

allowed model-based architectures to predict next states in the smaller latent

space, increasing the speed at which the predictions can be generated. For our

purposes, this means we can generate and evaluate a larger number of plans with

the online planner.

Here we try to address a major shortcoming from the architecture presented in the

52

previous chapter. We leverage the advancements in sequential latent modelling to

construct an architecture that processes the environment from high-dimensional

images, thus avoiding preprocessing or feature handcrafting. Similarly to the

agents proposed in the previous chapter we approach this model construction

from a probabilistic perspective as a natural way to reflect the uncertainty of the

future. However, unlike in Chapter 3 the uncertainty that is modelled is not

about the model parameters to produce a transition but about the state transition.

The sequential latent model will be represented as a State Space Model (SSM)

(Kalman, 1960; Kalman and Bucy, 1961), a class of probabilistic graphical models

that describes the dynamics and relations of the different time series. As we will

see, with an SSM we could describe historical relationships, where a variable

carries information into the present from other variables from the past. This

could afford us the possibility to provide additional context to the controller

beyond just the current state.

As reviewed in chapter 2, the SSMs have been used within the context of

Reinforcement Learning (RL) in Buesing et al. (2018) to learn to predict se-

quences and aggregate them as part of the context given to a policy, Hafner et al.

(2019) used an SSM to learn models of tasks in continuous action-spaces, Hafner

et al. (2020, 2022) showed a model-based agent which learned a forward model

and actor-critic, while Lee et al. (2020) learned the same components with a

hierarchical SSM. Our two main contribution in this chapter are (1) to extend

the usage of approximate models learned with a SSM to online planning in dis-

crete action-spaces. This involves providing an interface to the Rolling Horizon

Evolution (RHE) planner to communicate with the SSM. Then from within the

planner we can query the SSM to traverse and produce simulated latent sequences

on one hand, and to predict the return of those sequences on the other. From

the previously cited works, Hafner et al. (2019) architecture is the only one that

performed online planning. In this regard, the architecture we present in this

chapter could be considered as its counterpart in discrete action-spaces. (2) We

53

also show how our architecture is capable of learning local forward models, and

plan with them, by limiting the agent’s inputs to its immediate neighbourhood.

Because the SSM takes a prominent role in this and the next two chapters, we

are going to proceed in the next section describing how do we go from an

autoregressive class of models, such as the architecture described in the previous

chapter, to a SSM capable of modelling stochastic dynamics and transporting

information from the past (i.e. Recurrent State Space Model (RSSM)).

4.2 Model Taxonomy: from raw to latent spaces

We have previously considered learning a world model from single next-step

transition tuples (B, 0, B′), however, focusing exclusively on a single transition

neglects the information content that is communicated throughout a sequence.

Moreover, it also becomes inefficient if the task is partially observable due to

incomplete or noisy observations.

4.2.1 Autoregressive models

Stated simply, an autoregressive model predicts an outcome based on past values.

Let us consider the following problem formulation. Assume that we want to

model a distribution for the next observation, but rather than simply modelling

? (>C+1 |>C , 0C) we take a (sub)history of past observations >≤C and actions 0≤C to

compute ? (>C+1 |>≤C , 0≤C). We could imagine a function 5 that maps this history

to an output such that ? (>C+1 |5 (>≤C , 0≤C)). The graphical model that would cor-

respond to this configuration is depicted in fig. 4.1, among the major issues with

this type of model, is that often they do not reuse previous computations when

evaluating an 5 (>≤C , 0≤C) and that the observations have to be reconstructed to

roll out a sequence.

54

f3f2f1 fH+1

o1 o2 o3 oH+1

a1 a2 aH. . .

. . .

. . .

Figure 4.1: A graphical representation of an autoregressive model. The diamond-shaped
nodes and the circles indicate deterministic functions and random variables respectively.

4.2.2 Deterministic State Space Model

Given some of the constraints of the vanilla autoregressive models, we could

consider an alternative approach to model the sequential time series. The SSM

(Kalman, 1960; Kalman and Bucy, 1961) invokes the notion of a latent or hidden

state (i.e. variable) that is assumed to capture the essential aspects from other

observed variables. From the point of view of world modelling this can be

framed as an agent that collects an observation from which it could infer a latent

state. This latent state will represent an abstraction compressing some of the

elements from the environmental observations. We can go a step further and

make the latent state compress not only the current observation but also the

history, working as a form of memory. In practice, we could parametrise a neural

network, such as an RNN, to recursively map (i.e. encode) in a deterministic

way the previous latent state and last observation to an updated latent state as

BC = 5 (BC−1, 0C−1) (Cho et al., 2014b). In fig 4.2. we illustrate this process. We

can observe that the latent state BC acts as a sufficient statistic from which we can

predict >C . In this manner, the state space model becomes less computationally

demanding because the observations do not have to be reconstructed as the state

55

s3s2s1 sH+1

o1 o2 o3 oH+1

a1 a2 aH. . .

. . .

. . .

Figure 4.2: Deterministic state space model. The deterministic diamond shapes nodes
represent hidden states such as those modelled by a recurrent neural network. The solid
and dashed lines indicate the generative and the inference processes respectively.

transitions necessary to simulate a sequence occur in the more compact latent

space.

4.2.3 Stochastic State Space Model

A different variant of the SSMs considers our interest in modelling the transition

distribution probabilistically to account for the uncertainty over a latent state

B. Effectively that means that instead of having BC+1 = 5 (BC , 0C) we now have a

distribution ? (BC+1 |BC , 0C) from where we can sample the next state BC+1. Accord-

ingly, as observed in fig. 4.3 if we were interested in predicting >C we would do

so through a hidden state BC , that is >C ∼ ? (>C |BC).

4.2.4 Recurrent State Space Model

Some empirical analyses have speculated about the tradeoffs between the de-

terministic and the stochastic SSM. Racanière et al. (2017) argued that while a

deterministic SSM cannot model joint uncertainties in time or space, the stochas-

tic SSM was limited to capturing it over pixels but not over time steps. Hafner

56

s3s2s1 sH+1

o1 o2 o3 oH+1

a1 a2 aH. . .

. . .

. . .

Figure 4.3: Stochastic state space model. Unlike in deterministic SSMs, the hidden state
B is represented by a random variable.

et al. (2019) provided additional support for this argument. They speculated

that due to the aleatoric nature of the stochastic SSM it was difficult to transport

information over several time steps. For the deterministic SSM they observed

that it could hold information over multiple time steps but it could not capture

multiple timelines and as a consequence, it could not learn. However some of

these conclusions have since been disproven, Lee et al. (2020) successfully imple-

mented a hierarchical stochastic SSM. The authors argued that by sampling from

the posterior as opposed to the prior, it was possible to control the sensitivity

during the propagation of the latent states. It could also be speculated that due to

the hierarchical structure of their model, the higher expressiveness increased the

capacity to capture more of the dynamics.

Another option to deal with the trade-offs between the stochastic and the deter-

ministic SSM is to integrate them into a single architecture (Hafner et al., 2019).

This is illustrated in fig. 4.4 where the latent state is composed by a deterministic

ℎ and a stochastic B component. This combination allows us to store information

from the past via the RNN while considering the different transitions that could

occur with the stochastic component, to learn to predict multiple alternative

57

h3h2h1 hH+1

s1 s2 s3 sH+1

a1 a2 aH

o1 o2 o3 oH+1

. . .

. . .

. . .

. . .

Figure 4.4: Recurrent stochastic state space model. This SSM incorporates deterministic
(ℎ) and stochastic (B) routes within the same architecture.

timelines. This variation is known as the Recurrent State Space Model (RSSM)

and forms the basis of the model-learning component in this chapter.

4.3 Learning a State Space Model

4.3.1 Dynamics and predictions

We are now in the position to describe a general strategy on how to learn a

forward model structured as an SSM. We can divide the problem into two parts,

one corresponding to learning how to represent the agent’s sensory inputs and

memory, that is the latent state, and a second sub-problem related to learning

the dynamics of the model to generate predictions. For the latter we require two

basic ingredients:

• Transition model ? (BC+1 |BC , 0C): where B corresponds to a latent state. It helps

us to traverse forward in time to reach the next latent state.

58

• Target model ? (~C |BC): where given the information contained in a latent

state B we can predict something of interest. This does not have to be

constrained to a target at the current time step ~C but could also be for

targets further in time (e.g. ? (~C+: |BC)). For the agents in this chapter we

are going to consider two target models:

– Observation model ? (>C |BC): as we will see below in the next section,

its role is to serve as the main supervision signal. During training

time, the architecture produces a reconstructed observation to compare

against the actual observation. Because the reconstructed observation

is conditioned on what the agent has learned to represent in B it is

going to be encouraged to capture essential elements from the original

observations.

– Reward model ? (AC |BC): the reward model provides an additional learn-

ing signal to help to represent relations between the observations,

actions, and rewards. It also fulfils a crucial role during planning where

the agent simulates a sequence of latent states. From the latent states,

the agent is then able to predict the potential rewards from executing

hypothetical action plans.

4.3.2 Representation

To learn an adequate representation B that captures useful Spatio-temporal pat-

terns it is necessary to consider the input sources that are available for information

extraction. In fig. 4.3 we illustrated a general design for the dynamics of the

model where we observed that at time C a latent state BC depends on the previous

BC−1, that transports information from the past, as well as the current observation

>C and the action 0C that lead to that observation. We could then learn a distribu-

tion ? (BC |BC−1, 0C−1, >C), also known as the filtering distribution, that specifies these

dependencies to infer BC .

59

4.3.3 Objective

Let us remember that our original interest is modelling ? (>C+1 |>≤C , 0≤C). General-

ising this distribution for future observations along a trajectory and considering

an SSM it can be factorised as:

? (>1:) |01:)) =
∫ ∏

? (BC |BC−1, 0C−1)? (>C |BC)3B1:) (4.1)

Where 1 :) indicates a sequence from 1 to) . There are two aspects to notice

here. We can train the model by performing maximum likelihood estimation,

however, the evaluation of the distribution is intractable and therefore we have

to approximate it. Second, a possible way to interpret the two parts, the represen-

tation, and the predictive part, is as an encoder-decoder architecture and more

concretely a sequential VAE. An option is then to maximise the Evidence Lower

Bound (ELBO) with variational methods to approximate the target distribution:

ln? (>1:) |01:)) ≥ �!�$ =

)∑
C=1

E@ [ln? (>C |BC)]−E@ [� ! [@(BC |>≤C , 0<C) | |? (BC |BC−1, 0C−1)]]

(4.2)

For a review on variational inference we refer the reader to appendix A.3

4.3.4 Training details

Thus far we have described a very general overview of the components and the

learning objective to acquire a forward model structured as an SSM. There are

multiple valid practical specifications and design choices to decide on how to

train it. The first point to emphasise here is that the type of SSM we are going

to be training is the RSSM. Therefore as we observed in fig. 4.4 we have to split

the latent state into a stochastic and deterministic component, that is {B, ℎ}. We

60

have discussed in the previous sections that in non-hierarchical architectures the

deterministic component tends to be more involved in the storage and transport

of information across time steps. An option for implementing this deterministic

component is with an RNN (Cho et al., 2014b). We use a Gated Recurrent

Unit (GRU) (Cho et al., 2014a) but in principle, any module capable of handling

long-range context dependencies could be used. For instance, an architecture

similar to ours has been recently proposed where the deterministic component is

implemented with a transformer (Chen et al., 2022). For our architecture then

we end up with the following major components:

• Encoder @q (BC |ℎC , >C , 0C)

• Deterministic transition ℎC = GRU\ (ℎC−1, BC−1, 0C−1)

• Stochastic transition ?\ (BC |ℎC)

• Observation model ?_ (>C |ℎC , BC)

• Reward model ?b (AC+1 |ℎC , BC , 0C)

This is similar to the RSSM proposed in (Hafner et al., 2019). Note, however,

that for the reward model we do not predict the reward obtained when a given

latent state IC = {ℎC , BC } is reached, that is ? (AC |ℎC , BC). Instead we found an increase

in performance and stability if we predicted the reward that could be obtained

from this latent state when executing action 0C , namely ? (AC+1 |ℎC , BC , 0C).

The encoder and the observation model (i.e. decoder) correspond to Gaussian

distributions with mean and variance parameterised by a convolutional and a

deconvolutional neural network respectively. The transition and the reward

models are also Gaussian distributions with their mean parameterised by fully

connected feed-forward neural networks. Their scale is given by an identity

covariance and unit variance respectively. A more detailed description of the

architecture is found in Appendix G.

61

Algorithm 5: SSM Agent
Input: Transition model, ? (BC |ℎC−1, BC−1, 0C−1), observation model ? (>C |ℎC , BC),

reward model ? (AC |ℎC , BC , 0C), encoder @
Initialise: Replay buffer �, parameters \ , latent IC , ℎC , BC

1 for C . . .) do
2 Compute ℎC = 5 (ℎC−1, BC−1, 0C−1);
3 Construct and sample BC ∼ @(BC |ℎC , >C);
4 IC :) = [ℎC , BC];
5 Act 0C ∼ RHE(IC , ? (BC |BC−1, BC−1, 0C−1), ? (AC |ℎC , BC , 0C)));
6 Observe >C+1, AC ∼ ? (BC+1, AC |BC , 0C);
7 Append � ← � ∪ {B′, 0, A };
8 if done then
9 4=E .A4B4C ();

10 end
11 for 8 . . . �?>2ℎB do
12 Sample trajectories >C :) , 0C−1:)−1, AC :) ∼ �;
13 Compute ℎC :) = 5 (ℎC−1:)−1, BC−1:)−1, 0C−1:)−1);
14 Construct and sample BC :) ∼ ? (BC :) |ℎC :));
15 IC :) = [ℎC :) , BC :)];
16 Construct ? (>C :) |BC :) , ℎC :));
17 Construct ? (AC :) |BC :) , ℎC :));
18 Update model by computing loss L(\) from equation 4.2;
19 end
20 end

62

4.4 Planning with State Space Models

We now describe our main contribution. For the planning mechanics, we

integrate the RSSM with RHE to generate, evaluate and select action sequences

that are predicted to be the most favourable. The planner uses the forward model

even during its earliest learning stages (before it has reached any level of accuracy)

which establishes a bidirectional relationship. The planner is contingent on the

reliability of the forward model to evaluate potential plans and the RSSM depends

on the observations that are gathered by the actions mandated by the planner to

improve itself.

Let us be more concrete about how RHE works in conjunction with the RSSM.

RHE starts by either generating an action sequence (0C , ..., 0C+�) of length � or

reusing a previously generated sequence and applying the shift-bu�er technique

by shifting the sequence one step to the left and appending a new random

action at the end of it. Here we assume that all actions are sampled uniformly.

The sequence is used as the seed from where other # − 1 action sequences are

generated via mutation. So far, this is the same familiar RHE process used in the

other chapter, however, once RHE has generated the # candidate it requires

a starting observation or state to execute the action sequences. At this stage, it

is where the RSSM generates a latent state IC = {BC , ℎC } which is then cloned

times, one per each candidate sequence. The copies of the latent state and

the action sequences are then passed on to the RSSM machinery which starts

simulating in the compact latent space # trajectories in parallel according to the

action plans, that is ℎC+1:�+1 = 5 (ℎC :C+� , BC :C+� , 0C :C+�) and BC+1:�+1 ∼ ? (BC+1:� |ℎC+1:�)

to concatenate them as I. The RSSM gathers these latent state trajectories

(IC , ...IC+�+1)= which then can be evaluated by RHE according to one or multiple

criteria. For the agents considered in this chapter, RHE selects the plan with

the highest predicted return by invoking the SSM reward model AC+1:�+1 ∼

? (AC+1:�+1 |ℎC :� , BC :� , 0C :�) and getting the cumulative sum of rewards. The RHE

63

Figure 4.5: The integration of a recurrent state space model (RSSM) with Rolling
Horizon Evolution for online planning. a) The process starts by sampling a seed action
sequence. b) # candidate action sequences are obtained from the application of genetic
operators to the original action sequence. c) Each of the action sequences is used within
the RSSM to simulate hypothetical trajectories and gather their corresponding rewards to
evaluate them. d) From the top-ranked action sequence, we take the first action 01 which
is then executed by the agent in its actual environment.

objective can be expressed as

c (ℎ, B) = argmax
0C :C+� ∈P

E
[
A (ℎC , BC , 0C) +

�∑
8=C+1

A (ℎ̂C+8, B̂C+8, 0C+8)
]

(4.3)

Although at the level of the implementation the RSSM does not make a distinction

between actual and simulated latent states, we make this distinction explicitly in

the expression for clarity. We can observe that for the first step the reward is

evaluated on the actual latent state IC = {ℎC , BC } and on the simulated latent states

ÎC = {ℎ̂C , B̂C } for the rest of trajectory. Fig. 4.5 graphically summarises the general

idea behind the integration process between RHE and the RSSM.

64

Algorithm 6: RHE-SSM planner
Input: Latent ℎC , BC , Transition model, ? (BC |ℎC−1, BC−1, 0C−1), reward model

? (AC |ℎC , BC , 0C), number of actions �, sequence length T, population
size P, mutation rate `

Output: Best action sequence c14BC
Initialise: Matrix of action sequences c , last used c14BC

1 if not shift bu�er then
2 c ← 0C , . . . , 0T ∼ �0C (�);
3 else
4 Shift last used c14BC to the left and add 0T ∼ �0C (�) at the end of the

sequence;
5 end
6 Tile c14BC in c ;
7 c ←Mutate c with rate `;
/* Simulate trajectory from ℎC , BC */

8 Compute ℎC+1:)+1 = 5 (ℎC , BC , c);
9 Construct and sample BC+1:)+1 ∼ ? (BC+1:) |ℎC+1:));
10 Sample AC :)+1 ∼ ? (AC :)+1 |ℎC :)+1, BC :)+1, c);
11 Evaluate sequences '(c) = ∑)+1

C AC ;
12 Select best action sequence c14BC ←<0Gc'(c);

4.5 Experiments

4.5.1 Environment

We test the ability of an agent to learn and plan with an approximate forward

model. Fig. 4.6 shows the environment, a top-down grid-based navigation task

designed in Griddly (Bamford et al., 2020). In the frame, the agent is represented

by the mouse and its opponent by the spider. The grid contains two absorbing

cells, the cheese which acts as the goal, and the hole as a trap. Both cells terminate

the task but if the agent reaches the goal it receives a positive reward of +1, on

the other hand, if the agent gets to the hole the reward is −1. The agent also

receives a reward of −1 if it comes into contact with the spider and the task

terminates. The task has a time limit of 500 time steps if it is reached the task

terminates and the agent gets a reward of 0. We conduct four variations of

65

Figure 4.6: The environment. There are two observation modalities. On the left, the
observations gathered by an agent cover the whole grid and correspond to 7 × 7 cells
(168 × 168 RGB pixels). On the right, the agent only gets a local view of its immediate
3 × 3 cell neighbourhood (28 × 28 RGB pixels).

the experiment to analyse the performance of the agent along two important

dimensions that emphasise aspects of partial observability. The first of them is an

element of stochasticity provided by the adversarial spider which moves randomly

throughout the grid. The other limits the observations that the agent has access

to. In this case, whether the agent receives global observations that cover the

whole grid or if they are only about their immediate surroundings. Thus the

agent needs to construct a model that integrates and preserves information across

time steps and that allows it to act under uncertain situations.

The environment is a 7 × 7 grid that corresponds to 168 × 168 RGB pixels. For

the tasks where the agent has visual access to the whole grid, it receives a rescaled

raw pixel observation of size 3 × 64 × 64 down from the original 3 × 168 × 168.

If the agent only has a partial view of the task it receives observations of size

3 × 28 × 28 which correspond to its surrounding 3 × 3 cell neighbourhood (fig.

4.6 right).

66

0 100 200 300 400 500
Episode

−1.0

−0.5

0.0

0.5

1.0
R

et
ur

n
With global observations

0 100 200 300 400 500
Episode

With local observations

Deterministic Stochastic

Figure 4.7: The performance in the task over 500 episodes. The plots show mean
and standard deviation over three seeds for deterministic and stochastic variations of the
environment. Left: Global observations. Right: Local observations.

4.5.2 Results

Deterministic variations. First, we describe the results in the deterministic

versions of the task where the random opponent is not included. The performance

of the agent is similar regardless of whether the agent had a global view of the

environment or only of its local neighbourhood (fig. 4.7). Nonetheless, there are

some differences concerning the number of steps it takes the agent to achieve

the goal. It was noticed that when the agent constructs a forward model only

based on local observations it is more efficient as it reaches the goal in fewer steps.

As training progresses the agent with a global view of the environment starts

reducing the number of steps to reach the goal and they become comparable.

To analyse the behaviour of the agent from a qualitative perspective we also

recorded videos tracking its interaction with the environment, and the simulated

reconstruction given its current world model. In fig. 4.8 for example, it shows

on the left frame the ground truth and on the right, the reconstruction extracted

from the agent’s forward model. We can appreciate that although the general

visual structure of the task in the reconstructed frame matches the ground truth,

it does not recreate the current location of the agent. This was a common theme

early on during training, the agent was able to solve the task before it could learn

67

Figure 4.8: Examples of ground truth (left column) and reconstructed (right column)
frames. Top: The agent can solve the task before an accurate visual reconstruction has
been learned. Middle: Another example of the agent performing and modelling the task.
In this case, the spider acts as a stochastic element in the environment. Bottom: An agent’s
reconstruction of its local neighbourhood.

to construct a model accurately.

Stochastic variations. Unlike in the deterministic version of the task, there

were some palpable differences in the performance trends when the environment

included elements of stochasticity. As we can observe in fig. 5.3 the agent ex-

hibited a higher initial responsiveness if it only had access to local observations.

Before it reached 100 episodes the agent had achieved a performance that was

equivalent to an agent that had been trained for 300 episodes with global obser-

vations. Visualising again the episode recordings of the agents it was possible

68

to observe some behavioural patterns that suggested some interpretations of the

results. For instance, when the agent collects global observations it was noticed

that during the earlier stages of training it tends to favour plans that either keep it

close to its starting position or that move in cyclical vertical patterns that maintain

it behind the blocks. One could speculate then that the first interactions with

the environment influenced the agent to develop a preference for conservative

plans that could help it to avoid its adversary. Given that this occurs when the

agent is just starting to construct a world model and that the opponent does

not remain in a fixed position, the agent does not possess reliable assessments of

where the opponent might be and those plans maximise the likelihood of not

receiving a negative reward. However, even if the dynamics of the opponent

are stochastic they still obey physical constraints, and thus as training progresses

we observed that the agent learns to reconstruct the potential location of the

opponent with a degree of reliability. Even when the predictions of the model

about the opponent’s moves do not match, the agent can recalibrate it by gath-

ering new evidence. It is conceivable to suppose that once the forward model

has learned to capture more of the potential effects of moving in other directions

that the agent is now in a position to learn how to explore further and eventually

reach the goal. We also speculate that when the agent only receives observations

of its immediate neighbourhood it does not have to account for the dynamics

of the opponent as it is not present in most of its observations. It could be that

because of this reason it can operate from the beginning with a larger variety

of plans as most of them do not necessarily lead to negative outcomes. Despite

this as the results show when the agent gathers global observations it achieves

a slightly better performance in the long term. Given the experimental setup

presented here, a potential explanation for this is that even though learning a

global forward model is more demanding it also affords more flexibility as it has

learned to capture more complex dynamics. Meanwhile, an agent with a local

forward model might not have necessarily learned to deal with all the potential

69

contingencies.

4.6 Discussion
In this chapter, we have adopted a different strategy to acquire and plan with an

approximate forward model. We leveraged recent approaches in model-based

reinforcement learning that frame the problem as state space modelling. We

have extended such approaches by bridging the gap that exists in the integration

between RL and consolidated online planning algorithms in discrete action spaces,

such as RHE. Given that at the core of an SSM is an inherent temporal structure,

it provides a formalism to deal with dynamic time series such as the sequential

observations and actions of an agent (1) interacting with an environment or (2)

simulating this interaction. Modelling the problem in this manner confers us

with several advantages. For learning and inference, it enables efficient use of the

rich stream of temporal information that exists in a sequence which can result in

more accurate state estimation. An agent with a higher capacity to learn from

temporal correlations could infer more reliably the current configuration of a

system such as its location in space or its relation to other entities. For planning,

if the agent has been trained with an architecture that explicitly replicates a

sequential dynamical system it might simulate more consistent and coherent

predictions across time.

The other central tenet of an SSM is the direct separation of observed and

unobserved variables. The unobserved, hidden, or latent variables admit different

interpretations. For world modelling in RL, a natural interpretation emerges if

we consider that to summarise an image many of the details contained within

it are redundant or not strictly necessary. Moreover, this interpretation also

extends temporally to sequences as the latent variables may capture abstract

notions of the effects of actions in the environment. For instance, as we noted in

the experiments, an agent could learn representations that seemed to prioritise

70

the encoding of relations that would allow it to get to or avoid certain locations

on the grid depending on whether they were favourable or unfavourable, but

this occurred before the representation could capture it at a discernible graphical

level (fig. 4.8 top). That is, the agent did not have to wait to learn to reconstruct

itself to be able to navigate reliably toward a goal. These findings will become

more significant in chapter 6.

The explicit decomposition of the space into observed and latent variables can

also offer other benefits that extend from the conceptual into the practical realm.

Online planning algorithms such as RHE are constrained by time and computa-

tional resources. They depend on the search and evaluation of a large number

of plans to find an appropriate action sequence, the fact that the simulation of

trajectories occurs in a more compact latent state is significant, because it allows

the evaluation of larger or longer action sequences. Another practical aspect that

is not exclusive to SSMs but that it certainly favours is its modularity. When we

invoke the SSM to generate sequences of latent states, these sequences can be

reused to derive multiple evaluation criteria (e.g. auxiliary tasks, intrinsic signals).

We do not need to know beforehand what we are interested in predicting because

these predictions remain independent of the beliefs produced by the SSM.

For the story we are developing in the thesis, it is also worth to point out other sig-

nificant differences with respect to the Bootstrapped Transition Functions (BTF)

architectures from the previous chapter. While in both, we model probabilis-

tically the state transitions, there are important distinctions in the way this is

approached. BTFs are essentially deterministic. However, by training multiple

heads we can treat each prediction as if they were samples from an underlying

distribution of neural network parameters. In the case of the SSMs the transition

distribution is modelled explicitly. That is, the neural network learns the parame-

ters that specify this transition distribution, from which then we can construct

the distribution and produce # number of state samples.

71

The tasks in this chapter provide a reward signal onlywhen the episode terminates,

either because the agent reaches the goal or because it fails the task by falling

into the trap or by getting caught by the adversarial element. From the results

we obtained, this sparsity was not an issue because the grid has a relatively

small size and does not require exploration strategies or more sophisticated

planning evaluations. Ranking plans according to their predictive return was

enough to achieve a good performance. However as we continue to examine

the architectures in more complex scenarios such as those with larger grids or

more adversarial elements, we will assess whether this remains a valid evaluation

criterion, and if not, what other criteria we could use.

72

5 PlanningwithModels of Value Func-

tions

5.1 Introduction
In the past chapter, the behaviour of the agents that we considered was guided by

the predicted return that could be obtained along a hypothetical trajectory. For

that effect, Rolling Horizon Evolution (RHE) in conjunction with the Recurrent

State Space Model (RSSM) evaluated the quality of the action sequences that it

had generated by assigning them a score dependent on the latent states that it

traverses. The scores consisted of the cumulative predicted rewards. An issue that

arises with this approach is that the evaluation is strictly limited by the length of a

sequence. Consider for example the task from that chapter. It is essentially a task

with sparse rewards where an agent only observes them if it reaches an absorbing

state. Although this might not be an issue in a small grid let us imagine a larger

grid. If the sequences generated by the planner are not as well directed or long

enough to contain a path that reaches one of those absorbing states then two

paths could be evaluated and treated as equivalent. This even if a state with an

associated high or low reward follows immediately after these paths end. There

are other different instances where an evaluation only based on the return might

be problematic. Consider now the case of a non-sparse task such as Minipacman.

An action sequence that leads the agent toward a string of edible cells, but with an

incoming ghost, could be deemed more favourably than another plan that directs

the agent through emptier corridors if the simulated trajectory is truncated before

73

the hypothetical encounter with the ghost. Thus preferably we want our planner

to be able to assign scores not only based on the predictions of what could occur

when an agent follows a trajectory but also an estimate of what could come

beyond.

From optimal control and Reinforcement Learning (RL), the Bellman equation

can recursively compute the value of a state, decomposing it into its expected

immediate utility and the value of the next state. If an agent establishes these

recursive relations then it is possible to form an estimate of what could occur

when it reaches a state. Previously mentioned research (Hafner et al., 2020;

Lee et al., 2020; Hafner et al., 2022), adopted an strategy reminiscent of classic

model-based RL approaches such as Dyna-Q (Sutton, 1990, 1991). The agent

uses the learned model to generate training sequences and learn to compute

value functions and policy estimates. During execution time then the agent acts

according to those estimates.

Here we take a different perspective to the problem of the estimation of the value

functions. The main insight we propose is to treat the estimates produced by

a value function as sequential time series in the same way we have done in the

previous chapter with the observations, actions, rewards or states. In principle,

if we can integrate them as part of a State Space Model (SSM) then we could

produce a prediction on-demand of this estimate and simulate it along a trajectory.

This is in contrast to the referenced architectures where the models are only

used to compute more robust value and policy estimates but not to simulate plans

during the actual decision-making stage.

Our main objective will be then to determine whether value estimation could

mitigate some of the limitations imposed by plans evaluated exclusively on re-

wards. Our approach proposes (1) to learn a forward model of the value function

within the SSM, and (2) provide RHE with the possibility to evaluate plans with

rewards or Q-value estimates.

74

h3h2h1 hH+1

s1 s2 s3 sH+1

a1 a2 aH

o1

q1

o2

q2

o3

q3

oH+1

qH+1

. . .

. . .

. . .

. . .

Figure 5.1: Structure of the state space model with Q-values as observations. At each
time step, the agent estimates potential Q-values which then can be treated as if they were
also observations. The SSM learns the Q-values and can simulate them during planning.

5.2 Models of State Value Functions

We take as a starting point the general RSSM structure described in section

4.2.4, in which the latent state is supported by a stochastic and a deterministic

component. Each time the agent emits an action and transitions to a new state it

gathers two measurements, the visual observation, and the reward. To model

the dynamics we learn the transition model ? (IC+1 |IC , 0C) and the observation

model ? (>C |IC). The observation model, as before, serves as a target model and

provides a self-supervised signal by comparing the predictions against the actual

observations. Then we can make the following choice. We can try to learn a

reward model ? (AC+1 |IC , 0C) similar to the previous chapter and learn state-value

estimates, or instead, we can avoid modelling the reward dynamics altogether.

In that case, the reward is only used as an ephemeral piece of information to

75

form a subjective estimate of the value of a state-action pair. Accordingly, for

this second RSSM variation we have the following components:

• Encoder 4q (BC |ℎC , >C , 0C)

• Deterministic transition ℎC = GRU\ (ℎC−1, BC−1, 0C−1)

• Stochastic transition ?\ (BC |ℎC)

• Observation model ?_ (>C |ℎC , BC)

• Q-value model ?b (@C |ℎC , BC , 0C)

Wemodel the dynamics of the Q-values to estimate how beneficial or detrimental

would be to emit action 0C in state IC . Other estimates are also possible, for instance,

another option is to model the state value function + (IC). However, we found

that specifying explicitly the action provided more robust and useful estimates for

planning. Also note that we have slightly modified the notation of the encoder

from @q (BC |ℎC , >C , 0C) to 4q (BC |ℎC , >C , 0C) to avoid confusion with a specific Q-value

@. Figure 5.1 illustrates graphically the structure of this SSM. For more details

about the architecture and the hyperparameter specification we refer the reader

to Appendix G.

5.2.1 State Value Estimation

To learn to quantify the Q-values of state-action pairs we first start by defining

two Gaussian distributions to act as the Q estimators, with their mean param-

eterised by fully connected feed-forward neural networks and unit variance.

As it is common in the literature, one of these estimators is used to calculate

the target values and is only modified gradually via soft updates (i.e. Polyak

update). To obtain the targets @T we sample chunks of trajectories from the buffer

(IC , 0C , AC+1, ..., I)+1, 0)+1, A)+2)= ∼ � and compute the following expression:

@T (IC :) , 0C :)) = AC+1:)+1 + W argmax
0C+1:)+1

@T (IC+1:)+1, .) (5.1)

76

We also obtain the parameters of the predictiveQ-value distribution ?b (& |IC :) , 0C :))

and then as we need to fit it to the target Q-values wemaximise the log-likelihood,

max
b

ln?b (@TC :) |IC :) , 0C :)) (5.2)

Algorithm 7: QSSM Agent
Input: Transition model, ? (BC |ℎC−1, BC−1, 0C−1), observation model ? (>C |ℎC , BC),

reward model ? (AC |ℎC , BC , 0C), q-value model ? (@C |ℎC , BC , 0C), encoder @
Initialise: Replay buffer �, parameters \ , latent IC , ℎC , BC

1 for C . . .) do
2 Compute ℎC = 5 (ℎC−1, BC−1, 0C−1);
3 Construct and sample BC ∼ @(BC |ℎC , >C);
4 IC :) = [ℎC , BC];
5 Act 0C ∼ RHE(IC , ? (BC |BC−1, BC−1, 0C−1), ? (AC |ℎC , BC , 0C), ? (@C |ℎC , BC , 0C)));
6 Observe >C+1, AC ∼ ? (BC+1, AC |BC , 0C);
7 Append � ← � ∪ {B′, 0, A };
8 if done then
9 4=E .A4B4C ();

10 end
11 for 8 . . . �?>2ℎB do
12 Sample trajectories >C :) , 0C−1:)−1, AC :) ∼ �;
13 Compute ℎC :) = 5 (ℎC−1:)−1, BC−1:)−1, 0C−1:)−1);
14 Construct and sample BC :) ∼ ? (BC :) |ℎC :));
15 IC :) = [ℎC :) , BC :)];
16 Construct ? (>C :) |BC :) , ℎC :));
17 Construct ? (AC :) |BC :) , ℎC :));
18 Update perceptual model by computing loss L(\) from equation 4.2;
19 Construct ? (@C :)−1 |BC :)−1, ℎC :)−1, 0C :)−1);
20 Construct and sample @C+1:) ∼ ? (@C+1:) |BC+1:) , ℎC+1:));
21 Compute @(IC :)−1, 0C :)−1) = AC+1:) + W argmax0 @(IC+1:) , 0C+1:));
22 Update @-value model by computing loss L(\) from equation 5.2;
23 end
24 end

77

5.3 Plan evaluation with State Value Functions

The integration between the SSM and RHE as a planning algorithm follows

the same basic mechanics as those described in section 4.4. RHE generates an

initial action sequence (0C , ..., 0C+�) of size � which is mutated to generate other

− 1 sequences. Then, as exemplified in fig. 4.5, RHE invokes the SSM to

simulate # rollouts starting from the current latent state IC = {ℎC , BC } using each

of the different action sequences to sample ℎC+1:�+1 = 5 (ℎC :C+� , BC :C+� , 0C :C+�) and

BC+1:�+1 ∼ ? (BC+1:� |ℎC+1:�). The crucial difference is that once we have gathered

the rollouts we can call the Q-value model to sample values associated with the

latent state-action pairs. We briefly advanced that we have a choice on how to

use the Q-value estimates once we have learned their dynamics. We can follow

a more conventional approach and estimate the n-step return on the simulated

latent trajectory. This implies predicting the rewards up to the last latent state

and then sampling a Q-value for the last latent state to account for the expected

rewards beyond the horizon. The RHE objective can then be expressed as,

c (ℎ, B) = argmax
0C :C+� ∈P

E
[
A (ℎC , BC , 0C) +

(�−1∑
8=C+1

A (ℎ̂8, B̂8, 08)
)
+ @(ℎ̂� , B̂� , 0�)

]
(5.3)

where IC = {ℎC , BC } are the actual starting latent states and ÎC = {ℎ̂C+8, B̂C+8} are the

simulated latent states in the rollout.

For the second SSM variation, we do not model the reward dynamics. Instead,

the RHE policy c samples the Q-values for all steps of the trajectory @C :� ∼

? (@C :� |ℎC :� , BC :� , 0C :�). The RHE objective can then be rewritten as,

c (ℎ, B) = argmax
0C :C+� ∈P

E
[
@(ℎC , BC , 0C) +

�∑
8=C+1

@(ℎ̂C+8, B̂C+8, 0C+8)
]

(5.4)

We are going to refer to the first objective as QSSM-RQ and to the second

objective as QSSM-Q. We will see in the experimental results that there might

78

be circumstances where it can be advantageous to choose one objective over

the other. The state-action value is interesting in itself, despite that it can be

vastly inaccurate and suffers from overestimation it is a much richer signal than

the reward. It is an aggregate that encapsulates information about the possible

paths that can be taken from a state. Thus we could treat it as if it was a potential

function for the vector field comprised of all latent state-action pairs.

There is another interpretation that we could give to this QSSM-Q objective.

Since RHE is an open-loop planner, it gives rise to what are essentially uncon-

trolled processes where actions are randomly chosen and disconnected from each

other. Given this independence, by estimating the Q-value for each state-action

pair we can accordingly treat each step as a separate decision-making problem,

and as if the quality of the decision was being analysed by an external observer.

79

Algorithm 8: RHE-QSSM planner
Input: Latent ℎC , BC , Transition model, ? (BC |ℎC−1, BC−1, 0C−1), reward model

? (AC |ℎC , BC , 0C), q-value model ? (@C |ℎC , BC , 0C), number of actions �,
sequence length T, population size P, mutation rate `

Output: Best action sequence c14BC
Initialise: Matrix of action sequences c , last used c14BC

1 if not shift bu�er then
2 c ← 0C , . . . , 0T ∼ �0C (�);
3 else
4 Shift last used c14BC to the left and add 0T ∼ �0C (�) at the end of the

sequence;
5 end
6 Tile c14BC in c ;
7 c ←Mutate c with rate `;
/* Simulate trajectory from ℎC , BC */

8 Compute ℎC+1:)+1 = 5 (ℎC , BC , c);
9 Construct and sample BC+1:)+1 ∼ ? (BC+1:) |ℎC+1:));
10 if evaluate with rewards then
11 Sample AC :)+1 ∼ ? (AC :)+1 |ℎC :)+1, BC :)+1, c);
12 Evaluate sequences '(c) = ∑)+1

C AC ;
13 else if evaluate with q-values then
14 Sample @C :)+1 ∼ ? (@C :)+1 |ℎC :)+1, BC :)+1, c);
15 Evaluate sequences '(c) = ∑)+1

C @C ;
16 else
17 Sample AC :) ∼ ? (AC :) |ℎC :) , BC :) , c);
18 Sample @)+1 ∼ ? (@)+1 |ℎ)+1, B)+1, c);
19 Evaluate sequences '(c) = ∑)

C AC + @)+1;
20 end
21 Select best action sequence c14BC ←<0Gc'(c);

80

5.4 Experiments

5.4.1 Environment

We compare the performance between agents planning with Q-value models

and those with reward models in two environments. The first is Minipacman as

presented in chapter 3. The second is based on the classic four-room environment

and will be described below. We create a wrapper for Minipacman to pass to the

agent the raw pixel observations instead of cell categories. This implies that the

agent receives 3 × 64 × 64 observations instead of the 3 × 15 × 19 observations

that the error-correcting agents from chapter 3 receive. We keep the same rules

and rewards that were also described in that chapter.

For the second environment, we design a 13 × 13 cell grid based on the classic

four-room environment. For the moment we only consider our agents and in

the next chapter, we will extend our analysis to compare them against Dreamer

v2 (Hafner et al., 2020) and MuZero (Schrittwieser et al., 2020). There are four

different variations of the task that we will consider:

• Standard four-room: this is the classic formulation where an agent (mouse)

is located in one of the rooms and must attempt to navigate to a different

room to reach a goal indicated by the cheese. If the agent reaches the goal

it receives a reward of +1.

• Stochastic adversary four-room: in this variation, we add an adversarial

element (green snake) located initially in one of the other rooms, as shown

in fig. 5.2b. This element moves randomly through the grid. If the agent

encounters it, it receives a reward of −1.

• A* adversary four-room: similar to the previous variation, this environment

includes an adversarial element (spider in fig. 5.2c). Instead of moving

randomly, the adversarial element finds the shortest path via the A* search

algorithm to try to intercept the agent.

81

• Two adversary four-room: the last and most challenging variation includes

the two adversarial elements (fig. 5.2d).

The grid corresponds to a raw pixel observation of size 3 × 312 × 312 rescaled to

3 × 64 × 64.

5.4.2 Results

Four-Room tasks

We tested three different agents in each of the tasks. The first of those is the

agent from the previous chapter which evaluates the candidate plans according

to a sum of rewards along the trajectory. We will refer to this agent as SSM-R.

The second agent (QSSM-RQ), takes the sum of the rewards in a sequence up to

the last step, where it obtains a Q-value to account for the expected future sum

of rewards beyond the planning horizon. As it was mentioned earlier, it can be

considered that this a more common way to calculate the expected return. The

third agent (QSSM-Q) computes a simulated Q-value at each step, gets their

sum uses it to evaluate the sequence.

As can be observed in fig. 5.3 (top left), all agents become proficient without

major issues on the first level. The QSSM-Q agent takes slightly more episodes

to fully become proficient in the task. This might be because, in contrast to the

rewards, the Q-values are more challenging to learn and require stabilisation

techniques such as the use of a Q-target network. For the second level, we start

to appreciate the advantage that computing an estimate could have for an agent.

The two agents that employ simulated Q-values (QSSM-Q and QSSM-RQ)

start to consistently solve the task before they reach 400 episodes. Meanwhile,

the SSM-R agent, using only simulated rewards to select its plan, drifts around

0 return. This is due to a combination of the three possible outcomes, either

achieving the goal, running out of time, or getting intercepted by the stochastic

agent. Because this agent has a weaker signal some of its interactions with the

82

(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 5.2: Four-Room environment levels. Level 1: Classic formulation. The agent
(mouse) has to reach the goal located in one of the other rooms (cheese). Level 2: It
includes an adversarial stochastic element (green snake) that moves randomly throughout
the grid. If the agent collides with it, it receives a reward of −1. Level 3: In this level, the
adversarial element moves purposely toward the agent, as it plans its moves via the A*
search algorithm. Level 4: Both adversarial elements are included in the grid.

83

0 200 400 600 800 1000
−1.0

−0.5

0.0

0.5

1.0

R
et

ur
n

Level 1

0 200 400 600 800 1000

Level 2

0 200 400 600 800 1000
Episode

−1.0

−0.5

0.0

0.5

1.0

R
et

ur
n

Level 3

0 200 400 600 800 1000
Episode

Level 4

Rewards + Q-value Q-values Rewards

Figure 5.3: The results show the performance of the agents in each level across 1000
episodes. We compare three di�erent plan evaluation criteria: (1) sum of rewards along
the trajectory (SSM-R), (2) Q-value in the last plan step plus rewards in the steps
preceding it (QSSM-RQ), and (3) sum of Q-values along the trajectory (QSSM-Q).

environment may lead to an inefficient exploration of the environment and it

takes longer to gather enough evidence to facilitate learning where is the goal.

The agent eventually starts to improve and increases its return, however, this

occurs until the last 200 episodes.

For levels 3 and 4 that include the A* adversary, the differences between the

QSSM-RQ agent and the other two become more significant. For instance in

fig. 5.3 (bottom left) that corresponds to level 3, the Q-values agent exhibits

a gradually increasing trend. By the final episodes, the agent has achieved

proficiency in the task that is near the maximum on average. The QSSM-RQ

agent also showed initial steady progress however it then stabilises and does

not continue its progression. The decline in performance for all agents is more

significant in level 4 (5.3 bottom right). The full SSM-R and the QSSM-RQ

84

agents exhibited major complications to get to the goal or even surviving within

the specified time limit. By comparison, the QSSM-Q agent was able to do it

more frequently and showed and maintained a slight positive tendency towards

the end. Nonetheless, its performance was not consistent.

There was a noticeable qualitative behaviour that we observed when the agent

was in the presence of the A* adversary. During the early training episodes,

the agent learns first how to escape the adversary when it is detected within

proximity. The agent generally stays by the walls and performs an abrupt side

move in the same room where it is currently located and waits until it again

detects that the adversarial element is approximating. If the wall connects to

another room, then the agent moves to it and eventually leads to the discovery of

the goal.

Minipacman

Figure 5.4 shows the results in Minipacman over 1500 episodes. As a reference,

we have included in the plot an error-corrected BTF agent from chapter 3. It

corresponds to an agent with a planning horizon for five-time steps. There

are some differences in the schemes and in their training process that makes a

one-to-one comparison difficult to establish. We can, however, discuss aspects

that are positive about one approach or the other. For example, in the BTF

agents, the model learning and the planning stages are separated. The agent first

learns a forward model in 50,000 training steps before it is used for planning

and error-correction. This is to increase its stability. In contrast, in the SSM

agents, these processes are interleaved and do not need any pre-training stage.

It is important to note that the non error-corrected BTF and BTF+RPF agents

exhibit lower performance than the SSM agents. This demonstrates the benefits

of using information that is generated by its ensemble to boost the accuracy of

the predictions and the performance. Although this requires domain knowledge

regarding the specific elements that we can find in the environment. Thus an

obvious advantage of the SSM agents is their generality as they show competitive

85

0 200 400 600 800 1000 1200 1400
Episode

0

20

40

60

R
et

ur
n

Minipacman: Episodic Return

Q-values Reward + Q-value Rewards BTF

Figure 5.4: Episodic return in Minipacman. The comparison shows the SSM agent from
chapter 4 (SSM-R), and the two agents introduced in this chapter, Q-values (Q-values)
and RSSM-RQ (Reward + Q-value). We also include as a reference the error-corrected
BTF from chapter 3 that exhibited the best performance in this task.

performance despite their larger observation space (i.e. 3×15×19 vs. 3×64×64).

There was an important aspect we noticed when we analysed the videos to

observe the behaviour of the SSM agents when they tried to solve the task. If the

agent had already eaten the ghost and was in a part of the environment where

it had also already eaten the pills on both sides of the corridor it seemed to be

unable to go to sections where it had not. Without the pressure exerted by the

ghost or any incentives from pills in its surroundings, the agent tended to move

cyclically between a few cells. We illustrate an example of this situation in fig.

5.5. We concluded that this could occur because it becomes a sparse reward task.

Without pills in its proximity, the closest pills are either beyond its planning

horizon or what it can estimate with its current forward model. From this,

we can also draw some lessons from the BTF agents. Because the BTF agents

are ensemble-based each of its approximators generates its own, and potentially

divergent, prediction. This mechanism grants these agents an inherent drive

towards exploration, especially when the agent is in a region of the state space

that it has not experienced often. Thus it is interesting to speculate if extending

the SSM to an ensemble architecture could alleviate these issues that we observed.

86

If we focus exclusively on the SSM results we can also observe some differences

in performance. Unlike the results we obtained in the Four-Room tasks, in

Minipacman theQSSM-RQ agent, has the best performance. We can also observe

that even when the agent only models the rewards (SSM-R) its performance is

not hit as much as it is in some of the Four-Room tasks. A potential explanation

for this might be due to the different reward structures in the environments.

In the Four-Room tasks, the rewards are only encountered in absorbing states.

The agent observes the reward when it reaches the goal or when the adversary

intercepts it. In some episodes, it may not even encounter any reward if it

exceeds the time limit. Given all these circumstances, a trained reward model is

less informative and therefore less useful if almost every prediction is the same

regardless of the plan. The Q-value estimates provide a much richer guiding

signal. However, in Minipacman the rewards appear frequently and they have

different values. Thus it is possible to rank the plans in a more meaningful

manner than in the Four-Room tasks. In the particular comparison between

the QSSM-RQ and the QSSM-Q agents, we speculate that the former exhibits

a better performance because the rewards are learned over concrete and static

targets unlike the estimates of the Q-values. Therefore when reward observations

are frequent it could be a better strategy to rely on the reward estimates rather

than on a Q-value which is itself an estimate of the expected reward.

87

Figure 5.5: Scene of the Minipacman environment. The left frame shows the ground
truth and the right frame its reconstruction.

5.5 Discussion

In this chapter we have deviated from recent architectures such as Dreamer

(Hafner et al., 2020, 2022) or SLAC (Lee et al., 2020) in the way to approach

state-value estimation in a model-based setting. In those architectures the sim-

ulated trajectories generated by the approximate model are used to obtain a

policy. When the agent interacts with the actual environment the model is not

used to simulate trajectories and instead uses the learned policy. The SSM in

those cases is used to facilitate the acquisition of more robust behaviours and

representations. In contrast, in our model-based approach, the agent also uses the

SSM to communicate with a planning algorithm to look ahead via the simulated

rollouts. Rather than training a policy, RHE searches the policy space assisted

by the reward and the Q-value models. This is also precisely another important

difference. To accomplish this we can treat the Q-values as another observation

that can be simulated given a current latent state and action. Thus we learn the

parameters of the distribution that govern the Q-value transitions. To an extent,

this is similar to MuZero (Schrittwieser et al., 2020) which predicts a state value

and a policy during an Monte-Carlo Tree Search (MCTS) rollout. Here however

we model the Q-values contextualised as part of an SSM and in a probabilistic

88

setting.

Following from the previous chapter, our objective was to generalise the ar-

chitecture further by relaxing the dependency on the planning horizon. From

dynamic programming and the Bellman equation, computing a state-value func-

tion provides an estimation of the value of its current and remaining steps in a

sequence. In addition to propose an architecture to learn Q-value models as part

of the SSM, we presented two schemes to integrate the Q-value model as part

of the architecture. The first follows a more conventional approach where the

reward model is used up to the last state of the simulated trajectory and then the

Q-value model estimates the expected rewards beyond the planning horizon.

For the second, we remove the reward model and the agent simulates exclusively

Q-values for each step of the sequence. We noted that we could treat the action

sequence as a series of independent decisions. For example, if we consider the

results from the four-room tasks, we observed that if we take advantage of this

assumption and simulate a Q-value for each step of the trajectory, the agent

performs better than when the Q-value is considered only beyond the planning

horizon. However, the results we obtained were inconclusive and were not repli-

cated in Minipacman where the QSSM-RQ agent that combined rewards with

Q-values performed better. We speculate that this could be due to the differences

in the reward structures of the tasks. The four-room tasks are sparse and defined

by absorbing states. In these situations, the Q-value can be a more informative

signal for the planner, and evaluating them according to this criterion could

improve its ability for selecting among competing trajectories with seemingly

identical returns. In Minipacman rewards are obtained more frequently and thus

the model can learn concrete reward estimations and their difference depending

on the state. Thus evaluating the rollouts with rewards might produce less noisy

estimates of the actual value of trajectory. We note however, that adding the

Q-value at the end of the planning horizon proves to be crucial for increasing

the performance of the agent compared to planning only with rewards. This

89

appears to lend support to the conjecture raised in this chapter regarding the

shortcomings from planning only with rewards. Adding the predicted Q-value

at the end of the trajectory provides an estimate of future rewards beyond the

planning horizon.

Another salient point from the results obtained in Minipacman is the performance

of the error-corrected Bootstrapped Transition Functions (BTF) architecture

compared to the different SSMs. While it is true that the training regimes are

dissimilar (i.e. in BTFs we first train the model before it can be used for planning,

while in the SSMs learning and planning are intertwined), the difference in

performance was significant. We speculate that the type of representations

learned by the model may play a role. In the case of the BTFs there is more

domain knowledge involved in training the model. For example, the model

learns a grid of cells, where each cell represents a specific category or object.

This confers the model with a basic notion of what objects are present in the

task. Whereas in the SSMs the architectures learn from raw pixels without any

notion of the structure of the environment. However, this also raises the question

regarding how to improve the representations learned by the model? And what

should these representations refer to?

90

6 Planning in Latent State Spaces

with Non-reconstructive ForwardMod-

els

6.1 Introduction

In this thesis we have considered the situation in which an agent, when presented

with an input state and the opportunity to select an action, hypothesises about

the future by predicting the next states. We have assumed that the world model

the agent uses should be constructed based on being accurate about the future.

Thus far, we considered a strict interpretation of this objective. The agent

learned next step transitions by learning to predict the next observations either

directly, or indirectly through a latent state, which then are compared against

the actual observations. The crucial aspect of this process is that the target

predictions belong to the same space which gives rise to the actual observations.

There is a sensible justification for trying to proceed in this way. If a model-

free agent makes a decision based on the current input then a model-based

agent with the capacity to generate future potential inputs should, under ideal

conditions, select appropriate actions as if they were acting on inputs generated

by the environment. Nonetheless, as we have seen, those ideal conditions are

hardly attained. The environment may have complex dynamics and stochasticity,

or the architecture might not be expressive or powerful enough. This gives

91

rise to situations where an agent plans according to predicted inputs that may

not resemble those that come from the environment and thus render the plans

useless. While in chapter 3 we proposed error-correcting schemes to enhance the

accuracy of the predictions, in chapters 4 and 5 we examined how we can relax

these constraints and instead model directly the parameters of a distribution from

where to sample the predictions. This step also involved the inclusion of latent

variables, which alleviated the need to produce simulated observations during

the rollouts. We defined the latent representations to exist in a smaller space

compared to the pixel-space that defines all possible observations. This implied

that the latent representations were more compact and therefore reduced the error

surface because they compressed the original observation removing irrelevant

details and focusing on essential aspects that can favour their reconstruction.

Also, because the latent space can be considerably smaller than the observation

space it could be speculated that a large number of similar observations might

be mapped as neighbors to a small area in the latent space (Mnih et al., 2015).

If an actual observation is transformed into its latent counterpart and it differs

from the simulated representation that an agent was expecting to encounter, the

difference between them could be small enough that it does not affect in a major

way the behaviour of the agent.

Despite that the latent states in the Recurrent State Space Model (RSSM) are

enough for planning, and that there is no necessity to produce a trajectory in

pixel space or other raw spaces, it is important to recall the learning objective

expressed in equation 4.2, which we restate for clarity,

ln? (>1:) |01:)) ≥ �!�$ =

)∑
C=1

E@ [ln? (>C |BC)]−E@ [� ! [@(BC |>≤C , 0<C) | |? (BC |BC−1, 0C−1)]]

(6.1)

We can observe two things. First, it explicitly specifies that the goal is to ap-

92

proximate ? (>1:) |01:)). That is, we still model the observations and how the

observations occur given an action. Second, to approximate this distribution we

see that the first term on the right-hand side is a reconstruction term. Indeed, let

us remember that one of the components in the architecture was the observation

model and that its role during learning was to provide a log score of how well a

latent state BC reconstructs an observation >C . That is, we notice that the objectives

we have been implementing are still based on the notion of recreating external

observations.

Based on this, we could ask the question of what else

Beyond the technical obstacles to produce detailed forecasts of the dynamics

of an environment, in other fields such as psychology or neuroscience, there

have been studies suggesting that humans are not particularly reliable to recall

specific details (Wells et al., 2006; Drivdahl and Hyman, 2014; Nash et al., 2017).

Moreover, phenomena such attention processes may involve brain structures

sensitive to salient events marking them for additional processing and potential

control signals (Menon and Uddin, 2010), and for the detection of behaviourally

relevant stimuli dependent on current goals, needs or objectives (Corbetta and

Shulman, 2002). Some researchers have speculated that the role of perceptual

and representation mechanisms is to be sensitive to aspects of the world in terms

of what they afford to an agent and not necessarily to be descriptive about the

world (Gibson, 1979; Cisek, 2007; Pezzulo, 2008).

While unpacking these viewpoints in terms of world modelling is beyond our

current scope, and we certainly cannot contribute substantially to any debate,

there are several important ideas that can guide us to construct alternative training

objectives. If we assume that an agent filters out part of a signal to prioritise

certain bits of information over others. The question is what makes these pieces

of information different from the rest and how can they be identified? In prin-

ciple, these questions may seem to be contextual. What is valuable or relevant

93

may depend on the agent’s current objective. However, to start to tackle these

questions we can take a broader perspective and relate the insights provided

above to the original assumption about predicting the future. First, we start this

chapter by reviewing some notions of relevance that have been formulated with

information-theoretic principles. We then provide some justifications for why it

may be a reasonable starting point from where to derive a new training objective

for learning a forward model. The objective we propose, although predictive

between present and future, does not make reference to the future observations.

The concern ceases to be accurate about observations, and instead, the focus is on

being predictive about latent factors, which we assume already capture essential

features for the description of the environment. In addition, we also show how

to make this objective practical. Using noise contrastive estimation techniques

(van den Oord et al., 2019), we then approximate this objective to learn a model

and perform online planning.

6.2 A brief detour into information bottlenecks

Let us start first by building some intuition about the notion of relevance 1.

Consider G ∈ Xand ~ ∈ Y, where G may correspond to an input signal and ~ to a

quantity of interest. We are interested in howmuch information G carries about~,

or to put it in the language of information theory, the mutual information � (- ;.).

Here we assume that - and . are not independent and therefore � (- ;.) > 0. For

example, consider a scenario where a patient must be diagnosed with a health

condition. The patient has to undergo several studies with the expectation that

they are informative about her condition. If we considered all possible medical

studies - then it is maximally informative to determine what is the medical

1Note that we start by referring generically to relevance as information that is connected to a
concrete objective. This is not to be confused with the specific notion of relevant information
(Polani et al., 2001, 2006) that has been defined in the context of the perception-action loop as
the information necessary to achieve certain level of performance.

94

condition . . However we can split the measure space X into two subsets: U that

contains medical studies that are non-informative to determine the condition thus

� (* ;.) = 0, andZwhich on the other hand is informative about . so � (/ ;.) > 0.

That is, among all the possible medical studies - that a person could have, only a

subset measured by / offers information that is relevant to correctly determine

what is the medical condition . . Although we could opt for the larger space of

events measured by - to guarantee that it will be maximally predictive about .

there are several reasons why this might not be an appropriate option. A larger

data stream is constraining, it implies more processing costs, bandwidth, time

investment, or storage capacities among other factors. Thus it could be preferable

to aim to find / with mutual information � (/ ;.) as close as possible to � (- ;.).

The information bottleneck (Tishby et al., 2000) allows us to precisely formulate

this trade-off as a variational principle

min
? (I |G)
[� (/ ;-) − � (/ ;.)] (6.2)

The expression above indicates in the first term that wemust minimise the amount

of information / takes from X while simultaneously the second term tells us that

/ must maximise the ability to inform about . . The information bottleneck is

framed as an optimisation problem where we must learn a mapping from G to I,

here given by the conditional distribution. For simple problems, this mapping

can be iteratively calculated until convergence via a generalisation of the Blahut-

Arimoto algorithm (Tishby et al., 2000) and for more complex scenarios we can

learn it with a neural network (Alemi et al., 2016).

6.2.1 Predictive information

Let us contextualise further the problem of extracting from a time series infor-

mation relevant for completing a task. Assume an environment that emits a

data point at each time step G = (..., GC−) , ..., GC , GC+1, ..., GC+) , ...). A data point may

95

contain what the agent can sense (e.g. observation, reward), but also what is

non-perceptible to the agent. We split the sequence into two sub-sequences

for past G?0BC = (..., GC−) , ..., GC) and future G 5 DC = (GC+1, ..., GC+) , ...). Because the

environment has structure and correlations in space and between past and future,

G?0BC can be used to predict part of the future G 5 DC . The predictive information

(Bialek and Tishby, 1999; Bialek et al., 2001)2,

�?A43 = � (-?0BC ;- 5 DC) = � (- 5 DC) − � (- 5 DC |-?0BC) (6.3)

here intuitively expressed as the reduction of entropy in the future if we know

the past. The predictive information then quantifies to what extent the past

predicts the future. The entropy of the generative process of the environment is

an extensive quantity whereas the predictive information is sub-extensive. For

this reason, predictive information has also been proposed as a measure of the

complexity or the degree of structure of a process. As mentioned, we expect

that an environment has correlations in time. However, they tend to be a small

fraction compared to the full data stream of the process and in time they should

become negligible3,

lim
C→∞

Predictive Information
Total Information

=
� (-?0BC ;- 5 DC)
� (-?0BC)

→ 0 (6.4)

6.2.2 Predictive information as a criterion for relevance

Predictive information has been applied in the context of the perception-action

loop for the generation of complex behavioural patterns (Martius et al., 2013, 2014;

Martius and Olbrich, 2015) and in model-free Reinforcement Learning (RL)

2 also known as excess entropy (Crutchfield and Packard, 1983) or e�ective measure complexity
(Grassberger, 1986)

3 Another reason why the predictive information can be small is if the dynamics of the generative
process are very regular.

96

to provide a state representation to a soft actor-critic agent (Lee et al., 2020).

Here, let us take the predictive information thesis and analyse its implications for

world modelling. While being able to extract the pieces of data that can inform

about the future is imperative, only a small fraction of the data stream of the

past is necessary for prediction. Because it might not be ideal to keep all of the

information produced by a process, then under ideal conditions, an agent would

store in its memory only a portion of past data that is relevant to predict the future.

We can formulate precisely this trade-off with an information bottleneck (Still,

2014),

min
? (I |G?0BC)

[� (/ ;-?0BC) − � (/ ;- 5 DC)] (6.5)

According to this expression then an agent has to attempt to learn a mapping

of past data points -?0BC to a memory or representation / . The agent must

aim to capture as little as possible from the past while maximising its predictive

capabilities.

Several arguments could justify this approach. From a learning theory angle,

we can consider the past as the training set, the future as the testing set, and the

representation as the parameters learned by an algorithm. During the training

stage, we train an approximator to capture the regularities and patterns from the

data, but ultimately our interest is not to learn the training set but to generalise to

unseen data. This is captured by the second term, max � (/ ;- 5 DC). To prevent the

approximator from overfitting the training data we could constrain its complexity

using regularisation techniques. This would correspond to min � (/ ;-?0BC).

Information is of particular importance for biological agents, large amounts of

energetic resources are invested in information processing. For instance, it has

been estimated that 20% of a human’s resting energy expenditure is used in the

brain (Laughlin et al., 1998) while in blowflies 8% is used by their retinas (Niven,

2014). The huge costs are compensated by the capacity to acquire information

97

that enables more sophisticated behavioural strategies. However, also due to

these high energetic costs a suboptimal information processing strategy would

be highly detrimental to the organism. From an evolutionary perspective, there

is a relationship between cost and performance but also a tendency to minimise

processing costs while achieving the same behavioural efficiency (Polani, 2009).

This also has found support in theoretical analyses in non-equilibrium thermody-

namics. In Still et al. (2012), the authors derive a relation between the predictive

power of a system and its thermodynamic efficiency. The main result in the

paper is the instantaneous non-predictive information �=? ,

VE[,38BB] = � (/C ;-C) − � (/C ;-C+1) = �=? (6.6)

the equation highlights that the (expected) quantity of energy lost by a system

as heat (i.e. dissipated work,38BB) is equal to the amount of information that

is irrelevant to predict the next step into the future. The more non-predictive

information a system retains the larger the amount of energy lost by the system

and the more thermodynamically inefficient it is.

6.3 A Non-Reconstructive Predictive Model

The principles delineated in the previous section have considered unperturbed

dynamics in which a passive observer collects observations and forms representa-

tions. Let us take the previous arguments to propose motivate our approach for

the acquisition of a model. The basic problem formulation follows from chapter 4.

An agent senses observations > and rewards A , and interacts with the environment

through action 0 at each time step. The agent learns a latent representation I

which carries information from the past←−I and aggregates it with the information

extracted from the present’s sensory stream.

98

The first aspect to note from the state space models described before is that to ap-

proximate the defined target distribution ? (>1:) |01:)), the terms in the variational

objective also approximate individually two mutual information. Therefore we

can reinterpret it in terms of an information bottleneck trade-off,

min
@(I |>)
[� ({$C , /C−1, �C−1};/C) − � (/C ;$C)] (6.7)

Where the first term � ({$C , /C−1, �C−1};/C) minimises the information to extract

from past and present. In principle, then this term encourages discarding infor-

mation that has been stored in the representation at previous time steps, and it

serves as a regulariser. The second term, � (/C ;$C), is a reconstructive term and

promotes that the latent state contains as many informative elements as possible

to reproduce the current observation.

When we discussed the State Space Model (SSM) in chapter 4, we argued that

the explicit association of the observations to a compressed latent state was a

mechanism to account for the essential factors for the reconstruction of an input

stream. The information-theoretic interpretation increases our intuition about it

and conveys precisely that /C holds information that is relevant to determine the

current observation $C . This also allows us to notice some aspects that might not

be desirable for constructing world models. First, it is not explicitly predictive of

the future. /C might provide a context for the agent to act but it is not directly

boosting its anticipatory capacities. We could opt for a naive approach based on

the predictive information information bottleneck from expression 6.5 such as,

min
@(I |>)
[� ({$C , /C−1, �C−1};/C) − � (/C ;$C+1)] (6.8)

however, this implies that we still consider that a forward model should aim to

predict an observation, in this case, the next step future observation $C+1. As we

commented at the beginning of this chapter, we may want to try alternative

99

prediction targets that do not concentrate on an accurate reconstruction of an

observation. Consider again the relation between a raw observation, a latent

state, and an information bottleneck. The agent’s sensors have access to the

observations, which are then filtered out and encoded in a considerably smaller

latent state. These same sensors will receive observations in the future which

then again are encoded as latent states. Recall that in the previous SSMs one of

the components consists of a transition model in latent space used to generate

trajectories. This is also the level at which the agent is operating for decision-

making, not at the level of raw observations. Thus we can go a step further and

establish the next latent state /C+1 as the relevance variable which results in the

following information bottleneck,

min
@(IC :C+1 |>C :C+1)

[� ({$C , /C−1, �C−1};/C) − � ({/C , �C };/C+1)] (6.9)

Note that although the encoder is extracting features from the current observa-

tions and past context, it might not be apparent what it is capturing from them.

It does not have a well defined training signal in the form of actual observations

to reconstruct. The first term remains unchanged as we still want to limit the

amount of information that we retain from the past or take from the current

observation. However, the second term encourages the representation to preserve

information that can predict its future evolution in latent space.

6.4 Learning a Non-Reconstructive Model

The previous expression 6.9 that we have just proposed includes the minimisation

and maximisation of two mutual information. This has significant technical

implications that we must consider before we can implement it as a learning

objective. The most important one is to determine how to address the issue of

estimating and maximising the mutual information. In this section we derive a

100

practical learning objective that approximates the expression 6.9 and can then be

used to learn a non-reconstructive model.

The estimation and optimisation of mutual information are challenging and active

problems of research because computing the mutual information is intractable

for all non-trivial cases. Previously, the estimation of the mutual information

had been limited to problems of low dimensionality (Kraskov et al., 2004; Gao

et al., 2015) but given its preponderance in many areas of machine learning, it

has received attention in deep learning resulting in several advancements. For

example, to maximise a lower bound the neural networks have been used as

estimators based on dual representations of the KL divergence (Donsker and

Varadhan, 1976; Nguyen et al., 2010; Belghazi et al., 2018), the Jensen-Shannon

divergence (Hjelm et al., 2019), variational lower bounds (Barber and Agakov,

2003; Alemi et al., 2016), to directly approximate distributions or ratios (van den

Oord et al., 2019), or via a combination of these methods.4 These estimators

have been scrutinised and analyses have shown that they offer poor theoretical

guarantees and have major limitations to estimate the true value of the mutual

information (McAllester and Stratos, 2020a). Nonetheless, some estimators have

started to become applicable because in some tasks a comparison between the

amount of information in two or more variables might be enough and it may

not be required to provide an estimate of the mutual information.

For our purposes we are going to use InfoNCE (van den Oord et al., 2019) to

find a lower bound on the mutual information (Poole et al., 2019a) for the second

term of expression 6.9, which then we can learn through a neural network.

6.4.1 Noise Contrastive Estimation for World Modelling

InfoNCE was originally conceived for representation learning in sequences such

as audio, text, or images (van den Oord et al., 2019) and it is based on Noise

4 For a detailed overview of these estimators we refer the reader to Poole et al. (2019a).

101

Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2010). We refer the

reader to appendix H for a general overview of the method. The basic idea behind

NCE consists in given G8 from ? (G) and target samples ~8 from a distribution

? (~ |G) we form a positive pair (G8, ~8). Then from a different noise distribution

? (~) we sample ~ 9 to get a negative pair (G8, ~ 9) where 8 ≠ 9 . The objective is

then to train a neural network that assigns large values to positive pairs and low

values to negative pairs with a score function 5 (G,~). The assumption here is that

large scores indicate correlations between G8 and ~8 . Thus the network acts as a

classifier and has to discriminate when a pair is positive or negative by learning

the differences between the samples from ? (~ |G), and those coming from the

noise distribution ? (~) (i.e. the marginals ? (~)? (G)). InfoNCE takes this idea to

generalise it to multiple samples and maximises the following function,

�#�� = E

[
log

5 (G8, ~8)∑
9≠8 5 (G8, ~ 9)

]
(6.10)

for this expression, # data points (~8, ..., ~#) are randomly sampled. One of them

is a positive pair (G8, ~8) where ~8 ∼ ? (~ |G) while # − 1 are negative pairs (G8, ~ 9)

from a product of marginals ? (~)? (G). That is, ~ 9 are sampled from the noise

distribution ~ 9 ∼ ? (~).

Now let us translate how we can apply this loss function to our specific scenario.

We sample# chunks of observation and action trajectories {(0C−1, >C , ..., 0) , >)+1)}#8 ,

take the sub-chunks (0C−1:)−1, >C :)) and obtain their corresponding latent state tra-

jectories IC :) . We then extract the next step sub-chunks of observations (>C+1:)+1)

and obtain their low dimensional embeddings (qC+1:)+1) to maximise the follow-

ing �#�� expression,

�#�� =

#∗)∑
8

log
5 ([I8, 08], q8)∑#∗)
9≠8 5 ([I8, 08], q 9)

≤ � ([/C , �C];qC+1) ≈ � ([/C ;�C];/C+1) (6.11)

102

this objective provides us with a lower bound on themutual information � ([/C , �C];qC+1)

which is the practical equivalency of the second term in 6.9. In the expression

above, [I, 0] indicates a concatenation between latent states and actions. For the

positive pairs, q8 corresponds to the low dimensional embedding produced by

an encoder at the next time step. Meanwhile for the negative samples q 9 we can

reuse the rest of the data points sampled from the buffer. 5 () corresponds to the

score function,

5 ([IC , 0], q) = exp([I, 0]),q) ∝ ? (q | [I, 0])
? (q) (6.12)

a log-bilinear model which is proportional to the density ratio and therefore

approximates a lower bound to themutual information � ([/C , �C];qC+1). The score

function learns to identify positive and negative pairs through the weight matrix

, . To maximise �#�� , then the numerator must be large while the denominator

remains as small as possible.

6.4.2 A Non-reconstructive State Space Model

In the previous section we found a way to approximate a lower bound to the

second term in 6.9 via the expression 6.11. Approximating it will lead to learn

a representation that is predictive about the future. However, it is still neces-

sary to consider the first term in 6.9 to limit the amount of information that

is extracted from a current observation and the latent memory. Similarly to

the maximisation of mutual information, its minimisation presents a series of

challenges. The most common way to proceed is via the variational upper

bound by Barber and Agakov (2003), that in our case would correspond to

E@ [� ! [@(IC |>≤C , 0<C) | |? (IC |IC−1, 0C−1)]. Note that this is the same complexity

term that we have used for the previous SSMs and that appears in the derivation

of the variational bound of the data log-likelihood. Thus the full loss function

103

that we need to optimise is,

#∗)∑
8

log
5 ([I8, 08], q8)∑#∗)
9≠8 5 ([I8, 08], q 9)

− E@ [� ! [@(IC |>≤C , 0<C) | |? (IC |IC−1, 0C−1)] (6.13)

The resulting SSM has the following components:

• Encoder 4q (BC |ℎC , >C , 0C)

• Deterministic transition ℎC = GRU\ (ℎC−1, BC−1, 0C−1)

• Stochastic transition ?\ (BC |ℎC)

• Q-value model ?b (@C |ℎC , BC , 0C)

Since the observations are no longer used as training signals, the SSM does not

maintain the observation model. For planning, we follow the same procedure

described in section 5.3. We simulate # rollouts to sample from the Q-model

@C :� ∼ ? (@C :� |ℎC :� , BC :� , 0C :�) and evaluate the trajectories.

104

Algorithm 9: PR-SSM Agent
Input: Transition model, ? (BC |ℎC−1, BC−1, 0C−1), reward model ? (AC |ℎC , BC , 0C),

q-value model ? (@C |ℎC , BC , 0C), encoder @
1 , log-bilinear model 5 Initialise: Replay buffer � , parameters \ , latent IC , ℎC ,

BC
2 for C . . .) do
3 Compute ℎC = 5 (ℎC−1, BC−1, 0C−1);
4 Construct and sample BC ∼ @(BC |ℎC , >C);
5 IC :) = [ℎC , BC];
6 Act 0C ∼ RHE(IC , ? (BC |BC−1, BC−1, 0C−1), ? (AC |ℎC , BC , 0C), ? (@C |ℎC , BC , 0C)));
7 Observe >C+1, AC ∼ ? (BC+1, AC |BC , 0C);
8 Append � ← � ∪ {B′, 0, A };
9 if done then
10 4=E .A4B4C ();
11 end
12 for 8 . . . �?>2ℎB do
13 Sample trajectories >C :)+1, 0C−1:) , AC :)+1 ∼ �;
14 Extract embedding qC :) = 4<1 (>C :));
15 Extract embedding qC+1:)+1 = 4<1 (>C+1:)+1);
16 Compute ℎC :) = 5 (ℎC−1:)−1, BC−1:)−1, 0C−1:)−1);
17 Construct and sample BC :) ∼ ? (BC :) |qC :) , ℎC :));
18 IC :) = [ℎC :) , BC :)];
19 Construct ? (AC :) |BC :) , ℎC :));
20 Compute score functions 5 ([I, 0]C :) , qC+1:) :1) from equation 6.12;
21 Update perceptual model by computing loss L(\) from equation

6.13;
22 Construct ? (@C :)−1 |BC :)−1, ℎC :)−1, 0C :)−1);
23 Construct and sample @C+1:) ∼ ? (@C+1:) |BC+1:) , ℎC+1:));
24 Compute @(IC :)−1, 0C :)−1) = AC+1:) + W argmax0 @(IC+1:) , 0C+1:));
25 Update @-value model by computing loss L(\) from equation 5.2;
26 end
27 end

105

6.5 Experiments

6.5.1 Four-Room tasks

We consider the same four task variations of the four-room environment intro-

duced in chapter 5. We compare the non-reconstructive SSM (NR-SSM) that

we have just described against the best-performing reconstructive agent from

the previous chapter. Hence, both agents evaluate a potential plan by obtaining

the cumulative sum of Q-values from a simulated trajectory. We will refer to the

reconstructive agent simply as SSM. In addition, we also compare these agents

against Dreamer v2 (Hafner et al., 2022) and MuZero (Schrittwieser et al., 2020)

as they are two representative state-of-the-art architectures in model-based RL

research. Due to the large resources required by those two agents, we report

the results obtained from training them during a period of 12 hours (by com-

parison, our agents take from one to four hours to complete their training for

1000 episodes using the same computational resources). We have taken publicly

available PyTorch implementations and have adapted them to work with our

environments5,6,7.

In level 1, except for a minor period of instability, the SSM and NR-SSM agents

are comparable in their average return over time (fig. 6.1 left). Let us remember

that the first level only terminates either due to a time limit or when the agent

reaches the goal state. Thus we can also analyse the performance of these agents

from the point of view of the effort in terms of the number of time steps required

to optimise their behaviour. Right fig 6.1 depicts the cumulative number of steps

across episodes. It can be observed that there are abrupt changes in the time step

growth rate for both agents. Although they learn the task in a short number

5Where necessary we have also modified the hyperparameters to follow those reported in the
original publications.

6Dreamer v2: https://github.com/RajGhugare19/dreamerv2
7MuZero: https://github.com/werner-duvaud/muzero-general and
https://github.com/Hauf3n/MuZero-PyTorch

https://github.com/RajGhugare19/dreamerv2
https://github.com/werner-duvaud/muzero-general
https://github.com/Hauf3n/MuZero-PyTorch

106

of episodes, during the early training stages the agents have not learned yet the

most direct paths that lead to the goal. Once this occurs, the rate of change of

the total number of time steps decreases. The NR-SSM agent exhibits a higher

level of efficiency. For the SSM agent, it takes almost double the number of steps

for this transition to occur.

We also observed similar performance between these two agents in level 2 (fig.

6.2). Although the NR-SSM agent achieved mastery over the task slightly faster

than the SSM agent. In the more challenging level 3, it is where we can notice

more differences in their performances. We noted in the previous chapter that

the SSM maintains a gradually increasing trend. In the case of the NR-SSM,

its improvement occurs more suddenly. The differences in improvement can

also be analysed from the perspective of the success rate (fig. 6.3 center left) or

the cumulative return (fig. 6.3 bottom left). The average overall performance

indicates that the NR-SSM agent reaches the goal 60% of the time compared

to 50% by the SSM. We can also observe from the cumulative return plot that

the NR-SSM undergoes a behavioural transition before it reaches 300 episodes.

At that point, the agent starts to consistently reach the goal. The differences

between the agents become more pronounced in level 4, where the SSM agent is

not able to match the episodic return of NR-SSM even in the long term (fig. 6.3

0 200 400 600 800 1000
Episode

−1.0

−0.5

0.0

0.5

1.0

R
et

ur
n

Level 1: Episodic Return

NR-SSM SSM Dreamer v2 MuZero

0 200 400 600 800 1000
Episode

0

50000

100000

150000

R
et

ur
n

Level 1: Total Steps

Figure 6.1: Level 1 results. Left: episodic return. Right: cumulative number of steps in
time.

107

0 200 400 600 800 1000
Episode

−1.0

−0.5

0.0

0.5

1.0

R
et

ur
n

Level 2: Episodic Return

NR-SSM SSM Dreamer v2 MuZero

Figure 6.2: Level 2 results. Episodic return.

top right). We can notice from the trend in the cumulative return (fig. 6.3 center

right), that as it learns, the SSM manages to slow down the trend but it does

not reverse it. The NR-SSM on the other hand reverses it within 500 episodes.

From thereafter, although in some episodes the NR-SSM does not reach the

goal, the rising trend indicates that as training continues it can sustain a positive

performance and achieve a positive reward in the majority of the episodes.

We can also observe from the results that Dreamer v2 and MuZero achieve

a degree of competence in levels 1 and 2. However, it remains below those

exhibited by NR-SSM and SSM. Moreover, the performance of Dreamer v2 and

MuZero plummets in levels 3 and 4 where it becomes more challenging for an

agent to attain a positive reward. The neural network architectures of these two

baselines are considerably larger than the ones we are using, and so in principle,

they can cope with environments with more complex dynamics than the smaller

architectures. Nonetheless, the size of their architectures in combination with the

hyperparameter choice may hurt their immediate performance in these tasks. For

instance, during Dreamer v2’s training, we often observed that the world model

loss behaved unsteadily or increased to become unmanageable. We also tested

108

0 200 400 600 800 1000
−1.0

−0.5

0.0

0.5

1.0

R
et

ur
n

Level 3: Episodic Return

0 200 400 600 800 1000
−1.0

−0.5

0.0

0.5

1.0
Level 4: Episodic Return

0 200 400 600 800 1000
0

20

40

60

80

100

Su
cc

es
s

R
at

e

Level 3: Success Rate

0 200 400 600 800 1000
0

20

40

60

80

100
Level 4: Success Rate

0 200 400 600 800 1000
Episode

−400

−200

0

200

400

C
um

ul
at

iv
e

R
et

ur
n

Level 3: Cumulative Return

0 200 400 600 800 1000
Episode

−400

−200

0

200

400

Level 4: Cumulative Return

NR-SSM SSM Dreamer v2 MuZero

Figure 6.3: Level 3 and 4 results. Top row: episodic return. Middle row: success rate in
time. It indicates the rate of episodes in which the agent has reached the goal. Bottom
row: cumulative return in time. Initially, there is a steep decline as the agent starts to
learn a forward model and is unable to solve the task in most of the episodes. The trend
either stabilises or inverts as training continues and the agent becomes more proficient.

these baselines with modified neural network architectures that were comparable

in size to our agents however, they still had inferior performances. In the case of

Dreamer v2, some of the reasons for its performance could be because it has to

learn the actor-critic over simulated experience, whichmay require more training

steps to start to produce more accurate assessments. Meanwhile, in our agents,

although we produce simulated sequences of Q-values, the Q-model is learned

with latent trajectories that had been experienced by the agent. Furthermore,

in Dreamer v2 this implies learning two components, the actor and the critic,

109

0 200 400 600 800 1000 1200 1400
Episode

0

20

40

60
R

et
ur

n

Minipacman: Episodic Return

NR-SSM Reward + Q
NR-SSM Q

SSM Reward + Q
BTF

Dreamer v2
MuZero

Figure 6.4: Results in Minipacman. Episodic return.

whereas in our agents the planner directs the process of action selection invoking

the Q-model but the planner does not have to be learned. In the case of MuZero,

the original implementation uses a ResNet which is considerably larger compared

to the neural networks used in Dreamer v2 or this work. If we substitute the

ResNet for a smaller architecture, it is possible to speculate that MuZero has

more difficulties to compensate for the lack of additional rich supervision signals

provided either by the reconstruction or the predictive relevance objectives.

Another aspect that can be contributing negatively to its performance is that

MuZero models deterministic transitions which might be insufficient to deal

with the adversarial and uncertain elements in the environment.

6.5.2 Minipacman

For Minipacman we test the two variations of NR-SSM. The first evaluates the

sum of rewards and the Q-value for the last step. The second variation sums the

Q-values along the trajectory. In contrast to the previous task, we compare them

110

Figure 6.5: Left: the frame shows the ground truth. Right: a reconstruction from a
decoder trained on top of a frozen non reconstructive PR-SSM.

against the SSM variation that gets the sum of rewards and Q-value in the last

step. We also compare them against Bootstrapped Transition Functions (BTF),

MuZero, and Dreamer v2. Similar to what we observed in chapter 5, the variation

which selects the plans according to the sum of rewards and the last step Q-value

exhibits better performance. We can also observe that the SSM obtains a higher

average score in the long term. The NR-SSM Reward + Q initially starts to learn

faster than the SSM but after 200 episodes it starts to fluctuate within the same

range. As this might be due to the choice of training hyperparameters, and often

due to the learning rates, we reevaluated with a different set of them albeit trying

to keep them close to the other comparisons for fairness. We again observed the

same behaviour described in chapter 5 in which the agent is confined to an area

of the maze where the immediate surroundings consist of cells that have already

been eaten (see figure 6.5 for an example of this situation). We have suggested

that to mitigate this issue we could encourage some form of exploration in the

agent. In addition, we could assess alternative representation objectives in the �#��

term of the NR-SSM that could emphasise local elements of the environment

(Anand et al., 2020). That is instead of approximating a lower bound to the

mutual information between global features to conduct it between local features

or global to local features.

111

6.6 Discussion

In this chapter we revisited the idea of learning forward models following recon-

structive learning objectives. Based on a series of converging threads, we argued

for the potential of exploring training objectives beyond the reconstruction of

external scenes. We proposed an objective grounded on three main assumptions.

The first is that most of the data stream that passes through the agent’s sensors

does not contribute to the prediction of the future. From this first claim we

then argue that an agent should concentrate on the prediction of a subset of the

future rather than on whole observations. The third assumption, is that a latent

state that is smaller than an observation captures some of its features and can be a

candidate for the prediction target.

From these assumptions then our goal was to construct a learning objective

that could encourage an agent to actively discard information from the past

by prioritising the retention of information that is considered to be substantial

for the prediction of the future. Importantly, here the future that concerns the

agent is defined to be the embeddings in latent state space. To formulate the

training objective we take as a basis two concepts from the information-theoretic

literature: the information bottleneck and predictive information.

Let us examine more closely the relation between our objective and these two

concepts. The basic premise behind predictive information is to quantify how

correlated is the past and future of a process. It hints that most of the observations

are non-consequential for the prediction of the future. If we adhere strictly to its

mathematical definition, the past and future data stream are in the same space.

Thus it has been proposed as a measure of the complexity of a process (Shalizi

and Crutchfield, 2001). In our case, we are not interested in the complexity of

the agent-environment coupling or the complexity of the observation process.

Instead, our interest is in the internal perspective of an agent that is trying to

acquire a forward model that can sustain its behaviour. Thus the translation of

112

these ideas to our scenario comes with some nuances. If most of -?0BC is irrelevant

for predicting - 5 DC , the same will be true for - 5 DC . Once we observe a part of - 5 DC

(and thus integrated within -?0BC) most of it has to be discarded to predict the part

of - 5 DC that remains still unseen in the future. Therefore an agent that intends to

be resource efficient should not aim to predict - 5 DC but only a subset of it. This

takes us to the second point on extracting information that is relevant to predict

a subset of - 5 DC . The notion of relevance that we have invoked presupposes that

a target of interest (i.e. a relevant variable) has been defined. If that is the case,

then during the optimisation process it is possible to extract the information

that is relevant to predict this target. It can be noticed then that there is a more

fundamental outer problem of relevance that concerns the definition of the target

of interest itself. That is, to identify the information that is relevant for a target

it is first necessary to determine a relevant target variable. Whether or how this

process of discovery could be autonomously achieved is at this moment a problem

we have left unexplored. Instead, as we have described, the agent’s future latent

state has been predefined as the relevant target. In chapter 8.1.4 we will speculate

about other targets that we could consider.

Regarding the results we obtained. In the four-room tasks we observed not only

better performance when using the non-reconstructive objective but also, in those

tasks where we can measure the steps it takes to reach a given performance under

equal conditions, we noted a higher level of efficiency. In Minipacman, however,

we did not observe this increase in performance. To analyse the representation

learned by the architecture, we froze it and trained a decoder on top of the

learned latent state. We noticed that the model still captures a large part of the

observation. There are different speculations we can make from the analyses.

For example, the architecture’s latent space might be too large which leads to

excess capacity to store information. Another issue could be associated to the

mutual information approximation with the bounds not being tight enough

(McAllester and Stratos, 2020b; Poole et al., 2019b; Song and Ermon, 2020). A

113

third speculation could be due to the network features we included as part of

the mutual information maximisation. As mentioned in the previous section,

an alternative could be to maximise the information between global and local

features. Further experiments in different benchmarks could also help to elucidate

the type of environments in which this learning objective results advantageous.

114

7 Learning and planning from self-

regulating signals

7.1 Introduction
In the previous chapters the role of the model during planning has been to provide

next state predictions to generate the rollouts, and rewards or Q-values to evaluate

them. Although it is certainly true that because the models generate predictions,

they have a central role in guiding the behaviour of the agent, we have not

explored, for instance, the properties of those learned models or the relations

encoded by them. Intuitively, the model reflects the experience accumulated

by the agent and its particular coupling with the environment. Two different

agents in the same environment, may learn different forward models due to their

specific modes of engagement. Even in the same agent, the predictions generated

by its model might be different when presented with the same observation if the

model is at different epistemic states. For example, when the model is in the early,

and then, in late stages of training. This subjective quality of the interaction of

an agent with its medium is also captured in debates regarding the interpretation

of reward as a construction of the agent dependent on its motivational states

or knowledge (Dayan, 2012; Juechems and Summerfield, 2019). Several lines

of research in the perception-action loop, which we briefly review in the next

section, attempt to ground some form of utility or reward within the agent. Our

objective here is to try to connect this theme to the larger story of approximating

an internal model through the framework of active inferece (Friston et al., 2012a).

115

This framework is closely related to model-based Reinforcement Learning (RL).

However, it is conceived to establish the whole interaction between the agent

and the environment as a belief-based interaction. This perspective allows us not

only to use the model as a tool to generate predictions, but also to understand it

as a reference point from which to provide a contextual assessment of the value

of an observation. To be more concrete, any incoming observation is contrasted

against a specific distribution. Active inference tells us that this distribution is a

prior describing the preferences of an agent. If the observation is deemed to be

probable under this distribution then it is considered to have a low information-

theoretical surprisal. Active inference assumes that an agent acts in order to

seek observations with low surprisal. This view is controversial (Herreros and

Verschure, 2015; James, 2015; Paolo et al., 2022; Aguilera et al., 2022) however a

full discussion on the subject is beyond the scope of the thesis. The main point to

take for the moment is that the statistical relationships captured by a model, (1)

ground the value of an outcome within the agent and (2) serve as an anchor to

actively guide the behaviour of the agent.

Our concern here in this chapter is the emergence of the distribution of prefer-

ences. Since a major theme in the thesis is the construction of internal models,

and the distribution of preferences is a subset of the larger internal model, the

crucial question is what it should correspond to? The active inference literature

does not elaborate on its origin or how it arises. Moreover, it shows inconsistency

regarding the outcomes that have to exhibit low surprisal, with some works

considering observations (Friston et al., 2016), hidden states (Friston et al., 2009)

or internal states (Friston, 2012).

We propose a scheme, where the main assumption is that an agent has access to

external and internal inputs. We define the internal inputs as those that have to

exhibit low surprisal and derive a new mathematical expression. We then show

an example of how the preference distribution arises in a self-supervised manner

and how the agent’s behaviour reinforces it. For planning, we integrate Rolling

116

Horizon Evolution (RHE) as part of the active inference agent. The evaluation

of the rollouts is given by the predicted surprisal and predicted information gain,

that is, the expected free energy.

To contextualise our contribution, we start by providing a review of active

inference and the particular issues surrounding the definition of the preference

distribution. For completeness we also show how we can transition from RL to

the belief-based account of active inference, and describe a model-free surprisal

minimisation agent originally proposed by Berseth et al. (2020) which serves as

our baseline.

7.2 Preferences, desires and surprisal minimisa-

tion

Active inference (Friston et al., 2012a) provides an alternative formulation to the

problem of sequential decision-making in Markov Decision Process (MDP). Its

origins can be traced to studies connecting machine learning ideas to statistical

physics (Hinton and Zemel, 1993; Hinton and van Camp, 1993; Dayan et al.,

1995) and in variational inference (Jordan et al., 1999; Ghahramani and Beal,

2000; Beal, 2003). However, the framework of active inference itself has largely

been developed in theoretical neuroscience as a probabilistic account to describe

perceptual mechanisms in the brain (Friston et al., 2006) and goal-seeking be-

haviour in living processes (Friston, 2012).

Active inference shares many similarities with model-based RL and in particular

with proposals that have formulated control as an inference problem (Attias,

2003; Todorov, 2008; Rawlik et al., 2010; Botvinick and Toussaint, 2012; Kappen

et al., 2012). One of the major differences between active inference and RL is

the conceptualisation of the utility. RL borrows from animal learning theories

in psychology the notions of trial-and-error learning and secondary reinforcers.

117

These are the stimuli that are associated with primary reinforcers such as food,

water, or pain. Thus, in RL the utility is interpreted as a reward signal that

provides positive or negative reinforcements and guides the agent’s behaviour

toward a goal. As we know, the objective in RL is to maximise the expected

sum of rewards. This is known as the reward hypothesis (Sutton and Barto, 2018)

(cf. dynamic programming methods in optimal control in which the utility

is interpreted as a cost that a controller has to minimise, for example, energy

expenditure). The standard formalism of RL considers the reward as a signal

received by the agent from the environment. Accordingly, the notion of reward is

ingrained as something that occurs externally and independently from the agent.

This is emphasised by the fact that historically RL has been oriented towards

achieving competence in a task, and rewards tend to be treated as part of the

problem specification defined by the researcher. The problem of reward sparsity,

for instance, arises in part because of the difficulty of defining scalar rewards for

complex, hierarchical or ambiguous behaviour. In this sense, standard RL leaves

unaddressed central concerns about the nature of behaviour.

Nonetheless, let us note that there several lines of research in the perception-action

loop trying to characterise generic and task-independent drives as grounded

within the agent. In a body of work known as intrinsic motivation1 which has

been defined as an activity performed for its inherent satisfaction (Ryan and

Deci, 2000), we can find computational models that relate curious exploratory

behaviour to the maximisation of learning progress (Oudeyer and Kaplan, 2007;

Oudeyer et al., 2007). Closely related to it but from an information-theoretic

perspective, is the maximisation of predictive information2 between consecutive

observations which gives rise to behaviours that generate dynamics that are rich in

information content while remaining predictable (i.e learnable) (Ay et al., 2008).
1 See Biehl et al. (2018) for a perspective on intrinsic motivation under the active inference
framework.

2 Predictive information (Bialek and Tishby, 1999) is an important influence in the construction
of the architecture presented in chapter 6. Our treatment, however, is not from the perspective
of a feedback signal but rather as a learning objective for the construction of a world model.

118

Other information-seeking behaviours have been characterised as information

gain measures (Little and Sommer, 2011; Mobin et al., 2014). Meanwhile, other

agent-centric approaches have formalised insights from biology and ecological

psychology. For instance, empowerment measures the control or influence in

the world as perceived by the agent (Klyubin et al., 2005; Salge et al., 2014).

Some of these principles and proposals have been imported into RL under the

term of intrinsic rewards. Some examples include, rewards derived from prediction

error (Jaderberg et al., 2016; Pathak et al., 2017), novelty (Bellemare et al., 2016;

Burda et al., 2018; Ostrovski et al., 2017; Henaff et al., 2022), information gain

(Houthooft et al., 2016), empowerment (Mohamed and Rezende, 2015; Kumar,

2018) or ensemble disagreement (Pathak et al., 2019). It is important to highlight

that in RL these intrinsic rewards are treated as surrogate or complementary

rewards in the absence of dense external reward signals. They are often intended

to encourage exploration to increase the prospects of gaining competence in a

particular task.

In active inference, instead of maximising rewards, the agent minimises a quantity

called the variational free energy which is explained in detail in this chapter. The

agent tries to reduce the difference between sensations and predictions. The agent

holds a prior over preferred future outcomes, thus the agent evaluates to what

extent the outcomes it observes align or not with those preferences. Therefore

value arises not as an external property of the environment, but instead, it is

contextually conferred by the agent depending on its current configuration and

the interpretation of stimuli.

From an algorithmic perspective, this idealised account of active inference presents

some challenges. Active inference does not elaborate on the origin of the prior

preferences or their characteristics. Because the framework is motivated by

biological considerations, these priors are assumed to emerge over evolutionary

scales or during a lifetime.

119

Nonetheless, active inference has recently garnered interest in machine learning,

as researchers have adapted the framework to solve control and decision-making

tasks. Similar to the external rewards in RL, the prior distribution becomes

part of the problem specification. Thus the objectives of the task are also prede-

fined beforehand. This suggests that much of the effort that can go into reward

engineering in RL is reallocated to the construction of a distribution that spec-

ifies preferred outcomes. In this chapter, we explore very basic steps to move

away from this requirement and to allow the agent to dynamically discover this

unknown distribution.

The approach we follow is inspired by the literature on the foundations of adaptive

behaviour and organismic autonomy (Di Paolo, 2005, 2010; Barandiaran et al.,

2009). We consider the emergence of primitive forms of self-supervised behaviour

as a response to the perturbations an agent must endure to maintain its structural

integrity. More concretely, we examine how can a signal acquire functional

significance as the agent identifies it as a condition necessary for its viability

and future continuity in the environment. We will see that, because in active

inference we can formulate the agent-environment interaction under the same

probabilistic language, we can treat all utilities as beliefs grounded on the agent

rather than external and detached quantities. To ease the transition from a reward-

maximisation to a surprisal-minimisation view of behaviour, first, we start by

introducing the surprise minimising RL (SMiRL) specification (Berseth et al.,

2020) before we proceed with a brief overview of the expected free energy. Then

we motivate our approach from the perspective of a self-regulating organism.

Finally, we present the results from our case study.

7.3 Model-free surprisal minimisation
To illustrate the concept of belief-based utility and start introducing our approach,

we begin by describing a generic outline of a model-free Surprise Minimizing

120

Reinforcement Learning (SMiRL) (Berseth et al., 2020) agent. Consider an

environment whose generative process produces a state BC ∈ S at each time step C

resulting in an agent observing >C ∈ O. Note the slight difference concerning the

classic RL formulation reviewed in section A.1. For a belief-based agent, > and

B are distinguished from each other because > corresponds to the observations

gathered by the agent and these may not necessarily be the same as the hidden

causes B. An example of this occurs also in Partially Observable Markov Decision

Process (POMDP) RL formulations, where the agent holds a belief 1 about the

state of the world B. The agent acts on the environment with 0C ∈ A according

to a policy c , and obtains the next observation >C+1.

Thus far, the general picture resembles standard RL formulations. Now sup-

pose that the agent performs density estimation on the last C − : observations it

has gathered, and from this process, it obtains a current set of parameter(s) \C

summarising the density ?\ (>). That is, the agent now also holds beliefs about

the type of observations it has gathered in the past. Because these sufficient

statistics \ contain information about the agent-environment coupling, they are

concatenated with the observations gathered from the environment to form an

augmented state GC = (>C , \C). At every time step, when the agent receives a new

observation, it then computes the surprisal produced by this new observation

given the current estimate encoded in \ . The agent also performs a new iteration

of density estimation and updates \ . Unlike in standard RL, instead of maximising

a reward, the agent maximises the log of the model evidence

max
c

Ec

[∑
:

W: log?\C+:
��B = BC , 0 = 0C

]
(7.1)

maximising the log evidence is equivalent to minimising surprisal. Therefore,

we decide to maintain consistency with active inference and rewrite the Bellman

121

equation for a value-based method such as Q-learning in the following manner

&c∗ (G, 0) = Ec [− log?\ (>) + W min
0′

&c∗ (G′, 0′)] (7.2)

this expression shows that the agent optimal policy will tend to favour actions that

lead to a reduction in surprisal. The Q-function can be estimated as normal via

Deep Q-Network (DQN) (Mnih et al., 2013) or any other function approximator

parameterised by q such that &c∗ (G, 0) ≈ & (G, 0;q).

7.4 Active Inference

The Free Energy Principle (FEP) (Friston et al., 2006) has evolved from an account

of message passing in the brain to propose a probabilistic interpretation of self-

organising phenomena (Friston, 2013; Ramstead et al., 2019, 2018). Given the

broad scope of the theory, our discussion is centred on active inference where it

is possible to motivate an account of the perception-action loop at the same level

as RL.

The FEP posits the view that a system remains far from equilibrium (i.e. alive)

by maintaining a low entropy distribution over the states it occupies during its

lifetime. Accordingly, the system attempts to minimise the surprisal of an event

at a particular point in time. To understand this more concretely, recall the

density ? (>) from the previous section. In active inference, it is assumed that ? (>)

encodes the states, drives, or desires the system should fulfil. Thus the system

strives to obtain or observe outcomes > that minimise the surprisal − log ? (>).

This, also as discussed in the previous section, is equivalent to maximising the

model evidence or marginal likelihood ? (>).

The estimation of the actual marginal is intractable. Active inference confers this

technical fact a naturalistic interpretation based on perceptual grounds. Namely,

122

an agent cannot estimate ? (>) exactly due to the inability to have complete

knowledge of the structure and causal dynamics of an environment. Therefore

an agent instead resorts to minimising a quantity called free energy (Hinton and

Zemel, 1993; Dayan et al., 1995). Mathematically, the free energy is no other

than an upper bound on surprisal (Jordan et al., 1999) and we can derive it using

the principles of variational inference reviewed in A.3.

− log? (>) = − logE@(B)

[
? (>, B)
@(B)

]
≤ −E@(B)

[
log

? (>, B)
@(B)

]
︸ ︷︷ ︸

�A44 �=4A6~

(7.3)

where ? (>, B) is the generative model (i.e. forward/predictive/world model) of

the agent and @(B) the beliefs encoded in the variational density approximating

hidden causes. The right-hand side corresponds to the free energy which is

the same as the negative Evidence Lower Bound (ELBO) (equations in A.20).

Rearranging 7.3 we obtain

F = E@(B) [log@(B) − log? (>, B)] (7.4)

because the free energy is a � ! [@(B) | |? (>, B)] then an agent minimising the

free energy is also approximating the true posterior of hidden causes through

a variational density expressed as � ! [@(B) | |? (B |>)] (equations and inequalities

in A.23 and A.22). The name of free energy is given due to the similarities to

the Helmholtz free energy in thermodynamics, which can be appreciated more

clearly by rearranging equation 7.4

123

F = −E@(B) [log? (>, B)]︸ ︷︷ ︸
�=4A6~

+ E@(B) [log@(B)]︸ ︷︷ ︸
(#460C8E4) 4=CA>?~

= * −)(

(7.5)

where * corresponds to the internal energy of the system, (to the entropy and

) to the temperature of the surroundings (here) = 1).

7.4.1 Expected Free Energy

Equation 7.4 is used to compute a static form of free energy and infer hidden

causes given a set of observations. However, if we instead consider an agent that

acts over an extended temporal dimension, it must infer and select policies that

minimise an Expected Free Energy (EFE) (Friston et al., 2016) of a policy c for a

future step g > C . Conditioning the free energy over policies we can express the

expected free energy G as

G(c, g) = E@(>g ,Bg |c) [ln@(Bg |c) − ln? (>g , Bg |c)] (7.6)

where ? (>g , Bg |c) = @(Bg |>g , c)? (>g) is the generative model of the future. Rear-

ranging G as,

G(c, g) = −E@(>g |c) [ln? (>g)]︸ ︷︷ ︸
�=BCAD<4=C0; E0;D4

−E@(>g |c)
[
� ! [ln@(Bg |>g , c) | | ln@(Bg |c)]

]︸ ︷︷ ︸
�?8BC4<82 E0;D4

(7.7)

124

illustrates how the EFE entails a first term known in the active inference lit-

erature as pragmatic, instrumental or goal-seeking. It provides value to the agent

to the extent that it can fulfil its preferences encoded in ? (>). Then there is a

second term referred to as epistemic or information seeking which provides value

by resolving uncertainty. To make an analogy with RL, instrumental value

encourages exploitative behaviour (i.e. externally defined rewards) and epistemic

value encourages exploratory behaviour (i.e. intrinsic rewards).

In summary, an agent which minimises its free energy via active inference can

either change its beliefs about the world or sample the regions of the space that

conforms to its beliefs, desires, or goals.

7.5 Self-regulating adaptive control
We have discussed how ? (>) is a crucial piece in the active inference formalism.

In which one of its interpretations corresponds to a distribution that encodes

the goals, needs, or objectives of the agent. In contrast to a reward, it emerges

within a context that is more mathematically principled. However, there is a gap

between the appealing interpretation and the algorithmic specification. From

the point of view of an organism, the framework argues that if an agent acts

to minimise its surprisal it will orientate its behaviour towards a set of states in

which the agent or the organism is viable. But an aspect that is less understood

is how these attracting viable states come into existence. That is, how do they

emerge and are selected from the particular conditions surrounding the system,

and how are they discovered among the potential space of signals and the myriad

of internal and external information channels? The studies that have attempted to

provide algorithmic implementations of active inference have faced the challenge

of how to specify ? (>). Their approaches have consisted in using the reward

given by the environment (Friston et al., 2012a; Ueltzhöffer, 2018; Tschantz et al.,

2019, 2020; Sajid et al., 2020), encoding it in ? (>) as ? (>) ∝ exp(A) (Millidge,

125

Figure 7.1: An extended idealised version of the perception-action loop. In addition to
the classic observation and action channels, the agent also gathers other readings informing
it about its internal state. An example of this in biological organisms is the levels of
oxygen, blood pressure, or temperature. Note that we do not define these viability variables
and instead propose a simpler set-up with a single binary variable indicating the structural
integrity of the agent.

2020) or passed on through a hierarchical predictive coding scheme (Millidge,

2019). While others have relied on demonstrations (Çatal et al., 2019, 2020;

Sancaktar et al., 2020). Therefore, similarly to RL, it has been assumed that there

is pre-existent knowledge of the goals and the rewards an agent must attain.

For the work presented in this chapter, we take inspiration from the homeostatic

and regulatory properties of living processes, as a step towards the study of more

generic and universal signals from which complex behaviour may emerge. The

main idea behind our approach is to differentiate between the nature of the

signals that an agent has access to, such as the sensory signals induced by external

stimuli, and the internal signals inherent to the agent and caused by interoceptive

states. For example, figure 7.1 shows an idealised version of the perception-

action loop. With a channel dedicated to the actions and another for receiving

external stimuli >. In addition, the agent has an internal channel from which

it obtains information related to its internal configuration. We denote these

internal readings as E . Instead of fixing a predefined distribution of preferences

? (>) (or ? (E) in our case) as it has been done in the active inference literature,

126

the preferences guiding the behaviour of the agent are learned (and can change)

dynamically by performing density estimation to obtain parameters \ . In our

scenario, we make the following assumption. If the agent is equipped only with

basic density estimation capabilities (e.g. low capacity for representation) or

the environment is complex and has fast-changing dynamics, then it becomes

difficult for the agent to structure its behaviour around the type of regularities

in observation space that can sustain it in time. In these situations, rather than

minimising free energy over sensory signals >, the agent may instead leverage

these sensory signals to maintain low surprisal on another target variable (e.g.

E). This implies that although the agent may have in principle access to multiple

signals, it might be interested in maintaining only some of them within a certain

expected range and low entropy.

In a biological organism, an internal channel may contain information about

the essential variables of the system such as oxygen levels, blood pressure, or

temperature. For simulated agents, defining what should constitute the artificial

physiology or the internal states is hardly understood or researched. Therefore

we assume the introduction of a communication channel from which the agent

retrieves a signal that informs it about its continuity in the environment. For the

moment, we have defined this signal in abstract terms as simply a binary signal

indicating the presence of the agent in the task. We can make a rudimentary

comparison, and think of this quantity in a similar way to how feelings such

as hunger or pain agglutinate and coarse-grain the changes of several internal

physiological responses (Damasio, 2004). The approach is generic, in that it is

agnostic to the content or the number of signals it could consider. Moreover, the

magnitude of the numerical value of the signals is irrelevant by itself and it only

acquires significance for the agent as it becomes statistically associated with its

viability.

127

7.5.1 Expected Free Energy via Rolling Horizon

We introduce a novel variation of RHE for generating action-sequences and

associating them to an EFE score. Similarly to the RHE presented in section

3.5, it interoperates with learned approximate forward models and can handle

ensembles. However, we also made some technical improvements to detach the

observation transitions from the EFE transitions. This allowed us to evaluate

more action-sequences and expedite the operation, as they were processed in

parallel in a single call.

The RHE objective becomes

c (B0) = minc=0g :)
)∑
g>C

G(c, g) (7.8)

that is, RHE searches in the space of policies c for the one that minimises the

expected free energy G along a trajectory. Alternatively, we can specify a

probabilistic formulation of RHE consistent with the active inference framework

@
(
c (B0)

)
= f

(
− V

)∑
g>C

G(c, g)
)

(7.9)

where f is the softmax function. In this case, action-sequences are selected in

proportion to theirG and the magnitude of the inverse temperature V controlling

the stochasticity. Note that we define a new functional for G that considers the

agent’s internal channel (appendix C)

G(c, g) ≈ −E@(>g ,Eg ,\ |c)� ! [@(Bg |, >g , Eg , c) | |@(Bg |c)]−E@(Eg ,\,Bg |c) [ln?\ (Eg)] (7.10)

Moreover, if we explicitly consider the model parameters q , equation 7.10 can

be decomposed as (appendix D),

128

G(c, g) ≈ −E@(>g ,Eg ,q |c)� ! [@(Bg |>g , Eg , c) | |@(Bg |c)]︸ ︷︷ ︸
B0;84=24

− E@(>g ,Eg ,Bg |c)� ! [@(q |Bg , >g , Eg , c) | |@(q)]︸ ︷︷ ︸
=>E4;C~

− E@(>g ,Eg ,Bg ,q |c) [ln?\ (Eg)]︸ ︷︷ ︸
8=BCAD<4=C0; E0;D4

(7.11)

The expression unpacks further the epistemic contributions to the EFE in terms

of salience and novelty (Friston et al., 2017). These terms refer to the expected

reduction in uncertainty about hidden causes and the parameters respectively.

Algorithm 10: Active inference agent with internal states
Input: Observation model ? (>C+1 |>C , 0C), internal measurement model

? (\C+1 |>C , 0C)
Initialise: Replay buffer �, interoceptive buffer �, observation >C , internal

measurement vC , parameters \C , q
1 for C . . .) do
2 Act 0C ∼ RHE(>C , `C);
3 Observe >C+1, vC+1 = 4=E .BC4? (0C);
4 Fit density \C+1 =<40=(�);
5 Compute surprisal AC = − log ? (<C+1; `C+1);
6 Append � ← � ∪ {<C+1};
7 Append � ← � ∪ {>, \, 0, A, >′, \ ′};
8 if done then
9 4=E .A4B4C ();
10 Sample >, \, 0, A, >′, \ ′ ∼ �;
11 Sample >′ ∼ ? (>′|>, 0);
12 Sample \ ′ ∼ ? (\ ′|>, 0);
13 Update model parameters q by computing negative log likelihood;
14 end
15 end

129

Algorithm 11: Rolling Horizon Evolution planner with Expected Free En-
ergy evaluation
Input: Forward model ?q , number of actions �, sequence length T,

population size P, mutation rate [
1 if not shift bu�er then
2 c ← 0C , . . . , 0T ∼ �0C (�);
3 else
4 Shift c to the left and add 0T ∼ �0C (�) at the end of the sequence;
5 end
6 c ←Mutate c with rate [;
7 for C . . .Tdo
8 Simulate to construct ? (>′|>, \, 0) and ? (\ ′|>, \, 0);
9 Sample >′ ∼ ? (>′|>, \, 0);
10 Sample \ ′ ∼ ? (\ ′|>, \, 0);
11 Compute Expected Free Energy � from equation 7.11;
12 end
13 Obtain the sequence Expected Free Energy

∑T
C G(c, g) following equation

7.8;
14 Select best action sequence c ←<8=c'(c);

7.6 Experiments

We assess the behaviour of an agent in theFlappy Bird environment (fig. 7.2). This

is a task where a bird must navigate between obstacles (pipes) at different positions

while stabilising its flight. Despite the apparent simplicity, the environment

offers a fundamental aspect present in the physical world. Namely, the inherent

dynamics lead spontaneously to the termination of the agent in the environment.

The biological analogy corresponds to the functional disintegration of the agent

and the inability to maintain their essential variables within bounds. If the agent

stops propelling, it succumbs to gravity and falls. The environment also has a

constant scrolling rate, which implies that the agent cannot remain floating at a

single point and cannot survive simply by flying aimlessly.

Originally, the task provides a reward every time the bird traverses between

two pipes. However, for our set-up, the information about the rewards is never

transmitted to the agent and therefore does not have any impact on its behaviour.

130

Figure 7.2: The Flappy Bird environment.

The agent receives a feature vector of observations indicating its location and

those of the obstacles. In addition, the agent obtains a measurement E indicating

its presence in the task (i.e. 1 or 0). We again emphasise that this measurement

does not represent anything positive or negative by itself, it is simply another

signal that we assume the agent can calculate. The measurement, as elaborated

in the previous section, represents a coarse-grained internal state that acquires

significance according to the agent-environment coupling and the imperative to

minimise free energy that is assumed in active inference (figure 7.3).

Similarly to the outline in 7.3, the agent monitors the last C − : values of this

measurement and estimates the density to obtain \C . These become the statistics

describing the current approximated distribution of preferences ? (E |\C) or ?\C (E).

These \ are also used to augment the observations to GC = (>C , \C). When the

agent takes a new measurement EC , it evaluates the surprisal against ?\C−1 (EC). For

this experiment because E is a binary value we can evaluate it with a Bernoulli

131

Figure 7.3: The agent obtains a measurement E1 related to its viability in the current
environment. Initially, the agent cannot interpret this measurement but as time passes it
learns to associate the signal to a specific internal state.

density function as,

− log?\C−1 (EC) = −
(
EC log\C−1 + (1 − EC) log(1 − \C−1)

)
(7.12)

First, we train a baseline model-free surprisal minimising DQN as specified in

7.3 and parameterised by a neural network. Then we examine the behaviour

of a second agent that minimises the EFE. For the EFE agent, it learns an

augmented state transition model of the world, parameterised by an ensemble

of Neural Network (NN), and an expected surprisal model, also parameterised

by another NN (appendix E). RHE is used to generate and identify a planning

action-sequence as described in 7.5.1.

7.6.1 Simulation results

The plot in fig. 7.4 tracks the performance of an EFE agent in the environment

(averaged over 10 seeds). The dotted line represents the surprisal minimising

DQN agent after 1000 episodes. The left axis corresponds to the (unobserved)

task reward while the right axis indicates the approximated number of time steps

the agent survives. During the first trials, and before the agent exhibited any form

of competence, it was observed that the natural coupling between the agent and

environment grants the agent a life expectancy of approximately 19-62 time steps

132

Figure 7.4: Performance of an EFE agent. The left axis indicates the unobserved rewards
as reported by the task and the right axis is the number of time steps it survives in the
environment. The dotted line shows the average performance of an SM-DQN after 1000
episodes.

in the task. This is essential as it starts to populate the statistics of E . Measuring

a specific quantity E , although initially representing just another signal, begins

to acquire a particular value due to the frequency it occurs. In turn, this starts

to dictate the preferences of the agent as it hints that measuring certain signals

correlates with having a stable configuration for this particular environment as

implied by its low surprisal.

Figure 7.5 shows the evolution of parameter \ (averaged within an episode) corre-

sponding to the distribution of preferred measurements ?\ (E) which determines

the level of surprisal assigned when receiving the next E . As the agent reduces

its uncertainty about the environment it becomes more capable of associating

sensorimotor events with specific measurements. The behaviour becomes more

consistent with seeking less surprising measurements, and as we observe, this

reinforces its preferences, exhibiting the circular self-evidencing dynamics that

characterise an agent minimising its free energy.

133

Figure 7.5: Parameter \ in time, summarising the intra-episode su�cient statistics of
?\ (E).

7.7 Discussion

The main premise in active inference is the notion of an agent acting to minimise

its expected surprise. This implies that the agent will exhibit a tendency to seek

the sort of outcomes that have high prior probability according to a biased model

of the world, giving rise to goal-directed behaviour. In this chapter, we have

explored the emergence of this biased model that captures the preferences of an

agent. We constructed a scheme inspired by organismic-based considerations

of viability and various insights from the literature on the nature of agency and

adaptive behaviour (von Uexküll, 1926; Maturana and Varela, 1987; Weber and

Varela, 2002; Di Paolo, 2003, 2005, 2010; Damasio, 2004; Barandiaran et al.,

2009; Polani, 2009; Salge and Guckelsberger, 2016; Man and Damasio, 2019).

Collectively, these views suggest that the inherent conditions of precariousness

and the perturbations an agent must face are crucial ingredients for the emergence

of purpose-generating mechanisms. In that sense, our main concern has been to

explore an instance of the conditions in which a stable set of attracting states arises,

conferring value to observations and leading to what seemed like self-sustaining

dynamics even when all measurements lacked any initial functional value.

134

However, the scheme is far from being general and serves as a proof-of con-

cept. Two main difficulties arise in its application to other domains. First, we

introduce a variable associated to the agent’s internal state, which we connect to

its operational integrity. Second, we manually determine a separation between

internal and external observations and define the internal variables as the target.

For the first point, it is currently not well studied how to establish a principled

protocols to define internal states and variables in an agent. For example, in re-

search on homeostatic RL, the internal variables of interest are predefined similar

to what was presented in this chapter (Keramati and Gutkin, 2011; Cos et al.,

2013; Laurençon et al., 2021). The second point relates also to the discussion in

the previous chapter regarding the more basic problem of relevance, which is

discovering autonomously the target variable.

Agent-Environment coupling: A matter of further analysis, is the role of the

environment to provide structure to the behaviour of the agent. In the work pre-

sented here the initial set of internal measurements afforded by the environment

contributes to the formation of a steady state where the visual features inform

the actions necessary to maintain the desired internal measurements. Hence, the

initial conditions of the agent-environment coupling that furnish the distribution

? (E) provide a starting solution for the problem of self-maintenance as long as

the agent can preserve the statistics. Thus we could establish that when the agent

either lacks a sophisticated sensory apparatus or the capacity to extract invariances

from external stimuli, then tracking its internal configuration may suffice for

some situations. However, this requires further unpacking. Not only because

as discussed earlier it remains uncertain how to define the internal aspects of an

agent, but also because often simulations and tasks do not capture the essential

characteristics of real environments either.

Drive decomposition: While here we have afforded our model certain levels of

independence between the sensory data and the internal measurements, it might

be sensible to imagine that internal states would affect perception and perceptual

135

misrepresentation would affect internal states. Moreover, an agent should move

from objectives based entirely on survival to acquire other higher-level goals and

preferences. For that to occur it would have to learn to integrate and balance

these multi-level objectives. From equation C.1 we can conceive a simplified

scenario and establish the following expression (appendix F),

G(c, g) ≈ E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln? (Bg |>g , c)]︸ ︷︷ ︸
�?8BC4<82 E0;D4

− E@(>g ,Eg ,\,Bg |c) [ln? (>g)]︸ ︷︷ ︸
�86ℎ ;4E4; E0;D4

+ E@(>g ,Bg |c)� [? (Eg |Bg , >g , c)]︸ ︷︷ ︸
'46D;0C>A~ E0;D4

(7.13)

Where the goal-seeking value is decomposed into a component that considers

preferences encoded in a distribution ? (>) and another element estimating the

expected entropy of the distribution of essential variables. With this expression,

policies should balance the different contributions and resolve hypothetical sce-

narios, such as the case of a higher-level goal being at odds with the viability of

the system.

136

8 Discussion

Research in model-based agents has been bolstered on one hand by advancements

in different fronts of machine learning, and on the other by potential benefits

in sample efficiency, generalisation, or interpretability. For the author, the

context which motivated this research was due to our aim to integrate the world-

modelling techniques of the time with existing planning algorithms. We initially

found that this integration was not as trivial as expected due to catastrophic

compounding errors and the lack of architectures capable of modelling stochastic

dynamics. Influenced by the ideas of the time, our first attempt was intended to

try to increase the reconstruction accuracy. Our perspective on how to deal with

or think of the inaccuracies in the models naturally evolved and converged in

the notions presented in chapter 6 and others that we will discuss in this chapter.

The results of our efforts can be summarised as follows:

• We introduced an error-correction scheme based on ensembles. This al-

lowed us first, to get a tangible sense of how uncertain were the models

about the future due to the difference in their predictions. Second, to al-

low those multiple predictions to dictate how to correct them leading to

improved accuracy and better agent performance.

• Given a picture of forward models where uncertainty can be reduced but

will ultimately remain an integral part of the model, then the question is

how to design an architecture that accommodates it rather than trying

to ignore it. We capitalised on advancements in sequential latent variable

models to account for the uncertainty in the state transitions. We designed

137

an agent conferred with a state-space model to learn to simulate external

dynamics and with the capacity to plan in latent space, thus introducing

a latent variation of Rolling Horizon Evolution (RHE) for approximate

forward models. This could be considered as a discrete-action counterpart

of Hafner et al. (2019).

• We then extended the previous agent to also acquire a forward model of

the Q-value transitions. Different from other proposals in model-based RL

where a forward model is used to simulate experience to train and estimate

the Q-values but does not learn its forward model, here the agent acquires

it and uses it to explicitly evaluate candidate action sequences via RHE.

• The role of uncertainty in world modelling then took a different turn as

we later reflected upon the pursuit for accuracy and whether a forward

model should aim to match the environmental complexity. If an agent is

not capable of approximating it, either due to the environment’s complexity

or due to a limitation in the agent’s perceptual resources, then on what

aspects should the agent focus its efforts? What should it prioritise? And

how should we include these limitations as part of the problem specification?

Preliminarily, we decided to tackle these issues by adapting insights from

the information theory literature. We took predictive information (Bialek

and Tishby, 1999), reframed as an information bottleneck (Tishby et al.,

2000; Still, 2014), as a basis to formulate an agent-centric form of predictive

information. The expression that we proposed encourages the agent to store

essential information (e.g. its latent state) about what it predicts will also be

essential in the future (e.g. future latent state). The prediction is confined

to the same agent’s latent space. This is in contrast to a reconstructive

model that encourages the storage of information that is essential for the

reconstruction of an observation despite that some of the information ceases

to be essential in the future. Besides the expression, we also introduced a

practical training scheme by approximating mutual information bounds and

138

then integrated the novel model-learning objective with the RHE planner.

• We ended with questions about how a model can take a role that extends

beyond the prediction of the future to actively influence the behaviour of

the agent. Research in theoretical neuroscience has precipitated in the past

years towards an understanding of an agent and its interactions in terms of

probabilistic and information-theoretic constructs. A framework that has

tried to unify some of these views is active inference which in its most essen-

tial form could be interpreted as a formalisation for homeostatic behaviour.

Central to its formulation is the existence of a reference distribution that

encodes the preferences or desires of the agent. Although it has been argued

in the literature that this distribution is refined over evolutionary scales

and during the life span of the agent, it has not been shown clearly how

this distribution could arise in a self-supervised manner. Examples in the

literature predefined this desired distribution. We provided a simple example

of how an instance of this distribution could emerge as a consequence of

the statistics of the agent-environment coupling. The statistics, which are

initially spontaneous and void of significance for the agent, start to acquire

a normative character which leads to their self-reinforcement. Within the

context of the thesis then we observed how the uncertainty in the forward

model (or more precisely in this case, in a forward sub-model) can dictate

the value of the signals and therefore actively influence the behaviour of the

agent.

8.1 Outlook, limitations and future work

8.1.1 To learn or not to learn a model?

We presented motivating arguments for approaching sequential decision-making

problems with model-based approaches as opposed to model-free tools. Let us

139

consider how these arguments translated into practice during our experience

working on model-based methods.

Initially, the most noticeable aspect was the trade-off between the number of sam-

ples necessary to train a model and the time required to train it. In our experience,

model-based agents needed fewer steps to achieve some form of competence in

the tasks. However, this came at a significant increase in time and computational

requirements. The decision to construct a model entails the inclusion of several

additional components compared to model-free agents. For example, the archi-

tectures from chapter 5 required Recurrent Neural Network (RNN), Variational

Auto Encoder (VAE), and the planner in addition to learning Q-values. The

mixture of these extra components also brings other types of consequences. Each

of these components comes with its own set of hyperparameters, such as layer

size, learning rates, decay rates, training regime, number of rollouts, mutation

rate, and so on. The process of training the architecture becomes more complex

and time-consuming. Not only because of the explosion of the hyperparame-

ter space search but also due to known instabilities in training Reinforcement

Learning (RL) agents (Mnih et al., 2015; Henderson et al., 2019; Dulac-Arnold

et al., 2021). A task which increased considerably in complexity if we consider

that we have to train the other components simultaneously. Although we made

early tests in other environments such as various Atari games or Super Mario,

these factors were eventually major impediments that led us to opt for simpler

and more controlled environments.

We did not explore in detail the topic of generalisation or transferability, however,

we tested our architectures in procedurally generated Sokoban and Gridworld

environments. There are some observations we noticed on the subject from our

unpublished results. Transferability does not come for free. We observed that in

some cases it was favourable to start with a previously learned model. However,

the predictions generated by the model when applied to a new instance of the task

were too entangled. The architecture had to invest time in unlearning aspects

140

of the model it had acquired before, often making predictions that combined

dynamics from several instances of the task. We speculate that the source of

the problem is that predictions are not compartmentalised, the environment

is predicted as a whole since that is what is encouraged by the loss function

during training. Potentially research in object discovery and object-centric

representations could help to avoid some of these effects (Watters et al., 2019;

Yoon et al., 2023).

Nonetheless, this capacity to look at what the model is predicting and being

able to diagnose potential problems is certainly appealing for interpretability.

Ultimately, the answer to whether to learn or not to learn a model is, at least

for the moment, tied to the particular context we are interested in solving or

the information we have about the problem. Similar to how practitioners apply

control-theoretic or planning methods when a model is already available. It

is certainly true that model-free methods are still currently state-of-the-art in

many common benchmarks (Fan et al., 2022; Fan and Xiao, 2022) and have

been more amenable to integrating complementary extensions (Hessel et al.,

2017; Badia et al., 2020). This could also be because there is a higher volume of

research and accessibility to model-free methods compared to model-based ones.

The future outlook, however, might be that the line between model-free and

model-based could be blurrier than initially thought (Dayan, 1993; Janner et al.,

2021; Eysenbach et al., 2022; Ghugare et al., 2023).

8.1.2 On rewards

An aspect where learning a model might not just be advisable but also required is

in many principles formulated in the intrinsic motivation literature. In chapters 5

and 6 we noted that there are stages inMinipacman in which the agent is confined

to an area of the maze seemingly getting stuck. We speculated that because the

surroundings did no longer have edible cells the task effectively became a sparse

141

reward task. In this scenario adding some form of intrinsic reward to the plans

could guide the agent to explore other regions. Considering that the architecture

learns next state transitions, there are intrinsic motivation principles that could

be conveniently adapted to extend the architecture. For example, predictive

information, which we reviewed in chapter 6 has been applied in robots and

artificial agents to encourage the emergence of complex dynamics (Martius et al.,

2013, 2014). Another example is the introduction of an information gain term.

This can take different forms. For instance, as the expected amount of change

in a model (Little and Sommer, 2013), a state transition, or as the cost of action

selection (Tishby and Polani, 2011; Rubin et al., 2012) if observing an outcome.

8.1.3 What to learn?

In our work, we have let the gradients flow unrestricted throughout the whole

architecture. At first glance, this could appear as nothing more than a trivial

technical decision. Often in publications, there is no mention of whether the

gradients flow unrestricted and this only becomes apparent if the source code

is publicly available. In other cases, it is mentioned that representation learning

is kept separated from control or task learning although the rationale behind

this decision is not provided. Outside of model-based RL, there has been debate

on whether perception and representation learning should be learned separately

from policy learning. A reason to proceed in this manner is that there can be

a discrepancy between the complexity required to learn a policy and the one

required for extracting visual features (Cuccu et al., 2019). It is argued that

in many cases, the policy required to achieve a task can be relatively simple,

but because the architecture has to deal with the larger complexity of learning

higher-level features it might interfere with the acquisition of a good policy.

Thus having a dedicated component to focus on the policy could lead to improved

performance. Another part of the issue is that the feedback provided from the

142

reward signal can be insufficient to learn adequately both problems (Stooke et al.,

2021). It remains unknown to what extent these arguments hold, for example, in

the model-based setting where the prediction of additional targets provides extra

sources of supervision. Prominent architectures in model-based RL such as those

proposed in World Models (Ha and Schmidhuber, 2018), Dreamer (Hafner et al.,

2020, 2022) or SLAC (Lee et al., 2020) have maintained the separation between

the perceptual component and the controller. Here, although we made the

deliberate decision to let the gradients flow freely to influence the representations,

We did not find that it affected the stability during training. On the contrary,

we found that it increased the performance in the tasks.

Recently, there have been theoretical arguments in RL that outline some of the

properties of value-based forward models such as those learned by MuZero. The

main argument is that there exists a class of models that are value-equivalent for a

space of policies and value functions if all of the models within the class produce

the same updated value function (Grimm et al., 2020, 2021). In other words,

there are agents with different models of the dynamics of the environment but

with equivalent performance. Thus, for example, it could be possible that there

might be agents with non-reconstructive forward models that produce the same

value estimation as an agent with a perfect model of the environment. In a

pragmatic sense, we have seen that purely value-based models such as the Value

Prediction Network or MuZero have effectively bypassed the need to reconstruct

the environment by relating the representations directly to aspects of control.

However, these have also been shown to be less sample efficient compared to

reconstructive architectures (Schrittwieser et al., 2020; Hafner et al., 2022).

There will likely be technical improvements that will accelerate the way we

learn these control-related targets. Alternatively, we can also speculate that

there exists additional targets or constraints to encourage representations with an

increased amount of actionable information from the environment to facilitate

decision-making. We have attempted to operationalise this intuition in chapter

143

6 where we showed that in some scenarios an agent whose representations aim

to predict their future latent states could be more advantageous than an agent

whose objective is to represent the external environment. In the next section, we

elaborate further on how to refine and expand this idea.

8.1.4 Targets for non-reconstructive models

Let us make a few speculations about potential refinements to the ideas developed

in chapter 6. As we have seen, an agent with an imperative to learn representations

of the world for its own sake has to maintain the information that is necessary

for the reconstruction of external observations. On the other hand, we could

alternatively interpret the flow of sensory data as an opportunity for the agent to

collect information to determine potential actions rather than for reconstruction.

The degrees of freedom of the agent’s behavioural repertoire cannot match the

degrees of freedom and complexity of the environment (Ashby, 1958). Therefore,

it is reasonable to assume that there is less incoming information that is necessary

for the agent to decide than to reconstruct a snapshot of the environment. As

a starting point, we could then define, for example, the following information

bottleneck:

min
@(I |G)
[� (-C ;/C) − � (/C ;�C)]

which expresses that the representation /C at time C is going to limit the amount of

information that is extracted from the sensory stream -C while maintaining that

which is maximally informative for action �C . This type of strategy is reminiscent

of information-theoretic approaches of the perception-action loop where a trade-

off determines a relationship between the sensory stream and action (Polani et al.,

144

2006; Still, 2009).1,2

We can also extend this analysis to the realm of predictive information. In chapter

6 we noted that predictive information as it is, is formulated as a measure of the

structural complexity of a process rather than from the agent-centric view that

we require. If only a fraction of the data from the past is required to predict

future data then we can also assume that most of the future data is irrelevant to

the prediction of subsequent futures. Moreover, for an agent, the presumption of

predictive information, as it is, would be again to consider that its objective is

the prediction of the future rather than the prediction of the part of the future

that is relevant to its decision-making. We considered then that the latent future

factors could be used to constrain a part of the future that is significant for the

agent. However, we noted in the discussion that the selection of these relevant

variables is an open question. Some analyses have recognised that adaptive value,

by which we mean factors that are beneficial or detrimental for an agent, plays a

crucial role in determining what are the relevant variables within a particular

context (Bialek et al., 2006; Taylor et al., 2007; Kolchinsky and Wolpert, 2018;

Pedraza et al., 2018). Moreover, adaptive value may serve as a criterion to bridge

predictive capacity and optimal performance (Bialek et al., 2006). This suggests

that we could extend our analysis to connect it with utility and decision-making.

For instance, we could modify the information bottleneck in eq. 6.9 to connect

1However, in Polani et al. (2006) the rate-distortion tradeoff minc � (-C ;�C) − E[+ (-C , �C)] does
not explicitly include an intermediate representation /C . Instead, the action�C itself acts as a form
of representation. To select a potential action an agent must limit the amount of information it
takes from the sensory stream -C . The second term of the tradeoff instructs the agent to select
the action that maximizes the expected value at a particular state. This effectively connects the
information extracted from the environment to the attainment of an incentive, which we have
not elaborated on at this moment.

2 In the case of Still et al. (2012) they define a predictive information tradeoff
maxc,? (I |ℎ) [� ({/C , �C };-C+1) − � (/C ;�) − � (�C , �)] where there is access to a history � of past
observations of arbitrary size. As we know from predictive information, the representation /C
discards as much information from the past while maximising what it can predict about the
future. In this case the future observations -C+1. Similar to Polani et al. (2006) the agent aims to
extract as little information as possible from the past sensory stream to take an action. However,
here the tradeoff is not connected directly to a utility (e.g. value maximisation) beyond the
prediction of the future.

145

more explicitly the representations to the value of future potential actions:

min
@(IC :C+1 |>C :C+1)

[� ({$C , /C−1, �C−1};/C) − � ({/C , �C };&C+1)] (8.1)

this expression then indicates the following: an agent should aim to store and

represent the information from the past and present that is going to be relevant

in the future towards the prediction of Q-values, which in turn, help to guide

its action selection. The previously described architectures of Value Prediction

Networks (Oh et al., 2017) and MuZero (Schrittwieser et al., 2020) could be

considered as precedents close to this treatment. As we briefly described, these

architectures predict the current value and policy from observations without try-

ing to reconstruct them, thus we could interpret them as implicit bottlenecks of

the present that estimate the value and policy for the current time step. Nonethe-

less, besides being deterministic, these architectures follow a greatly different

learning scheme and structure compared to the strategies pursued in this thesis.

Most crucially, however, their forward model is not oriented towards forms of

predictive information. This is in the sense that the value and policy estimates

at time C + : are based on the actual or simulated embedding also at time C + :.

This is in contrast, for instance, to the prediction of a value at C + : + 1 from an

embedding at C +: . Another closely related approach is the previously mentioned

rate-distortion trade-off between information and expected utility proposed by

Polani et al. (2001, 2006). The objective encourages an agent to learn policies that

commit to using the least amount of information to attain an expected amount

of utility and can be optimised as a single free energy functional to solve Markov

Decision Process (MDP) (Tishby and Polani, 2011; Rubin et al., 2012). In our

case, our hypothetical objective is not concerned with learning a policy directly

but rather with acquiring representations that are then used for online planning.

146

8.1.5 Goal, Drives, and Motivations

Another crucial aspect that determines what is relevant at a given moment is the

goal or the objective of an agent. In chapter 7 we had a small incursion away

from the classic specification of exogenous rewards and the reward maximisation

scheme from RL. However, in this thesis, we have largely ignored this element

of behaviour. It can be argued that reward maximisation encodes implicitly a

drive and some form of proto-intentionality, but it offers little interpretability

regarding the skills and goals an agent may have. Moreover, reward misspec-

ification can lead to well-known problems in RL such as reward exploitation

or sparse reward tasks. For active inference schemes, we have seen how the

notion of a distribution of preferences can be a more expressive alternative to a

scalar reward, but in previous work, this distribution has also been predefined

externally. We showed a proof-of-concept of how it could emerge and evolve in

a self-supervised manner from the statistics of the agent-environment coupling.

However, without further research into a formal notion of the internal state of

an agent, it will remain challenging to scale to more complex scenarios.

We could then take an intermediate approach to relate the effects of an agent’s

goals to the formation of representations and forward models. Goal conditioned

RL (Schaul et al., 2015; Andrychowicz et al., 2018), augments the RL tuple with

the inclusion of an additional variable 6 that defines the current goal. Then it

becomes possible to express & (B, 0;6) as the expected utility that an agent can

obtain if it takes action 0 from a state B according to a goal 6. Although it is

still necessary to define metrics to obtain pseudo-rewards, the opportunity to

contextualise the value of a state-action pair depending on a goal offers increased

flexibility. From the perspective of the themes that concern us in this thesis,

the goal could act as an additional constraint to prevent the architecture from

learning representations that merely try to map external observations and instead

encourage it to extract information that is relevant to the behavioural needs of

147

the agent. From what we have discussed in the previous section we can conceive

two hypothetical scenarios to explore in the future. The first is the extension

of chapters 5 and 6. Similar to the way that an action informs the architecture

that a transition must be learned for a specific action, the inclusion of a goal in

a Q-function provides extra information about the particular kind of transition

we want to learn. Therefore this could result in Q-value models learned for

outcomes that are more compatible with the agent’s objectives. The second

scenario follows from eq. 8.1 where&C+1 would correspond to a goal conditioned

Q-value. The representation /C would then capture information that is relevant

for the prediction of Q-values as determined by the agent’s goals rather than for

any future Q-value.

8.1.6 Architecture enhancements

From a technical standpoint, there are also several improvements that we could

apply to the architectures. The ensemble approach used in chapters 3 and 7

could be extended to include the State Space Model (SSM) architectures. It

could allow us not only to consider the model uncertainty of the state transitions

or the Q-values but also to simulate the variance of future time steps. Other

promising advancements have been recently published during the completion

of this thesis. For example, Micheli et al. (2022) presented an architecture that

learns environment dynamics using a Transformer (Vaswani et al., 2017), a neural

network module commonly used in language tasks. It considers that the image

tokens generated by an autoencoder can be considered part of a language. In our

architectures, the Transformer would substitute the RNN to process temporal

dependencies. Unlike RNNs, Transformers can process every step of a sequence

simultaneously which facilitates the discovery of intricate relationships among

multiple steps which has been said to resemble a form of attention. In the specific

architecture in Micheli et al. (2022) the learned model is used by the agent to

148

learn a policy in latent space similar to Dreamer (Hafner et al., 2020, 2022) and

SLAC (Lee et al., 2020) but not for online planning. Integrating it within our

architecture would allow the learned models to also be used to simulate planning

sequences.

8.2 Final words

Our central concern in this thesis has been how to plan and act despite the presence

of uncertain dynamics reflected in an agent’s internal model. The theme has

converged towards the necessity to think about how these limitations could be a

fundamental part of the design of perceptual, learning, and behavioural strategies.

The question is broad, and the themes explored in this thesis are merely a few of a

multitude of factors to consider for the integration between world modelling and

decision-making. The task is an all-encompassing cognitive problem that spans

a wide array of functions and mechanisms ranging from memory to attention

and categorisation. It entails a series of open questions, challenges, and technical

breakthroughs, as well as a deeper conceptual understanding of the perception-

action loop to provide a refinement or a new perspective in the formulation of

the elements involved in the interaction between an agent and the environment.

149

A Preliminaries

A.1 Reinforcement Learning
RL is a normative paradigm concerned with the process of training an agent

through trial and error with the intention that the agent learns to become com-

petent at a task. Inspired by the behavioural psychology literature, central to the

formulation of RL is the notion of reward (i.e. and punishment as a negative

reward), that serves to encourage or discourage certain behaviours.

The RL framework is formalised in the following manner. Consider an agent

that interacts with an environment in discrete time. At every time step C the agent

observes a state BC ∈ S and selects an action 0C ∈ A according to a policy c ∈ Π.

Depending on the case this policy might be stochastic and defines a distribution

over actions thus 0C ∼ c (0 |B). Once the environment registers the action selected

by the agent it emits a new observation BC+1 and a reward AC+1 ∈ R.

Figure A.1: The reinforcement learning agent-environment loop.

RL operates under the assumption of the reward hypothesis (Sutton and Barto,

1998). The objective is to acquire an action policy that maximises the expected

150

cumulative reward

�C =

∞∑
:

W:AC+: (A.1)

also known as the return � . Here W is a discount factor that makes the sum well-

defined for infinite sums and determines the importance of immediate rewards

in relation to distant rewards. Historically, RL methods have fallen into three

major different categories:

• Value-based methods (Watkins and Dayan, 1992; Rummery and Niranjan,

1994) that find approximate solutions to the Bellman equation (Bellman,

1952) through the estimates of the value of a state.

• Policy gradient methods (Williams, 1992) that operate directly in the space

of policies by searching for parameters that improve the performance of the

policies.

• Actor-critic methods (Konda and Tsitsiklis, 1999) that combine both ap-

proaches, by using the state-value estimates to guide the policy search.

For the context of the thesis, we limit our review to the value-based approach in

the next section.

A.1.1 Value-based methods

These methods depend on the accurate estimation of state-value functions to

inform how the agent should act in specific states. The state-value functions

denote the expected return an agent would obtain by following a policy c from

a state B and can be formulated as

+ c (B) , Ec

[∑
:

W:AC+:
��B = BC] (A.2)

151

In addition, one can also define the action-value function & to determine the

expected return from taking a specific action

&c (B, 0) , Ec

[∑
:

W:AC+:
��B = BC , 0 = 0C

]
(A.3)

which can be decomposed by expressing it in the recursive Bellman expectation

equation form

&c (B, 0) = Ec [AC + W+ c (BC+1)] (A.4)

the objective for the agent can be summarised in two parts, it has to attempt to

find the optimal Q-function over policies

&★(B, 0) = max
c
&c (B, 0) (A.5)

and act according to the optimal policy based on the optimal Q-function

c★(0 |B) = argmax
0
&★(B, 0) (A.6)

A.1.2 Model-Based Reinforcement Learning

Thus far there has been no explicit mention of the transition function that

determines the underlying dynamics of the environment. The previous section

described an agent that remains agnostic to it and derives its behaviour from the

estimates supported by the value functions. Although it can be suggested that the

value functions encapsulate a form of rudimentary knowledge of the future, the

agent is model-free. That is, the agent is reactive and acts given only the present,

as it does not explicitly simulate the future to assess hypothetical scenarios.

152

Let us first consider an equivalent way to specify equation A.4

&c (B, 0) =
∑
B ′

T0BB ′
[
R0B + W

∑
B ′
c (0′|B′)&c (B′, 0′)

]
(A.7)

Here T0
BB ′ = ? (BC+1 = B′|0C = 0, BC = B) is the transition function that maps the

probability of going from state B taking action 0 to a next state B′. R0B = E[A |B, 0, B′]

is the expected reward received when transitioning from B taking action 0 to B′.

What the equation tells us is that while the value functions depend on the laws of

the environment, the agent does not have to know what these are. The agent

is only concerned with estimating the value functions given the samples it has

gathered during the interaction with the environment.

As we began to motivate in the introductory chapter, we are particularly inter-

ested in the advantages and the foresight that an agent potentially gains with a

model of the environment. Thus an agent has to learn to estimate the conditional

? (BC+1 |BC , 0C) and more concretely

? (B0, 00, ...B) , 0)) = ? (B0)
)∏
C

c (0C |BC)? (BC+1 |BC , 0C) (A.8)

we can consider a trajectory g as a sequence of states and actions g = {B0, 00, ..., B) , 0) }.

Therefore the agent must learn to simulate the transitions that occur up to the

time horizon) in the future. With this model, the agent should be able to

simulate potential outcomes and find a policy

c = argmax
c
Eg∼? (g)

[∑
C

A (BC , 0C)
]

(A.9)

that maximises the expected sum of rewards according to the forward model.

153

A.2 Information Theory

A.2.1 Self-Information

The self-information, also known as information content, surprise, or surprisal,

measures the amount of information gained from the observation of a single

event or outcome G ∈ - .

� (G) = − log? (G) (A.10)

the less probable an event the larger the self-information, and accordingly, an

event that is highly probable provides a low information content.

A.2.2 Entropy

The Shannon entropy is the expected value of self-information of a random

variable - . It is defined as

� (-) = −
∑

? (G) log? (G)

= E? (G) [� (G)] (A.11)

intuitively, entropy quantifies the level of uncertainty about the outcome of - .

That is, entropy measures the amount of uncertainty of the entire distribution.

The more uniform a distribution is, the higher the entropy and therefore the

larger the reduction in uncertainty once an outcome is observed.

154

A.2.3 Conditional Entropy

The conditional entropy considers the inclusion of another random variable .

and measures the amount of uncertainty that remains in - if . is known

� (- |.) = −
∑
~

? (~)
∑
G

? (G |~) log? (G |~) (A.12)

A.2.4 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence measures how different two distributions

? and @ are

� ! [? | |@] =
∑

? (G) log ? (G)
@(G) (A.13)

the KL divergence is widely used in machine learning because often it is necessary

to approximate an intractable distribution ? with another distribution @. The KL

divergence admits various interpretations. A way to think about it is a measure of

the amount of information lost if approximating ? via a particular distribution @.

Formally, the KL is a divergence and not a true metric. It cannot measure

the distance between @ and ? because it is not symmetric, and thus generally

� ! [? | |@] ≠ � ! [@ | |?], as they entail two different forms of approximating ?.

� ! [? | |@] is known as the forward KL divergence, and using it as optimisation

objective, it exhibits mean seeking, zero avoiding and inclusive behaviour. While

the reverse KL divergence � ! [@ | |?] is mode seeking, zero forcing, and exclusive.

A.2.5 Mutual Information

It was mentioned that the conditional entropy� (- |.) accounts for the remaining

uncertainty in- if . is known. If instead, the intention is to measure the expected

155

amount of information that is gained from- by observing. , this can be calculated

with the mutual information

� (- ;.) = � (-) − � (- |.) = � (.) − � (. |-) (A.14)

therefore high mutual information denotes a large reduction in uncertainty. It

can also be expressed as

� (- ;.) = � ! [? (-,.) | |? (.)? (.)] (A.15)

in this form, it can be observed more clearly that the mutual information is

zero if - and . are independent. That is, observing - or . does not reduce the

uncertainty of the other.

A.3 Variational Inference

The major idea behind Bayesian statistical inference is to learn about unobserved

variables from observed data and reason about their uncertainty. Assume I is the

hidden variable of interest and G is the observed data. Inferring I from G can be

done through Bayes’s theorem

? (I |G) = ? (G, I)
? (G)

=
? (G |I)? (I)∫
? (G |I)? (I)3I

(A.16)

The main obstacle in estimating this expression lies in the marginal density ? (G)

which tends to be a high-dimensional and intractable integral. As a consequence,

156

exact inference is for most situations unattainable and therefore approximation

methods must be used to estimate the posterior ? (I |G). Among the most popular

include Markov Chain Monte-Carlo (MCMC) (Metropolis et al., 1953) and

other MCMC-based sampling methods such as the Gibbs sampler (Geman and

Geman, 1984) orHamiltonianMonte Carlo (Duane et al., 1987). MCMC schemes

are unbiased, therefore they converge to the true posterior in time. However,

this process can also be slow. An alternative approach is to recast the process

of inference as an optimisation problem through the principles of variational

inference. The optimisation objective can be expressed in the following way

@★(I |G) = argmin
@(I |G)∈Q

� !
[
@(I |G) | |? (I |G)

]
(A.17)

thus the intention is to find a simpler proposal distribution @(I |G) (often simply

denoted as @(I)) that approximates the true posterior ? (I |G) as close as possible.

Decomposing the � ! [@(I |G) | |? (I |G)] we obtain

� ! [@(I |G) | |? (I |G)] =
∫

@(I |G) log @(I |G)
? (I |G)3I

=

∫
@(I |G) log @(I |G)? (G)

? (I, G) 3I

=

∫
@(I |G) log @(I |G)? (G)

? (I, G) 3I

=

∫
@(I |G) [log@(I |G)? (G) − log? (I, G)]3I

=

∫
@(I |G) [log@(I |G) + log? (G) − log? (I, G)]3I

=

∫
@(I |G)

[log@(I |G)
? (I, G) + log ? (G)

]
3I

= � ! [@(I |G) | |? (I, G)] + log? (G) (A.18)

which as expected, shows that for the objective to be � ! [@(I |G) | |? (I |G)] = 0 it is

157

necessary to take into account the intractable marginal ? (G). For the moment, let

us concentrate instead on the first term which minimises the divergence between

the variational posterior @(I |G) and the joint ? (I, G). This can be decomposed

into

� ! [@(I |G) | |? (I, G)] =
∫

@(I |G) log @(I |G)
? (I, G)3I

=

∫
@(I |G) log @(I |G)

? (G |I)? (I)3I

=

∫
@(I |G) [log@(I |G) − log? (G |I)? (I)]3I

=

∫
@(I |G) [log@(I |G) − log? (G |I) − log? (I)]3I

(A.19)

if instead of minimising this expression we perform the equivalent operation of

maximising it, we can refer to it in statistics as the Evidence Lower Bound (ELBO),

which can be decomposed as

−� ! [@(I |G) | |? (I, G)] = −
∫

@(I |G) [log@(I |G) − log ? (G |I) − log? (I)]3I

(A.20)

= −
∫

@(I |G)
[
log

@(I |G)
? (I) − log? (G |I)

]
3I

=

∫
@(I |G) log? (G |I)3I −

∫
@(I |G) log @(I |G)

? (I) 3I

ELBO = E@(I |G) [log? (G |I)]︸ ︷︷ ︸
'42>=BCAD2C8>=

−� ! [@(I |G) | |? (I)]︸ ︷︷ ︸
�><?;4G8C~

(A.21)

the last decomposition provides an intuitive view of the ELBO through the trade-

158

off between its two terms. The reconstruction term assesses the capacity of the

variational density@(I |G) to generate latent samples I that can be transformed back

into the original G . While the complexity acts as a penalty or cost, regularising

the objective. It ensures that the variational density @(I |G) does not deviate too

far away from the prior ? (I).

It is also now possible to recontextualise equation A.18 in terms of the ELBO as

� ! [@(I |G) | |? (I |G)] = −ELBO + log? (G) (A.22)

Because a � ! ≥ 0 then

log? (G) = ELBO + � ! [@(I |G) | |? (I |G)]

log? (G) ≥ ELBO (A.23)

which confirms the role of the ELBO in providing a lower bound for the marginal

likelihood or evidence ? (G).

From a practical perspective, a variational autoencoder (Kingma and Welling,

2014; Rezende et al., 2014) is a way to implement the principles of variational

inference through neural networks. The variational density is parameterised by

the weights q as @q (I |G). Then the process consists in training the networks to

find the set of weights that maximises the ELBO

q★ = argmax
q
ELBO (A.24)

159

A.3.1 Deriving the ELBO via the log marginal likelihood

In the inequality A.23 it was shown that the ELBO in addition to providing a

tractable objective for approximating ? (I |G) also provides an approximation of

the marginal itself. Being able to estimate the marginal is especially relevant,

for instance, in unsupervised learning where a core idea is to perform density

estimation on a dataset. By approximating the underlying data distribution ? (G)

then it is possible to have a generative model from where to sample data. Besides

the derivation from the variational objective in A.17, it is also possible to derive

the ELBO directly from the log marginal in the following way

log? (G) = log
∫

? (G |I)? (I)3I

= log
∫

@(I |G)
@(I |G)? (G |I)? (I)3I

= log
∫

? (G |I)
@(I |G)@(I |G)? (I)3I

= logE@(I |G)
[
? (G |I)
@(I |G) ? (I)

]
≥ E@(I |G)

[
log

? (G, I)
@(I |G)

]
, ELBO

(A.25)

160

B Bootstrapped Transition Functions

and Error-Correction Architecture

The model of the environment is learned through a multi-layer Convolutional

Neural Network (CNN) followed by a fully-connected layer. The CNN receives

as input the current observation of size 15 x 19 x 3, and it is concatenated with

a broadcasted one-hot representation of the last action selected by the policy.

The CNN consists of an initial convolutional layer followed by two blocks, each

formed by a pool-and-inject layer that attempts to capture long-range temporal

dependencies (Racanière et al., 2017). This layer acts by applying a max-pool

operation to the feature maps and broadcasts the result by preserving the size and

concatenating it with the original input. The output from the pool-and-inject

layer is passed through two double convolutional layers in parallel. Both outputs

are concatenated and passed further to another convolutional layer. Then the

output is concatenated with the original input and passed on to the next basic

block. Finally, the output travels separately through another convolutional layer

and a fully-connected layer on one hand, and on the other through two convo-

lutional and a fully connected layer, to produce the next predicted observation

and reward respectively. ReLU is used for all the non-linearities in the network.

The network output corresponds to the categorical representation of every cell

in the next predicted frame and the predicted reward. The frame and the reward

are transformed into their original format and passed on to the agent to continue

the cycle. The network is trained to predict these outputs by stochastic gradient

161

descent on the cross-entropy loss between predictions and actual data.

Accordingly, BTF and BTF+RPF multi-headed networks generate frames

and rewards. As outlined in section 3.4.2, RPFs require a prior provided by an

additional neural network with fixed parameters. The prior network maintains

the same structure, inputs, and outputs as the bootstrapped network. The full list

of hyperparameters used during model learning and planning is listed in table

B.1.

Environment Model

Training steps 50000 Number of heads 10
Mask sampling 0.5 Prior scale (RPF) 1
Optimiser Adam Learning rate 1e-5
Gradnorm 0.5 Buffer size 100000
Minibatch size 32 Min buffer size 5000

Rolling Horizon Evolution

Sequence length 1, 5, 10, 20 Population size 10
Mutation rate 0.9 Shift-buffer True

Table B.1: Hyperparameters.

162

C Expected Free Energy with mea-

surements E

We consider a generative model ? (B, >, E |c) for the EFE equation and obtain

a joint distribution of preferences ? (>, E). If we are interested exclusively in

E , assuming and treating > and E as if they were independent modalities, and

ignoring > we obtain:

G(c, g) = E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln? (Bg , >g , Eg |c)] (C.1)

≈ E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln@(Bg |, >g , Eg , c) − ln? (>g , Eg)]

≈ E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln@(Bg |, >g , Eg , c) − ln? (>g) − ln?\ (Eg)]

≈ E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln@(Bg |, >g , Eg , c) − ln?\ (Eg)]

≈ −E@(>g ,Eg ,\ |c)� ! [@(Bg |, >g , Eg , c) | |@(Bg |c)] − E@(Eg ,\,Bg |c) [ln?\ (Eg)]

(C.2)

163

D Novelty and salience

The derivation is equivalent to those found in the classical tabular descriptions of

active inference where instead of learning transitions via a function approximator,

a mapping from hidden states to observations is encoded by a likelihood matrix

A. In the tabular case, the beliefs of the probability of an observation given a

state are contained in the parameters 08 9 , which are updated as the agent obtains

a particular observation.

164

G(c, g) = E@(>g ,Bg ,Eg ,q |c) [ln@(Bg , q |c) − ln? (>g , Eg , Bg , q |c)]

= E@(>g ,Bg ,Eg ,q |c) [ln@(q) + ln@(Bg |c)

− ln? (q |Bg , >g , Eg , c) − ln? (Bg |>g , Eg , c) − ln? (>g , Eg)]

≈ E@(>g ,Bg ,Eg ,q |c) [ln@(q) + ln@(Bg |c)

− ln@(q |Bg , >g , Eg , c) − ln@(Bg |>g , Eg , c) − ln?\ (Eg)]

≈ E@(>g ,Bg ,Eg ,q |c) [ln@(Bg |c) − ln@(Bg |>g , Eg , c)]

+ E@(>g ,Bg ,Egq |c) [ln@(q) − ln@(q |Bg , >g , Eg , c)]

− E@(>g ,Bg ,Eg ,q |c) [ln? (Eg)]

≈ −E@(>g ,Bg ,Eg ,q |c) [ln@(Bg |>g , Eg , c) − ln@(Bg |c)]

− E@(>g ,Bg ,Eg ,q |c) [ln@(q |Bg , >g , Eg , c) − ln@(q)]

− E@(>g ,Bg ,Eg ,q |c) [ln? (Eg)]

≈ −E@(>g ,Eg ,q |c)
[
� ! [@(Bg |>g , Eg , c) | |@(Bg |c)]

]︸ ︷︷ ︸
B0;84=24

− E@(>g ,Eg ,Bg |c)
[
� ! [@(q |Bg , >g , Eg , c) | |@(q)]

]︸ ︷︷ ︸
=>E4;C~

− E@(>g ,Eg ,Bg ,q |c) [ln? (Eg)]︸ ︷︷ ︸
8=BCAD<4=C0; E0;D4

(D.1)

165

E Active Inference Implementation

We tested on the Flappy Bird environment (Tasfi, 2016). The environment sends

a non-visual vector of features containing:

• the bird ~ position

• the bird velocity.

• next pipe distance to the bird

• next pipe top ~ position

• next pipe bottom ~ position

• distance from the bird to the pipe after the next

• top ~ position of the pipe after the next

• bottom ~ position of the pipe after the next

The parameter \ of the Bernoulli distribution ? (E) was estimated from a measure-

ment bu�er (i.e. queue) containing the last # values of E gathered by the agent.

We tested the agents with large buffers (e.g. 206) as well as small buffers (e.g. 20)

without significant change in performance. The results reported in fig. 7.4 and

7.5 were obtained with small-sized buffers as specified in the hyperparameter

table below.

The DQN agent was trained to approximate with a neural network a Q-function

&q ({B, \ }, .). For our case study B = > , and contains the vector of features. \ is the

parameter corresponding to the currently estimated statistics of ? (E). An action

is sampled uniformly with probability n otherwise 0C = min0&q ({BC , \C }, 0). n

decays during training.

166

For the EFE agent, the transition model ? (BC |BC−1, q, c) is implemented as a

N({BC , \C }; 5q (BC−1, \C−1, 0C−1), 5q (BC−1, \C−1, 0C−1)).

Where 0 is an action of a current policy c with one-hot encoding and 5q is an

ensemble of neural networks which predicts the next values of B and \ . The

surprisal model is also implemented with a neural network and trained to predict

directly the surprisal in the future as 5b (BC−1, \C−1, 0C−1) = − ln?\C−1 (EC).

To calculate the expected free energy in equation 7.11 from a simulated se-

quence of future steps, we follow the approach described in appendix G in

Tschantz et al. (2020) where they show that an information gain of the form

E@(B |q)� ! [@(q |B) | |@(q)] can be decomposed as,

E@(B |q)� ! [@(q |B) | |@(q)] = −E@ (q)� [@(B |q)] + � [E@(q)@(B |q)] (E.1)

with the first term computed analytically from the ensemble output and the

second term approximated with a k-NN estimator (Beirlant et al., 1997).

167

Hyperparameters DQN EFE

Measurement E buffer size 20 20

Replay buffer size 106 106

Batch size 64 50

Learning rate 1−3 1−3

Discount rate 0.99 -

Final n 0.01 -

Seed episodes 5 3

Ensemble size - 25

Planning horizon - 15

Number of candidates - 500

Mutation rate - 0.5

Shift buffer - True

168

F Drive decomposition

G(c, g) = E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln? (Bg , >g , Eg |c)]

= E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln? (Eg |Bg , >g , c) − ln? (Bg , >g |c)]

= E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln? (Bg |>g , c) − ln? (>g) − ln? (Eg |Bg , >g , c)]

≈ E@(>g ,Eg ,\,Bg |c) [ln@(Bg |c) − ln? (Bg |>g , c)] − E@(>g ,Eg ,\,Bg |c) [ln? (>g)]

+ E@(>g ,Bg |c)� [? (Eg |Bg , >g , c)]

(F.1)

169

G State-Space Models architectures

Observation embedding: A 3×64×64 or a 3×28×28 array, for the global and

local case respectively, passes through a four-layer CNN with output sizes of 32,

64, 128 and 256, kernels of 4×4 and stride 2. The exception is when the network

receives a local observation, if that occurs, the kernel in the last convolutional

layer is of size 1. All the activation functions are ReLU. The output is passed

further to a linear layer to produce an embedding of size 100.

Transition model: An embedding of the stochastic state, action, and determin-

istic state is passed through a GRU to obtain the next deterministic state. The

next stochastic state is sampled by applying the reparameterisation trick.

Observation model: For decoding an observation an embedding of the latent

states is passed through a deconvolutional network with four layers with outputs

128, 64, 32, and 3. The kernels 5, 5, 6, and 6, and stride 2 for global observations.

For local observations, the kernels are 2, 3, 5, and 4. ReLU is used for all activation

functions.

Reward model: The embedding of the latent states is passed through a three-

layer feed-forward neural network with hidden size 100 and ReLU activation

functions.

G.1 Q-Model SSMs

Q-value model: Follows the same construction as the reward model.

170

G.2 NR-SSMs

For the InfoNCE objective, we use a bilinear model with an output of size 100.

G.3 Hyperparameters

SSM NR-SSM

Training

World Model learning rate 2e-4 2e-4

Value learning rate 8e-5 8e-5

NCE learning rate - 3e-4

Epsilon 1e-4 1e-4

KL weight 1 1

KL balance 0.7 0.7

Embeddings

Observation 100 100

Deterministic 100 100

Stochastic 32 32

Replay buffer

Buffer size 10000 10000

Seed steps 4000 4000

Batch size 50 50

Batch sequence size 8 8

Planning

Planning horizon 20 20

Candidates 300 300

Mutation rate 0.5 0.5

Shift buffer True True

171

H InfoNCE

InfoNCE (van den Oord et al., 2019) belongs to a family of unsupervised loss

functions known as Noise Contrastive Estimation (NCE) (Gutmann and Hyväri-

nen, 2010). Originally the objective of these methods was to approximate a

conditional model ? (G |2), for instance, to be able to predict G given context 2.

These methods simplify and substitute the problem of estimating ? (G |2) with

the problem of learning a binary classifier to determine whether a data point

has been sampled from ? (G |2) or from an arbitrarily defined noise distribution

@(G). We form positive pairs (G, 2) sampled from the ? (G |2) and assign them the

label . = 1. Correspondingly, we can also form negative pairs (G′, 2) where G′ has

been sampled from the noise distribution @(G) and assign the label . = 0. The

NCE objective maximises the log-likelihood ? (. |G, 2) and learns a score function

5\ (G, 2) ≈ ? (G |2)1 which associates larger scores to positive pairs and lower scores

to negative pairs.

This general approach has been extended to a multi-class setting (Jozefowicz

et al., 2016; Sohn, 2016). Instead of determining whether a single sample comes

from the conditional or from the noise distribution, the question becomes which

of the : samples comes from the conditional distribution ? (G |2). This leads to

some important differences. In the loss function, the score function that arises

does not approximate the conditional model ? (G |2) but instead, it is proportional

1This is assuming self-normalisation /\ (2) ≈ 1.

172

to a density ratio ? (G |2)
? (G) . The loss function is defined as:

L = −E
[
log

5\ (G, 2)∑
G ′∈- 5\ (G′, 2)

]
(H.1)

Where the score function 5\ = 4G? (6\ (G, 2)) and 6\ () corresponds to a similarity

function. InfoNCE assumes that the noise distribution @(G) is the marginal ? (G),

and relates the ratio 5\ (G, 2) ∝ ? (G |2)
? (G) and the loss function to the information that

we gain when we provide 2 to predict G . We can illustrate it as

� (G ; 2) =
∑
G,2

? (G, 2) log ? (G |2)
? (G) ∝

? (G |2)
? (G) = 5\ (G, 2) (H.2)

This connection implies that the minimisation of the loss function maximises a

lower bound on the mutual information. Thus similar to NCE, the score function

measure the degree to which G is associated with 2. In practice, InfoNCE has

been extensively used in representation learning to train neural networks to learn

to produce embeddings that preserve information between positive pairs. This is

also the context in which we have applied InfoNCE in this thesis, to preserve the

part of the present and past that informs about the agent’s future latent state.

173

8 Bibliography

Agostini, A. and Celaya, E. (2010). Reinforcement Learning with a Gaussian

mixture model. In The 2010 International Joint Conference on Neural Networks

(IJCNN), pages 1–8.

Aguilera, M., Millidge, B., Tschantz, A., and Buckley, C. L. (2022). How

particular is the physics of the free energy principle? Physics of Life Reviews,

40:24–50.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. (2016). Deep variational

information bottleneck. arXiv preprint arXiv:1612.00410.

Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-A., andHjelm, R. D. (2020).

Unsupervised State Representation Learning in Atari. arXiv:1906.08226 [cs,

stat].

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,

McGrew, B., Tobin, J., Abbeel, P., and Zaremba, W. (2018). Hindsight

Experience Replay.

Asadi, K., Misra, D., Kim, S., and Littman, M. L. (2019). Combating the

Compounding-Error Problem with a Multi-step Model. arXiv:1905.13320 [cs,

stat].

Ashby, W. R. (1958). Requisite variety and its implications for the control of

complex systems. In Facets of Systems Science, pages 405–417. Springer.

Attias, H. (2003). Planning by Probabilistic Inference. In International Workshop

on Artificial Intelligence and Statistics, pages 9–16. PMLR.

174

Ay, N., Bertschinger, N., Der, R., Güttler, F., and Olbrich, E. (2008). Predictive

information and explorative behavior of autonomous robots. The European

Physical Journal B, 63(3):329–339.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo,

D., and Blundell, C. (2020). Agent57: Outperforming the Atari Human

Benchmark.

Bamford, C., Huang, S., and Lucas, S. (2020). Griddly: A platform for AI research

in games.

Barandiaran, X. E., Paolo, E. D., and Rohde, M. (2009). Defining Agency:

Individuality, Normativity, Asymmetry, and Spatio-temporality in Action:.

Adaptive Behavior.

Barber, D. and Agakov, F. (2003). The IM algorithm: A variational approach to

Information Maximization. In Proceedings of the 16th International Conference

on Neural Information Processing Systems, NIPS’03, pages 201–208, Cambridge,

MA, USA. MIT Press.

Beal, M. J. (2003). Variational Algorithms for Approximate Bayesian Inference. Doc-

toral, UCL (University College London).

Beer, R. D. and Williams, P. L. (2015). Information Processing and Dynamics

in Minimally Cognitive Agents. Cognitive Science, 39(1):1–38.

Beirlant, J., Dudewicz, E. J., Györfi, L., and Dénes, I. (1997). Nonparametric

entropy estimation. An overview. International Journal of Mathematical and

Statistical Sciences, 6(1):17–39.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A.,

and Hjelm, D. (2018). Mutual Information Neural Estimation. In Proceedings

of the 35th International Conference on Machine Learning, pages 531–540. PMLR.

175

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos,

R. (2016). Unifying count-based exploration and intrinsic motivation. In Lee,

D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors,

Advances in Neural Information Processing Systems 29, pages 1471–1479. Curran

Associates, Inc.

Bellemare, M., Veness, J., and Bowling, M. (2013). Bayesian Learning of Recur-

sively Factored Environments. In Proceedings of the 30th International Conference

on Machine Learning, pages 1211–1219. PMLR.

Bellemare, M., Veness, J., and Talvitie, E. (2014). Skip Context Tree Switching.

In Proceedings of the 31st International Conference on Machine Learning, pages

1458–1466. PMLR.

Bellman, R. (1952). On the Theory of Dynamic Programming. Proceedings of

the National Academy of Sciences of the United States of America, 38(8):716–719.

Bellman, R. (1957). A Markovian Decision Process. Journal of Mathematics and

Mechanics, 6(5):679–684.

Berseth, G., Geng, D., Devin, C., Rhinehart, N., Finn, C., Jayaraman, D., and

Levine, S. (2020). SMiRL: Surprise Minimizing RL in Dynamic Environments.

arXiv:1912.05510 [cs, stat].

Bertsekas, D. (1995). Dynamic Programming and Optimal Control: Volume I,

volume 4. Athena scientific.

Bialek, W., De Ruyter Van Steveninck, R. R., and Tishby, N. (2006). Efficient

representation as a design principle for neural coding and computation. In

2006 IEEE International Symposium on Information Theory, pages 659–663.

Bialek, W., Nemenman, I., and Tishby, N. (2001). Complexity through nonex-

tensivity. Physica A: Statistical Mechanics and its Applications, 302(1):89–99.

176

Bialek, W. and Tishby, N. (1999). Predictive Information.

Biehl, M., Guckelsberger, C., Salge, C., Smith, S. C., and Polani, D. (2018).

Expanding the Active Inference Landscape: More Intrinsic Motivations in the

Perception-Action Loop. Frontiers in Neurorobotics, 12:45.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight

uncertainty in neural networks. In Proceedings of the 32nd International Conference

on International Conference on Machine Learning - Volume 37, ICML’15, pages

1613–1622, Lille, France. JMLR.org.

Botvinick, M. and Toussaint, M. (2012). Planning as inference. Trends in Cognitive

Sciences, 16(10):485–488.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlf-

shagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A

Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computa-

tional Intelligence and AI in Games, 4(1):1–43.

Buesing, L., Weber, T., Racaniere, S., Eslami, S. M. A., Rezende, D., Reichert,

D. P., Viola, F., Besse, F., Gregor, K., Hassabis, D., and Wierstra, D. (2018).

Learning and Querying Fast Generative Models for Reinforcement Learning.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2018). Exploration by ran-

dom network distillation. In International Conference on Learning Representations.

Cao, F. J. and Feito, M. (2009). Thermodynamics of feedback controlled systems.

Physical Review E, 79(4):041118.

Carver, C. S. and Scheier, M. F. (1981). Cybernetics, Information, and Control.

In Carver, C. S. and Scheier, M. F., editors, Attention and Self-Regulation: A

Control-Theory Approach to Human Behavior, SSSP Springer Series in Social

Psychology, pages 11–31. Springer, New York, NY.

177

Çatal, O., Nauta, J., Verbelen, T., Simoens, P., and Dhoedt, B. (2019). Bayesian

policy selection using active inference. arXiv:1904.08149 [cs].

Çatal, O., Wauthier, S., Verbelen, T., De Boom, C., and Dhoedt, B. (2020).

Deep Active Inference for Autonomous Robot Navigation.

Chen, C., Wu, Y.-F., Yoon, J., and Ahn, S. (2022). TransDreamer: Reinforce-

ment Learning with Transformer World Models.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S. (2017). Recurrent

Environment Simulators.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the

properties of neural machine translation: Encoder-decoder approaches. arXiv

preprint arXiv:1409.1259.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014b). Learning Phrase Representations using

RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078

[cs, stat].

Cisek, P. (2007). Cortical mechanisms of action selection: The affordance com-

petition hypothesis. Philosophical Transactions of the Royal Society B: Biological

Sciences, 362(1485):1585–1599.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2019). Quantifying

Generalization in Reinforcement Learning.

Corbetta, M. and Shulman, G. L. (2002). Control of goal-directed and stimulus-

driven attention in the brain. Nature Reviews Neuroscience, 3(3):201–215.

Cos, I., Cañamero, L., Hayes, G. M., and Gillies, A. (2013). Hedonic value:

Enhancing adaptation for motivated agents. Adaptive Behavior, 21(6):465–483.

178

Coulom, R. (2007). Efficient Selectivity and Backup Operators in Monte-Carlo

Tree Search. In van den Herik, H. J., Ciancarini, P., and Donkers, H. H. L.

M. J., editors, Computers and Games, Lecture Notes in Computer Science, pages

72–83, Berlin, Heidelberg. Springer.

Crutchfield, J. P. and Packard, N. H. (1983). Symbolic dynamics of noisy chaos.

Physica D: Nonlinear Phenomena, 7(1):201–223.

Cuccu, G., Togelius, J., and Cudre-Mauroux, P. (2019). Playing Atari with Six

Neurons.

Damasio, A. R. (2004). Emotions and Feelings: A Neurobiological Perspective.

In Feelings and Emotions: The Amsterdam Symposium, Studies in Emotion and

Social Interaction, pages 49–57. Cambridge University Press, New York, NY,

US.

Dayan, P. (1993). Improving Generalization for Temporal Difference Learning:

The Successor Representation. Neural Computation, 5(4):613–624.

Dayan, P. (2012). How to set the switches on this thing. Current Opinion in

Neurobiology, 22(6):1068–1074.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz

machine. Neural Computation, 7(5):889–904.

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A model-based and

data-efficient approach to policy search. In Proceedings of the 28th International

Conference on International Conference on Machine Learning, ICML’11, pages

465–472, Madison, WI, USA. Omnipress.

Di Paolo, E. A. (2003). Organismically-inspired robotics : Homeostatic adaptation

and teleology beyond the closed sensorimotor loop.

Di Paolo, E. A. (2005). Autopoiesis, Adaptivity, Teleology, Agency. Phenomenol-

ogy and the Cognitive Sciences, 4(4):429–452.

179

Di Paolo, E. A. (2010). Robotics Inspired in the Organism. Intellectica. Revue de

l’Association pour la Recherche Cognitive, 53(1):129–162.

Donsker, M. D. and Varadhan, S. R. S. (1976). Asymptotic evaluation of certain

Markov process expectations for large time—III. Communications on Pure and

Applied Mathematics, 29(4):389–461.

Drivdahl, S. B. and Hyman, I. E. (2014). Fluidity in autobiographical memories:

Relationship memories sampled on two occasions. Memory, 22(8):1070–1081.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid

Monte Carlo. Physics Letters B, 195(2):216–222.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal,

S., and Hester, T. (2021). Challenges of real-world reinforcement learning:

Definitions, benchmarks and analysis. Machine Learning, 110(9):2419–2468.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals

of Statistics, 7(1):1–26.

Eysenbach, B., Zhang, T., Salakhutdinov, R., and Levine, S. (2022). Contrastive

Learning as Goal-Conditioned Reinforcement Learning.

Fan, J. and Xiao, C. (2022). Generalized Data Distribution Iteration.

Fan, J., Xiao, C., and Huang, Y. (2022). GDI: Rethinking What Makes Rein-

forcement Learning Different From Supervised Learning.

Farebrother, J., Machado, M. C., and Bowling, M. (2020). Generalization and

Regularization in DQN.

Farquhar, G., Rocktäschel, T., Igl, M., and Whiteson, S. (2018). TreeQN

and ATreeC: Differentiable Tree-Structured Models for Deep Reinforcement

Learning.

180

Friston, K. (2012). A Free Energy Principle for Biological Systems. Entropy

(Basel, Switzerland), 14(11):2100–2121.

Friston, K. (2013). Life as we know it. Journal of The Royal Society Interface,

10(86):20130475.

Friston, K., Adams, R., and Montague, R. (2012a). What is value—accumulated

reward or evidence? Frontiers in Neurorobotics, 6.

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., and Pezzulo, G. (2016).

Active Inference: A Process Theory. Neural Computation, 29(1):1–49.

Friston, K., Kilner, J., and Harrison, L. (2006). A free energy principle for the

brain. Journal of Physiology-Paris, 100(1):70–87.

Friston, K., Samothrakis, S., and Montague, R. (2012b). Active inference

and agency: Optimal control without cost functions. Biological Cybernetics,

106(8):523–541.

Friston, K. J., Daunizeau, J., and Kiebel, S. J. (2009). Reinforcement Learning or

Active Inference? PLoS ONE, 4(7):e6421.

Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., and Ondobaka,

S. (2017). Active Inference, Curiosity and Insight. Neural Computation,

29(10):2633–2683.

Gaina, R. D., Lucas, S. M., and Perez-Liebana, D. (2017). Rolling horizon evo-

lution enhancements in general video game playing. In 2017 IEEE Conference

on Computational Intelligence and Games (CIG), pages 88–95.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian Approximation:

Representing Model Uncertainty in Deep Learning. In International Conference

on Machine Learning, pages 1050–1059. PMLR.

181

Gao, S., Steeg, G. V., and Galstyan, A. (2015). Efficient Estimation of Mutual

Information for Strongly Dependent Variables. In Proceedings of the Eighteenth

International Conference on Artificial Intelligence and Statistics, pages 277–286.

PMLR.

Garcia, C. E. and Morari, M. (1982). Internal model control. A unifying review

and some new results. Industrial & Engineering Chemistry Process Design and

Development, 21(2):308–323.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions,

and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-6(6):721–741.

Ghahramani, Z. and Beal, M. J. (2000). Graphical Models and Variational Meth-

ods. In Advanced Mean Field Methods - Theory and Practice. MIT Press.

Ghugare, R., Bharadhwaj, H., Eysenbach, B., Levine, S., and Salakhutdinov, R.

(2023). Simplifying Model-based RL: Learning Representations, Latent-space

Models, and Policies with One Objective.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. The Ecological

Approach to Visual Perception. Houghton, Mifflin and Company, Boston,

MA, US.

Grassberger, P. (1986). Toward a quantitative theory of self-generated complex-

ity. International Journal of Theoretical Physics, 25(9):907–938.

Grimm, C., Barreto, A., Farquhar, G., Silver, D., and Singh, S. (2021). Proper

Value Equivalence.

Grimm, C., Barreto, A., Singh, S., and Silver, D. (2020). The value equivalence

principle for model-based reinforcement learning. In Proceedings of the 34th

International Conference on Neural Information Processing Systems, NIPS’20, pages

5541–5552, Red Hook, NY, USA. Curran Associates Inc.

182

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous Deep

Q-Learning with Model-based Acceleration.

Guez, A., Mirza, M., Gregor, K., Kabra, R., Racanière, S., Weber, T., Raposo,

D., Santoro, A., Orseau, L., Eccles, T., Wayne, G., Silver, D., and Lillicrap, T.

(2019). An investigation of model-free planning. arXiv:1901.03559 [cs, stat].

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, pages

297–304. JMLR Workshop and Conference Proceedings.

Ha, D. and Schmidhuber, J. (2018). Recurrent World Models Facilitate Policy

Evolution. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-

Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing

Systems 31, pages 2450–2462. Curran Associates, Inc.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft Actor-Critic: Off-

Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic

Actor. In Proceedings of the 35th International Conference on Machine Learning,

pages 1861–1870. PMLR.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2020). Dream to Control:

Learning Behaviors by Latent Imagination.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson,

J. (2019). Learning Latent Dynamics for Planning from Pixels. In International

Conference on Machine Learning, pages 2555–2565.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. (2022). Mastering Atari with

Discrete World Models.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the

183

Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems

Science and Cybernetics, 4(2):100–107.

Henaff, M., Raileanu, R., Jiang, M., and Rocktäschel, T. (2022). Exploration via

Elliptical Episodic Bonuses.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D.

(2019). Deep Reinforcement Learning that Matters.

Herreros, I. and Verschure, P. F. (2015). About the goal of a goals’ goal theory.

Cognitive Neuroscience, 6(4):218–219.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,

Horgan, D., Piot, B., Azar, M., and Silver, D. (2017). Rainbow: Combining

Improvements in Deep Reinforcement Learning.

Hinton, G. E. and van Camp, D. (1993). Keeping the neural networks simple by

minimizing the description length of the weights. In Proceedings of the Sixth

Annual Conference on Computational Learning Theory, COLT ’93, pages 5–13,

New York, NY, USA. Association for Computing Machinery.

Hinton, G. E. and Zemel, R. S. (1993). Autoencoders, minimum description

length and Helmholtz free energy. In Proceedings of the 6th International Confer-

ence on Neural Information Processing Systems, NIPS’93, pages 3–10, San Fran-

cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P.,

Trischler, A., and Bengio, Y. (2019). Learning deep representations by mutual

information estimation and maximization.

Holland, G. Z., Talvitie, E. J., and Bowling, M. (2019). The Effect of Planning

Shape on Dyna-style Planning in High-dimensional State Spaces.

184

Houthooft, R., Chen, X., Chen, X., Duan, Y., Schulman, J., De Turck, F., and

Abbeel, P. (2016). VIME: Variational Information Maximizing Exploration. In

Advances in Neural Information Processing Systems, volume 29. Curran Associates,

Inc.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press,

Cambridge, Mass.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D.,

and Kavukcuoglu, K. (2016). Reinforcement Learning with Unsupervised

Auxiliary Tasks.

James, R. N. (2015). Exploration-exploitation: A cognitive dilemma still unre-

solved. Cognitive Neuroscience, 6(4):219–221.

Janner, M., Mordatch, I., and Levine, S. (2021). Generative Temporal Difference

Learning for Infinite-Horizon Prediction.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An

Introduction to Variational Methods for Graphical Models. Machine Learning,

37(2):183–233.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016).

Exploring the Limits of Language Modeling.

Juechems, K. and Summerfield, C. (2019). Where Does Value Come From?

Trends in Cognitive Sciences, 23(10):836–850.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski,

K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi,

R., Tucker, G., and Michalewski, H. (2020). Model-Based Reinforcement

Learning for Atari.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction

Problems. Journal of Basic Engineering, 82(1):35–45.

185

Kalman, R. E. and Bucy, R. S. (1961). New Results in Linear Filtering and

Prediction Theory. Journal of Basic Engineering, 83(1):95–108.

Kappen, H. J., Gómez, V., and Opper, M. (2012). Optimal control as a graphical

model inference problem. Machine Learning, 87(2):159–182.

Kendall, A. and Gal, Y. (2017). What uncertainties do we need in Bayesian deep

learning for computer vision? In Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, pages 5580–5590, Long

Beach, California, USA. Curran Associates Inc.

Keramati, M. and Gutkin, B. (2011). A Reinforcement Learning Theory for

Homeostatic Regulation. In Advances in Neural Information Processing Systems,

volume 24. Curran Associates, Inc.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes.

arXiv:1312.6114 [cs, stat].

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,

A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,

Clopath, C., Kumaran, D., and Hadsell, R. (2017). Overcoming catastrophic

forgetting in neural networks. Proceedings of the National Academy of Sciences,

114(13):3521–3526.

Klyubin, A., Polani, D., and Nehaniv, C. (2005). Empowerment: A universal

agent-centric measure of control. In 2005 IEEE Congress on Evolutionary

Computation, volume 1, pages 128–135 Vol.1.

Kolchinsky, A. and Wolpert, D. H. (2018). Semantic information, autonomous

agency, and nonequilibrium statistical physics. Interface Focus, 8(6):20180041.

Konda, V. R. and Tsitsiklis, J. N. (1999). Actor-citic agorithms. In Proceedings of

the 12th International Conference on Neural Information Processing Systems, NIPS’99,

pages 1008–1014, Cambridge, MA, USA. MIT Press.

186

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual

information. Physical Review E, 69(6):066138.

Kulkarni, T., Gupta, A., Ionescu, C., Borgeaud, S., Reynolds, M., Zisserman,

A., and Mnih, V. (2019). Unsupervised Learning of Object Keypoints for

Perception and Control. arXiv:1906.11883 [cs].

Kumar, N. M. (2018). Empowerment-driven Exploration using Mutual Informa-

tion Estimation.

Laughlin, S. B., de Ruyter van Steveninck, R. R., and Anderson, J. C. (1998).

The metabolic cost of neural information. Nature Neuroscience, 1(1):36–41.

Laurençon, H., Ségerie, C.-R., Lussange, J., and Gutkin, B. S. (2021). Continuous

Homeostatic Reinforcement Learning for Self-Regulated Autonomous Agents.

Lee, A. X., Nagabandi, A., Abbeel, P., and Levine, S. (2020). Stochastic la-

tent actor-critic: Deep reinforcement learning with a latent variable model.

Advances in Neural Information Processing Systems, 33:741–752.

Leibfried, F., Kushman, N., andHofmann, K. (2017). ADeep Learning Approach

for Joint Video Frame and Reward Prediction in Atari Games.

Li, C., Chen, C., Carlson, D., and Carin, L. (2016). Preconditioned Stochastic

Gradient Langevin Dynamics for deep neural networks. In Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages 1788–1794,

Phoenix, Arizona. AAAI Press.

Li, W. and Todorov, E. (2004). Iterative Linear Quadratic Regulator Design for

Nonlinear Biological Movement Systems. In First International Conference on

Informatics in Control, Automation and Robotics, pages 222–229.

Little, D. and Sommer, F. (2013). Learning and exploration in action-perception

loops. Frontiers in Neural Circuits, 7.

187

Little, D. Y. and Sommer, F. T. (2011). Learning in embodied action-perception

loops through exploration.

Lloyd, S. (1989). Use of mutual information to decrease entropy: Implications

for the second law of thermodynamics. Physical Review A, 39(10):5378–5386.

Man, K. and Damasio, A. (2019). Homeostatically Motivated Intelligence for

Feeling Machines. In AAAI Spring Symposium: Towards Conscious AI Systems.

Martius, G., Der, R., and Ay, N. (2013). Information Driven Self-Organization

of Complex Robotic Behaviors. PLOS ONE, 8(5):e63400.

Martius, G., Jahn, L., Hauser, H., and Hafner, V. V. (2014). Self-exploration of

the Stumpy Robot with Predictive Information Maximization. In del Pobil,

A. P., Chinellato, E., Martinez-Martin, E., Hallam, J., Cervera, E., and Morales,

A., editors, From Animals to Animats 13, Lecture Notes in Computer Science,

pages 32–42, Cham. Springer International Publishing.

Martius, G. and Olbrich, E. (2015). Quantifying Emergent Behavior of Au-

tonomous Robots. Entropy, 17(10):7266–7297.

Maturana, H. R. and Varela, F. J. (1987). The Tree of Knowledge: The Biological

Roots of Human Understanding. The Tree of Knowledge: The Biological Roots

of Human Understanding. New Science Library/Shambhala Publications,

Boston, MA, US.

Maxwell, J. C. (1871). Theory of Heat. Cambridge Library Collection - Physical

Sciences. Cambridge University Press, Cambridge.

McAllester, D. and Stratos, K. (2020a). Formal Limitations on the Measurement

of Mutual Information. In Proceedings of the Twenty Third International Conference

on Artificial Intelligence and Statistics, pages 875–884. PMLR.

McAllester, D. and Stratos, K. (2020b). Formal Limitations on the Measurement

of Mutual Information. arXiv:1811.04251 [cs, math, stat].

188

Menon, V. and Uddin, L. Q. (2010). Saliency, switching, attention and control: A

network model of insula function. Brain structure & function, 214(5-6):655–667.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). Equation of State Calculations by Fast Computing Machines. The

Journal of Chemical Physics, 21(6):1087–1092.

Micheli, V., Alonso, E., and Fleuret, F. (2022). Transformers are Sample Efficient

World Models.

Millidge, B. (2019). Combining Active Inference and Hierarchical Predictive

Coding: A Tutorial Introduction and Case Study.

Millidge, B. (2020). Deep active inference as variational policy gradients. Journal

of Mathematical Psychology, 96:102348.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.

arXiv:1312.5602 [cs].

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,

and Hassabis, D. (2015). Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533.

Mobin, S. A., Arnemann, J. A., and Sommer, F. (2014). Information-based

learning by agents in unbounded state spaces. In Advances in Neural Information

Processing Systems, volume 27. Curran Associates, Inc.

Moerland, T. M., Broekens, J., Plaat, A., and Jonker, C. M. (2022). Model-based

Reinforcement Learning: A Survey.

189

Mohamed, S. and Rezende, D. J. (2015). Variational information maximisation

for intrinsically motivated reinforcement learning. In Proceedings of the 28th

International Conference on Neural Information Processing Systems - Volume 2,

NIPS’15, pages 2125–2133, Cambridge, MA, USA. MIT Press.

Nash, R. A., Wade, K. A., Garry, M., and Adelman, J. S. (2017). A robust

preference for cheap-and-easy strategies over reliable strategies when verifying

personal memories. Memory, 25(7):890–899.

Nguyen, X., Wainwright, M. J., and Jordan, M. I. (2010). Estimating Divergence

Functionals and the Likelihood Ratio by Convex Risk Minimization. IEEE

Transactions on Information Theory, 56(11):5847–5861.

Niven, J. E. (2014). Neural Energetics: Hungry Flies Turn Down the Visual

Gain. Current Biology, 24(8):R313–R315.

Oh, J., Guo, X., Lee, H., Lewis, R., and Singh, S. (2015). Action-conditional

video prediction using deep networks in Atari games. In Proceedings of the

28th International Conference on Neural Information Processing Systems - Volume 2,

NIPS’15, pages 2863–2871, Cambridge, MA, USA. MIT Press.

Oh, J., Singh, S., and Lee, H. (2017). Value Prediction Network. In Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Osband, I., Aslanides, J., and Cassirer, A. (2018). Randomized Prior Functions

for Deep Reinforcement Learning. In Bengio, S., Wallach, H., Larochelle, H.,

Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural

Information Processing Systems 31, pages 8617–8629. Curran Associates, Inc.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R. (2017). Count-Based

Exploration with Neural Density Models. In International Conference on Machine

Learning, pages 2721–2730. PMLR.

190

Oudeyer, P.-Y. and Kaplan, F. (2007). What is Intrinsic Motivation? A Typology

of Computational Approaches. Frontiers in Neurorobotics, 1:6.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic Motivation Sys-

tems for Autonomous Mental Development. IEEE Transactions on Evolutionary

Computation, 11(2):265–286.

Paolo, E. D., Thompson, E., and Beer, R. (2022). Laying down a forking path:

Tensions between enaction and the free energy principle. Philosophy and the

Mind Sciences, 3.

Parrondo, J. M. R., Horowitz, J. M., and Sagawa, T. (2015). Thermodynamics

of information. Nature Physics, 11(2):131–139.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven

exploration by self-supervised prediction. In Proceedings of the 34th Interna-

tional Conference on Machine Learning - Volume 70, ICML’17, pages 2778–2787,

Sydney, NSW, Australia. JMLR.org.

Pathak, D., Gandhi, D., and Gupta, A. (2019). Self-Supervised Exploration via

Disagreement. In International Conference on Machine Learning, pages 5062–5071.

PMLR.

Pedraza, J. M., Garcia, D. A., and Pérez-Ortiz, M. F. (2018). Noise, Information

and Fitness in Changing Environments. Frontiers in Physics, 6.

Perez-Liebana, D., Samothrakis, S., Lucas, S., and Rohlfshagen, P. (2013). Rolling

horizon evolution versus tree search for navigation in single-player real-time

games. In GECCO ’13, pages 351–358.

Pezzulo, G. (2008). Coordinating with the Future: The Anticipatory Nature of

Representation. Minds and Machines, 18(2):179–225.

Polani, D. (2009). Information: Currency of life? HFSP journal, 3(5):307–316.

191

Polani, D., Martinetz, T., and Kim, J. (2001). An Information-Theoretic Ap-

proach for the Quantification of Relevance. In Kelemen, J. and Sosík, P.,

editors, Advances in Artificial Life, Lecture Notes in Computer Science, pages

704–713, Berlin, Heidelberg. Springer.

Polani, D., Nehaniv, C. L., Martinetz, T., and Kim, J. T. (2006). Relevant

information in optimized persistence vs. progeny strategies. In Artificial Life

X: Proceedings of The 10th International Conference on the Simulation and Synthesis

of Living Systems, Bloomington IN.

Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and Tucker, G. (2019a). On

variational bounds of mutual information. In International Conference on Machine

Learning, pages 5171–5180. PMLR.

Poole, B., Ozair, S., van den Oord, A., Alemi, A. A., and Tucker, G. (2019b).

On Variational Bounds of Mutual Information. arXiv:1905.06922 [cs, stat].

Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Jimenez Rezende,

D., Puigdomènech Badia, A., Vinyals, O., Heess, N., Li, Y., Pascanu, R.,

Battaglia, P., Hassabis, D., Silver, D., and Wierstra, D. (2017). Imagination-

Augmented Agents for Deep Reinforcement Learning. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.,

editors, Advances in Neural Information Processing Systems 30, pages 5690–5701.

Curran Associates, Inc.

Ramstead, M. J. D., Badcock, P. B., and Friston, K. J. (2018). Answering

Schrödinger’s question: A free-energy formulation. Physics of Life Reviews,

24:1–16.

Ramstead, M. J. D., Constant, A., Badcock, P. B., and Friston, K. J. (2019).

Variational ecology and the physics of sentient systems. Physics of Life Reviews,

31:188–205.

192

Rawlik, K., Toussaint, M., and Vijayakumar, S. (2010). Approximate Inference

and Stochastic Optimal Control.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic Backpropaga-

tion and Approximate Inference in Deep Generative Models. In International

Conference on Machine Learning, pages 1278–1286. PMLR.

Richalet, J., Rault, A., Testud, J. L., and Papon, J. (1978). Model predictive

heuristic control: Applications to industrial processes. Automatica, 14(5):413–

428.

Ritter, H., Botev, A., and Barber, D. (2018). A Scalable Laplace Approximation for

Neural Networks. https://iclr.cc/Conferences/2018/Schedule?showEvent=224.

Rubin, J., Shamir, O., and Tishby, N. (2012). Trading Value and Information

in MDPs. In Guy, T. V., Kárný, M., and Wolpert, D. H., editors, Decision

Making with Imperfect Decision Makers, Intelligent Systems Reference Library,

pages 57–74. Springer, Berlin, Heidelberg.

Rubinstein, R. (1999). The Cross-Entropy Method for Combinatorial and

Continuous Optimization. Methodology And Computing In Applied Probability,

1(2):127–190.

Rummery, G. A. and Niranjan, M. (1994). On-Line Q-Learning Using Con-

nectionist Systems. Technical report.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.

Prentice Hall, Upper Saddle River, NJ, 2nd edition edition.

Ryan, R. M. and Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic

Definitions andNewDirections. Contemporary Educational Psychology, 25(1):54–

67.

Sagawa, T. and Ueda, M. (2012). Nonequilibrium thermodynamics of feedback

control. Physical Review E, 85(2):021104.

193

Sajid, N., Ball, P. J., and Friston, K. J. (2020). Active inference: Demystified and

compared. arXiv:1909.10863 [cs, q-bio].

Salge, C., Glackin, C., and Polani, D. (2014). Empowerment–An Introduction.

In Prokopenko, M., editor, Guided Self-Organization: Inception, Emergence,

Complexity and Computation, pages 67–114. Springer, Berlin, Heidelberg.

Salge, C. and Guckelsberger, C. (2016). Does Empowerment Maximisation

Allow for Enactive Artificial Agents? In ALIFE 2016, the Fifteenth International

Conference on the Synthesis and Simulation of Living Systems, pages 704–711. MIT

Press.

Sancaktar, C., van Gerven, M., and Lanillos, P. (2020). End-to-End Pixel-Based

Deep Active Inference for Body Perception and Action. arXiv:2001.05847 [cs,

q-bio].

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal Value

Function Approximators. In Proceedings of the 32nd International Conference on

Machine Learning, pages 1312–1320. PMLR.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,

Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver, D.

(2020). Mastering Atari, Go, Chess and Shogi by Planning with a Learned

Model. arXiv:1911.08265 [cs, stat].

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal Policy Optimization Algorithms.

Shalizi, C. R. andCrutchfield, J. P. (2001). ComputationalMechanics: Pattern and

Prediction, Structure and Simplicity. Journal of Statistical Physics, 104(3):817–

879.

Shridhar, K., Laumann, F., and Liwicki, M. (2019). A Comprehensive

194

guide to Bayesian Convolutional Neural Network with Variational Inference.

arXiv:1901.02731 [cs, stat].

Silver, D., Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-Arnold,

G., Reichert, D., Rabinowitz, N., Barreto, A., and Degris, T. (2017a). The

Predictron: End-To-End Learning and Planning. In Proceedings of the 34th

International Conference on Machine Learning, pages 3191–3199. PMLR.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,

Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K.,

and Hassabis, D. (2017b). Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm.

Sohn, K. (2016). Improved Deep Metric Learning with Multi-class N-pair Loss

Objective. In Advances in Neural Information Processing Systems, volume 29.

Curran Associates, Inc.

Song, J. and Ermon, S. (2020). Understanding the Limitations of Variational

Mutual Information Estimators. arXiv:1910.06222 [cs, math, stat].

Still, S. (2009). Information-theoretic approach to interactive learning. EPL

(Europhysics Letters), 85(2):28005.

Still, S. (2014). Information Bottleneck Approach to Predictive Inference. Entropy,

16(2):968–989.

Still, S., Sivak, D. A., Bell, A. J., and Crooks, G. E. (2012). Thermodynamics of

Prediction. Physical Review Letters, 109(12):120604.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. (2021). Decoupling Repre-

sentation Learning from Reinforcement Learning. In Proceedings of the 38th

International Conference on Machine Learning, pages 9870–9879. PMLR.

195

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and

Reacting Based on Approximating Dynamic Programming. In Porter, B.

and Mooney, R., editors, Machine Learning Proceedings 1990, pages 216–224.

Morgan Kaufmann, San Francisco (CA).

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning,

and reacting. ACM SIGART Bulletin, 2(4):160–163.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT

Press, Cambridge, MA, USA, 1st edition.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning, Second Edition: An

Introduction. MIT Press.

Szilard, L. (1929). über die Entropieverminderung in einem thermodynamischen

System bei Eingriffen intelligenter Wesen. Zeitschrift fur Physik, 53:840–856.

Talvitie, E. (2014). Model regularization for stable sample rollouts. In Proceedings

of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI’14, pages

780–789, Quebec City, Quebec, Canada. AUAI Press.

Talvitie, E. (2016). Self-Correcting Models for Model-Based Reinforcement

Learning. https://arxiv.org/abs/1612.06018v2.

Tamar, A., WU, YI., Thomas, G., Levine, S., and Abbeel, P. (2016). Value Itera-

tion Networks. In Advances in Neural Information Processing Systems, volume 29.

Curran Associates, Inc.

Tasfi, N. (2016). PyGame Learning Environment.

Taylor, M. E. and Stone, P. (2009). Transfer Learning for Reinforcement Learn-

ing Domains: A Survey. The Journal of Machine Learning Research, 10:1633–

1685.

Taylor, S. F., Tishby, N., and Bialek, W. (2007). Information and fitness.

196

Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck

method.

Tishby, N. and Polani, D. (2011). Information Theory of Decisions and Actions.

In Cutsuridis, V., Hussain, A., and Taylor, J. G., editors, Perception-Action

Cycle: Models, Architectures, and Hardware, Springer Series in Cognitive and

Neural Systems, pages 601–636. Springer, New York, NY.

Todorov, E. (2008). General duality between optimal control and estimation. In

2008 47th IEEE Conference on Decision and Control, pages 4286–4292.

Touchette, H. and Lloyd, S. (2000). Information-Theoretic Limits of Control.

Physical Review Letters, 84(6):1156–1159.

Touchette, H. and Lloyd, S. (2004). Information-theoretic approach to the

study of control systems. Physica A: Statistical Mechanics and its Applications,

331(1):140–172.

Tschantz, A., Baltieri, M., Seth, A. K., and Buckley, C. L. (2019). Scaling active

inference. arXiv:1911.10601 [cs, eess, math, stat].

Tschantz, A., Millidge, B., Seth, A. K., and Buckley, C. L. (2020). Reinforcement

Learning through Active Inference. arXiv:2002.12636 [cs, eess, math, stat].

Ueltzhöffer, K. (2018). Deep active inference. Biological Cybernetics, 112(6):547–

573.

van den Oord, A., Li, Y., and Vinyals, O. (2019). Representation Learning with

Contrastive Predictive Coding.

van der Waa, J., van Diggelen, J., van den Bosch, K., and Neerincx, M. (2018).

Contrastive Explanations for Reinforcement Learning in terms of Expected

Consequences.

197

van Seijen, H., Nekoei, H., Racah, E., and Chandar, S. (2020). The LoCA Regret:

A Consistent Metric to Evaluate Model-Based Behavior in Reinforcement

Learning. https://arxiv.org/abs/2007.03158v2.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, Ł., and Polosukhin, I. (2017). Attention is All you Need. In Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Vezhnevets, A. S., Mnih, V., Agapiou, J., Osindero, S., Graves, A., Vinyals, O.,

and Kavukcuoglu, K. (2016). Strategic attentive writer for learning macro-

actions. In Proceedings of the 30th International Conference on Neural Information

Processing Systems, NIPS’16, pages 3494–3502, Red Hook, NY, USA. Curran

Associates Inc.

von Uexküll, J. (1926). Theoretical Biology. Theoretical Biology. Harcourt, Brace

& Co., Oxford, England.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, University

of Cambridge.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning,

8(3):279–292.

Watters, N., Matthey, L., Bosnjak, M., Burgess, C. P., and Lerchner, A. (2019).

COBRA: Data-Efficient Model-Based RL through Unsupervised Object Dis-

covery and Curiosity-Driven Exploration. arXiv:1905.09275 [cs].

Weber, A. and Varela, F. J. (2002). Life after Kant: Natural purposes and the

autopoietic foundations of biological individuality. Phenomenology and the

Cognitive Sciences, 1(2):97–125.

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J.,

Badia, A. P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Hassabis,

198

D., Silver, D., and Wierstra, D. (2018). Imagination-Augmented Agents for

Deep Reinforcement Learning.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient

langevin dynamics. Proceedings of the 28th International Conference on Machine

Learning, ICML 2011.

Wells, G. L., Memon, A., and Penrod, S. D. (2006). Eyewitness Evidence:

Improving Its Probative Value. Psychological Science in the Public Interest, 7(2):45–

75.

Wiener, N. (1948). Cybernetics; or Control and Communication in the Animal and

the Machine. Cybernetics; or Control and Communication in the Animal and

the Machine. John Wiley, Oxford, England.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine Learning, 8(3):229–256.

Witten, I. H. (1977). An adaptive optimal controller for discrete-time Markov

environments. Information and Control, 34(4):286–295.

Yoon, J., Wu, Y.-F., Bae, H., and Ahn, S. (2023). An Investigation into Pre-

Training Object-Centric Representations for Reinforcement Learning.

Zhu, Z., Lin, K., Jain, A. K., and Zhou, J. (2023). Transfer Learning in Deep

Reinforcement Learning: A Survey.

	List of Figures
	List of Tables
	List of Repositories
	Abbreviations
	Glossary
	Introduction
	Why to learn a model?
	The challenges of learning and acting with a model
	Contributions
	Overview and Thesis Structure

	Approximate Forward Models
	Problem Formulation
	Relevant Work
	Simulators
	Pretrained Forward Models
	Simultaneous Control and Model Learning
	Implicit Dynamics Models or Implicit Planning

	Learning, planning, and error-correction with ensembles
	Introduction
	A Probabilistic Perspective on Neural Networks
	Statistical Bootstrapping
	Bootstrapped Transition Functions
	Training via Bootstrapping
	Prediction
	Error Correction

	Planning with Ensembles via Rolling Horizon
	Experiments
	Environment
	Error-Correction in Minipacman
	Model Learning
	Planning and game performance

	Discussion

	Planning in Latent State Spaces with Generative Sequence Models
	Introduction
	Model Taxonomy: from raw to latent spaces
	Autoregressive models
	Deterministic State Space Model
	Stochastic State Space Model
	Recurrent State Space Model

	Learning a State Space Model
	Dynamics and predictions
	Representation
	Objective
	Training details

	Planning with State Space Models
	Experiments
	Environment
	Results

	Discussion

	Planning with Models of Value Functions
	Introduction
	Models of State Value Functions
	State Value Estimation

	Plan evaluation with State Value Functions
	Experiments
	Environment
	Results

	Discussion

	Planning in Latent State Spaces with Non-reconstructive Forward Models
	Introduction
	A brief detour into information bottlenecks
	Predictive information
	Predictive information as a criterion for relevance

	A Non-Reconstructive Predictive Model
	Learning a Non-Reconstructive Model
	Noise Contrastive Estimation for World Modelling
	A Non-reconstructive State Space Model

	Experiments
	Four-Room tasks
	Minipacman

	Discussion

	Learning and planning from self-regulating signals
	Introduction
	Preferences, desires and surprisal minimisation
	Model-free surprisal minimisation
	Active Inference
	Expected Free Energy

	Self-regulating adaptive control
	Expected Free Energy via Rolling Horizon

	Experiments
	Simulation results

	Discussion

	Discussion
	Outlook, limitations and future work
	To learn or not to learn a model?
	On rewards
	What to learn?
	Targets for non-reconstructive models
	Goal, Drives, and Motivations
	Architecture enhancements

	Final words

	Appendices
	Preliminaries
	Reinforcement Learning
	Value-based methods
	Model-Based Reinforcement Learning

	Information Theory
	Self-Information
	Entropy
	Conditional Entropy
	Kullback-Leibler Divergence
	Mutual Information

	Variational Inference
	Deriving the ELBO via the log marginal likelihood

	Bootstrapped Transition Functions and Error-Correction Architecture
	Expected Free Energy with measurements v
	Novelty and salience
	Active Inference Implementation
	Drive decomposition
	State-Space Models architectures
	Q-Model SSMs
	NR-SSMs
	Hyperparameters

	InfoNCE
	Bibliography

