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Loss-averse decisions, in which one avoids losses at the expense of
gains, are highly prevalent. However, the underlying mechanisms
remain controversial. The prevailing account highlights a valuation
bias that overweighs losses relative to gains, but an alternative
view stresses a response bias to avoid choices involving potential
losses. Here we couple a computational process model with eye-
tracking and pupillometry to develop a physiologically grounded
framework for the decision process leading to accepting or reject-
ing gambles with equal odds of winning and losing money. Over-
all, loss-averse decisions were accompanied by preferential gaze
toward losses and increased pupil dilation for accepting gambles.
Using our model, we found gaze allocation selectively indexed
valuation bias, and pupil dilation selectively indexed response bi-
as. Finally, we demonstrate that our computational model and
physiological biomarkers can identify distinct types of loss-
averse decision makers who would otherwise be indistinguishable
using conventional approaches. Our study provides an integrative
framework for the cognitive processes that drive loss-averse deci-
sions and highlights the biological heterogeneity of loss aversion
across individuals.
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Many decisions involve tradeoffs between potential gains
and losses. A widespread anomaly in decision-making is

loss aversion—the tendency to avoid losses at the expense of
acquiring equivalent gains (1). For example, people often reject
gambles of equal odds to gain and lose money, unless the
amounts of potential gains are sufficiently larger than potential
losses (2–4). Loss aversion has been observed in a variety of
laboratory settings as well as in the field (see ref. 5 for a review)
and is even evident in other species like chimpanzees (6), mon-
keys (7), and rats (8). Despite the ubiquity of loss aversion, the
underlying mechanisms remain unresolved and hotly debated.
Prospect theory attributes loss-averse decisions to a valuation

bias that overweighs losses relative to gains (1, 9). According to
this view, a chooser would require an extra amount of potential
gain, known as a premium, to accept a mixed gamble, in order to
compensate for the lower weight of gain relative to loss.
Decision-making, however, is not always based on valuation
alone. For example, it is robustly observed that preference rat-
ings and choices are not always aligned (see ref. 10 for a review).
In fact, decision-making is dramatically susceptible to context
(10, 11), including the possible responses available (12–16).
Accordingly, an alternative account attributes loss-averse deci-
sions to a response bias that inclines choosers to avoid the choice
or action that may incur losses (14, 17), and remain with the status
quo (18). According to this view, choosers have a predisposition to
avoid the choice that can change the status quo, by rejecting a
gamble, rather than endure the possibility of losing, by accepting a
gamble. Thus, even when potential gains and losses are weighted
equally, a premium is required to overcome the resistance to

accept the gamble. These two accounts are often indistinguishable
based solely on the decisions people make.
Most decisions, loss-averse or otherwise, are not made in-

stantaneously. Abundant evidence indicates that many decisions
unfold through a process of evidence accumulation over time
that culminates in choice (19, 20). Evidence accumulation is
evident in neurophysiological findings in humans (21), monkeys
(22), and rats (23), and is formalized in computational process
models like the drift-diffusion model (DDM) (20). Although
valuation bias and response bias can result in the same decision,
in theory they shape the evidence accumulation process in dis-
tinct ways. Specifically, valuation bias would impact how in-
formation (e.g., potential gain and loss) is evaluated over time,
whereas response bias would impact how much evidence must be
accumulated to make a decision (e.g., accept vs. reject a gamble).
Thus, examining the decision process as it unfolds could poten-
tially allow us to disentangle the two biases.

Significance

We revisit the concept of loss aversion by synthesizing distinct
views into an integrative framework and by probing physio-
logical biomarkers associated with the behavior. The frame-
work decomposes loss aversion into a valuation bias, which
weighs losses over gains, and a response bias, which avoids
loss-related choices altogether. Further, we reveal a double
dissociation in physiology underlying the decision process.
Valuation bias was associated with preferential gaze allocation
to losses whereas response bias was associated with pupillary
dilation. Our framework exposes biological heterogeneity un-
derlying loss aversion and distinguishes different loss-averse
decision makers who are otherwise indistinguishable using
conventional approaches. Our integrative approach provides a
deeper analysis of the mechanisms underlying loss aversion
and incorporates distinct views within a unified biological
framework.
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Recent studies have attempted to understand the decision
process and examined the strengths of these biases in loss-averse
decisions by simultaneously fitting DDMmodels to decisions and
the time it takes to make them (24, 25). Response times, how-
ever, provide at best an indirect window on the internal de-
liberative process. To overcome this limitation, here we coupled
a computational process model with eye-tracking and pupill-
ometry to provide a physiologically grounded framework for the
decision process underlying loss-averse decisions.
Where we look betrays our underlying biases and predicts

choice (26). As a selective filter on information acquisition, gaze
dynamics reveal the otherwise hidden process of evidence ac-
cumulation (27). Specifically, gaze reflects and amplifies the
subjective value of fixated options (27, 28) or features (29), and
thereby shapes the decision process. We hypothesized that val-
uation bias, which overweighs losses relative to gains as evidence

supporting choice, would manifest as biased gaze toward losses
over gains during deliberation.
Pupil dilation, in the absence of changes in external lighting,

indexes activation of the arousal system in the brain (30, 31).
Higher arousal and pupil dilation accompany effortful decisions
(31, 32). Making an infrequent choice that contradicts a more
habitual one requires effort to overcome inertia, and evokes
pupil dilation (33). Within the DDM framework, larger pupil
dilation during decision-making reflects a higher response
threshold for making a decision (28). We hypothesized that if
there is a default response bias to avoid an option that may incur
losses, actually choosing that option should require more effort
and therefore evoke larger pupil dilation.
In summary, we propose that valuation bias and response bias

can be simultaneously accommodated within the framework of
an evidence accumulation-based decision process. Specifically,

Fig. 1. Behavior. (A, Top) Gambling task. Gambles were not resolved after decisions. (Middle) Probability of acceptance (B) and response times (C) across
gambles. (Bottom) Illustration of the DDM for the gambling task (D) and estimates of valuation bias and response bias for each individual participant (E). Each
dot represents a participant: those to the right of the green dashed line displayed valuation bias of overweighing loss relative to gains, and those above the
purple dashed line displayed a response bias to reject gambles. The green dot (P69) and the purple dot (P46) in quadrant 1 indicate the two example
participants illustrated in SI Appendix, Fig. S6 and SI Appendix, Fig. S7.
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gaze allocation would reflect valuation bias whereas pupil di-
lation would reflect response bias. To test our hypotheses, we
examined the decision process underlying choices for mixed
gambles while tracking gaze and measuring pupil diameter.
Participants (n = 94) chose to accept or reject a series of gambles
offering a 50% chance of winning or losing money ranging from
$1 to $10, which were displayed on a computer screen (see
Fig. 1A and Materials and Methods for more details).

Results
Participants in our study showed a typical pattern of loss aversion
in their choices (Fig. 1B) and response times (Fig. 1C) (2–4, 24).
Despite our symmetric design of gains and losses across gambles,
overall participants were less likely to accept than reject gambles
[SI Appendix, Fig. S1A, M ± SD = 31 ± 16%, ranging from 4 to
78%, t(93) = −11.357, P < 0.001] and were slower to accept [SI
Appendix, Fig. S1B, M ± SD = 1.595 ± 0.440 s, t(93) = −6.195,
P < 0.001] than reject (M ± SD = 1.369 ± 0.405 s) gambles.
Moreover, they demanded a premium over an expected value of
zero to be indifferent to accepting or rejecting gambles [SI Ap-
pendix, Fig. S1C, M ± SD = $1.266 ± 1.216, t(93) = 10.098, P <
0.001; also see white cells in Fig. 1B] and they took the longest
time to make decisions for gambles entailing such a premium [SI
Appendix, Fig. S1D, M ± SD = $1.271 ± 2.269, t(93) = 5.432, P <
0.001; also see red cells in Fig. 1C].
To provide a simultaneous account of choice probabilities and

response times with valuation bias and response bias, we adapted
the DDM from ref. 24. In the model, each decision was modeled
as the outcome of a noisy evidence-accumulation process
reaching one of two response boundaries, either accepting (up-
per, 1) or rejecting (lower, 0) the gamble (Fig. 1D). The speed of
evidence accumulation, or drift rate (v), depended on the
amounts of gain (G) and loss (L) weighted by their respective
coefficients (vG and vL), that is, v ∼ vG · G − vL · L. In this
framework, the ratio between the two coefficients (vL/vG) rep-
resented valuation bias. Response bias was captured by the
starting point (z) of the evidence accumulation process. A
starting point in the middle of the two response boundaries (z =
0.5) indicated no a priori response bias, whereas a starting point
closer to the rejection boundary indicated a response bias toward
rejecting the gamble (quantified as 0.5−z). According to this
model, a person is more likely and/or faster to reject a gamble
than another person either due to a valuation bias—manifested
as a steeper drift rate toward the rejection boundary (e.g., green
vs. gray curve in Fig. 1D)—or due to a response bias—
manifested as a starting point closer to the rejection boundary
(e.g., purple vs. gray curve, in Fig. 1D). By fitting this model si-
multaneously with choice probabilities and response times using
a hierarchical Bayesian approach (see Materials and Methods for
more details), we were able to dissociate and quantify valuation
bias and response bias for each individual participant (Fig. 1E).
Both valuation bias (group mean = 1.575, 95% credible in-

terval: 1.398 to 1.780, greater than 99.9% likelihood > 1) and
response bias (group mean = 0.037, 95% credible interval: 0.023
to 0.052, greater than 99.9% likelihood > 0) were robustly pre-
sent in the population. Across individuals, valuation bias ranged
from strong overweighting of loss to mild underweighting of loss
(Fig. 1E, 6.323–0.749) and response bias ranged from a strong
tendency to reject gambles to a mild tendency to accept gambles
(0.211 to −0.103), indicating heterogeneity across participants.
The correlation between the two biases was moderate [r(92) =
0.488, P < 0.001], suggesting that valuation bias and response
bias may be related but do not necessarily index the same in-
ternal process. To further illustrate the independence of the two
biases, we formally compared our model, which incorporated
both valuation bias and response bias (i.e., vG, vL, and z were all
free parameters), with three reduced models: one that in-
corporated only valuation bias but no response bias (i.e., z = 0.5);

a second that incorporated only response bias but no valuation
bias (i.e., vG = vL); and a third model that left out both biases (vG =
vL and z = 0.5). We found that the model that incorporated both
biases best explained the variance in choices and response times (SI
Appendix, Fig. S2 and Table S1). Thus, both valuation bias and
response bias are necessary to explain the observed behaviors in
our study.
Next, we examined the relationship between valuation bias

and gaze allocation, and response bias and pupil dilation. On
average, before a decision was made, participants made 2.710 ±
1.434 gaze fixations on the displayed gain and loss amounts
(median = 3, SI Appendix, Fig. S3). A heatmap plot of gaze al-
location probability suggested an overall tendency to inspect
information about loss relative to gain (Fig. 2A). To quantify
potential gaze bias, we calculated gaze-loss ratio for each trial as
the time spent looking at the loss amount relative to the total
time spent looking at both gain and loss. We also calculated
participant-level gaze-loss ratio by averaging gaze-loss ratios
across trials for each individual. We found that gaze-loss ratio
was slightly, but not significantly, larger than 0.5 in our pop-
ulation [M ± SD = 0.513 ± 0.085, range from 0.389 to 0.904, one-
sample t test against 0.5, t(92) = 1.428, P = 0.078], indicating
heterogeneity in gaze allocation to gains and losses across the
population, despite an overall tendency to attend more to losses.
Notably, gaze-loss ratio was sensitive to the magnitudes of gain

and loss (Fig. 2B). A multilevel regression revealed that gaze-loss
ratio increased as the magnitude of potential loss increased
[Fig. 2C, B = 0.076, SE = 0.008, t(17425) = 8.967, 95% confi-
dence interval: 0.059 to 0.092, P < 0.001] and decreased as the
magnitude of potential gain increased [B = −0.038, SE = 0.007,
t(17425) = 5.344, 95% confidence interval: −0.053 to −0.024, P <
0.001]. Importantly, increases in the magnitude of loss had nearly
double (1.966 times) the impact of increases in the magnitude of
gain on gaze-loss ratio [Fig. 2C, linear contrast of betas,
F(1,17425) = 15.099, P < 0.001], an asymmetric pattern (Fig. 2B)
similar to that observed in choices (Fig. 1B) and response times
(Fig. 1C). These results suggest that gaze allocation is attracted
by loss during information sampling, possibly reflecting valuation
bias in the underlying evidence accumulation process.
To test this hypothesis, we used regression analysis to de-

termine whether valuation bias and response bias estimated from
DDM predicted individual differences in gaze-loss ratio. We
found that valuation bias [Fig. 2D, B = 0.347, SE = 0.039, t(90) =
8.894, 95% confidence interval: 0.270 to 0.425, P < 0.001] but not
response bias [B = 0.034, SE = 0.032, t(90) = 1.063, 95% con-
fidence interval: −0.029 to 0.097, P = 0.291] predicted gaze-loss
ratio. The predictive power of valuation bias on gaze-loss ratio
was 10.284 times larger than that of response bias [linear contrast
of betas, F(1, 90) = 26.280, P < 0.001]. Consequently, our find-
ings endorse a strong relationship between gaze allocation and
valuation bias.
We then tested our hypothesis that pupil dilation reflects re-

sponse bias. We predicted that accepting a gamble would be
effortful and would therefore evoke pupil dilation in choosers
who had a default bias to reject gambles offering potential loss.
As expected, we observed that pupil size began to increase about
0.5 s before accepting a gamble, and, as a sluggish physiological
response, pupil size continued to increase for about 1.5 s after
the decision (Fig. 3A and SI Appendix, Fig. S4A), a time course
consistent with earlier research on pupil dilation and decision-
making (33). We calculated the mean pupil size in this time
window ranging from −0.5 s before to 1.5 s after decision as
decision-related pupil size. Overall, participants showed larger
decision-related pupil size when accepting (M ± SD = 0.151 ±
0.411) than when rejecting gambles [M ± SD = −0.088 ± 0.314,
paired t test, t(92) = 8.111, P < 0.001]. Moreover, participants
who accepted fewer gambles showed larger pupil dilation when
they accepted gambles compared to when they rejected them

11358 | www.pnas.org/cgi/doi/10.1073/pnas.1919670117 Sheng et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
6.

18
8.

90
.2

22
 o

n 
N

ov
em

be
r 

3,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

86
.1

88
.9

0.
22

2.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919670117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1919670117


[Fig. 3B, r(91) = −0.661, P < 0.001]. This correlation was pri-
marily driven by gamble acceptance [SI Appendix, Fig. S4B, red
dots and line, r(91) = −0.417, P < 0.001] but not by gamble re-
jection [blue dots and line, r(91) = 0.053, P = 0.617]. These
observations suggest that accepting a gamble or rejecting it were
asymmetric decisions for participants.
Gambles accepted, relative to those rejected, usually entailed

larger gains and smaller losses (Fig. 1B), or larger expected
values (SI Appendix, Fig. S1C). Thus, the observed difference in
decision-related pupil size of accepted vs. rejected gambles,
which we refer to as accept–reject pupil-size differential, might
simply reflect differences in the expected value of gambles,
rather than a differential response to the choice itself. To unveil
the influence of choice itself on pupil dilation, we performed a
mixed-level regression to predict decision-related pupil size with
gain, loss, and choice (accept = 1, reject = 0). We found that
choice was in fact the biggest contributor to decision-related
pupil size [Fig. 3C, B = 0.166, SE = 0.027, t(17424) = 6.194,
95% confidence interval: 0.114 to 0.219, P < 0.001], compared to
gain [B = 0.092, SE = 0.023, t(17,424) = 3.935, 95% confidence
interval: 0.046 to 0.138, P < 0.001] or loss [B = −0.047, SE =
0.025, t(17,424) = 1.841, 95% confidence interval: −0.097 to
0.003, P = 0.066]. The influence of choice on decision-related
pupil size was 1.798 times greater than that of gain [linear con-
trast of betas, F(1,17,424) = 3.623, P = 0.057] and 3.550 times
greater than that of loss [linear contrast of betas, F(1,17,424) =
8.406, P = 0.004].
These results indicate that decision-related pupil size is pri-

marily influenced by the decision itself rather than the values of
the gambles, and likely reflects response bias. To test this idea,
we examined whether response bias and valuation bias estimated
from the DDM predicted accept–reject pupil-size differential

using regression. We found that larger response bias [Fig. 3D, B =
0.661, SE = 0.141, t(90) = 4.706, 95% confidence interval: 0.382 to
0.940, P < 0.001] but not valuation bias [B = 0.005, SE = 0.173,
t(90) = 0.029, 95% confidence interval: −0.338 to 0.348, P = 0.977]
predicted larger accept–reject pupil-size differential across indi-
viduals. The effect of response bias was significantly larger than
that of valuation bias [linear contrast of betas, F(1,90) = 5.882, P =
0.017]. These findings support the idea that decision-related pupil
size strongly reflects response bias when considering whether to
accept or reject a gamble.

Discussion
By considering decision-making as an evidence accumulation
process that unfolds over time, the present study synthesizes two
distinct views of loss aversion into a single, biologically grounded
framework. Specifically, by fitting DDM to choice probabilities
and response times observed in decisions over mixed gambles, we
quantitatively decomposed loss aversion into a valuation bias
that weighs loss over gain and a response bias that promotes
gamble avoidance prior to the evaluation of gain and loss
amounts. Our approach revealed heterogeneity in the mecha-
nisms underlying loss aversion (Fig. 1E), which would be other-
wise undetectable using conventional approaches like prospect
theory (PT) that do not explicitly incorporate both biases (3, 9).
In our sample, loss aversion, when estimated as a single bias by

PT (denoted as λ, see Materials and Methods for details), was
correlated with both valuation bias [r(92) = 0.343, P < 0.001] and
response bias [r(92) = 0.588, P < 0.001] obtained from DDM
across individuals. This suggests that PT-estimated loss aversion
shares variability with both valuation bias and response bias. To
better understand the relationship between PT and DDM, we
plotted the ratio of PT-estimated loss aversion to valuation bias

Fig. 2. Gaze. (A) Probability of gaze allocation to gains and losses. (B) Gaze-loss ratio across gambles. (C) Gaze-loss ratio predicted by magnitude of gain and
loss across trials. Black and gray bars denote negative and positive beta values, respectively. (D) Gaze-loss ratio predicted by valuation bias and response bias
across participants. Error bars indicate SEs. ***: P < 0.001; ns: nonsignificant, P > 0.1.
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[i.e., λ/(vL/vG)] against response bias (SI Appendix, Fig. S5). This
ratio was larger than 1 for more participants (57%) when re-
sponse bias was positive (i.e., quadrant 1 vs. 4), but smaller than
1 for more participants (62%) when response bias was negative
(i.e., quadrant 3 vs. 2), which resulted in a positive correlation
between the ratio and response bias [r(92) = 0.207, P = 0.045].
That is, loss aversion estimated by PT tended to be larger than
valuation bias when there was a synergistic response bias toward
rejecting gambles, and smaller when there was a counteractive
response bias toward accepting gambles. Thus, loss aversion es-
timated by PT reflects the combined effects of both response bias
and valuation bias.
By decomposing loss aversion into two components, our DDM

framework helps discriminate loss-averse decision makers in a
more nuanced way. Two individuals who are similarly loss-averse
according to PT can be distinct in response bias and valuation
bias in our DDM framework. For example, in our sample, P69
(the green dot in Fig. 1E and SI Appendix, Fig. S5) and P46 (the
purple dot) accepted similar sets of gambles (probability of ac-
ceptance: 22.5 vs. 23.0%, SI Appendix, Fig. S6 A and B). As a
result, loss aversion estimated by PT, which only modeled
choices and assumed no a priori response bias, was roughly
equivalent for these two participants (λ: 2.16 vs. 1.98). In our
DDM-based approach, which takes into account response times
(SI Appendix, Fig. S6 C and D) in addition to choices, P46
showed a larger response bias than did P69 (0.13 vs. 0.08),
whereas P69 evinced a larger valuation bias than did P46 (2.54
vs. 1.79; see Fig. 1E and SI Appendix, Fig. S5).

The DDM framework also accommodates instances when
valuation bias and response bias counteract one another
(Fig. 1E, quadrant 2 and 4). For example, in our sample, a
nonnegligible portion of participants (20.21%) showed valuation
bias for loss over gain but also showed a “reverse” response bias
favoring gamble acceptance (Fig. 1E, quadrant 4). For these
participants, loss aversion estimated using PT would be a com-
promise of the two biases. These cases may partly explain why
loss aversion was not observed in some prior studies or why
observed loss aversion was sometimes vulnerable to response
framing (17, 34, 35).
By using eye-tracking and pupil monitoring to unmask the

internal deliberative process, we found that valuation bias and
response bias are indexed by distinct physiological processes.
Specifically, gaze allocation selectively reflected valuation bias
and pupil dilation selectively reflected response bias. This double
dissociation in physiology further validates our approach to
decomposing loss aversion. Valuation bias and response bias are
not only mathematically distinguishable through application of
DDM (24), but are also biologically separable. This finding
provides biomarkers for us to distinguish distinct types of loss-
averse decision makers even when their choices were similar. For
instance, among the two example participants, P69 (the green
dot in Fig. 1E and SI Appendix, Fig. S5), who showed higher
valuation bias, also displayed a larger gaze-loss ratio (59.98 vs.
52.61%, SI Appendix, Fig. S7 A and B). Conversely, P46 (the
purple dot in Fig. 1E and SI Appendix, Fig. S5), who showed a
higher response bias, also evinced larger accept–reject pupil-size
differential (0.804 vs. 0.392, SI Appendix, Fig. S7 C and D).

Fig. 3. Pupil. (A) Change in pupil size around the time of the decision (t = 0) to accept (red) vs. reject (blue) gambles. (B) Correlation between probability of
gamble acceptance and accept–reject pupil-size differential. (C) Influence of choice, gain, and loss on decision-related pupil size across trials. Black and gray
bars denote negative and positive beta values, respectively. (D) Accept–-reject pupil-size differential predicted by valuation bias and response bias. Error bars
indicate SEs. ***: P < 0.001; **: P < 0.01; *: P < 0.05; †: P < 0.1; ns: nonsignificant, P > 0.1.
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The role of visual attention in loss-averse decisions was tested
indirectly in a recent study that tracked mouse movements in
computer-based gambling tasks (36). The present study, by
coupling eye-tracking with DDM, provides direct evidence for a
gaze bias toward loss involved in the evidence accumulation
process that culminates in loss-averse decisions. A potential
mechanism for gaze to impact this process is by dynamically al-
tering the weights of fixated vs. nonfixated information during
evidence accumulation, as proposed by the attentional drift-
diffusion model (aDDM) (27). Applying the aDDM to our
data (see Materials and Methods for details) showed that valua-
tion bias only partially depends on gaze. Information about loss
was weighted more heavily than information about gain regardless
of whether gaze was on gain or loss. Importantly, the over-
weighting of loss relative to gain manifested to an even larger
degree when gaze was on loss than when it was on gain (see SI
Appendix, Supplementary Text and Fig. S8 for details). Based on
these findings, one possible mechanism is that loss-averse decision
makers have an a priori inclination to weigh loss over gain, which
drives them to preferentially inspect information about loss rela-
tive to gain by looking at it, and this gaze bias, in turn, further
enhances the weight of loss in the evidence accumulation process
(also see ref. 26). Future studies, particularly causal manipulations
(e.g., ref. 36), will be necessary to thoroughly address the role of
gaze and its influence on valuation and decision-making.
In binary decisions without a priori bias, increase in pupil di-

lation reflects increase in the decision threshold for choices in
the DDM framework (28). The present work extends this view by
showing that when there is an a priori bias for one choice (e.g.,
rejecting a gamble), larger pupil dilation is evoked by choosing
the alternative (e.g., accepting the gamble), which is captured by
a biased starting point in the DDM framework. In both cases,
larger pupil dilation represents a longer journey traversed by the
evidence accumulation process.
In the present study, we observed pupil responses began to

depart about 500 ms before an upcoming choice to accept vs.
reject a gamble and the trend continued after the decision. Pupil
dilation is a sluggish physiological signal, which is often delayed
and prolonged with respect to its cause (33, 37). Thus, the un-
derlying decision process for accepting vs. rejecting a gamble
may have begun to diverge even earlier.
Based on these findings, a potential mechanism underlying the

decision to accept a gamble, especially in individuals with large
response bias, could be the following: After gamble presentation,
gaze allocation on potential gain may lead to reevaluation of the
default bias to reject a gamble. This reevaluation could slow
down the decision process, leading to an increase in response
time, and generate efforts to update belief and implement the
nondefault choice to accept the gamble, which would ultimately
be manifested as pupil dilation.
Our decomposition approach also provides a framework to

organize the mixed neurophysiological findings about loss aver-
sion. While functional neuroimaging research shows larger sen-
sitivity of the prefrontal-striatal dopaminergic system to the
magnitude of loss relative to gain (2, 38), pharmacological (39)
and positron emission tomography studies (40) link loss aversion to
the noradrenergic arousal system, which mediates non–luminance-
evoked pupil dilation (30, 31). Our findings suggest that activation
of the noradrenergic system, which is indexed by changes in pupil
size, may reflect the process of overcoming response bias, while the
dopaminergic system may be recruited to encode the value of gain
and loss at different scales (2), thus giving rise to valuation bias.
Overall, our study decomposed loss aversion into a valuation

bias and a response bias, which were reflected in gaze allocation
and pupil dilation, respectively. The decomposition into distinct
biases offers a more nuanced, biologically grounded perspective
on the mechanisms mediating decision-making and advocates for
physiologically based approaches to determine underlying biases.

Our study reveals individual differences in the neurobiological
mechanisms underlying loss aversion, which can lead to better
understanding and personalized interventions to overcome
maladaptive biases in decision making.

Materials and Methods
Participants. The study was approved by the ethics committee of the Uni-
versity of Pennsylvania. Ninety-four adults (54 females, 38 males, 2 non-
identified; 18–56 y old, M ± SD = 22.82 ± 6.39) participated in the
experiment in three cohorts. All participants provided informed consent
before the start of the experiment. Results reported here were based on all
three cohorts of participants and similar results were found for each single
cohort. All participants had normal or corrected-to-normal vision. One par-
ticipant was excluded for gaze and pupil analysis because he thought he was
required to maintain fixation on the center of the screen and did not allo-
cate any fixation on gain or loss in more than 90% of the trials.

Procedure. In the gambling task, participants decided whether to accept or
reject gambles of equal chance of winning and losing money on a computer
(Fig. 1A). Each trial started with a 2 ∼ 4-s of gaze fixation period, followed by
a gamble with the amounts of potential gain and loss displayed in two boxes
positioned at the left and right to the fixation, separated by about 13°.
Participants were given unlimited time to make the decision by pressing one
of two keys. Note, the gambles were not immediately resolved postdecision.

The amounts of potential gain and loss ranged from $1 to $10, with $1
increment. This resulted in a total of 100 unique gambles. Each participant
faced two such blocks of 100 trials each. In other words, they faced each
gamble twice, once in each block. The positions of the gain and loss—left vs.
right of the fixation cross—were counterbalanced between blocks. For a
random half of the participants, gain was displayed in blue and loss in green
and for the other half the colors were switched. The fixation cross was or-
ange in color and the background was gray. Colors were adjusted to make
the screen isoluminant.

At the start of the experiment, participants received an endowment of $10
in cash. They were instructed that at the end of the experiment, one trial (out
of 200) would be randomly selected and a payment made according to their
actual decision. If the selected gamble was rejected, participants left with the
original $10. If the gamble was accepted, a coin would be flipped to de-
termine whether they won or lost the gamble. If they won, the amount of
gain was added to the tally and if they lost, the amount of loss was subtracted
from it. Thus, decisions directly impacted payments, making the task
incentive-compatible.

Gaze and Pupil Data Acquisition. Participants were seated about 60 cm in front
of the screen in a dark and silent room with their head stabilized using a chin
rest. Gaze fixation and pupil diameter were sampled at 120 Hz using an
infrared eye-tracker (SensoMotoric Instruments). The eye-tracker was syn-
chronized with the stimulus-presentation software (iMotions).

Discarding of Eye-Tracking Data. Trials with less than 50% of the gaze or pupil
data in either the analysis timewindow (i.e., 0.5 s before gamble onset to 1.5 s
after decision) or in the baseline time window (i.e., 0.5 to 0 s before gamble
onset) were excluded, leaving 97.37% “valid” trials.

Processing of Gaze Data. The boxes containing the amounts of gain and loss
on the screen were identified as regions of interest. Total time spent looking
at the gain and loss regions in a trial was calculated and referred to as “gaze
duration” of gain or loss. Short gaze fixations (<30 ms) were discarded for
this calculation. Gaze-loss ratio was calculated for the trials that included at
least one gaze fixation on either gain or loss (96.23% out of all valid trials).
Heatmaps of gaze allocation probability were created by calculating the
percent of gaze samples falling on each pixel within the regions of interests
in a trial and then averaged across trials for each participant (SI Appendix,
Fig. S6 A and B) and the group (Fig. 2A).

Processing of Pupil Data. Only the left pupil size was considered for analysis.
Extreme or isolated pupil samples were excluded (41). Missing or excluded
samples were linearly interpolated. The pupil data were then resampled to
100 Hz, filtered using a third-order Butterworth filter (low pass, 4 Hz), and
z-scored for each run and each participant. For each trial, baseline correction
was done by subtracting the mean value of the 0.5 s before gamble onset
from each value within the analysis time window, i.e., from 0.5 s before
gamble onset to 1.5 s after decision. Decision-related pupil size was
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calculated as the mean pupil size in the time window ranging from 0.5 s
before to 1.5 s after the decision (33).

DDM. A sequential sampling model was adapted from ref. 24 to account for
choices and response times of the mixed gambling task. Specifically, the
model assumes that the decision to accept or reject a gamble is a process of
evidence accumulation, with moment-to-moment fluctuation (Fig. 1D). The
accumulation process is terminated as soon as one of the two response
boundaries—either accepting (upper) or rejecting (lower) the gamble––is
reached. The choice and the response time are jointly determined by the
rate at which evidence accumulates (drift rate, v) and the starting point of
the accumulation process (z), relative to the two response boundaries, i.e., 0
and 1. Valuation bias is reflected in the drift rate. For a gamble i with gain
amount of Gi and loss amount of Li, we assume vi = vG · Gi − vL · Li + b + e.
Here vG and vL denote coefficients or weights associated with gains and
losses, respectively, and thus the ratio between the two, vL/vG, is indicative of
the valuation bias. b is an intercept, indicating a constant component in the
drift rate. e indicates random noise in the diffusion process, which follows a
standard normal distribution, i.e., e∼N(0,1). Response bias is determined by
the starting point. A starting point right in the middle, or z = 0.5, indicates
no a priori bias toward any of the two response boundaries, and a starting
point closer to the rejection boundary, or z < 0.5, represents a response bias
toward rejection, which can be quantified as 0.5−z.

We tested four models: DDM 1, a baseline model that constrained both
valuation bias and response bias, i.e., vG = vL and z = 0.5; DDM 2, a model
that allowed response bias but constrained valuation bias, i.e., vG = vL; DDM
3, a model that allowed valuation bias but constrained response bias, i.e., z =
0.5; and DDM 4, the model that enabled both valuation bias and response
bias, in which, vG, vL, and z were all set as free parameters. See SI Appendix,
Table S1 for a summary. For each model, the distance of the two response
boundaries (a) and the nondecision time (t) were also included as variables
of noninterest.

Thesemodels were fit to choice and response time data using HDDM (42), a
Python package for hierarchical Bayesian estimation of DDMs. This approach
estimates group and individual level parameters simultaneously, with group-
level parameters forming the prior distributions from which individual par-
ticipant estimates are sampled. We ran four separate chains for the models.
Each chain consisted of 20,000 samples, where the first 2,000 were burn-ins.

To assess model convergence, R̂s of all of the parameters were calculated. All

R̂s were close to 1, suggesting that the sample size was sufficient for the
chains to converge (43).

To perform model comparison, we calculated Bayesian Predictive In-
formation Criterion (44) for each model (SI Appendix, Fig. S2A). Further, we
tested out-of-sample predictions of each model. Specifically, we segregated
data by whether gain was presented on the left or right side of the screen on
a trial. We first estimated parameters by fitting the DDMs with choice and
response time data of gain-left (gain-right) trials, then used the estimated
posterior means of parameters to compute log likelihood of the observed
distribution of choices and response times of gain-right (gain-left) trials, and
finally aggregated log likelihood across trials and participants (SI Appendix,
Fig. S2B).

aDDM. To test aDDM (27) in the framework of HDDM (also see ref. 28), we
allowed the coefficients of gain and loss in the drift rate, vG and vL, to vary as
a function of gaze. Specifically, we assume that when gaze is on gain, the
coefficients for gain and loss in the drift rate are vG,GazeG and vL,GazeG,
whereas when gaze is on loss, the two coefficients are vG,GazeL and vL,GazeL.
Thus, for a gamble i with gain amount of Gi and loss amount of Li, the drift
rate vi ∼ vG,GazeG · Gi – vL,GazeG · Li when gaze is on gain and vi ∼ vG,GazeL · Gi –

vL,GazeL · Li when gaze is on loss. Assuming for the gamble i, the percent of
time spent looking at loss, or gaze-loss ratio, is GazeLi and that for gain, or

gaze-gain ratio, is GazeGi (i.e., 1 − GazeLi), the mean drift rate for the
gamble can be represented as the sum of two components weighted by
respective gaze ratios, i.e., vi ∼ GazeGi · (vG,GazeG · Gi – vL,gazeG · Li) + GazeLi ·
(vG,GazeL · Gi – vL,GazeL · Li). Accordingly, valuation bias is vL,GazeG/vG,GazeG
when gaze is on gain and vL,GazeL/vG,GazeL when gaze is on loss, and the
discounting rate of being nonfixated is vG,GazeL/vG,GazeG for gain and vL,GazeG/
vL,GazeL for loss.

We tested four instantiations of aDDM in this framework: aDDM 1, a
baseline model that assumed no valuation bias at all, i.e., vG,GazeG = vL,GazeG =
vG,GazeL = vL,GazeL; aDDM 2, a model that assumed valuation bias was fully
dependent on gaze, i.e., vG,GazeG = vL,GazeL and vG,GazeL = vL,GazeG; aDDM 3, a
model that assumed valuation bias was fully independent of gaze,
i.e., vG,GazeG = vG,GazeL and vL,GazeG = vL,GazeL; and aDDM 4, a model that
assumed valuation bias could have both gaze-dependent and -independent
components, in which vG,GazeG, vG,GazeL, vL,GazeG, and vL,GazeL were all set as
free parameters. For all four models, we set response bias to be un-
constrained, i.e., z was a free parameter. Thus, aDDM 1 and aDDM 3 were in
fact identical to DDM 2 and DDM 4; in other words, aDDM 1 and aDDM 3
were not really “attentional” DDM, as the impact of attention was con-
strained in the two models. Here, we treated them as reduced forms of
aDDM 4, and therefore we labeled them as aDDM1 and aDDM3 for ease of
comparison. The four aDDMs were fit to choice and response time data in
the same way as the four DDMs except that only valid eye-tracking trials (see
above) were included for aDDM analysis.

In addition, we tested two othermodels that also allowed valuation bias to
have both gaze-dependent and -independent components but had one
more constraint compared to aDDM 4: aDDM 5, a model that allowed
vG,GazeG and vG,GazeL to be free but set vL,GazeG = vL,GazeL; and aDDM 6, a
model allowed vL,GazeG and vL,GazeL to be free but set vG,GazeG = vG,GazeL. The
performance of these two models were similar to but inferior to aDDM 4.
See SI Appendix, Table S2 for a summary of all aDDMs.

Prospect Theory Model. Based on the established approach (3, 9), the
expected utility of accepting a gamble was calculated as the sum of
probability-weighted gain and loss, i.e., U(Accept) = 0.5 × Gain − 0.5 × λ ×
Loss, where λ indicated relative weighting of loss over gain. The expected
utility to reject a gamble is 0, i.e., U(Reject) = 0. The probability of accepting
a gamble was estimated based on the softmax function, P(Accept) = 1/
(1+e−μ(U(Accept)−U(Reject))), where μ indicated the degree to which a decision
was sensitive to expected utility. The probability of rejecting was computed
as P(Reject) = 1−P(Accept). Maximum likelihood estimation was then
employed to identify the values of λ and μ. The estimation was implemented
using a hierarchical Bayesian approach (hBayesDM package in R) (45).

Regression Analysis and t Tests. For all regression analysis, regressors were
rescaled between 0 and 1. For multilevel regressions, random effects of
participants were included for the intercept, and all regressors. To compare
the sizes of betas between each pair of regressors, linear contrasts were
performed on the absolute values of betas using the linhyptest function in
MATLAB. All t tests were one-tailed.

Data Availability. Behavioral and eye-tracking data are available at https://
osf.io/yz9e6/.
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