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Abstract 

Decision models are essential theoretical tools in the study of choice behavior, but there 

is little consensus about the best model for describing choice, with different fields and different 

research programs favoring their own idiosyncratic sets of models. Even within a given field, 

decision models are seldom studied alongside each other, and insights obtained using one model 

are not typically generalized to others. We present the results of a large-scale computational 

analysis that uses landscaping techniques to generate a representational structure for describing 

decision models. Our analysis includes 89 prominent models of risky and intertemporal choice, 

and results in an ontology of decision models, interpretable in terms of model spaces, clusters, 

hierarchies, and graphs. We use this ontology to measure the properties of individual models and 

quantify the relationships between different models. Our results show how decades of 

quantitative research on human choice behavior can be synthesized within a single 

representational framework.  

 

Keywords: decision making, risky choice, intertemporal choice, meta-theoretical analysis, 

modeling 
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Introduction 

The study of how people make decisions is a central topic of research in psychology, as 

well as in various other social, behavioral, and biological sciences (Kahneman & Tversky, 2000; 

Camerer, Loewenstein, & Rabin, 2011; Glimcher & Fehr, 2013). This research has been 

remarkably influential, shaping our understanding of the psychological determinants of choice, 

of individual rationality, of markets and societies, and of the biological bases of human behavior 

(Bettman, Luce, & Payne, 1998; Starmer, 2000; Glimcher & Rustichini, 2004; Weber & 

Johnson, 2009). Much of this work has relied on decision models in order to describe choice 

processes, predict choice outcomes, and interpret the relationship between choices and various 

affective, cognitive, clinical, socioeconomic, demographic, and neurobiological variables.  

Decision models are parameterized mathematical functions or computer algorithms, 

which take as inputs a set of available choice options and produce as outputs predictions 

regarding decision makers’ choices over this set. In risky decision making, for example, these 

models predict choices over gambles, which offer potentially probabilistic rewards. Likewise, in 

intertemporal decision making, these models predict choices over sequences of outcomes, which 

offer potentially delayed rewards. By quantitatively describing the ways in which choices are 

made, decision models allow researchers to infer parameters corresponding to latent decision 

constructs (risk aversion, time discounting, regret, probability weighting, attentional bias, loss 

aversion, present bias etc.) from behavioral data, giving the study of decision making conceptual 

rigor and empirical precision. For this reason, decision models are essential theoretical tools in 

psychology (Birnbaum, 2008; Busemeyer & Townsend, 1993; Brandstätter, Gigerenzer, & 

Hertwig, 2006; Scholten & Read, 2010; Ericson, White, Laibson, & Cohen, 2015), economics 

(Loomes & Sugden, 1982; Tversky & Kahneman, 1992; Loewenstein & Prelec, 1992; Laibson, 
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1997; Yaari, 1987) and neuroscience (McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007; 

Kable & Glimcher, 2010), and have been extensively applied to study human behavior in 

clinical, financial, managerial, consumer, policy, and other applied domains. 

However, despite decades of decision research, we do not currently have a unified model 

of choice behavior, or any academic consensus about the right decision model for studying how 

people make decisions. Rather, the long history and vast interdisciplinary scope of decision 

research have given rise to a very large number of distinct models, each making seemingly 

unique claims about how people deliberate and choose between available options. In this paper, 

we catalogue 89 different models of simple risky and intertemporal choice. The existence of so 

many decision models complicates our understanding of choice behavior, impeding scientific 

progress.  

Another source of confusion is the fact that decision models involve a menagerie of 

overlapping assumptions. In risky choice, for example, some decision models may assume a non-

linear transformation of payoffs (e.g. expected utility theory, Bernoulli, 1738), others may 

assume a non-linear transformation of probabilities (e.g. dual theory, Yaari, 1987), and some 

may assume both (e.g. cumulative prospect theory, Tversky & Kahneman, 1992). Likewise, 

some models may allow the payoffs offered by a gamble to influence how other payoffs of the 

same gamble are evaluated (e.g. the transfer-of-attention exchange model, Birnbaum, 2008), 

some may allow the payoffs of a gamble to influence how payoffs of other gambles are evaluated 

(e.g. regret theory, Loomes & Sugden, 1982); and others may do both (e.g. the priority heuristic, 

Brandstatter et al., 2006). Which of these assumptions give rise to the idiosyncratic predictions 

of the model, and do two models that share a given assumption make similar predictions? 
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Without answering these questions, our understanding of the essential mathematical operations 

necessary to describe human choice behavior remains incomplete. 

Finally, it is difficult to make rigorous model-based empirical claims without first 

characterizing the relationships between different decision models and between the constructs 

that their parameters represent. Imagine observing a relationship between a model parameter and 

an affective, cognitive, clinical, socioeconomic, demographic, or neurobiological variable of 

interest. For example, activity in the limbic system may correlate with the decision maker’s 

weighting of immediate payoffs (McClure, Laibson, Loewenstein, & Cohen, 2004), time 

pressure may be associated with the use of a particular heuristic (Payne, Bettman, & Johnson, 

1988), higher incentives may lead to an increase in risk aversion (Holt & Laury, 2002), and 

individuals prone to addictive behavior may be more likely to discount future rewards 

(MacKillop et al., 2011). Testing for such relationships is increasingly common and these tests 

represent one of the main ways in which decision models are used to describe empirical 

regularities in choice behavior. However, these tests typically involve the parameters or 

predictions of a limited number of models or even a single model, and we cannot tell if the 

variable of interest is better described by one of the numerous other models in the literature. A 

range of different decision constructs (specified by a range of different models) could be 

associated with limbic system activation, the effects of time pressure and incentives, and 

addiction proneness. Understanding these associations is necessary for a rigorous, cumulative, 

and trans-disciplinary science of human choice behavior. 

One way to address the above issues is to build a single representational structure that 

describes all existing decision models, or, in other words, an ontology of decision models. Such 

an ontology would specify the relationships between models, allowing researchers to 
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quantitatively measure the similarities of models, and determine whether or not the results 

obtained using a given model can be attributed to others. By formalizing the relationships 

between models, the ontology would also measure the relative flexibility of models, including 

both their generality (ability to mimic the predictions of other models) and their uniqueness 

(ability to make predictions that cannot be mimicked by others). By relating model similarities 

and dissimilarities to various model properties, a model ontology could also be used to test which 

of the mathematical assumptions in the models give rise to their idiosyncratic predictions.  

Our goal in this paper is to build such an ontology of decision models. In order to do so, 

we perform a computational analysis that uses Monte Carlo methods to measure the relationships 

between models. Specifically, we calculate (potentially asymmetric) similarities and 

dissimilarities between pairs of models through landscaping analysis (Navarro, Pitt, & Myung, 

2004), which measures how well one model can fit the data generated by another (this method is 

also sometimes called data-uninformed parameter-bootstrapping cross-fitting, Wagenmakers, 

Ratcliff, Gomez, & Iverson, 2004). We use landscaping with a wide range of randomly sampled 

model parameters and choice questions in order to uncover the pairwise similarities between 

numerous different models. Finally, various statistical and computational tools, such as multi-

dimensional scaling and graph-theoretic analysis, are applied to these pairwise similarities, to 

interpret and analyze the representational structure captured in our ontology.  

Our approach is inspired by the insights of Broomell, Budescu, & Por (2011), who use 

pairwise comparisons of models to understand structures of model relationships, and Pachur, 

Suter and Hertwig (2017), who try to integrate prospect theory and heuristic approaches to 

studying risky choice by analyzing model mimicry. It is also related to a number of recent papers 

that attempt to synthesize existing findings on choice behavior in a single representational 
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structure or typology (Chapman et al., 2018; Eisenberg et al., 2019; Hollands et al., 2017; Norris 

et al., 2019). Unlike most prior work, our analysis is quantitative, and based on an established 

statistical technique with well-known theoretical properties. We apply this technique on a very 

large scale, in order to construct ontologies that include nearly every risky and intertemporal 

model that can be specified using a tractable parameterized mathematical function or algorithm, 

and subsequently use our ontologies to answer a wide range of metatheoretical questions 

involving model relationships and structures in decision making research.  

Methods 

Models  

Our analysis involves 62 prominent models of risky choice and 27 prominent models of 

intertemporal choice, from numerous academic disciplines, published from the 1950s to the 

present day. We consider only mathematically tractable and parameterized models, and thus 

exclude general axiomatic models, qualitative (verbal) models, and simulation-based models. 

Details of the models are presented in Tables A1-A5 in Appendix.  

Although our set of models is highly diverse, we can simplify our analysis and better 

interpret the model ontology by categorizing the models into a small set of discrete categories. 

For risky choice, we consider four core model categories: (1) Subjective expected utility theories 

(SEUT), which multiply transformed or untransformed payoffs against transformed or 

untransformed probabilities (e.g., cumulative prospect theory, Tversky & Kahneman, 1992); (2) 

Risk-as-value models, which explicitly incorporate a disutility caused by the riskiness (or 

variability) of the gamble (e.g., portfolio theory, Markowitz, 1952); (3) Counterfactual models, 

which compare the payoffs of gambles against alternate payoffs of the same gamble or other 

gambles (e.g., regret theory, Loomes & Sugden, 1982); and (4) Heuristic models, which use 
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cognitive shortcuts to choose between gambles (e.g., the priority heuristic, Brandstätter et al., 

2006).  

For intertemporal choice, we consider three categories: (1) Delay discounting models, 

which weigh payoffs as a function of their respective delays independently (e.g., Samuelson, 

1937); (2) Interval discounting models, which weigh payoffs as a function of both their delays 

and the interval (i.e. the difference of delays) between options (e.g., Kable & Glimcher, 2010); 

and (3) time-as-attribute models, which represent time delay as a separate attribute, and combine 

delays and payoffs using various linear and non-linear combination rules or heuristic shortcuts 

(e.g., Scholten & Read, 2010).  

In addition to the above categories, we also analyze the underlying mathematical 

assumptions made by the various models. We consider four such assumptions for risky models: 

Whether or not the model involves (1) payoff transformations, (2) probability transformations, 

(3) interactions between the components (payoffs or probabilities) of a single option (“intra-

option interaction), or (4) interactions between the components across options (“inter-option 

interaction”). The first two of these assumptions play a crucial role in the SEUT category, but 

also characterize many counterfactual models (which may, for example, involve a non-linear 

regret function applied to payoffs). The third assumption is common across all four categories of 

models. By allowing the outcomes of a gamble to influence the evaluation of other outcomes of 

the same gamble, this assumption allows a model to account for independence violations such as 

the Allais paradox (Allais, 1953; Kahneman & Tversky, 1979). The fourth assumption is 

typically only present in counterfactual models and heuristic models. By allowing the outcomes 

of a gamble to influence the evaluation of outcomes of other gambles, this assumption is 

necessary for a model to account for transitivity violations (Tversky, 1969).  
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We also consider three such assumptions in intertemporal choice: Whether or not the 

model assumes (1) non-linear transformations of delays, (2) interactions between the delays of 

different options, and (3) interactions between the payoffs of different options. Again, the first 

assumption is common in multiple model categories. The next two assumptions, which allow for 

the magnitude of discounting or the evaluation of payoffs of a given option to depend on other 

options in the choice set, can give rise to transitivity violations. The assumptions studied here are 

not mutually exclusive and many models apply two or more assumptions simultaneously to 

compute utility. 

Stochastic specifications 

We apply the decision models to binary choices between gambles or payoffs sequences. 

As most of these models are deterministic, we need to assume some type of stochastic 

specification in model implementation. For utility-based models, we use both Logit and Probit 

choice rules. The Logit choice rule defines the probability of choosing option X in a binary 

choice between X and Y as	𝑝[𝑋; 𝑌] = !
!"#$%&'()*(,)'*(.)/0

, where 𝑝[𝑋; 𝑌] is increasing in 

𝑈(𝑋) − 𝑈(𝑌), and 1/ε represents the noisiness of the decision process. The larger the value of 

1/ε, the smaller the effect of 𝑈(𝑋) − 𝑈(𝑌) on 𝑝[𝑋; 𝑌]. Likewise, Probit defines the probability of 

choosing X as	𝑝[𝑋; 𝑌] = Φ.𝜀0𝑈(𝑋) − 𝑈(𝑌)12, where 0 ≤ Φ(∙) ≤ 1 is the cumulative standard 

normal distribution. In the main text we only present the results of the Logit analysis. The results 

of the Probit analysis can be found in supplementary materials.  

The above stochastic specifications can only be applied to models that generate cardinal 

utilities or decision propensities. For heuristic models, which do not assign cardinal values to 

options, we assume a constant-error choice rule (also known as tremble noise). This stochastic 

specification transforms binary deterministic responses, such as a choice of X or Y, into choice 
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probabilities 𝑝[𝑋; 𝑌] by permitting a fixed probability 1
2
 of making an error response (with 0 ≤

µ ≤ 1). Thus, for example, if the model predicts the choice of X, we have 𝑝[𝑋; 𝑌] = 1 − 1
2
 and 

𝑝[𝑌; 𝑋] = 	 1
2
	. 

Most existing applications of utility-based models use Logit (or Probit) stochastic 

specifications, and most existing applications of heuristic models use constant-error stochastic 

specifications. These are thus the stochastic specifications that we focus on in the main text. 

However, the use of different stochastic specifications for different classes of models may 

introduce artificial differences in model predictions, and thus distort our results. To control for 

this possibility we present additional analysis using only the constant-error specifications for 

both utility-based and heuristic models, in the supplemental materials.  

Experimental designs and decision stimuli 

A set of choice pairs or decision stimuli is required for the decision models to make 

predictions. As experimental design could be crucial in determining the (dis)similarity between 

models’ predictions, we consider two different designs (a main and an alternative design) for 

generating decision stimuli for the risky and intertemporal decision domains and establishing the 

generalizability of the results. For risky models, our main design uses two types of binary choice 

questions. One type of question involves choices between two two-branch gambles, denoted as X 

= ($x, p; $0, 1-p) and Y = ($y, q; $0, 1-q). The other type of choice question involves choices 

between a sure payoff and a two-branch gamble, denoted as X = ($x, 1; $0, 0) and Y = ($y, q; $0, 

1-q). There are 50 questions per choice type, totaling 100 choice questions in each choice set 

from the main experimental design. Our alternative design, in contrast, involves only choices 

between two two-branch gambles, and thus contains 100 choice questions between X = ($x, p; 

$0, 1-p) and Y = ($y, q; $0, 1-q).  
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The main design in intertemporal choice also uses two types of binary choice questions. 

One type of question involves choices between two delayed payoffs, that is, choices between X = 

($x, t) and Y = ($y, s), in which 0 < x < y and 0 < t < s. The other involves choices between an 

immediate and a delayed payoff, that is, choices between X = ($x, 0) and Y = ($y, s). Again, there 

are 50 questions of each type, totaling 100 questions in each choice set from the main 

experimental design. The alternative design uses only delayed payoffs, and has 100 choice 

questions between X = ($x, t) and Y = ($y, s), in which 0 < x < y and 0 < t < s. 

The main designs for both risky and intertemporal choice involve questions in which one 

choice option offers a certain or immediate payoff. We explicitly include these questions as 

many decision models make special predictions in the presence of certainty or immediacy. The 

alternative designs, in contrast, only consider a single type of question, and are thus useful for 

checking the robustness of our ontology in settings in which the choice set isn’t specifically 

engineered to involve certainty or immediacy. We present the results of the main design in our 

main text, and present the results of the alternative design in the supplemental materials. 

We generate risky and intertemporal choice questions according to the above designs by 

randomly sampling payoffs, probabilities, and time delays from uniform distributions. In risky 

choice between X = ($x, p; $0, 1-p) and Y = ($y, q; $0, 1-q), x and y are randomly and 

independently sampled from a uniform distribution U(0, 100); p and q are randomly, 

independently sampled from a uniform distribution U(0, 1). Likewise, in risky choice questions 

between X = ($x, 1; $0, 0) and Y = ($y, q; $0, 1-q), y is randomly sampled from uniform 

distribution U(0, 100) and x is randomly selected from uniform distribution U(0, y); q is 

randomly sampled from a uniform distribution U(0, 1).  
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In intertemporal choice between X = ($x, t) and Y = ($y, s), in which 0 < x < y and 0 < t < 

s, y and s are randomly sampled from a uniform distribution U(0, 100); x is randomly sampled 

from the uniform distribution U(0, y); and t is randomly sampled from the uniform distribution 

U(0, s). In choices between X = ($x, 0) and Y = ($y, s), in which 0 < x < y and 0 < s, y and s are 

randomly sampled from a uniform distribution U(0, 100) and x is randomly sampled from the 

uniform distribution U(0, y). In the alternative experimental designs all choice questions are 

sampled in the same manner as the first type of choice questions in the main experimental design 

(X = ($x, 1; $0, 0) vs. Y = ($y, q; $0, 1-q) for risky models, and X = ($x, t) vs. Y = ($y, s) for 

intertemporal models). 

Note that the above stimuli involve only positive payoffs, i.e. the gain domain. However, 

understanding the differences between positive and negative payoffs, that is, the gain and loss 

domains, has been the focus of a lot of theoretical and empirical work in risky choice (e.g. 

Kahneman & Tversky, 1979). We focus our analysis on the gain domain as only a few risky 

models (mostly variants of prospect theory) explicitly differentiate between gains and losses. 

Most other models are explicitly formulated only for gains. Some can be made to predict loss 

domain phenomena, such as loss aversion, with additional assumptions not made by the initial 

authors (e.g. different model parameters for positive and negative payoffs), whereas others are 

mathematically restricted to the gain domain. That said, we present an additional set of tests 

using mixed gambles composed of both positive and negative payoffs in the supplemental 

materials. To make our risky decision models applicable to the loss domain we make some 

important changes to model specifications and exclude certain models from the analysis. Our 

results from the mixed gamble analysis are thus not directly comparable to the results for the 

gain domain presented in the main text.  
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Landscaping analysis 

As discussed in the introduction, we obtain a (potentially asymmetric) measure of 

similarity between pairs of models by means of landscaping analysis (Navarro et al., 2004; also 

see Wagenmakers et al., 2004 for a related approach). Here we write the set of N binary choice 

questions as an experimental design Q. A generating model G can be written as a function fG that 

takes experimental design Q as input and, based on a set of its parameters θG, produces an N-

length vector of choice probabilities fG(Q|θG) as an output. Landscaping calculates how well a 

second fitted model F is able to approximate this vector of choice probabilities. This involves 

searching the parameter space of F for some set of parameters θF that minimizes the dissimilarity 

between fF(Q|θF) and fG(Q|θG). We use Kullback-Leibler (KL) divergence to measure 

dissimilarity, and thus minimize KL divergence between fF(Q|θF) and fG(Q|θG), denoted as 

D34[𝑓5(𝑄|𝜃5) ∥ 𝑓6(𝑄|𝜃6)]. Minimizing KL divergence is equivalent to maximizing the 

likelihood with an infinite number of observed choice data, and using minimum KL divergence 

bypasses the need for simulating noisy choices numerous times to obtain accurate fit statistics. 

This gives our approach a degree of computational tractability not possible using standard model 

simulation and fitting techniques using likelihood values as a measure of fitting quality. 

We implement landscaping in four steps. First, a set of N = 100 choice questions, Q, is 

generated in accordance with the pre-specified experimental design (outlined above). Second, for 

a given generating model G, and a given experimental design Q, a set of parameter values are 

sampled from a reasonable prior distribution (these distributions are summarized in Table A5 in 

Appendix). Third, G, with the sampled parameter values, is applied to the set of choice 

questions, Q, resulting in a 100-length vector of choice probabilities 𝑓5(𝑄|𝜃5). Fourth, another 

model, F, is fit to the N-length vector of choice probabilities by minimizing the Kullback-Leibler 
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(KL) divergence between the predictions of the fitted model and the predictions of the generating 

model. We write this measure of KL divergence as:  

D34[𝑓5(𝑄|𝜃5) ∥ 𝑓6(𝑄|𝜃6)] = >? > 𝑓5(𝑜|𝜃5) log2 D
𝑓5(𝑜|𝜃5)
𝑓6(𝑜|𝜃6)

E	
7∈&,!,.!0

F
:

;<!

	 

where 𝑓5(𝑜|𝜃5) is the scalar predicted probability of choosing option o in choice question q 

(either 𝑋; or 𝑌;) given model G and parameters 𝜃5 . 𝑓6(𝑜|𝜃6) is the scalar predicted probability 

of choosing option o in choice question q given model F and parameters 𝜃6. The summation 

∑ (∙)7∈&,!,.!0  measures the KL divergence of using F to mimic G for the pair of options in each 

choice question q. ∑ (∙):
;<!  follows the chain rule of KL divergence which states that the total KL 

divergence over all choice questions is the sum of the KL divergences for individual choice 

questions.  

We search for the minimum KL divergence via the Nelder-Mead simplex algorithm, 

implemented by MATLAB’s fminsearch command. Here we repeat the optimization procedure 

in fminsearch 500 times with random starting points to ensure that we reach the global minimum 

for each fit. To ensure that all KL divergences are tractable, we constrain 𝑓5(𝑜|𝜃5) and 𝑓6(𝑜|𝜃6) 

to have a floor of 0.001 and a ceiling of 0.999. This allows us to avoid the extreme choice 

probabilities of 0 or 1 (for which KL divergence can be infinite). We use base-2 logarithms for 

calculating the KL divergences. Thus, the resulting KL divergences are in bits. 

The 100 samples of Q and θG, and subsequent fits of model F to G, are used to calculate 

an expectation of the minimum KL divergence, which we write as: 

𝑑56 = 𝔼=,>"min>#{D34[𝑓5(𝑄|𝜃5) ∥ 𝑓6(𝑄|𝜃6)]} 

dGF captures how closely F can mimic the predictions by G with dGF = 0 indicating that F 

can fit G perfectly. This measure is asymmetric, as one model may be able to fit the predictions 
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generated by another, but not vice versa. Thus, we calculate dGF separately for each possible 

combination of generating and fitted model.  

As mentioned earlier, we consider three stochastic specifications (Logit, Probit and 

constant-error) for utility-based models and two experimental designs (a main and an alternative 

design) for both risky and intertemporal choice models. There are 62 risky decision models. 

Thus, for each combination of stochastic specification and experimental design, 3,844 (i.e. 62 × 

62) pairwise model dissimilarities are estimated, resulting in a 62 × 62 asymmetric matrix. 

Likewise, there are 27 intertemporal decision models. Thus, for each combination of stochastic 

specification and experimental design, 729 (i.e. 27 × 27) model dissimilarities are estimated, 

resulting in a 27 × 27 asymmetric matrix. We also consider a mixed gamble design for a subset 

of 56 risky choice models (with the Logit stochastic specification), resulting in 56 × 56 = 3,136 

pairwise model dissimilarities. As each measure of dissimilarity is approximated using 100 

different samples of decision stimuli and parameters of the generating model, our entire project 

involves the estimation of a total of 3,057,400 minimum KL divergences (2,620,000 for risky 

models and 437,400 for intertemporal models). The results of the Logit/main design combination 

are presented in the main text. Detailed results from other combinations are presented in the 

supplementary materials.  

Results 

Reliability and generalizability 

We began by testing the reliability and the generalizability of the measured model 

dissimilarities. We tested the former using split-half reliability. Here we divided each set of the 

100 random samples for estimating 𝑑56 into two halves and calculated the expectation of model 

dissimilarities for each half, 𝑑56?@, with 50 in the subscript indicating the number of simulations 
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in each half. We then estimated the similarity between the two halves using inner-product matrix 

correlation (Ramsay, ten Berge, & Styan, 1984) and implemented it using the MatrixCorrelation 

package in R (Indahl, Næs, & Liland, 2018; R Core Team, 2018). Across all the 12 

computational analyses (2 choice domains × 2 experimental designs × 3 stochastic 

specifications), the matrix correlation coefficients between the two subsets were constantly close 

to 1, suggesting extremely high reliability of our measurement of model dissimilarities (see 

Table 1 for reliability statistics). 

<Insert Table 1 about here> 

We next examined the similarities of the dissimilarity matrices from different 

experimental designs and stochastic specifications for a test of generalizability. This was again 

done with inner-product matrix correlation. For both choice domains, we obtained six 

dissimilarity matrices, by crossing two experimental designs and three stochastic specifications. 

For risky decision models, these correspond to six 62´62 matrices. For intertemporal decision 

models, these correspond to six 27´27 matrices. We calculated the matrix correlation 

coefficients for each pair of matrices for each choice domain respectively. Table 1 presents the 

inner-product matrix correlation coefficients across different stochastic specifications and 

experimental designs.  

Given a stochastic specification (Logit, Probit or Constant-error), the dissimilarity 

matrices from different experimental designs were highly consistent with each other, with all 

correlation coefficients above or close to 0.95 (i.e. the figures in boldface in Table 1). Turning to 

stochastic specifications, with the same experimental design (either Main or Alternative), Logit 

and Probit specifications were almost identical to each other, with correlation coefficients close 

to 1 for both risky and intertemporal models. This likely reflects the fact that these two stochastic 
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specifications generate similar mappings of cardinal utility to choice probability. Even with 

different experimental designs, the correlation coefficients between Logit and Probit always 

exceed 0.93 for both risky and intertemporal models.  

The correlation coefficients between Logit/Probit and the constant-error stochastic 

specifications are, however, slightly lower. As shown in Table 1, these range between 0.79 and 

0.88 for risky decision models, and between 0.75 and 0.84 for intertemporal choice models, 

depending on the experimental design. These results indicate that stochastic specification can 

influence a model’s quantitative predictions (see Blavatskyy & Pogrebna 2010; Loomes & 

Sugden, 1995; Regenwetter et al., 2018; Scholten, Read & Sanborn, 2014 for extended 

discussion). Nonetheless the correlations are all fairly high, indicating that our dissimilarity 

matrices, and subsequent ontologies, are fairly stable.  

Note that we also analyzed an experimental design with both gains and losses in the risky 

choice domain. These tests resulted in somewhat different model dissimilarity matrices. 

However, these results are not directly comparable to those from the gain domain presented 

above, as our extension to the loss domain required fundamental changes to model specifications 

and the exclusion of a subset of risky choice models. We elaborate on these differences in the 

supplemental materials.  

Model spaces 

The set of model dissimilarities obtained through landscaping quantify model 

relationships for each pair of models. To better interpret these relationships, we used the pairwise 

similarities to drive representations of the models as points in a multidimensional space. Such 

spatial representations provide an intuitive description of similarities across numerous models. 

Additionally, central points in such spaces identify prototypical models and peripheral points in 
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such spaces identify atypical and unusual models, allowing for an intuitive understanding of the 

representational structure captured in the model dissimilarity matrices.  

In order to obtain spatial representations, we first symmetrized our measures of model 

dissimilarity: 𝑑56PPPPP = 𝑑65PPPPP = 	 A"#"A#"
2

. We projected these symmetrized model dissimilarity 

measures onto latent dimensions via non-metric multidimensional scaling (NMDS) (Kruskal, 

1964; Venables & Ripley, 2002). The non-metric approach relaxes the assumption of a cardinal 

distance measure of classical multidimensional scaling and relies solely on the rank order of the 

symmetrized KL divergence, 𝑑56PPPPP. Thus, the NMDS solutions would hold constant even if any 

other distance measure that is monotonically increasing in 𝑑56PPPPP is used. We obtained NMDS 

representations by minimizing the stress of the low-dimensional configurations (Kruskal, 1964). 

To ensure that the global minimum stress was reached, the optimization procedure was repeated 

100,000 times with random starting configurations.  

Two-dimensional representations of the space of risky and intertemporal models, 

obtained through the above methods applied to the Logit stochastic specification and the main 

experimental design, are shown in Figures 1a and 2a respectively. Analogous figures for 

alternative stochastic specifications and designs are provided in Figures S1 and S3 of 

supplemental materials, and the relationships between model spaces derived using different 

stochastic specifications and experimental designs is summarized in Tables S1 and S2 of 

supplemental materials. The figures also show the centroid of the spaces using black crosses. 

Here we represent different categories of our risky models (SEUT, risk-as-value, counterfactual, 

heuristic) and intertemporal models (delay discounting, interval discounting, time-as-attribute) 

using different colors.  

<Insert Figure 1 about here> 
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The model space in Figure 1a illustrates the latent structure of risky decision models, and 

can be used to identify theoretical distinctions that result in diverging model predictions and 

subsequently large model distances. For example, SEUT models tend to cluster with each other 

in the central region of the model space. This is likely due to the fact that subjective 

transformations to payoffs and probabilities are among the earliest and most influential 

assumptions in modeling risky choice. We observe some clustering within the risk-as-value 

category and the counterfactual category, whose models occupy most of the left region of the 

model space in Figure 1a. The proximity of these two sets of models may be due to the fact that 

some disappointment-based counterfactual models closely resemble risk-as-value models, as 

they implicitly place a penalty on high variance gambles. We can also see that heuristic models 

are mostly located at the periphery of the space. These models make extreme predictions that 

diverge sharply from those made through utility maximization.  

There are also interesting types of variation within each category of models. For example, 

although most SEUT models are located at the center of the space, a few are located at the 

periphery. These include expected value maximization (#1), subjective expected money (#4), 

certainty equivalence theory (#5) and dual theory (#8 and #9). None of these peripheral models 

involve transformations to payoffs; they all assume linear value functions.  

Likewise, although all risk-as-value models share a similar model structure (which 

aggregates the moments of the gamble’s distribution), some have very idiosyncratic predictions, 

such as the mean-variance-skewness model (#27). In contrast, others, such as the alpha-target 

model (#28), the below-target model (#29), the below-mean semivariance model (#31), and the 

coefficient-of-variation model (#37), are very similar to expected value maximization. These 
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differences are likely the result of the ways in which gamble moments enter the utility function, 

and how this relates to the design choices in our analysis.  

There is a fair amount of spread in the locations of counterfactual models. These 

locations appear to rely more on whether a payoff transformation is applied in the model, rather 

than the mechanism the model represents (e.g. regret vs disappointment). This is why, for 

example, regret theory with expected value evaluation and disappointment theory with expected 

value evaluation (#39 and #42) are located close to each other and to the expected value 

maximization model (#1), whereas regret theory with expected utility evaluation and 

disappointment theory with expected utility evaluation (#40 and #43) are located close to the 

expected utility maximization model (#2).  

Finally, there is a significant amount of variability in the location of the heuristic models. 

A few heuristic models with operations that involve utility-based calculation, such as the low 

expected payoff elimination heuristic (#50), the relative expected loss immunization heuristic 

(#58) and the similarity heuristic with expected utility evaluation (#60), are located closer to the 

cluster of utility-based models. Generally, however, there are many important differences in the 

types of predictions made by different heuristics, which is why the heuristics are spread out over 

a relatively large region. 

We can also examine the structure of the model space by categorizing models based on 

their specific mathematical assumptions rather than their broad theoretical interpretations. This is 

done in Figure S2 of supplemental materials, which categorizes risky models based on whether 

they involve non-linear payoff transformations, probability transformations, both, or neither. 

This figure suggests that non-linear transformations, especially payoff transformation, play a key 

role in determining the similarities and differences between risky choice models. Models that 
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apply both payoff and probability transformations are located close to each other and to the 

centre of the model space. Models with payoff transformations (but without probability 

transformations) are nearby. By contrast, models without these transformations are located at the 

periphery of the space. We return to this point in the next section of this paper. 

<Insert Figure 2 about here> 

In intertemporal choice, we observe a large distinction between discounting models and 

time-as-attribute models (Figure 2a), as they involve fundamental differences in the 

representation and valuation of time. We also observe a distinction between delay discounting 

and interval discounting models, though all discounting models are relatively close to each other, 

and clustered near the center of the model space. In fact, contrary to prior work that focuses on 

distinctions between exponential and hyperbolic discounting, we find that these two model 

classes are quite similar to each other. For example, the one-parameter hyperbolic discounting 

model (#2) is closer to the (one-parameter) exponential discounting model (#1), than it is to other 

hyperbolic discounting models. This is not to say that exponential and hyperbolic models are 

identical; they can of course be distinguished by manually crafting an appropriate stimulus set 

(Read, 2001; Green, Myerson & Macaux, 2005; Scholten & Read, 2006) or algorithmically 

sampling the most discriminative stimuli (e.g., Cavagnaro et al., 2016). However, with randomly 

generated stimuli, as in the current analysis, these two classes of models make quite similar 

predictions.  

Time-as-attribute models, in contrast, are spread over a large area in the periphery of the 

model space, reflecting their idiosyncratic predictions and properties. Indeed, some of these 

models are considered heuristics and heuristics in risky choice are also often spread out over the 

periphery of the model space. Note that among time-as-attribute models, ITCH (#26) produces 
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qualitative predictions similar to tradeoff models (see discussion in Ericson et al. 2015). 

However, our landscaping analysis suggests that its quantitative predictions can be quite distinct 

from the latter’s (#22, #24, and #25). These three tradeoff models are all located close to each 

other, and are also relatively close to discounting models, indicating that some time-as-attribute 

models can approximate discounting (see discussion in Scholten et al., 2014).  

Property cohesion 

The high degree of clustering observed for SEUT models in Figure 1a suggests that using 

a multiplicative combination of (often transformed) payoffs and probabilities plays an important 

role in the models’ predictions. In this sense, belonging or not belonging to the SEUT category is 

a critical property of a decision model, and determines the model’s position in our ontology. 

Pairs of models that both belong to the SEUT category can mimic each other and are positioned 

close to each other. If one model belongs to the SEUT category and the other doesn’t, the models 

are unlikely to be able to mimic each other or be near each other in our space. Figure 2a shows a 

similar degree of proximity for models that fall within the delay discounting category, suggesting 

that delay discounting is a similarly critical property.  

These claims can be made more rigorously by measuring the cohesion of each category, 

or, more generally, each property associated with a model. For each model property p, we define 

its cohesion coefficient 𝑐B as the difference between the average dissimilarity across all models 

and the average dissimilarity between models sharing the property:  

𝑐B = AVE{𝑑56|𝐺, 𝐹 ∈ 𝑀CDD 	and	𝐺 ≠ 𝐹} − AVE]𝑑56|𝐺, 𝐹 ∈ 𝑀B	and	𝐺 ≠ 𝐹^, 

where 𝑀CDD represents the full set of decision models within a choice domain and 𝑀B represents 

the subset of models that have property p. This cohesion coefficient is larger for model properties 

that, if shared by two models, are likely to result in proximate positions in the model space (with 
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the two models making similar predictions and being able to closely mimic each other’s 

predictions). Intuitively these are properties that have the strongest effects on model predictions, 

and play the largest role in differentiating model predictions from each other.  

 We calculated the above cohesion coefficients for the various model properties discussed 

in the Methods section, including model category (e.g. SEUT, risk-as-value etc.) and underlying 

mathematical assumptions of the model (e.g. payoff transformations, probability transformations 

etc.). We also estimated confidence bounds of the cohesion coefficients via permutation. In this 

calculation, we randomly selected a set of models of the same size as the set size of 𝑀B, and 

calculated a hypothetical cohesion coefficient for the set. This was repeated 100,000 times to 

estimate the two-tail 95% confidence bounds on the distribution of the permutation-based 

cohesion coefficients. Cohesion coefficients that lie above or below these bounds can be seen to 

be significantly positive or negative, that is, unlikely to arise by chance.  

 Cohesion coefficients and confidence bounds are displayed in Figure 3a for risky models 

and Figure 3b for intertemporal models. A positive cohesion coefficient indicates that sharing the 

corresponding property results in convergent model predictions while a negative cohesion 

coefficient indicates divergent model predictions. As in Figures 1a and 2a, we can see that SEUT 

and delay discounting models are highly coherent categories, with significantly positive cohesion 

coefficients. Risk-as-value, counterfactual, and interval discounting models are also somewhat 

coherent. Heuristic risky models and time-as-attribute models, in contrast, are highly incoherent 

categories, containing dissimilar models that yield diverging predictions.  

<Insert Figure 3 about here> 

We likewise see that the mathematical assumptions that has the largest positive cohesion 

coefficients is payoff transformation for risky models and delay transformation for intertemporal 
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models. For risky models, probability transformation also seems to produce high cohesion 

coefficients. In contrast, assumptions about the interactions between various choice components 

have non-significant (and sometimes negative) cohesion coefficients. Thus, it seems that non-

linear transformations of payoffs and probabilities for risky models and delays for intertemporal 

models play a crucial role in determining a model’s predictions. Models that share these 

assumptions are likely to be able to closely mimic each other. In this sense, these transformations 

are essential properties of the models – they determine the positions of the models in the model 

ontology.  

Additionally, different disciplines and different historical time periods may have different 

degrees of coherence, capturing historical patterns of paradigm development, and an analysis of 

cohesion coefficients for models belonging to different disciplines and time periods can provide 

a valuable meta-scientific perspective on decision modeling. For risky models, we observe 

consistently positive and significant cohesion coefficients in management and economics, 

suggesting that risky models published within these disciplines are often highly similar to each 

other (perhaps a consequence of paradigm consensus in these fields). Psychology models, in 

contrast, are significantly dissimilar to each other, with cohesion coefficients below the negative 

confidence bound. This could be due to the fact that psychology admits numerous, often 

divergent perspectives, and that many non-utility models (such as heuristics and cognitive 

computational models) are published in psychology journals. We do not observe obvious 

historical trends in model cohesion, though the 1980s appear to be significantly incoherent and 

the 1990s appear to be significantly coherent. We speculate that these trends could be due to 

publication of many heuristics in the 1980s, and the publication of many SEUT models 

(including numerous variants of prospect theory) in the 1990s. 
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For intertemporal models, we also observe positive cohesion coefficients for models 

published in management and neuroscience journals, although these properties do not reach the 

significance threshold.  This is likely due to the fact that there are only a few models from these 

two disciplines, resulting in wide confidence bounds.  Conversely, models published in 

economics and psychology journals have coherence coefficients around zero. This could be 

because these disciplines have seen the publication of a variety of different types of 

intertemporal models. Finally, we observe significantly positive cohesion coefficients for models 

published in 1990s and earlier, indicating that early intertemporal decision models are similar to 

each other. In contrast, we observe negative or low cohesion coefficients for models published in 

2000s and 2010s. The decline in model cohesion over time is likely driven by the surging interest 

in the attribute-based views of intertemporal choice in recent decades. 

The property cohesion coefficients shown in Figure 3 can be influenced by the choice of 

models used in the analysis. For example, there may be changes to these coefficients if we 

removed multiple variants of prospect theory from our model space. However, we believe that 

the use of all models (including multiple variants of prospect theory) is more informative, as 

these variants are typically proposed by different researchers, and published in different papers at 

different points in time. The multiplicity of prospect theory models is, in this sense, part of the 

status quo in risky decision modeling, and thus should be reflected in the results of our analysis.  

Finally note that Figure 3 shows property cohesion coefficients for the analysis involving 

Logit stochastic specifications applied to the main experimental design. Analogous results with 

alternate stochastic specifications and experimental designs are provided in Figures S4 and S5 of 

supplemental materials.  

Directed graphs 



AN ONTOLOGY OF DECISION MODELS  27 

Another representation for our model ontology involves directed graphs (Chartrand, 

1977). Unlike the spaces analyzed above, graphs have the benefit of accommodating 

asymmetries in model dissimilarities, which are measures of model hierarchy (if one model can 

mimic another, but not vice versa, the second model can be seen as a restricted version of the 

first). To obtain such graphs, we discretized model dissimilarities, so that model F has a 

connection to model G (i.e. fits the data generated by G), if dGF is smaller than some threshold 

value. We visualize these graphs in Figure 1b for risky models, and Figure 2b for intertemporal 

models, using a threshold of dGF = 0.011 (which from an information-theoretic perspective 

corresponds to F’s best-fit predictions having at least 95% overlap with G’s generated choice 

probabilities (for an illustration, see Broomell & Bhatia, 2014, as well as our discussion in 

supplementary materials). Again these graphs involve only the analysis using the Logit 

stochastic specification applied to the main experimental design. Analogous graphs with 

alternate stochastic specifications and experimental designs are provided in Figures S6 and S7 of 

supplemental materials. Table S2 in supplemental materials summarizes the relationship between 

the graphs in Figures 1 and 2 and those in Figures S6 and S7.  

Figures 1b and 2b allow us to examine the relationships between pairs of models to test if 

the behavior of one model can be described by another. The node size in the graphs is 

proportional to the model’s total connectedness to other models (i.e., the sum of outgoing and 

incoming connections). These figures reveal a number of interesting relationships between 

models. Expected value and expected utility theories are the most connected models in risky 

choice, and exponential discounting is the most connected model in intertemporal choice. These 

models are mimicked by a number of different types of models, including models in other 

categories (e.g. exponential discounting is mimicked by some interval discounting models). 
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Prominent behavioral models like cumulative prospect theory are also capable of mimicking the 

behavior of other types of models, such as the minimax heuristic, which assumes that people 

choose gambles that offer the highest minimum payoffs.  

We also observe a number of cliques in our graphs. Cliques are sets of models that are all 

mutually connected to each other, and thus all give similar predictions to each other. The largest 

such clique involves expected value maximization and four risk-as-value models, which all 

appear to mimic expected value maximization in our tests. Other cliques involve sets of prospect 

theory variants and sets of heuristic models in risky choice, and sets of hyperbolic models in 

intertemporal choice (see supplementary material Tables S3-S6 for details of model cliques). 

Model generality and uniqueness 

Graphs also allow us to study the overall generality and uniqueness of models. 

Specifically, the number of outgoing connections, or outdegree centrality, of a target model 

corresponds to the number of other models that can be mimicked by the target model, and is thus 

a measure of the generality of the target model. Likewise, the number of incoming connections, 

or indegree centrality, of a target model corresponds to the number of other models that are 

capable of mimicking data generated by the target model, and is thus a measure of the (inverse) 

uniqueness or idiosyncrasy of the target model. The degree centralities of the models in our 

analysis are provided in Tables S7 and S8 of supplemental materials. 

Generality (in the form of outdegree centrality) measures a model’s ability to predict data 

generated by other models and uniqueness (in the form of the inverse of indegree centrality) 

measures its ability to generate data that other models cannot predict. For this reason, generality 

and uniqueness are two manifestations of relative model flexibility. As expected, these two 

measures depend on the number of parameters in the model, so that models with more 
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parameters have higher outdegree centralities and lower indegree centralities. In risky choice, we 

observe rank correlations of 0.74 (p < .001) and -0.22 (p = .08) between the number of 

parameters and outdegree and indegree centrality respectively.  

The number of parameters in a model is not the only determinant of its place in the model 

hierarchy. For example, models with the highest outdegree centrality in risky choice are three 

SEUT models, which include two variants of cumulative prospect theory (#12 and #17). These 

models have only four total parameters each (there are a total of nine risky decision models with 

more than four parameters). The high outdegree centrality of these models, despite their 

relatively small number of parameters, likely reflects the central role of this framework in 

guiding theoretical risky choice research: Subjective expected utility models are among the 

earliest behavioral models of risky choice, and many subsequent models are variants or special 

cases of subjective expected utility.  

Correspondingly, we find that the models with the highest indegree centralities are 

expected value maximization (#1) and expected utility maximization (#2). Most of these models 

have two or more parameters, and again are not the least parameterized models (there are 16 

risky models with only one free parameter). The high indegree centrality of expected value and 

expected utility reflects the fact that they have served as benchmark models in risky choice 

research, with many more complex models subsuming expected value and expected utility as 

special cases.  

In intertemporal models, outdegree centrality depends on the number of parameters with 

a rank correlation of 0.60 (p < .001). The models with the highest outdegree centrality are an 

interval discounting model and three hyperbolic discounting models. The former has a very large 

number of parameters, and allows for delays and payoffs to be combined in many different ways. 
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The latter, like their subjective expected utility counterparts, were some of the earliest behavioral 

models of intertemporal choice. Indegree centrality depends on the number of parameters to a 

lesser extent, with a rank correlation of -0.12 (p = .55). The exponential discounting model (#1), 

for example, has the highest indegree centrality but is not among the models with the fewest 

number of parameters. Once again, this reflects the fact that exponential discounting has served 

as a benchmark model for intertemporal choice research.  

Note that the measures of model flexibility analyzed here are relative measures that hold 

between different models. They are thus somewhat distinct from the (absolute) measure of model 

flexibility in the statistical model comparison framework, which defines model flexibility in 

terms of a model’s ability to capture regions of the data space (see e.g., Pitt, Myung, & Zhang, 

2002). Of course, as in the standard statistical model comparison framework, high flexibility 

within our framework is not a desirable feature of a model. Although it does indicate that a given 

model can mimic others, this is likely due to the ability of the model to predict a broad range of 

data. Thus models with high relative flexibility (i.e. high generality and low uniqueness) are also 

likely models with high absolute flexibility as defined in the statistical model comparison 

framework.  

Discussion 

Our paper has showcased a metatheoretical analysis, which is capable of quantifying the 

relationships between different decision models, and can be used to derive a model ontology in 

the form of low-dimensional spaces and directed graphs of decision models. Our ontology sheds 

light on the theoretical assumptions of decision models that have the strongest effects on model 

predictions, and which play the largest role in distinguishing models from each other. Our 

ontology also identifies prototypical models of choice behavior. These are models which closely 
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resemble other models, and which subsequently lie at the centers of our spaces and graphs. 

Finally, our ontology allows us to characterize the hierarchical structure of models, which offers 

precise measurements of model generality and uniqueness.  

Perhaps the most important contribution of our paper is in synthesizing mathematical and 

computational research on choice behavior across academic disciplines over the past 70 years. 

Despite its fundamental role in science and society, we currently do not have a unified 

computational theory of human choice behavior. In fact, the vast interdisciplinary scope and long 

history of decision research have resulted in over 80 different models of simple risky and 

intertemporal choice alone. By building an ontology of decision models, we provide a single 

framework within which different decision models can be represented. Such a representational 

framework does not only help researchers better understand the theoretical properties of and 

relationships between models, but also allows for the generalization of theoretical and empirical 

insights across research programs and academic disciplines. Thus, for example, brain regions 

that have been found to encode preferences corresponding to a particular model can also be 

assumed to encode preferences corresponding to the model’s neighbors, which likely include 

numerous decision models not studied by neuroscientists. Likewise, socioeconomic or 

demographic variables that have been shown to influence the parameters of a given economic 

model likely also influence the parameters of proximate models, which may have been proposed 

by psychologists. The converse is true for affective, cognitive, and clinical variables studied 

using psychological models. 

By analyzing the relationships between different decision models and the core features of 

the space of decision models, our approach complements more established techniques in decision 

research such as axiomatic analysis (von Neumann & Morgenstern, 1947; Fishburn, 1970; Luce 
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& Marley, 2005). Axiomatic analysis identifies critical qualitative conditions that give rise to 

general functional representations of decision models, and in turn, differentiate different decision 

models from each other. In contrast to this, our approach measures the relationships between 

different decision models based on how well they can mimic each other. Unlike axiomatic 

analysis, our approach can be applied to nearly any decision model, including models that do not 

have easily discernable axiomatic properties. It is useful to note that the two approaches do not 

always yield the same results. For example, Figure 3 shows that models that have inter-option 

interaction in risky choice (and thus violate the transitivity axiom) do not necessarily occupy 

neighboring positions in our model ontology. Understanding these divergences is a promising 

topic for future work.  

Our approach is also closely related to the information geometric approach to functional 

form analysis in statistics (Amari, 1985). The information geometric approach sees a model as a 

geometric object, with each point in the object representing a distribution of model predictions. 

For a binary decision model G, each point in the geometric object represents the vector of choice 

probabilities over the set of decision stimuli given parameters 𝜃5 , i.e., 𝑓5(𝑄|𝜃5). This approach 

has been applied to evaluate model complexity by estimating the volume of the geometric object 

that represents the model and can therefore be used for model selection (Myung et al., 2000; Pitt 

et al., 2002; Grünwald, 2007). Instead of estimating the volume of the geometric objects that 

represent models’ predictions, our landscaping analysis focuses on the interaction between 

different models’ predictions i.e. the relationship between G’s prediction 𝑓5(𝑄|𝜃5) and F’s 

predictions 𝑓6(𝑄|𝜃6). 

Of course, our specific results depend on the set of experimental stimuli we use for the 

landscaping analysis. We have considered two different designs for generating stimuli, and for 
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each design, have generated choice pairs using random draws from probability distributions over 

payoffs, probabilities and time delays. This is a common approach to generating stimuli in 

decision modeling as it ensures a diverse array of stimuli combinations (Rieskamp, 2008; Erev, 

Ert, Plonsky, Cohen, & Cohen, 2017), and thus leads to high levels of parameter identifiability 

(Broomell & Bhatia, 2014). Interestingly we find a high degree of consistency between the 

model ontologies generated using our two different experimental designs. This may, in part, be 

due to the use of random sampling in our stimuli generation process, which ensures that our 

stimuli vary across each sample in our Monte Carlo tests, thereby giving our tests a degree of 

generality not possible using a single fixed set of stimuli. 

Randomly generated stimuli may not offer a good approximation to the types of choice 

questions decision makers encounter in the world (Pleskac & Hertwig, 2014), and, alternate 

experimental designs may be preferable. In fact, by quantifying model relationships, our 

approach allows for a formal analysis of the effect of design choice on model behavior (see 

Navarro et al., 2004 and Wagenmakers et al., 2004 for additional discussions of this issue; also 

see Pitt & Myung, 2009; Cavagnaro, Pitt, Gonzalez, & Myung, 2013; Cavagnaro, Aranovich, 

McClure, Pitt, & Myung, 2016). Thus, it is possible to use variants of the landscaping approach 

to algorithmically uncover the types of decision problems for which a given model makes unique 

predictions.  

One example of this application is provided in our supplemental materials, where we 

analyze model ontologies generated with mixed gambles (see e.g. Figure S8). Here we find that 

models that explicitly distinguish between gains and losses are closer to each other, and further 

away from related models that do not explicitly distinguish between gains and losses. We are 

cautious about interpreting differences between these mixed-gamble ontologies and the (gain 
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gamble) ontologies in the main text, as our mixed-gamble implementations exclude a number of 

models, and make important modifications to the rest. Our results may also change if we allow 

all models to have separate parameters for positive and negative payoffs (as is the case for the 

probability weighting functions in prospect theory models). In any case, the results of these 

preliminary tests illustrate a new type of application for the computational approach presented in 

this paper, and future work could extend these tests to more rigorously compare model spaces 

generated using gain gambles and mixed gambles. This work could also examine the effects of 

other common design choices, such as the exclusion of easy choices involving dominated 

gambles or gambles with large differences in expected value, or the oversampling of gambles 

with very small or very large probabilities (see e.g. Erev et al., 2002; Rieskamp, 2008). A similar 

type of analysis could also of course be applied to the intertemporal choice domain. 

Finally, our analysis relates to recent research on theory integration in risky choice. For 

example, Pachur et al. (2017; see also Pachur et al., 2018) have shown that the parameters 

governing payoff and probability transformations in the cumulative prospect theory (CPT) can be 

used to mimic the predictions of decision heuristics, such as the minimax. This close link 

between CPT and minimax is also reflected in Figure 1b, which indicates that our approach is 

able to replicate Pachur et al.’s core results. Figure 1b also displays connections between 

minmax and many other risky models. In fact, there are a total of 291 connections between 53 

unique models in this figure. This suggests that theory integration is possible on a much larger 

scale than that attempted by Pachur et al. 

To aid this type of theory integration, we have released our set of computed pairwise 

model dissimilarities, two-dimensional model spaces, and directed model graphs, in the 

supplemental materials. We envision researchers using the model relationships derived as part of 
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our ontology to extend theoretical and empirical claims made using individual models, to the 

diverse array of models that are currently studied in the behavioral sciences. We also expect 

future work to build off the ideas outlined in this paper, so as to advance the representational 

frameworks for describing theories of choice behavior. Such an endeavor could utilize actual 

empirical data to constrain model parameters, try to combine our model ontologies for risky and 

intertemporal choice, relate our ontology to decision theoretic axioms satisfied by different 

models, or study the effects of experimental design on the resulting ontology. Ultimately, an 

ontology of decision models offers a powerful theoretical framework for interpreting the 

numerous psychological, economic, and neurobiological correlates of choice, and is necessary 

for a cumulative, trans-disciplinary science of human choice behavior. 
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Table 1 

Reliability and generalizability of the measure of model dissimilarities via inner-product matrix 

correlation coefficients. 

   Risky choice  Intertemporal choice 

   Main Alternative  Main Alternative 
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Note. L = Logit; P = Probit; C=Constant-error. 
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Figure 1. Ontology of risky decision models. (a) Two-dimensional model space from non-metric multidimensional scaling, with a black 

cross representing the centroid of the space. (b) Directed graph representation, with node size corresponding to the total connectedness 

of a model (i.e. the sum of indegree and outdegree centralities). The full list of risky models is provided at the bottom of Figure 1.  
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Figure 2. Ontology of intertemporal decision models. (a) Two-dimensional model space from non-metric multidimensional scaling, 

with a black cross representing the centroid of the space. (b) Directed graph representation, with node size corresponding to the total 

connectedness of a model (i.e. the sum of indegree and outdegree centralities). The full list of intertemporal models is provided at the 

bottom of Figure 2.  
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Figure 3. Cohesion coefficients for model properties. Error bars represent the permutation-based 95% confidence bounds at chance 

level. (a) Risky decision models and (b) intertemporal decision models. 
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Appendix: Decision Models and Mathematical Functions 

Table A1 

Summary of risky decision models. 

ID Model Category Authors Year Source (Journal or Book) 

1 Expected value 
maximization  SEUT    

2 Expected utility 
maximization SEUT Bernoulli 1738 Papers of the Imperial Academy of 

Sciences in Petersburg 

3 Subjective expected 
utility SEUT Savage 1954 The Foundations of Statistics 

4 Subjective expected 
money  SEUT Edwards 1955 Journal of Experimental Psychology 

5 Certainty 
equivalence theory  SEUT Handa 1977 Journal of Political Economy 

6 
Odds-based 

subjective weighted 
utility 

SEUT Karmarkar 1978 Organizational Behavior and Human 
Performance 

7 Prospect theory  SEUT Kahneman and 
Tversky 1979 Econometrica 

8 
Dual theory w/ 

hyperbolic 
weighting  

SEUT Yaari 1987 Econometrica 
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9 Dual theory w/ 
quadratic weighting  SEUT Yaari 1987 Econometrica 

10 Prospective 
reference theory  SEUT Viscusi 1989 Journal of Risk and Uncertainty 

11 Venture theory  SEUT Hogarth and Einhorn 1990 Management Science 

12 Cumulative 
prospect theory  SEUT Tversky and 

Kahneman 1992 Journal of Risk and Uncertainty 

13 

Cumulative 
prospect theory w/ 
Lattimore et al.’s 

weighting  

SEUT Lattimore et al. 1992 Journal of Economic Behavior and 
Organization 

14 Decision field 
theory SEUT Busemeyer and 

Townsend 1993 Psychological Review 

15 
Rank affected 
multiplicative 

weighting  
SEUT Birnbaum 1997 Choice, Decision, and Measurement: 

Essays in Honor of R. Duncan Luce 

16 
Cumulative 

prospect theory w/ 
Prelec’s weighting 

SEUT Prelec 1998 Econometrica 

17 

Cumulative 
prospect theory w/ 
Gonzalez and Wu’s 

weighting  

SEUT Gonzalez and Wu 1999 Cognitive Psychology 
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18 
Prospect theory w/ 
Wu et al.’s editing 

rule 
SEUT Wu et al. 2005 Journal of Risk and Uncertainty 

19 Transfer of attention 
exchange SEUT Birnbaum 2008 Psychological Review 

20 
Dual systems w/ 
expected value 

evaluation 
SEUT Mukherjee 2010 Psychological Review 

21 Salience theory SEUT Bordalo et al. 2012 Quarterly Journal of Economics 

22 Distracted decision 
field theory SEUT Bhatia 2014 Psychonomic Bulletin & Review 

23 
Dual systems w/ 
expected utility 

evaluation 
SEUT Loewenstein et al. 2015 Decision 

24 Noisy retrieval SEUT Marchiori et al. 2015 Decision 

25 Utility-weighted 
sampling SEUT Lieder et al. 2018 Psychological Review 

26 Portfolio theory w/ 
variance Risk-as-value Markowitz 1952 Journal of Finance 

27 Mean, variance and 
skewness Risk-as-value Coombs and Pruitt 1960 Journal of Experimental Psychology 

28 Alpha target model Risk-as-value Fishburn 1977 American Economic Review 

29 Below target model Risk-as-value Fishburn 1977 American Economic Review 
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30 Portfolio theory w/ 
standard deviation Risk-as-value Fishburn 1977 American Economic Review 

31 Below-mean 
semivariance Risk-as-value Fishburn 1977 American Economic Review 

32 Below-target 
semivariance Risk-as-value Fishburn 1977 American Economic Review 

33 
Relative risk-value 
model w/ general 

power 
Risk-as-value Dyer and Jia 1997 European Journal of Operational 

Research 

34 
Relative risk-value 

model w/ linear plus 
power 

Risk-as-value Dyer and Jia 1997 European Journal of Operational 
Research 

35 
Relative risk-value 

model w/ 
logarithmic 

Risk-as-value Dyer and Jia 1997 European Journal of Operational 
Research 

36 

Relative risk-value 
model w/ 

multiplicative 
power 

Risk-as-value Dyer and Jia 1997 European Journal of Operational 
Research 

37 Coefficient of 
variation  Risk-as-value Weber 2004 Psychological Review 

38 Aspiration-level 
theory Risk-as-value Diecidue and van de 

Ven 2008 International Economic Review 
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39 
Regret theory w/ 
expected value 

evaluation 
Counterfactual Bell 1982 Operations Research 

40 
Regret theory w/ 
expected utility 

evaluation 
Counterfactual Loomes and Sugden 1982 Economic Journal 

41 Disappointment 
theory w/o rescaling  Counterfactual Bell 1985 Operations Research 

42 
Disappointment 

theory w/ expected 
value evaluation 

Counterfactual Loomes and Sugden 1986 Review of Economic Studies 

43 
Disappointment 

theory w/ expected 
utility evaluation 

Counterfactual Loomes and Sugden 1986 Review of Economic Studies 

44 Subjective expected 
pleasure Counterfactual Mellers et al. 1999 Journal of Experimental Psychology: 

General 

45 

Generalized 
disappointment 

theory w/ expected 
value evaluation 

Counterfactual Delquié and Cillo 2006 Journal of Risk and Uncertainty 

46 

Generalized 
disappointment 

theory w/ expected 
utility evaluation 

Counterfactual Delquié and Cillo 2006 Journal of Risk and Uncertainty 

47 Better than average Heuristics Thorgate 1980 Behavioral Science 
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48 Consequence count Heuristics Thorgate 1980 Behavioral Science 

49 Equiprobable Heuristics Thorgate 1980 Behavioral Science 

50 Low expected 
payoff elimination Heuristics Thorgate 1980 Behavioral Science 

51 Least likely Heuristics Thorgate 1980 Behavioral Science 

52 Low-payoff 
elimination Heuristics Thorgate 1980 Behavioral Science 

53 Maximax Heuristics Thorgate 1980 Behavioral Science 

54 Minimax Heuristics Thorgate 1980 Behavioral Science 

55 Minimax Regret Heuristics Thorgate 1980 Behavioral Science 

56 Most likely Heuristics Thorgate 1980 Behavioral Science 

57 Most probable 
winner Heuristics Thorgate 1980 Behavioral Science 

58 Relative expected 
loss minimization Heuristics Thorgate 1980 Behavioral Science 

59 Similarity Heuristics Rubinstein 1988 Journal of Economic Theory 

60 
Similarity w/ 

expected utility 
evaluation 

Heuristics Leland 1994 Journal of Risk and Uncertainty 

61 Priority heuristic Heuristics Brandstatter et al. 2006 Psychological Review 
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62 Perceived relative 
argument model Heuristics Loomes 2010 Psychological Review 
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Table A2 

Functional forms of risky decision models. The notations are designed for choices between 𝑋 = ($𝑥!, 𝑝!; 	$𝑥2, 𝑝2) and 𝑌 =

($𝑦!, 𝑞!; 	$𝑦2, 𝑞2), where 𝑥! > 𝑥2,. 𝑦! > 𝑦2, 	𝑝! + 𝑝2 = 1 and 𝑞! + 𝑞2 = 1. 𝑈(𝑋) denotes the utility or choice propensity of X and 

𝑈(𝑌) denotes the utility or choice propensity of Y. If not given, 𝑈(𝑌) can be obtained by replacing 𝑥E and 𝑝E with 𝑦E and 𝑞E 

respectively in 𝑈(𝑋). When 𝑈(𝑋) involves interactions with 𝑦E or 𝑞E, the corresponding 𝑈(𝑌) replaces 𝑦E and 𝑞E in 𝑈(𝑋) with  𝑥E and 

𝑝E respectively. For heuristic models, 𝐴(𝑋) denotes the argument for option X and 𝐴(𝑌) denotes the argument for option Y. If not 

given, 𝐴(𝑌), can be obtained by replacing 𝑥E and 𝑝E with 𝑦E and 𝑞E respectively. When 𝐴(𝑋) involves interactions with 𝑦E or 𝑞E, the 

corresponding 𝐴(𝑌) should replace 𝑦E and 𝑞E with  𝑥E and 𝑝E respectively. Free parameters are denoted by Greek letters, with 

corresponding domains and prior distributions shown in Table A5.  

ID Model Function Stochastic 
specification1 

1 Expected value 
maximization 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

 Logit, Probit or 
Constant-error 

2 Expected utility 
maximization 𝑈(𝑋) =>𝑝E𝑢(𝑥E)

2

E<!

 Logit, Probit or 
Constant-error 

 
1 NA is the abbreviation of “not applicable”, meaning that the model itself involves a stochastic specification. 
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3 Subjective expected 
utility 𝑈(𝑋) =>𝑤FGH(𝑝E)𝑢(𝑥E)

2

E<!

 Logit, Probit or 
Constant-error 

4 Subjective expected 
money 𝑈(𝑋) =>𝑤I(𝑝E)𝑥E

2

E<!

 Logit, Probit or 
Constant-error 

5 Certainty equivalence 
theory 𝑈(𝑋) =>h𝑝E𝑥E

2

E<!

 Logit, Probit or 
Constant-error 

6 Odds-based subjective 
weighted utility 𝑈(𝑋) =>

𝑤I(𝑝E)𝑢(𝑥E)
∑ 𝑤I0𝑝J12
J<!

2

E<!

 Logit, Probit or 
Constant-error 

7 Prospect theory 𝑈(𝑋) = i
𝑤KI" (𝑝!)0𝑢LK(𝑥!) − 𝑢LK(𝑥2)1 + 𝑢LK(𝑥2), if	𝑥! > 0
𝑢LK(𝑥!) + 𝑤KI' (𝑝2)0𝑢LK(𝑥2) − 𝑢LK(𝑥!)1, if	𝑥! ≤ 0

 Logit, Probit or 
Constant-error 

8 Dual theory w/ 
hyperbolic weighting 

𝑈(𝑋) = 𝑥2 +
𝑝!

2 − 𝑝!
(𝑥! − 𝑥2) 

Logit, Probit or 
Constant-error 

9 Dual theory w/ quadratic 
weighting 𝑈(𝑋) = 𝑥2 + 𝑝!2(𝑥! − 𝑥2) 

Logit, Probit or 
Constant-error 

10 Prospective reference 
theory 𝑈(𝑋) =>D(1 − 𝜇)𝑝E +

𝜇
2E𝑢

(𝑥E)
2

E<!

 Logit, Probit or 
Constant-error 
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11 Venture theory 𝑈(𝑋) =>𝑤M(𝑝E)𝑢(𝑥E)
2

E<!

 Logit, Probit or 
Constant-error 

12 Cumulative prospect 
theory 𝑈(𝑋) = m

𝑤KI" (𝑝!)𝑢LK(𝑥!) + 01 − 𝑤KI" (𝑝!)1𝑢LK(𝑥2), if	0 ≤ 𝑥2 ≤ 𝑥!
𝑤KI" (𝑝!)𝑢LK(𝑥!) + 𝑤KI' (𝑝2)𝑢LK(𝑥2),													if	𝑥2 < 0 < 𝑥!
01 − 𝑤KI' (𝑝2)1𝑢LK(𝑥!) + 𝑤KI' (𝑝2)𝑢LK(𝑥2), if	𝑥2 ≤ 𝑥! ≤ 0

 Logit, Probit or 
Constant-error 

13 
Cumulative prospect 
theory w/ Lattimore et 
al.’s weighting 

𝑈(𝑋) = m
𝑤FGH" (𝑝!)𝑢LK(𝑥!) + 01 − 𝑤FGH" (𝑝!)1𝑢LK(𝑥2), if	0 ≤ 𝑥2 ≤ 𝑥!
𝑤FGH" (𝑝!)𝑢LK(𝑥!) + 𝑤FGH' (𝑝2)𝑢LK(𝑥2),													if	𝑥2 < 0 < 𝑥!
01 − 𝑤FGH' (𝑝2)1𝑢LK(𝑥!) + 𝑤FGH' (𝑝2)𝑢LK(𝑥2), if	𝑥2 ≤ 𝑥! ≤ 0

 Logit, Probit or 
Constant-error 

14 Decision field theory 

𝑝[𝑋; 𝑌] = !
!"#$%{'O∙A}

	, where 

𝑑 =
20∑ 𝑝E𝑢(𝑥E)2

E<! −∑ 𝑞J𝑢0𝑦J12
J<! 1

𝑝!𝑝20𝑢(𝑥!) − 𝑢(𝑥2)1
2 + 𝑞!𝑞20𝑢(𝑦!) − 𝑢(𝑦2)1

2 
NA 

15 Rank affected 
multiplicative weighting 𝑈(𝑋) =>

𝑖	𝑝ER

∑ 𝑗	𝑝JR2
J<!

𝑢(𝑥E)
2

E<!

 Logit, Probit or 
Constant-error 

16 
Cumulative prospect 
theory w/ Prelec’s 
weighting 

𝑈(𝑋) = m
𝑤L"(𝑝!)𝑢LK(𝑥!) + 01 − 𝑤L"(𝑝!)1𝑢LK(𝑥2), if	0 ≤ 𝑥2 ≤ 𝑥!
𝑤L"(𝑝!)𝑢LK(𝑥!) + 𝑤L'(𝑝2)𝑢LK(𝑥2),													if	𝑥2 < 0 < 𝑥!
01 − 𝑤L'(𝑝2)1𝑢LK(𝑥!) + 𝑤L'(𝑝2)𝑢LK(𝑥2), if	𝑥2 ≤ 𝑥! ≤ 0

 Logit, Probit or 
Constant-error 
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17 
Cumulative prospect 
theory w/ Gonzalez and 
Wu’s weighting 

𝑈(𝑋) = m
𝑤5H" (𝑝!)𝑢LK(𝑥!) + 01 − 𝑤5H" (𝑝!)1𝑢LK(𝑥2), if	0 ≤ 𝑥2 ≤ 𝑥!
𝑤5H" (𝑝!)𝑢LK(𝑥!) + 𝑤5H' (𝑝2)𝑢LK(𝑥2),													if	𝑥2 < 0 < 𝑥!
01 − 𝑤5H' (𝑝2)1𝑢LK(𝑥!) + 𝑤5H' (𝑝2)𝑢LK(𝑥2), if	𝑥2 ≤ 𝑥! ≤ 0

 Logit, Probit or 
Constant-error 

18 Prospect theory w/ Wu 
et al.’s editing rule 𝑈(𝑋) = q𝑤KI

" (𝑝!)𝑢LK(𝑥! − 𝑥2) + 𝑢LK(𝑥2), if	0 < 𝑥!
𝑢LK(𝑥!) + 𝑤KI' (𝑝2)𝑢LK(𝑥2 − 𝑥!), if	𝑥! ≤ 0 Logit, Probit or 

Constant-error 

19 Transfer of attention 
exchange2 𝑈(𝑋) =

0𝑝!R − S
T𝑝2

R1𝑢(𝑥!) + 0𝑝2R + S
T𝑝!

R1𝑢(𝑥2)
𝑝!R + 𝑝2R

 
Logit, Probit or 
Constant-error 

20 
Dual systems w/ 
expected value 
evaluation 

𝑈(𝑋) = (1 − 𝜇)>𝑝E𝑥E

2

E<!

+ 𝜇
∑ 𝑢(𝑥E)2
E<!

2  Logit, Probit or 
Constant-error 

21 Salience theory 
𝑈(𝑋) = ∑ ∑ U$%&B%;&

∑ ∑ U$'(B';()
(*+

)
'*+

𝑢(𝑥E)2
J<!

2
E<! , where 𝑟EJ corresponds to the rank 

order of the four pairwise salience values 𝑠EJ =
WX%'Y&W

X%"Y&"Z"[∙\)X%"Y&]@/
. 

Logit, Probit or 
Constant-error 

22 Distracted decision field 
theory 𝑝[𝑋; 𝑌] = !

!"#$%{'O∙A}
	, where NA 

 
2 This is a “special” TAX model assuming that all weight transfers are the same fixed proportion of the branch giving up weight (Birnbaum, 2008; pp. 470, 
Eq.8a). 
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𝑑 = 2?>tD(1 − 𝜇)𝑝E +
𝜇
2E 𝑢

(𝑥E)u
2

E<!

−>tD(1 − 𝜇)𝑞J +
𝜇
2E𝑢0𝑦J1u

2

J<!

F

÷wtxD(1 − 𝜇)𝑝E +
𝜇
2E

2

E<!

u0𝑢(𝑥!) − 𝑢(𝑥2)1
2

+xD(1 − 𝜇)𝑞J +
𝜇
2E

2

J<!

0𝑢(𝑦!) − 𝑢(𝑦2)1
2y 

23 
Dual systems w/ 
expected utility 
evaluation 

𝑈(𝑋) =>𝑝E𝑢(𝑥E)
2

E<!

+ 𝜅>(𝜇 + (1 − 𝜇)𝑝E)𝑢(𝑥E)
2

E<!

 Logit, Probit or 
Constant-error 

24 Noisy retrieval 𝑈(𝑋) =>D(1 − 𝜇)𝑝E +
𝜇
2E𝑢

(𝑥E)
2

E<!

 Logit, Probit or 
Constant-error 

25 Utility-weighted 
sampling3 

	𝑝[𝑋; 𝑌] = (1 − 𝜇) {Pr .𝑘 > ^
2
; 𝑟, 𝜄2 + !

2
Pr .𝑘 = ^

2
; 𝑟, 𝜄2� +	_

2
, where 

𝑟 =
∑ ∑ \`a,(X%)]a,)Y&/bWa,(X%)'a,)Y&/WB%;&)

&*+
)
%*+

∑ ∑ Wa,(X%)'a,)Y&/WB%;&)
&*+

)
%*+

 is the probability of sampling X 

from {X, Y} and Pr(∙) is the binomial probability mass function of sampling 
X for k times out of the total 𝜄 times, the latter of which is a free parameter 
for the model. 

NA 

 
3 This is a simplification of the original (simulation based) utility-weighted sampling theory. 
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26 Portfolio theory w/ 
variance 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	𝑝!𝑝2	(𝑥! − 𝑥2)2 Logit, Probit or 
Constant-error 

27 Mean, variance and 
skewness 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

+ 𝜈	𝑝!𝑝2	(𝑥! − 𝑥2)2 + 𝜙
𝑝2 − 𝑝!
h𝑝!𝑝2

 Logit, Probit or 
Constant-error 

28 Alpha target model4 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	>I(𝑥E < 100𝛿)	𝑝E(100𝛿 − 𝑥E)Z
2

E<!

 Logit, Probit or 
Constant-error 

29 Below target model 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	>I(𝑥E < 100𝛿)	𝑝E(100𝛿 − 𝑥E)
2

E<!

 Logit, Probit or 
Constant-error 

30 Portfolio theory w/ 
standard deviation 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	h𝑝!𝑝2	(𝑥! − 𝑥2) 
Logit, Probit or 
Constant-error 

31 Below-mean 
semivariance 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	𝑝2 t>𝑝E𝑥E

2

E<!

− 𝑥2u

2

 
Logit, Probit or 
Constant-error 

32 Below-target 
semivariance 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	>I(𝑥E < 100𝛿)𝑝E(100𝛿 − 𝑥E)2
2

E<!

 Logit, Probit or 
Constant-error 

 
4  100	𝛿 (with 0 ≤ 𝛿 ≤ 1) represents the target value in this model and other target-related models. 
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33 Relative risk-value 
model w/ general power 𝑈(𝑋) = t>𝑝E𝑥E

2

E<!

u

R

+ 𝛽t>𝑝E𝑥E

2

E<!

u

!'c

?>𝑝J

2

J<!

D
𝑥J

∑ 𝑝E𝑥E2
E<!

E
>

	− 1F Logit, Probit or 
Constant-error 

34 
Relative risk-value 
model w/ linear plus 
power 

𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝛽 t>𝑝E𝑥E

2

E<!

u

!'c

?>𝑝J

2

J<!

D
𝑥J

∑ 𝑝E𝑥E2
E<!

E
!'S

	− 𝜈F Logit, Probit or 
Constant-error 

35 Relative risk-value 
model w/ logarithmic 𝑈(𝑋) =

1
𝛼 log t1 + 𝛼>𝑝E𝑥E

2

E<!

u +
𝜅
𝛼>𝑝J

2

J<!

log D1 + 𝛼
𝑥J

∑ 𝑝E𝑥E2
E<!

E Logit, Probit or 
Constant-error 

36 
Relative risk-value 
model w/ multiplicative 
power 

𝑈(𝑋) = t>𝑝E𝑥E

2

E<!

u

R

>𝑝J

2

J<!

D
𝑥J

∑ 𝑝E𝑥E2
E<!

E
>

 Logit, Probit or 
Constant-error 

37 Coefficient of variation 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

− 𝜅	
h𝑝!𝑝2	(𝑥! − 𝑥2)
100	 ∑ 𝑝E𝑥E2

E<!
 Logit, Probit or 

Constant-error 

38 Aspiration-level theory 
𝑈(𝑋) = ∑ 𝑝E𝑢(𝑥E)2

E<! + 𝛼∑ 𝑝E 	I(𝑥E ≥ 𝑘)2
E<! − 𝛽∑ 𝑝E 	I(𝑥E < 𝑘)2

E<! , where  

𝑘 = min{𝑥2, 𝑦2} + 	𝛿(max{𝑥!, 𝑦!} − min{𝑥2, 𝑦2})	is the aspiration level. 

Logit, Probit or 
Constant-error 

39 
Regret theory w/ 
expected value 
evaluation 

𝑈(𝑋) =>𝑝E𝑥E

2

E<!

+>>𝑝E

2

J<!

𝑞JR0𝑥E − 𝑦J1
2

E<!

 Logit, Probit or 
Constant-error 
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40 
Regret theory w/ 
expected utility 
evaluation 

𝑈(𝑋) =>𝑝E𝑢(𝑥E)
2

E<!

+>>𝑝E

2

J<!

𝑞JR .𝑢(𝑥E) − 𝑢0𝑦J12
2

E<!

 Logit or Probit 

41 Disappointment theory 
w/o rescaling 𝑈(𝑋) =>𝑝E𝑥E

2

E<!

+ 𝜈	𝑝!𝑝2(𝑥! − 𝑥2) 
Logit, Probit or 
Constant-error 

42 
Disappointment theory 
w/ expected value 
evaluation 

𝑈(𝑋) =>𝑝E𝑥E

2

E<!

+ 𝜅	>𝑝E 	signt𝑥J −>𝑝E𝑥E

2

E<!

u
2

J<!

�𝑥J −>𝑝E𝑥E

2

E<!

�

Z

 Logit, Probit or 
Constant-error 

43 
Disappointment theory 
w/ expected utility 
evaluation 

𝑈(𝑋) =>𝑝E𝑢(𝑥E)
2

E<!

+ 𝜅	>𝑝J 	sign t𝑢0𝑥J1 −>𝑝E𝑢(𝑥E)
2

E<!

u
2

J<!

�𝑢0𝑥J1

−>𝑝E𝑢(𝑥E)
2

E<!

�

Z

 

Logit, Probit or 
Constant-error 

44 Subjective expected 
pleasure 

𝑈(𝑋) =>𝑝E𝑥E

2

E<!

+ 𝑝!𝑝20𝜌(𝑥! − 𝑥2)d − 𝜐(𝑥! − 𝑥2)e1

+>>𝑝E

2

J<!

𝑞JR.𝑢(𝑥E) − 𝑢0𝑦J12
2

E<!

 

Logit, Probit or 
Constant-error 
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45 

Generalized 
disappointment theory 
w/ expected value 
evaluation 

𝑈(𝑋) =>𝑝E𝑥E

2

E<!

+ 𝑝!𝑝20𝜅(𝑥! − 𝑥2)Z − 𝜆(𝑥! − 𝑥2)U1 
Logit, Probit or 
Constant-error 

46 

Generalized 
disappointment theory 
w/ expected utility 
evaluation 

𝑈(𝑋) =>𝑝E𝑢(𝑥E)
2

E<!

+ 𝑝!𝑝2 .𝜅0𝑢(𝑥!) − 𝑢(𝑥2)1
Z − 𝜆0𝑢(𝑥!) − 𝑢(𝑥2)1

U2 Logit, Probit or 
Constant-error 

47 Better than average 𝐴(𝑋) =>ID𝑥E >
1
4
(𝑥! + 𝑥2 + 𝑦! + 𝑦2)E

2

E<!

 Constant-error 

48 Consequence count 𝐴(𝑋) =>sign(𝑥E − 𝑦E)
2

E<!

 Constant-error 

49 Equiprobable 𝐴(𝑋) =
1
2>𝑥E

2

E<!

 Constant-error 

50 Low expected payoff 
elimination 𝐴(𝑋) = 2	sign(𝑝!𝑥! − 𝑞!𝑦!) + 		sign(𝑝2𝑥2 − 𝑞2𝑦2) Constant-error 

51 Least likely 𝐴(𝑋) = 𝑝! Constant-error 

52 Low-payoff elimination 𝐴(𝑋) = 2	sign(𝑥! − 𝑦!) + 		sign(𝑥2 − 𝑦2) Constant-error 

53 Maximax 𝐴(𝑋) = sign(𝑥! − 𝑦!) Constant-error 
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54 Minimax 𝐴(𝑋) = sign(𝑥2 − 𝑦2) Constant-error 

55 Minimax Regret 𝐴(𝑋) = min(𝑥! − 𝑦!, 𝑥2 − 𝑦2) Constant-error 

56 Most likely 𝐴(𝑋) =>{!
2
+ !

2
	sign .𝑝E −

!
2
2� 𝑥E

2

E<!

 Constant-error 

57 Most probable winner 𝐴(𝑋) =>>𝑝E𝑞JI0𝑥E > 𝑦J1
2

J<!

2

E<!

 Constant-error 

58 Relative expected loss 
minimization 𝑝[𝑋; 𝑌] = !

2
+ 𝜅 2)C(,)'C(.)/

C(,)"C(.)
, where 𝐴(𝑋) = ∑ ∑ 𝑝E𝑞Jmin0𝑥E − 𝑦J , 012

J<!
2
E<!  NA 

59 Similarity 
𝐴(𝑋) = sign(𝑥! − 𝑦!)	I D

min(𝑥!, 𝑦!)
max(𝑥!, 𝑦!)

≤ 𝛿E

+ sign(𝑝! − 𝑞!)	I D
min(𝑝!, 𝑞!)
max(𝑝!, 𝑞!)

≤ 𝜏E 
Constant-error 
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60 Similarity w/ expected 
utility evaluation 

𝐴(𝑋) = wI?>𝑝E𝑢(𝑥E)
2

E<!

−>𝑞J𝑢0𝑦J1
2

J<!

> 𝛼F

− I?>𝑞J𝑢0𝑦J1
2

J<!

−>𝑝E𝑢(𝑥E)
2

E<!

> 𝛼Fy × 4

+ sign0sign(𝑥2 − 𝑦2) + I(𝑥2 = 𝑦2)sign(𝑞2 − 𝑝2)
+ I(𝑥! ≥ 𝑦!)I(𝑝! ≥ 𝑞!) − I(𝑥! ≤ 𝑦!)I(𝑝! ≤ 𝑞!)1 × 2

+ sign {I(𝑥2 − 𝑦2 ≥ 𝛽) − I(𝑦2 − 𝑥2 ≥ 𝛽)

+ I(|𝑥2 − 𝑦2| < 𝛽)	sign(𝑞2 − 𝑝2)	I .|𝑞2 − 𝑝2| ≥
f
2
2 	

+ I(𝑥! − 𝑦! > −𝛽)	I .𝑝! − 𝑞! > −f
2
2

− I(𝑥! − 𝑦! < 𝛽)	I .𝑝! − 𝑞! <
f
2
2� 

Constant-error 

61 Priority heuristic 𝐴(𝑋) = 	sign(𝑥2 − 𝑦2)	I .|𝑥2 − 𝑦2| >
gh$(X+,Y+)

!@
2 × 4

+ sign(𝑝! − 𝑞!)	I(|𝑝! − 𝑞!| > 0.1) × 2 + sign(𝑥! − 𝑦!) 
Constant-error 

62 Perceived relative 
argument model 𝑈(𝑋) = I(𝑥! > 𝑦!) {

𝑥!
𝑦!
�
i
+ I(𝑦! > 𝑥!) {

𝑝!
𝑞!
�
(B+";+)-

 
Logit, Probit or 
Constant-error 

Note. In order to ensure that the KL divergence between two series of model predictions is tractable, choice probabilities 𝑝[𝑋; 𝑌] for 

all models are bounded within the interval [0.001, 0.999]. The following additional functions are used in Supplementary Table 2: 

• sign(∙) is a sign function that returns 1 if the argument is positive, -1 if negative and 0 if zero. 

• I(∙) is an indicator function that returns 1 if the argument is true, 0 otherwise. 
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• Power value function: 𝑢(𝑥) = sign(𝑥) ∙ |𝑥|j 

• Prospect theory value function: 𝑢LK(𝑥) = sign(𝑥) ∙ 𝜁\(Xk@) ∙ |𝑥|j 

• Relative value function for the utility-weighted sampling model: 𝑢l(𝑥) =
X

gh${X+,Y+}'gmn{X),Y)}
 

• Tversky and Kahneman’s (1992) probability weighting function: 𝑤KI" (𝑝) = B.

(B."(!'B).)+/.
 and 𝑤KI' (𝑝) = B0

)B0"(!'B)0/
+/0 

• Karmarkar’s (1978) probability weighting function: 𝑤I(𝑝) =
B.

B."(!'B).
 

• Lattimore et al.’s (1992) probability weighting function: 𝑤FGH" (𝑝) = fB.

fB."(!'B).
 and 𝑤FGH' (𝑝) = _B0

_B0"(!'B)0
 

• Gonzalez and Wu’s (1999) probability weighting function: 𝑤5H" (𝑝) = fB.

fB."(!'B).
 and 𝑤5H' (𝑝) = _B0

_B0"(!'B)0
 

• Prelec’s (1992) probability weighting function: 𝑤L"(𝑝) = exp{−𝛽(− ln(𝑝)R	)} and 𝑤L'(𝑝) = exp]−𝛼0− ln(𝑝)> 	1^ 

• Venture theory’s payoff-dependent probability weighting function (Hogarth and Einhorn 1990): 𝑤M(𝑝, 𝑥) =

exp{−𝑏(− ln(𝑝)o	)}, with 𝑡 = m
1 − 𝜏 ∙ � X

gh${X1,Y1}
� 	if	𝑥 ≥ 0

1 − 𝜃 ∙ � X
gmn{X2,Y2}

� 	if	𝑥 < 0
 and 𝑏 = m

1 + 𝛽 ∙ � X
gh${X1,Y1}

� 	if	𝑥 ≥ 0

1 − 𝛿 ∙ � X
gmn{X2,Y2}

� 	if	𝑥 < 0
. max{𝑥", 𝑦"} is the largest 

payoff in the design and min{𝑥', 𝑦'} is the smallest payoff in the design. 

• Regret (or rejoice) function: R(𝑑) = I(𝑑 > 0)𝜅 ∙ |𝑑|Z − (𝑑 < 0)𝜆 ∙ |𝑑|U 
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Table A3 

Summary of intertemporal decision models.  

ID Model Category Authors Year Source (Journal or Book) 

1 Exponential Delay discounting Samuelson 1937 Review of Economic Studies 

2 Hyperbolic Delay discounting Mazur 1987 The Effect of Delay and Intervening 
Events on Reinforcement Value 

3 Hyperbolic w/ power 
time (Mazur) Delay discounting Mazur 1987 The Effect of Delay and Intervening 

Events on Reinforcement Value 

4 Generalized hyperbolic Delay discounting Loewenstein and 
Prelec 1992 Quarterly Journal of Economics 

5 Exponential time Delay discounting Roelofsma 1996 Acta Psychologica 

6 Quasi-hyperbolic Delay discounting Laibson 1997 Quarterly Journal of Economics 

7 Hyperbolic w/ power 
denominator Delay discounting Green and Myerson 2004 Psychological Bulletin 

8 Hyperbolic w/ power 
time (Rachlin) Delay discounting Rachlin 2006 Journal of the Experimental Analysis of 

Behavior 

9 Constant sensitivity Delay discounting Ebert and Prelec 2007 Management Science 
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10 Double exponential Delay discounting McClure et al. 2007 Journal of Neuroscience 

11 Fixed cost Delay discounting Benhabib et al. 2010 Games and Economic Behavior 

12 Generalized hyperbolic 
w/ increasing elasticity Delay discounting Scholten et al. 2014 Cognitive Science 

13 Dual systems Delay discounting Loewenstein et al. 2015 Decision 

14 Interval Interval discounting Read 2001 Journal of Risk and Uncertainty 

15 Common aspect 
attenuation Interval discounting Green et al. 2005 Journal of Experimental Psychology: 

Learning, Memory & Cognition 

16 Generalized interval Interval discounting Scholten and Read 2006 Management Science 

17 As-soon-as-possible Interval discounting Kable and Glimcher 2010 Journal of Neurophysiology 

18 Generalized interval 
w/ increasing elasticity Interval discounting Scholten et al. 2014 Cognitive Science 

19 Similarity w/ 
difference Time-as-attribute Leland 2002 Economic Inquiry 

20 Similarity w/ ratio Time-as-attribute Leland 2002 Economic Inquiry 

21 Additive utility Time-as-attribute Killeen 2009 Psychological Review 
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22 Tradeoff model Time-as-attribute Scholten and Read 2010 Psychological Review 

23 DRIFT Time-as-attribute Read et al. 2013 Journal of Experimental Psychology: 
Learning, Memory & Cognition 

24 
Attribute-based model 

w/ power 
transformations 

Time-as-attribute Dai and Busemeyer 2014 Journal of Experimental Psychology: 
General 

25 Generalized tradeoff 
model Time-as-attribute Scholten et al. 2014 Cognitive Science 

26 Intertemporal choice 
heuristics Time-as-attribute Ericson et al. 2015 Psychological Science 

27 Proportional difference Time-as-attribute Cheng and González-
Vallejo 2016 Decision 
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Table A4.  

Functional forms of intertemporal decision models. The notations are designed for choices between 𝑋 = ($𝑥, 𝑡) and 𝑌 = ($𝑦, 𝑠), 

where 𝑦 > 𝑥 > 0,. 𝑠 > 𝑡 ≥ 0. 𝑈(𝑋) denotes the utility or choice propensity of X and 𝑈(𝑌) denotes the utility or choice propensity of 

Y. For delay discounting models, 𝑈(𝑌) is not presented but can be obtained by replacing 𝑥 and 𝑡 in 𝑈(𝑋) with 𝑦 and 𝑠. For time-as-

attribute models that represent options’ advantages on an ordinal scale, 𝐴(𝑋) denotes the argument for option X and 𝐴(𝑌) denotes 

the argument for option Y. Free parameters are denoted by Greek letters, with corresponding domains and prior distributions shown 

in Table A5.   

ID Model Function Stochastic 
specification 

1 Exponential 𝑈(𝑋) = 𝛿o𝑢(𝑥) 
 

Logit, Probit or 
Constant-error 

2 Hyperbolic 𝑈(𝑋) =
𝑢(𝑥)
1 + 𝛼𝑡 

 

Logit, Probit or 
Constant-error 

3 Hyperbolic w/ power time 
(Mazur) 

𝑈(𝑋) =
𝑢(𝑥)

1 + 𝛼𝑡U
 

 

Logit, Probit or 
Constant-error 

4 Generalized hyperbolic 𝑈(𝑋) =
𝑢(𝑥)

(1 + 𝛼𝑡)U/Z
 

 

Logit, Probit or 
Constant-error 
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5 Exponential time5 𝑈(𝑋) = 𝑒'U∙
!
Z qrs(!"Zo)𝑢(𝑥) 

 

Logit, Probit or 
Constant-error 

6 Quasi-hyperbolic 𝑈(𝑋) = q𝛿
o𝑢(𝑥) 	= 𝑢(𝑥), when	𝑡 = 0
𝜇𝛿o𝑢(𝑥),														when	𝑡 > 0 

 

Logit, Probit or 
Constant-error 

7 Hyperbolic w/ power 
denominator 

𝑈(𝑋) =
𝑢(𝑥)

(1 + 𝛼𝑡)U
 

 

Logit, Probit or 
Constant-error 

8 Hyperbolic w/ power time 
(Rachlin) 

𝑈(𝑋) =
𝑢(𝑥)

1 + 𝛼𝑡U
 

 

Logit, Probit or 
Constant-error 

9 Constant sensitivity 𝑈(𝑋) = 𝑒'(Uo)3𝑢(𝑥) 
 

Logit, Probit or 
Constant-error 

10 Double exponential 𝑈(𝑋) = (𝜔𝛿o + (1 − 𝜔)𝜏o)𝑢(𝑥) 
 

Logit, Probit or 
Constant-error 

11 Fixed cost 𝑈(𝑋) = q𝛿
o𝑢(𝑥) 	= 𝑢(𝑥), when	𝑡 = 0
𝛿o𝑢(𝑥 − 𝜇𝑥),						when	𝑡 > 0 

 

Logit, Probit or 
Constant-error 

12 Generalized hyperbolic w/ 
increasing elasticity 

𝑈(𝑋) =
𝑢tlt(𝑥)

(1 + 𝛼𝑡)U/Z
 

 

Logit, Probit or 
Constant-error 

13 Dual systems 𝑈(𝑋) = (𝜔𝛿o + (1 − 𝜔)𝜏o)𝑢(𝑥) 
 

Logit, Probit or 
Constant-error 

14 Interval  
𝑈(𝑋) = 𝑢(𝑥)𝛿o. 
𝑈(𝑌) = 𝑢(𝑦)𝛿o."(u'o)	. 
 

Logit, Probit or 
Constant-error 

 
5 The original exponential time discounting model uses log(t) to transform delay t. Since this function cannot adequately accommodate t = 0, we have replaced it 
with∙ 4

5
log(1 + 𝛼𝑡) in line with the specification of Scholten et al. (2014). This revision has made this model mathematically equivalent to Loewenstein and 

Prelec’s (1992) generalized hyperbolic discounting model because 𝑒'U∙
+
3 qrs(!"Zo) = !

(!"Zo)6 3⁄ . 
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15 Common aspect attenuation 

𝑈(𝑋) =
𝑢(𝑥)

1 + 𝛼𝜇𝑡 

𝑈(𝑌) =
𝑢(𝑦)

1 + 𝛼0𝜇𝑡 + (𝑠 − 𝑡)1
 

 

Logit, Probit or 
Constant-error 

16 Generalized interval 

𝑈(𝑋) =
𝑢(𝑥)

01 + 𝛼𝑡Ri1
U/Z 

𝑈(𝑌) =
𝑢(𝑦)

.01 + 𝛼𝑡Ri1(1 + 𝛼(𝑠R − 𝑡R)i)2
U/Z 

 

Logit, Probit or 
Constant-error 

17 As-soon-as-possible 

𝑈(𝑋) =
𝑢(𝑥)
1 + 𝛼𝑡 

𝑈(𝑌) =
𝑢(𝑦)

(1 + 𝛼𝑡) ∙ 01 + 𝛼(𝑠 − 𝑡)1
 

 

Logit, Probit or 
Constant-error 

18 Generalized interval w/ 
increasing elasticity  

𝑈(𝑋) =
𝑢tlt(𝑥)

01 + 𝛼𝑡Ri1
U/Z 

𝑈(𝑌) =
𝑢tlt(𝑦)

.01 + 𝛼𝑡Ri1(1 + 𝛼(𝑠R − 𝑡R)i)2
U/Z 

 

Logit, Probit or 
Constant-error 

19 Similarity w/ difference 
𝐴(𝑋) = I(𝑠 − 𝑡 > 𝛽) 
𝐴(𝑌) = I(𝑦 − 𝑥 > α) 
 

Constant-error 

20 Similarity w/ ratio 

𝐴(𝑋) = I {
𝑡
𝑠 < 𝜏� 

𝐴(𝑌) = I {
𝑥
𝑦 < 𝛾� 

 

Constant-error 
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21 Additive utility 
𝑈(𝑋) = 𝑥j − 𝜅𝑡R 
𝑈(𝑌) = 𝑦j − 𝜅𝑠R 
 

Logit, Probit or 
Constant-error 

22 Tradeoff model 

𝑈(𝑋) =
𝜅
𝛽
(log(1 + 𝛽𝑠) − log(1 + 𝛽𝑡)) 

U(𝑌) =
1
𝛼
(log(1 + 𝛼𝑦) − log(1 + 𝛼𝑥)) 

 

Logit, Probit or 
Constant-error 

23 DRIFT 

𝑈(𝑋) = 𝜅(𝑠 − 𝑡) 

𝑈(𝑌) = 𝜏 D.
𝑦
𝑥2

+
829
− 1E + (1 − 𝜏)𝛾

𝑦 − 𝑥
𝑥 + (1 − 𝜏)(1 − 𝛾)(𝑦 − 𝑥) 

 

Logit, Probit or 
Constant-error 

24 Attribute-based model w/ 
power transformations 

𝑈(𝑋) = 𝜅(𝑠R − 𝑡R) 
𝑈(𝑌) = 𝑦j − 𝑥j 
 

Logit, Probit or 
Constant-error 

25 Generalized tradeoff model 
U(𝑋) =

𝜅
𝜆 logt1 + 𝜆 D

!
U(qrs(!"Uu)'qrs(!"Uo))

i
E
i

u 

U(𝑌) =
1
𝛼
(log(1 + 𝛼𝑦) − log(1 + 𝛼𝑥)) 

 

Logit, Probit or 
Constant-error 

26 Intertemporal choice 
heuristics 

𝑈(𝑋) = 𝜅 D𝜏(𝑠 − 𝑡) + (1 − 𝜏)
2(𝑠 − 𝑡)
𝑠 + 𝑡 E 

𝑈(𝑌) = 𝛾(𝑦 − 𝑥) + (1 − 𝛾)
2(𝑦 − 𝑥)
𝑦 + 𝑥  

 

Logit, Probit or 
Constant-error 

27 Proportional difference 
𝑈(𝑋) =

𝑠 − 𝑡
𝑠 + 𝜂 

𝑈(𝑌) =
𝑦 − 𝑥
𝑦  

Logit, Probit or 
Constant-error 
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Note. In order to ensure that the KL divergence between two series of model predictions is tractable, choice probabilities 𝑝[𝑋; 𝑌] for 

all models are bounded within the interval [0.001, 0.999]. The following additional functions are used in Supplementary Table 4: 

• I(∙) is an indicator function that returns 1 if the argument is true, and 0 otherwise. 

• Power value function: 𝑢(𝑥) = 𝑥j. 

• Increasingly elastic value function as in Scholten et al. (2014): 𝑢tlt(𝑥) = (1 − 𝜔)𝑥!'w + 𝜆𝜔𝑥w. 
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Table A5 

Parameter bounds and prior distributions for both risky and intertemporal decision models. 

Parameter Domain Prior distribution 

𝜶,𝜷, 𝜺, 𝜿, 𝝀, 𝝆, 𝝌,𝝍, 𝝊, (𝜻 − 𝟏) [0, +∞) Exponential (rate = 1) 

𝜹, 𝜸, 𝝁, 𝝉, 𝜽 [0, 1] U(0, 1) 

𝝎 [0.5, 1] U(0.5, 1) 

𝜼 [-2, 2] U(-2, 2) 

𝝂,𝝓 (-∞, +∞) N(0, 1) 

(𝜾 − 𝟏) Integer, [0, 49]  Binomial (49, 0.5) 

Note. (𝜁 − 1) has the domain of [0, +∞), meaning that the domain of 𝜁 is [1, +∞). Similarly, 

(𝜄 − 1) has the domain of [0, 49] (integer), meaning that the domain of 𝜄 is [0, 49] (integer). 


