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Abstract 

Lithium-ion batteries (LiBs) are widely used energy storage resources and provide a supply 

for many electrical applications, such as electric vehicles (EVs), and grids, etc. This is due to 

LiBs characteristics such as lightweight, high-energy density, compact size, and extended life. 

Despite their advantages, LiB performance is inherently subject to decreases over time due to 

the degradation of their electrochemical components. Moreover, in service, they may fail to 

supply the required energy, leading to the breakdown of the whole host application. Therefore, 

monitoring battery degradation and accurately predicting the remaining useful life (RUL) in 

LiBs has become critical to enhance performance as well as optimising battery life. It is 

imperative to consider various parameters and conditions, including but not limited to the 

consistent operating temperature, charging and discharging cycles, voltage levels, current 

usage patterns, state of health (SoH), and prevailing environmental factors such as humidity 

and pressure. Furthermore, the calibration and validation of the prediction model must align 

with the specific type of LiBs and their applications, employing historical data and usage 

statistics to optimise accuracy and reliability in predicting RUL, thereby enhancing both 

performance and optimisation of battery life. For this reason, this thesis focuses on accurately 

estimating the RUL of LiBs by developing a framework of a model-based battery coupled with 

a novel adaptive filter technique. 

The thesis presents a novel approach for predicting the RUL of LiBs using the Smooth 

Particle Filter (SPF) Based Likelihood Approximations algorithm. The proposed algorithm 

provides various advantages over the classic Particle filter method, including the capability to 

handle complicated nonlinearities and uncertainties in battery behaviour. Hence, the majority 

of methods necessitate special consideration to enhance the estimation's convergence rate and 

stability. The intrinsically noisy estimation is the fundamental obstacle in predicting the 

likelihood functions and derivatives. Consequently, there is an urgent need for a comprehensive 

and adaptable battery model, coupled with a precise nonlinear estimation algorithm, to address 

these challenges and improve battery RUL prediction. The results showed that the proposed 

algorithm can predict the RUL of LiBs with high accuracy and convergence rate compared  to 

the classic PF algorithm, making it a promising tool for battery management systems.  



Moreover, an improvement to the proposed Physics based informed SPF algorithm for RUL 

prediction of LiBs framework is presented by simultaneously considering multiple degradation 

mechanisms. This includes losses of active materials of the positive and negative electrodes 

and the loss of lithium inventory. The proposed approach uses a half-cell model to estimate 

degradation parameters from voltage and capacity measurements. This allows for quantifying 

the degradation mechanisms and predicting the capacity fade trend based on the estimated 

parameters. Unlike traditional capacity-based prognostics, which rely solely on the empirical 

capacity fade trend, the proposed approach offers a more comprehensive and accurate way to 

predict battery RUL. To ensure a reliable framework, accurately and rapidly estimating the 

initial parameters of the degradation model is crucial to prevent the gradient error from 

increasing during the prediction process. With this consideration, this thesis proposes a new 

hybrid approach that integrates data-driven and model-based approaches to enhance the 

accuracy of online prognostic health management prediction within the current framework. 

The proposed framework employs a Neural Network (NN) to model and monitor battery 

degradation trends while also determining the initial values of the degradation model under 

varying operating conditions. The results show that the proposed hybrid framework is more 

accurate and improves the convergence rate compared to the traditional capacity prognostic 

framework.  
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1.1 Motivation of the Proposed Research 

Nowadays, reliance on lithium-ion batteries (LiBs) has increased enormously. They are used 

as energy storage units in several fields, such as electrical transmission systems, smart grids, 

and portable electronic devices, due to their long life span, high energy density, and low-self 

discharge [1]. However, due to the degradation mechanism of their electrochemical 

ingredients, LiB performance diminishes with operating time, increasing internal resistance 

and diminishing capacity and power [2]. These degradation phenomena cause a failure to meet 

energy requirements, which could lead to burning or battery explosion and significant  

economic losses [3]. To avoid this failure, accurate online monitoring of Prognostic Health 

Management (PHM) is critical to the functioning of the Battery Management System (BMS) 

and thus to guaranteeing that LiBs operate reliably and safely.  

BMS can ensure that the battery operates within safe limits, prevent damage due to 

overcharging or over-discharging, and provide early warning of any issues. The BMS can also 

help maximise the battery's energy and power delivery capabilities by balancing the charge 

across cells and monitoring the state of charge (SoC) and health of each individual cell. 

Figure. 1.1 depicts a lithium-ion battery pack from a Toyota Prius vehicle damaged by fire 

[4]. The reason for the failure is believed to be strongly associated with a faulty BMS, which 

caused some of the individual battery cells to undergo a thermal runaway event. From Figure. 

1.1, a reliable BMS is of utmost importance when it comes to safety-critical battery 

applications, especially in electric vehicle systems, where a battery failure of the 

aforementioned nature can directly put the passenger’s lives at risk. The significance of a 

reliable BMS is also evident in battery-powered portable electronic devices, where consumer 

convenience and safety are top priorities for battery system designers as shown in Figure 1.2. 

A robust BMS offers additional benefits, such as prolonging the battery's service life by 

operating it under favourable conditions and avoiding operation beyond the manufacturer's 

recommended limits. 
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Figure 1. 1 Example of a Fire damaged vehicle and battery cells in Toyota Prius vehicle [4]. 

 

Figure 1. 2 Functions of BMS. 
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BMS is responsible for various hardware and software operations to ensure the battery 

always remains in a safe condition. The battery monitoring system is a central component of 

the BMS and conventionally performs several critical tasks [5], including: 

• Monitoring battery voltage, current, and temperature to ensure the battery operates 

within safe limits. 

• Controlling battery charging and discharging to prevent overcharging, over-

discharging, and overheating. 

• Balancing the charge levels of individual cells or modules to ensure even wear and 

extend battery life. 

• Provide fault detection and diagnostics to alert the user or system in case of abnormal 

battery behaviour or malfunctions. 

• Implementing safety measures, such as thermal management, insulation, and fusing, to 

prevent fire, explosion, or electrical hazards. 

1.2 The Challenge of Battery RUL Prediction  

Despite the importance of RUL prediction, it remains a challenging task. There are several 

challenges in accurately predicting the RUL of LiBs. One major challenge is the lack of 

historical data [6]. Batteries in real-world applications are subject to a wide range of operating 

conditions and usage patterns, making it difficult to collect sufficient data for accurate 

prediction [7]. Additionally, the aging process of batteries is complex and affected by many 

factors, such as temperature, SoC, and usage history. Therefore, predicting RUL accurately 

requires a comprehensive understanding of the degradation mechanisms and the ability to 

model and analyse the complex data [8]. Another challenge is the changes in future aging. 

Aging is a dynamic process, and the future aging of a battery is affected by both its current 

state and its future usage conditions [9]. Accurately predicting the future aging of a battery 

requires the ability to model and analyse the complex data and incorporate the uncertainties in 

future usage conditions.  
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To address these challenges, researchers have been developing new methods for RUL 

prediction. One approach is to use physics-based models that incorporate the fundamental 

physics of the battery chemistry and structure [10]. These models can provide a more accurate 

prediction of the degradation mechanisms and RUL. Another approach is to use data-driven 

models, such as Bayesian method, neural networks, and machine learning algorithms [11], to 

analyse the large amounts of data collected from batteries in real-world applications. These 

models can identify patterns and trends in the data to predict RUL accurately. 

There are also opportunities in the development of RUL prediction methods. The increasing 

use of LiBs in a variety of applications, from electric vehicles to grid storage systems, provides 

a wealth of data for analysis and model development [12]. The rapid advancements in 

computing power and data analysis techniques provide new tools and opportunities for more 

accurate and efficient RUL prediction [13]. 

1.3 Contribution 

This thesis is focused on online battery modelling and identification techniques, which lead to 

the development of a framework-based battery status monitoring system. Below is a 

summary of the contributions developed in this thesis: 

• Enhance the RUL Prediction of Lithium-ion (LiB) Batteries:  By smoothing the 

Particle filter (PF) with a combination of Likelihood Approximations and a second-

order degradation model. The proposed Smoothing Particle Filter (SPF) algorithm 

improves the RUL prediction’s accuracy by selecting the proposal distribution and 

resampling weights based on current parameter estimates, effectively addressing the 

issue of particle impoverishment and uncertainty in the degradation model parameters. 

This contribution is crucial in improving the performance and reliability of RUL 

prediction for LiBs compared to the conventional PF method. The SPF method exhibits 

an impressive reduction in absolute prediction error, improving accuracy by 

approximately 14 cycles, equating to an 11.2% improvement in the total battery 
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lifecycle, which is set at 125 cycles. Furthermore, in relative terms, the SPF method 

substantially decreases the relative error by 0.112, representing an 82.35% reduction. 

The computational complexity of predicting the RUL for the batteries via the proposed 

SPF method involves intricate calculations, requiring the sequential processing of non-

linear dynamics through kernel smoothing and resampling techniques; this complexity 

often entails a substantial computational burden but yields a robust mechanism for 

tracking the multifaceted degradation processes inherent in LiBs systems. 

• Integration with Reduced Ordered Single Particle Model (ROM):  By utilising the 

ROM, the coefficients for three main degradation phenomena (active material loss in 

positive and negative electrodes, and loss of lithium inventory) can be extracted. These 

parameters are directly correlated with RUL predicting of LiBs. The proposed physics-

based predictive framework provides more accurate early predictions of the late-stage 

fading trend than the conventional capacity-based prognostic framework. The 

degradation parameters obtained from the single particle model are then fed into a SPF 

algorithm, which is adopted due to its robustness, simplicity, and computational 

efficiency compared to other particle filters. The deployment of the physics-based  

model informed SPF for RUL prediction of LiBs resulted in a considerable decrease in 

absolute error from 55 to 8 cycles (~85% improvement) and substantial reductions in 

RMSE from 0.0083 to 0.003 (~64% improvement) and RE from 0.0229 to 0.0035 

(~85% improvement). The proposed solution accurately represents the degradation 

coefficients and capacity decay of LiBs when a suitable mathematical model is 

available.  

• Hybrids RUL Prediction and Parameter Estimation:  The current limitations of 

online RUL prediction techniques lie in their inability to account for capacity 

degradation variations across different battery cells and operating conditions, which can 

lead to inaccurate predictions. This work proposes a hybrid approach to enhance the 

accuracy of online RUL forecasting by integrating both data-driven and model-based 

approaches. The proposed framework utilises a NN to model and monitor battery 

degradation trends, while also accounting for the degradation model's initial values 
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under varying operating conditions. This approach addresses the limitations of the 

existing framework and offers a more accurate and reliable method for online RUL 

prediction. The novel hybrid approach engendered a substantial enhancement in the 

prediction of lithium-ion battery lifespan, reducing the absolute error by approximately 

59 cycles (~93%) and lowering the Root Mean Square Error from 0.0532 𝑡𝑜 0.0209 

(~61%) compared to the traditional empirical model framework. These advancements 

signify a considerable stride in LiB health management, potentially catalysing 

increased efficiency and reliability in their usage across various sectors. 

1.4 Aim and Objectives of the Thesis 

Accurate prediction of the RUL in LiBs is a key aspect of managing their health, in order to 

promote reliable and secure systems, and to reduce the need for unscheduled maintenance and 

costs. To this end, the main aim of this thesis is to develop framework of a model-based of the 

battery integrated with a new adaptive filter algorithm to accurately predict the RUL of LiBs. 

The proposed SPF algorithm is based on the Sequential Monte Carle algorithm. According to 

the literature review, many approaches are proposed to predict the safety cycle life of the 

batteries.  Particular attention is given to model-based RUL approaches by modelling the 

degradation of the battery through mathematically models and corresponding parameters.  

In order to quickly and accurately predict the RUL of LiBs, a new SMC adaptive algorithm 

known as the SPF Based Likelihood Approximations algorithm is proposed. Most approaches 

require particular attention to improve the convergence rate and stability of the estimation. The 

key challenges of the prediction of the likelihood functions and derivatives are an inherently 

noisy estimation. Therefore, to mitigate the problems, a general and flexible battery model with 

an accurate non-linear estimation algorithm is urgently needed for battery RUL prediction. A 

significant conclusion from the work is that the SPF can achieve more precise prediction 

performance and improve the convergence rate compared to the standard PF algorithm. In 

addition, an enhancement of the proposed framework is suggested by simultaneously 
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considering multiple degradation mechanisms, including the losses of active materials of the 

positive and negative electrodes and the loss of lithium inventory. Unlike traditional capacity-

based prognostics that exclusively relies on the empirical capacity fade trend, the proposed 

approach leverages a half-cell model to:  

1. Estimate degradation parameters from voltage and capacity measurements to quantify 

the degradation mechanisms. 

2.   Predict the capacity fade trend based on the estimated parameters. The concept of this 

framework is presented in the thesis, and the advantages it delivers are discussed. 

Furthermore, to achieve a robust framework, the initial parameters of the degradation model 

should be estimated quickly and accurately to avoid increasing the gradient error during the 

prediction process. With this issue in mind, this thesis proposes a hybrid approach to improve 

the accuracy of online prognostic health management prediction in the existing framework by 

integrating data-driven and model-based approaches. The proposed framework utilises the NN 

to model and track battery degradation trends, and it also degrades the initial values of the 

degradation model’s transactions under different operating conditions. The following 

objectives were accomplished to meet this aim:  

1. To identify the gap in the literature and develop a new adaptive scheme; therefore, a 

comprehensive literature review was conducted on the latest state-of-the-art life cycle 

prediction techniques for LiBs (Addressed in Chapter 2). 

2.  To develop a novel algorithm to improve the performance of the prediction process. 

This objective was achieved by fully investigating and developing the proposed new 

method on estimating the RUL of LiBs based on SPF. This method appears to be more 

effective than a traditional method like the PF and UPF. Comparison of the various 

methods are performed based on a dataset from the Prognostics Centre of Excellence 

NASA using non-linear characteristics degradation properties (Addressed in Chapter 3). 

This objective was achieved through the following tasks:  
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Task 1: Design an adaptive prognostic empirical model. The task is to identify the parameters 

that affect battery degradation and develop a model that can accurately predict the battery's 

future performance. 

Task 2: Implement the SPF based on the experiential data.  The model should learn from the 

historical data to identify patterns, trends, and anomalies.  

3. To develop a RUL prediction algorithm based on estimation of parameters of a Single 

Particle Model (SPM) that could be implemented using vehicle charging data. The 

developed model will be integrated with the proposed SPF in point 2 (Addressed in 

Chapter 4). This objective will be achieved through the following tasks: 

Task 1: Develop an SPM that describes the behaviour of the battery during charging. The 

SPM should consider the charging profile and the properties of the battery, such as the 

capacity, internal resistance, voltage limits, and the formation of the Solid Electrolyte 

Interphase (SEI) layer on the cathode. 

Task 2: Correlate the parameters of the SPM with the state variables of the SPF algorithm; 

these parameters can be identified by applying specially designed current excitations to the 

battery. The SPM based capacity simulation process is taken as the observation equation in 

the SPF algorithm framework. 

4. Develop a hybrid prediction technique based on the adaptive filter method and a 

machine-learning algorithm to investigate the effect of the initial guesses of model 

parameters on the prediction results to identify the optimum initial parameters by using 

the Machine Learning (ML) algorithm. A deep neural network with algorithms, and pre-

trained models (Addressed in Chapter 5).  This objective will be achieved through the 

following tasks: 

Task 1: Extract the initial parameters. The model should learn from the historical data to 

identify patterns, trends, and anomalies. The model should be able to adapt to changing 

conditions and incorporate new data. 
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Task 2: Develop an NN model and integrated with SPF algorithm to monitor and predict 

system performance. The model should be integrated with real-time data and provide alerts 

and notifications when anomalies or failures are detected. 
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Figure 1. 3 Overview of the context, goals, contributions, and prototypes. 
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Measurement, vol. 214, p. 112838, 2023/06/15/ 2023.  

2. Mo’ath. El-Dalahmeh, M. Al-Greer, M. d. El-Dalahmeh, and M. Short, "Smooth 

particle filter‐based likelihood approximations for remaining useful life prediction of 

Lithium‐ion batteries," IET Smart Grid, 2021. 
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frequency image analysis and transfer learning for capacity prediction of lithium-ion 

batteries," Energies, vol. 13, no. 20, p. 5447, 2020. 

5. Mo’ath. El-Dalahmeh, M. Al-Greer, M. El-Dalahmeh, and I. Bashir, "Online Hybrid 

Prognostic Health Management Prediction Using a Neural Network and Smooth Particle 

Filter for Lithium-ion Batteries," in 2022 57th International Universities Power 

Engineering Conference (UPEC), 30 Aug.-2 Sept. 2022 2022, pp. 1-6. 

6. M. El-Dalahmeh, I. Bashir, M. Al-Greer, and Mo’ath. El-Dalahmeh, "Lithium-ion 

Batteries Capacity Degradation Trajectory Prediction Based on Decomposition 

Techniques and NARX Algorithm," in 2022 57th International Universities Power 

Engineering Conference (UPEC), 30 Aug.-2 Sept. 2022 2022, pp. 1-6. 

7. A. Gailani, R. Mokidm, Mo’ath. El-Dalahmeh, M. El-Dalahmeh, and M. Al-Greer, 

"Analysis of Lithium-ion Battery Cells Degradation Based on Different Manufacturers," 

in 2020 55th International Universities Power Engineering Conference (UPEC), 1-4 

Sept. 2020 2020, pp. 1-6. 
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8. M. El-Dalahmeh, J. Lillystone, M. Al-Greer, and Mo’ath. El-Dalahmeh, "State of Health 

Estimation of Lithium-ion Batteries Based on Data-Driven Techniques," in 2021 56th 

International Universities Power Engineering Conference (UPEC), 31 Aug.-3 Sept. 2021 

2021, pp. 1-6. 

9. M. El-Dalahmeh, P. Thummarapally, M. Al-Greer, and Mo’ath. El-Dalahmeh, "Time 

and Frequency Domain Health Indicators for Capacity Prediction of Lithium-ion 

Battery," in 2021 56th International Universities Power Engineering Conference 

(UPEC), 31 Aug.-3 Sept. 2021 2021, pp. 1-6. 

1.5.2 Awards 

• Best Paper Award “Online Hybrid Prognostic Health Management Prediction Using a 

Neural Network and Smooth Particle Filter for Lithium-ion Batteries”; 57th 

International Universities Power Engineering Conference (UPEC).  

• Best Poster Award “Physics-Based Model Informed Smooth Particle Filter Based 

Likelihood Approximation for Remaining Useful Life Prediction of Lithium-ion 

Battery; 2nd World Energy Storage Conference (WESC 2022) Jointly with the 7th UK 

Energy Storage conference.  

1.6 Thesis outline  

Chapter 1-Introduction:  This chapter introduces the discussion of the motivation for the 

research and highlights the importance of battery RUL prediction. After discussing the reasons 

behind the research work, this chapter identifies the challenges of battery RUL prediction. 

Then, this work's aim, objectives, and thesis contribution have been presented . 

Chapter 2-Battery Lifetime Prognostic Technologies: This chapter shows the operation 

principles of LiBs and battery modelling, followed by details on degradation mechanisms. In 

addition, it provides a detailed analysis of battery lifetime prognostic technologies. It also 

focuses on the recent advances in model-based, data-driven, and hybrid approaches to battery 
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degradation prediction. Various methods are discussed in detail, highlighting their advantages 

and limitations, and a comparison of these approaches is presented. 

Chapter 3 -Battery Lifetime Identification Using Smooth Particle Filter Technique: This 

chapter introduces a new online RUL prediction for LiB using SPF-based likelihood  

approximations method integrated with an empirical degradation modelling approach. The first 

parts of the chapter introduce the theoretical background method  of the Bayesian techniques 

and the implementation procedures for the PF and the proposed SPF algorithms. Capacity 

degradation modelling for LiBs based on the experimental data collected by PCoE- NASA is 

demonstrated in Section 3.4.2.  Then, from section 3.5 onwards, the proposed framework 

results are discussed. 

Chapter 4-Physics-Based Modelling for Monitoring Battery Lifetime:  This chapter 

proposes a new physics-informed SPF framework for RUL prediction to improve the RUL 

prediction framework of LiBs analysis performed in Chapter 3. The first part of this chapter 

provides details on the degradation mechanism modelling, such as the SEI layer formation of 

solid-phase LiB dynamics, loss of active material, and lithium plating. Following this, extract 

the three main degradation mechanisms is presented. In addition, Chapter 4 compares the 

empirical degradation approach with the physics-based approach. Robustness and stability 

analysis of the proposed framework is also discussed.  

Chapter 5- Online Hybrid Prognostic Health Management Prediction: This chapter 

presents a novel hybrid battery identification technique that can be applied to any BESS to 

adaptively identify the battery's degradation parameters in real time. The first parts of the 

chapter introduce the proposed framework that utilises the NN method to model and track 

battery degradation trends. In addition, identifying the initial values of the degradation model's 

transactions under different operating conditions is discussed. Then, from section 5.5 onwards, 

the comparison results are discussed. 
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Chapter 6-Conclusions and Future Work: This chapter provides the conclusions drawn 

from the study and the significant contributions that it has been made to knowledge. It also 

outlines the limitations of the research and proposes suggestions for future work. 
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   Advances in Battery lifetime 

Prognostics 

‘This chapter illuminates the functional tenets of LiBs and the intricacies of battery 

modelling before delving into understanding their fade processes. Moreover, it furnishes an 

in-depth review of technologies used for estimating battery lifespan. The spotlight is also on 

the latest breakthroughs in forecast models derived from inherent battery behaviours, insights 

gleaned from collected data, and a blend of both for predicting battery deterioration. An 

exhaustive discussion about diverse methods, underscoring their strengths and potential 

constraints, is articulated, and a comparative overview of these methodologies is exhibited.’ 
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2.1 Introduction  

Battery lifetime prognostics have become increasingly important in recent years, as the use 

of batteries continues to grow in various industries. These technologies allow for accurate 

predictions of battery degradation over time, enabling better management of battery 

performance and reducing maintenance costs. With battery-powered devices becoming more 

prevalent, the development and implementation of such technologies are critical for ensuring 

efficient and reliable operation. The use of battery lifetime prognostic technologies involves 

the collection of performance data from batteries, which is then analysed using various 

algorithms and models. These technologies can predict battery degradation based on factors 

such as usage patterns, environmental conditions, and manufacturing defects, allowing for 

early detection of faults and timely maintenance or replacement. By enabling accurate 

predictions of battery life, battery lifetime prognostic technologies can help optimise battery 

utilisation and reduce maintenance costs. They also facilitate the development of more robust 

battery management systems, which can significantly extend the life of batteries and reduce 

the environmental impact of battery disposal. The importance of battery lifetime prognostic 

technologies is particularly relevant in industries that rely heavily on battery-powered 

equipment and systems, such as transportation, telecommunications, and renewable energy. In 

these applications, the reliability and efficiency of battery-powered systems are critical to their 

operations, and any failure or downtime can have significant financial and environmental 

consequences. 

This chapter introduces a discourse on the operational principles of LiBs, and subsequently 

assesses various types of LiB models and their advantages for predictive health monitoring. 

Furthermore, the impact of internal battery degradation factors on battery lifespan is examined. 

A thorough evaluation and examination of LiB storage systems' prognostic lifetime is then 

conducted, with emphasis placed on recent advancements in model-based, data-driven, and 

hybrid methods. Consequently, this chapter highlights how the study bridges a gap in the 

existing literature. 
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2.2 Lithium-ion Battery Fundamentals 

A LiB is an electrochemical storage device that can store chemical energy and convert it into 

electrical energy when needed. Despite significant technological improvements, the basic 

working principle of current electrochemical cells like LiB has remained the same since 

Alessandro Volta developed the voltaic pile in 1800 [14]. However, only internal parts such as 

electrodes, separators and electrolytes have been improved, progressing from metal discs, 

paper, and brine to more advanced materials. 

Figure 2.1 depicts a LiB’s components, including the separator, positive electrode (cathode), 

and negative electrode (anode). Both electrodes are made of porous material to store lithium 

ions within their crystal structure. A microporous separator material sits between these two 

electrodes to provide electrical isolation. The LiB’s components are soaked in an electrolyte 

solution that allows lithium ions to move freely between the two electrodes. When a LiB is 

discharging, electrons released from the anode electrode flow to the external circuit, while ions 

travel through the electrolyte to be intercalated in the cathode electrode material. When a LiB 

is charged, the process is reversed, and the inverse mechanism occurs. Electrical current is 

conducted via the current collectors at both electrodes during charge and discharge, as shown 

in Figure 2.1. 

The performance of LiBs mainly depends on the materials used to form the electrodes and 

electrolytes. Although most negative electrodes are typically made of graphite, silicon is a 

promising alternative; in contrast, for the positive electrode, various lithium metal oxides can 

be used to make the cathode, such as lithium manganese oxide (LMO), nickel manganese 

cobalt (NMC), nickel cobalt aluminium (NCA), and lithium cobalt oxide (LCO). A conductive 

binder is used to adhere the anode and cathode components to the current collector sheets, 

which are made of metal. The electrolyte is comprised of salt dissolved in a solvent such as 

ethylene carbonate. In most cases, the anode, separator, and cathode are rolled, stacked, and 

then combined into cylindrical, prismatic, or pouch cases to form the electrochemical cell that 

is produced when these three components are combined. When referring to battery 
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terminologies, these are specific terms used to describe aspects such as battery design, 

construction, performance, and usage. In this section, the keywords used in this thesis are 

defined, to support understanding of the subsequent derivation and development of useful 

equations for the testing and validation of the suggested battery monitoring methods (See 

Appendix A). 

 

 

Figure 2.  1 Structure and operating principle of a lithium-ion cell [15]. 

2.3 An Overview of the Lithium-ion Battery Modelling 

Approaches  

A LiB model is used to represent the behaviour of a battery and can be employed to predict the 

current and future internal status of the battery, such as SoC and SoH. Modelling the behaviour 

of LiB is important for designing and optimising these systems. There are different types of 

battery models, each with their own advantages and disadvantages. The most commonly used 

battery models are equivalent-circuit models (ECM) and physics-based models (PBM) [16, 
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17]. All these models have their own strengths and weaknesses, and the choice of which model 

to use depends on the specific application and the level of detail required. In practice, a 

combination of models is often used to achieve the best results. 

The ECM of a LiB is a simplified representation of the battery that can be used to predict its 

behaviour under different conditions [18]. The model consists of a series of electrical 

components, such as resistors and capacitors, that are connected in such a way as to mimic the 

behaviour of the real battery [19]. 

The most basic ECM for a LiB consists of a single resistor and capacitor in series, 

representing the battery’s internal resistance and the charge stored in the battery, as shown in 

Figure 2.2. This model consists of a voltage source in series with a resistance and capacitance. 

The voltage source represents the open-circuit voltage (OCV) of the battery, which depends on 

the SoC. The resistance represents the total internal resistance of the battery, including the 

resistance of the electrodes, the electrolyte, and current collectors. The capacitance represents 

the double-layer capacitance of the electrodes, which is related to the ability of the electrodes 

to store lithium ions. More complex models may include additional resistors and capacitors to 

represent various aspects of the battery’s behaviour, such as temperature and ageing effects 

[20]. ECMs are useful for various applications, including designing and optimising BMS, 

predicting the performance of battery-powered devices, and understanding the factors that 

affect the performance and life of LiB [21]. 
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Figure 2.  2 Battery equivalent electrical circuit model. 

A PBM for a LiB typically couples Partial Differential Equations (PDEs) for the 

electrochemical reactions at the electrodes and transport equations for the ions and electrons 

within the battery. These are then solved numerically using techniques such as finite element 

or boundary element analysis [22]. These equations can be combined with those of continuum 

mechanics to model the mechanical deformation of the electrodes, separator, and other 

components of the battery. Additionally, the model must consider the thermal behaviour of the 

battery, as its temperature can affect the rate of the electrochemical reactions and the 

mechanical behaviour of the materials [23]. The model can be used to predict the battery’s 

performance under different conditions, such as different discharge rates or temperatures, and 

can help to optimise the design of the battery. The most popular PBMs are the Pseudo-2-

Dimensional (P2D) model, which was developed in [24].  It simulates lithium transport and 

diffusion into two dimensions: inside a solid particle, and along the thickness of a cell. This 

makes it possible to have a concentration gradient over the thickness of an electrode, dependent 

on the electrolyte transport, as well as a gradient inside the particle, dependent on solid 

diffusion. However, due to its complex algebraic requirements and other mathematical 

features, the utilisation of the P2D model is computationally intensive. Therefore, it is neither 

optimal nor suitable for degradation simulations, which must model the whole battery life [25]. 

One of the simplest PBMs is the Single-Particle Model (SPM) [26], derived by omitting the 

‘thickness’ dimension, i.e., by assuming electrolyte movement and migration, and fast 
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electrical conductivity in the electrodes and electrolyte [27]. However, using the SPM 

introduces simplifications and limitations, discussed in Section 2.5.2.3. 

Models of battery deterioration or lifetime can be utilised to predict the RUL of a battery 

under various operating situations. There are several ways to classify battery degradation 

models, but one common method is based on the model’s level of detail and complexity. These 

models can be empirical, physics models or data driven [28]. Empirical degradation models 

are based on experimental data and use simple mathematical equations to describe the 

relationship between certain inputs (e.g., current, temperature) and outputs (e.g., capacity, 

voltage). Empirical models are easy to use and understand, but their accuracy may be limited 

by the quality and scope of the data used to develop them. Physics degradation models are 

added to, or coupled with; the PBMs mentioned above to improve model accuracy and describe 

specific ageing mechanisms. They use more complex mathematical equations and require more 

input data, but they can provide more accurate predictions of a battery’s performance over its 

lifetime. Data-driven models use ML techniques to extract patterns from large datasets of 

battery performance data. They can be more accurate than empirical models but require a large 

amount of data to train and can be difficult to interpret. Most examples of these models are 

reviewed in Section 2.5. 

2.4 Battery Degradation  

The internal characteristics of a LiB are complicated and exhibit nonlinear behaviour with a 

dynamic electrochemical system that changes over time. The performance and lifetime of a 

LiB continuously degrade with increasing charging and discharging cycles. There are several 

reasons for battery deterioration, including physical (e.g., temperature and mechanical stress) 

and chemical processes (e.g., side reactions). The most common battery degradation 

mechanisms are depicted in Figure 2.3. Various degradation mechanisms contribute to the 

battery’s deterioration, which can be categorised into two primary degradation modes: (1)  LLI 

resulting from the consumption of lithium ions by side reactions; and (2) LAM resulting in a 
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reduction in storage capacity. The sub-sections below review the principles of the main 

degradation mechanisms considered. 

 

 

Figure 2.  3 Main Degradation Mechanisms in Lithium-Ion Batteries [29]. 

2.4.1 Solid-Electrolyte Interphase Layer  

    The formation of a SEI layer is the most pertinent degradation mechanism in LiB with 

graphite anodes [30].  At the graphite anode, the lithium ions react with parts of the electrolyte 

to form solid products that settle on the graphite surface; passivating the surface reduces the 

side reaction. As a result of imperfect isolation, the layer persists in expanding and consuming 

lithium ions. The cell’s capacity decreases since these ions no longer contribute to the main 

intercalation process. 

Studies [31-34] provide a comprehensive review of the formation of the SEI and the 

reactions that simultaneously occur. The authors of [35] noted that the growth rate of the layer 
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depends on the cell voltage and temperature; the SEI layer is significantly impacted by the 

material characteristics of the electrodes, electrolytes, and additives used. According to [36], 

the SEI layer thickness can be measured in the tens of nanometres, increasing cell impedance 

by around 10 − 100 Ω cm2. 

The SEI layer can potentially affect other types of degradation mechanisms, such as 

LAM  and LLI. In related chemical processes, gases can be generated  [37], and the SEI layer 

can block pores in the anode. Isolating active material in pores can reduce the active surface 

area, aiding other modes of deterioration, such as lithium plating. 

2.4.2 Growth of Cracks on the Electrode's Surface 

The process of lithium intercalation results in changes in the volume of the host material. 

When a cell cycles, it experiences alternate status of tension and compression due to the 

alternating strain caused by the cell’s expansion and contraction [38]. Phase transitions in the 

electrode material can also cause volume changes and resultant pressures. 

Crack development is frequently brought on by alternating stress cycles (e.g., in metal 

fatigue). If the SEI layer develops fractures, it can break apart, allowing the electrolyte to come 

into contact with a fresh graphite surface [39]. Consequently, a new layer of SEI is produced 

on these surfaces, accelerating the rate at which the SEI side reaction consumes lithium ions  

[40]. Solvent co-intercalation can also cause cracks, leading to the same consequence  [41].  

2.4.3 Loss of Active Material (LAM) 

LAM is a phenomenon that can affect either the positive or negative electrodes. This mod e 

categorises methods which lead to a decrease in the amount of material accessible for 

electrochemical action, leading to lithium-ion loss. Several mechanisms of degradation can 

cause LAM. For instance, the authors in  [42] described how pores in the positive electrode 

become blocked by the gaseous carbon dioxide (𝐶𝑂2) and SEI layer, preventing lithium ions 
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moving from the positive into the negative electrode material. However, these lithium ions are 

forced into a side reaction that promotes the formation of the SEI layer. 

Additionally, the electrical contact between the active material and the current collector may 

be lost [30]. This frequently occurs analogous to the process described in the previous section 

regarding surface cracks; however, cracks grow within the electrode in this case. This results 

in the material breaking off or losing contact with the binder [40], preventing the lithium from 

(de)intercalating, as no electrons can reach the current collector and vice versa. Therefore, the 

material is passivated [43].  

2.4.4 Lithium Plating 

On the anode electrode side of the LiB, lithium plating is an undesirable side reaction that 

occurs when lithium ions are reduced to metallic lithium rather than intercalating into the anode 

crystal structure [44]. In addition, the production of dendrites is made possible by the 

deposition of metallic lithium on the negative electrode. This phenomenon occurs when the 

potential of the local anode falls below 0 V [45]. Lithium plating can be localised in the 

presence of graphite anode surface heterogeneity, but can also be caused by slow diffusion 

processes, slow intercalation kinetics, and high SEI film resistances in the anode, caused by 

low temperatures or high current rates [41]. 

The plating side reaction, similar to the SEI layer, takes lithium from the primary 

intercalation reaction and this leads to the loss of lithium inventory, resulting in decreased cell 

capacity [46]. When plated lithium is present, it can cause excessive development of the SEI 

layer. Because dendrite growth may lead to internal short circuits and an exothermic reaction 

can induce thermal runaway, this also poses a safety issue. 

2.5 Classification of RUL Prediction Techniques 

The battery health predictor is an essential component of BMS which gives information 

about the time the battery system has left to perform its intended functions. Monitoring battery 

degradation, forecasting battery status, and improving maintenance have therefore become 
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important focal points in LiB engineering research, to improve battery performance and 

reliability. To do so, an accurate estimate of a battery’s RUL and SoH is required. Various 

techniques for battery capacity estimation have been developed to enable the prediction of 

future changes in SoH as a function of usage history. Battery RUL prediction cannot exist 

independently, as it requires the SoH estimator’s information to function correctly; Figure 2.4 

depicts their relationship [47]. 

In general, predictive methods can be split into three state-of-the-art paradigms of RUL 

predictions for LIB, such as [47]: model-based, data-driven, and hybrid methods (see Figure 

2.5). The model-based approach requires the development of an ageing physics-based model 

and an empirical ageing model to construct the capacity fading path for LiB. In contrast, the 

data-driven approach does not require an ageing model and can instead learn from the ageing 

data to predict changes in battery health. The third, hybrid approach is developed to integrate 

the best features of both previous approaches. The benefits and drawbacks of these methods 

are compared below. 
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Figure 2.  4 BMS health diagnostics and prognostics algorithm framework. 

 

Figure 2.  5 Different approaches to battery RUL prediction. 
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2.5.1 Data-driven Approaches for RUL Prediction 

Data-driven systems directly forecast the deterioration trajectory of a battery based on 

historical monitoring data, even though its causes and propagation rules are unknown [48]. 

Furthermore, this approach develops a mathematical model or derives weight parameters based 

only on training data, as opposed to adopting a particular physics-based model [8]. The data-

driven techniques have been subdivided into purely data-driven and feature data-driven, as 

shown in Figure 2.4. 

2.5.1.1 Purely Data-Driven Methods 

Purely data-driven methods take directly measured data, such as voltage, current, impedance 

and temperature, as input for machine learning models [49, 50]. Data-driven techniques have 

shown significant promise in estimating the present SoH of the battery. So far, limited 

application to date can be found of data-driven techniques for the prognostics of LiBs, possibly 

due to certain limitations they face. For instance, the deep long short-term memory networks 

method was proposed in [51] to estimate the capacity and predict RUL based on experimental 

voltage-time sensor data, but accuracy was impacted due to a lack of training data, possibly 

due to a shortage of data. Although each cell contains hundreds of cycles which can be used as 

training data for an SoH estimate, the lifecycle of each cell is only a point in time in data per 

cell  [8].  Another drawback of data-driven techniques is that the models for large sets of purely 

data-driven approaches rely on raw data as input, thus making the applicability to lifetime 

estimation more complex, since extensive, inclusive, unbiased, and good quality data are 

needed to train the models [52]. According to [13-15], a ML model can be trained to learn how 

much capacity fading happens over a short interval of time, depending on the existing capacity, 

current, or temperature during the period in question. This method is called forward simulation 

[47, 52, 53]. Thus, the RUL can be forecast by combining the capacity fades for each of these 

periods and looking at where the resulting trajectory crosses the failure threshold of the End of 

Service (EoS) (80% of nominal capacity). 
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2.5.1.2 Feature-Based Data-Driven Methods 

To solve the limitations of purely data-driven techniques, research focus has shifted to feature-

based data-driven methods. With feature extraction data-driven models, a pre-processing step 

is included which extracts certain features from capacity, current and voltage data that inform 

the physical behaviour of the cell [54]. This step is called the feature extraction step. These 

features are then employed as inputs to ML algorithms [55]. For example, a probabilistic 

prediction approach for a LiB lifecycle was proposed in [56] by merging the Bayesian Least 

Squares Support Vector Regression (LS-SVR) and the wavelet neural network to predict the 

diminishing capacity of a LiB. The authors in [19] proposed a Hybrid Pulse Power 

Characterisation (HPPC) evaluation of the first-order Randle’s technique for prediction of a 

battery’s SoH using a three-layer back-propagation neural network. The proposed strategy 

required a great deal of time to collect the necessary data because of the lack of a physical 

interpretation of model parameters. Another example in [57] is a simple, regularised linear 

regression model, demonstrating that characteristics derived from differences between 

successive cycles may provide highly accurate lifetime predictions. In [58], the authors used 

more features and a more efficient ML algorithm to increase the accuracy of this method (lower 

prediction error with fewer cycles). Data-driven techniques, such as the statistical model [59], 

autoregressive (AR) model [60], Gaussian process regression (GPR) [61], NN support [49], 

and vector machines [62], have frequently been employed for battery RUL prediction. 

Nevertheless, such approaches tend to depend strongly on the measurement data employed in 

the simulation, and the findings on prediction are less precise than those produced from model-

based approaches [13].  

2.5.2 Model- Based Approach for RUL Prediction  

Model-based approaches are comprised of a mathematical model, empirical model, and 

algebraic equations and include a wide range of ageing data measured under operational 

laboratory conditions. Using model-based methods, battery degradation behaviour can be 

determined using a physics or regression model, and the results can then be extrapolated to 
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predict how well a battery will perform. For long-term forecasts, the physics model 

demonstrates more accurate prediction outcomes than the empirical model, which lacks 

prediction accuracy and leads to a significant error. Accordingly, empirical models are 

associated with filtering techniques [63]. These can update the parameters of the model as part 

of the diagnostic process to ensure accurate long-term RUL prediction. The following sub-

sections describe the categories of model-based methods. 

2.5.2.1 Equivalent Circuit Model (ECM) 

ECM is developed by analysing batteries’ chemical and physical processes. This analysis leads 

to the identification of combinations of circuit elements that produce a similar electrical 

behaviour as batteries. Therefore, methods of circuit analysis can be utilised to develop 

mathematical models that characterise the LiB’s dynamic response and degrading behaviour 

[64].  The formation of the SEI layer causes the internal resistance to increase progressively 

over time. Electrochemical Impedance Spectroscopy (EIS) data can be utilised to detect ECM 

parameters and battery RUL can be predicted using a regression model [65]. The author in [66] 

developed a framework for predicting RUL using the internal resistance growth model and the 

PF method for updating model parameters. Based on the internal resistance development 

model, several strategies for enhancing the performance of the filtering algorithm have been 

presented. For instance, in [67], the authors proposed a Mutated Particle Filter  (MPF) designed 

for enhanced battery RUL prediction accuracy by overcoming particle diversity loss, also 

referred to as sample impoverishment. Nonetheless, the proposed  MPF algorithm randomly 

produces mutated particles without a feedback mechanism. As a result, an enhanced MPF 

algorithm was presented in [68], which employed a dynamic feedback mechanism to explore 

the posterior space more efficiently and resource-effectively. This method also took into 

consideration prior information concerning the high-likelihood area. In another illustration, a 

Regularised Auxiliary PF (RAPF) was constructed to estimate and then update the parameters 

of the model that depict the evolution of exponentially increasing resistance [69]. The proposed 

RAPF improves particle diversity by standardising the empirical distribution, and it is made 

more resilient by using a rejection resampling strategy. The authors in [70] used the Linear 
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Optimisation Resampling PF (LORPF) with the Sliding-window Grey Model (SGM) to 

forecast the RUL of LiBs. The suggested SGM-LORPF resolved the problem of inconsistent 

samples and enhanced the traceability of the PF method. The SGM-LORPF-based technique 

showed improved prediction accuracy for LiB. However, EIS tests take a great deal of time in 

real-time applications, and the necessary equipment is not always accessible. EIS serves as a 

vital sign for lithium-ion battery health, but traditional methods are offline and need manual 

input. To monitor battery health in real-time, this work [71] presents a cutting-edge approach 

using a fractional-order equivalent circuit model (FOECM) for online EIS estimation. First, 

using current and voltage measurements, the model's parameters are figured out with a 

recursive least-squares technique and a fractional-order state variable filter. These parameters 

then help estimate the battery's EIS under various aging conditions. Next, a regression model 

from the EIS spectrum shows the battery's degradation trend regarding internal resistance 

growth. Finally, the regression model is used in a particle filtering framework to predict the 

battery's RUL, which is reasonably satisfactory compared to RUL based on measured EIS data. 

2.5.2.2 Empirical Model  

The empirical model is constructed by analysing the correlation between large amounts of data 

obtained from experimental or observational studies [72]. The capacity fade curve may be used 

to monitor battery degradation by depicting how the capacity declines as a function of 

equivalent cycle numbers, charge throughput, or time. Building an empirical capacity decline 

model parametrised by operating conditions is the most straightforward approach to RUL 

prediction [64]. This may depend on several parameters, including number of cycles and charge 

throughput. 

Two empirical models were developed for battery RUL prediction: the weighted (Ah) ageing 

model and the event-oriented ageing model [73]. In the weighted (Ah) ageing model, the LiB 

is considered to have failed when its cumulative weighted Ah value exceeds a certain threshold. 

In the event-oriented ageing model, the RUL is obtained by analysing the influence on the 

lifetime induced by each event and then adding up all of the events [74]. An empirical internal 
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resistance model was built by selecting time, temperature, and SoC during battery testing as 

model parameters; this model can be utilised for calendar and cycle-life prediction across a 

temperature range of 40℃ − 70℃ [75, 76].  Similarly, several health indicators, such as the 

discharged voltage and internal resistance [77], the rate of temperature change [78], and the 

battery discharge curve [79], were used to build empirical models. With model-based methods, 

mathematical ageing models which capture long-term battery degradation dependencies are 

required. Because of the mathematical simplicity, wide validity, and high flexibility, RUL can 

be predicted [80].  

Most studies in the literature have utilised a model that is generally linear, exponential, or 

polynomial [74, 81, 82]. Model-based approaches are also associated with advanced Bayesian, 

KF and PF, respectively [83]. These can update the parameters of the model as part of the 

diagnostic process to ensure accurate RUL prediction. The best candidate for solving linear 

system problems with Gaussian noise is the KF [84]. A linear model of capacity degradation 

linked with two filters has also been proposed to estimate the RUL in [85]; however, the process 

of battery degradation is often non-linear, and this is where different KF algorithms, such as an 

unscented KF or extended KF [86], may address the above-mentioned issue. According to [87], 

most errors in the process of predicting RUL derive from several sources when obtaining data, 

and thus, total noise often does not show Gaussian behaviour. In this context, therefore, the 

application of a KF algorithm leads to divergence. However, the method of health diagnosis 

includes solutions for non-Gaussian non-linear system-based problems. For this reason, studies 

have tended to consider PF algorithms, which give solutions for both non-linear and non-

Gaussian issues [88]. Several papers have employed PF to determine the failure points of LiB. 

For example, in [89, 90], a method was proposed to predict failure using the exponential model 

and classical PF. In addition, a second-order polynomial was presented in [74], which contains 

fewer parameters than the exponential model; this model is less accurate than the exponential 

model. For instance, the proposed enhanced PF method in [91] uses an enhanced particle 

method to reduce the impact of these problems on state estimation. An evolving fuzzy predictor 

is also adopted and fused into the enhanced PF structure to deal with the lack of new battery 

measurements during the prognostic period. This helps to improve the accuracy of RUL 
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prediction by providing a more accurate estimate of the current state of the battery. The authors 

in [35] presented a long-term RUL prediction scheme based on Kernel Adaptive Filter (KAF) 

for the LiB. The UKF algorithm was used to improve prediction accuracy while dealing with 

noisy data. While the UKF-based model produced satisfactory results, its operational 

complexity meant it needed scarification methods to reduce time and spatial complexity. 

In general, PF suffers from two main problems: particle degeneracy and particle 

impoverishment. The latter is due to the fact that a PF has a resampling phase that can reduce 

particle degeneracy, and this may also result in a loss of sample particles [92]. Accordingly, 

other types of PF used to solve these problems have been considered. For example, an 

unscented PF (UPF) was presented in [93] to improve the sampling and reshaping of classical 

PF. The authors in [94] presented a scheme for battery capacity estimation based on the 

estimated capacity using a Gauss-Hermite PF (GHPF) algorithm to predict the failure limit for 

the uncertainty in the RUL prediction. The Markov Chain Monte Carlo (MCMC) method was 

applied in [95] to solve sample problem impoverishment in a UPF algorithm. Regularised 

particle filters have also been used in the re-sampling phase to enhance classical PF accuracy, 

as presented in [96]. A Rao-Blackwellized PF (RBPF) was suggested in [97] to limit the 

distribution of likelihood into a subspace of the state distribution of likelihood in the state space 

sample. The authors in [98] integrated the neural networks radial basis with a PF for the end-

of-discharge prediction for a LiB. 

In [99], the authors proposed an improvement in the accuracy of the residual life prediction 

theory by dividing the method into two parts. First, the degradation model was extracted using 

the NN technique under different operating conditions. Second, the parameters of the NN 

model were updated with the Bat-PF. The Bat technique is used to push the particles to areas 

of high probability to optimise particle distribution and further reduce PF impoverishment and 

degeneracy. A second-order Central Difference (SCD-PF) algorithm was introduced in [100] 

to improve the performance of the classic PF for RUL prediction of LiB. Most previous 

improved algorithms have extensively reduced the problems faced by the classical PF 

algorithm in terms of particle decomposition and sample diversity deficiency and thus obtained 
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a strong result for LiB RUL prediction. Nevertheless, issues with particle degradation and 

particle diversity deficiency remain difficult for RUL prediction. For this reason, this work 

aims to improve the RUL prediction of LiBs by smoothing the PF using the Likelihood 

Approximations scheme [101]. The proposed SPF algorithm improves the accuracy of RUL 

prediction by choosing the proposal distribution and the resampling weights, depending on 

certain current parameter estimates, thus overcoming the problem of particle impoverishment 

and uncertainty in the degradation model parameters. However, this approach has some 

implementation limitations. First, the quantity of data needed to extrapolate typical operating 

circumstances is relatively large. Second, this technique cannot simply characterise the changes 

from one cell to another due to the difference in manufacturing or heterogeneous temperatures 

within a single package or current distribution. Lastly, an approach using an evidence-based 

ageing model fails to include physical degradation mechanisms, and thus it could not capture 

the knee points (i.e., changes in degradation, in the capacity fade curve). The rate of degradation 

is possibly because of an alteration in the core mechanism (e.g., an increase in SEI, which then 

leads to lithium plating). It is complex to assess, particularly with basic empirical degradation 

models  [89, 102].  

2.5.2.3 Physics-Based Model 

To overcome the above-mentioned limitations, several works have proposed the addition of a 

physical understanding of battery degradation mechanisms to achieve accurate and reliable 

RUL predictions at various degradation stages to enhance the predictive approach in the model-

based prediction algorithm. For example, the authors in [103] focused on using physics-based  

models to predict the RUL of LiBs -based on a Non-linear Least Squares (NLS) algorithm. The 

authors considered multiple aging mechanisms that affected the battery performance and used 

a half-cell model to estimate the battery capacity. By tracking degradation parameters and 

considering the characteristics of these parameters over time, the authors were able to provide 

an online-based RUL prediction for the batteries. The work was carried out using eight 

batteries, and the findings were compared to the traditional approach to confirm their validity. 

However, filter-based techniques such as PF could be considered in future research work to 
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improve performance. The PF is well-suited for systems where the observations are noisy or 

uncertain, as it provides a probabilistic estimate of the system's state. The work in [104] 

developed a method to predict how much a battery's capacity will decrease. This approach uses 

five physical models that consider factors like temperature, how much charge the battery has, 

and how much current flows through it. These models predict how much the battery's capacity 

has decreased in the past. The output of these models is then fed into an artificial intelligence 

algorithm (LSTM) that predicts how much the battery's capacity will decrease in the future. 

However, this second algorithm can only make predictions based on the battery's past capacity 

decreases and does not explicitly consider the specific operational conditions (like temperature) 

that the battery was subject to in the past. The method cannot be adjusted for different operating 

conditions during battery cycles. In [105], the author proposed a Simplified Electrochemical 

Model (SEM) based PF framework for LIB RUL prediction. Similarly, to estimate the RUL, 

the authors in [106] used an improved Single-Particle Model (SPM) coupled with an Auxiliary 

Sampling Importance Resampling (ASIR) PF to develop a prediction system based on 

parameter estimation (PE), in which vehicle charging data was utilised. Recent research [107] 

introduced several degradation trend mechanisms for estimating the capacity and RUL of an 

implantable-grade LiB. One proposed framework includes the loss of active materials in 

positive and negative electrodes and a loss of lithium inventory. In the physics-based 

prognostic approach, three critical trends for degradation are used to enhance the prediction: 

the Loss of Lithium Inventory (LLI), the active material Loss on the Negative Electrode 

(LAMNE), and active material Loss on the Positive Electrode (LAMPE). Post-mortem analyses 

of aged LiBs have identified these mechanisms as significant causes of capacity loss. 

Specifically, this predictive approach tracks changes in the active masses of the positive and 

negative electrodes ( mp and mn, respectively) and the Lithium Inventory Indicator (LII) 

degradation parameters. Analysing the half-cell curve can provide an estimate of these three 

degradation characteristics [108]. This examines the voltage capacity (VQ) curves and the 

differential voltage (dV/dQ) curves. Since the authors in [108] introduced half-cell curve 

analysis as a non-destructive way to assess the health of a battery cell, it has become extensively 

employed in LiB research. Qualitative analysis of half-cell curves was used to rebuild a full-
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cell curve by changing the degradation parameters in half-cell curves of the PE and NE. Once 

the half-cell model parameters have been changed, the fitting of the rebuilt full-cell curve to 

the simulated VQ and dV/dQ full-cell curve is achieved by altering the model’s parameters to 

gain a more dependable prediction of the degradation parameters. Model-based methods are 

also related to filter technology tracking and update the three estimated degradation parameters 

from experimental data to choose an appropriate method and representation.  

 

2.5.3 Hybrid Approaches for RUL Prediction  

One major drawback of data-driven approaches is that they may provide erroneous predictions 

or even incorrect outcomes if they are fed incomplete or biased training data [109]. Model-

based techniques, however, are less adaptable than data-driven ones since they need specialised  

expertise to develop physical models [110]. However, the latter methods are more stable and 

resilient because they require fewer data and are less affected by external uncertainty. In recent 

years, hybrid techniques combining model-based and data-driven methods to produce accurate 

forecasts have been a hot topic of study in battery RUL prediction, seeking to capitalise on the 

relative strengths of both approaches [111]. In general, hybrid methods can be divided into two 

groups based on their objectives: (1) enhancing the efficiency of filtering techniques; (2) 

producing future observation data. 

2.5.3.1 Enhancing the Efficiency of Filtering Techniques 

All the predictive approaches mentioned above depend on the design of the experimental 

degradation model on specific operational requirements or batteries with particular materials. 

For real-time RUL prediction, LiB often works under less-than-ideal operating conditions, and 

so the estimated initial model parameters may be inaccurate, leading to unstable and inaccurate 

RUL prediction [3].  Moreover, inappropriate initial values can slow the convergence of the 

algorithm and lead to divergence. It is thus essential to have a robust and flexible model that 
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can adequately track the capacity degradation trends and extract model parameters under 

different operating conditions. 

To this end, hybrid approaches based on integrating basic predictive methods have become 

increasingly attractive due to their ability to extract a fading capacity model and track 

degradation model parameters. For example, [112] used the RVM technique to measure noise 

in a battery capacity fading dataset. The PF is fed these transactions to update them and estimate 

the remaining life. The authors in [81] proposed the Dempster-Shafer theory to set the initial 

parameter value of the PF algorithm, which increases the speed convergence and improves 

accuracy in early battery life predictions. The NN was proposed in [113] to produce as much 

training data as possible and convert these into deterioration models using data prospecting 

techniques. These were then linked to the PF algorithm as measurement and case transmission 

functions. The authors avoided utilising an empirical model into the PF algorithm, despite its 

high computational complexity and load. The accuracy of the suggested technique depends on 

the amount of training data simulated by the ensemble NN model. Similarly, [99] presented a 

Bat method to resample PF particles to improve MLP+PF hybrid performance. However, most 

previous hybrid approaches have significantly reduced the problems experienced by the online 

life expectancy threshold by identifying the initial values of degradation parameters with 

artificial intelligence techniques. As such, they have obtained robust and reliable predictive 

models. 

2.5.3.2 Producing Future Observation Data 

As mentioned above, the empirical ageing model’s state variables must be updated during long-

term prediction. This is typically accomplished through a filtering method. However, the 

update function of the filtering algorithm for long-term RUL prediction relies on future 

measurements, such as future battery capacity, which are not currently accessible [64]. 

Therefore, in the absence of future measurements, the filtering algorithm can only predict the 

future trend by repeatedly solving the state equation based on the most recent information 

gathered, and the model parameters remain the same throughout the forecast process. The 
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missing future observation data contain the degradation information, and the lack of this data 

will lead to errors in the prediction of RUL [114]. 

Two different methods are used in the literature to solve the above problem. In more recent 

research [115], the work described above was expanded, and the optimised prediction results 

after filtering were utilised to update the Nonlinear Degradation Autoregressive (ND–AR) 

training data, resulting in additional improvements to the prediction accuracy. An alternative 

method is using data-driven algorithms (e.g., RVM) to predict the future residual sequence. 

The prediction error series was used by the authors in [116] to adjust the unscented PF output 

results and by those in [86] to revise the unscented KF state variables. The techniques 

mentioned above are utilised to adjust the final output or the model parameters based on the 

prediction error. This leads to more reliable forecasts. 

2.6 Summary  

Based on this comprehensive literature review, key research gaps and priorities in RUL 

prediction of LiBs have identified three main knowledge gaps, which this thesis seeks to 

address by refining existing methods and introducing innovative solutions to enhance 

prediction accuracy and applicability in real-world scenarios.  

• Previous improved algorithms (Section 2.5.2.2) have extensively reduced the problems 

faced by the PF algorithm in terms of particle decomposition and sample diversity 

deficiency and obtained a strong result for LiB RUL prediction. Nevertheless, issues 

with particle degradation and particle diversity deficiency remain difficult for RUL 

prediction. Thus, the key contribution of the current work is to improve the RUL 

prediction of LiB by smoothing the PF using the likelihood approximations scheme 

[101], combined with a second-order degradation model (addressed in Chapter 3). 

 

• The developed methods for RUL prediction face two challenges. First, most approaches 

are mainly based on traditional empirical degradation models without considering 
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degradation mechanisms. Second, the stability of the standard PF method is greatly 

constrained by a lack of particles and uncertainty in the degradation model parameters, 

which are, in turn, constrained by the availability of sufficient and reliable data. 

Consequently, this can lead to inaccurate RUL prediction. Therefore, the present 

research proposes the development of a framework for RUL prediction based on the 

estimation of parameters of a reduced-ordered physics-based model of LiB by 

extracting three main degradation mechanisms directly correlated with the RUL of the 

LiB. These degradation mechanisms are LAM in positive and negative electrodes and 

LLI (addressed in Chapter 4). 

 

• Online RUL prediction may lack the ability to describe capacity degradation, given the 

variability in decline between cells and others under different operational conditions. 

As such, this can result in inaccurate RUL prediction. The current work thus proposes 

a hybrid approach to improve the accuracy of online forecasting in the existing 

framework by integrating data-driven and model-based approaches. The proposed 

framework utilises a NN to model and track battery degradation trends, and it also 

degrades the initial values of the degradation model’s transactions under different 

operating conditions (addressed in Chapter 5). 

 

• Suppose a new or different battery dataset is used instead of those referenced in the 

thesis in the methods proposed in Chapters 3 and 4. Adjustments would then be required 

for each method based on the estimated initial model parameters. For real-time RUL 

prediction, LiBs often operate under less-than-ideal conditions. Consequently, the 

estimated initial model parameters may be inaccurate, leading to unstable and 

inaccurate RUL predictions [3]. Therefore, it is crucial to have a robust and flexible 

model that can accurately track capacity degradation trends and extract model 

parameters under varying operating conditions (This solution is addressed in Chapter 

5). 
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 Battery Lifetime Identification Using 

SPF Technique 

‘In Chapter 2, a comprehensive review is given of the enhancements made to existing 

algorithms that have significantly lessened the complications the PF algorithm encounters, 

particularly regarding particle disintegration and the deficit of sample diversity. These 

modifications have resulted in robust outcomes for predicting the RUL of LiBs.   Nevertheless, 

issues with particle degradation and particle diversity deficiency remain difficult for RUL 

prediction. For this reason, this chapter unveils a novel online method for RUL prediction of 

LiBs utilising an approach based on SPF for approximating likelihoods. The proposed SPF 

algorithm can accurately estimate the unidentified parameters of the degradation model and 

predicting the degradation status by resolving the optimisation issue at every iterative step 

instead of solely proceeding with a gradient step. This typically results in more rapid 

convergence, eliminates instability problems, and enhances the precision of predictions.’ 
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3.1 Introduction   

Accurate predictions of RUL for LiBs are a key aspect of managing their health, promoting 

reliable and secure systems, and reducing the need for unscheduled maintenance and costs 

[110]. Recent work on RUL prediction has largely focused on refining the accuracy and 

reliability of the RUL prediction. However, the complex nature of battery degradation 

processes and the lack of accurate models make battery lifetime identification a challenging 

task [64]. In recent years, PF algorithms have shown great potential for RUL prediction by 

representing the probability distribution of the system state using a set of particles. However, 

there are several challenges associated with the use of PF algorithms for RUL prediction of 

LiBs [117]. 

One of the main challenges is the complexity of the degradation processes in batteries. LiBs 

exhibit various degradation mechanisms, including capacity fade, power fade, and impedance 

rise, which can interact in complex ways [118]. Accurate modelling of these degradation 

mechanisms is essential for effective RUL prediction using PF algorithms [119]. Another 

challenge is the selection of appropriate state variables for the PF algorithm. The state variables 

used to represent the probability distribution of the system state must capture the relevant  

degradation mechanisms and be informative enough to enable accurate RUL prediction [83]. 

However, selecting too many state variables can result in increased computational complexity, 

while selecting too few state variables can result in an inadequate representation of the system 

state. Finally, PF algorithms can be computationally expensive, particularly when dealing with 

large data sets or complex models. The efficiency of particle filter algorithms can be improved 

by using various techniques, such as resampling, importance sampling, and Markov Chain 

Monte Carlo methods [70, 120]. 

For this reason, this chapter introduces a new online RUL prediction for LiB using SPF based 

likelihood approximations method. The proposed algorithm can accurately estimate the 

unknown degradation model parameters and predict the degradation state by solving the 
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optimisation problem at each iteration rather than only taking a gradient step, which tends to 

lead to rapid convergence, avoids instability issues and improves predictive accuracy.  

This chapter provides background information on LiBs, their degradation mechanisms, and 

the challenges associated with predicting RUL. Section 3.2 explains a new approach for RUL 

prediction using SPF-based likelihood approximations. The theoretical background and the 

procedures of implementation for the PF and the proposed SPF algorithms are set out in Section 

3.3. Section 3.4 demonstrated the experimental datasets published by PCoE NASA; a second-

order degradation model was created to explore the degradation of LiB, utilizing non-linear 

characteristics and non-Gaussian capacity degradation. Maximum error analysis and prediction 

relative and absolute error comparison are presented in section 3.5. Obtained results are 

presented and discussed in Section 3.6. Finally, conclusions and discussion are summarised in 

Section 3.7.  

3.2 Empirical Model for Predicting RUL 

The primary research methodology focuses on the study of statistical analysis of data using 

the proposed SPF method. In general, the investigation in this study follows the framework 

RUL prediction process, as shown in Figure 3.1. As depicted in Figure 3.1, experimental 

capacity degradation datasets were used as input data for a curve-fitting toolbox to extract the 

empirical model that best describes the battery's capacity degradation. Then, a second -order 

exponential degradation model was developed, and degradation model parameters were 

utilised as input data for the SPF algorithm to validate the effectiveness and stability of the 

proposed method. 
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Figure 3. 1 Generic block diagram of RUL prediction. 

3.3 Theoretical Background-Methodology  

3.3.1 Bayesian Filtering Methods 

Bayesian inference is a method of statistical inference that utilises Bayes' theorem to update 

the probability of a hypothesis as more data becomes available [121]. This inference method is 

particularly useful in problems with uncertain or incomplete information, where it can be used 

to incorporate prior knowledge and make probabilistic predictions about the system's state 

[122-124]. The estimation procedure can follow one of two models [125]. The first model 

assumes that the parameters are estimated by minimising the sum of squares of the residuals 

between the observations and predictions model. This method assumes that the parameters are 

non-random and constant during the observation window, and the observations are only 

affected by random noise [126]. The technique is called non-Bayesian because it does not 

involve the computation of the posterior probability distribution of the parameters given the 

observations [127]. 

On the other hand, the second model considers the parameters' uncertainty by incorporating 

prior knowledge about the probability distribution of the parameters [128]. The method uses 
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Bayes' theorem to compute the posterior probability distribution of the parameters given the 

observations. This posterior distribution represents the updated belief about the parameters 

after considering the new data. Parameter estimation using the second model is called Bayesian 

estimation [129]. Prior beliefs are used as a starting point for Bayesian estimation, and the first 

belief statement comprises an indicator based on a prior probability distribution. A prediction 

can be made based on the initial belief and a likelihood function describing the event  [130]. 

The core idea behind recursive Bayesian estimation is as follows [130-133]: 

1. Begin with some prior belief statements. 
 

2. Use the prior belief and a dynamic model to make a prediction. 
 

3. Obtain a posterior belief using the observation model. 
 

4. Declare the posterior belief as the new prior belief and return to 2. 

 

Figure 3.2 depicts the classification of Bayesian filters for both Gaussian and non-Gaussian 

circumstances. Gaussian filters are listed on the left, while their Monte Carlo non-Gaussian 

counterparts are listed on the right. The focus of this thesis is on the Monte Carlo filters. 
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Figure 3. 2 Classification of Bayesian Filters. 

3.3.2 Bayesian Estimation 

The Bayesian estimation aims to determine the consecutive values of a parameter vector 𝑥 

given an observation vector 𝑧 [134]. This is the purpose of the Bayesian estimation. As 

mentioned before, it is common to practise considering both 𝑥 and z to be random vectors.  For 

the parameter vector, the assumption of randomness is built into the equations that describe 

how the parameter changes over time. Unmodeled effects are added as random noise.  

'Unmodeled effects' refer to the variations or changes in the observed data that are not 

accounted for by the existing model. These effects could stem from a multitude of sources such 

as unconsidered variables, complex interactions between factors, errors in data measurement 

or collection, or other random and unpredictable influences that the current model doesn't 

include [134]. One can explain the stochastic nature for the observation vector by supposing 

that there is always a certain random measurement noise [135]. The random vector 𝑥 is 

assumed to have a known prior density function 𝑝(𝑥). Before any observational data are 
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available, the whole set of known and unknown values for the parameter vector is included in 

this prior distribution [136]. If the correct value for the parameters 𝑥 were known. In that case, 

the conditional density or likelihood function 𝑝(𝑧|𝑥) could be used to calculate the probability 

density of 𝑧, and the whole statistical features of 𝑧 could be determined from this information.  

        Bayes' law can be used to find the posterior conditional density of 𝑥 once an experiment  

has been done and a realisation of the random variable 𝑧 is known [137-139]: 

𝑝(𝑥|𝑧) =
 𝑝(𝑧|𝑥)𝑝(𝑥)

𝑝(𝑧)
  (3.1) 

In light of this, the posterior density 𝑥 is a part of the Bayesian framework that incorporates 

all of the information there is to know about 𝑥. This is achieved by taking into consideration 

the results of an experiment. Given that the experimental outcome, 𝑧, is now accessible, the 

denominator of the equation (3.1) is just a scalar normalising constant that can be derived as 

follow [140]: 

𝑝(𝑧) = ∫𝑝(𝑧|𝑥)𝑝(𝑥)𝑑𝑥 (3.2) 

For the full Bayesian estimation problem, the statistical model for estimation is the 

likelihood and the posterior, or their joint density. The combined density of the parameter and 

observational trajectories is described by [141]: 

𝑝(𝑥, 𝑧) = 𝑝(𝑥|𝑧)𝑝(𝑧)  (3.3) 

For the estimation issue, the posterior distribution contains the answer (3.1). Therefore, if 

desired point estimates of 𝑥 exist, they can be generated from the posterior distribution. 

Considering that the density function can frequently be used to quantify 𝑥, the posterior density 

should be regarded as the most generic answer to the estimation issue. 

3.3.3 Recursive Bayesian Filtering of Probability Density Functions 

A discrete dynamic process refers to a system where the current state is determined by a 

finite number of previous status, often represented by a sequence of discrete time steps [142]. 
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On the other hand, in a continuous process, the current state of the system is determined by an 

infinite number of previous states, represented by a continuous function modelled by a 

differential equation [143]. When observations occur at discrete times, it is not possible to 

estimate the state of the system between those observations. Therefore, the differential equation 

that describes the continuous process must be replaced by a difference equation, which relates 

the state of the system at a specific observation time to the states at previous observation times. 

This is known as a finite difference equation [144]. 

The current state of a first-order Markov process depends only on the previous state. So, we 

can characterise a discrete random Markov dynamic process as [145, 

146]:

𝑥𝑛 = 𝑓𝑛−1(𝑥𝑛−1,𝑢𝑛, 휂𝑛−1) = 𝑓𝑛−1(𝑥𝑛−1) + 𝑢𝑛 +𝑣𝑛−1) (3.4) 

where 𝑥𝑛 is the state of the system (state vector) at the time 𝑡𝑛, 𝑓𝑛−1 is 

a deterministic transition function (matrix) that moves the state 𝑥 from tim subscript to 

time 𝑡𝑛 and 𝑢𝑛 It is a known (usually deterministic) control that constitutes some external input  

that drives the system dynamics. Although the white noise 휂 (not necessarily Gaussian) can 

start at the input and be transformed by the transition function, it is usually assumed that the 

noise is additive and represents those parts of the true transition function that are not modelled .  

Given the set of all experimental observation vectors, the problem of interest is to estimate 

the unobservable state vector. 𝑥𝑛based on the information provided by the observation vectors. 

It will be assumed that there is an analytical relationship between the observable vector at the 

time. 𝑡𝑛 and the state vector at the time 𝑡𝑛, which is denoted by [147]: 

 𝑧𝑛 = ℎ𝑛(𝑥𝑛,𝜇𝑛) = ℎ𝑛(𝑥𝑛)+ 𝑤𝑛  (3.5) 

Here, 𝑧𝑛 is designated as the observation vector and ℎ𝑛 is a deterministic observation 

function that links the state vector with the observation. Once again, the white noise 𝜇𝑛 (not 

necessarily Gaussian) can be transformed by the transition function, but it is usually assumed 

that the observation noise is additive. 
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Consider that we have previous knowledge of the state and observation equations, i.e., 

𝑥𝑘+1 = 𝑓𝑥(𝑥𝑘 ,𝑣𝑘), which may also consider to be sampled from 𝑥𝑘+1~𝑝(𝑥𝑘+1, 𝑥𝑘) due to 

random noise. Likewise, the observation equation for this hidden process is 𝑧𝑘 = ℎ(𝑥𝑘 ,𝑣𝑘). 

Which is considered to have been sampled from 𝑝(𝑦𝑘|𝑥𝑘) The values created by the state 

equation are hidden, and only the observation values are visible. Suppose the proposal 

distribution 𝑞(𝑥𝑘|𝑧1:𝑘) can be factorised into [148]: 

 𝑞(𝑥0:𝑘|𝑧1:𝑘) =  𝑞(𝑥0:𝑘−1|𝑧1:𝑘−1)𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘) (3.6) 

 

The recursive form of the posterior probability density function can be expressed as 
[149]: 

 

 𝑝(𝑥0:𝑘|𝑧1:𝑘) =
𝑝(𝑧1:𝑘|𝑥0:𝑘 , 𝑧1:𝑘−1)𝑝(𝑥0:𝑘|𝑧1,𝑘−1)

𝑝(𝑧1:𝑘|𝑧1:𝑘−1)
 

=
𝑝(𝑧1:𝑘|𝑥0:𝑘 , 𝑧1:𝑘−1)𝑝(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)

𝑝(𝑧1:𝑘|𝑧1:𝑘−1)
 

=
𝑝(𝑧1:𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)

𝑝(𝑧1:𝑘|𝑧1:𝑘−1)
 

∝ 𝑝(𝑧1:𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1)  (3.7) 

Finally, the conditional probability density function equations need to be written in a fully 

recursive manner. The prior density is related to the prior posterior density through the 

Chapman-Kolmogorov equation [150]: 

𝑝(𝑥𝑘|𝑧1:𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1) 𝑝(𝑥𝑘−1|𝑧1:𝑘−1)𝑑𝑥𝑘−1 (3.8) 

Figure 3.1 depicts one iteration of this Bayesian recursive process for generating consecutive 

posterior densities. The recursive procedure is initiated by 𝑝(𝑥0), the pdf associated with 𝑥 

prior to any observations. In this procedure, the prior probability distribution is updated with 

each iteration by incorporating new data and recalculating the likelihood and evidence. The 
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updated posterior probability distribution becomes the new prior for the next iteration. This 

process continues until a desired level of convergence is reached [151]. 

 

Figure 3. 3 Depiction of one step in the recursive Bayesian posterior density estimation procedure. 

3.3.4 PF Algorithm 

The PF algorithm combines two techniques: recursive Bayesian and sequential importance 

sampling (SIS) [120, 152, 153]. It also contains two important elements, which are the 

initialisation of parameters and the state model equation. The state-spatial dynamic model can 

be represented by the state transformation model and the measuring model, using (3.9) and 

(3.10) [154]. 

𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝜔𝑘−1 ↔ 𝑝(𝑥𝑘|𝑥𝑘−1)  (3.9) 

 

𝑧𝑘 = ℎ(𝑥𝑘)+ 𝑣𝑘 ↔ 𝑝(𝑧𝑘|𝑥𝑘) (3.10) 

Where, 𝑓(𝑥𝑘−1) and ℎ(𝑥𝑘) refer to the hidden state of the transition function and 

measurement function, respectively; 𝑥𝑘 denotes the system's state variables at the 𝑘𝑡ℎ time, 

𝑦𝑘 represents the observed system value of 𝑥𝑘 at the 𝑘𝑡ℎ time, and  𝑥𝑘 represents the hidden 

state variables at the 𝑘𝑡ℎ time, 𝑧𝑘 represents the measurement system at the 𝑘𝑡ℎ time, 𝜔𝑘 is 

the noise process, and 𝑣𝑘 is the noise measurement.  
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The main idea of the PF algorithm is to draw many random sample particles from a 

proposal distribution 𝑞(𝑥0:𝑘|𝑧1:𝑘) and to allocate each with an importance weight 

representing the posterior probability density (PDF) [155, 156]. In this way, PDF 𝑝(𝑥𝑘|𝑧1:𝑘) 

can be ascertained as below: 

𝑝(𝑥0:𝑘|𝑧1:𝑘) ≈ ∑𝑤𝑘
𝑖 𝛿(𝑥0:𝑘 − 𝑥0:𝑘

𝑖 )

𝑁

𝑖=1

 (3.11) 

Where 𝑁 is the number of particles, 𝛿(∙) represent the Dirac delta function. The particles 

generated by the distribution 𝑝(𝑥𝑘|𝑧1:𝑘)  represent the sample perfectly. However, from the 

accurate PDF posterior density, it is still difficult to take a precise sample, and so an alternative 

way of sampling needs to be found to sample proposal distribution 𝑞(𝑥𝑘|𝑧1:𝑘) [157]. The 

weighting of the filter may be improved by using the SIS and taking another sample in the 

stages of the SMC algorithm. The associate weight of random particle drawn from 𝑞(𝑥𝑘|𝑧1:𝑘) 

is represented as: 

𝑤𝑘
𝑖 ∝

𝑝(𝑥𝑘
𝑖 |𝑧1:𝑘)

𝑞(𝑥𝑘
𝑖 |𝑧1:𝑘)

 (3.12) 

 

                                    𝑤𝑘
𝑖 ∝

𝑝(𝑧𝑘|𝑥𝑘
𝑖 )𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )𝑝(𝑥0:𝑘

𝑖 |𝑧1:𝑘−1)

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘)𝑞(𝑥0:𝑘−1
𝑖 |𝑧1:𝑘−1)    

  

 

 

= 𝑤𝑘−1
𝑖

𝑝(𝑧𝑘|𝑥𝑘
𝑖)𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘)
 (3.13) 

 

As long as 𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑧1:𝑘) = 𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧𝑘) is satisfied, the modified weight 

calculation (3.13) can be transformed into: 

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖
𝑝(𝑧1:𝑘|𝑥𝑘

𝑖)𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧:𝑘)
 (3.14) 
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Table 3.1 depicts a detailed illustration of the PF algorithm [158]. In the first step, a 

random set of starting particles  {𝑥
𝑘

(𝑖)
}
𝑖=1

𝑁

 is produced using the system's prior probability 

distribution, and a specific weight is assigned to each particle. The second step is to update 

the particles using equations (3.9) and (3.10), and the importance density function 

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑦1:𝑘) is chosen as 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ), such that weights may be determined at time k 

by: 

𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖 𝑝(𝑦𝑘|𝑥𝑘
𝑖) (3.16) 

Then, the weight is normalised as:  

𝑤𝑘
𝑖 =

𝑤𝑘−1
𝑖

∑ 𝑤𝑘
𝑖𝑁

𝑗=1

  (3.17) 

In the third step, the particles are resampled, where new samples are formed by copying 

the current particles with large weights [159]. Then, the weights are assigned to 𝑤𝑘
𝑖 .  In the last 

step, the new state can be updated based on the new particles and weights obtained by: 

�̂�𝑘 = ∑ �̃�𝑘
𝑖 �̃�𝑘

𝑖
𝑁

𝑖=1

 (3.18) 

The state transition model (3.9) and the system observation model (3.10) are represented 

by the state transition PDF 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ) and the observation PDF𝑝(𝑦𝑘|𝑥𝑘
𝑖), respectively. 

Table 3. 1 Procedures of the PF algorithm. 

Step1 

 

Initialisation: produce N particles randomly for 𝒌 = 𝟎, randomly generate N 

particles from the prior Gaussian distribution with corresponding particle weight 

{𝒘𝒌
(𝒊)
}
𝒊=𝟏

𝑵

   

Step 2 

 

Calculation of importance weight and importance sample for 𝒊 = 𝟏, 𝟐,… , 𝑵  

draw 𝒙𝒌
𝒊 ~𝒒(𝒙𝒌

𝒊 |𝒙𝟎:𝒌−𝟏
𝒊 ,𝒛𝟎:𝒌).In standard SMC, define 𝒒(𝒙𝒌

𝒊 |𝒙𝟎:𝒌−𝟏
𝒊 ,𝒛𝟎:𝒌) =

𝒑(𝒙𝒌
𝒊 |𝒙𝒌−𝟏

𝒊 ). Assign the weight of the particle according to: 
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𝒘𝒌
𝒊 = 𝒘𝒌−𝟏

𝒊
𝒑(𝒛𝒌|𝒙𝒌

𝒊 )𝒑(𝒙𝒌
𝒊 |𝒙𝒌−𝟏

𝒊 )

𝒒(𝒙𝒌
𝒊 |𝒙𝒌−𝟏

𝒊 , 𝒛𝒌)
 

Normalise the weight: 

𝒘𝒌
𝒊 =

𝒘𝒌
𝒊

∑ 𝒘𝒌
𝒊𝑵

𝒊
⁄  

Step 3 

 

Re-sampling the effective sample size 𝑵𝒆𝒇𝒇  

𝑵𝒆𝒇𝒇 ≈ 𝟏
∑  (𝒘𝒌

𝒊 )
𝟐𝑵

𝒊−𝟏
⁄  

Draw N particles 𝑥̃𝑘
𝑖  from the current set 𝑥𝑘

𝑖  and replace the present array with a 

new array:  

�̃�𝒌
𝒊 = 𝟏

𝑵⁄  

Step 4 

 

State estimation: 

𝑥𝑘 = ∑�̃�𝑘
𝑖

𝑁

𝑖−1

�̃�𝑘
𝑖  

 

3.3.5 Common Issues in Particle Filters 

One of the most common issues with PF is the problem of ensemble collapse or sample 

impoverishment [160, 161]. This occurs when the particles become highly concentrated in a 

small region of the state space, resulting in a lack of diversity among the particles (see Figure 

3.4). This can lead to poor estimation of the posterior distribution, and the filter can become 

stuck in a local maximum. This issue is often caused by poor initialisation, poor choice of 

proposal distribution, or poor choice of resampling technique. To mitigate this issue, 

resampling techniques such as systematic or stratified resampling can be used to ensure that 

the particles remain diverse, and importance sampling can be used to reduce the risk of 

ensemble collapse [162]. 
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Another common issue with PF is the problem of particle depletion, which occurs when the 

number of particles that are used to represent the posterior distribution becomes too small, 

resulting in a poor estimation of the posterior distribution [163]. This can be caused by several 

factors, such as the choice of resampling technique, the dynamic model used to propagate the 

particles forward in time, and the choice of proposal distribution. One way to mitigate this issue 

is to use larger numbers of particles or to use more sophisticated resampling techniques, such 

as resampling with replacement or resampling with importance weighting [164]. 

Finally, the PF algorithm is sensitive to the choice of the proposal distribution 𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧𝑘)  

[165]. The proposal distribution is used to generate new particles from the current particles, 

which is used to approximate the posterior distribution. If the proposal distribution is not well 

chosen, the filter can converge to a suboptimal solution [166]. This can be mitigated by using 

more sophisticated proposal distributions, such as adaptive proposal distributions or by using 

more sophisticated resampling techniques [167].  
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Figure 3. 4 Schematic diagram of weight degeneracy and particle impoverishment for classic PF [162]. 

3.3.6 The Proposed SPF Algorithm 

When using the PF algorithm to estimate maximum probability (likelihood) parameters in the 

non-linear state-space model, the PF removes the light weights and copies the heavy weights 

in a resample phase, which results in a loss of diversity in the particle distribution [168]. The 

main challenge is that likelihood distribution estimation, and its derivatives are fundamentally 

noisy. The main idea of the SPF method [101] is to choose the proposal 

distribution 𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧𝑘)  and the resampling weights 𝑤𝑘
𝑛, such that it is entirely independent 

of parameters 휃. Based on this choice, we note that all the randomly extracted elements, such 

as particles 𝑥0:𝑇
𝑛  and ancestor indices 𝑎1:𝑇

𝑛  in the PF algorithm, became independent of 휃; this 

is critical in the analysis and estimation of battery degradation as the true values of the 

degradation model parameters are unknown and highly influenced by uncertainty [169]. Now, 

if we apply the certain condition to the realisation of {𝑥0:𝑇
𝑛 ,𝑎1:𝑇

𝑛 }, the 𝑧̂𝜃estimation will convert 

into a deterministic function within 휃, and any standard optimisation routine can then be 

implemented to solve (3.19) and find the maximum likelihood estimate of 휃 [101]. 
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𝑝𝜃(𝑧1:𝑇) = ∫𝑝(𝑥0)∏𝑓𝜃(𝑥𝑡|𝑥𝑡−1)ℎ𝜃(𝑧𝑡|𝑥𝑡)𝑑𝑥0:𝑇

𝑇

𝑡=1

 (3.19) 

θ̂ = arg𝑚𝑎𝑥𝜃𝑝𝜃(𝑧1:𝑇) (3.20) 

Where 𝑝𝜃(𝑧1:𝑇) refers to the likelihood function when considered a function of θ. This 

follows from (3.1) and the initial state density 𝑝(𝑥0). However, the strength of the PF method 

is the ability to construct samples sequentially over high-space dimensions 𝑋𝑇+1 , where the 

resampling phase provides valuable feedback information to discover which parts of the state 

space should be explored further. Based on the arbitrary decision, the weights of 휃-independent 

resampling 𝑤𝑘
𝑛 will be lost, and thus missing this feature may lead to a discrepancy in the 

estimate obtained. The deterministic function can be ascertained in 휃-independent re-sampling 

by allowing the algorithm to let the resampling weights 𝑤𝑘
𝑛 and 𝑞(𝑥𝑡|𝑥𝑘−1, 𝑧𝑘) rely on certain 

current parameter predictions, 휃𝑘−1, as [101], 

 

𝑞(𝑥𝑡|𝑥𝑡−1, 𝑧𝑡) = 𝑓𝜃𝑘−1
(𝑥𝑡|𝑧𝑡) (3.21) 

 

𝑤𝑘
𝑛 = ℎ𝜃𝑘−1

(𝑧𝑡|𝑥𝑡
𝑛) (3.22) 

 

The SPF choice was 휃𝑘−1 instead of 휃. If the 휃 value is somewhat close to the value of 

휃k−1 , the variance of the estimate of the maximum likelihood state of the particle distribution, 

referred to as �̂�𝜃𝑘−1
(휃), may not be prohibitively large. On the other hand, if the current value 

of 휃𝑘−1 is far from the current value of θ̂, then the estimate �̂�𝜃𝑘−1
(휃) will not be particularly 

good at the θ̂. For this reason, we must repeat the parameter values over 𝑘 until we roughly 

arrive at values close to θ̂. By inserting (3.21) and (3.22) into the particle filter algorithm and 

combining with an external optimisation loop, we reached the novel proposed method, 

presented in Figure 3.5 [101]. 
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Computationally, the SPF method estimates a final parameter by iterating a four-step 

process, as shown in Figure 3.5. The first step, an initial guess for each model parameter, is 

used to create a first-order Taylor series, then used to solve this nonlinear state-space model. 

The second step is the main step of the proposed method; we run a conventional PF to plot 

particle distribution based on the prime distribution function in the first line (assuming it is 

independent of 휃) and set the significance weight as 𝒘𝒌
𝒊 = 1. Then, we utilised the results of 

the PF run to recalculate the likelihood function approximation for subsequent parameter 

values. Moreover, in step 2-line 10, 𝑎1:𝑇
𝑛  is drawn concerning the reconfiguration of 

weights 𝑤𝑡−1
𝑗

. Proposal distribution 𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧:𝑘) is used to generate the new particles in step 

2-line 11. In the third step, new particle samples are obtained from {𝑥0
𝑖 }

𝑖=1

𝑁
 by re-balancing the 

heavy weights and assigning corresponding weights 
1

𝑁
∑ 𝑙𝑜𝑔𝑤𝑡

𝑛.𝑁
𝑛=1  

3.3.6.1 Solving the problem of maximisation 

As shown in Figure 3.5 (Step 2), the optimisation step related to solving 

arg𝑚𝑎𝑥𝜃�̂�𝜃𝑘−1
(휃) has been established. Crucially, this issue is now deterministic, and any 

usual numerical optimisation tool can be implemented, and the experiments will show this 

using the general-purpose optimisation tool fminunc in MATLAB. The structure of �̂�𝜃𝑘−1
(휃), 

which is implicitly defined in the function likelihood of the proposed algorithm, might still be 

utilised by a more suitable optimisation scheme. Its structure can be shown as [101], 

 

�̂�𝜃𝑘−1
(휃) =

1

𝑁
∏∑𝑐𝑘

𝑁𝑤𝑘
𝑁(휃)𝑓𝜃 (𝑥𝑘|𝑥𝑘−1

𝑎𝑘
𝑁

) ℎ𝜃(𝑧𝑘|𝑥𝑘
𝑁) 

𝑁

𝑛=1

𝑇

𝑘=1

 (3.23) 

Where, 𝑐𝑘
𝑁   s   co s      h    s   d    d    of θ;  𝑤𝑘

𝑁(휃) d    ds o  θ  u   lw ys fulf ls 

∑ 𝑤𝑘
𝑁(휃) = 1𝑁

𝑛=1 , and 𝑓𝜃 and ℎ𝜃 relies on the degradation model.  
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Figure 3. 5 Flowchart of the proposed SPF algorithm. 
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𝑘 = 0, Particle initialization 
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Update particles {𝑥0
𝑖 }𝑖=1

𝑁  using dynamic model: 
 
𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1,𝜔𝑘−1)

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘)
 

Update observation: {𝑦𝑘
𝑖 }𝑖=1

𝑁  

Set the importance weight (wk
i = 1) 

Generate at
n  from the 𝐶 ({𝑤𝑡−1

𝑗 }
𝑗=1

𝑁
). 

Propagte 𝑥𝑘
𝑖 ~𝑓휃𝑘−1

(𝑥𝑘 |𝑥𝑘−1

𝑎𝑘
𝑛

, 𝑧𝑘). 
𝑆𝑒𝑡 𝑤𝑘

𝑛 ← ℎ휃𝑘−1
(𝑧𝑘|𝑥𝑘

𝑛). 

Particle Re-sampling 

𝒘𝒕
𝒊 ←

𝒘𝒕−𝟏

𝒂𝒕
𝑵

/∑ 𝒘
𝒕−𝟏

𝒂𝒕
𝒋

𝒋

𝒉𝜽𝒌−𝟏
(𝒙𝒕−𝟏

𝒂𝒕
𝑵

|𝒚𝒕−𝟏) ∑ 𝒉𝜽𝒌−𝟏
(𝒙𝒕−𝟏

𝒋 |𝒚𝒕−𝟏)𝒋⁄
 
𝒇𝜽 (𝒙𝒕|𝒙𝒕−𝟏

𝒂𝒕
𝑵

)

𝒇𝜽𝒌−𝟏
(𝒙𝒕|𝒙𝒕−𝟏

𝒂𝒕
𝑵

)
𝒉𝜽(𝒚𝒕|𝒙𝒕

𝑵) 

𝒛𝒕 ←
1

𝑵
∑ 𝒍𝒐𝒈𝒘𝒕

𝒏
𝑵

𝒏=1
 

Returen: log ẑθk−1
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3.4 Capacity Degradation Modelling 

3.4.1 Battery Dataset  

The Prognostics Centre of Excellence (PCoE) at NASA Ames Research Centre has made 

available a widely used battery dataset, which includes data from experiments on LiBs [170]. 

The dataset includes a variety of sensor measurements, such as voltage, temperature, and 

current, collected over time during different discharge and charge cycles. The dataset is used 

for research in the field of prognostics and health management, which aims to predict the RUL 

of batteries. 

In this thesis, four cells were selected (B05,B06, B07 and B18), and their experimental data 

published by (PCoE), was used to investigate the performance and accuracy of the proposed 

algorithm [170].  As shown in Figure 3.6, the dataset consists of four cells using commercial 

lithium cobalt oxide batteries. The stated capacity of the cells is 2 Ah, and their nominal voltage 

is 3.3 V. The cells are iterated through the cycle until they fail at a room temperature of 24 ℃. 

Below is a description of the test procedure and data collection conditions [170]: 

1. In the charge step, Constant-Current, Current-Voltage protocol (CC-CV) is used. A 

Constant-Current (CC) of 1.5 Ah was applied until the cell voltage reached the 

maximum limit  (4.2 V), and then the Current-Voltage (CV) continued until the 

current dropped to 20 mAh. 

2. In the discharge step, a CC 2 A is applied until the voltage of the battery dropped to 

2.7 V,2.5 V,2.2 V and 2.5 V for batteries B05,B06, B07 and B18, respectively. In 

the testing protocol, the discharge cut-off voltages for the battery cells B05, B06, 

B07, and B18 have been purposefully set at differing levels. This methodological 

choice is designed to emulate the varied operating conditions under which these 

batteries might be deployed in real-world applications [170]. Through this approach, 

the researchers aim to gain a comprehensive understanding of the impact of distinct 

discharge levels on the performance and longevity of each battery, thereby enriching 
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the accuracy and reliability of RUL prediction. The cells were cycled at a depth of 

discharge (DOD) 20–80%. 

3. Repeated previous steps until the batteries reach the point of failure, here it is 30% 

of the nominal capacity, and so the battery’s EoS is placed at a capacity threshold of 

𝑈 = 1.4 Ah.  

 

Figure 3. 6 The capacity degradation curve. 

3.4.2 Empirical degradation model  

During the degradation process, a LiB continues to decrease in capacity. As shown in 

Figure 3.6, battery capacity decreases dramatically with an increase in the number of cycles 

used. Thus, the degradation curves are well-fitted using an exponential growth model, as 

presented in (3.19).   

𝑄 = 𝑎 ∙ 𝑒𝑥𝑝(𝑏 ∙ 𝑘) + 𝑐 ∙ 𝑒𝑥𝑝(𝑑 ∙ 𝑘) (3.24) 

Here, 𝑄 represent the capacity of the battery, 𝑎, 𝑏, 𝑐 and 𝑑 are the model parameters, and 

𝑘 is the number of cycles. A curve-fitting toolbox was used to obtain an accurate exponential 

degradation model. Figures (3.7−3.10) shows the fitting results. The findings show that the 

degradation model is effective and can be used to predict the RUL battery. The modelled 
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parameters of the four batteries in the study were produced at the fitting stage to attain the 

starting parameters for the training data. These were used in the prediction step, as shown in 

Table 3.2. 
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Figure 3. 7 Degradation data and fitted curve of B05. 

 

Figure 3. 8 Degradation data and fitted curve of B06. 
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Figure 3. 9 Degradation data and fitted curve of B07. 

 

Figure 3. 10 Degradation data and fitted curve of B18. 
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Table 3. 2  Initial model parameters. 

Cell ID 𝒂 𝒃 𝒄 𝒅 

     

B05 1.974 -0.00027 -0.158 -0.06942 

B06 1.562 -0.00557 0.4895 0.0009 

B07 1.938 -0.00205 1.e-07 0.074 

B18 1.853 -0.00291 0.0002 0.0428 

 

3.5 Experimental Validation 

3.5.1 Prognostic Performance Evaluation Metrics 

To demonstration the effectiveness of the proposed solution, the SPF and PF algorithms 

in Table 3.1 and Figure 3.5 have been implemented. Now, to test the accuracy of the prediction 

of the PF and proposed SPF algorithm, different cycle ‘starting points’ were applied, such as 

20, 50 and 80 cycles. Again, the two algorithms were used here for online estimation of the 

parameters in (3.24). A second-order degradation model has been developed based on the 

fitting results explained earlier in Section 3.5.2.  The performance of the prediction has been 

evaluated using the Absolute Error (𝐴𝐸) of the RUL and the Relative Error (𝑅𝐸) of the RUL. 

As given in (3.25), AE is defined as the difference between the number of remaining true 

(𝑅𝑈𝐿 𝑇) cycles and the number of predicted (𝑅𝑈𝐿𝑃) cycles. While the 𝑅𝐸 is defined as 

presented in (3.26). 

 

𝐴𝐸 = |𝑅𝑈𝐿𝑇 −𝑅𝑈𝐿𝑃    | (3.25) 

 

𝑅𝐸 = 𝐴𝐸
𝑅𝑈𝐿𝑇
⁄  (3.26) 
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3.5.2 RUL Prediction 

According to the capacity degradation model, the state transition of the battery system 

can be defined as follows: 

𝑥𝑘 = [𝑎𝑘 ; 𝑏𝑘 ; 𝑐𝑘 ; 𝑑𝑘] (3.27) 

Where, 

{
 

 
𝑎𝑘 = 𝑎𝑘−1 + 𝜔𝑎      𝜔𝑎~𝑁(0,𝜎𝑎 )

𝑏𝑘 = 𝑏𝑘−1 + 𝜔𝑏      𝜔𝑐~𝑁(0,𝜎𝑏)

𝑐𝑘 = 𝑐𝑘−1 + 𝜔𝑐      𝜔𝑐~𝑁(0,𝜎𝑐)

𝑑𝑘 = 𝑑𝑘−1 +𝜔𝑑     𝜔𝑑~𝑁(0, 𝜎𝑑)

  (3.28) 

Now equation (3.24) can be written as 

𝑄𝑘 = 𝑎𝑘 𝑒𝑥𝑝(𝑏𝑘𝑘) + 𝑐𝑘 𝑒𝑥𝑝(𝑑𝑘𝑘) + 𝑣𝑘   𝑣𝑘~𝑁(0,𝜎𝑉) (3.29) 

Here, 𝑄𝑘  is the measurement of the capacity cell at cycle 𝑘, and 𝑁(0, 𝜎) is the Gaussian 

noise with zero mean, and 𝜎 is the standard deviation. Then, the measurement of the capacity 

cell can be estimated by: 

𝑄𝑘 = ∑𝑄𝑘
𝑖 = ∑[𝑎𝑘

𝑖 . exp(𝑏𝑘
𝑖 ∙ 𝑘) + 𝑐𝑘

𝑖 . exp(𝑑𝑘
𝑖 ∙ 𝑘)]    

𝑁

𝑖=1

𝑁

𝑖=1

(3.30) 

At cycle 𝑘, the prediction step (𝑝-th) can be calculated by 

𝑄𝑘+𝑃 = ∑[𝑎𝑘
𝑖 . exp(𝑏𝑘

𝑖 ∙ (𝑘 + 𝑝)) + 𝑐𝑘
𝑖 . exp(𝑑𝑘

𝑖 ∙ (𝑘 + 𝑝))] 

𝑁

𝑖=1

 (3.31) 

The posterior PDF can be estimated with weights on each trajectory: 

𝑃(𝑄𝑘+𝑝|𝑄𝑂:𝑘) ≈ ∑𝑤𝑘
𝑖 𝛿(𝑄𝑘+𝑝 −𝑄𝑘+𝑝

𝑖

𝑁

𝑖=1

) (3.32) 
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In this analysis, the value of the failure threshold is 70% of the nominal capacity value. 

Then, at cycle 𝑘 the RUL distribution can be predicted by 

0.7𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 𝑎𝑘
𝑖 . 𝑒𝑥𝑝(𝑏𝑘

𝑖 ∙ 𝐿𝑘
𝑖 ) + 𝑐𝑘

𝑖 . 𝑒𝑥𝑝(𝑑𝑘
𝑖 ∙ 𝐿𝑘

𝑖 ) (3.33) 

Then,  

𝑃(𝐿𝑘|𝑄0:𝑘) ≈ ∑𝑤𝑘
𝑖 (𝐿𝑘− 𝐿𝑘

𝑖 )

𝑁

𝑖=1

 (3.34) 

Here, 𝐿𝑘
𝑖  is the RUL at cycle 𝑘. 

3.6 Results and Discussion  

3.6.1 RUL prediction Using B05 Cell 

In this work, the 𝐵05 battery cell was used for RUL prediction. The initial values of the 

PF and proposed SPF parameters were selected as number of particles 𝑁 = 200, and battery 

failure threshold 1.4 Ah. The initial parameters for the degradation model for all battery cells 

are shown in Table 3.2.   

Figure 3.11 shows the prediction results with PF and the proposed SPF algorithm for 

battery cell 𝐵05. It is important to mention that the first 80 cycles from the data are used as 

training data to update the prediction process. There are two curves of prediction, and the 

respective PDFs of the RUL were obtained to compare between the PF and the proposed SPF, 

as shown in Figure 3.11 and Figure 3.12, respectively. As seen in Figure 3.9, at 𝑇𝑠 = 80 cycles, 

the final life cycle was 125 cycles, while the average predicted life cycle using the PF was 108 

cycles. Thus, the AE for the PF algorithm is around 16, and the RE error was approximately 

0.136. While for the proposed algorithm (see Figure 3.12), the average number of life cycles 

predicted was around 127 cycles, the prediction AE was approximately 2 cycles, and the 

prediction RE was around 0.024. From the prediction results, it observed that the prediction 
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curve obtained from the proposed SPF method is closer to the actual capacity degradation curve 

than the PF prediction curve, and its PDF of RUL, based on the proposed SPF algorithm, is 

more concentrated. Figure 3.12 show that the prediction jumps from the actual value at the 

starting point prediction (Ts=80 cycles). This is because the prediction framework used to 

estimate the remaining useful life of batteries relies on continuous updates of degradation 

parameters, which are based on historical data available before the start of the prediction [90]. 

The degradation model's parameters have non-linear characteristics that describe how battery 

capacity degrades over time [171]. When the prediction starts, the framework relies on the 

latest update of the degradation parameters, which takes into account the available historical 

data. However, any data that exists beyond the prediction start point is not used in the model 

since it is considered hidden [172]. As a result, this leads to a sudden change or "jump" in the 

prediction. This is because the model can only use the information available up to the prediction 

start point, which is typically based on the number of cycles completed by the battery at that 

point in time. Therefore, the model cannot take into account any changes in usage patterns or 

other factors that may affect the battery's remaining life beyond that point . Figure 3.13 show 

the two prediction curves at the same time to check the PF algorithm and proposed SPF 

algorithm performance results during the entire lifecycle, which clearly reveals the 

effectiveness of the proposed algorithm. Figure 3.14 - Figure 3.16 likewise shows the process 

of predicting the RUL by relying on the above-mentioned two methods. Here, the first 50 

cycles were used to update the prediction process. As shown in Figure 3.14 - Figure 3.16, an 

identical conclusion as that above can be deduced from Figure 3.11 - Figure 3.13, which shows 

the robustness and strong accuracy of the proposed SPF algorithm. 
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Figure 3. 11 Prediction RUL results of PF at 80 cycles for B05. 
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Figure 3. 12 Prediction RUL results of SPF at 80 cycles for B05. 

 

Figure 3. 13 comparison results at 80 cycles for B05. 
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Figure 3. 14 Prediction RUL results of PF at 50 cycles for B05. 

 

Figure 3. 15 Prediction RUL results of SPF at 50 cycles for B05. 



84 Battery Lifetime Identification Using SPF Technique 

 

 

 

Figure 3. 16 comparison results at 50 cycles for B05. 

Figures 3.17 and 3.18 show the prediction RE of the RUL using the PF method and the 

proposed SPF method; in the prediction update phase, the first 50 and 80 cycles are used, 

respectively. The RE of the SPF method is less than the relative error of the PF method . 
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Figure 3. 17 Prediction RUL results of PF at 50 cycles for B05. 

 

Figure 3. 18 Prediction RUL results of SPF at 50 cycles for B05. 

Table 3.3 shows the error rates for the prediction RUL of the battery B05 obtained by the 

PF and proposed SPF methods with different starting points. The 𝐴𝐸, 𝑅𝐸 and RMSE of the 

proposed SPF algorithm are significantly smaller than of the PF algorithm. In addition, the 
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findings clearly show (Figures 3.11–3.16) that the start point is continuously regressed, and so 

the prediction error becomes nearer to zero; this is in line with the real-time application. The 

findings also show that the algorithm converges with the predicted start point, and thus much 

more training data can be employed for learning, and better degradation knowledge and 

characteristics can be revealed. It was also seen that the prediction error is lower in the reverse 

direction, indicating that the particles are more compacted as more capacity data are accessible.  

3.6.2 RUL Prediction Using (𝑩𝟎𝟔,𝑩𝟎𝟕 & 𝑩𝟏𝟖)  Batteries  

To verify the result obtained previously, capacity degradation data was used for 𝐵06  and 

𝐵18 batteries to check the accuracy of the proposed method for RUL prediction. Battery 𝐵07 

was dispensed for the investigation because it did not possess degradation data below the 

failure threshold (see Figure 3.6). Figures.3.19-3.25 show the RUL result for the battery 𝐵06 

and 𝐵18 data using the PF and proposed SPF algorithms at starting point 50 cycles. Similar to 

𝐵05 dataset, the accuracy of the estimation findings and the RUL PDF gained by the suggested 

SPF approach is just greater than that provided by the PF. That is, the prediction error of the 

suggested approach is four cycles lower than the PF using 50 cycles, and the value of the 𝑅𝐸 

and 𝐴𝐸 are also reduced.  

Table 3. 3 RUL prediction result of B05. 

Method TS RULTrue RUL𝑃𝑟𝑒𝑑  AE RA 

      

PF 20 125 94 31 0.2480 

50 125 144 19 0.16 

          80 125 108 16 0.1360 

SPF 20 125 134 9 0.072 

50 125 129 4 0.032 

80 125 127 2 0.024 
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Figure 3. 19 Prediction RUL results of PF at 50 cycles for B06. 

 

Figure 3. 20 Prediction RUL results of SPF at 50 cycles for B06. 
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Figure 3. 21 comparison results at 50 cycles for B06. 

 

Figure 3. 22 Prediction RUL results of PF at 50 cycles for B18. 
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Figure 3. 23 Prediction RUL results of SPF at 50 cycles for B18. 

 

Figure 3. 24 comparison results at 50 cycles for B18. 

As shown in Table 3.4, the prediction relative error and absolute error under various 

prediction starting points (𝑇𝑠) of the proposed SPF algorithm for 𝐵06 and 𝐵18 are both smaller 
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than that of the PF algorithm, which indicates that the stability of the proposed SPF algorithm 

is higher than the PF algorithm. For example, at 𝑇𝑠 = 50 cycles, the B06 battery's  𝐴𝐸 

prediction of SPF was approximately 2 cycles, the maximum 𝑅𝐸 was about 0.0183 and that 

𝐴𝐸 of the PF algorithm was around 20 cycles, and the 𝑅𝐸 was approximately 0.1835, which 

can lead to the same conclusions as discussed for B05. 

Table 3. 4 RUL prediction results of B06 and B18. 

Cell ID 

 

Method TS RULT RUL𝑝 AE RA 

B06 

 

PF 20 109 133 24 0.2202 

50 109 89 20 0.1835 

80 109 98 11 0.1009 

SPF 20 109 113 4 0.0367 

50 109 111 2 0.0183 

80 109 108 1 0.014 

B18 

 

PF 20 98 74 24 0.2474 

50 98 81 17 0.1694 

80 98 89 8 0.0825 

SPF 20 98 106 9 0.0928 

50 98 93 5 0.0309 

80 98 100 2 0.0206 

 

3.7 Summary 

In the area of RUL prediction, Bayesian filter methods, like the classic PF algorithm, provide 

promising results in terms of fast convergence rates and small prediction errors when used for 
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RUL prediction. This is because Bayesian filter methods can effectively handle the uncertainty 

and noise inherent in real-world data and provide probabilistic estimates of the remaining 

useful life, which is crucial for reliable and safe systems operation. However, the PF algorithm 

needs to improve on two main problems:  particle degeneracy and particle impoverishment.  

Therefore, this chapter has proposed a novel approach to predict the RUL of batteries. The 

proposed method combines the SPF algorithm with a likelihood approximation technique to 

estimate the probability distribution of the RUL of the battery. In this algorithm, the system's 

state is represented by a set of particles, and each particle is propagated over time according to 

a degradation model. The degradation model used in the SPF algorithm is a second-order 

exponential model, which has been found to represent LiB’s degradation behaviour accurately.  

The SPF algorithm has demonstrated its effectiveness as a robust and reliable method for 

predicting the RUL of LiBs. This is due to its ability to handle noisy measurements and adapt 

to various battery degradation models. Results show that the proposed prediction approach has 

an improved prediction accuracy and convergence rate in comparison with PF and other 

methods such as UPF. Since the maximum error of the SPF predicting approach is relatively 

small, RUL prediction in the best case at the prediction starting point of 80 cycles is 127 cycles. 

The prediction relative error was approximately 0.024, and the absolute error of the proposed 

algorithm is around 2 cycles, lower than the PF (around 16 cycles). RUL prediction is nearby 

108 cycles, and the relative error is around 0.136, while the absolute error prediction is 

approximately 16. Moreover, the results showed that the SPF algorithm improved the 

prediction accuracy compared to the classical PF algorithm, with lower average RUL errors 

and PDF width. Testing with various predicted starting points revealed that the amount of data 

affected the accuracy of the prediction, with higher starting points resulting in lower prediction 

error rates. Ongoing research is planned to focus on developing robust degradation models, 

such as the Multiphysics model, to improve RUL prediction accuracy and convergence rate.





 

 

  Physics-Based Modelling for 

Monitoring Battery Lifetime 

‘In Chapter 3, an innovative approach was devised for RUL prediction for LiBs using an 

advanced method known as SPF to approximate likelihood. The proposed SPF algorithm 

demonstrates the capability to accurately foresee unknown degradation model parameters and 

compute the degradation state by solving an optimization problem in each cycle. This method 

surpasses a mere gradient step, facilitating faster convergence, stability, and improved 

prediction precision. A critical discovery in Chapter 3 was that this approach significantly 

improved the RUL prediction accuracy and speed of convergence when contrasted with the 

classic PF and other sophisticated PF algorithms, such as the UPF algorithm. Despite these 

promising results, the proposed approach does exhibit certain operational constraints. Firstly, 

a sizable amount of data is required to extend predictions to typical operating scenarios. 

Secondly, the algorithm needs help to readily illustrate variations from one battery cell to 

another due to disparities in manufacturing or the heterogeneity of temperatures within a 

single battery pack or current distribution. Lastly, using an empirical aging model presents 

limitations, as it doesn't account for physical degradation mechanisms, which hinders the 

capturing of knee points - significant shifts in degradation on the capacity fade curve. 

Degradation rates may be attributable to modifications in the fundamental mechanism, such 

as an increase in the SEI layer, which prompts lithium plating [37–39]. These elements are 

challenging to evaluate, especially when dealing with rudimentary empirical degradation  

models.’ 
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4.1 Introduction 

The RUL is critically important for the PHM of LiBs to provide early warning to ensure the 

reliability and safety of host devices. Recently developed methods in the literature for RUL 

prediction face two challenges. First, most approaches are mainly developed based on 

traditional empirical degradation models without considering degradation mechanisms. 

Second, the stability of the standard PF method is strongly constrained by the issue of a lack 

of particles and the uncertainty in the degradation model parameters, which are constrained by 

the availability of sufficient and reliable data. Consequently, this can lead to inaccurate RUL 

prediction. To address these challenges, this chapter proposes a novel approach that integrates 

a physics-based model with an SPF for RUL prediction. The physics-based model considers 

three main degradation mechanisms [103, 107, 173]: LAM in positive and negative electrodes 

and LLI. By incorporating these mechanisms directly correlated with the RUL of LiB, the 

model provides a more accurate representation of the degradation process. The SPF, on the 

other hand, is an improvement over the classical PF method, which suffers from particle 

degradation and diversity deficiency issues. The proposed algorithm uses a likelihood  

approximation scheme to smooth the PF, enhancing its stability and overcoming the limitations 

associated with particle decomposition. Compared with the conventional capacity-based 

methods, such as the SPM-based particle filter (SPM-PF), the proposed physics-based method 

produces a more accurate RUL prediction. The results demonstrate that the proposed 

framework predicting is relatively small. At the prediction starting point of 2000 cycles, the 

best-case RUL prediction is 2402 cycles. Additionally, the minimum relative error is found to 

be around  0.089%, and the relative error of the traditional framework is approximately 0.8%.  

Furthermore, LiBs data, including Gaussian white noise and dynamic discharging profiles, 

have been utilised to demonstrate the dependability and robustness of the proposed framework. 

The chapter starts in section 4.2, explaining the proposed physics-based model. Then the 

incorporation of three main degradation mechanisms: LAM in positive and negative electrodes, 

and LLI are mathematically formulated in sections 4.3. to 4.4. Root-mean-square error and 

mean absolute percentage error comparison are presented in section 4.5.   Sections 4.6 and 4.7  
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presents the RUL prediction by integrating the SPM into the SPF framework. The results are 

reported and discussed in sections 4.8. to 4.11 

4.2  Single Particle Model for Lithium-ion Batteries 

The foundation of this study is based on the enhanced single particle model presented in 

[173] and which has been widely employed for simulating battery packs, SOC, and SOH for 

various Li-ion chemistries. The electrochemical SPM of LiBs has been simplified for a more 

complex Li-ion P2D model in [174-176]. In SPM, the active porous materials are expressed at 

the anode and the cathode electrode by one spherical particle of the active material, as shown 

in Figure 4.1 [176]. The load current, material qualities, geometric design parameters, and 

operating temperature are all inputs to the model. The main output of this model is the cell 

voltage and SOC [177].  

 

Figure 4. 1 Physics-based model for LiB [175]. 
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4.2.1 Governing equations 

One of the most critical assumptions in the SPM is that current distribution in the porous 

electrode is assumed to be uniform and therefore represents a single intercalation particle, the 

complete porous electrode (positive and negative). The second law of  Fick in a spherical 

coordinate system describes the balance of mass material for lithium-ion inside each 

electrode’s active material (cathode/anode) as:  

 

𝜕𝑐𝑠,𝑗
𝜕𝑡

=
1

𝑟2
𝜕

𝜕𝑟
(𝐷𝑠,𝑗𝑟

2
𝜕𝑐𝑠,𝑗
𝜕𝑟

) (4.1) 

With initial boundary conditions (𝑟 =  0), the molar flux of lithium-ions is zero, indicating 

no diffusion in the centre of the particle. At (𝑟 = 𝑅𝑗), the molar flux of lithium-ions is equal to 

𝐽𝑗 , meaning that the transfer of charges occurs at the outer boundary of the particle. These initial 

boundary conditions can be expressed as follows: 

 

𝐷𝑠,𝑗

𝜕𝑐𝑠,𝑗
𝜕𝑟

|
𝑟=0

= 0 (4.2) 

 

𝐷𝑠,𝑗

𝜕𝑐𝑠,𝑗
𝜕𝑟

|
𝑟=𝑅

= 𝐽𝑗 (4.3) 

Where, 𝑐𝑠.𝑗 represents the solid-state concentration, 𝑡 is time, 𝐷𝑠,𝑗  represents the solid phase 

diffusion coefficient, 𝑟 refers to the radius direction coordinate, 𝑅𝑗 is the solid particle radius, 

and 𝑗 = 𝑝, 𝑛 corresponds to the positive and negative electrodes, respectively; 𝐽𝑗  is the molar 

flux of lithium ions at the surface and can be defined as [175]: 
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 𝐽𝑃 =

1

𝐹𝑆𝑝

𝐽𝑛 =
−1

𝐹𝑆𝑛

(4.4) 

Where, 𝐼 refers to the total input current, defined as positive for the charging and negative 

for the discharging processes; 𝑆𝑗 is the total electroactive surface area of each electrode and 

can be expressed as: 

𝑆𝑗 =
3휀𝑗𝑉𝑗
𝑅𝑗

 (4.5) 

Where, 휀𝑗is the active volume fraction of the material in electrode 𝑗, and 𝑉𝑗 represents the 

total volume of the electrode 𝑗. The SOC variable for the solid electrode particles is defined as 

follows: 

𝑆𝑂𝐶𝑗 =
𝐶𝑠,𝑗

𝑠𝑢𝑟𝑓

𝐶𝑠,𝑗
𝑚𝑎𝑥  (4.6) 

Where, 𝐶𝑠,𝑗
𝑠𝑢𝑟𝑓

 and 𝐶𝑠,𝑗
𝑚𝑎𝑥  are the surface and maximum concentration of lithium into electrode 

particles, respectively. The Butler-Volmer rate in (4.7) is used to calculate the rate of local 

electrochemical reactions in terms of concentration and potential. Where, 𝑖𝑜 represents the 

exchange current density, 𝑇 is the temperature, and 𝑅 refers to the universal gas constant. 

 

𝑖𝑛 = 𝑖𝑜 [𝑒𝑥𝑝 (
0.5𝐹휂

𝑅𝑇
) − 𝑒𝑥𝑝(

−0.5𝐹휂

𝑅𝑇
)] (4.7) 

 

The overpotential (휂) is defined as the thermodynamics potential drop between the solid and 

the solution at the existing surface concentrations. 

휂 = 𝜙𝑠 − 𝜙𝑙 − 𝐸𝑒𝑞  (4.8) 
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Where, 𝜙𝑠  is the solid potential, 𝜙𝑙 is the liquid potential, and 𝐸𝑒𝑞  represents the open-circuit  

potential of the solid material evaluated at the surface concentration. By applying an inverse 

hyperbolic form of Butler-Volmer expression as in (4.8), solid-phase potential can be defined 

as: 

𝜙𝑠 = 𝐸𝑒𝑞 + 𝜙𝑙 +
휂𝑅𝑇

0.5𝐹
sinh−1 (

𝑖𝑙𝑜𝑐
2𝑖𝑜

)  (4.9) 

 

The potential difference between the positive and negative electrodes in the solution phase 

can be calculated as [176]: 

𝜙𝑙,𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 −𝜙𝑙,𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝐼𝑅𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  (4.10) 

Where, 𝑅𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  denotes the solution phase resistance, determined by a combination of mass 

and charge transfer processes. After solving the above equations, the cell voltage is determined 

by the difference between the potentials of the positive and negative electrodes: 

𝐸𝑐𝑒𝑙𝑙 = 𝜙𝑠,𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 −𝜙𝑠,𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  (4.11) 

The values of the model’s parameters used in this study are given in Table 4.1 [173] . 

 

Table 4. 1 Single particle Dimensional Battery Model Parameters. 

Parameter Value Description 

𝐿𝑛  168 × 10−6  (𝑚) Thickness of the negative electrode 

𝐿𝑠 19 × 10−6  (𝑚) Thickness of the separator 

𝐿𝑝  124 × 10−6  (𝑚) Positive electrode thickness 

휀𝑛  0.5 Negative electrode porosity  

휀𝑠 1  The Separator porosity  
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휀𝑝 0.5 positive electrode porosity  

𝐷𝑒  7.5 × 10−11 (𝑚2𝑠−1) Coefficient of diffusion in electrolyte. 

𝑘𝑗 2

× 10−6 (𝑚2.5𝑚𝑜𝑙0.5𝑠−1) 

Reaction rate constate 

𝐹  96487  (𝐶 𝑚𝑜𝑙−1) F   d y’s co s     

𝑖𝑎𝑝𝑝 2.7 × 𝐶 − 𝑟𝑎𝑡𝑒  (𝐴 𝑚−2) the density of discharge current equal to C rate multiplied by 

1C 

𝑐𝑜 2000 (𝑚𝑜𝑙 𝑚−3) Initial concentration 

𝐷𝑠,𝑛  8 × 10−14 (𝑚2𝑠−1) Diffusion of Lithium in a Solid, at a  negative electrode 

𝐷𝑠,𝑝  7 × 10−13 (𝑚2𝑠−1) Diffusion of Lithium in a Solid, at a  positive electrode 

𝑟𝑛  12.5 × 10−6 (𝑚) Radius of a particle at a  negative electrode 

𝑟𝑝  8.5 × 10−6 (𝑚) Radius of a particle at a  positive electrode 

𝑅𝑔  8.314 (𝐽 𝑚𝑜𝑙−1 𝐾−1) Universal gas constant 

𝑇 298.15 𝐾 Temperature of ambient 

𝐸𝑠  10 𝐺𝑃𝑎  LMO modulus of Young 

𝐸𝑛  60 𝐺𝑃𝑎  LiC6 modulus of Young 

𝑣𝑠  0.3  LMO ratio of Poisson 

𝑣𝑛  0.25  LiC6 ratio of Poisson 

𝐶𝑚𝑎𝑥,𝑃𝑜𝑠 51385 (𝑚𝑜𝑙 𝑚−3) Positive maximum concentration 

𝐶𝑚𝑎𝑥,𝑁𝑒𝑔 30555 (𝑚𝑜𝑙 𝑚−3) Negative maximum concentration 

 

4.3 SPM Coupled with Capacity Degradation Model 

In the literature, there are several degradation mechanisms reported for LiBs. Different 

models can describe these mechanisms, with multiple models often used to describe a single 

mechanism [173]. The four main degradation mechanisms included in this model are SEI layer 

growth at the anode particle surface, surface cracking, LAM due to mechanical stress, and 
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lithium plating. The degradation model is dependent on the previously described SPM and is 

used to mathematically describe the impact of these degradation mechanisms on the 

performance and safety of the LiBs [178]. 

4.3.1 SEI layer growth  

Many researchers have argued that the growth of the SEI layer on the graphite electrode is 

considered the most critical degradation mechanism in LiBs [118, 179]. The SEI layer forms 

due to the reduction of components of the electrolyte solvent in a reaction with lithium ions 

and electrons from the graphite electrode. The reaction products deposit on the graphite surface 

and form the SEI layer [31, 32]. Various reactions between the electrolyte components and 

lithium ions have been proposed, depending on the local voltage. However, the reaction most 

commonly modelled by researchers is the one between ethylene carbonate and lithium ions 

[180, 181]. 

2C3H4O3(l) + 2e− +2Li+ ⇋ (CH2OCO2Li)2 (s) + C2H4 (g)   (4.12) 

   By integrating the side reaction current (iSEI), the capacity loss rate due to SEI layer 

expansion (QSEI) can be calculated as in (4.13) 

Qsei = ∫ 𝑖𝑠𝑒𝑖

𝑡

0

𝐴 𝑑𝑡   (4.13) 

The side-reaction current (i sei) can be estimated to (4.13) by assuming that the diffusion of 

the solvent components is the significant contributing factor in the side reaction of (4.14) 

[182]: 

𝑖𝑠𝑒𝑖 = −𝑛𝐹𝑘𝑠𝑐𝑠(0, 𝑡) exp(−
𝛼𝑐𝑛𝐹

𝑅𝑔𝑇
휂𝑠)  (4.14) 

Where (−𝑛𝐹) is the total charge of electrons, (𝑘𝑠) is the side-reaction constant, (𝑐𝑠(0,𝑡)) is 

the concentration of the reaction and reduction product at 𝑥 = 0, and (ηs) is the side-reaction 

overpotential given in (4.15).  



Physics-Based Modelling for Monitoring Battery Lifetime  101 

 

 

ηsei = Vneg + ηneg − Vsei + rsei𝛿𝐼   (4.15) 

Where the overpotential for the SEI side reaction ηsei is a function of the anode potential 

Vneg, the anode overpotential ηneg, the equilibrium potential of the SEI growth reaction Vsei, 

and the resistive voltage drop across the existing SEI layer of thickness 𝛿 and specific resistance 

rsei  . 

As the SEI layer grows, it can have serval impacts on the battery performance. The growth 

rate of the SEI layer and its corresponding passivation layer is directly proportional to the SEI 

side reaction current density [181]: 

𝑑𝛿

𝑑𝑡
=

𝑖𝑠𝑒𝑖𝑀

𝜌𝑛𝐹
  (4.16) 

Where 𝑀 is the molecular weight of the SEI layer, and 𝜌 is its density. The side reaction of 

the SEI layer can also lead to a 𝐿𝐿𝐼, where the lithium ions that are consumed in the side 

reaction can no longer participate in the main reaction. This loss of lithium ions affects the 

boundary condition for lithium diffusion at the surface of the graphite electrode [118]. The 

lithium concentration gradient at the negative particle surface becomes a function of both the 

main current density on the negative electrode (ineg ) and the SEI side reaction current density 

(isei). This means that the boundary condition for lithium diffusion must be revised to account 

for the SEI side reaction and its impact on the lithium concentration gradient. The new 

boundary condition can be represented by an equation that considers both the main current 

density and the SEI side reaction current density: 

𝐷𝑛𝑒𝑔

𝑑𝑐𝑛𝑒𝑔(𝑟,𝑡)

𝑑𝑟
|
𝑟=𝑅

= −
𝑖𝑛𝑒𝑔

𝑛𝐹
−

𝑖𝑠𝑒𝑖
𝑛𝐹

   (4.17) 

Surface cracking 

The volume expansion and contraction of LiBs during intercalation and deintercalation can 

cause stress and fatigue in the electrodes, leading to crack propagation. The formation of cracks 
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increases the surface area for the growth of the SEI layer, resulting in a greater loss of cyclable 

lithium [183].  

To model this, several researchers [183-185] have developed a model to study the 

relationship between stress and the growth of the SEI layer in Li-ion batteries. The model 

started with a physical description of the stress and strain in spherical graphite particles and the 

SEI layer but was eventually simplified to a correlation between surface concentration and 

stress. They then utilised Wöhler curves with a slope 𝑚1 to link the number of cycles to failure 

with the stress variation (𝜎𝑚𝑎𝑥  − 𝜎𝑚𝑖𝑛) in Li-ion batteries relative to the maximum yield 

strength 𝜎yield . The Wöhler curves are based on a statistical analysis of metal fatigue, and the 

value of 𝑚1 was obtained by fitting the simulation results to experimental data [186]. Due to a 

lack of experimental data, the yield strength of a material is often viewed as a fitting parameter 

instead of a material property. Thus, the authors in [183] modelled the relationship between the 

lost charge capacity (Q𝑙𝑜𝑠𝑡 ) and the mean stress by assuming linear damage accumulation. 

They related Q𝑙𝑜𝑠𝑡  per cycle N to the mean stress using a fitting parameter 𝛽2, according to: 

𝑄𝑙𝑜𝑠𝑡

𝑁
= 𝛽2(

𝜎𝑚𝑎𝑥 −𝜎𝑚𝑖𝑛

𝜎𝑦𝑖𝑒𝑙𝑑
)

1
𝑚1

   (4.18) 

4.3.2 Loss of active material 

The above section discussed how fractures could start and spread from electrode surfaces. 

Electrode cracking can also be caused by the same underlying physical events (such as 

alternating stresses). This may reduce the amount of active material available for utilisation 

and lead to a loss of electrical contact. 

Several researchers  [26, 184, 187-189] have developed mathematical expressions used in 

mechanical stress models for spherical particles (R0) in battery electrodes. These models use 

physical properties such as the partial molar volume (Ω ), Young's modulus (𝐸), Poisson's 

ratio (𝑣), and Li-concentration (𝑐) to calculate the radial stress (𝜎𝑟) and tangential stress 

(𝜎𝑟) at different points within the particle. The dummy integration variable (휁) is used to 
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perform numerical integrations in the model. These models are useful in understanding the 

behaviour of spherical particles under mechanical stress and improving the performance and 

reliability of batteries. The equations for radial and tangential stress, respectively, are 

𝜎𝑟(𝑟) =
2Ω𝐸

3(1 − 𝑣)
(
1

𝑅0
3
∫ 𝑐(𝑟)𝑟2𝑑𝑟 −

1

𝑟3
∫ 𝑐(

𝑟

0

𝑅0

0

휁)휁2𝑑휁)  (4.19) 

 

𝜎𝑡(𝑟) =
Ω𝐸

3(1 − 𝑣)
(
2

𝑅0
3
∫ 𝑐(𝑟)𝑟2𝑑𝑟 −

1

𝑟3
∫ 𝑐(

𝑟

0

𝑅0

0

휁)휁2𝑑휁 − 𝑐)  (4.20) 

    The radial and tangential stress can be combined into the hydrostatic stress 𝜎ℎ, given by: 

𝜎ℎ(𝑟) =
𝜎𝑟 (𝑟)+ 2𝜎𝑡(𝑟)

3
  (4.21) 

4.3.3 Lithium plating 

The formation of metallic lithium, also known as lithium plating, can occur in lithium-ion 

batteries when the battery is overcharged. This process can be described by the Butler-Volmer 

or Tafel kinetics models, which are commonly used to model electrochemical reactions in 

batteries [190-193].  

   The degradation caused by the plating side reaction current in a lithium-ion battery has 

similar consequences as the growth of the SEI layer, leading to the clogging of anode pores 

and loss of capacity. The authors in the study [44] have shown partial recovery of lost capacity 

through re-insertion of plated lithium; however, this mechanism is not included in the current 

model being considered. The equations used to describe lithium plating are very similar to the 

kinetically limited SEI growth model, namely: 

ipl = i0,pl exp(
αnF

RT
ηpl)   (4.22) 

ηpl = Vneg + ηneg − Vpl + rsei𝛿𝐼   (4.23) 
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4.4  Parameters of Degradation Model  

Various studies have successfully applied a physics-based model for LiBs in the 

quantification of the three degradations mechanisms of LiBs: LAMPE, LAMNE and LLI. In total, 

active mass loss is the amount of the loss of active mass in both lithiated and delithiated status 

[103]. However, estimating the loss of lithified active material is difficult since the degree of 

lithification of the lost mass is frequently unclear. Consequently, the loss of active mass, or 

LAM, is typically considered to be the loss in a delithiated condition. In this study, LLI is also 

considered the loss when the active mass is in a lithiated state [174]. A degradation parameter 

can correspond to each degradation mechanism. Moreover, tracking 𝑚𝑝 (positive) and 𝑚𝑛 

(negative) active masses can help estimate LAMPE and LAMNE. To predict the LLI, the LII 

(lithium inventory indicator) is defined as related to both 𝑥𝑜𝑓𝑓𝑠𝑒𝑡  and 𝑚𝑝  [103]: 

𝐿𝐿𝐼 = 𝑄𝑝 − 𝑥𝑜𝑓𝑓𝑠𝑒𝑡  (4.24) 

Where, 𝑄𝑝 represents the capacity of the positive electrode in SPM. In a lithium-ion cell, 

ions transfer from the negative to the positive electrode during the discharging state and 

from the positive to the negative electrode during the charging state (see Figure 4.2). After 

the negative electrode has been completely delithiated, the battery cell cannot physically 

discharge since no lithium is left in the negative electrode to be transferred to the positive 

electrode [107]. Similarly, the battery cell will not charge if the positive electrode has been 

"completely delithiated" to the point that the material's structural integrity has been 

compromised. As a result, the 𝐿𝐼𝐼 in Figure 4.3 is the maximum lithium inventory for the 

battery cell that spans from the left end of the negative electrode SPM curve (i.e., NE is 

completely delithiated for the drained cell) to the right end of the positive electrode SPM 

curve (i.e., PE is fully delithiated for the charged cell). According to (12), 𝐿𝐿𝐼 in the battery 

cell grows faster than LAMPE when an offset (𝑥𝑜𝑓𝑓𝑠𝑒𝑡) becomes progressively negative (i.e., 

moves to the left or right in the positive electrode or negative electrode curves) [103, 107]. 

In contrast, as 𝑥𝑜𝑓𝑓𝑠𝑒𝑡  becomes more positive, either the positive electrode curve moves to 

the right, or the negative electrode curve moves to the left. Thus, the rate of LAMPE in the 

battery cell rises faster than the rate of 𝐿𝐿𝐼 in the battery cell. Practically, a rise in 𝐿𝐿𝐼 is 
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caused by a battery cell's lithium inventory being depleted by parasitic processes (such as 

the formation of SEI and delamination of lithiated electrode material). Upon estimation of 

the degradation parameters 𝑚𝑝, 𝑚𝑛, and 𝐿𝐼𝐼 in the battery cell, the most suitable 

mathematical models must be employed to reveal the parameter trends and thus achieve 

physics-based prognostics [103].  

 

Figure 4. 2 Schematic of the shift in stoichiometric range of each electrode due to loss of cyclable lithium . 

4.5 Experimental Validation and Analysis 

For the purposes of comparison, the prediction performance of the proposed SPM-SPF 

prognostic framework and the traditional capacity prognostic framework were employed. 

This comparison was made to verify both the accuracy of the conventional framework and 

the proposed SPM-SPF framework’s predictions using alternative cycle "beginning points," 

such as 1,000 or 2,000 cycles. The prediction accuracy was assessed by comparing the RUL's 

AE, RMSE. As shown in (3.24), AE is the difference between how many actual (𝑅𝑈𝐿𝐴) cycles 

are left and how many predicted (𝑅𝑈𝐿𝑃) cycles there are in total. The RMSE and mean 

absolute percentage error (MAPE) are defined in this manner in (4.25, 4.26), respectively, as 
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shown in (4.25), Qk represents the actual capacity value, and Q̂
k
 detonates the estimated 

capacity value. MAPE measures the average absolute percentage deviation between the actual 

values and the predicted values, as shown in (4.26). Where M represents the mean absolute 

percentage error, and n is the number of times the summation iteration happens. 

𝑅𝑀𝑆𝐸 = √
1

𝑘𝑝

∑ (𝑄𝑘 −𝑄ˆ𝑘)
𝐶

𝑘=𝑇𝑠

 (4.25) 

𝑀 =
1

𝑛
∑|

𝑄𝑘 − �̂�𝑘

𝑄𝑘

|

𝑛

𝑡=1

 (4.26) 

4.6 Prediction of Physically Based Capacity and RUL 

For physics-based prognostic approaches, accurate tracking of the three degradation trends 

(𝑚𝑝, 𝑚𝑛, and 𝐿𝐿𝐼) required to obtain robust predictions by tuning the parameters of the 

empirical degradation model (Section 4.4). To achieve this, the least-squares approach is used 

to find the coefficients of the degradation models that best fit the empirical models and the 

estimated degradation parameters, assuming adequate measurements are presented. Due to 

this restriction, the RUL prediction is usually based on a set of measurements from a cell 

which has been assessed. Consequently, the estimated parameters of the mod el might be 

inaccurate [194]. According to [103], the model coefficients can be constrained by additional 

information in a training group of cells, differently from the assessed cell. The 

characterisation of the characterisations indicates that it can be used as training data to 

estimate cell degradation parameters. As shown in Figure 4.3, firstly, the future test cell 

degradation coefficients (𝑡𝑒𝑠𝑡𝑠 𝑘 +  𝐼, 𝑖 =  1, . . . ) are extracted using model configurations. 

Moreover, all three degradation parameters are computed based on model parameter 

estimation up to time 𝑘. In the second stage, the physical model stimulates cell capacity 

degradation based on the predicted degradation parameters. However, voltage cut-off points 

must be chosen when simulating the capacity of a full-cell curve. During the cycle ageing 

test, the battery cells are cut off at 3.4 V. The predicted capacity from the half-cell model is 

calculated with a lower cut-off voltage of 3.45 V to account for the polarisation impact at the 
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start of charging. In the third stage, the proposed SPF method is constructed and initialised 

(see Section 3.3.6). Finally, when the estimated capacity falls below the end-of-life threshold, 

the RUL is determined by subtracting the present time (or test number) from the end -of-life. 

 

Figure 4. 3 Block diagram of physics-based capacity and RUL prediction. 

 

In this study, we have demonstrated a physics-based model approach to tracing the three 

degradation parameters to allow a physical explanation of the significant degradation 

mechanisms that lead to battery cell degradation. This feature distinguishes the proposed 

framework from current traditional capacity prognostic approaches that only measure cell 

capacity. The proposed SPF and PF methods are used to fit mathematical degradation models 
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to degradation parameter estimation, each of which captures the evolution of a single 

parameter. Degradation model coefficients are estimated from a training data group. When 

fitting the model to the test data, these estimated coefficients provide boundaries for 

restricting the model coefficients. 

In this work, the battery cell is used for RUL prediction, and the end of service is defined 

as the total number of cycles when the battery's capacity falls below the 80% threshold for 

safe operation. The dataset of capacity is divided into training data and testing data. The 

proposed SPM-based and traditional capacity-based approaches are used with different 

operating conditions when the starting point of the prediction (𝑇𝑝) is the 1,000th and 2,000th 

cycle. The initial setting values of the PF and proposed SPF parameters were selected as the 

number of particles is 200, and residual resampling was used. The process noise was 𝜔𝑘 =

[1 × 10−6, 1 × 10−6, 1 × 10−6, 1 × 10−6 ]𝑇, while the observation noise was 𝑣𝑘 = 1×

10−4, which is more in the traditional capacity-based approach. Unlike the conventional 

capacity-based system, the process noise was 𝜔𝑘 = [1 × 10−6, 1 × 10−3, 1 × 103, 1 ×

10−6 ], while the observation noise was 𝑣𝑘 = 1× 10−1  in the SPM-based system. 

4.7 RUL Prediction  

Empirical, basic mathematical models can be used to track nonlinear degradation trends 

in cell capacity and degradation parameters. 

𝑄(𝑡) = 1 − 𝛼𝑡𝛽  (4.27) 

Where 𝑄(𝑡) represents the model output, which can either indicate the battery capacity or 

a degradation parameter, 𝑡 is the amount of time passed during the test, and 𝛼 and 𝛽 refer to 

the model parameters estimated from measurements data. The empirical model is similar to 

the well-known square root of the 𝑡 degradation model (also known as the standard capacity 

fade model) [195], which captures the increase in SEI when = 0.5. The battery system state 

change may be described as follows using the capacity degradation model: 

𝑥𝑘 = [𝛼𝑘 ;𝛽𝑘] (4.28) 
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Where, 

 
𝛼𝑘 = 𝛼𝑘−1 + 𝜔𝛼 →𝜔𝛼~𝑁(0,𝜎𝛼)

𝛽𝑘 = 𝛽𝑘−1 +𝜔𝛽 → 𝜔𝛽~𝑁(0, 𝜎𝛽 )
 (4.29) 

Now the measurement in (4.27) is given by: 

𝑄(𝑡)𝑘 = 1 −𝛼𝑘𝑡
𝛽𝑘 + 𝑣𝑘 → 𝑣𝑘~𝑁(0, 𝜎𝑣) (4.30) 

A measurement of the capacity cell at cycle k is represented by 𝑀(𝑡)𝑘 , whereas 𝑁(0,𝜎𝑉) 

represents the zero-mean Gaussian noise and represents the standard deviation. Then, the 

capacity of the cell can be estimated as: 

𝑄(𝑡)𝑘 = ∑𝑄(𝑡)𝑘
𝑖 = ∑[1−𝛼𝑘

𝑖 𝑡𝛽𝑘
𝑖
]

𝑁

𝑖=1

𝑁

𝑖=1

 (4.31) 

The prediction step (p-th) may be determined using the following formula at cycle 𝑘: 

𝑄(𝑡)𝑘+𝑝 = ∑𝑄(𝑡)𝑘
𝑖

𝑁

𝑖=1

= ∑[1− 𝛼𝑘
𝑖 𝑡(𝑘 + 𝑝)𝛽𝑘

𝑖
]

𝑁

𝑖=1

 (4.32) 

As a result, an estimate of the RUL for each particle can be calculated by: 

𝑅𝑈𝐿𝑘
𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 [(1 − 𝛼𝑖𝑡(𝑘 + 𝑝)𝛽

𝑖
−𝐸𝑂𝐿)

2
] (4.33) 

Using the weights on each trajectory, the posterior PDF can be estimated: 

𝑃(𝑄(𝑡)𝑘+𝑝|𝑄(𝑡)0:𝑘) ≈ ∑𝑤𝑘
𝑖 𝛿(𝑄(𝑡)𝑘+𝑝 −𝑄(𝑡)𝑘+𝑝

𝑖 )

𝑁

𝑖=1

 (4.34) 

Finally, the RUL predict is determined by taking the expected value of the RUL: 

𝑃(𝐿𝑘|𝑄(𝑡)0:𝑘) ≈ ∑𝑤𝑘
𝑖 (𝑅𝑈𝐿𝑘 − 𝑅𝑈𝐿𝑘

𝑖 )

𝑁

𝑖=1

 (4.35) 
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4.8 Results 

This section contains the RUL prediction results using the proposed predictive physics 

approaches compared to conventional predictive capacity-based approaches. The SP model in 

[173] was deployed to estimate the trends of the degradation parameters when the number of 

available measurement data points exceeds the number of coefficients in the empirical model. 

A RUL prediction can be performed at any point, called the checkpoint or starting point, in the 

battery cell’s lifecycle. Figure 4.4 depicts four curves simultaneously representing the 

prediction result obtained by applying four methods for the battery cell at a constant current 

1𝐶 − 𝑟𝑎𝑡𝑒 and temperature of 25℃ to evaluate the performance of the proposed approach for 

prognostic LiB lifetime. The solid red line shows tracking degradation trends to predict RUL 

using the proposed physical SP model based on the SPF approach, while the dashed green line 

shows the prediction with the physical SP model with PF (SPM-PF) approach. The prediction 

results obtained from the conventional empirical model with the SPF and PF  (EM-SPF and 

EM-PF) approaches are illustrated in the curves (yellow dotted and violet, respectively). 

As shown in Figure 4.4, the LiB test data are comprised of the previous and present 

measurements of cell capacity used to determine the coefficients of an empirical model (EM). 

The unseen data are included in the plots prior to checking the prediction quality under different 

approaches. The first 1,000 cycles were used as training data to keep the prediction process 

updated. More precisely, a data set estimates that the battery should reach the actual end -of-

life threshold in 2,400 cycles. LiB mean lifecycle predicted using the proposed SPM-SPF 

method is about 2,408 cycles. As a result, RUL prediction differs from the actual end-of-life 

by about eight cycles, the maximum RMSE error was approximately 0.003, and the RE error 

was approximately 0.0035. At the same time, the SPM-based PF algorithm predicts that the 

battery’s cycle life is 2,413 cycles. There is a 13-cycle discrepancy between the expected and 

actual value. While the expected capacity of the SPM-PF method decreased below the 

threshold at 2,413 cycles, indicating that the AE of the predict RUL was 13 cycles, the 

maximum 𝑅𝐴 was about 0.0054, and the RMSE error was approximately 0.0056. A 

comparison of the two prediction curves found that the proposed SPM based on the SPF 
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framework prediction curve is more accurate in predicting an actual capacity loss than the SPM 

based on the PF prediction curve. To assess the accuracy of the proposed approach's prediction, 

it is necessary to compare the outcomes with the traditional capacity prognostic method that 

only depends on capacity degradation data. Figure 4.4 shows that the curves resulting from the 

two methods (EM-SPF and EM-PF) diverged more from the actual capacity curve than the 

physical model’s prediction curves. The values of RUL pred icted by EM-SPF and EM-PF are, 

respectively, 55 and 154 cycles, much higher than the value estimated by the proposed SPM-

SPF methods. More details of the comparison are listed in Table 4.1. Figure 4.5 shows the 

prediction error of the RUL using the four prognostic capacity approaches; in the prediction 

update phase, the first 1,000 cycles are used. The capacity RMSE error estimated from the 

proposed SPM-SPF method with the cycle passage was reduced more than the capacity error 

extracted from the other approaches, indicating that the proposed method is more reliable. 

Moreover, the PDF of EoL obtained by the proposed method is higher and narrower, as shown 

in Figure 4.6. This indicates that the proposed SPM-SPF can achieve better prediction 

performance than the other methods. 

Figure 4.7 depicts how the RUL may be predicted using the four approaches. Here, the first 

2,000 cycles were utilised as training data for the forecast. The prediction performance of the 

proposed SPM-based SPF approach can be seen to have significantly improved with the 

increase in training data. The battery's cycle life predicted by the SEM-based PF algorithm is 

2,402 cycles. The difference between the predicted value and the actual value is two cycles. 

Compared to Figure 4.4, as the quantity of training data grows, so does the RUL prediction 

performance. With more training data, more ageing data can be employed, leading to improved 

predicted performance across all four approaches under the assumption of addressing the 

battery mechanism.  

Figure 4.8 demonstrates RUL prediction error utilising four prognostic capacity approaches; 

the first 2,000 cycles are considered in the prediction update phase. The suggested SPM-SPF 

technique with cycle passing lowered capacity RMSE error more than previous alternatives, 

showing that it is more reliable. Moreover, Figure 4.9 shows that the width of the PDF of RUL 
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of all approaches is more concentrated compared with the width in Figure 4.6. Table 4.1 shows 

the error rates for the prediction RUL of the LiBs obtained by the proposed SPM-SPF approach 

compared with the previously mentioned approaches under different starting points. The RE 

and RMSE of the proposed SPM-based SPF algorithm are significantly smaller than those of 

the SPM-based PF algorithm. 

 

Figure 4. 4 Prediction RUL results at Ts = 1000   cycles for LiBs. 
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(a) Error of SPM-SPF. 

 

(b) Error of SPM-PF. 

 

(c) Error of EM-SPF. 

 

(d) Error of EM-PF.  
Figure 4. 5 Error prediction for LiBs at 𝑇𝑠 = 1000  cycle. 
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(a) PDF of SPM-SPF. 

 

 

(b) PDF of SPM-PF. 

 

 

(c) PDF of EM-SPF. 

 

 

(d) PDF of EM-SPF. 

Figure 4. 6 PDF RUL results at Ts = 1000 cycles for LiB. 
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Figure 4. 7 Prediction RUL results at Ts = 2000   cycles for LiB. 

 

 

(a) Error of SPM-SPF. 

 

 

(b) Error of SPM-PF. 
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(c) Error of EM-SPF. 

 

(d) Error of EM-PF.  

Figure 4. 8 Error prediction for LiBs at Ts = 2000   cycle. 

 

 

 

(a) PDF of SPM-SPF. 

 

 

(b) PDF of SPM-PF. 
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(c) PDF of EM-SPF. 

 

 

(d) PDF of EM-SPF. 

Figure 4. 9 PDF RUL results at Ts = 2000 cycles for LiB. 

Table 4. 2 RUL prediction results for LiB. 

Algorithm Starting 

point (𝑻𝒔) 

𝑬𝑶𝑳𝒕𝒓𝒖𝒆  𝑬𝑶𝑳𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏  𝑨𝑬 𝑹𝑨 𝑹𝑴𝑺𝑬 𝑴𝑨𝑷𝑬 (%) 

SPM-PF 1000 2400 2413 13 0.0054 0.005 0.45 

2000 2400 2408 8 0.0033 0.0033 0.25 

SPM-SPF 1000 2400 2392 8 0.0031 0.0035 0.27 

2000 2400 2402 2 8. 𝑒

− 04 

0.0023 0.14 

EM-PF 1000 2400 2545 145 0.0604 0.0182 1.87 

2000 2400 2408 43 0.0179 0.0124 1.30 

EM-SPF 1000 2400 2345 55 0.0229 0.0083 0.96 

2000 2400 2420 20 0.0089 0.0061 0.30 
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To verify the performance efficiency and accuracy of the proposed method, it is necessary 

to compare the results obtained from the proposed method with the latest approaches presented 

in previous state-of-the-art methods [103, 105, 106] conducted for the same case study. The 

results of the proposed methods are shown in Table 4.3. Each approach's performance was 

assessed by looking at the 𝐴𝐸, 𝑅𝐸, and RUL's 𝑅𝑀𝑆𝐸. Table 4.3 shows that the prediction 

accuracy of the PF was significantly improved using the suggested physics model base on 

NLLS, SPM-based SPF method and eSPM based on ASIR PF, compared to the proposed SEM-

PF approach, demonstrating the robustness of the proposed approach. As far as the application 

of the RUL [108] presents a novel approach to predicting the RUL of LiBs. The proposed 

method is based on a physics-based model that incorporates the battery's electrochemical 

behaviour to estimate its SOH. The method uses a non-linear least squares (NLLS) algorithm 

with dynamic bounds to estimate the model parameters and their uncertainty. This approach 

allows the model to be updated in real-time as new data becomes available, making it suitable 

for online prognostics. The results show that the method can accurately predict the RUL of the 

LiBs with a mean absolute percentage error of less than 5%. Through this work, it has been 

concluded that the proposed SPF algorithm, given its higher robustness, stability, and accuracy 

prediction compared to the non-linear least squares algorithm. The authors in [105] introduce 

a novel PF framework that utilises a simplified electrochemical model to predict the RUL of 

LiBs. The model's parameters can be identified and used as state variables in the PF algorithm 

by applying specially designed current excitations to the battery. The prediction method is 

concerned; its approach is complicated compared with the proposed method. This is because it 

relies on five physical parameters related to SEM as health indicators for RUL prediction and 

then incorporates the PF method to generate the proposed distribution. The state variables in 

the new PF algorithm are selected based on battery health characteristics rather than 

meaningless adjustment coefficients. Trends in health-related features influenced the 

development of the new state equation, which makes the RUL prediction more robust by 

introducing the mechanism of the battery to overcome the particle deficiency problem. 

Nevertheless, this is difficult to do because its method is based on presenting the posterior 

information. An SEM-PF method can be used to draw out degradation parameters from 
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experimental data, and it is shown that they are associated with the battery SOH measured in 

the experiment. Another example [106] presents an electrochemical model technique to 

estimate the SOH of LMO-NMC battery cells using emulated in-situ vehicle data. The SOH 

estimate is used in an algorithm to predict the RUL of the battery. The SOH is determined by 

estimating the number of moles of cyclable lithium (𝑛𝐿𝑖 ) and battery internal resistance (R), 

which are identified through charging events using an enhanced-single particle model. Finally, 

the estimated eSPM parameters are used to make a composite SOH metric that can be used to 

make an RUL predictor based on classic ASIR PF that can predict the RUL based on the 

evolution of the SOH metric. However, we adopted the proposed SPF algorithm, given its 

higher robustness, stability, and accuracy prediction compared to classical particle filters. The 

main idea of the proposed method is to operate the algorithm based on the current degradation 

transaction values of equations (3.21-3.22) and then rely on the output from the proposed 

algorithm to reconfigure the approximation of the probability function. Thus, the 

computational complexity time of the SPF algorithm is longer than the classic PF algorithm 

because it finds the maximum probability estimates in nonlinear space state models. 

Table 4. 3 Comparative results. 

Method 𝐀𝐄 𝐑𝐄 𝑹𝑴𝑺𝑬 

NLLS [108]   0.007 

SEM-PF [110] 12 0.005 - 

eSPM based on ASIR PF [[111] − 0.8 - 

Proposed SPM-based SPF 8 0.0033 0.0018 

 

4.9 RUL Prediction Using (𝟐𝑪 − 𝒓𝒂𝒕𝒆 )  Batteries  

The second dataset used in this work is a battery capacity fading data set at a different 

constant current rate (2C-rate) to verify the accuracy of the proposed prognostic framework 

prediction. At Ts = 1000 cycle, the RUL results for LiB data are shown in Figure 4.10. As 

shown in Figure 4.4 and Figure 4.7, an identical conclusion to that above can be deduced from 
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Figure 4.11, which shows the robustness and substantial accuracy of the proposed SPM-based 

SPF algorithm. Similar to the RUL results obtained in Section 4.7, the accuracy of the 

prediction RUL results, and the RUL's PDF obtained by the proposed SPM-SPF approach, is 

closer to the actual RUL than that provided by the SPM-PF (see Figure 4.12). The proposed 

method reduces the prediction error, RE, and RMSE by seven cycles compared to the PF 

utilizing 15 cycles. Table 4.4 shows a summary of the results of RUL prediction approaches 

for LiB data, demonstrating that the proposed method has a higher prediction accuracy than 

the other methods provided to predict RUL. For instance, at Ts = 1000, the AE predicted by 

SPM-PF, EM-SPF and EM-PF are 15, 25, and 40, respectively, and are thus much higher than 

the predicted value of the SPM-SPF approach. As such, the same conclusions can be drawn, as 

discussed in the previous section. In the context of the SPM-PF, SPM-SPF, EM-PF, and EM-

SPF algorithms, the results suggest that the proposed SPM-SPF framework is the most accurate 

of the four, with a MAPE of less than 0.25%. On the other hand, the SPM-PF algorithm has a 

maximum MAPE is around 0.5%, which is still relatively low. The EM-SPF and EM-PF 

algorithms have higher maximum errors of 1.95% and 1.06%, respectively, indicating that they 

are less accurate than the SPM-SPF and SPM-PF algorithms. 

 
Figure 4. 10 Prediction RUL results at Ts = 1000  cycles for LiB at 2C rate. 
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(a) Error of SPM-SPF. 

 

 

(b) Error of SPM-PF. 

 

 

(c) Error of EM-SPF. 

 

 

(d) Error of EM-PF.  
 

Figure 4. 11 Error prediction for LiBs at Ts = 1000 cycle. 
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(a) PDF of SPM-SPF. 

 

(b) PDF of SPM-PF. 

 

 

(c) PDF of EM-SPF. 

 

 

(d) PDF of EM-SPF. 

Figure 4. 12 PDF RUL results at Ts = 1000   cycles for LiB. 

 

Table 4. 4 RUL prediction results for LiB at 2C-rate. 

Algorithm Starting 

point (𝑻𝒔) 

𝑬𝑶𝑳𝒕𝒓𝒖𝒆 𝑬𝑶𝑳𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝑨𝑬 𝑹𝑨 𝑹𝑴𝑺𝑬 𝑴𝑨𝑷𝑬(%) 

1000 2400 2415 15 0.00417 0.0096 0.51 
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SPM-PF 2000 2400 2393 9 0.0033 0.0033 0.27 

SPM-SPF 1000 2400 2410 10 0.0042 0.0072 0.24 

2000 2400 2403 3 0.0015 0.0001 0.11 

EM-PF 1000 2400 2440 40 0.0833 0.193 1.95 

2000 2400 2420 20 0.005 0.00171 1.45 

EM-SPF 1000 2400 2425 25 0.00617 0.0096 1.06 

2000 2400 2386 14 0.05 0.0047 0.67 

 

4.10 RUL Prediction Using Different Current Profile  

As mentioned earlier, the model coefficients may be incorrectly calculated because initial 

coefficients change with a change of profile current load. Using a distinct set of cells for 

training and evaluating the model, the model coefficients can be restricted to predetermined 

ranges [43]. To study the effects of coefficient boundaries on RUL prediction and capacity, we 

applied a different current profile drive cycle (UDDS) [37]. Figure 4.13 shows in red the 

predicted curve with an initial amplitude of about 0.936, while the same curve in Figure 4.10 

has an initial amplitude of around 0.95. This indicates that initial coefficients change with 

profile current load, so initial coefficients must be tracked correctly to obtain a correct and 

reliable prediction. Furthermore, this may be led to an unexpected effect, especially in online 

prediction RUL. Moreover, as shown in Figures 4.13–4.15, more precise SOH estimations are 

provided in the suggested SPM-SPF techniques, which improves the RUL prediction. The RUL 

prediction error and RUL PDF width both show evidence of this precision. 
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Figure 4. 13 Prediction RUL results at 1000 cycles for LiB at UDDS profile current . 
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(a) Error of SPM-SPF. 

 

 

(b) Error of SPM-PF. 

 

 

(c) Error of EM-SPF. 

 

 

(d) Error of EM-PF.  

Figure 4. 14 Error prediction for LiBs at Ts = 1000 cycle. 
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(a) PDF of SPM-SPF. 

 

 

(b) PDF of SPM-PF. 

 

 

(c) PDF of EM-SPF. 

 

 

(d) PDF of EM-SPF. 

Figure 4. 15 PDF RUL results at Ts = 1000   cycles for LiB. 
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4.11 Verify the robustness of the proposed framework under Gaussian 

white noise. 

Measurement and system noises can significantly influence the quality of battery data. 

Therefore, it is important to develop a robust battery monitoring system, which can estimate 

RUL with noisy input data. The proposed SPM-SPF is capable of predicting RUL with noisy 

input data. Additive Gaussian White Noises (AGWN) with a signal-to-noise ratio (SNR) of 40 

is introduced in the measured value further to demonstrate the dependability and robustness of 

the proposed SPM-SPF framework.  To understand the actual life of the battery with the noise 

added, then employ a ground truth model. This model, which has a pristine version of the data, 

allows us to compare the actual, noise-free RUL against the RUL predicted by our algorithm. 

In this case, the ground truth is a version of the data without the Additive AGWN. I added the 

AGWN specifically to simulate a real-world scenario where such noise might be present. After 

obtaining the RUL predictions from aging model on this noisy data, compare these predictions 

with the actual RUL from the noise-free data. This comparison gives a measure of the error in 

our predictions. The prediction error is defined as the absolute difference between the predicted 

RUL and the actual RUL from the noise-free data. Mathematically, if denote the actual RUL 

as 𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙 and the predicted RUL as 𝑅𝑈𝐿predicted, the prediction error 𝐸 can be calculated 

as: 

𝐸 =  |𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙   − 𝑅𝑈𝐿predicted| (4.36) 

 Prediction errors for the RUL utilising four different prognostic capacity methods are shown 

in Figure 4.16 throughout the updating phase of the prediction. Compared to the capacity error 

obtained from the other methods, the predictive error calculated from the suggested SPM-SPF 

technique with the cycle passing was considerably lowered, indicating that it is more 

dependable (see Figure 4.17). To present a more intuitive understanding of the results, the AE, 

RA, RMS, and MAPE error values of the four methods are also given in Table 4.5. The 

prediction error estimated from the traditional methods (EM-SPF, EM-PF) is approximately 

10%, while the predictive error of the SPM-PF method is around 2%, but the proposed method 

is less than 1%. These results show the proposed model has good robustness under the 
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measurement noise. The addition of measurement noise has a more pronounced effect on the 

prediction performance of traditional (EM-SPF, EM-PF) and SPM-PF methods. However, it 

has only a little impact on the prediction accuracy of the proposed method, especially as its 

performance is essentially unaffected by the SNR = 40. Thus, these results illustrate the 

dynamic adjustment of the proposed framework can improve the prediction accuracy and 

robustness. 

 

Figure 4. 16 Prediction RUL results with AWGN at Ts = 1000  cycles for LiBs. 
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(a) Error of SPM-SPF. 

 

 

(b) Error of SPM-PF. 

 

 

(c) Error of EM-SPF. 

 

 

(d) Error of EM-PF.  

Figure 4. 17 Error prediction for LiBs at Ts = 1000cycle. 
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Table 4. 5 Numeric results of RUL prediction at SNR = 40. 

Method 𝐀𝐄 𝐑𝐄 𝐑𝐌𝐒𝐄 𝑴𝑨𝑷𝑬(%) 

SPM-SPF 11 0.45% 0.0136 1.2 

SPM-PF 50 2.08% 0.0156 1.68 

EM-SPF 210 9.78% 0.0183 2.01 

EM-PF 250 10.43% 0.0230 3.71 

 

4.12 Summary 

Two challenges arise in developing methods for predicting the RUL. Firstly, most of these 

approaches predominantly focus on traditional empirical degradation models, failing to 

consider the degradation mechanisms. Secondly, the standard PF method's stability is 

considerably limited by insufficient particles and uncertainty surrounding the degradation 

model parameters, which are further bound by the availability of adequate and dependable data. 

As a result, these parameters can contribute to imprecise RUL predictions. To overcome these 

issues, this chapter utilised an SPM to extract coefficients for three main degradation 

phenomena (LAM𝑃𝐸 , LAM𝑁𝐸 , and LLI) from the 𝑉𝑄 and 𝑑𝑉/𝑑𝑄  curves that are directly 

correlated with predicting the RUL of LiBs. This approach differs from conventional methods 

that rely on capacity-based measurements and empirical models to predict RUL. The proposed 

physics-based predictive framework provides more accurate early predictions of the late-stage 

fading trend than the conventional capacity-based prognostic framework. The degradation 

parameters obtained from the single particle model are then fed into an SPF algorithm, which 

is adopted due to its robustness, simplicity, and computational efficiency compared to other 

particle filters. This proposed solution accurately represents the degradation coefficients and 

capacity decay of LiBs when a suitable mathematical model is available. Once the 

mathematical model parameters have been created using the training data and the proposed  

method, the most appropriate model is selected to infer the parameters of the capacity 
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degradation and RUL estimation on a test set containing data from cells in addition to the 

training cells. 

The obtained results demonstrated that the proposed SPM-based SPF framework can 

enhance the prediction accuracy compared with the traditional capacity predictive framework, 

especially for prediction during the early cycle. The proposed approach depends on 

extrapolating individual degradation parameters associated with different degradation 

mechanisms, reducing the potential for unrealistic predictions during early life. The proposed 

approach's average RUL errors and PDF width are lower than those of conventional prognostic 

capacity approaches, indicating that the proposed method is more accurate and stable. 

Compared to an existing framework in the predictive field, such as SPM-based PF, and eSPM-

ASIR-PF, we demonstrate that the proposed framework offered accurate RUL prediction. 

However, there is still some confusion about tracking and estimating the trend of initial 

degradation model parameters for online prediction. This could be because initial coefficients 

change with a change of profile current load. As a result, more research is needed; the initial 

parameters of the degradation model could be estimated correctly using artificial intelligent 

algorithms such as neural networks, which could improve prognostic accuracy mainly in real-

time RUL prediction. 
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 Online RUL Prediction of LiBs Using a 

Hybrid Model  

 

‘As detailed in chapters 3 and 4, the previously discussed forecasting frameworks are 

contingent on developing an experimental degradation model tailored to meet specific 

operational demands or batteries made with certain materials. For real-time RUL prediction, 

LiBs frequently operate under less-than-perfect conditions. As a result, the estimated initial 

model parameters could be prone to inaccuracies, leading to instability and erroneous RUL 

predictions [3]. Hence, it's paramount to establish a resilient and adaptable model capable of 

effectively mapping the trends of capacity degradation and extracting model parameters under 

diverse operating conditions.  For this reason, this chapter aims to develop our previously 

proposed framework for forecasting LiB RUL into an intelligent online predictive hybrid 

framework employing the NN and SPF, based on maximum likelihood. The exponential 

empirical model-based online RUL prediction approach improves with the suggested 

framework in two ways. First, a general NN capacity degrading model is built. The NN model 

is more flexible and powerful than empirical techniques, improving RUL prediction accuracy. 

Second, the proposed SPF updates NN model weights and biases. This approach moves 

particles to the high maximum likelihood region, enhancing online prediction accuracy under 

complex operating conditions compared to the PF method.’  

 

 

 

 



Online RUL Prediction of LiBs Using a Hybrid Model  133 

 

 

5.1 Introduction 

Accurate real-time PHM estimation is essential to lithium-ion battery safety and 

efficiency. Recent work on developing a framework to predict RUL has primarily focused on 

the traditional empirical degradation model due to its simplicity. Although this model works 

well under specific operational conditions, for online RUL prediction, it may lack the ability 

to describe capacity degradation, given the variability in decline between cells and others under 

different operational conditions. As such, this can result in inaccurate RUL prediction. 

Therefore, this chapter proposes a hybrid approach to improving the accuracy of online 

forecasting in the existing framework by integrating data-driven and model-based approaches. 

The proposed framework utilises the NN to model and track battery degradation trends, and it 

also degrades the initial values of the degradation model’s transactions under different 

operating conditions. Furthermore, the proposed hybrid framework includes an SPF algorithm, 

which continuously updates the degradation NN model. Lithium-ion battery capacity 

degradation datasets from the Centre for Advanced Life Cycle Engineering (CALCE) were 

used to evaluate the proposed paradigm. The results show that the proposed hybrid framework 

is more accurate and improves the convergence rate compared to the traditional capacity 

prognostic framework. The term 'traditional' capacity framework refers to the prevalent  

empirical degradation model, which has been the cornerstone of battery life prediction for a 

considerable time. This model, while straightforward and quite effective under certain sets of 

conditions, is primarily based on fixed assumptions and lacks the flexibility to account for the 

intricacies and variability observed in LiB degradation under a range of operational scenarios. 

This chapter presents an implementation of an online hybrid PHM prediction approach for 

LiBs, utilising a combination of a NN and SPF. The challenges associated with online RUL 

prediction are presented in Section 5.2. Section 5.3 showcases experimental datasets published 

by the CALCE, where a second-order degradation model was developed to investigate LiB 

degradation. The theoretical background and implementation procedures for the NN algorithm 

and explanation of NNs for modelling and estimating critical degradation parameters are set 
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out in Section 5.4. The results are presented and examined in Section 5.5, while conclusions 

and discussions are summarised in Section 5.6. 

5.2 Proposed Hybrid Prognostic Platform for Battery Health 

Morning and RUL Prediction  

The main aim of this chapter is to develop our previously proposed framework in chapters 

(3 and 4) for predicting RUL of LiBs to produce an intelligent online predictive hybrid 

framework using the NN and SPF based on maximum likelihood. The proposed framework 

improves the accuracy of online RUL prediction in the traditional method, based on the 

exponential empirical model, in two ways. First, a generic NN model for capacity deterioration 

modelling is created. The accuracy of RUL prediction can be improved by employing the NN 

model since it is more flexible and powerful than existing empirical methods. 

     Second, the proposed SPF is used to update the NN model’s parameters (weights and 

biases). Compared to the PF method, this method improves particle distribution by moving 

particles to the high maximum likelihood region; this improves the accuracy of online 

prediction under complex operating conditions. 

The proposed framework for online RUL prediction contains two main stages, as shown in 

Figure 5.1. In the first stage, a state-space model based on the NN degradation model is created 

using previously collected battery capacity fade data. To transform the continuous state-space 

model into a discrete counterpart, I have employed a procedure based on the Euler method, a 

commonly used numerical integration method for solving ordinary differential equations 

(ODEs). This technique was selected due to its relative simplicity, computational efficiency, 

and suitability for moderately complex models. The first step in discretisation involves 

partitioning the time variable into discrete time intervals, often called 'time steps'. We designate 

these time steps as 𝛥𝑡. Given that study concerns the RUL prediction of LiBs, it is crucial to 

select an appropriate 𝛥𝑡 that efficiently captures the degradation process of the batteries while 

maintaining computational feasibility. Upon determining an optimal 𝛥𝑡, then proceed to 
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approximate the state transitions. A common approach to discretising state-space models is to 

employ the Euler approximation. This approximation works under the presumption that within 

small enough time steps, 𝛥𝑡, the change in the state variables can be represented as the product 

of the time step size and the rate of change of the state variables, as dictated by the state 

equations. Essentially, for a given state variable ′𝑥′ and its rate of change given by the function 

𝑓(𝑥, 𝑢), the next state is approximated as: 

𝑥(𝑡 +  𝛥𝑡) =  𝑥(𝑡) +  𝛥𝑡 ∗  𝑓(𝑥(𝑡), 𝑢(𝑡)) (5.1) 

 The proposed SPF algorithm tracks and continuously updates the model parameters in the 

second stage. Finally, the RUL of LiBs is predicted by extrapolating the updated degradation 

model until the end of service. 
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Figure 5. 1 Schematic of the proposed framework. 

5.3 CALCE datas 

The CALCE dataset is a collection of data related to the life cycle of products, systems, and 

equipment. It may include information on reliability, durability, maintenance, and other aspects 

of product lifecycle management. The dataset is maintained by the Center for Advanced Life 

Cycle Engineering at the University of Maryland [196]. It is used for research and development 

purposes, to support industry and government decision-making, and to advance the field of life 

cycle engineering. 

In this work, four cell(CS35,CS36, CS37, and CS38) datasets were employed to investigate 

LiB degradation behaviour and demonstrate the effectiveness of the developed LiB degradation 

model on the accuracy of the prediction framework. The nominal capacity of the four LiCoO2 

pouch batteries are 1.1 Ah. The Arbin BT2000 battery testing system performed the cycling of 

the four LiCoO2 pouch LiBs. The four cells underwent the same charging protocol: constant 
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CCCV under room temperature. During charging mode, the batteries are supplied with a CC 

rate of 0.5C until the voltage reaches a maximum of 4.2V. Then, the voltage is kept at the 

maximum limit until the charging CC drops below 0.05 A. During the discharge mode, CC of 

0.45 A was maintained in cells until the voltage dropped to a minimum of 2.7 V. The failure 

threshold for these batteries was set to 0.88 Ah. For these LiBs, the Coulomb counting method 

was used to determine battery discharge capacity [196]. Figure.5.2 depicts the capacity 

degradation curve as a function of the cycle. 

 

Figure 5. 2 Capacity degradation curves. 

5.4 Neural network (NN) degradation model 

In the proposed framework, the NN algorithm was adopted to extract a model that describes 

the degradation of the battery discharge capacity over time. The main goal of this approach is 

to identify the initial parameter values of the degradation model that can be used to predict the 

future capacity of the battery. The NN algorithm is trained using historical data on the battery's 

discharge capacity and other relevant parameters, such as temperature, usage, and age [197]. 
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The NN algorithm then creates a model that maps the input parameters to the battery's discharge 

capacity.  

The NN algorithm is capable of capturing complex relationships between the input 

parameters and the battery's discharge capacity, making it an ideal tool for modelling the 

degradation of the battery. The resulting model is then used to estimate the initial parameter 

values of the degradation model.  Once the initial parameter values are estimated, they can be 

used to make predictions about the future degradation of the battery's discharge capacity. This 

information can be used to determine the optimal maintenance and replacement schedule for 

the battery, helping to maximise its lifespan and performance [198]. 

  Generally, the architecture of the NN algorithm was selected as the Multi-Layer Perceptron 

(MLP) with two hidden layers [199]. The main structure of the NN’s algorithm consists of two 

neuron layers connected to build an NN layer. Each neuron excludes a set of inputs from other 

cells connected to it proportionally to cell weights [200]. As a result, each neuron will produce 

a single output under the activation function, which can then spread to nearby cells.  MLP can 

be taught simply with rapid convergence while retaining the NN’s nonlinear approximation. 

MLP was used to simulate the dynamic and nonlinear battery deterioration trend. An MLP 

model’s basic structure is shown in Figure 5. 3. The MLP with two hidden layers is a specific 

implementation of the MLP architecture that consists of three layers of artificial neurons [201]: 

the input layer, two hidden layers, and the output layer. The input layer receives the data on the 

battery's discharge capacity and other relevant parameters, such as temperature, usage, and age. 

The two hidden layers process the input data and pass the results to the output layer, which 

produces the final prediction of the battery's discharge capacity. In general, the more neurons 

in each hidden layer, the more complex the relationships that the model can capture [202]. 
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Figure 5. 3 Structure diagram of an MLP model. 

 

In the proposed framework, the NN is used to track the trend in degradation of the battery 

discharge capacity as a function of the number of cycles. Afterwards, the number of the cycle 

(𝑘) is fed to the input node of the NN, and the battery capacity is the output node of NN (Q). 

For the neurons in the hidden layer, the hyperbolic tangent sigmoid activation function, also 

known as tansig, is used. This activation function maps the inputs to outputs in a non-linear 

manner, which allows the model to capture more complex relationships between the input 

parameters and the output. The output node uses a linear activation function known as purelin 

to improve efficiency. This activation function provides a simple linear mapping of the inputs 

to outputs, which helps to simplify the model and reduce the computational requirements. In 

this way, the hidden neuron’s output can be estimated as follows [99]: 

ℎ = 𝑡𝑎𝑛𝑠𝑖𝑔(𝐼𝑊. 𝑘 + 𝑏1) =
1 − 𝑒𝑝𝑥[−2(𝐼𝑊.𝑘 + 𝑏1)]

1 − 𝑒𝑝𝑥[−2(𝐼𝑊.𝑘 + 𝑏1)]
 (5.2) 

 

Where 𝐼𝑊 and 𝑏1 1 represent the input node’s weight and bias, respectively. Then, the total 

output of the whole network can be estimated as follows: 

𝑄 = 𝑝𝑢𝑟𝑙𝑖𝑛(𝐿𝑊1 ∙ ℎ1 + ⋯+ 𝐿𝑊𝑀 ∙ ℎ𝑀 +𝑏2) 
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= 𝐿𝑊1 ∙
1 − 𝑒𝑝𝑥[−2(𝐼𝑊𝑀 . 𝑘 + 𝑏11)]

1 − 𝑒𝑝𝑥[−2(𝐼𝑊𝑀 . 𝑘 + 𝑏11)]
 

+⋯+𝐿𝑊1 ∙
1 − 𝑒𝑝𝑥[−2(𝐼𝑊𝑀 . 𝑘 + 𝑏1𝑀)]

1 − 𝑒𝑝𝑥[−2(𝐼𝑊𝑀 . 𝑘 + 𝑏1𝑀)]
+ 𝑏2  (5.3) 

Where 𝐿𝑊 denotes the weight associated, 𝑏2 is the second hidden neuron bias and 𝑀represents 
the hidden neurons number. 

5.4.1 Degradation analysis based on different models 

The proposed framework based on the NN model was compared with the traditional model 

framework of capacity degradation modelling. For the traditional model framework, most state-

of-the-art research [16–21] relies on the empirical two-exponential model to describe battery 

degradation status; the empirical degradation model can be expressed as in (3.24). In 

MATLAB's curve fitting tool, the nonlinear least square method is used to fit the parameters of 

the empirical degradation model (EXP model). As for the NN model, the network was designed 

with a different number of hidden neurons to verify the model’s accuracy: the NN model with 

two hidden neurons (2NN) and three hidden neurons (3NN). The MATLAB nntrain tool was 

used to identify the parameters of the NN models. To assess the accuracy of the proposed 

degradation models, RMSE and R-square were used [16], both of which are explained in 

equations (5.4) and (5.5):  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑄𝑖 ,𝑟𝑒𝑎𝑙 − 𝑄𝑖,𝑒𝑠𝑡)

2

𝑛

𝑖=1

 (5.4) 

𝑅2 = 1 −
∑ (𝑄𝑖 ,𝑟𝑒𝑎𝑙 − 𝑄𝑖,𝑒𝑠𝑡)

2𝑛
𝑖−1

∑ (𝑄𝑖 ,𝑟𝑒𝑎𝑙 −𝑄𝑖 ,𝑚𝑒𝑎𝑛)
2𝑛

𝑖−1

 (5.5) 

Where, 𝑄𝑖 ,𝑟𝑒𝑎𝑙 denote the actual capacity, 𝑄𝑖 ,𝑒𝑠𝑡  is the fitted capacity, and 𝑄𝑖 ,𝑚𝑒𝑎𝑛  is the 

average actual capacity value. 
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5.4.2 Analysis of the CALCE dataset for degradation 

Figures 5.4 -5.7 presents the curve-fitting outcomes for CS35 and CS37. These figures are 

organised in accordance with the empirical degradation model and two NN models, 

respectively. The models have the capability of tracking the trend of capacity loss for both 

batteries. The empirical degradation model and NN models were used to fit the parameters of 

four batteries, and the results are shown in Table I. The goodness-of-fit results for each model 

are shown in Table II. It can be seen that the RMSEs are lower than 0.02, and the 𝑅2 values are 

greater than 0.98. This suggests that these models are well suited to the capacity degradation 

data. The RMSEs of the three neurons NN model are the lowest and the 𝑅2values are the highest 

of the three models for all batteries. Although this indicates that the three neurons NN model 

has the best-fit capability of the three models, its execution does not significantly advance; the 

performance of the two neurons NN and empirical degradation models, respectively, is thus 

sufficient in this work, as the capacity curves for these batteries are fairly smooth and track the 

exponential degradation trend.  

Table 5. 1 Model parameter estimation result of the EXP model. 

exp model (with 95% confidence bounds) 

LiB ID 𝒂 𝒃 𝒄 𝒅 

CS35 −0.0017 0.0067 1.069 −0.0018 
CS36 −0.0030 0.0061 1.108 −0.0002 
CS37 −0.0005 0.0074 1.075 −0.0002 
CS38 −0.0002 0.0081 1.074 −0.0002 

exp model (with 50% confidence bounds) 

 𝒂 𝒃 𝒄 𝒅 
CS35 −0.0028 0.0037 1.009 −0.0028 
CS36 −0.005 0.0051 1.02 −0.0015 
CS37 −0.0099 0.0064 1.035 −0.0082 
CS38 −0.0018 0.0001 1.004 −0.0003 

 

\ 
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Table 5. 2 CALCE model goodness- of -fit analysis. 

 

 

 

a)  

 

b)  

Indices 𝑹𝑴𝑺𝑬 𝑹𝟐 

 
Model 

exp NN exp NN 

2NN 3 NN 2 NN 3 NN 

CS35 0.0197 0.0150 0.0142 0.9812 0.9892 0.9902 

CS36 0.0181 0.0178 0.0138 0.9860 0.9864 0.9917 

CS37 0.0149 0.0135 0.0126 0.9881 0.9901 0.9913 

CS38 0.0169 0.0140 0.0132 0.9854 0.990 0.9910 
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c)  

Figure 5. 4 Curve fitting result for LiB CS35 dataset a) EXP model, b) 2 NN model, and c) 3 NN model. 

 

 

a)  

 

b)  
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c)  

Figure 5. 5 Curve fitting result for LiB CS36 dataset a) EXP model, b) 2 NN model, and c) 3 NN model. 

 

 

a)  

 

b)  
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c)  

Figure 5. 6 Curve fitting result for LiB CS37 dataset a) EXP model, b) 2 NN model, and c) 3 NN model. 

 

 

a)  

 

b)  
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c)  

Figure 5. 7 Curve fitting result for LiB CS38 dataset a) EXP model, b) 2 NN model, and c) 3 NN model. 

 

5.5 Results and Discussion  

The capacity degradation data of the CS36 and CS38 LiBs were selected as historical training 

data to identify information about the model’s parameters. At the same time, the CS35 and CS37 

batteries were selected as testing data for the accuracy of the RUL prediction performance. For 

the initialisation exponential empirical model, the initial parameters for the degradation model 

for all battery cells are shown in Table 5.2. For the NN degradation model, based on historical 

data, the NN model was trained to obtain its initial weights and biases. 

Figures. 5.8 – 5.10 show the RUL prediction based on the traditional empirical model 

framework and the proposed hybrid framework of CS35 LiB. The blue line denotes the actual 

capacity, the predicted capacity is the red dashed line, and the orange dotted line shows the RUL 

PDF. The solid yellow line indicates the starting point of the prediction process. Figure 5.8 

shows that the actual end of life was 557 cycles at 𝑇𝑠 = 300 cycles, while the average predicted 

life cycle using the traditional capacity prognostic-based SPF was 565 cycles. Consequently, 

the conventional capacity prognostic-based SPF algorithm’s AE is about 8, the maximum 

relative error was about 0.026, and the RMSE error was approximately 0.0532. The results show 

that prediction accuracy is high as the predicted RUL value is close to the real RUL value. 
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However, this accuracy directly depends on how precisely the initial values for the degradation 

model parameters are extracted. 

A best-fit model with parameters bounded by 50% was used to evaluate the impact of bounds 

on capacity and RUL prediction (see Table 5.1). Figure. 5.9 shows that the predicted mean curve 

diverges further from the actual capacity curve than the curve obtained in Figure 5.8. The 

predicted RUL is about 620 cycles, and the AE is 63, indicating that the prediction accuracy is 

directly affected by the initial parameter values. Furthermore, this may be led to an unexpected 

effect, especially in online prediction RUL. 
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Figure 5. 8 Predicted RUL result obtained, using EXP+SPF approaches.  

 

Figure 5. 9 Predicted RUL result obtained, using EXP+SPF approaches with bounded by 50%. 

To this end, this work proposed a hybrid framework to predict the RUL online, Figure. 5.10 

shows that the NN models’ prediction curves are closer to the actual capacity degradation curve 

at the same predicted starting point as the conventional capacity prognostic model (Figure. 5.8). 
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With the NN models, RUL PDFs are narrower and taller than the empirical model. Table 5.3 

illustrates the prediction errors and RUL PDF widths, suggesting the NN deterioration model is 

more accurate than the empirical degradation model. Since the NN model is better able to track 

the battery fading trend, it provides a more accurate state-space model for the RUL framework. 

 

Figure 5. 10 Predicted RUL result obtained, using NN+SPF approaches. 

Table 5. 3 RUL prediction results of CS35. 

 

Algorithm 𝑻𝒔 𝑬𝑶𝑳𝒕𝒓𝒖𝒆 𝑹𝑼𝑳𝒑𝒓𝒆𝒅 𝑨𝑬 𝑹𝑴𝑺𝑬 

Exp+SPF  
(95% boundary) 

300 557 565 8 0.0532 

500 557 559 2 0.0218 

Exp+SPF (50% 
boundary) 

300 557 620 63 0.6606 

500 557 600 43 0.3305 

NN+SPF 300 557 562 5 0.0209 

500 557 558 1 0.0198 
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5.5.1 Comparison With Other Published Methods 

Table 5.4 lists and compares the predicted error metric of RUL obtained by the proposed 

method and other published methods. This comparison helps to verify the precision of the 

proposed approach further. The other published methods include UKF combined with error 

compensation (UKF+CEEMD) [116], the integration of UKF and RVM [86], the NN-Bat-PF 

method [99], and a combination of SVR+PF [203]. Results reveal that the suggested technique 

performs much better than the approaches that have previously been published in [83,109] (see 

Table 5.4 for details), which implies that both the universality and the precision are proven by 

our method. 

Table 5. 4 Comparative analysis of different prediction methods for RUL. 

Method 𝐀𝐄 

(UKF+CEEMD) [116] 4 

UKF and RVM [86] 3 

NN-Bat-PF method [99] 2 

SVR+PF [203] 2 

Proposed NN+ SPF 1 

 

5.6 Summary   

 This chapter has proposed a hybrid NN based on an SPF framework to predict the online 

RUL of LiBs. The degradation models (NN and empirical models) were trained and tested using 

the capacity fading dataset from CALCE. Furthermore, we used different model parameter 

configurations to validate the stability and effectiveness of the proposed framework.  The 

proposed framework uses the NN algorithm to track the trend in degradation of the battery 

discharge capacity as a function of the number of cycles. The NN architecture consists of 
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multiple layers of artificial neurons, each of which is responsible for processing the input data 

and passing the results to the next layer. The tansig activation function is used for the hidden 

layer neurons, and the purelin activation function is used for the output node. This architecture 

provides a powerful way to capture complex relationships between the input parameters and the 

output and can be used to make accurate predictions about the future capacity of the battery. 

The comparison results clearly indicated that the proposed  framework did not require a 

degradation pattern and could be adapted to diverse, dynamic trends, resulting in higher 

performance than the traditional predictive approach. In addition, the results show that the 

proposed framework has a more accurate RUL prediction than the conventional framework 

since the maximum RMSE of the proposed framework is around 0.001. The proposed 

approach's estimated results have been compared to those obtained using other published 

methods, and it was found that the proposed approach has a higher level of precision compared 

to the published methods. 
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6.1 Conclusion  

In BMS, accurate prediction of the RUL in LiBs is a key aspect of managing their health, 

promoting reliable and secure systems, and reducing the need for unscheduled maintenance and 

costs. Recent work on RUL prediction has largely focused on refining the accuracy and 

reliability of the RUL prediction. However, achieving high accuracy levels in predicting the 

RUL of batteries requires analysing battery performance decline based on factors such as 

material properties, electrochemical reaction, and impedance change. Accurate prediction also 

depends on the tuning of particle state parameters. 

Classic PF algorithm is prone to two primary issues: particle degeneracy and particle 

impoverishment. Particle degeneracy occurs when the weight of a small number of particles 

becomes significantly more significant than the others, causing a loss of diversity among the 

particles. Particle impoverishment happens during the resampling phase of the particle filter 

when a subset of particles is selected with a higher probability than the others, resulting in a loss 

of samples and reduced accuracy. 

For this reason, the key aim of this thesis focuses on making a research contribution in the 

area of an online monitoring system for lithium-ion batteries that could adjust to alterations 

caused by varying operating conditions. Several novel approaches have been presented in this 

thesis.   

6.1.1 Battery Lifetime Identification Using Smooth Particle Filter 

Technique 

Here, an innovative online RUL prediction of LiBs known as the SPF algorithm is presented 

to overcome the limitations of many classic PF algorithms. The proposed algorithm allows for 

an accurate estimation of the battery's state and the uncertainty in the prediction, making it a 

valuable tool for battery health monitoring and management. Additionally, the proposed 

algorithm is computationally efficient and can be easily implemented in real-time applications. 

Experimental datasets published by PCoE NASA were used , and a second-order exponential 
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degradation model to validate the effectiveness and stability of the proposed method was 

developed. The results obtained clearly indicated that the proposed SPF algorithm can improve 

the prediction accuracy compared with the classical PF algorithm. The average RUL errors and 

PDF width of the SPF approach are less than in PF methods, demonstrating that the suggested 

method is more accurate and steadier. In addition, RUL prediction was tested with various 

predicted starting points to assess whether the amount of data influenced the accuracy of the 

prediction. The findings clearly demonstrated that the amount of data affects the accuracy of the 

prediction. It has also been shown that the earlier the starting point of the prediction, the higher 

the prediction error rate relative to the higher starting point. In fact, the predicted curve further 

diverges from the actual degradation curve. Overall, the SPF-based likelihood approximation 

method presents a significant advancement in the field of battery prognostics and offers a 

promising solution for improving the performance and reliability of LiBs. Further research is 

planned to focus on designing robust degradation models, such as the Multiphysics model, with 

an emphasis on accurate and reliable RUL prediction at a rapid convergence rate. 

The findings and conclusions of this work have been successfully published in the following 

journal paper: 

• M. a. El-Dalahmeh, M. Al-Greer, M. d. El-Dalahmeh, and M. Short, "Smooth particle 

filter‐based likelihood approximations for remaining useful life prediction of Lithium‐

ion batteries," IET Smart Grid, 2021. 

6.1.2 Physics-Based Modeling for Monitoring Battery Lifetime  

The empirical degradation model has the advantage of being simple and easy to implement, 

making it suitable for real-time monitoring applications. However, it has limitations in terms of 

accuracy and reliability, particularly in predicting the RUL of batteries. This is because it does 

not account for the underlying physical processes that drive battery degradation, which can vary 

significantly depending on the operating conditions. To address this, a physics-informed SPF 

framework for RUL prediction is proposed in this work, which estimates parameters of an SPM 

of LiBs by extracting three main degradation mechanisms: active material loss in positive and 
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negative electrodes and loss of lithium inventory from the 𝑉𝑄 and 𝑑𝑉/𝑑𝑄  curves, which can 

then utilise to predict the LiB capacity. These parameters estimated using SPM are passed 

through the SPF algorithm to update the model parameters and predict the RUL of LiBs. 

Overall, it has been concluded that the proposed RUL prediction framework based on 

combined SPM and SPF can significantly improve the RUL predictions in comparison to its 

predecessors. The method combines the benefits from both SPM and SPF, therefore enhancing 

the RUL prediction. The proposed combined SPM and SPF framework has been tested on 

several battery cycling and degradation datasets. The predicted RUL using the proposed 

framework show low RA and RMSE values in comparison to other RUL prediction methods. 

All datasets for battery RUL predictions show improved results by using the SPM-SPF 

framework. The RUL prediction has been tested on noisy data. It has been concluded that the 

SPM-SPF provides the best RUL predictions for noisy input data.  

The findings and conclusions of this work have been successfully published in the following 

journal paper: 

• M.o’ath. El-Dalahmeh, M. Al-Greer, M. d. El-Dalahmeh, and I. Bashir, "Physics-

based model informed smooth particle filter for remaining useful life prediction of 

lithium-ion battery," Measurement, vol. 214, p. 112838, 2023/06/15/ 2023.   

Online Hybrid Prognostic Health Management Prediction  

 For real-time RUL prediction, LiBs often operate under less-than-ideal conditions, which 

can result in inaccurate initial model parameters. This, in turn, can lead to unstable and 

inaccurate RUL predictions. Therefore, it is important to have a robust and flexible model that 

can accurately track the capacity degradation trends and extract model parameters even under 

different operating conditions. 

This chapter has proposed a hybrid NN based on an SPF framework to predict the online 

RUL of LiBs. The degradation models (NN and empirical models) were trained and tested 

using the capacity fading dataset from CALCE. Furthermore, we used different model 
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parameter configurations to validate the stability and effectiveness of the proposed framework.  

The proposed framework uses the NN algorithm to track the trend in degradation of the battery 

discharge capacity as a function of the number of cycles. The NN architecture consists of 

multiple layers of artificial neurons, each of which is responsible for processing the input data 

and passing the results to the next layer. The tansig activation function is used for the hidden 

layer neurons, and the purelin activation function is used for the output node. This architecture 

provides a powerful way to capture complex relationships between the input parameters and 

the output and can be used to make accurate predictions about the future capacity of the battery.  

The comparison results clearly indicated that the proposed framework was not required a 

degradation pattern and can be adapted to diverse, dynamic trends, resulting in higher 

performance than the traditional predictive approach. In addition, the results show that the 

proposed framework has a more accurate RUL prediction than the conventional framework 

since the maximum RMSE of the proposed framework is around 0.001. The proposed 

approach's estimated results have been compared to those obtained using other published 

methods, and it was found that the proposed approach has a higher level of precision compared 

to the published methods. 

The findings and conclusions of this work have been successfully published in the 

following conference paper: 

• M. El-Dalahmeh, M. Al-Greer, M. El-Dalahmeh, and I. Bashir, "Online Hybrid 

Prognostic Health Management Prediction Using a Neural Network and Smooth 

Particle Filter for Lithium-ion Batteries," in 2022 57th International Universities Power 

Engineering Conference (UPEC), 30 Aug.-2 Sept. 2022 2022, pp. 1-6. 

6.2 Future Work 

The research conducted in this thesis has uncovered several promising areas for further 

exploration in the field of prognostics. The proposed framework shows potential in predicting 
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the RUL of LiBs. A few areas of research could help in the future of prognostic research. These 

research areas have the potential to assist in refining and improving the proposed framework, 

making it a more reliable and accurate tool for predicting battery health. The following 

suggestions provide pointers towards further research for future works. 

The prediction of battery RUL is primarily based on LiBs, which are composed of multiple 

cells connected in series and parallel to create a battery module or pack. This electrochemical 

process is highly variable and complex, leading to inconsistencies in performance due to 

differences in material composition and manufacturing guidelines. Additionally, temperature 

gradients within the battery pack can cause uneven aging of the cells, further complicating the 

prediction of RUL. The accuracy of cell-level predictions is lower than that of the battery pack 

due to charge unbalancing during charging and discharging, which has been addressed with the 

use of power electronic converters and controller circuits. However, more research is needed 

to investigate the issues related to inconsistencies in battery pack performance to improve the 

prediction of battery RUL. 

The main focus of future work will be to explore the capabilities of the hybrid integration 

scheme. Hybrid models have shown significant progress in accurately predicting the RUL 

compared to model-based and data-driven techniques. The hybrid model is typically developed 

by combining two models or hybridizing an optimisation technique with a single model. In 

Section 2.5.3, several hybrid models based on the PF technique and data-driven models have 

been discussed. However, if two different models are combined accurately, it may lead to better 

outcomes, overfitting of data, and increased computational complexity. Therefore, it is crucial 

to investigate the practicality and feasibility of creating an intelligent hybrid model for RUL 

prediction. There is potential to make several improvements to the hybrid mechanism, such as 

incorporating more advanced similarity measures into the integration scheme. Additionally, 

investigating ways to reduce the computational complexity of the integration methodology will 

be beneficial during the instrumentation phase. 

Currently, the accuracy and reliability of RUL prediction methods are evaluated through 

experimental work. However, real-time Internet of Things (IoT)-integrated RUL prediction has 
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yet to be explored. The application of IoT-based RUL prediction models, particularly data-

driven approaches, involves a large volume of data, data processing, data management, and 

cloud storage, which can improve prognostics and health management of battery storage 

systems in real-time. The authors in [204] have introduced an IoT-based battery state 

estimation model that utilises ARM Cortex-M4 MCU and deep learning (DL) models such as 

LSTM, gated recurrent unit (GRU), and CNN. However, no recent publication has been on 

specifically IoT-integrated RUL prediction for batteries. Therefore, further investigation is 

necessary to develop IoT-based RUL prediction methods.  

At present, RUL prediction methods have been validated using various experimental tools. 

However, the implementation of real-time RUL prediction with hardware-in-loop (HIL), 

prototype, and embedded systems has not been thoroughly investigated. Only a few recent 

research articles have focused on SOC estimation and have achieved satisfactory results 

compared to simulation results [205]. However, there is still a need for the exploration of RUL 

prediction for LiBs using the HIL prototype. A visual representation that outlines key 

suggestions and future improvements for enhancing the RUL prediction scheme is provided. 
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Appendix A Battery Terminologies 

A.1.1 Cell, Module and Pack 

LiB cells are typically arranged in groups to form battery modules and packs and to achieve 

the desired high power. Batteries can be grouped in series and/or parallel; by connecting many 

cells in series, batteries provide the required terminal voltage by adding up the voltage potential 

of each cell. In a parallel configuration, the total ampere-hours can be added to achieve a higher 

capacity (Ah). For instance, a 2 MW/1MWh grid-connected LiB can be formed of 21,120 cells  

[206]. The configuration of the cells, either in series or parallel, is determined by economic, 

safety, and lifespan factors. Estimating the available energy and power is critical to the battery 

owner to control the battery’s charge/discharge process and maintain battery lifetime. 

A.1.2 Capacity of the LiBs 

The battery’s capacity is the most crucial aspect in the study of battery modelling. The battery’s 

capacity can be defined as the amount of energy stored in a battery, typically measured in 

ampere-hours (Ah) or milliampere-hours (mAh). 

A.1.3 C-rate 

C-rate is an arbitrary metric used to quantify the charge/discharge rate relative to a LiB’s 

maximum capacity. For instance, if the rated capacity of a LiB is 1 Ah, then a fully charged 

battery rated at 1C should provide 1 A for one hour. At 0.5C, the same battery should provide 

500mA for two hours. 
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A.1.4 Depth of Discharge (DOD)  

Depth of discharge is the proportion of the total energy stored in a battery that has been used, 

expressed as a percentage. 

A.1.5 Cycle life  

The number of times a battery can be charged and discharged before its capacity is significantly 

degraded. 

A.1.6 State-of-Charge (SoC)   

The SoC is the indicator of the amount of charge available in a battery compared to maximum 

battery capacity. The SoC can be estimated based on the average concentration of lithium ions 

in each electrode’s solid particles. 

A.1.7 State of Health (SoH) 

The SoH is a measurement indicator of the current health level of battery performance 

compared to the battery’s initial condition at the start of the battery’s lifecycle. According to 

[207, 208], the SoH can be estimated based on the battery’s capacity as it decreases or as its 

resistance rises. The battery’s internal resistance is a significant factor in its capacity to function 

as a power source or sink. The battery’s immediate usable power decreases as its resistance 

increases with time. Additionally, the battery loses Ah capacity as it ages, resulting in a decline 

in energy. 

A.1.8 Remining Useful Life (RUL) 

RUL is the term used for the quantity of cycle left between the present cycle until the 

battery’s end of service (EoS), and this can vary from 70–80% of nominal capacity [209]. 
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Appendix B Particle Filter Code  

clear 

close all 
clc 
rng(100) 

way = 4; 
% Decide the cycle from which prediction is to be started. 

Future_Cycle=50; 
csv_files = {'Cap05.csv', 'Cap06.csv', 'Cap018.csv'}; 
failure_threshold = 1.4; 

 

for i = 1:length(csv_files) 

    data1_df = load(csv_files{i}); 
    disp(['[INFO] Processing ', csv_files{i}]); 
    disp(['Dataset shape: ', num2str(size(data1_df, 1)-1), '*', num2str(size(data1_df, 2))]); 

    x = data1_df(2:end, 1); 
    y = data1_df(2:end, 2); 

    selection = 3; 
    x_train = x(1:Future_Cycle); 
    x_test  = x(Future_Cycle+1:end); 

    y_train = y(1:Future_Cycle); 
    y_test  = y(Future_Cycle+1:end); 

     
    disp(['Number of training samples: ',   num2str(length(x_train))]) 
    disp(['Number of Prediction samples: ', num2str(length(x_test))]) 

     
    cita = 0.0001; 

    wa   = 1; 
    wb   = 0.000001; 
    wc   = 10; 

    wd   = 0.000001; 
     

    li = [wa, wb, wc, wd]; 
    Q = zeros(4); 
    F = eye(4); 

    for i = 1:4 
        Q(i, i)= li(i)*cita; 

    end 
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    R = 0.0001; 
    a = -4.037e-06  ; 

    b = 1.379; 
    c = 0.9888; 

    d = 0.04566878; 
     
    N = length(y); 

    M = 100; 
    X0 = [a b c d]; 

    Xpf = zeros(selection, N); 
    for i = 1:selection 
        Xpf(i, 1) = X0(i); 

    end 
    Xm = zeros(N, selection, M); 

     
    for i = 1:M 
        for f = 1:selection 

            Xm(1, f, i) = X0(f)+sqrt(Q(f, f))*normrnd(0, 1); 
        end 

    end 
    Zm  = zeros(N, 1, M); 
    Zpf = zeros(1, N); 

    W   = zeros(N, M); 
     

    Zpf(1) = y(1); 
     
    for k = 2:N 

        for i = 1:M 
            for f = 1:selection 

                Xm(k, f, i) = Xm(k-1, f, 1) + sqrt(Q(f, f))*normrnd(0, 1); 
            end 
        end 

         
        sum = 0; 

        for i = 1:M 
            Zm(k, 1, i) = func1(k, Xm(k, 1, i), Xm(k, 2, i), Xm(k, 3, i)); 
 

            W(k, i) = exp(-(y(k)-Zm(k, 1, i))^2/2/R) + 1e-99; 
            sum = sum + W(k, i); 

        end 
        for i = 1:M 
            W(k, i) = W(k, i)/sum; 
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        end 
         
        if way == 1 

            outindex =  Stratified_resampling(W(k, :)); 
        elseif way == 2 

            outindex =  Systematic_resampling(W(k, :)); 
        elseif way == 3 
            outindex =  Multinomal_resampling(W(k, :)); 

        else 
            outindex =  Residual_resampling(W(k, :)); 

        end 
             
        for i = 1:M 

            for f =1:selection 
                Xm(k, f, i) = Xm(k, f, outindex(i)+1); 

            end 
        end 
        for i = 1:selection 

            sum = 0; 
            for f =1:M 

                sum = sum + Xm(k, i, f); 
            end 
            sum = sum/M; 

            Xpf(i, k) = sum; 
        end 

        Zpf(k) = func1(k, Xpf(1, k), Xpf(2, k),Xpf(3, k));  
    end 
     

    y_pred = Zpf(Future_Cycle+1:end);% - [0:0.04/(length(y_test)-1):0.04]; 
    for i=1:length(y_pred) 

        if y_pred(i) < failure_threshold 
            mu = i + Future_Cycle; 
            break 

        end 
    end 

     
    sigma = 10 
%    xz    = linspace(mu - 30, x(end-20), 100); 

   % yz    = 0.3*gaussian(xz, mu, sigma) + min(y_pred); 
    figure; 

    hold on 
    plot(x, y, 'b-') 
    plot(x_test,  y_pred, 'g-') 

    plot(x, failure_threshold*ones(size(y)), 'k-') 
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    plot(Future_Cycle*ones(size(y)), linspace(min(y_pred), max(y), length(y)),  'k-') 
    %plot(xz, yz, 'r-') 
    ylabel('Discharge_Capacity') 

    xlabel('Cycle_Index') 
    legend('true','pf', 'Thresh', 'pdf') 

    grid on 
    errors = []; 
    for d = 1:length(y_pred) 

        errors = [errors, (y_pred(d)-y_test(d))^2]; 
    end 

     
    figure 
    plot(x_test, errors) 

    ylabel('Error') 
    xlabel('Cycle_Index') 

    legend('Error') 
    grid on 
     

end 
%% =======================    FUNCTIONS   ======================== 

function y = gaussian(x, mu, sig) 
    y = exp(-(x - mu).^2 / (2 * sig^2)); 
end 

 

function cdf =  get_cdf(weight) 

    cdf  = weight(1); 
    for i = 2:length(weight) 
        cdf = [cdf (weight(i)+cdf(i-1))]; 

    end 
end 

function y = func(x, a, b, c, d) 
    y = a*exp(b*x)+c*exp(d*x); 
end 

function y = func1(x, a, b,c) 
    y = a*(b*x)+c; 

end 
function out_index = Residual_resampling(weight) 
    cdf = get_cdf(weight); 

    N   = length(weight); 
    need_select = []; 

    for i = 1:N 
        if weight(i)<1/N 



References  183 

 

 

            need_select = [need_select, i-1]; 
        end 
    end 

     
    N    = length(weight); 

    temp = 1/N*rand; 
     
    for i = 1:N 

        U(i) = temp+(i-1)/N; 
    end 

 

    out_index = zeros(100, 1); 
    j = 0; 

     
    for i = 1:N 

        if j ~= N 
            while j<N & U(i) > cdf(j+1) 
                j = j + 1; 

            end 
        end 

         
        if j<N 
            out_index(i) = j; 

        else 
            out_index(i) = N-1; 

        end 
    end 
end 
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Appendix C Smooth Particle Filter Code 

clc, clear, close all 

 
load('B0005.mat'); 
L = length(B0005.cycle); 

type = {B0005.cycle.type}.'; 
s2 = 'discharge'; 

D = strcmp(type, s2); 
 
for i = 1:L 

    if D(i) == 1 
        cap(i) = B0005.cycle(i).data.Capacity; 

    end 
end 
 

cap = cap(cap>0); 
cycle = length(cap); 

plot(1:cycle, cap,'k-*') 
xlabel('cycle'), ylabel('Capacity (Ah)'), grid on 
 

% model 
nth = 1; 

tht = [2.5]; 
f = @(x,th) exp(-th)*x; 
% f = @(x, th, ) 

g = @(x,th) x; 
Q = @(th) 0.1; 

R = @(th) .009; 
 
T = length(cap); 

y = cap'; 
 

%% 
 
K = 168; 

N = T; 
thr = zeros(nth,K); 

 
for iK = 1:K-1 
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    w = -Inf; 
    while w == -Inf 
        if iK == 1 %start with a feasible value 

            thr(1) = log(rand); 
        end 

        [w, x_pf, wn_pf, a_pf] = particle_filter( N, @(x)... 
            f(x,thr(:,iK)), @(x,th) g(x,thr(:,iK)), T, y,... 
            Q(thr(:,iK)), R(thr(:,iK)), 1, 0); 

    end 
    obj_f = @(th) -log_likelihood(N, @(x) f(x,th), @(x)... 

        f(x,thr(:,iK)), @(x) g(x,th), T, y, Q(th), Q(thr(:,iK)),... 
        R(thr(:,iK)), x_pf, wn_pf, a_pf) ; 
    options = optimoptions('fminunc','Algorithm','quasi-

newton','Display','none','OptimalityTolerance',0.01); 
    thr(:,iK+1) = fminunc(obj_f,thr(:,iK),options); 

    display(['Iteration ', num2str(iK), ', th = ',num2str(thr(1,iK+1))]) 
%     display('State ', num2str(x_pf)) 
end 

function [ log_W ] = log_likelihood( N, f, q, g, T, y, Qf, Qq, R, x_pf, wn_pf, a_pf ) 
 

%LOG_LIKELIHOOD Function 
new_log_w = zeros(T,N); 
for t = 1:T 

    for i = 1:N 
        if t >= 2 

            new_log_w(t,i) = log(mvnpdf(g(x_pf(:,i,t), t)',y(t,:),R))' + log(new_wn(a_pf(t,i))) - 
log(wn_pf(t-1,a_pf(t,i))) + log(mvnpdf(x_pf(:,i,t)',f(x_pf(:,a_pf(t,i),t-1))',Qf))' - 
log(mvnpdf(x_pf(:,i,t)',q(x_pf(:,a_pf(t,i),t-1))',Qq))'; 

        else 
            new_log_w(t,i) = log(mvnpdf(g(x_pf(:,i,t), t)',y(t,:),R))'; 

        end  
    end 
%     new_log_w(t,:) 

    new_wn = exp(new_log_w(t,:) - max(new_log_w(t,:))); 
    new_wn = new_wn/sum(new_wn); 

     
end 
 

log_W = sum(log(1/N*sum(exp(new_log_w),2))); 
 

end 
 
function [ log_W, x_pf, wn_pf, a_pf, Zpf, Z_RUL] = particle_filter( N, f, g, T, y, Q, R, nx, 

x_init, rul_cycle) 
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log_w = zeros(T,N); 
wn_pf = zeros(T,N); 

a_pf = zeros(T,N); 
x_pf = zeros(nx,N,T); 
Zpf = zeros(1,T); 

Xpf = zeros(nx,T); 
Z_RUL = zeros(1,T-rul_cycle-1); 

 
Xpf_sum = zeros(4,1); 
x_pf(:,:,1) = x_init(:,ones(N,1)) + Q*randn(nx,N); 

 
Q_chol = chol(Q); 

 
Zpf(1) = y(1); 
 

for t = 1:T 
%     t 

    if t >= 2 
        a_pf(t,:) = systematic_resampling(wn_pf(t-1,:),N); 
%         a_pf(t,:) = Residual_resampling(wn_pf(t-1,:)) + 1; 

%         a_pf(t,:) 
        x_pf(:,:,t) = f(x_pf(:,a_pf(t,:),t-1)) + Q*randn(nx,N); 

    end 
%     x_pf(:,:,t) 
%     for li = 1:N 

% %         y(t,:) 
% %         g(x_pf(:,li,t), t)' 

%         log_w(t,li) = log(mvnpdf(g(x_pf(:,li,t), t)',y(t,:),R))'; 
%     end 
%     log_w(t,:) 

 
%     for i=1:N 

%         log_w(t,i) = log(mvnpdf(g(x_pf(:,i,t),t)',y(t,:),R))'; 
%     end 
%     wn_pf(t,:) = exp(log_w(t,:) - max(log_w(t,:))); 

%     g(x_pf(:,:,t), t) 
    for i = 1:N 

        wn_pf(t,i) = exp(-(y(t,:)-g(x_pf(:,i,t),t))^2/2/R) + 1e-99; 
    end 
%      

    wn_pf(t,:) = wn_pf(t,:)/sum(wn_pf(t,:)); 
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    % compute sum of x_pf 
%     Xpf_sum = zeros(4,1); 

%     for i=1:N 
%        Xpf_sum = Xpf_sum + x_pf(:,i,t); 

%     end 
     
    Xpf_sum = sum(x_pf(:,:,t), 2); 

    Xpf(:,t) = Xpf_sum/N; 
     

    % predicted capacitance 
    if t >= 2 
        Zpf(t) = g(Xpf(:,t),t); 

    end 
     

    if t >= rul_cycle %78 
        rul_id = t-rul_cycle + 1; 
        Z_RUL(rul_id) = RUL(Xpf(:,t), rul_cycle, t-rul_cycle);  

%         Z_RUL(rul_id) = RUL(Xpf(:,t), rul_cycle, T-t);  
    end 

end 
 
log_W = sum(log(1/N*sum(exp(log_w),2))); 

 
end 

function idx = systematic_resampling(W,N) 
W = W/sum(W); 
u = 1/N*rand; 

idx = zeros(N,1); 
q = 0; 

n = 0; 
for i = 1:N 
    while q < u 

        n = n+1; 
        q = q + W(n); 

    end 
    idx(i) = n; 
    u = u + 1/N; 

end 
function out_index = Residual_resampling(weight) 

    weight = weight/sum(weight); 
    cdf = get_cdf(weight); 
    N   = length(weight); 

    need_select = []; 
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    for i = 1:N 
        if weight(i)<1/N 
            need_select = [need_select, i-1]; 

        end 
    end 

   
    N    = length(weight); 
    temp = 1/N*rand; 

     
    for i = 1:N 

        U(i) = temp+(i-1)/N; 
    end 
 

    out_index = zeros(N, 1); 
    j = 0; 

     
    for i = 1:N 
        if j ~= N 

            while j<N & U(i) > cdf(j+1) 
                j = j + 1; 

            end 
        end 
         

        if j<N 
            out_index(i) = j; 

        else 
            out_index(i) = N-1; 
        end 

    end 
end 
 



 

 

 


