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ABSTRACT
Objectives Active case finding (ACF) is an important 
tuberculosis (TB) intervention in high- burden settings. 
However, empirical evidence garnered from field data 
has been equivocal about the long- term community- 
level impact, and more data at a finer geographic scale 
and data- informed methods to quantify their impact are 
necessary.
Methods Using village development committee (VDC)- 
level data on TB notification and demography between 
2016 and 2017 in four southern districts of Nepal, where 
ACF activities were implemented as a part of the IMPACT- 
TB study between 2017 and 2019, we developed VDC- 
level transmission models of TB and ACF. Using these 
models and ACF yield data collected in the study, we 
estimated the potential epidemiological impact of IMPACT- 
TB ACF and compared its efficiency across VDCs in each 
district.
Results Cases were found in the majority of VDCs during 
IMPACT- TB ACF, but the number of cases detected within 
VDCs correlated weakly with historic case notification 
rates. We projected that this ACF intervention would 
reduce the TB incidence rate by 14% (12–16) in Chitwan, 
8.6% (7.3–9.7) in Dhanusha, 8.3% (7.3–9.2) in Mahottari 
and 3% (2.5–3.2) in Makwanpur. Over the next 10 years, 
we projected that this intervention would avert 987 (746–
1282), 422 (304–571), 598 (450–782) and 197 (172–240) 
cases in Chitwan, Dhanusha, Mahottari and Makwanpur, 
respectively. There was substantial variation in the 
efficiency of ACF across VDCs: there was up to twofold 
difference in the number of cases averted in the 10 years 
per case detected.
Conclusion ACF data confirm that TB is widely prevalent, 
including in VDCs with relatively low reporting rates. 
Although ACF is a highly efficient component of TB control, 
its impact can vary substantially at local levels and 
must be combined with other interventions to alter TB 
epidemiology significantly.

INTRODUCTION
Tuberculosis (TB) continues to be a major 
infectious source of mortality worldwide, 
with 1.4 million deaths in 2019, most of 
which occurred in low and middle- income 

countries.1 Despite the availability of low- cost 
and effective cure, many TB patients remain 
undiagnosed, suffer long diagnostic delays or 
are lost to follow- up in the diagnostic pathway 
due to complex multifactorial barriers.2–5 
Active case finding (ACF), designed to find 
and treat TB cases in the community, is 
a potentially impactful and cost- effective 
tool for TB intervention in such settings by 
reducing the transmission potential of TB 
cases that are undiagnosed or diagnosed with 
delay.6 7

However, it has proven difficult to develop 
a quantitative understanding of the longer 
term impact of ACF in reducing TB transmis-
sion. This is highlighted by the fact that while 
transmission models find significant poten-
tial of ACF in reducing transmission,8–10 the 
impact observed in controlled trials has been 
mixed.11–14 Analyses exploring the impact of 
ACF on case notification at the national level 
are unlikely to show large effects because the 
majority of ACF projects is subnational, and 
the impact is, therefore, primarily localised. 
This disconnect may partially be driven by 
the fact that detailed and informed models 
are not incorporated early in the planning 
and design phase of ACF.14 Incorporating 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ The modelling analysis incorporates field data on 
tuberculosis active case finding from a high- burden, 
low- resource setting.

 ⇒ The study estimates the epidemiological impact of 
active case finding at a subnational level, incorpo-
rating geographic heterogeneity in notification and 
active case finding.

 ⇒ The modelling approach focuses on capturing 
geographic heterogeneity and makes simplify-
ing assumptions regarding the natural history of 
tuberculosis.
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modelling at the onset will help generate a priori expecta-
tion of the yields and impacts of ACF (thus providing an 
opportunity for model validation) as well as contribute to 
optimising the design of ACF (thus potentially improving 
its yield and impact). Ultimately, if ACF is to be a reliable 
tool for TB intervention across many settings, there is a 
need to develop an improved quantitative understanding 
of ACF—how can data and models be used to design and 
plan effective ACF, and what are the factors that drive its 
impact in reducing TB transmission?

In this study, we aimed to develop and validate models 
of community- level ACF in a low- resource, high- burden 
setting by embedding the modelling work within an 
ongoing study of ACF. The IMPACT- TB ACF study was 
funded by the European Union Horizon 2020 scheme 
to carry out ACF in four districts in southern Nepal 
between June 2017 and June 2019 (www.impacttbproject. 
org).15 16 Nepal is a low- income country, where TB notifi-
cation rates have been stagnant for over a decade. After a 
national prevalence survey conducted in 2018/2019, the 
WHO revised estimates for TB incidence in Nepal to 245 
per 1 00 000/year (which is approximately 50% greater 
than the initial WHO estimate).1 The prevalence survey 
also revealed that more than half of the incident cases are 
currently not notified in the national system, suggesting 
an urgent need to improve detection and treatment 
throughout the country.

Using available local data on TB and demography, 
we developed local- level transmission models based on 
the administrative areas known as village development 
committees (VDCs), which were in use in Nepal at the 
time of the IMPACT- TB study. Using data collected during 
the IMPACT- TB ACF study,16 we projected the epidemio-
logical impact of ACF and assessed the potential value of 
optimising ACF by geographic targeting.

METHODS
VDC-level TB notification rates in Chitwan, Dhanusha, 
Mahottari and Makwanpur
We collected and collated data on TB case notifications 
between 2016 and 2017 in the four districts of Nepal: 
Chitwan, Dhanusha, Mahottari and Makwanpur, where 
IMPACT TB ACF efforts were conducted (see online 
supplemental figure S1). Notification data represented 
counts of all TB cases reported by the National TB 
Programme of Nepal. Based on these data, and popula-
tion denominators from the national census of 2011, we 
calculated average TB notification rates between 2016 
and 2017, at the level of VDC (which were local admin-
istrative units used for government administration, from 
1990 to 2017, including public health services. The VDC 
structure was replaced by municipalities in 2017 as part 
of the federalisation process, which incorporated one or 
more VDCs into a newly termed municipality).

VDC-level yields of ACF during IMPACT-TB
IMPACT- TB- ACF was implemented by Birat Nepal 
Medical Trust (implementation details are described 

elsewhere 15–17) using implementation strategies previ-
ously shown to be successful in achieving high yields.18 19 
This ACF study screened social contacts (contact investi-
gation implemented by local community health workers) 
and conducted microscopy camps to detect TB cases 
across four districts in Nepal for 2 years, from 2017 to 
2019. Using data collected on TB cases detected through 
contact tracing, we estimated the number of TB cases 
detected in each of the VDCs across four districts. Home 
address reported and recorded in a written form during 
the ACF was manually used to assign VDC for each case. 
Home addresses for cases detected through microscopy 
camps were not available, and not included in these anal-
yses. In about 5% of identified cases, we were not able to 
match them to a VDC—we also excluded these cases in 
our analyses.

VDC-level transmission model
We developed VDC- level transmission models across 
all VDCs in each of the four IMPACT TB districts of 
Nepal: Chitwan (2238.39 km2 with 39 VDCs), Dhanusha 
(1180 km2 with 102 VDCs), Mahottari (1002 km2 with 77 
VDCs) and Makwanpur (2246 km2 with 45 VDCs). This 
approach of developing VDC- level models allowed us to 
capture heterogeneity in local TB dynamics and to model 
interventions implemented at local levels. Each VDC- level 
model followed a common model structure, a relatively 
parsimonious compartmental model of the ilk that has 
been developed previously.20–22 We calibrated the models 
to VDC- specific TB prevalence in each of the four districts. 
TB prevalence was estimated for each of the modelled 
VDCs using TB case notification data from the VDCs 
between 2016 and 2017. To ensure that the calibration 
process remained simple and transparent, we assumed 
that the population size did not change during the 10- year 
period we modelled and that there were no secular trends 
in TB prevalence at baseline. Given that TB incidence has 
remained fairly constant in Nepal (<1% annual decline in 
the last decade), this is not an unreasonable assumption 
to make. A full description of the model, including differ-
ential equations describing the model (S1), schematic 
representation of the model (online supplemental figure 
S2) and algebraic equations used for calibration process 
(S2) are included in the supplementary materials.

Model scenarios
To capture some of the uncertainty around the amount 
of ongoing TB transmission—the types of data required 
to quantify the amount of ongoing TB transmission are 
not yet available for Nepal or similar high- burden urban 
settings—we modelled three epidemiological scenarios, 
to reflect the possibility of different levels of TB trans-
mission at the VDC level. See online supplemental table 
S123–29 for parameter values that specify these scenarios.
1. Baseline (moderate—transmission), in which we 

assumed a moderate level of transmission. The 
percentage of incident cases that resulted due to re-
cent transmission events in this scenario were 68% 
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(IQR: 64%–72%) in Chitwan, 62% (59%—66%) in 
Dhanusha, 67% (63%–71%) in Mahottari, and 65% 
(61%–73%) in Makwanpur, respectively.

2. Low (low—transmission), in which we assumed lower 
levels of transmission. The percentage of incident cases 
that resulted due to recent transmission events in this 
scenario were 59% (IQR: 54%–54%) in Chitwan, 52% 
(48%–56%) in Dhanusha, 58% (53%–63%) in Mahot-
tari and 57% (52%–67%) in Makwanpur, respectively.

3. High (High—transmission), in which we assumed 
a higher rate of transmission. The percentage of in-
cident cases that resulted due to recent transmission 
events in this scenario were 76% (IQR: 73%–79%) 
in Chitwan, 72% (69%–74%) in Dhanusha, 75% 
(72%–78%) in Mahottari and 74% (71%–79%) in 
Makwanpur, respectively.

Modelling ACF intervention
We modelled 2- year ACF in all VDC within the four 
districts. We assumed that all the cases detected during 
ACF would initiate treatment and would be successfully 
treated. This is consistent with IMPACT- TB project data 
on treatment initiation and completion rates for patients 
diagnosed during ACF, which exceeded 98%. This was 
implemented in our VDC- level compartmental models 
as transition of individuals out of active TB compart-
ment, where the number of individuals transitioning out 
reflected the number of individuals detected in each VDC 
through ACF.

Outcomes
The primary outcome was the impact of ACF on the esti-
mated number of TB cases averted within a 10- year period 
after ACF. We generated these estimates by subtracting the 
projected number of cases over a 10- year period in model 
simulations with the intervention from the model simula-
tions without the intervention. Similarly, to estimate the 
percentage reduction in TB incidence, we compared the 
TB incidence between the model simulations with and 
without the intervention. To quantify the efficiency of 
the ACF, we also estimated the number of cases averted 
within 10- year period after ACF per case detected via ACF 
in each of the VDCs across four districts.

Sensitivity analysis
To explore the sensitivity of the model results to the 
changes in model parameters, we conducted multivariate 
uncertainty analyses. We generated 10 000 parameter sets 
using Latin hypercube sampling, calibrated and simulated 
the models in each of the VDCs across four districts, esti-
mating the impact of ACF (in terms of number of cases 
averted in 10 years post ACF). For each model parameter, 
we compared the simulations corresponding to subsets 
of parameter values in the top and bottom deciles. The 
details of this multivariate sensitivity analysis are included 
in the supplementary materials (S3).

Patient and public nvolvement
No patients were directly involved in this study.

RESULTS
Geographic heterogeneity in TB notification rates
TB notification rates varied between the four districts 
(figure 1A). Average notification rates per 100 000 per 
year between 2016 and 2017 were 140 (range: 38–289) 
in Chitwan, 88 (11–257) in Dhanusha, 125 (7–421) in 
Mahottari and 166 (0–438) in Makwanpur, respectively 
(figure 1B). Variability in the TB notification rates within 
the districts was substantially more pronounced, the 
VDC- level notification rates varied by more than 10- fold 
between VDCs (figure 1A). Risk inequality coefficient,30 
a measure of heterogeneity, estimated from the Lorenz 
curves31 were between 0.19 in Chitwan and 0.3 in Mahot-
tari (figure 1C).

Geographic distribution of TB cases detected during ACF
IMPACT- TB ACF activities identified a total of 1176 cases 
(488 in Chitwan, 270 in Dhanusha, 301 in Mahottari and 
117 in Makwanpur) between June 2017 and June 2019. 
Of those, we were able to match 1043 identified cases 
(88%) with their corresponding VDC address. These 
included 462 cases in Chitwan, 230 in Dhanusha, 280 in 
Mahottari and 71 in Makwanpur. Uptake of ACF activities 
was substantially delayed in Makwanpur due to the tragic 
road traffic accident death of the District TB and Leprosy 
Officer at the start of the project and subsequent disrup-
tion to TB activities in the district, which resulted in 
substantially lower number of cases detected. Cases were 
detected in the majority of VDCs. Of 263 VDCs across 
the four districts, cases were detected in 167 (63%). 
Excluding Makwanpur, where cases were detected in only 
10 out of 45 VDCs, cases were detected in 72% of all VDCs 
in the remaining three districts (figure 2).

We assessed the correlation between the number 
of cases detected in each of the VDCs and the annual 
notifications in the corresponding VDC. The degree 
of correlation varied substantially between the districts: 
the correlation coefficients were 0.31 in Mahottari, 0.71 
in Dhanusha, 0.91 in Makwanpur and 0.97 in Chitwan 
(figure 3). The correlations were generally much weaker 
when very large VDCs, with more than 100 case notifica-
tions per year on average, were excluded from the anal-
ysis. There was one such VDC in each of the four districts, 
and the correlation coefficients in the remaining VDCs 
were 0.31 in Mahottari, 0.5 in Chitwan, 0.52 in Dhanusha 
and 0.85 in Makwanpur. When the notification rates were 
limited to microbiologically confirmed cases, correlations 
between cases found during ACF and notification rates of 
microbiologically confirmed cases did not differ substan-
tially (online supplemental figure S3).

Epidemiological impact of ACF
The projected impact of ACF on TB incidence rates 
varied between small to moderate across the four districts. 
Percentage reduction in TB incidence rates in the imme-
diate aftermath of the ACF in Chitwan was 14% (low trans-
mission scenario: 12—high transmission scenario: 16), 
8.6% (7.3–9.7); in Dhanusha 8.3% (7.3–9.2) in Mahottari 
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and 3% (2.5–3.2) in Makwanpur. The reductions (in the 
absence of additional changes in TB care) were unlikely 
to be sustained over time. After 10 years, the reduction 
in TB incidence across all four districts was below 2% 
(figure 4). However, these small to moderate reductions 
in TB incidence rates would nonetheless translate into 
a substantial number of TB cases that would be averted 
for the next 10 years: 987 cases (746–1282) in Chitwan, 
422 (304–571) in Dhanusha, 598 (450–782) in Mahottari 
and 197 (172–240) in Makwanpur. A substantial propor-
tion of these impacts were projected to occur in VDCs 
with low to medium notification rates: for example, more 

than 50% of the cases averted in Dhanusha and Mahottari 
were projected to occur in VDCs with notification rates 
between 50 and 150 per 100 000/year (online supple-
mental figure S4).

Projected relative efficiency of ACF
The efficiency of ACF, measured as the projected number 
of cases averted per treated case, was estimated to be 2.2 
in Chitwan, 1.9 in Dhanusha, 2.1 in Mahottari and 2.8 
in Makwanpur. Additionally, there was substantial vari-
ability in this ratio within the districts, with up to twofold 

Figure 1 Geographic heterogeneity in TB notification rates in four districts of Nepal. (A) The choropleth maps show TB case 
notification rates (per 1 00 000/year averaged at the VDC level between 2016 and 2017) in the four districts: Chitwan, Dhanusha, 
Mahottari and Makwanpur. (B) TB notification rates in VDCs of each of the four districts. The bubble size represents the VDC 
population size, and the dashed line shows the weighted average in each district. (C) Shown are Lorenz curves for each of 
the four districts, with cumulative population on the horizontal axis and cumulative TB notification on the vertical axis. TB, 
tuberculosis; VDC, village development committee.
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differences in the efficiency of ACF in averting future TB 
cases within VDCs in each of the four districts (figure 5).

Sensitivity of model outcomes to natural history parameters
The model results (impact of ACF) were most sensitive 
to two model parameters that directly specify the overall 
contribution of recent transmission to TB incidence: the 
reactivation rate (ie, higher reactivation implies lower 
recent transmission) and the fraction of recent exposures 
that progress rapidly to active TB disease (see online 
supplemental figure S5). The model results were not 
substantially affected by variation around other model 
parameters.

DISCUSSION
In this study, we aimed to estimate the local impact of ACF 
in four districts of Nepal, namely—Chitwan, Dhanusha, 
Mahottari and Makwanpur, which represent high- burden, 
low- resource settings. Our approach involved developing 
a VDC- level model of ACF using local data on TB notifi-
cations as well as data collected during ACF conducted as 

a component of the IMPACT- TB project (www.impacttb-
project.org). Using these data- driven models, we esti-
mated the projected district- level impact of ACF and 
assessed the potential of optimising ACF by geographic 
targeting.

There were several important findings resulting from 
this study. First, relatively modest ACF activity can avert a 
large number of future TB cases. However, the epidemi-
ological impact of short- term ACF interventions dimin-
ishes over time, and ACF activity needs to be sustained 
long term to have a substantial impact on TB inci-
dence. This modelling analysis suggests that this 2- year 
case finding through IMPACT TB in the four southern 
districts of Nepal could avert around two thousand future 
TB cases. As such, ACF is generally an efficient tool for 
finding cases and preventing future cases—we estimated 
that ACF is averting between 1.5 and 3 cases within 10 
years per TB case treated during ACF. However, ACF 
alone is not likely to alter the course of TB epidemiology 
in these settings unless other aspects of the diagnosis and 
care cascade are also strengthened.32 Instead, ACF is one 

Figure 2 Cases detected during IMPACT TB active case finding activities in Chitwan, Dhanusha, Mahottari and Makwanpur. 
The number of TB cases detected in each VDC in the four districts is shown in black bubbles, overlaid on top of the choropleth 
map of TB notification rates. TB, tuberculosis; VDC, village development committee.
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essential component of a comprehensive approach to TB 
elimination. It is crucial that ACF programmes comple-
ment, rather than replace, passive case finding back-
bones of TB diagnosis. Ideally, ACF will be accompanied 
by a significant strengthening of the passive diagnostic 
system, including laboratory strengthening and scale- up 
of molecular diagnostic testing. We estimated that ACF 
(of the scale that the IMPACT- TB project managed to 
conduct) is unlikely to reduce TB incidence rates by 
more than 15%, and this effect is likely to wane over time. 
Unless case finding efforts can be scaled up and sustained 
over at least a decade to cover a large portion of the entire 
communities,13 it is unlikely to bring a sizeable reduction 
in TB incidence.

Second, the observed correlations between notifica-
tion data and ACF yield suggest that notification can help 
generate reasonable first- degree estimates for where and 
how many cases are likely to be detected during ACF and in 
setting realistic local- level detection targets, especially for 
larger population centres, or when aggregated at district 
levels, as others have noted.33 However, we found substan-
tial variability, especially in VDCs with low to medium 
reporting rates. The fact that ACF detected substantially 
more cases in these communities (than one would have 
expected based on local notification rates) may indicate 
that these communities are under- reporting TB, in line 
with the findings from the 2018 prevalence survey, which 
showed TB prevalence to be much higher than previously 

Figure 3 Correlation between case notification and cases detected with active case finding. Shown is the correlation between 
notifications (horizontal axis) and the number of cases detected during ACF (vertical axis) in Chitwan, Dhanusha, Mahottari and 
Makwanpur. Indicated in each panel are (i) correlation coefficient, r, the degree of association between the case notification and 
the number of cases detected during ACF in the district, (ii) correlation coefficient, r*, when excluding the VDCs with more than 
100 average notifications per year. Each district had one such VDC. The solid and dashed lines show the corresponding linear 
fits. Note for Chitwan, the largest VDC with 314 average annual notifications and 161 detected cases during ACF is not shown 
on the graph. ACF, active case finding; VDC, village development committee.
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estimated. Intensified case finding or broader high- risk 
population screening approaches may be appropriate 
in VDCs with low notification rates, applying strategies 
such as the TB SWEEP initiative in Vietnam, and should 
be trialled to establish effectiveness in detecting undiag-
nosed TB in these communities.34

Finally, the impact of ACF is likely to be heterogeneous 
at finer local scales, such as at the level of VDCs. This 
reflects the heterogeneity underlying the transmission 
risk of TB and the ability to find TB cases during ACF. We 
estimated that there were more than 10- fold differences 
in local notification rates within each of the districts, and 
consequently, there can be up to twofold difference in 

the efficiency of ACF. In other words, ACF in some VDCs 
could be two times as impactful as in others. This suggests 
that being able to tailor interventions locally may help 
increase the efficiency and impact of ACF22 35 and opti-
mise cost- effectiveness and access to care; however, noti-
fication data alone may not be sufficient to quantify risks 
accurately.

As with any modelling study, we make several modelling 
assumptions in this study. First, we used home addresses 
recorded during ACF to ascertain patients’ home VDC. 
These addresses are likely to have been self- reported by 
the patients, and the manual process of assigning home 
addresses to VDCs could have led to misspecification. 

Figure 4 Projected future impact of active case finding across four districts. Each panel shows (top) projected percentage 
reductions in annual TB incidence rates and (bottom) projected cumulative cases averted over the 10- year period after the 
completion of ACF. Red lines correspond to Chitwan, green to Dhanusha, purple to Mahottari and yellow to Makwanpur. 
Solid lines correspond to baseline scenarios; dashed lines correspond to low transmission scenarios; and dotted lines to high 
transmission scenarios. ACF, active case finding; TB, tuberculosis.
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Second, we do not model the movement of TB cases 
and transmission of cases across VDC borders. We would 
expect a substantial mixing of people, especially in the 
urban centres of these districts. We also expect migration 
of individuals, especially from rural VDCs to urban areas. 
Both of these can have important implications for the 
epidemiology of TB.36 However, the mixing and move-
ments of individuals at these scales are hard to quantify, 
especially in a low- resource setting like Nepal. By only 
considering local transmission dynamics, we may be 
underestimating the impact of ACF in some of the VDCs. 
Third, we have attributed heterogeneity in TB notification 
to differences in transmission rates. However, many VDC- 
level factors can be driving these differences, including 
differences in socioeconomic demographic factors (eg, 
size of the elderly population, lower socioeconomic condi-
tions), the prevalence of other risk factors (eg, prevalence 
of smoking, alcohol consumption, diabetes), strength 
and proximity of healthcare facilities (eg, time/cost of 
getting to the closest microscopy centre).37–39 Fourth, 
we have used a relatively simple natural history model, 
which does not capture heterogeneity in TB disease (eg, 
subclinical TB, smear positive and negative TB), demo-
graphic heterogeneity (eg, risk of TB and latent TB infec-
tion [LTBI] by sex and age) and long- term resolution and 
reactivation of LTBI. LTBI prevalence, and more gener-
ally, the proportion of incident cases resulting from reac-
tivation, is an important determinant of how impactful 
ACF will be. However, data informing these critical factors 
are currently lacking and is a limitation of this approach. 
Finally, we have assumed that cases found through 
ACF represent average prevalent TB cases in these 

communities. However, ACF could be finding cases that 
are disproportionately less likely to seek healthcare (eg, 
elderly) or cases that are at an early presymptomatic stage 
before they begin transmitting.40 41 In such a scenario, 
our projections are likely to be underestimates since 
individuals found through ACF could be contributing to 
transmission more than an average TB case. Conversely, it 
is also conceivable that most cases detected through ACF 
would either have sought diagnosis in the near future (ie, 
ACF only shortened their infectious duration by a small 
amount) or are likely to self- resolve42 (without contrib-
uting significantly to transmission). In this instance, our 
projections are likely to be overestimates.

In summary, this work suggests that incorporating 
primary data from ACF can improve models TB in these 
high- burden settings by capturing some of the under- 
reporting that is not reflected in standard notification 
data and potentially help optimise ACF by identifying 
geographic areas where ACF may have a disproportion-
ately larger impact. Data collected during ACF suggest 
that TB is widely prevalent in these communities, corrob-
orating the national prevalence survey findings, and 
concerted efforts to detect TB are likely to be successful 
in finding TB cases. Our modelling analyses suggest that 
ACF is likely to be a highly efficient and cost- effective 
tool for TB control in these local communities. However, 
limited duration ACF, which only captures a small frac-
tion of prevalent TB cases, is not likely to have a course- 
altering population- level pact on local TB epidemiology 
if other factors contributing to the TB burden and 
transmission, including health system- related factors are 
not addressed. The END- TB strategy goals for progress 

Figure 5 VDC- level heterogeneity in the efficiency of the projected impact of active case finding. Shown are the projected 
number of cases averted over a 10- year period after active case finding per TB cases treated through ACF in each VDC, with 
at least one case detected across all four districts. Each bubble represents a VDC, and the size of the bubble represents the 
population of the VDC. The dashed horizontal lines represent a weighted average for each district. ACF, active case finding; TB, 
tuberculosis; VDC, village development committee.
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towards TB elimination require comprehensive, system- 
based approaches incorporating FIND- TREAT- PREVENT 
strategies to cure every case and protect vulnerable 
groups from exposure.
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