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The oddball protocol has been used to study the neural and perceptual consequences of implicit predictions 

in the human brain. The protocol involves presenting a sequence of identical repeated events, that are 

eventually broken by a novel ‘oddball’ presentation. Oddball presentations have been linked to increased 

neural responding, and to an exaggeration of perceived duration relative to repeated events. Since the 

number of repeated events in such protocols is circumscribed, as more repeats are encountered the 

conditional probability of a further repeat decreases, whereas the conditional probability of an oddball 

increases. These facts have not been appreciated in many analyses of oddballs; repeats and oddballs have 

rather been treated as binary event categories. Here, we show that the human brain is sensitive to 

conditional event probabilities in an active, visual oddball paradigm. P300 responses (a relatively late 

component of visually evoked potentials measured with electroencephalography) tended to be greater for 

less likely oddballs and repeats. By contrast, P1 responses (an earlier component) increased for repeats as 

a goal-relevant target presentation neared, but this effect occurred even when repeat probabilities were 

held constant, and oddball P1 responses were invariant. We also found that later, more likely oddballs 

seemed to last longer, and this effect was largely independent of the number of preceding repeats. These 

findings speak against a repetition suppression account of the temporal oddball effect. Overall, our data 

highlight an impact of event probability on later, rather than earlier, electroencephalographic measures 

previously related to predictive processes – and the importance of considering conditional probabilities in 

sequential presentation paradigms.  

 

 

 

 

 

Corresponding Author: Blake W. Saurels (blakewsaurels@gmail.com) 

 

Keywords: oddball, repetition suppression, prediction, anticipation, expectation, time perception, P1, P300 

 

Acknowledgements: This research was supported by a Discovery Project Grant, funded by the Australian 

Research Council, awarded to D.H.A. 

 

Open Science Statement: All EEG data and analysis scripts for this project have been made available via 

UQeSpace.  

 

  



  1 

INTRODUCTION 

The oddball paradigm is perhaps the most popular method used to study the neural correlates 

of implicit predictions in the human brain (e.g., Garrido et al., 2009; Nordt et al., 2016; 

Stefanics et al., 2015; Tang et al., 2023). The paradigm involves presenting a sequence of 

identical repeated events (‘repeats’) that are broken by a novel ‘oddball’. When used in 

conjunction with electroencephalography (EEG), there are characteristic differences between 

patterns of electrical potentials evoked by oddballs and repeats that can be elicited by either 

visual (Polich, 2007) or auditory (Näätänen et al., 2007) stimulation. 

 

One characteristic difference is that the brain seems to be less responsive to repeated sensory 

inputs (Desimone, 1996; Wiggs & Martin, 1998) – a phenomenon termed repetition 

suppression. This has also been observed using fMRI and single cell recordings (Buckner et 

al., 1998; Grill-Spector et al., 1999), and it can be detected using a sequence of just 2 identical 

presentations (Summerfield et al., 2011). EEG results relating to repetition suppression point 

to a reduction of occipital potentials as early as ~100 ms post visual stimulation (Tang et al, 

2018). This is consistent with a reduced P1, the first positive potential evoked by visual 

stimulation, which is typically recorded by occipital sensors.  

 

Repetition suppression has also been observed in relation to later potentials recorded by parietal 

sensors (~300ms post visual stimulation; Summerfield et al., 2011). The reduction of these 

potentials can be greater when the repeated events are more probable (Summerfield et al, 2008; 

Summerfield et al., 2011). This suggests that top-down expectations might play a role in this 

suppression, rather than the effect being a simple consequence of neural fatigue. This 

possibility is in line with contemporary theories, which posit that the human brain is 

disproportionately responsive to unexpected events, as these necessitate an updating of an 

internal model of the world (Bubic et al., 2010; Downing, 2007; Friston, 2005; Rao & Ballard, 

1999; Yon, et al., 2023).  

 

In relation to the modulation of later potentials, it is important to distinguish between active 

and passive oddball paradigms (Stefanics et al., 2015). In passive oddball paradigms, 

presentations are not attended (Garrido et al., 2009; Näätänen et al, 2001). In auditory tasks of 

this kind, oddballs elicit a mismatch negativity (MMN) – a decrease in evoked potentials 

recorded by central-frontal sensors from ~150-250 ms post auditory stimulation relative to 

repeats (Näätänen et al., 2007). In visual tasks, this potential is referred to as the visual MMN 

(vMMN), which is more variable, both in terms of its topography and timing (Astikainen et al., 

2008; Male et al., 2020). There is even some evidence that a vMMN might not exist when eye 

movements and attention are adequately controlled (Male et al., 2020). The goal of passive 

oddball paradigms is to examine how the brain responds to unexpected events, while 

controlling for differences in endogenous attention. When observed, MMN is often taken as 

positive evidence for prediction-centred models of brain function, under the assumption that 

further repeats have come to be implicitly predicted by the brain after a sequence of repeated 

events, whereas oddballs are unexpected (Friston, 2005; Friston & Stephan, 2007; Garrido et 

al., 2009; Winkler, 2007).  
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In active oddball paradigms, presentations are attended, with participants typically making a 

judgement about the oddballs (Ernst et al., 2017; Saurels et al., 2022). Oddballs in these tasks 

tend to evoke a greater P300 – an increase in evoked potentials recorded by central-parietal 

sensors (and in some cases from central-frontal sensors) between ~300-600 ms post sensory 

stimulation (Duncan et al., 2009). This potential is thought to be endogenously driven (Levi-

Aharoni et al., 2020), and it has been associated with attentional processing of target stimuli 

(Polich, 2007). The P300 has also been associated with the efficiency of encoding and memory 

(Paller et al., 1987), and with non-probabilistic expectations (Valakos et al., 2020). There is 

also evidence that the P300 is attuned to the probability of events (Donchin, 1981; Mars et al., 

2008). Squires et al. (1976), for instance, used an active auditory oddball task where they found 

that P300 magnitudes were greater when oddballs were less likely.  

 

Active oddball paradigms allow researchers to test for differences between the perceptual 

experience of repeats and oddballs, which can be correlated with measures of neural activity. 

One example is that oddballs seem to have an exaggerated duration relative to repeats (the 

temporal oddball effect; Birngruber et al., 2018; Saurels et al., 2019; Saurels et al., 2022; Tse 

et al., 2004). It has been suggested that this effect is tied to repetition suppression (Pariyadath 

& Eagleman, 2007, 2012). Pariyadath and Eagleman (2012) examined this in a behavioural 

experiment, wherein oddballs were presented after a variable number of ‘repeat’ events (from 

1 to 5). They found a positive linear relationship between the number of repeats preceding an 

oddball and the subjective dilation of oddball duration – the more repeats, the greater the 

relative exaggeration of oddball duration. This would seem to be consistent with mediation via 

repetition suppression, under the assumptions that perceived durations scale with the 

magnitude of neural responses, and that these are linearly reduced for increasing numbers of 

repetition (Pariyadath & Eagleman, 2007, 2012). So, oddball durations would not be 

exaggerated per se, rather the perceived duration of repeated events would be linearly reduced 

with increasing numbers of repetition. However, there is a viable alternative interpretation of 

these data – perhaps people learn that not all oddballs are equally improbable, and not all 

repeats are equally probable, and so they might have tried to anticipate oddballs.  

 

In the behavioural task used by Pariyadath and Eagleman (2012), participants knew that 

oddballs were key to the task, as they had to judge the duration of these events. They might 

therefore have tried to anticipate these presentations. Given that an oddball would eventually 

be presented as participants saw more repeats, they might have appreciated that the probability 

of seeing an oddball eventually starts to increase. Formally, we can say that while the 

distribution of oddballs across sequence positions was uniform, the hazard function was not. 

Participants could therefore (consciously or unconsciously) have been increasingly anticipating 

the need to deploy attention, to accurately gauge the duration of an oddball, as more repeat 

events were encountered. Increased attention to later oddballs could explain the increase in 

their apparent duration relative to repeats (Tse et al., 2004). Under this explanation, the 

relationship between apparent oddball duration and repeat numbers should be moderated by 

the range of repeats used in trial sequences.  
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This illustrates the importance of considering the conditional probabilities of repeat and oddball 

events within sequential oddball paradigms. When repeat presentations are eventually 

interrupted by an oddball, people should eventually come to expect an oddball presentation. 

The point at which the probability of an oddball becomes greater than 0, and at which the 

probability of a repeat becomes less than 1, will depend on the minimum number of repeat 

events it is possible to see before an oddball. The way the probability of an oddball increases 

thereafter will depend on the maximum number of repeat events (and their distribution across 

positions). 

 

Event likelihoods have been explicitly manipulated in paradigms that use sequential pairs of 

presentations (e.g., Saurels et al., 2022; Tang et al., 2018, also see Feuerriegel et al., 2021). 

However, the conditional probability of events is often overlooked in sequential oddball 

paradigms involving longer trains of events. In the passive oddball paradigms used to detect 

MMN, for example, oddball (‘deviant’) events are characterised as being inconsistent with 

predictions even when the conditional probability of an oddball, given the elapsed number of 

repeats, is greater than 50% (for MMN review, see Garrido et al., 2009). This treatment of data 

risks underestimating the true impact of the probability of encountering a given type of event 

(oddball or repeat).  

 

There has been some work in the auditory domain that highlights these issues. Using a passive 

oddball task, Stadler et al. (2006) found that P300 activations were inversely related to event 

probability, such that repeated tones leading up to an inevitable oddball evoked increasingly 

large P300s. Schizophrenic patients, however, did not show this effect (Ford et al., 2010), in 

line with the theory that this population does not respond to event probabilities in the same way 

as neurotypical people (Jeon & Polich, 2003; Sterzer et al., 2018). In active oddball tasks, the 

influence of conditional (repeat and oddball) probabilities might be greater, as participants are 

tasked with actively monitoring inputs in these paradigms. This possibility has not been tested. 

 

Research Questions and Task Overview 

As far as we are aware, the conditional probability of encountering different event types 

(repeats and oddballs) has never been systematically investigated in an active visual oddball 

paradigm incorporating EEG. So, our primary aim was to determine if neural responses to 

repeats and oddballs would reflect the conditional probability of these events. By including a 

behavioural measure of time perception in our experiment, we are also able to assess the 

repetition suppression account of the temporal oddball effect, as this too is concerned with 

neural responses to events leading up to an oddball.  

 

Participants completed 3 sessions of an active visual oddball task (see Figure 1). The number 

of repeats preceding oddballs varied across sessions – either 4-6 (Session A – colour coded as 

magenta throughout), 2-4 (Session B – cyan), or always 4 (Session C – dark blue). Participants 

were instructed to watch all events in each sequence and to report if the oddball, which varied 

in duration, seemed longer or shorter than preceding repeats. Oddballs were odd in that they 

were a different colour than preceding repeats. We recorded scalp electrical potentials with 

EEG.  
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Hypotheses 

If the magnitude of visually evoked potentials in an active oddball task reflects the conditional 

probability of events, such that more probable events evoke smaller potentials, then we should 

be able to detect this by looking at responses to events at the tail end of sequences in Sessions 

A and B. Here, repeats become less likely, and so they should evoke progressively greater 

responses – whereas oddballs become more likely, and so they should evoke progressively 

smaller responses. In Session C however, participants know when the oddball will occur, so 

they can know with certainty when they will see a repeat or an oddball. However, recall that in 

our active task, participants must also consider the duration of repeats, and might focus on 

those repeats closest to the target where the fidelity of memory is best. The results of this 

session allow us to distinguish between the influences of conditional event probabilities and 

strategic changes leading up to a task-relevant event, which might reflect the engagement of 

top-down attentional processes (Baumgartner et al., 2018; Johnston & Venables, 1982; Luck 

et al., 1990). If anticipatory top-down attention is responsible for the changes in neural 

responding, in Session C there should be a tendency for greater evoked potentials to later 

repeats, as the task-relevant presentation nears, even though event probabilities are held 

constant.  

 

A repetition suppression account of neural activity in active oddball paradigms, on the other 

hand, predicts a decrease in the magnitudes of visually evoked potentials with increasing repeat 

numbers. We should be able to detect this by looking at visual events at the tail ends of 

sequences, but also by comparing Session A, which has more repeats, to Sessions B and C.  

 

The repetition suppression account of the temporal oddball effect also predicts a positive 

relationship between the number of repeats and the apparent duration of oddballs relative to 

repeats. Alternatively, this pattern might have emerged simply by conflating repetition number 

with oddball probability. If this is the case, we should observe the same pattern of oddball 

duration distortion for Sessions A and B, which have the same distribution of oddball 

probability at the ends of sequences, but different repeat numbers.  

 

 

METHODS 

Participants 

Twenty volunteer participants (1 male; consistent with previous related investigations, such as 

Saurels et al., 2023; Stadler et al., 2006) were recruited for testing via a research participation 

scheme at the University of Queensland (in exchange for course credit or 40 AUD). All 

reported having normal or corrected-to-normal visual acuity (i.e., they were asked to wear their 

glasses or contact lenses if they would typically use these to read). Ages ranged from 18 to 27 

(M ~ 20, SD ~ 2.3). Participants were informed that they could withdraw from the study at any 

time without penalty. The experiment was approved by the University of Queensland ethics 

committee, which adheres to the Australian Code for the Responsible Conduct of Research.  
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Stimuli and Apparatus 

Stimuli were black (CIE: 0.272, 0.376, 5.016) or white (CIE: 0.285, 0.322, 138.05) circles 

presented against a grey background (CIE: 0.278, 0.333, 37.772). Circles had a diameter 

subtending ~15 degrees of visual angle (dva). Stimuli were presented on a calibrated 24” ASUS 

VG248QE 3D monitor, driven by a Psychtoolbox-3 (Kleiner et al., 2007) and custom Matlab 

R2015b software (The MathWorks, Natick, MA). The monitor had a resolution of 1920 x 1080 

pixels and a refresh rate of 60Hz. Participants viewed stimuli from 57cm, from directly in front 

of the monitor with their chin placed on a chin rest. A Biosemi International ActiveTwo system 

was used to record EEG data (sampling rate: 1024 Hz), using a 10-20 distribution system for 

64 electrodes.  

 

Design and Procedure 

The experiment was split into 3 sessions that differed in the number of repeats that could 

precede an oddball test presentation – either 4-6 (Session A), 2-4 (Session B), or always 4 

repeats (Session C, see Figure 1). Participants were told about the possible number of repeats 

at the start of each session. The three types of session were completed in a counterbalanced 

order across participants.1  

 

Oddballs were a different colour (black or white) relative to repeats, with the colours assigned 

to repeats and oddballs counterbalanced within each session. All repeat events persisted for 

500ms. Oddball durations varied between 300 and 700ms, in 50ms intervals (9 possible test 

durations, equiprobable and presented in a random order, according to the method of constant 

stimuli). Presentations were separated by a 300ms inter-stimulus interval (ISI). Participants 

were encouraged to attend to all events, so that they could develop a good impression of the 

duration of repeats, which they had to compare to the perceived duration of the oddball 

presentation.  

 

In each session participants saw each test duration 8 times for each number of repeats that were 

possible in the session. So, there were 216 trials (9 possible test durations x 8 presentations x 

3 possible test positions) in Sessions A and B and 72 trials in Session C (9 possible test 

durations x 8 presentations) – for a total of 504 individual trials in the experiment.  

 

At the end of each trial, participants were asked if they thought the oddball event had seemed 

to last longer (right click) or shorter (left click) than repeats. They were told that there would 

always be a difference in physical duration between the oddball test duration and repeats, but 

that on some trials it would be hard to detect. They were also told that there would not 

necessarily be an equal number of trials in which the oddball would be shorter or longer than 

standards.  

 

Data Analysis 

We calculated statistics using JASP (JASP Team, 2023).  

 

                                                 
1 Session orders A-B-C and B-A-C were completed once more than the other session orders.  
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Duration Judgement Function Fitting 

For each test duration within each session, we calculated the proportion of trials on which each 

participant reported that the oddball had seemed to last longer than repeats. In Sessions A and 

B, this was done separately depending on the number of repeats preceding the oddball. We then 

fit cumulative Gaussian functions using psignifit (lambda & gamma free to vary between 0-

0.5; Schütt et al., 2016) to individual datasets, and from these calculated the point of subjective 

equality (PSE) between repeat and oddball durations (i.e., the oddball duration at which 

participants were equally likely to report that oddballs had seemed longer or shorter than 

repeats – the 50% point of function fits). We then calculated a ‘Duration Distortion Factor’ 

(DDF) by taking the ratio of the physical repeat duration (500ms) relative to PSE estimates (as 

per Pariyadath & Eagleman, 2007 & 2012). For example, a PSE of 450ms would correspond 

to a DDF of 500:450 or of 1.11, indicating a duration distortion of ~11% for oddballs.  

 

EEG Data Cleaning 

EEG data were high (1 Hz) and low (40 Hz) pass filtered. Data were then subjected to an 

independent components analysis, implemented by the FieldTrip toolbox for Matlab (The Math 

Works and Inc., 2015; Oostenveld et al., 2011), to remove blink artefacts (positive patterns of 

activity at frontal electrodes). Electrode activity was then average referenced, to correct for 

baseline skin conductance levels. Data were then sorted into trials, and events within trials, via 

custom MATLAB code. 

 

For ERP analyses, the response period for each event (700 ms) within each trial was baseline-

corrected relative to the average of activity recorded by each sensor during a 100ms period 

prior to the onset of events. We excluded peaks that were ± 3 SDs from the mean for a given 

event number and session.   

 

Cluster-based Permutation Analyses 

As part of our analyses, we performed a cluster-based permutation analysis using the FieldTrip 

toolbox (Oostenveld et al., 2011) for MATLAB (settings: Monte Carlo method; test statistic 

set as the maximum of the cluster-level statistics; cluster alpha: .05; test alpha: .01; 

randomisations: 1000; minimum number of neighbourhood channels required sample inclusion 

in clustering algorithm: 3).  

 

Transparency and Openness Statement 

All data and code can be found at UQ eSpace.  

 

 

RESULTS 

Neural Response to Improbable vs Probable Visual Events 

While there are several typical neural markers seen in EEG recordings associated with errors 

of visual prediction (Garrido et al., 2009; Nordt et al., 2016; Polich, 2007), the spatial location 

on the scalp and timing of these markers can vary with the visual input used and the timing of 

presentations. So, in an effort start from an unbiased position, we first compared neural 

responses to improbable events (those that had a 50% or less chance of occurring) to neural 
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responses to probable events (those that had a greater than 50% chance of occurring) using a 

cluster-based permutation analysis. Two positive spatiotemporal differences between neural 

responses to improbable relative to probable events were identified. The first was at ~73-133 

ms post visual event onset at a cluster of occipital electrodes (see Figure 2A-B). This can be 

regarded as evidence for an occipital P1 difference (Di Russo et al., 2002) contingent on the 

probability of events. The second positive difference was at ~330-445 ms post visual event 

onset at a cluster of central-frontal electrodes (Figure 2C-D). This can be regarded as evidence 

for a central-frontal P300 difference (Duncan et al., 2009) contingent on the probability of 

events. This analysis also identified the dipole of the P1 difference: a negative central-frontal 

difference at the same time-point as the P1.  

 

Neural Responses to Increasing Improbable Repeats 

Using the information provided by the cluster test as to where and when neural markers 

associated with visual event probability could be found in our experiment, we were then able 

to narrow our scope of analysis to events at the end of oddball sequences – where repeat events 

become less likely and oddballs become more likely. To do this, we needed to quantify the P1 

and P300 response for each visual event in oddball sequences. One common method is to 

average activity within a specific time window for relevant electrodes. However, a risk 

associated with this method is that individual differences can impact the timing and duration 

of ERP components, and data from sections of the ERP directly before or after the component 

of interest can add noise to the component estimate.  

 

Instead, we took peak amplitudes as the metric for P1 and P300 strength. For each component, 

we averaged the activity across an equal number of electrodes (the 6 strongest contributors to 

each positive cluster; for occipital P1s: Oz, Iz O2, O1, PO8, & PO7; and for central-frontal 

P300s: FCz, FC1, FC2, C1, Cz, C2), and then across trials. We then found the peak amplitude 

for each event number, separately for repeats and oddballs, within the time-window for each 

component (to safely account for individual differences in latencies, we searched a time-

window slightly wider than the range suggested by the cluster analysis: 50-200 ms for occipital 

P1s, and 300-500 ms for central-frontal P300s; visual inspection of the data suggested that we 

found the relevant component peak in all cases).  

 

P1 Peaks for Repeats 

Starting with repeats, Figure 3A depicts P1 peak amplitudes for the last 3 possible positions in 

a sequence where a repeat could have occurred (see table under the x-axis for actual sequences 

positions and event probabilities). Note that for Sessions A and B, the probability of seeing a 

repeat event decreased as participants saw more events, whereas it remained a certainty that 

they would see a repeat in Session C. We subjected these data to a 2-way within-subjects 

ANOVA, with repeat position from end of sequence (i.e., 3rd last, 2nd last, and last possible) 

and session type as IVs.  

 

We found a main effect of position from end of sequence [F(2,38) = 28.85, p < .001, η2
p = .603], 

such that P1 strength progressively increased the later the repeat occurred [3rd last < 2nd last: t 

= 4.48, p < .001; 2nd last < last: t = 3.08, p = .004]. There was no main effect of session type 
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[F(2,38) = 1.12, p = .336, η2
p = .056], and there was no interaction [F(4,76) = 0.53, p = .716, η2

p = 

.027]. For good measure, we checked that there was a simple main effect of position from end 

of sequence for Session C, which there was [F(2,38) = 15.97, p < .001]. As we see this 

progressive increase in P1 strength also occurred in Session C, even though the probability of 

a repeat remained a certainty in this session, this undermines the link between P1s and visual 

event probability.  

 

P300 Peaks for Repeats 

Figure 3B depicts P300 peak amplitudes for the last 3 possible positions in a sequence where 

a repeat could have occurred. We performed the same analysis for these P300 peaks, and again 

found a main effect of position from end of sequence [in the same direction as P1s; F(2,38) = 

19.34, p < .001, η2
p = .504; 3rd last < 2nd last: t = 2.33, p = .008; 2nd last < last: t = 3.83, p < 

.001] and no main effect of session type [F(2,38) = 0.25, p = .781, η2
p = .013]. However, here we 

found an interaction [F(4,76) = 4.85, p = .002, η2
p = .203]. Follow-up analyses revealed a simple 

main effect of position from end of sequence for Session A [F(2,38) = 20, p < .001] and Session 

B [F(2,38) = 12.66, p < .001], but not for Session C [F(2,38) = 1.22, p = .308]. The pattern of P300 

peaks therefore aligns with a link to visual event probability.  

 

Neural Responses to Increasing Probable Oddballs 

P1 Peaks for Oddballs 

We then examined neural responses to oddballs in the same way, the difference being that these 

became more probable as people saw more events. Starting with P1s (see Figure 3C), we 

subjected the data from Sessions A and B to an ANOVA with the same IVs as above and found 

no main effect of position from end of sequence [F(2,38) = 0.61, p = .55, η2
p = .031], no main 

effect of session type [F(1,19) = 0.08, p = .787, η2
p = .004] and no interaction [F(2,38) = 3.09, p = 

.057, η2
p = .14]. As there was only one possible oddball position in Session C, this was 

compared to the last possible oddball position in Sessions A and B via a separate one-way 

ANOVA. There was no effect of session type here either [F(2,38) = 0.69, p = .51, η2
p = .035]. 

These results align with the P1 results for repeats in Session C, in that they undermine a 

relationship between P1 strength and visual event probability.  

 

P300 Peaks for Oddballs 

Lastly, we subjected the P300 data for oddballs (see Figure 3D) to the same analyses we did 

for P1s. A 2-way ANOVA that included data from Sessions A and B only revealed a main 

effect of position from end of sequence [F(2,36) = 6.77, p = .003, η2
p = .273], such that P300 

strength decreased the later the oddball occurred. Follow-up tests revealed this difference was 

driven by a difference between oddballs that occurred in the earliest possible position (least 

likely) and both the 2nd last [3rd last < 2nd last: t = 2.9, p = .006] and last possible positions [3rd 

last < last: t = 3.41, p = .002]. There was no main effect of session type [F(1,18) = 0.08, p = .783, 

η2
p = .004], and there was no interaction [F(2,36) = 0.57, p = .573, η2

p = .03]. A separate one-

way ANOVA revealed no difference between oddballs in Session C, to those in the last possible 

position in Sessions A and B [F(2,36) = 2.49, p = .097, η2
p = .121; this test violated the 

assumption of sphericity; following a Greenhouse-Geisser correction: F(1.5,26.3) = 2.49, p = .115, 
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η2
p = .121]. Consistent with the findings for repeats, the pattern of P300 peaks for oddballs 

aligns with a link to visual event probability.   

 

Perceived Duration of Oddballs Relative to Repeats 

We then wanted to see how our duration perception data accorded with the results of Pariyadath 

and Eagleman (2012). Figure 4 depicts duration judgement data as DDFs. These are ratios, so 

a DDF >1 indicates that oddballs seemed to last longer than preceding repeats (i.e., a DDF of 

1.1 indicates that oddballs seemed 10% longer than repeats). We analysed these using the same 

structure of ANOVAs as above. A two-way ANOVA that included data from Sessions A and 

B revealed a main effect of position from end of sequence [F(2,38) = 68.27, p < .001, η2
p = .782], 

such that oddballs seemed longer relative to repeats when they occurred after more repeats [3rd 

last < 2nd last: t = 8.37, p < .001; 2nd last < last: t = 2.88, p = .006]. While there was no main 

effect of session [F(1,19) = 2.98, p = .1, η2
p = .136], there was an interaction [F(2,38) = 16.14, p < 

.001, η2
p = .459]. Follow-up analyses revealed a simple main effect of session was present for 

the earliest possible oddballs only [F(2,38) = 19.66, p < .001], such that oddballs in the earliest 

possible position in Session A seemed longer than those in Session B. A separate one-way 

ANOVA revealed no difference between oddballs in Session C to those in the last possible 

position in Sessions A and B [F(2,36) = 0.5, p = .614, η2
p = .027]. To illustrate the dissociation 

from absolute repeat number, when Session C oddballs (always in the 5th position) were 

compared to oddballs in the 5th position of Sessions A and B [one-way ANOVA; F(2,36) = 11.98, 

p < .001, η2
p = .4], there was only a difference between Sessions C vs A [which had different 

event likelihoods; t = 3.84, p < .001], not for Sessions C vs B [which had the same event 

likelihood; t = 0.7, p = .162]. So, the results align with the previous finding that seeing more 

repeats within an oddball sequence with a circumscribed number of possible repeats makes the 

temporal oddball effect stronger. However, the lack of difference between sessions with more 

or less numbers of repeated events suggests that this is not a result of the number of repeats per 

se.  

 

 

DISCUSSION 

Initially, we found that the strength of occipital P1s (the first positive scalp potential measured 

for visual inputs), and central-frontal P300s (a later, positive scalp potential that has been 

associated with cognitive operations and event probability, see Polich, 2007) were both 

enhanced for improbable events, relative to probable ones, in this active oddball paradigm.  

 

We then focussed on the tail ends of oddball sequences, where repeats became less likely and 

oddballs more likely. We found that P300 amplitudes tracked event probabilities here – they 

were greater for later repeats and earlier oddballs in Sessions A and B. There was also no 

difference in P300 strength between these two sessions, despite them having different numbers 

of repeats. In Session C, where people could know with certainty what they were about to see, 

P300s were unchanged across different stimulus positions for repeats, and unchanged 

compared to similarly certain presentations in other sessions for oddballs. In sum, P300s varied 

with conditional probability, but not with other factors when conditional probability was 

controlled. 
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By contrast, P1s did not track event probabilities – there was no difference in P1 strength for 

oddballs with different probabilities, and although P1s did increase as repeat probabilities 

decreased in Sessions A and B, there was an equivalent increase in P1 strength in Session C 

when event probabilities were held constant. This is suggestive of an influence of goal-directed 

/ top-down attention (Baumgartner et al., 2018; Johnston & Venables, 1982; Luck et al., 1990), 

with P1 magnitudes increasing as participants increasingly attended to inputs as task-relevant 

presentations neared.  

 

We found that oddballs that occurred later in sequences seemed longer. This might seem to be 

consistent with the repetition suppression account of the temporal oddball effect (i.e., later 

oddballs would seem relatively longer, as more repetitions have preceded them, resulting in 

more repetition suppression). However, neither P1 or P300 strengths decreased as people saw 

more repeats, and if these are regarded as a metric of neural response magnitudes, then our data 

are inconsistent with the predictions of the repetition suppression account of the temporal 

oddball effect. 

 

Implications and Future Directions 

P300s track visual event likelihood in active oddball sequences. 

The P300 is known to be exaggerated for oddballs and for target events in active oddball 

paradigms, and it has been linked to attentive and to memory processes (Paller et al., 1987; 

Polich, 2007). The P300 is also greater for less frequent auditory oddballs (Squires et al., 1976). 

Here, we have shown that people are generally attuned to the conditional probability of visual 

events in an active, sequential oddball paradigm – resulting in exaggerated P300s for 

improbable oddballs, but also for improbable repeats.  

 

P1 magnitudes might reflect the level of endogenous attention.  

It has been shown previously that P1 responses can be modulated by top-down attention 

(Baumgartner et al., 2018; Johnston & Venables, 1982; Luck et al., 1990). This aligns well 

with our finding that P1 responses increased as target oddballs approached – people likely 

preferentially attended oddballs and the directly preceding repeats, as these events were critical 

for the relative duration decision that was demanded of them on each trial. Changes in top-

down attention could also explain why later, more certain oddballs seemed longer in our task, 

as these events were more likely to have been fully attended. This is in contrast to P300 

responses, which were linked to conditional event probabilities.  

 

Interplay between expectations and attention.  

One of the challenges for researchers looking at how expectation might impact on neural, 

perceptual, and behavioural responding is how to manage attention (see Summerfield & Egner, 

2009; Summerfield & Egner, 2016, for reviews). One approach has been to try to partition out 

the effects of attention, in order to look at the isolated impact of expectation. This has been 

attempted by directing attention away from the sensory inputs with varying probabilities that 

are targeted for analysis (e.g., Garrido et al., 2013; Richter & de Lange, 2019). These studies 

suggest that the human brain is in some ways more responsive to unlikely events (see Garrido 



  11 

et al., 2009; Friston, 2005). However, it is possible that people attend to these inputs to some 

unmeasured degree, creating ambiguity as to the cause of any modulation in responding. 

Moreover, while a focus on responses to unattended inputs does serve to increase our 

understanding of how distracted brains respond to task-irrelevant inputs, if we wish to 

additionally understand how predictive processes shape neural and behavioural responses in 

engaged people, we also need to consider how attention and expectations might interact. 

 

Contemporary work that has actively manipulated attention has uncovered some surprising 

results in relation to predictive processes and event likelihoods. For instance, consider 

contemporary MMN research. Increases in the MMN to unattended, unexpected auditory 

inputs has previously been considered a ‘signature’ of prediction error within the predictive 

coding framework (Garrido et al., 2009). However, when visual inputs are used instead, the 

(v)MMN is dependent on attention (Male & O’Shea, 2023; Smout et al., 2019) – when attention 

is directed away from the unexpected visual input, the (v)MMN disappears. An analogous set 

of findings can be seen in fMRI research looking at increases in BOLD responses to unexpected 

inputs. This increase occurs when people can attend visual events (Richter et al., 2018; for a 

review see de Lange et al., 2018), or when their attention is not actively directed away from 

the visual input that is varying in likelihood (Kok et al., 2012). When attention is directed away 

though, the increased BOLD response to unexpected inputs disappears (Richter & de Lange, 

2019). These results highlight that it would be unwise to generalise how the brain treats 

unexpected sensory information from results obtained in only attended or unattended contexts.  

 

Our study used an active oddball task – so people had to pay attention to the visual events, but 

probably not equally. People knew, either approximately (Sessions A & B) or precisely 

(Session C) when a task-relevant oddball would occur, so they may have increasingly allocated 

top-down attention to events as an oddball presentation neared. What is interesting about our 

data is that the P1, an early ERP component, increased in the lead up to oddballs, but was not 

tied to event probabilities (as it still increased in Session C, when the probability of all events 

after the 1st was fully specified, and was not greater for more surprising oddballs). It has often 

been claimed, based on hierarchical predictive processing accounts of brain function (Rao & 

Ballard, 1999), that responding at early stages of sensory processing should be modulated by 

event probabilities (Alink, 2010; Clark, 2013). Instead, we found that the later P300 – which is 

often considered as a more ‘cognitive’ and endogenously driven evoked potential (Polich, 

2007) – was linked to event probabilities. P300s were greatest for improbable oddballs that 

occurred earlier in sequences, rather than later, guaranteed ones that people would have been 

able to prepare to devote their full attention to.  

 

This link, between a relatively late response and event probabilities, is consistent with other 

recent EEG findings. For instance, Alilović et al. (2019) found that event probabilities 

modulated EEG response measures ~240 ms post event onsets, whereas attention modulated 

responses from as early as ~130 ms post stimulus onset. Moreover, they did not detect any 

impact of event probabilities at the earliest stages of visual processing – indexed as the early 

phase of C1 (from 50-80 ms post event onset). Similar results exist for the auditory modality. 

Todorovic and de Lange (2012) found, using MEG, that event probabilities did not modulate 
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responding until an intermediate stage of auditory processing. One contemporary theory that 

might account for these findings is the ‘opposing processes theory’ (Press et al., 2020). 

According to this account, the human brain balances a tendency to highlight what is informative 

(based on what it expects to encounter), with the need to veridically represent the external 

world, by weighting initial processing and perception toward probable inputs, but then biasing 

later processing toward improbable inputs.  

 

It might be tempting to consider modulations of the later P300 component as an index of 

prediction error signals according to the predictive coding framework. We think this is tenuous 

for two reasons: 1) the relationship between P300 amplitudes and prediction outcomes is 

reversed when predictions are made explicitly (e.g., the person predicts they will see a white 

or black circle ahead of time), rather than being implicitly inferred from the statistics of the 

sensory environment – that is, P300s are greater for explicitly expected, rather than unexpected, 

visual events (Saurels et al., 2022). This was true even when the explicitly expected and 

unexpected events were equiprobable. And 2) looking at electrical potentials at the scalp or 

BOLD activity cannot tell us how ‘error’ units/neurons and ‘representation’ units/neurons are 

responding differently, and understanding how these dissociable units/neurons (if they exist) 

change their responding to different event probabilities is necessary for identifying a prediction 

error and prediction update sequence (see Walsh et al., 2020 for review). So, we cannot be sure 

if an enhanced P300 is necessarily indicative of a prediction error signal, or if it reflects some 

other composite of sensory and cognitive processes.  

 

The repetition suppression account of the temporal oddball effect does not fit the neural or 

behavioural data.  

Our findings undermine the repetition suppression account of the temporal oddball effect in 

two ways. First, we did not find a progressively reduced ERP component response to repeated 

inputs followed by an uptick for oddballs. Note that this does not speak against repetition 

suppression generally, simply that in this active, sequential oddball paradigm, which mirrors 

those used to make claims about repetition suppression driving the temporal oddball effect, we 

did not observe the pattern of neural activity predicted by this theory. Second, despite there 

being more repeats in Session A than Session B, we did not observe a general difference in 

temporal oddball effect strength between these sessions. This accords with the findings of 

Saurels et al. (2023), which show that seeing progressively more repeats before an oddball does 

not impact temporal oddball effect strength when controlling for anticipatory allocation of 

attention.  

 

We did find that improbable oddballs (those that appeared in the earliest position) in Session 

A (preceded by 4 repeats) seemed longer than equally improbable oddballs in Session B 

(preceded by only 2 repeats). One possibility is that repetition number might interact with 

visual event probability in this context, and that this might produce differences in neural and 

perceptual outcomes.  
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Statistical expectations in sequential oddball paradigms. 

As illustrated in Figure 1, sequential oddball paradigms that have a prescribed range for the 

oddball presentation can encourage a statistically informed expectation. If people are attuned 

to event probabilities, they might begin to expect an oddball, and may not expect further 

repeats. To examine how the brain reacts to unexpected inputs, in MMN research for example, 

oddballs are typically considered as implicitly unexpected (Garrido et al., 2009; Stefanics et 

al., 2015), a dichotomous treatment of events which might underestimate the impact of 

conditional event probabilities. For instance, consider the interpretational differences if we had 

only examined a difference between repeats and oddballs, and ignored conditional probabilities 

and the possibility of task-relevant changes in attention.  

 

Conclusions 

From these findings we conclude that: 1) as not all oddballs are equally unexpected, and not 

all repeats are equally expected, we should be cautious about interpreting changes in brain 

activity from violations of repetition as an index of prediction error, and 2) the repetition 

suppression account of the temporal oddball effect does not match our behavioural or neural 

findings. The key takeaway is that while it may be an oversimplification to consider neural 

responses to all visual oddballs as indexing prediction error, our data shows that one previously 

examined neural response – the P300 – does index the conditional probability of visual events 

in these oddball tasks, in line with the general picture that the brain learns and modulates its 

responding to reflect the statistics of its environment.  
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Figure 1. A depiction of the trial sequence options in each session. White circles 

represent oddballs, and black circles represent repeats. The numbers inside the circles 

denote the conditional probability of participants seeing a repeat or oddball at a given 

event number. Participants completed the duration judgement task at the end of each 

trial in all sessions.  
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Figure 2. [A] Mean activity (µV) at P1 cluster electrodes for improbable and probable events as a function of time from event 

onset. Shaded areas depict SE. Vertical lines bound the cluster time-window. [B] Map of mean activity within the cluster time-

window. White circles depict electrodes that contributed to the cluster. [C D] Same as A B, but for the P300 cluster.  
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Figure 3. [A] P1 peak amplitudes (µV) for repeats at the tail ends of sequences (i.e., in the last 3 possible positions), grouped by 

session. Black error bars depict ±1 SE, and dots depict individual participants. Topographical maps above each bar depict the 

mean activity for the P1 cluster time-window, averaged across participants. The x-axis contains information about the event 

probability, sequence position, and session for each visual event. [B] P300 peaks for repeats. [C] P1 peaks for oddballs. [D] P300 

peaks for oddballs. Note that oddballs can only occur at event number 5 in Session C.  

 

 

 

 

  



  23 

 
Figure 4. The duration distortion factor (a ratio of oddball perceived 

duration relative to repeats, where a value >1 indicates that oddballs 

seemed longer than the preceding repeats), for each oddball event, 

grouped by session. Black error bars depict ±1 SE, and dots depict 

individual participants. The x-axis contains information about the 

event probability, sequence position, and session for each visual 

event.  


