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Abstract—This paper is focused on multiuser load modulation
arrays (MU-LMAs) which are attractive due to their low system
complexity and reduced cost for millimeter wave (mmWave)
multi-input multi-output (MIMO) systems. The existing precod-
ing algorithm for downlink MU-LMA relies on a sub-array
structured (SAS) transmitter which may suffer from decreased
degrees of freedom and complex system configuration. Further-
more, a conventional LMA codebook with codewords uniformly
distributed on a hypersphere may not be channel-adaptive and
may lead to increased signal detection complexity. In this paper,
we conceive an MU-LMA system employing a full-array struc-
tured (FAS) transmitter and propose two algorithms accordingly.
The proposed FAS-based system addresses the SAS structural
problems and can support larger numbers of users. For LMA-
imposed constant-power downlink precoding, we propose an FAS-
based normalized block diagonalization (FAS-NBD) algorithm.
However, the forced normalization may result in performance
degradation. This degradation, together with the aforementioned
codebook design problems, is difficult to solve analytically. This
motivates us to propose a Deep Learning-enhanced (FAS-DL-
NBD) algorithm for adaptive codebook design and codebook-
independent decoding. It is shown that the proposed algorithms
are robust to imperfect knowledge of channel state information
and yield excellent error performance. Moreover, the FAS-DL-
NBD algorithm enables signal detection with low complexity as
the number of bits per codeword increases.

Index Terms—Load modulation arrays, multiuser MIMO
systems, Deep Learning, codebook design, precoding, block-
diagonalization.

I. INTRODUCTION

THE millimeter-wave (mmWave) bands hold a promising
prospect for next-generation wireless communications

due to the abundant bandwidth and the potential to offer
high data rates. The small wavelengths at mmWave bands
permit the use of a massive antenna array in a collocated area
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as well as multiple antenna technologies such as multiple-
input multiple-output (MIMO) [1]. Of course, MIMO systems
have attracted significant attention due to their diversity and
multiplexing gains [2]–[4]. However, the use of large numbers
of antennas in conventional MIMO systems can result in
prohibitively high system complexity and hardware cost as
each transmit antenna requires a separate radio frequency
(RF) chain and an associated power amplifier (PA). In a
practical MIMO system, these PAs distributed on each transmit
antenna impose per-antenna power constraints [5]–[7]. Despite
the fact that convex optimization methods and the capacity
region duality could be adapted to downlink channels with per-
antenna power constraints [7], the relevant optimization is still
challenging [6]. Moreover, voltage modulation of a conven-
tional MIMO system may impose a linearity requirement on
the PAs for improved power efficiency. An effective solution
to circumvent these drawbacks is to develop a communication
system based on load modulation arrays (LMAs) [8]–[10].

Unlike the conventional MIMO transmitter, an LMA trans-
mitter uses a central power amplifier (CPA) to serve the entire
antenna array with any number of antennas. By feeding the
CPA using a single source with a fixed voltage level and
frequency, the transmitted signal is modulated via varying the
antenna load impedance in accordance with information bits
directly [9]. In this way, the LMA transmitter eliminates the
need for an RF chain per antenna and thus avoids the problems
of per-antenna power constraints. As the number of antennas in
massive MIMO systems grows, the use of an LMA transmitter
leads to a significant reduction in the RF chain cost and system
complexity accordingly. However, the mismatch in antenna
impedances may cause power flow back to the CPA which
could decrease the power efficiency. To address this issue, it
is desirable that the instantaneous sum power at the transmitter
should be constant [11].

A. Related Works

From the precoding perspective, most existing algorithms
target sum power constraints [12]–[14] or per-antenna power
constraints [5], [6]. However, unlike the aforementioned two
types of constraints where the capacity region is known
[15], the capacity region of the downlink channels with
constant power constraints has not been well studied, and
little is known about the relevant precoding algorithms. For a
downlink multiuser LMA (MU-LMA) communication system
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Fig. 1: Structures of two types of MU-LMA transmitters. (a) SAS transmitter; (b) FAS transmitter.

with constant power constraint, [16] proposed an iterative
precoding algorithm based on the framework of least square
error. However, it is only valid for systems where each user
equipment (UE) has a single receive antenna. By relaxing the
constraint on the number of receive antennas, [17] developed
a precoding algorithm based on a sub-array structured (SAS)
transmitter. Such an algorithm can ensure the power constraint
by configuring an exclusive LMA transmit unit for each user
and then eliminating the multiuser interference (MUI) using
the block diagonalization (BD) algorithm proposed in [18].

However, an MU-LMA system employing an SAS trans-
mitter may not be able to support a large number of users
and suffers from the following structure-related problems. To
understand this, let us look at the SAS transmitter shown in
Fig. 1a. First, as each user is assigned a part of the antenna
array, the system’s degrees of freedom shrink. This results
in a deteriorated bit error rate (BER) performance when the
number of users increases [19]. Second, as the precoding
matrices between users are forced to be diagonally arranged,
the total number of transmit antennas must be an integer
multiple of the number of users. This imposes inflexibility
in system configuration. Moreover, the minimum number of
transmit antennas required to support a given number of
users grows quadratically, which severely limits the number
of concurrent users supported by the system. In addition, the
design of the combiner is absent in the SAS-precoding, which
limits the algorithm’s effectiveness for varying numbers of
receive antennas.

In communication systems employing LMAs, codebook
design is another crucial issue. Phase Modulation on the
Hypersphere (PMH) is regarded as a generalized form of
signal codebook generation for LMA systems. It ensures a
constant instantaneous sum power by designing a set of points
distributed on the surface of a multidimensional hypersphere
via clustering methods [20], [21]. It is known that the capacity
of PMH on the additive white Gaussian noise channel is
achieved with points distributed uniformly on the surface of
a multidimensional hypersphere [22]. However, so far, the
LMA codebook design for mmWave channels is largely open,
and the uniformly distributed PMH method is not optimal for
downlink mmWave channels. In particular: 1) the generated
codebook points may be inflexible, unable to adapt to fading

channels; 2) as the number of transmitted bits increases, the
size of the codebook increases exponentially, resulting in an
exponential increase of complexity for codebook generation
and signal detection.

That said, the codebook-related problem (i.e., codebook
design for mmWave channels, complexity increase in terms
of codebook design and detection) may not be regarded as
a simple optimization problem. Therefore, we employ deep
learning (DL), which is considered a powerful tool that
mitigates challenges in MIMO communication systems [23],
and tackle this problem from a new perspective. The end-to-
end (E2E) learning concept was first proposed in [24]. As
a holistic approach to designing the transmitter and receiver
in one step, the end-to-end learning system seeks to find
the optimal solution for the entire system, as opposed to the
optimal solution for each separate block. Supervised by the
objective of the recurrence of transmitted signals, the trained
encoder in an end-to-end system is capable of generating
codebooks adapting to given channels, thus improving the bit-
level precision [25]. Additionally, a trained decoder operates
the signal detection independent of the codebook size and thus
simplifies the detection complexity when transmitting a large
number of information bits at a time.

On the other hand, an end-to-end network can theoretically
be used to construct the entire downlink MU-LMA system,
thereby achieving the MUI cancellation and the codebook-
related problem in one step. However, this would lead to
convergence difficulty due to the conflict of multiple tasks. In
this paper, we advocate the idea of constructing an end-to-end
network that focuses only on the codebook-related problem.

B. Contributions

In view of the above background, this paper develops an
enhanced transmitter structure, new codebooks, and a signal
detection method with reduced complexity for MU-LMA
systems for downlink mmWave channels.

First, we propose a new MU-LMA communication system
employing a full-array structured (FAS) transmitter. As shown
in Fig. 1b, unlike the SAS transmitter, all the users in the FAS
transmitter share the entire antenna array. Thus, the degrees
of freedom per user (which are independent of the number of
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TABLE I: List of acronyms.
Acronyms Description Acronyms Description

BD block diagonalization LMA load modulation array
BER bit error rate MIMO multi-input multi-output
BS base station ML maximum likelihood

CPA central power amplifier mmWave millimeter wave
CSI channel state information MU multiuser
DL deep learning MUI multiuser interference
FAS full-array structured PASPR peak-to-average sum power ratio

FAS-NBD FAS-based normalized BD PMH phase modulation on the hypersphere
FAS-DL-NBD FAS-based DL-enhanced normalized BD RF radio frequency

FAS-E2E FAS-based E2E learning SAS sub-array structured
FC-FNN fully connected feedforward neural network SNR signal-to-noise ratio

ICSI imperfect knowledge of CSI SVD singular value decomposition
LM load modulator UE user equipment

users) increase. Further, the FAS transmitter can dynamically
support varying numbers of users without imposing a propor-
tional relationship between the number of transmit antennas
and the number of users. Furthermore, it can break the upper
limit of the number of users supported by an SAS transmitter
[17].

Subsequently, we consider an FAS-based normalized BD
(FAS-NBD) algorithm. We address the MUI cancellation
problem using the well-known BD proposed in [18] and then
design a normalization module to achieve the constant power
constraint. The FAS-NBD algorithm is LMA-adaptive and
can jointly design the precoders and combiners. However, the
forced normalization may cause BER performance degrada-
tion [17].

To alleviate the performance degradation and address the
codebook-related problem, we develop a novel FAS-based DL-
enhanced normalized BD (FAS-DL-NBD) algorithm. Instead
of using the conventional codebook (i.e., a set of uniformly
distributed PMH points) at the transmitter, we deploy a
multilayer fully connected feedforward neural network (FC-
FNN) as an encoder before the BD precoder. Such encoders
seek to generate codebooks adapting to the fading channels
and alleviating the performance degradation in FAS-NBD.
Likewise, we deploy a multilayer FC-FNN as a decoder at
each receiver to replace the conventional maximum likelihood
(ML) detector. Since a trained decoder is independent of the
codebook size, it leads to improved LMA signal detection
with low complexity. As multiple FC-FNNs are nested on
different parts of the network, the framework of the proposed
FAS-DL-NBD algorithm can be regarded as an E2E-like FC-
FNN-reinforced communication network. In contrast to the
conventional one-step end-to-end network [24], the nested FC-
FNNs cooperate with the NBD precoder and are trained with
refined objectives. This ensures the convergence of the network
and reduces the difficulty of training.

The superiority of the proposed FAS-based system is proven
with theoretical analysis. Meanwhile, we compare the perfor-
mance of the proposed FAS-DL-NBD algorithm and the one-
step end-to-end learning in terms of convergence capability.
The performance of the two proposed algorithms is compared
with that of the existing SAS-precoding algorithm in terms of
the bit error rate (BER) and the robustness against imperfect
knowledge of channel state information (ICSI). We also show
the advantages of the two proposed algorithms to support a

larger number of users. Further, we demonstrate the capa-
bility of the DL-enhanced algorithm with achieving a low-
complexity detection by varying the number of transmitted
information bits.

C. Organizations and Notation

The remainder of this paper is organized as follows. The
system model is explained in Section II. The frameworks of
FAS-NBD and FAS-DL-NBD are illustrated in Sections III
and IV, respectively. Section V discusses the advantages of
the proposed FAS-based algorithms compared with the SAS-
precoding. Section VI examines the convergence of the FAS-
DL-NBD and its advantages over an LMA-adaptive E2E-based
framework. Section VII presents our simulation results. Fi-
nally, we conclude this paper in Section VIII by summarizing
the performance of the proposed algorithms and presenting
our conclusions.

Notation: Scalars are represented by italicized characters,
while matrices and vectors are represented by bold upper
case and lower case characters. Uppercase calligraphic letters
represent specially defined sets, such as S. Matrix elements are
represented by [·], whereas set elements are represented by {·}.
The Frobenius norm of matrices or vectors is represented by
‖ · ‖. Furthermore, the set of real and complex-valued numbers
are denoted respectively by the symbols R and C. A ∈ CM×N
(A ∈ RM×N ) denotes that A is a complex-valued (real-
valued) matrix with M rows and N columns. A complex
Gaussian random variable is denoted by CN ∼ (µ, σ2),
where µ is the mean and σ2 is the variance. Transpose and
Hermitian transpose are also represented by (·)T and (·)H ,
respectively. Furthermore, d·e and b·c represent the ceiling and
floor functions, respectively.

For the convenience of readers, the acronyms used in this
paper are listed in Table I.

II. MULTIUSER LMA MODEL ON THE DOWNLINK

A. Load Modulated Arrays

The structure of an LMA MIMO transmitter with NT
antennas is depicted in Fig. 2. The CPA serves the en-
tire antenna array and is powered by a constant-magnitude
RF carrier source. Each antenna is equipped with an LM,
which can be implemented with varactor diodes or pin
diodes. Assume the impedance on the ith antenna is Zi.
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The NT × 1 load impedance vector could be represented as
Z = [Z1, · · · , ZNT ]T . As the voltage magnitude is always
constant, the current on the ith antenna is proportional to 1/Zi.
By selecting an impedance vector in accordance with given
information-bearing bits, the antenna currents vary and thus
result in a modulated transmit signal. Consequently, an LMA
transmitter utilizing pin diodes necessitates only a level shifter
to connect the digital baseband to the pin-diode switches, as
opposed to the DACs, upconverters, and mixers required by
conventional transmitter structures.

Load impedance 
mapper LM

LM

LM

Matching
network …

CPACPACPA

bit signal 

Circulator

Resistor, R0 cos( )v t

1

2

TN

Fig. 2: Structure of the Load Modulated MIMO Transmitter.

At the transmitter, the effective admittance seen by the
power source is Y =

∑NT
i=1

1
Zi

. Notably, the LMA may suffer
a severe mismatch between the varying load impedances of
different antennas and the effective antenna load impedance.
This leads to reduced energy efficiency as power could flow
back to the CPA. As shown in Fig. 2, to redirect any reflected
power to the resistor R, a circulator is employed. The CPA
efficiency is described by the PASPR [11]. It is the peak-to-
average power ratio aggregated over all the antenna elements.
To address the reduced energy efficiency issue and ensure the
PASPR of 1, the LMA signal vectors should be distributed
on the surface of a multidimensional hypersphere (i.e., PMH)
[26].

For an LMA communication system, the PMH codebook
Sn,P with constant power constraint can be expressed as

Sn,P = {ti ∈ Cn×1| ‖ ti ‖2= P}, (1)

where the number of information bits is denoted as n, and the
power for transmission is constrained to P . M = 2n stands for
the codebook size, and ti ∈ Cn×1 denotes the ith codeword.
The construction of a conventional LMA codebook Sn,P can
be formulated as a spherical code construction problem [11]:

max
Sn,P⊂Cn,P

(
min

ti,tj∈S,i6=j
‖ ti − tj ‖

)
, (2)

where Cn,P is the set of points distributed on the surface of
a multidimensional hypersphere with a dimension of n and a
radius of

√
P . Sn,P is a subset of Cn,P where the minimum

distance between each pair of the element points is maximized.

B. Proposed Multiuser LMA MIMO System

We conceive a downlink MU-LMA communication system
employing an FAS transmitter. As shown in Fig. 3, the BS
transmits signals to K users through NT antennas. At the
receiver, the kth user, denoted as Uk (k = 1, · · · ,K), is

equipped with NRk antennas, and the total number of receive
antennas is denoted as NR =

∑K
k=1NRk . Assume Uk has nk

bits to send where the corresponding information bit vector is
represented as uk = [uk,1, · · · , uk,nk ]T . The total number of
bits for all users is represented as N =

∑K
k=1 nk.

First, the information bits for Uk are encoded into a
complex-valued vector sk in accordance with a given code-
book. Then, the composite coded vector for all users can
be represented as s = [sT1 , · · · , sTK ]T ∈ CN×1. In view
of the design of an LMA codebook, a basic method is to
generate signal vectors distributed uniformly on the surface
of a hypersphere. However, this method may lead to in-
creased ML detection complexity and poor adaptability to
fading channels. To address this issue and generate robust
codewords, the design of the codebook can be optimized which
is called the codebook-related problem. Next, regarding the
multiuser downlink scenario, a precoding algorithm is required
to achieve MUI cancellation and constant power constraints
(i.e., xHx = P ), i.e., the precoding-related problem. The
precoding and codebook-related problems will be addressed
in Section III and Section IV, respectively.

After the encoding and precoding processes, the signal to
be transmitted is denoted as x = [x1, · · · , xNT ]T . Assume the
channel matrix of Uk is represented as Hk. Then, the received
signal yk = [yk,1, · · · , yk,NRk ]T at Uk is represented as

yk = Hkx + nk, (3)

where nk ∼ CN (0, σ2) stands for the noise at Uk. Finally,
after the combining and detection process, the information
bits recovered at the receiver of Uk is denoted as ûk =
[ûk,1, · · · , ûk,nk ]T .

C. Channel Model

We consider a multipath but no clustered narrowband
mmWave channel between the BS and the UE. Assume the
number of scattering paths is Nray. According to the system
model defined in Subsection II-B, the normalized narrowband
mmWave channel of Uk is modelled as

Hk =

√
NTNRk
Nray

Nray∑
l=1

αlkar
(
θlk
)
a†t
(
φlk
)
, (4)

where αlk ∼ CN (0, 1) is the channel gain of the lth path
of Uk. Meanwhile, θlk and φlk represent the angle of departure
and angle of arrival, respectively. Further, uniform linear arrays
are employed to represent the response vector at UE and BS,
which are denoted as ar (θ) and at (φ)), respectively, i.e.,

ar (θ) =
1√
NRk

[
1, ej

2πd
λ cos(θ), ..., ej

(NRk−1)2πd

λ cos(θ)

]T
,

(5)

at (φ) =
1√
Nt

[
1, ej

2πd
λ cos(φ), ..., ej

(Nt−1)2πd
λ cos(φ)

]T
, (6)

1The modules at the transmitter cooperate with the corresponding modules
at the receiver to achieve the specified goals, but for the sake of brevity and
clarity, the wiring of the receiver module has been simplified in this diagram.
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1û
1x

2x

TNx

1,1y

1
1, RNy

,1Ky

, RK
K Ny

Fig. 3: Structure of the Proposed FAS-based MU-LMA System1.

where λ is the carrier wavelength, and d denotes the antenna
spacing. Note that the system structure and algorithms pro-
posed in this paper can be generalized to other channel models.

III. PROPOSED PRECODING ALGORITHM BASED ON BD

Aiming for addressing the precoding-related problem shown
in Fig. 3, we propose an LMA-adaptive precoding algorithm
in this section. The proposed FAS-NBD algorithm achieves
MUI cancellation using BD and addresses the constant power
constraint with normalization in turn. Precoders and combiners
are jointly designed using this algorithm.

A. MUI Cancellation

We design a precoding matrix at the transmitter to elim-
inate the MUI and thus maximize the system capacity. The
precoding matrix F for K users is formulated as

F = [F1,F2, · · · ,FK ] ∈ CNT×N , (7)

where Fk ∈ CNT×nk is the precoding matrix for Uk.
In this algorithm, the coded vector sk for Uk is selected

from a PMH codebook Snk,P (as shown in (1) and (2)).
The codewords are distributed uniformly on the surface of a
hypersphere, which can be achieved using K-means clustering
[20]. Assume the composite coded signal for all users is
denoted as s = [sT1 , · · · , sTK ]T . Then, the received signal for
Uk is represented as

yk = HkFs + nk = HkFksk + Hk

K∑
i6=k

Fisi + nk,

where
K∑
i 6=k

Fisi denotes the MUI of Uk for the downlink com-

munication which should be minimized. For 1 ≤ k 6= i ≤ K,
The MUI cancellation problem is formulated as

HkFi =

{
0, k 6= i

HkFk, k = i
. (8)

Here, F is said to block diagonolize H, where H =
[HT

1 ,H
T
2 , · · · ,HT

K ]T ∈ CNR×NT . This indicates that the
precoder of the kth user should be in the null space of

other user channels. We define the composite channel of users
except Uk as H̃k = [HT

1 , · · · ,HT
k−1, HT

k+1, · · · ,HT
K ]T ∈

C(NR−NRk )×NT . Fk should lie in the null space of H̃k. The
SVD of H̃k is given by

H̃k = ŨkΣ̃k

[
Ṽ1
k Ṽ0

k

]H
, (9)

where Ṽ0
k consists of the last NT − (NR −NRk) columns of

the right singular vectors and is the basis of the null space of
H̃k. The existence of Ṽ0

k is ensured by

NT − (NR −NRk) > 0. (10)

With the MUI canceled by Ṽ0
k, the users’ channels can be

separated as independent channels. Given the compact channel
of all users, this can be presented as

H
[
Ṽ0

1, Ṽ
0
2, · · · , Ṽ0

K

]
=

H1

...
HK

[Ṽ0
1, Ṽ

0
2, · · · , Ṽ0

K

]
(11)

=


H1Ṽ

0
1 0 · · · 0

0 H2Ṽ
0
2 · · · 0

...
...

. . .
...

0 0 · · · HKṼ0
K

 .
(12)

Consequently, the subsequent precoding and combining matrix
can be derived from the SVD of their equivalent channels,
which is given as

HkṼ
0
k =

[
Ū1
k Ū0

k

]
Σ̄t
k

[
V̄1
k V̄0

k

]H
, (13)

where V̄1
k and Ū1

k are formed by the first nk columns of the
right singular matrix and the left singular matrix, respectively.
V̄1
k is the basis of the equivalent channel HkṼ

0
k. It presents

the directions where the signal of Uk has the most span
and is used to enhance the signal towards the corresponding
channel. Then, similar to (10), the existence of V̄1

k and Ū1
k is

guaranteed by

nk ≤ NRk ≤ NT −NR +NRk . (14)
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As a result, the sufficient condition for the existence of the
FAS-NBD precoding matrix is{

NT ≥ NR
nk ≤ NRk .

(15)

Therefore, the BD precoder can be given by

F =
[
Ṽ0

1, · · · , Ṽ0
K

]V̄1
1 · · · 0

...
. . .

...
0 · · · V̄1

K

 (16)

=
[
Ṽ0

1V̄
1
1, · · · , Ṽ0

KV̄1
K

]
. (17)

Sequentially, the BD combiner for Uk is Wk = (Ū1
k)H .

B. Normalization
Notably, although the precoding matrix Fk of each user is

unitary, their composite matrix F is not unitary and therefore
not norm-preserving. Therefore, the precoded signal Fs may
result in varying sum power within a small range. Assume the
power for transmission is constrained to a given power PT .
Then the transmitted signal vector x is normalized as

x =

√
PT

‖ Fs ‖Fs. (18)
√
PT
‖Fs‖ is called the normalization factor. Such a factor depends
on the combination of all users’ transmission signals and
fluctuates within a very narrow range of approximately 1.
Normalization is essential for ensuring the power efficiency
of the LMA transmitter.

C. Signal Detection
Based on the ML criterion, the signal detection at Uk is

presented as

s?k = min ‖WkHkFkst −Wkyk‖ (19)
s.t. st ∈ Snk,P , (20)

where Wkyk is the received signal after combining operation.
s?k is a signal vector detected with reference to the codebook
of Uk. Finally, the bit information can be obtained.

D. Algorithm Limitations
The normalization factor, which determines the power scal-

ing of transmitted signals for each user, is floating and agnostic
for the UE side. Its value depends on the real-time combination
of all user signals and may cause a slight degradation in
performance. This is a trade-off in terms of system flexibility
and degree-of-freedom gains. In fact, as the number of users in
the MU-LMA system grows, the increased degree-of-freedom
gain and the system flexibility could outweigh the system
performance. Furthermore, this performance degradation will
be optimized in Section IV as an additional issue for the
codebook-related problem.

In addition, due to the relationship between codebook size
and the number of information bits (i.e., M = 2n), the
signal detection and codebook design complexity of the FAS-
NBD algorithm may increase exponentially when transmitting
numerous bits. This will also be addressed in Section IV with
a trained network.

IV. PROPOSED DL-ENHANCED ALGORITHM

In this section, the FAS-DL-NBD algorithm is proposed to
further address the performance degradation and codebook-
related problem shown in Fig. 3. Instead of the conventional
codebook and ML detection used in the FAS-NBD algorithm,
multilayer FC-FNNs are employed to construct a trainable
network. It seeks to generate codebooks adapting to given
CSI and designs codebook-independent decoders free from the
exponential increase in signal detection complexity.

We explain the overall system structure, network configu-
ration, and the training and testing processes in sequence.

A. System Structure of the Proposed Algorithm

As depicted in Fig. 4, the codebook mapper and signal
recovery modules are replaced by FC-FNNs. Each user occu-
pies an exclusive encoder that designs user-specific codebooks
based on a set of given CSI. It is nested before the precoding
module. At the receiver, each user necessitates an exclusive de-
coder to recover signals. The encoders and decoders, together
with the precoding and channel modules, form the entire
neural network. The entire network is a regression problem
supervised by the recurrence of input information bits, which
can be modelled as

min
Θ

∆(N (u; Θ),u), (21)

where u = [uT1 , · · · ,uTK ]T denotes the composite information
bit vector for all users, and Θ stands for the set of trainable
parameters of the network N (·). ∆ denotes a criterion measur-
ing prediction error and is discussed in detail in Section IV-B.
Notably, elements in the information bit vectors are shifted to
be zero-centered, i.e., 0 is represented by −0.5 and 1 by 0.5.
This is done to avoid the problem of zig-zag paths.

Assume that the encoding and decoding processes of Uk
are represented as Ek(·) and Dk(·), respectively. For Uk,
the encoded symbol is represented as sk = Ek(uk), and
the composite symbol vector of all users is represented as
s = [sT1 , · · · , sTK ]T . After encoding, the signal is passed into
the precoding module which is consistent with the proposed
FAS-NBD algorithm. The signal x to be transmitted is repre-
sented as

x =

√
PT

‖ FEk(uk) ‖FEk(uk). (22)

The signal is then transmitted to the corresponding UE, where
decoding and detection are completed. For Uk, the prediction
vector ûk is expressed as

ûk = Dk(Hkx + nk). (23)

As mentioned above, the information bits input by each
user are encoded by [−0.5, 0.5], so the recovered information
bit vector uDk = [uDk,1, · · · , uDk,nk ]T can be detected with a
threshold of 0. For Uk, that is

uDk,i =

{
0, if uk,i < 0

1, otherwise
, for i = 1, 2, · · · , nk, (24)

where uk,i denotes the ith bit of uk, and uDk,i stands for the
the ith bit of the recovered bits.
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Fig. 4: System Structure of the Proposed DL-enhanced Precoding Algorithm (FAS-DL-NBD).

B. Configuration Details of the Proposed Network

An FC-FNN can be treated as a combination of multiple
layers of linear and activation functions [27]. In general, each
layer can be expressed as

fl(rl−1; θl) = ζ(Wlrl−1 + bl), (25)

where fl(·) represents the relationship between the input and
output of the lth layer, rl−1 represents the output of the
previous layer as the input of the current layer. Wl and bl
denote the layer weight and bias, respectively. θl = {Wl,bl}
represents the layer parameter set. ζ(·) denotes the activation
function, which is to eliminate the linearity of the network so
that the network can better fit a nonlinear model. The FC-FNN
structures of Ek(·) and Dk(·) are given in Table II. Both the
encoder and decoder employ fully connected layers as their
output layers. The number of hidden layers in an encoder
and a decoder is HE and HD, respectively. Nh denotes the
dimension of the corresponding hidden layer.

TABLE II: FC-FNN structures and model parameters.

Layout of FC-FNN
Componet Layer Output dimension

Encoderk
Encoder Input Layer nk

Hidden Layers Nh

Encoder Output Layer 2× nk

Decoderk
Decoder Input Layer 2×NRk

Hidden Layers Nh

Decoder Output Layer nk

Notably, since activation functions in an FC-FNN may not
support complex-valued numbers, the complex-valued matri-

ces are expressed using block form (i.e., A = [Ar,Ai]
T ,

where Ar and Ai represent the real and imaginary parts of A,
respectively). Hence, the dimensions of the transmitter output
and receiver input are doubled to preserve the results in block
form.

In this design, for the hidden layers and input layers,
the rectified linear unit is chosen as the activation function,
i.e., max(0, x). It is simple and concise, ensuring efficient
gradient descent and backpropagation with low computational
complexity [28]. In addition, the Batch Normalization is added
before the activation layer with the benefits of accelerating the
convergence of model training and making the model training
process more stable [29].

Furthermore, to train a neural network, Loss functions are
defined to evaluate the prediction performance, and optimizers
are defined as a guide of backpropagation. In this design,
the Huber loss function is considered to achieve a robust
regression [30]:

Lk =

{
1
2 (uk,i − ûk,i)2, if |uk,i − ûk,i| ≤ 1

|uk,i − ûk,i| − 1
2 , otherwise

, (26)

for i = 1, 2, · · · , nk, (27)

where Lk denotes the loss of Uk, and uk,i and ûk,i stands
for the ith elements of the information bit vector uk and the
prediction vector ûk, respectively.

Furthermore, we develop a weighted average method to
obtain the overall loss for all users. First, the weights are
initialized as a K-length row vector with identical values 1

K .
Then, assuming that the loss vector containing all user losses
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is loss = [loss1, loss2, · · · , lossK ]T , the weighted average
loss is calculated as

loss = w · loss. (28)

Further, during the training process, the weight ŵ is updated
according to the loss of each user and used for the next epoch.
That is

ŵ =
lossT

loss
, (29)

where the sum of the weight vector is constrained to 1, and
the network is guaranteed to prioritize users with greater loss
values. Here, we choose Adam as the optimizer [31].

C. Training and Testing Processes
The training and testing process of an FAS-DL-NBD net-

work is summarized as follows.

Algorithm 1 Training Process.
Inputs: η, Ttrain, L, SNR range, H;
Outputs: A trained network;

1: Calculate the BD precoder (see (17)) and initialize net-
work parameters;

2: for epoch = 1 to Ntrain do
3: for step = 1 to Ntrain

Nbatch
do

4: Calculate the signal to be transmitted (see (22)) and
add noise with random SNR;

5: Calculate and decode the received signals (see (23));
6: Update the loss weight (see (28) and (29));
7: Update the network using Adam with the weighted

average loss;
8: end for
9: end for

In the training process (Algorithm 1), bits 0 and 1 are
generated randomly with equal probability and are shifted to
be zero-centered to form the dataset. The label set L and the
training set Ttrain are equivalent, which are both comprised
of the information bits fed into the system. The network
is trained with a given learning rate η, given CSI, and a
specified SNR range. Initially, the BD precoder is calculated,
and other network parameters are initialized at random. The
network is trained using mini-batches. In each step, we add
noise randomly to the received signal to improve the anti-
noise capability. The power of added noise is within the given
SNR range. The difference between the sample label and the
prediction vector is used for error backpropagation. When the
training epoch reaches a specified maximum epoch Ntrain,
the FAS-DL-NBD network is considered to be well-trained.

The network testing process (Algorithm 2) takes the test-
ing set Ttest, SNR range, H and the trained FAS-DL-NBD
network as inputs, and outputs the BER values with given
SNRs. The BER performance is sequentially examined within
the specified SNR range. In a slight departure from the
training procedure, the noise power of the mmWave channel
is determined by the SNR rather than a randomly generated
number, and there is no backpropagation of losses. Instead, we
obtain the recovered bits by comparing the network outputs to
a threshold of 0.

Algorithm 2 Testing Process.
Inputs: Ttest, SNR range, H, the trained model;
Outputs: BER;

1: Calculate BD precoder (see (17)) and load the trained
model;

2: for SNR in SNR range do
3: Calculate the signal to be transmitted (see (22)) and add

noise with given SNR;
4: Calculate and decode the received signals for different

UEs (see (23));
5: Estimate information bits for different UE based on a

given threshold (see (24));
6: Count the number of error bits and calculate the BER;
7: end for

D. Algorithm Limitations

In the design process of the proposed FAS-DL-NBD al-
gorithm, we assume that the CSI is known in advance. The
training and testing processes of each FAS-DL-NBD network
use the same set of CSI. Although we demonstrate in Sec-
tion VII that the network has a high tolerance for varying
ICSI, it is currently limited to quasi-static channels. To handle
varying instantaneous channels with large variations, multiple
networks must be trained, which could be computationally and
time intensive.

To generalize the use case, advanced DL techniques and
neural network architectures can be applied [32], [33], or a
network dictionary pre-trained on selected channels can be
designed. However, this is not the focus of this paper. In this
paper, we particularly focus on discussing the enhancement
possibilities of FC-FNNs in terms of codebook design for MU-
LMA systems in fading channels.

V. DISCUSSION ON THE ADVANTAGES OF THE PROPOSED
FAS-BASED ALGORITHMS

Considering the downlink MU-LMA communication sys-
tem, the proposed FAS-based system offers advantages such
as configuration flexibility, the potential to support a large
number of users, and algorithm integrity compared with the
existing SAS-based system.

A. Configuration Flexibility

To achieve BD precoding, the number of antennas in the
SAS-based and FAS-based systems must meet the constraints
outlined in Table III. In comparison to the FAS-based system,
the SAS-based system has more stringent restrictions and
inflexible system configuration.

TABLE III: System Dimension Limitations of the FAS-based
algorithms and SAS-precoding.

The FAS-based System The SAS-based System{
NR ≤ NT

nk ≤ NRk

M = NT
K
∈ Z+

NR ≤M
nk = NRk
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TABLE IV: The Number of Transmit Antennas per User with Different Numbers of Transmit Antennas and Users (NRk = 2).

NT

K 2 3 4 5 6 7 · · · 12 · · · 144
FAS-based System | SAS-based System

24 24 | 12 24 | 8 24 | × 24 | × 24 | × 24 | × · · · 24 | × · · · × | ×
288 288 | 144 288 | 96 288 | 72 288 | × 288 | 48 288 | × · · · 288 | 24 · · · 288 | ×

It indicates that the number of users in an SAS-based system
must be divisible by the number of transmit antennas and
is further limited by the total number of receive antennas.
An FAS-based system, on the other hand, diminishes the
limitations imposed by an SAS-based system, and in turn,
supports varying numbers of users dynamically.

B. Potential to Support a Large Number of Users

Given the system constraints outlined in Table III, the FAS
transmitter assists in facilitating a large number of users.

1) Fewer transmit antennas are required: For simplicity,
assume the number of receive antennas NRk for each user is
equal. Given the constraints in Table III, the number of users
K for the FAS-based system is constrained by

K =
NR
NRk

≤
⌊
NT
NRk

⌋
. (30)

Meanwhile, the user number of the SAS-based system is
constrained by

K =
NR
NRk

≤ M

NRk
=

NT
K ·NRk

. (31)

As a result,

K ≤
⌊√

NT
NRk

⌋
. (32)

The configuration is further constrained by NT
K ∈ Z+.

Referring to (30) and (32), the FAS-based system supports
a greater number of users than the SAS-based system, and
as the number of users increases, this difference will be
significant. Assume NRk = 2. Table IV lists the number of
transmit antennas per user, based on various combinations of
transmission antenna numbers NT and user number K. The
values for the FAS-based system are listed on the left side of
each cell, while those for the SAS-based system are on the
right. Notably, a “×” denotes that the system cannot support
the given combination of NT and K. It can be seen that an
FAS-based system with NT = 24 can support up to 12 users.
However, an SAS-based system with the same configuration
can only support 3 users. To support the same number of 12
users in an SAS-based system, at least 288 transmit antennas
are required.

2) Greater Gain in Degrees of Freedom: The FAS-based
system has a greater degree-of-freedom gain in comparison to
the SAS-based system. As users in the FAS-based system share
the entire antenna array and transmit signals independently, the
number of available transmit antennas per user for the FAS-
based system is the number of transmit antennas, that is

M = NT . (33)

Unlike the FAS-based systems, users in the SAS-based system
occupy only a portion of the antenna array, resulting in each
user being assigned NT

K transmit antennas. Thus, the available
range for the SAS-based system is bounded by⌈√

NRkNT

⌉
≤M ≤ NT , (34)

where the lower limit of the inequality denotes the minimum
number of transmit antennas available to each user in a fully
loaded system (i.e., the number of users in the system reaches
the maximum), while the upper limit corresponds to a system
with only 1 user.

Assume NRk = 2. Table IV lists the number of transmit
antennas per user of FAS-based and SAS-based systems for
varying numbers of users when NT = 24 and 288, respec-
tively. The difference between the FAS-based and SAS-based
systems in the number of antennas per user increases as the
number of users rises. The FAS-based system’s degree-of-
freedom gain will result in performance improvements [19],
and its advantages over the SAS-based system will become
apparent as its user base expands. This is demonstrated in
Section VII.

3) Robustness with Varying Numbers of Users: Apart from
affecting the number of transmit antennas per user, the in-
creasing number of users also affects the MUI cancellation
process. Both the proposed FAS-based and the SAS-precoding
algorithms consider constructing precoders in the null space
of non-target user channels. However, as the number of users
increases, the dimension of the null space (i.e., the rank
of the matrix used to achieve MUI cancellation) decreases.
This results in a decrease in received signal power when
the intended user’s channel is projected on the null space,
consequently leading to degraded BER performance. Referring
to (13), the null space dimension of Uk (i.e., the rank of Ṽ0

k)
of the FAS-based algorithm is represented as

rkFAS-NBD = NT −
K∑
i6=k

NRk . (35)

Similarly, the null space dimension of Uk of the SAS-
precoding algorithm in [17] is represented as

rkSAS-precoding =
NT
K
−

K∑
i 6=k

NRk . (36)

Referring to (36), the MUI cancellation process of the SAS-
precoding is prone to changes in the number of users K.
In contrast, owing to the constant degrees of freedom, the
proposed FAS-based algorithm is more stable as the number
of users changes.
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C. Algorithm Integrity: Joint Design of Precoder and Com-
biner, Signal Energy Maximization

The FAS-based algorithm compensates for the lack of
combiner design and the unstable algorithm performance in
the SAS-precoding algorithm.

1) Joint Design of Precoder and Combiner: The SAS-
precoding does not include the design of combiners, so the
system is restricted to situations where the number of trans-
mitted bits and the number of receive antennas are equal. The
proposed FAS-NBD relaxes system constraints by designing
the precoder and combiner jointly.

2) Signal Energy Maximization: Assume the precoding
matrix of Uk in the SAS-precoding is Tk. It can be expressed
as

Tk = VkBk, (37)

where Vk block diagonolizes the MUI, and Bk is a semi-
unitary matrix with full column rank satisfying BH

k Bk = I.
It adapts the dimension of Vk to transmit the desired number
of information bits. However, without a given criterion, this
matrix is randomly generated, and it is likely to rotate the
encoded signal orthogonal to the channel that

HkTk = HkVkBk = 0. (38)

Under such a situation, the BER performance will seriously
deteriorate. In contrast, the proposed FAS-NBD ensures al-
gorithm robustness and enhances performance by maximizing
signal energy in the direction corresponding to the equivalent
channel (as shown in (13)). Moreover, with the improved
signal direction, FAS-based systems tend to have a larger
pairwise distance between constellation points at the receiver
(i.e., ‖ HkFksi−HkFksj ‖,∀si, sj ∈ Snk,P , i 6= j), resulting
in improved robustness against disturbances.

VI. DISCUSSION ON THE CONVERGENCE SUPERIORITY OF
THE PROPOSED DL-ENHANCED ALGORITHM

The concept of end-to-end learning allows for the utilization
of an E2E-based (i.e., FAS-E2E) framework to simultaneously
address the MUI cancellation and codebook-related problems
in the downlink MU-LMA system. However, this multi-task
framework sparks convergence difficulty, resulting in a waste
of training resources. In this section, we compare the FAS-E2E
framework with the proposed FAS-DL-NBD framework. We
demonstrate the auxiliary effect of NBD on network training
and the advantages of the joint algorithm compared to the
FAS-E2E algorithm.

TABLE V: The configuration of an E2E-transmitter.

Layout of FC-FNN
Componet Layer Output Dimension

E2E transmitter
Input Layer 2×N

Hidden Layers Nh

Output Layer 2×NT

The FAS-E2E can be achieved by replacing the FAS-DL-
NBD transmitter (including the encoders and the precoding
module) with a single FC-FNN. The configuration of this
E2E-transmitter is shown in Table V. Other components, such

as the normalization, the channel model, and the decoders
for each UE are consistent with the configuration in the
proposed FAS-DL-NBD algorithm (Table III). It receives the
information bits from all users and forwards them to be
normalized directly.
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Fig. 5: Comparison of loss as a function of training epoch
between FAS-DL-NBD and FAS-E2E, where K = 2, NT =
18, nk = 2, NRk = 2 and Nray = 3.

Here, we consider a system with K = 2, NT = 18, nk =
2, NRk = 2 and Nray = 3. Two networks based on these
two frameworks (i.e., FAS-E2E and FAS-DL-NBD) are trained
with the same parameters set (i.e., Set I in Table VI). Fig. 5
compares their training losses. It demonstrates that the FAS-
DL-NBD network has a smaller initial loss and converges to
0.010 faster around the epoch of 200. This is the result of the
supplementary effect of the computed BD precoder on MUI
cancellation. In contrast, the loss of the FAS-E2E network
plateaus at around 0.015. The network fails to converge to
a lower value because it is struggling to suppress MUI and
optimize prediction accuracy at the same time. Comparisons of
their BER performance are presented and illustrated in Section
VII.

VII. SIMULATION RESULTS

All algorithms are implemented on an Intel i7-1165G7
CPU with 16 GB RAM using Python. One NVIDIA GeForce
MX450 GPU is used to train the neural networks. Table VI
describes the training parameters for the models used in the
simulation. Each column represents a parameter set. Moreover,
in the subsequent simulation process, both the FAS-NBD
and the SAS-precoding algorithms employ the conventional
LMA codebooks (i.e., codewords uniformly distributed on a
multidimensional hypersphere using K-means clustering [20]).
On the other hand, the per-user codebook of the FAS-DL-NBD
algorithm is the training result of the corresponding encoder
Ek(·). Furthermore, we assume that the system employs
a training-based channel estimation method with minimum
mean-square error at each UE to obtain channel information
[34], which is then transmitted via error-free uplink channels
to the BS.

Assuming full CSI is known by the system, Fig. 6 depicts
the BER performance of the proposed two algorithms (i.e.,
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TABLE VI: Training Parameters

Parameter Set I Set II Set III Set IV

Number of user, K 2 3 4 2

Dimension of hidden layer, Nh 128 128 128 128

Number of hidden layer for Ek , HE 3 3 3 3

Number of hidden layer for Dk , HD 2 2 2 2

Batch Size 100 100 100 100

Number of Samples, |Ttrain| 103 104 104 104

Number of training epochs, Ntrain 200 300 300 400

Learning Rate, η 10−3 10−3 10−3 10−3

SNR Range 0 to 15dB

FAS-NBD and FAS-DL-NBD). They are compared with the
existing SAS-precoding in [17] and the one-step FAS-E2E
described in Section VI. We consider a system with K =
3, NT = 24, Nray = 3, and NRk = nk = 2. Both the FAS-
DL-NBD network and the FAS-E2E network are trained with
the parameters in Set II (Table VI). The algorithms were tested
using varying instantaneous channels, and the FAS-DL-NBD
and FAS-E2E networks were trained for each channel. For the
fairness of the comparison, the transmit power for all of the
algorithms is set to be the same and PT = NT .
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Fig. 6: Comparison of the BER performance in the 3-user
downlink MIMO LMA system employing FAS-NBD, FAS-
DL-NBD, SAS-precoding and FAS-E2E where K = 3, NT =
24, nk = NRk = 2 and Nray = 3.

The proposed FAS-NBD algorithm outperforms the existing
SAS-precoding algorithm in terms of BER performance. It
achieves 3 dB gain at BER = 10−3. This performance
improvement is from the degree-of-freedom gain and the
maximized signal energy. The FAS-DL-NBD algorithm, mean-
while, exhibits the best BER performance. It is a successive en-
hancement to FAS-NBD, and the BER performance at 10−4 is
further enhanced by 5 dB. By training independent codebooks
for each user, it provides codewords that are robust to the
channel effects. Furthermore, the inferior BER performance of

the FAS-E2E algorithm in comparison to FAS-DL-NBD serves
as evidence of the negative impact caused by the convergence
problem.
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as evidence of the negative impact caused by the convergence
problem.

2.5 0.0 2.5

2.5

0.0

2.5

U1 U2

(a)

2.5 0.0 2.5

2

0

2

U1 U2

(b)

2.5 0.0 2.5

2

0

2

U1 U2 U3

(c)

2.5 0.0 2.5

2

0

2

U1 U2 U3

(d)

Fig. 7: Constellation diagrams of FAS-DL-NBD and conven-
tional algorithms. (a) FAS-DL-NBD constellation for 2 users;
(b) Conventional constellation for 2 users; (c) FAS-DL-NBD
constellation for 3 users; (d) Conventional constellation for 3
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Fig. 7a and Fig. 7c show the constellation diagrams of
FAS-DL-NBD systems with 2 and 3 users, respectively. Each
FAS-NBD constellation presented corresponds to a given set
of CSI. As seen from the figure, unlike the conventional

Fig. 7: Constellation diagrams of FAS-DL-NBD and conven-
tional algorithms. (a) FAS-DL-NBD constellation for 2 users;
(b) Conventional constellation for 2 users; (c) FAS-DL-NBD
constellation for 3 users; (d) Conventional constellation for 3
users.

Fig. 7a and Fig. 7c show the constellation diagrams of
FAS-DL-NBD systems with 2 and 3 users, respectively. Each
FAS-NBD constellation presented corresponds to a given set
of CSI. As seen from the figure, unlike the conventional
codebooks (Fig. 7b and 7d) used in FAS-NBD and SAS-
precoding algorithms, the FAS-DL-NBD algorithm designs
individual codebooks for users which are robust to channel
effects.

In addition, to illustrate the advantages of the FAS-based
algorithms with increasing user numbers, we consider 3 mul-
tiuser systems. The number of users is 2, 3, and 4, respec-
tively. Other parameters are same that NT = 36, Nray =
3, and nk = NRk = 2. The corresponding FAS-DL-NBD
networks are trained with the parameters in Set I, II, and III
(Table VI), respectively. In the SAS-based system, the number
of transmit antennas available to each user decreases from 18
to 9 as the number of users increases, whereas in the FAS-
NBD system, this number is fixed at 36, as users achieve
independent transmission on a shared antenna array.

Fig. 8 shows the BER performance with the increase of
user number K at SNR = 10 dB. The performance was tested
with varying instantaneous channels, and the networks were
trained for each channel. As the number of users increases, the
performance advantage of the proposed algorithms increases
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TABLE VII: Computational Complexity of FAS-NBD and FAS-DL-NBD for Uk

Computational Complexity of FAS-NBD for Uk

O


Detection complexity︷ ︸︸ ︷

2nk (NT × nk +NRk ×NT + 2NRk )+nk ×NT︸ ︷︷ ︸
Overall communication complexity


Computational Complexity of FAS-DL-NBD for Uk

O


Detection complexity︷ ︸︸ ︷

nk(Nh + 2) + (HD − 1)(N2
h + 2Nh) + (2NRk + 2)Nh +2Nh + (HE − 1)(N2

h +Nh) + nk(2Nh + 1 +NT )︸ ︷︷ ︸
Overall communication complexity
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Fig. 8: BER performance comparison as a function of user
number K between FAS-NBD and FAS-DL-NBD, where
NT = 36, nk = NRk = 2 and Nray = 3.

compared to the SAS-precoding algorithm. The performance
degradation of SAS-precoding is attributed to the reduced
degrees of freedom per user. On the other hand, the FAS-
based algorithms consistently exhibit superior performance
owing to constant degrees of freedom and signal transmission
with energy maximized. This result confirms the robustness
of the FAS-based algorithms under varying numbers of users.
Furthermore, the FAS-DL-NBD algorithm consistently outper-
forms its counterparts due to its channel-adaptive codewords.

In addition, Table VII summarizes the computational com-
plexity of FAS-NBD and FAS-DL-NBD for Uk. The detection
complexity of FAS-NBD and FAS-DL-NBD can be simplified
as proportional to O (2nk × nk) and O (nk), respectively when
the structures of the MU-LMA system and the FAS-DL-NBD
neural network are fixed (i.e., NRk , NT , Nh, HD and HE are
constant). Besides, the prediction process in FAS-DL-NBD
can be accelerated by parallelism, allowing its computational
complexity to be further compressed in implementation. Fig. 9
intuitively illustrates the trends of the overall communication
time (denoted as to) and the detection time (denoted as
td) of the two algorithms at 10 dB as a function of the
number of transmitted bits nk. Other parameters are same
that K = 2, NT = 16, Nray = 3, and NRk = 6. The
FAS-DL-NBD networks are trained with parameters in Set IV
(Table VI).
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Fig. 9: Comparison of the overall communication time to and
the signal detection time td as a function of the number of
information bits between FAS-NBD and FAS-DL-NBD, where
K = 2, NT = 16, NRk = 6 and Nray = 3. (a) Time axis in
log-scale; (b) Time axis in regular-scale.

The graph represents the average time per user for the
corresponding process. The logarithmic time-axis in Fig. 9a
provides greater clarity, while the regularly scaled time-axis in
Fig. 9b provides intuitive trends. Due to the reduced detection
complexity and the linear relationship with the number of
information bits, the time consumption of the trained FAS-DL-
NBD network is significantly lower than that of the FAS-NBD
system and remains stable as the number of information bits
increases. In contrast, the time consumption of the FAS-NBD
system increases exponentially as the number of information
bits rises. At nk = 6, the FAS-DL-NBD algorithm exhibits a
performance improvement of 230× in overall communication
time and a 625× improvement in detection time over the FAS-
NBD algorithm.

Furthermore, the performance of the three algorithms is
compared to that of ICSI. The channel estimation error is
modelled as CN (0, σ2

e) [34], [35]. It may lead to residual MUI
and render the FAS-DL-NBD algorithm incapable of training
optimal codebooks. As shown in Fig. 10, the performance of
the SAS-precoding algorithm is seriously damaged by ICSI
due to the randomness of the precoder design. In contrast,
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Fig. 10: Comparison of the BER performance with imperfect CSI, where K = 2, NT = 12, nk = NRk = 2 and Nray = 3.
(a) FAS-DL-NBD; (b) FAS-NBD; (c) SAS-precoding in [17].

the BER of the FAS-NBD algorithm varies within a small
range and this confirms the robustness of the algorithm to
disturbances. Such robustness is attributed to the degree-of-
freedom gain and signal energy maximization. Nonetheless,
the FAS-DL-NBD algorithm utilizes estimated CSI to train an
approximately optimal constellation, ensuring robustness even
with a certain degree of channel estimation error.

VIII. CONCLUSIONS

Communication systems employing LMAs alleviate the
increasing system complexity and RF chain cost suffered by
MIMO systems. In this paper, we have developed a new
system framework employing an FAS transmitter of LMA
for MU mmWave downlink transmission. The proposed FAS-
based MU-LMA system addresses the structure-related prob-
lems in the existing SAS-based systems with increased degree-
of-freedom gains and increased configuration flexibility. Apart
from that, the FAS-based system breaks the maximum number
of users that can be supported and achieves advantages in
systems with varying numbers of users. Accordingly, we have
proposed two algorithms (i.e., FAS-NBD and FAS-DL-NBD)
to address the precoding and the codebook-related problems
in turn.

The proposed FAS-NBD algorithm is an optimization based
on conventional BD. In addition to eliminating MUI in the
downlink scenario, the FAS-NBD algorithm adapts to the
LMA system structure with a constant power constraint and
thus ensures power efficiency. Moreover, it implements a one-
step design of a set of precoders and combiners, thereby
resolving the SAS-precoding algorithm’s combiner shortage.
We have shown that it gives rise to a better BER performance
than the existing SAS-precoding algorithm and is more robust
when the CSI estimation is imperfect.

We have also observed performance degradation due to
forced normalization. Furthermore, the signal codebook of
the FAS-NBD is inflexible and the ML detection complexity
increases exponentially with the increase of the number of
information bits. These problems are well solved in the

proposed FAS-DL-NBD algorithm. By nesting FC-FNNs at
the transmitter and receivers respectively, the FAS-DL-NBD
network seeks to generate codebooks robust to fading channels
as well as achieves low-complex signal detection independent
of the codebook size. In this way, the proposed FAS-DL-
NBD provides a codebook design method with high bit-
level precision and stimulates the possibility of transmitting
a large number of information bits at a time. Furthermore, we
also show that in contrast to the conventional one-step end-
to-end network, the FAS-DL-NBD network holds promising
superiority in network convergence.

Within the FAS-DL-NBD network design, dedicated train-
ing is carried out for each unique CSI. It is of interest to study
a similar scenario but adapt the neural network to varying
instantaneous channels. One approach is to leverage more
advanced DL techniques and innovative network architectures
to improve the model’s flexibility and ability to generalize
across different channel scenarios. Alternatively, it may be
possible to pre-train a network dictionary on selected channels
to improve online prediction efficiency. Last but not least, the
channel capacity of the MU-LMA systems is in general an
open problem, and in this context, the capacity of the system
with constant power constraints is of particular interest.
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