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Diffeomorphic unsupervised deep
learning model for mono- and
multi-modality registration
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Abstract

Different from image segmentation, developing a deep learning network for image registration is less straightforward

because training data cannot be prepared or supervised by humans unless they are trivial (e.g. pre-designed affine

transforms). One approach for an unsupervised deep leaning model is to self-train the deformation fields by a network

based on a loss function with an image similarity metric and a regularisation term, just with traditional variational

methods. Such a function consists in a smoothing constraint on the derivatives and a constraint on the determinant

of the transformation in order to obtain a spatially smooth and plausible solution. Although any variational model may be

used to work with a deep learning algorithm, the challenge lies in achieving robustness. The proposed algorithm is first

trained based on a new and robust variational model and tested on synthetic and real mono-modal images. The results

show how it deals with large deformation registration problems and leads to a real time solution with no folding. It is

then generalised to multi-modal images. Experiments and comparisons with learning and non-learning models demon-

strate that this approach can deliver good performances and simultaneously generate an accurate diffeomorphic

transformation.
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Introduction

Image registration consists in constructing a reasonable

geometrical correspondence between given two or more

images of the same object taken at different times or

using the same or different devices in order to locate

different or complementary information. Applications

of image registration include diverse fields such as

astronomy, optics, biology, chemistry, remote sensing

and particularly in medical imaging. For an overview

of image registration methodology, approaches and

applications, we refer to Fischer and Modersitzki1;

Gigengack et al.2; Modersitzki3; Oliveira et al.4;

Sotiras.5 Though the topic is actively studied and

useful models exist, there remain many challenges to

be tackled mathematically, particularly in registration

of images from different modalities. There exist various

deformable variational models for image registration

where the unknown displacement field u is sought in

a properly chosen functional space.6–11 Generally

speaking, the variational problem consists in solving

the optimisation problem

min
u

LðuÞ ¼ SðuÞ þ k
2
DðTðuÞ;RÞ

� �
(1)

where uðxÞ ¼ xþ uðxÞ. In (1), SðuÞ is a regularisation

term which controls the smoothness of u and reflects

our expectations by penalising unlikely
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transformations. The second part DðTðuÞ;RÞ is a sim-
ilarity term which measures the goodness of the regis-
tration. These models are called non-learning based
models as the optimisation problem (1) should be
solved for each pair for images T and R. Although
various non-learning-based models have been proposed
in the recent years and many numerical and computa-
tional algorithms have been developed to accelerate the
numerical resolution of these models, it remains a very
challenging question of achieving both an accurate
solution and fast speed for real time applications.

In recent years, deep learning approaches were pro-
posed where the aim is to optimise and learn spatial
transformations between pairs of images to be regis-
tered,12–16 often, they require ground-truth deforma-
tion fields for the training task. They are called
supervised models and their main drawback is the
inability to predict transformations that may not be
in the same range or class of the training transforma-
tions. As example, a deep learning model, which is
learned and trained on a dataset where the ground-
truth contains only small displacement fields, fails to
predict and to give accurate results for large
displacement.

In order to remedy these drawbacks, another class
of deep leaning models was proposed. These unsuper-
vised models do not require ground-truth deformation
fields for training. The deformation fields are
self-trained and driven by image similarity metrics
computed on the input data. In Jaderberg,12 a spatial
transformer network is developed to learn transforma-
tions for 2D images; however only affine and thin plate
spline transformations were used. More general non-
parametric transformations were considered in Haskins
et al.13; Li and Fan14; Theljani and Chen 6,25 for mono-
modal images. In these approaches, the transforma-
tions are controlled by penalising the derivatives of
the deformation u in the loss function, which promotes
smoothness of predicted transformations. However,
this does not guarantee some physicality desired geo-
metric properties of the deformation such as the topol-
ogy preservation and invertibility. Thus, folding
problem can occur in the results which is in practise
inappropriate for real life problems where deformation
is large and folding can occur. In terms of application,
these approaches were only trained and tested on
mono-modal images.

To overcome the folding problem, some deep learn-
ing approaches have addressed the question of getting
diffeomorphic transformations, i.e. topology-
preserving and invertible. These conditions were guar-
anteed by either adding an extra layer to the networks
to enforce the output deformation to be diffeomorphic
as in Krebs et al.,17 or by controlling the back-and-
forth registration as in Kuang.18 In this case, the

network is learning a deformation that maps T to R

and its possible inverse deformation that maps R to T.

Moreover, these approaches were only applied for

mono-modal images
In this paper, we propose an alternative approach to

overcome the folding problem. The model is unsuper-

vised, i.e. do not require any ground truth data, and is

applied for registering mono- and multi-modal images.

It can deliver diffeomorphic transformations without

adding any extra layer to the neural network or enforc-

ing it compute a deformation and its inverse. In fact,

the diffeomorphisms are guaranteed by using a suitable

loss function for training that controls the folding in

the deformations.

A learning model

In this section, we introduce a learning based diffeo-

morphic model for both mono- and multi-modal image

registration. The idea is that the deformation fields

are self-trained by minimizing a specific loss function

that guarantees the transformation to be physical. In

Figure 1, we present an overview of the method:

(i) The pair of images T and R are concatenated and

fed to the registration network N(T, R) as a single

multichannel image. The registration network,

with weight parameters h, processes the two

images through a series of convolutional and pool-

ing layers, and outputs a 2-channel map represent-

ing the 2D deformation field, denoted by uh. Any

Figure 1. The work-flow of the registration model. The fixed
and moving images T and R and first concatenated and fed to the
registration network N(T, R). The latter composed of many
convolution layers, followed by activation functions, and ended
by a final layer that produces the deformation uh. The moving
image T and the obtained deformation u are passed to an inter-
polation layer that warps T, i.e. compute TðuhÞ. After getting the
warped image, it is used to compute the loss function Lð�Þ and
then backpropagate in order to minimise it.
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network that can capture the image features may
work well in our model. Here, we used a light
version of the U-Net network with a ReLU acti-
vation at the end of each block in the network.
The last block is responsible for generating the
deformation uh.

(ii) Once the estimated transformation uh is computed
based on the features extracted by the the registra-
tion network N(T, R). It is passed to a second
component which is a differentiable warping
module called Interpolator, that uses uh to warp
the image T, producing a warped image TðuhÞ,
where uhðxÞ ¼ xþ uhðxÞ.

(iii) During training, the parameters h of the registra-
tion network N(T, R) are adjusted by minimising a
loss function Lð�Þ which has form of the energy (1)
i.e.

min
h

LðuhÞ ¼ SðuhÞ þ k
2
DðTðuhÞ;RÞ

� �
(2)

Generally, only the similarity measure Dð�Þ depend
on the image modality, whereas same regularisation
Sð�Þ could be used for both mono- and multi-modal
images. In the sequel, we discuss the choice of the reg-
ulariser and the similarity measures.

Regularisation SðuÞ
The regularisation that we use consists in a smoothing
constraint on the first- and second order derivatives
and a constraint on the determinant of the transforma-
tion in order to obtain spatially smooth and plausible
solutions Droske and Rumpf19; Burger et al.7 The
second-order derivatives allows getting smooth trans-
formations and penalise affine linear transformations
which are not included in the kernel of the first-order
derivatives based regularises.20 The term depending on
detðruhðxÞÞ ensures the map to be locally invertible
and then help avoiding the mesh folding problem.
More precisely, we consider

SðuhÞ ¼ jjruhjj22 þ jjr2uhjj22 þ jj/ðdetðruhÞjjj22 (3)

where /ðvÞ ¼ ðv�1Þ4
v2

. This term is originally used in the
non-learning hyper-elastic model and is known to be

Figure 2. The architecture of the SN network for registration.
The image T and R are concatenated to form a 2-channel image
that will be fed to the network. The later output the deformation
u ¼ ðu1; u2Þ.

Figure 3. (a) The reference image R. (b) The moving image T. (c) Registered image TðuhÞ for k¼ 200, MI ¼ 1:55. (d) Registered
image for k¼ 60, MI¼ 1.49. (e) Registered image for k¼ 10, MI¼ 1.02.

Theljani and Chen 3



very efficient in getting diffeomorphic maps, see Burger

et al.7

The similarity measure Dð�Þ depends on the image

modality. In the sequel, we discuss the choice of Dð�Þ
for each image modality.

Measuring similarity for mono-modal images

Various similarity terms can be used to measure the

goodness of the registration. In this work, we use an

alternative measure to the correlation coefficient and

which is well suitable for measuring linear dependence

between images, hence mono-modal images. More pre-

cisely, we set

DðTðuhÞ;RÞ ¼ CLMðTðuhÞ;RÞ

where CLM is the following combined correlation-like

measure:

​ CLMðX;YÞ ¼ ​
Z
X
​ ðX�mXÞffiffiffiffiffiffiffiffiffiffiffi

VarðXÞ
p � ðY�mYÞffiffiffiffiffiffiffiffiffiffiffi

VarðYÞ
p

� �2

​ ​ dx

þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðYÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXþ YÞp Þ2

(4)

where mX and VarðXÞ are the mean and the variance of

X, respectively.

Measuring similarity for multi-modal images

Multi-modal images are often non-linearly correlated

and the similarity measure CLM can’t support multi-

modal images as it only measures the linear correlation.

In the sequel, we assume that the given multi-modal

image pair is not random and has certain connections

between them e.g. ‘similar’ shapes or edges.

Parallel level set measure. Various similarity terms can be

used in the registration of multi-modal images such as

mutual information Pluim et al.,21 normalised gradient

fields Ruhaak et al.22 normalised gradients fitting

Theljani and Chen6; Zhang et al.23 In this work, we

use parallel level sets similarity measure which is well

suitable for measuring alignment between the gradients

of two images. More precisely, consider

DðTðuhÞ;RÞ ¼ PLSðTðuhÞ;RÞ

Figure 4. The transformed meshes for different values of k for the of images in Figure 3. (a) k¼ 200, Qmin ¼ �0:02. (b) k¼ 60,
Qmin¼ 0.13. (c) k¼ 10, Qmin¼ 0.24. (e) Zoom from the mesh in (a). (f) Zoom from the mesh in (b). Zoom from the mesh in (c).
Clearly, a mesh folding occurs for k¼ 200.

Figure 5. The architecture of the light U-net network for registration.
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where

PLSðX;YÞ ¼ jjwðjrXj�jrYj�Þ � wðjrX � rYj�Þjj22 (5)

where jrXj� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrXj2 þ �2

q
is regularised version of

jrXj and � is small non-negative constant. Different

Table 1. Comparison between learning DL Model and non-
learning NL Model for the images in Figure 10 in Speed (time)
and Quality (MI). One sees that DL Model is about 100 times
faster for a similar result.

Examples

Exp 1 Exp 2 Exp 3 Exp 4

Time (s) for DLmodel 1.18� 0.6

Time (s) for NLmodel 112.54 120.31 107.11 112.5

MI for DLmodel 1.49 1.66 1.53 1.57

MI for NLmodel 1.52 1.64 1.54 1.59

Qmin for DLmodel 0.45 0.63 0.65 0.67

Qmin for NLmodel 0.61 0.47 0.69 0.54

Figure 7. Comparison between different regularisers in regis-
tering an unseen pair of images. From left to right, Template T,
Reference R, registered using different regularisation terms: i) the
diffusion ðQmin ¼ 0:38Þ, ii) Total-Variation ðQmin ¼ �0:24Þ and
iii) SðuÞ in (3) ðQmin ¼ 0:71Þ, respectively. Clearly iii) gives the
best result.

Figure 6. Dataset of 10 images used for the training, testing
and comparing between different regularisers for large
displacement.

Table 2. Comparison between the LU-net and SN networks in
registering 4 mono-modal MRI heart images.

Examples

Exp 1 Exp 2 Exp 3 Exp 4

MI for LU-net 1.53 1.68 1.52 1.62

MI for SN 1.49 1.66 1.53 1.57

Figure 8. The LU-net: Training and testing losses for the reg-
istration model for mono-modal (top) and multi-modal (bottom)
images.
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function wð�Þ can be used as in Ehrhardt et al.,24 how-
ever, here we sued wðxÞ ¼ x.

Data and numerical tests

In the numerical validation, we assess the performance
of the proposed model that we call DLModel in regis-
tering mono-and multi-modal images. Our proposed
method was implemented with Tensorflow library.
We applied Adam with momentum optimisation algo-
rithm to train the models with a learning rate of 0.0001,
and set the batch size 6. The model was trained using a
NVIDIA GeForce GTX 1050 Ti GPU. The number of
epochs was 1200 for mono-modal images and 400
epochs for the multi-modal case. For the training
time, it takes approximately 2 hours to train the
model for mono-modal images and 56minutes for the
multi-modal images.

Registration network

We have tested two networks for the registration task.
The first one, in Figure 2, is a small network (SN)
which contains four blocks containing different kernels
with different sizes and ReLU activation is used at the
end of each block. The second one is a light version of
U-net network, denoted by LU-net 27. The last block of
each network is responsible for generating the defor-
mation uh. We illustrate the architecture of this net-
work in Figure 3.

Choice of k in (2)

We have tested three different values of k ¼ 10; 60; 200.
In Figure 4, we display a registration results for a pair
of MRI images for these values. We also show the
transformed grids and the value Qmin ¼ mindetðruhÞ
for all values. It is clear that the regularisation param-
eter k affects the registration and the mesh qualities.
We note that taking large value of k makes it difficult
to get a physical solution, i.e. no folding In fact, for
k¼ 200 we clearly get a good alignment with
MI ¼ 1:55, but this leads to a folded mesh as it can
be seen in Figure 5(e), with Qmin ¼ �0:02. However,
by decreasing the value of k, the solution is getting
more physically correct with no mesh folding (see the
zooms in Figure 5), but the registration quality is not as
good as the case where k is large, i.e. 200.

In the rest of the numerical examples, we consider
k¼ 60.

Part 1: Synthetic data

In the part of the numerical examples, we assess the
importance of the term jj/ðdetðruhÞjj22 in the used
loss function, and its importance in getting large

diffeomorphic deformations by comparing between dif-
ferent common regularisers. We consider 10 synthetic
images drawn in order to compare the regularisers for
possible large deformations, where each image can
serve as a template and reference in the same time (so
that we have 2� 102 ¼ 200 pairs of images), see Figure
6. Then, we train and test three different models on this
same data, where the losses in these models have the
same similarity measures CLM, the same regularisation
parameter k¼ 60, but different regularisations terms
Sð�Þ.

• New: It is our proposed model and where

SðuhÞ ¼ jjruhjj22 þ jjr2uhjj22 þ jj/ðdetðruhÞjjj22: (6)

• Total variation: The regularisation in this model is
given by SðuhÞ ¼ jjruhjj1

• Diffusion (Diffu): We consider SðuhÞ ¼ jjruhjj22 as
regularisation term.

As shown in Figure 7, different SðuhÞ lead to differ-
ent results that we can distinguish between them
visually and by also checking the value of Qmin ¼
mindetðruhÞ. Only the new model gives diffeomorphic

Figure 9. The SN network: Training and testing losses for the
registration model for mono-modal (top) and multi-modal
(bottom) images.
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deformations since Qmin2 > 0 in this case, i.e. no mesh

folding.

Part 2: Real data

We test the performance of the proposed DLmodel in

registering real mono- and multi-modal images.

Registration quality is evaluated using the mutual

information (the larger the better) between the two

images TðuhÞ and R. We also assess if the map uh is

diffeomorphic by checking the minimum of the

Jacobian determinant detðruhÞ i.e. yes if positive. We

tested and compared between the two network archi-

tectures SN and LU-net (see Table 2).

We also compare with traditional deformable regis-
tration model Burger et al.,7 which is a non-learning
model and that we call NLmodel. It consists in solving
the following optimisation problem

minu jjrujj22 þ jjr2ujj22 þ jj/ðdetðruÞjjj22 þ
k
2
DðTðuÞ;RÞ

� �

(7)

where DðTðuhÞ;RÞ ¼ CLMðTðuhÞ;RÞ for mono-modal
images and DðTðuhÞ;RÞ ¼ PLSðTðuhÞ;RÞ for multi-
modal images. In this model, we solve an optimisation
problem w.r.t u for each pair of images T, R. We used

Figure 10. Pairwise registration results for 4 pairs of MRI images. Each row represents the result for a pair test. (a) Moving images T.
(b) Fixed images R. (c) and (d) are the registered images using DLModel and NLModel, respectively. The mutual information errors
and the values of Qmin related to these tests are given in Table 1.

Theljani and Chen 7



the Matlab implementation of FAIR’s Modersitzki3

for the regularization and we have just implemented
the similarity measures CLM and PLS under the
framework of FAIR’s package.

Mono-modal images. We trained our model on 160
mono-modal MRI heart images and compare with
the classical variational model NLmodel where we
solve the optimisation problem (7). We test our
model on 20 images and we display 4 comparison
tests with the NLmodel in term of runtime and accu-
racy, see Figure 10. DLModel is by far faster and pre-
dict the transformation in 1 second for a pair of images
with a resolution of 192� 192. The NLmodel achieves
the same result in term of accuracy but it takes more
than 1minute. The comparison between both models is
summarised in Table 1.

We also compared the two used networks in term of
registration quality. The comparison details are
reported in Table 2. The training curves of the regis-
tration model using the two networks are illustrated in
Figure 8 and Figure 9. These curves present the learn-
ing rate values at each epoch, and we see that the model
converges for the two networks after 800 epochs.

Multi-modal images. For multi-modal images, we trained
the network on 120 pairs of CT and MRI images. In
Figure 11, we display the prediction results for regis-
tering 4 pairs of MRI and CT images. To see the qual-
ity visually, we show the fused CT and MRI images for
the four examples before and after registration. Clearly
after the registration the images are well aligned. We
give the mutual information errors and the run-time
during the prediction in Table 3.

Figure 11. Pairwise registration results for 4 pairs of MRI-CT images. Each row represents the result for a pair test. (a) Moving
images T. (b) Fixed images R. (c) registered images using DLModel. (d) and (e) Fused images before and after the registration. The
mutual information errors and the values of Qmin related to these tests are given in Table 3.
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Conclusions

We have developed and presented an unsupervised
deep learning approach for mono-and multi-modal
images registration. We tested and compared different
choices of regularisation constraints on the deforma-
tion fields. The results have shown that control on
the Jacobian determinant of the deformation is neces-
sary in the loss function in order to get a diffeomorphic
map, mainly for large displacements. The learning
model was first designed and tested for mono-modal
images. The same learning approach works effectively
for multi-modal images, by only changing the similarity
measure to fit with the multi-modal setting. For for
mono- and multi-modal images, we tested 2 choices
of networks. We found that LU-net is recommended.

Future work will consider generalisations to 3
dimensional images registration.
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