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Abstract—Hyperspectral Imaging is a crucial tool in remote
sensing which captures far more spectral information than stan-
dard color images. However, the increase in spectral information
comes at the cost of spatial resolution. Super-resolution is a
popular technique where the goal is to generate a high-resolution
version of a given low-resolution input. The majority of modern
super-resolution approaches use convolutional neural networks.
However, convolution itself is a linear operation and the networks
rely on the non-linear activation functions after each layer to pro-
vide the necessary non-linearity to learn the complex underlying
function. This means that convolutional neural networks tend
to be very deep to achieve the desired results. Recently, self-
organized operational neural networks have been proposed that
aim to overcome this limitation by replacing the convolutional
filters with learnable non-linear functions through the use of
MacLaurin series expansions. This work focuses on extending the
convolutional filters of a popular super-resolution model to more
powerful operational filters to enhance the model performance on
hyperspectral images. We also investigate the effects that residual
connections and different normalization types have on this type
of enhanced network. Despite having fewer parameters than their
convolutional network equivalents, our results show that opera-
tional neural networks achieve superior super-resolution perfor-
mance on small hyperspectral image datasets. Our code is made
available on Github: https://github.com/aulrichsen/SRONN.

Index Terms—Hyperspectral Imaging, Super-Resolution, Op-
erational Neural Networks

I. INTRODUCTION

HYPERSPECTRAL imaging is a key tool in remote sens-
ing applications such as material classification, mineral

exploration, environmental monitoring, and more [1]. The
reason it is valuable is due to its additional spectral information
which offers insights into the materials within the image that
standard color images cannot provide. However, due to sensor
limitations, it is difficult to obtain a high-quality hyperspectral
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image (HSI) with both high spectral and spatial resolution
[2] and thus the increased spectral resolution comes at the
cost of decreased spatial resolution [3]. Automated image
processing tasks such as image segmentation, object detection
and classification can improve the efficiency of remote sensing
systems. However, the reduction in spatial resolution can be
detrimental to their performance. It is therefore desirable to
be able to recover the lost spatial resolution to improve the
performance of post-processing tasks on the resulting HSI.
Single image super-resolution (SISR) is a technique used to
enhance the spatial resolution of the given low-resolution
hyperspectral image without any auxiliary information.

Most modern super-resolution (SR) approaches use con-
volutional neural networks (CNNs) to produce an image-
to-image mapping operator which converts the input low-
resolution image to a high-resolution image [4], [5], [6],
[7]. These operators are of a complex non-linear nature and
part of the reason that CNNs have had so much success
in this field is due to their capacity to learn complex non-
linear operators. However, the sole non-linear elements of a
CNN come from the activation functions after each layer,
meaning that CNNs often require many layers to have the
necessary non-linear capacity and diversity to learn the desired
operator. Recently, operational neural networks (ONNs) [8],
[9] and their new variants, self-organised operational neural
networks (Self-ONNs) [10], have been proposed to overcome
this limitation by using the generative neuron model that
can customize the optimal non-linear function during training
for each kernel element. To accomplish this, each kernel
element is extended with MacLaurin series expansions and
the terms of the series are made learnable. This means that
each kernel element can learn to approximate any non-linear
function and thus similar theoretical non-linear capacity of
a deep CNN can be achieved in a much shallower Self-
ONN which is more computationally efficient. In this paper,
we take the popular SR network, SRCNN [6], and extend it
for use on hyperspectral images. We also make a Self-ONN
equivalent model by replacing the convolutional layers with
operational layers. Furthermore, we make a Self-ONN version
with a reduced number of filters to demonstrate the non-linear
capacity of operational layers over convolutional layers. We
train our models on the publicly available Pavia University,
Cuprite, Salinas, and Urban datasets [11], [12] and show that
Self-ONNs can provide a HSI SR performance improvement
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of over 0.5 dB PSNR even when it has fewer parameters than
a CNN with an equivalent architecture.

Furthermore, this study investigates the effects residual
connections and various normalization types have on Self-
ONN performance, as, to the best of our knowledge, this has
not been previously investigated.

The novel and significant contributions of this study can be
summarised as follows:

• Based on the SRCNN [6] configuration, novel Self-ONNs
have been proposed for the Hyperspectral Single-Image
Super-Resolution task.

• We incorporate residual connections and various normal-
ization layers into Self-ONN models, which to the best of
our knowledge, has never been done before, and present
our novel findings on the performance effects these layer
types have on our Self-ONN models.

• With the proposed model and structural modifications, we
have achieved performance improvements with a reduced
number of overall network parameters compared to the
SRCNN model.

The rest of the paper is organized as follows: Section II will
briefly present the related work with the conventional ONNs.
Section III details the proposed methodology for Hyperspectral
Single-Image Super-Resolution. We present the experimental
setup and results in Section IV along with detailed comparative
evaluations in Section V. Finally, Section VI concludes the
paper and suggests topics for future research.

II. RELATED WORK

A. Super-Resolution

Most modern approaches to super-resolution use convolutional
neural networks (CNNs) in either a supervised or unsupervised
manner [13], [14], [15], [16]. Supervised training involves
training a model on a dataset consisting of low-resolution and
high-resolution image pairs. One of the first papers to adopt
this approach was [6] where they proposed their CNN model
named SRCNN for the task of single image super-resolution.

SRCNN is a fairly shallow CNN consisting of only 3 layers,
so the authors of [17] proposed a much deeper CNN to
perform supervised SISR. The deeper network provides more
learning capacity but is also more difficult to train due to
the vanishing gradient problem. To overcome this issue, they
proposed a residual connection which sums the input of the
model directly to the output so that instead of learning the
direct input-to-output image mapping, the model learns the
residual between the input and output which improved results
and greatly decreased training times.

Since then, many other deep CNN models have been pro-
posed for supervised single image super-resolution [18], [19],
[20], [13], [21]. However, the main challenge of this approach
is acquiring the dataset. Ideally, perfectly aligned images
would be captured with a low-resolution and a high-resolution
sensor, but this is impractical to perform in many situations.
What is more commonly done is a dataset of high-resolution
images is acquired and the low-resolution image pairs are
then synthetically generated by blurring and downsampling
the high-resolution images and then adding noise.

To overcome this limitation, unsupervised methods using
Generative Adversarial Networks (GANs) [22] have been pro-
posed which utilize datasets of unpaired real high-resolution
and low-resolution images through the use of generator and
discriminator models. The generator produces high-resolution
versions of the low-resolution images and the discriminator
aims to distinguish between the true high-resolution images
and the generated high-resolution images. Over time, the
generator learns to produce realistic high-resolution outputs of
the input low-resolution images which match the distribution
of the high-resolution image dataset. Thus, the model is more
likely to learn the true low-resolution to high-resolution image
mapping function. Many researchers have achieved impressive
results using this approach [4], [23], [24], [15], [25], [26].
However, the unsupervised nature of this approach means
that it is inherently more difficult to train as the generator
learns from feedback provided by the discriminator and the
discriminator has no prior knowledge of the objective. In
addition, it is also challenging to measure the performance
of a GAN objectively as typical image quality metrics such
as peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) [27] require a target image to be evaluated. To
overcome these problems it typically requires a lot of training
data to produce a realistic GAN [28] which is not always
available, particularly in the case of hyperspectral imagery.

Attempts have been made to improve upon human-perceived
super-resolution quality. [29] introduces a perceptual loss
function generated through a fixed loss network to create
visually pleasing results but at the cost of PSNR and SSIM, in-
dicating that their per-pixel accuracy is lower. [15] introduces
a perceptual loss function to train a GAN, which again focuses
on learning mappings that are perceptually pleasing to humans,
rather than pixel-to-pixel accuracy. These approaches improve
how pleasing super-resolution outputs may be to a human
observer, but do not necessarily provide any performance
improvement for post-processing tasks to be done on the
resulting images.

It has been shown that super-resolution performance can
be improved by utilizing multiple images captured in quick
succession [30]. However, this approach is impractical when
it comes to HSIs due to the slow acquisition times. Data
fusion techniques can be applied to HSIs [31], [32]. However,
these approaches rely on the availability of a high-resolution
multispectral image of the same scene.

Transformers [33] are gaining popularity in the vision
community and some researchers have utilized them for super-
resolution [34]. However, this approach suffers the same prob-
lem as the unsupervised GAN methods in that that they require
very large amounts of data to be trained. Furthermore, the
use of these techniques is also known to be computationally
expensive during the inference process.

Given the limited availability of training data makes the
use of transformers, modern deep GANs, and CNNs difficult
to apply to HSI SR problems. Furthermore, we generally
aim to improve the quality of the hyperspectral data before
inference tasks, which means that an efficient SR network
that can operate in real-time is preferred. The large amount
of data to be processed in hyperspectral imaging presents a
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challenge to using deep networks, so we propose a highly
efficient SR neural network structure based on a new paradigm,
self-operational neural filtering.

B. Operational Neural Networks

Recent advances in deep learning have resulted in CNNs
dominating many computer vision fields, including super-
resolution. Part of the reason for their success is their ability
to learn complex non-linear operators. However, convolution
itself is a linear operation and the non-linear components of the
networks are solely provided by the activation functions used
after each convolutional layer in the network. This means that
CNNs often have to be very deep in order to have the necessary
non-linear capacity and diversity to learn the complex function
of the learning problem.

Recently, Operational Neural Networks (ONNs) [8], [9]
were proposed to address this issue by incorporating non-
linear nodal and pooling functions that replace the sole
convolution operation with any non-linear operator, which
adds significantly more non-linear components to the network
than a traditional CNN. However, these additional non-linear
operations are hard coded and thus cannot be changed during
training. This means that the functions need to be searched for,
which is computationally expensive, and the search space is
limited to the function set, which may not contain the optimal
function(s).

The authors of [8] then addressed these limitations by
proposing self-organized operational neural networks (Self-
ONNs) [10] which aim to make the linear filters of a stan-
dard CNN non-linear through the use of MacLaurin series
expansions, rather than applying hard-coded functions. Such
non-linear filters for each kernel element are learnable dur-
ing training, and thus, eliminate the need for an exhaustive
search to find the optimal functions. Furthermore, any function
can theoretically be approximated using MacLaurin series
expansions, which means that a Self-ONN is not limited
to a specified function set, allowing for an enhanced non-
linear search space. These improvements mean that Self-ONNs
are far more computationally efficient than their standard
ONN counterparts, with greater theoretical non-linear capacity
than both their ONN and CNN counterparts. This additional
complexity comes at the cost of each filter requiring more
parameters. However, the network size of a Self-ONN can
be much smaller than a CNN to have the same or increased
theoretical non-linear capacity, allowing for the overall model
to have fewer parameters than a CNN despite each individ-
ual filter containing more parameters. In many applications
[35], [36], [37], [38], [39], [40] Self-ONNs outperformed the
deeper and more complex CNNs whilst achieving an elegant
computational efficiency.

III. METHODOLOGY

We take the super-resolution model SRCNN [6] and modify
it for use on hyperspectral images by extending the number
of input and output channels of the model from 3 (for RGB
images) to the required number for the relevant HSI depending
on the number of wavelength bands it contains. SRCNN,

Fig. 1. SRCNN model representation consisting of 3 convolutional layers
with filter sizes f1 x f1, f2 x f2, and f3 x f3.

Fig. 2. SRONN model representation consisting of 3 self-operational layers
with filter sizes (f1 x f1 x Q), (f2 x f2 x Q), and (f3 x f3 x Q). Note, each filter
element is a learnable non-linear function, enhancing its theoretical learning
capacity over a standard CNN where each filter element is a learnable linear
function.

shown in Figure 1, is a relatively compact model consisting of
3 convolutional layers followed by ReLU activation functions,
except for the output layer, where no activation function is
used. Although there are many improved variants of SRCNN,
we select this model due to its simplicity and wide use. Its
simplicity allows us to easily and effectively compare CNN
and Self-ONN performance so we can have a high degree of
certainty that the performance improvement is solely due to the
Self-ONN non-linear filters and not influenced by any other
auxiliary network components. Furthermore, this architecture
allows us to examine the effects of incorporating auxiliary
components such as residual connections and normalization
layers into our Self-ONN models. A shallow model such as
SRCNN is also much less prone to overfitting, which is useful
for our datasets which are very limited in size.

We propose a novel Self-ONN model, SRONN, that shares
the same configuration as SRCNN as shown in Figure 2. A
key aspect of Self-ONNs is that data passed between layers
must be bounded between −1 and 1 in order to prevent
exponentially large values due to the non-linear nature of the
model. We, therefore, use hyperbolic tangent (tanh) activation
functions after the first and second operational layers in our
SRONN model instead of the ReLU activation functions of
SRCNN. The tanh activation function is defined in equation
1 and it’s output bounds are between −1 and 1, making it an
ideal activation function to constrain the data passed between
layers to the desired range.

tanh(x) =
ex − e−x

ex + e−x
(1)
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A. Parametric Analysis

Self-ONNs gain their additional non-linear complexity through
the use of MacLaurin series expansions:

f(x) =
∞∑

n=0

f (n)(0)

n!
xn (2)

In practice, the 0th term in the expansion is the bias.
Therefore, the 0th term can be disregarded from the filter
approximation. The order of the polynomial should be finite
in practice so the number of terms is supplied to the network
by a parameter Q. This makes the expansion for an ONN as
follows:

f(x) =

Q∑
n=1

f (n)(0)

n!
xn (3)

Note that when the Q value is 1, it is the exact equivalent
of a standard convolutional layer. Higher Q values yield more
accurate function approximations but at the cost of additional
parameters as the Q value directly equates to the multiplication
in parameters over a standard convolutional filter. The number
of parameters in the convolutional layers of a CNN can be
calculated using the following equation:

# parameters =

l−1∑
l=0

(nl ×ml × fl + 1)× fl+1 (4)

where l is the number of layers, nl, ml is the number of
rows and columns in the convolutional filters at layer l, f is
the number of filters and the constant 1 accounts for the bias
for each filter. Note, that on the first layer, i.e. l = 0, the
number of filters from the previous layer (l−1) is given by
the number of channels of the input image. To compute the
number of parameters of a Self-ONN, we simply multiply this
by Q:

# parameters =
l−1∑
l=0

(nl ×ml × fl ×Q + 1)× fl+1 (5)

Our SRONN model will therefore have approximately Q
times more parameters than the SRCNN model. To ensure
a fair comparison between CNN and Self-ONN, we choose
a low Q value. The minimum Q value is 2, as a Q value
of 1 is the equivalent of a CNN. However, a Q value of 2
would only add one non-linear term to Eq. (3), limiting the
non-linear function approximation capacity. To enhance this
capacity, we use a Q value of 3 in all experiments, which
introduces a second non-linear term to Eq. (3), significantly
improving the non-linear function approximation while still
keeping the parameter increase relatively low. It is also worth
noting that going much beyond this Q value will likely have
diminishing performance returns relative to the parameter
increase and may even be detrimental to performance due to
the increased training difficulty, especially on small datasets.
However, a Q value of 3 still means that each SRONN model
has around three times more parameters than its equivalent

Fig. 3. General model architecture. C represents the number of channels in the
hyperspectral image. Values in brackets represent the number of filters in the
compact sSRONN model. SRCNN and SRONN variants have Cx128, 128x64,
and 64xC filters in each respective layer. sSRONN variant has Cx32, 32x16,
and 16xC filters in each respective layer. The normalization type depends on
the experiment and in some experiments, there is no normalization, in which
case the normalization layers are skipped. The residual connection is also
removed in experiments where it is not applied.

SRCNN model. For a fair comparison, we also propose a Self-
ONN model with the same number of layers as SRCNN but
with four times fewer filters per layer. This model has between
26.5% and 28.2% fewer parameters than SRCNN, depending
on the required input and output channels of the dataset. We
refer to this model as small SRONN or sSRONN.

To implement a Self-ONN layer in practice a standard
convolutional layer can simply be extended by increasing the
number of input channels by a factor of Q and passing the
input concatenated with the input raised to the power n up to
Q. The convolutional layer will then apply its weights to all the
MacLaurin series terms and perform the required summation
of the terms, providing the non-linear learnable MacLaurin
series approximation. This practical implementation can be
found in the GitHub repository from [9]. More detailed
information about Self-ONNs is presented in Appendix A.

B. Normalization and Residual Connections

Due to the recent proposal of Self-ONNs [10], techniques
commonly applied to CNNs to improve results have been
studied little on Self-ONNs. We study the effects of incorpo-
rating various normalization layer types into our ONN models
after each Tanh activation function including L1, L2, instance
[41], and batch [42] normalization. We also study the effects
of adding a residual connection to connect the output of the
model directly to the input of the model so that the model
learns the residual rather than the direct mapping as performed
in [20]. To the best of our knowledge, this is the first work to
study the effects of these techniques on Self-ONNs.

The proposed Self-ONN model is illustrated in Figure 3.

IV. RESULTS

We first compare the SRCNN models against the SRONN and
sSRONN models without normalization for a fair comparison.
The results can be seen in Table II and example outputs
on the Pavia University dataset from the models with and
without residual connections can be seen in Figure 4 and
Figure 5 respectively. True super-resolution outputs, i.e. where
there is no target image and super-resolution is performed on
the original data (no downsampling), on the Pavia University
dataset can be seen in Figure 6 and Figure 7.
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We only apply normalization to the Self-ONN models, since
normalization has been widely studied in CNNs. We present
the results from adding various normalization types to the Self-
ONN models in separate tables for each dataset. Results for
the Cuprite dataset are shown in Table III, Pavia University
in Table IV, Salinas in Table V and Urban in Table VI within
Appendix D.

For the three training iterations of each model on each
dataset, we report only the results from the best iteration in
each table of results.

A. Datasets

We evaluate our models on four different HSI datasets: Pavia
University; Salinas; Cuprite; Urban. Details for each dataset
[12], [11] can be seen in Table I.

TABLE I
DATASET INFORMATION

Dataset Image Dimensions Channels Resolution
Pavia University 610× 340 103 1.3m

Salinas 512× 217 204 3.7m
Cuprite 512× 614 224 -
Urban 307× 307 210 2m

We use the standard approach to generating a low-resolution
image pair from a given high-resolution target image by using
Eq. (6):

ILR = (IHR ∗ k) ↓s + n (6)

where k ∈ R2 is a 2D degradation kernel, * is a spatial
convolution, ↓s is a decimation operation with a stride s, and
n is a noise term. We use Gaussian blur with a sigma value
of 0.8943 for k as is done in [43], 2× subsampling for ↓s.
We do not add any noise so the parameter n is ignored. Each
generated LR tile was then bilinearly interpolated back up to
the size of the original tile so the model could perform super-
resolution by recovering the information at the desired output
resolution. The model would then be trained with the LR tile
as input and the original HR tile as the target. We select a
scale factor of 2× as the datasets we are using are very small
in size, making it infeasible to go beyond this scale factor.

Each dataset was preprocessed with min-max normalization
and then divided into 64x64 pixel tiles, maintaining the entire
wavelength spectrum. We utilize 70% of the tiles for training,
15% for validation and reserve 15% for testing.

B. Training Details

Each model was trained for 50000 epochs to guarantee net-
work convergence, and the weights from the epoch which
produced the highest SSIM validation score were used for test-
ing. We use the Adam optimizer [44] with default parameters
except for the learning rate. Each model was initially trained
with a learning rate of 10−4 which was decreased by a factor
of 10 at epochs 5000 and 40000. Two following runs were
then completed where the starting learning rate and the epoch
milestones - where the learning rate was decreased by a factor
of 10 - were manually adjusted in an attempt to improve the
performance. We use mean squared error as our loss function.

We initialize our models’ weights with a normal distribution
with a gain of 0.02. All training LR tiles are fed to the model
in a single batch on each epoch. For all experiments, the entire
training dataset was forward propagated through the model at
once so there was no need to adjust the batch size.

V. DISCUSSION

The results from Table II reveal that the base SRONN models
without a residual connection generally offer a slight im-
provement over the SRCNN model that also lacks a resid-
ual connection. However, an exception to this trend occurs
specifically in the Salinas dataset, where the SRCNN model
without a residual connection outperformed the corresponding
SRONN models across all metrics. It is essential to note that
this outperformance is confined only to the Salinas dataset
and is not representative of the overall trend observed across
the other three experimental datasets. We hypothesise that this
may be due to the Self-ONN models having a more complex
search space to navigate and optimise, owing to the non-linear
nature of the filters, thus causing more difficulty in converging
compared to the simpler SRCNN model.

A. Effects of Residual Connections

The results from Table II show that adding a residual connec-
tion provides significant improvement to both Self-ONN mod-
els, resulting in both the SRONN and sSRONN models outper-
forming the SRCNN models across all metrics on all datasets.
The addition of a residual connection improved all metrics
across all datasets for both sSRONN and SRONN except for
PSNR on the Urban dataset for the SRONN model where
a slight decrease was observed. Furthermore, the addition
of a residual connection greatly increased convergence time
which can be seen in the model training loss and validation
metric plots we have included in Appendix A. The residual
connection has a lesser impact on the results of SRCNN, only
offering improvement in some cases, which is likely due to
the model not being complex enough to see any consistent
performance improvement from a residual connection. The
residual connection performance improvement on the spectra
can be very clearly observed in the mean absolute error
spectral plots in Figures 4 & 5. In Figure 4, the SRONN
model tends to have better spectral reconstruction at the higher
wavelengths while the SRCNN model is usually better at the
lower wavelengths, but from that plot, it is visually difficult to
say which is better overall except that they are both better than
the sSRONN model. However, when a residual connection is
added, the mean absolute error spectral plots in Figure 5 quite
conclusively show that both ONN models provide superior
spectral reconstruction than the SRCNN model.

The improvement seen in the performance and convergence
times of our Self-ONN models when a residual connection
is added supports our convergence hypothesis. It could also
be indicative that Self-ONNs may suffer more from vanishing
gradients than CNNs. Interestingly, the sSRONN model gener-
ally saw greater performance improvements from the addition
of a residual connection than the SRONN model, which is
counterintuitive as the sSRONN optimization search space is
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TABLE II
RESULTS FROM STANDARD MODELS WITH NO NORMALIZATION.

Dataset Model Residual # parameters lr lr steps PSNR ↑ SSIM ↑ SAM ↓

Cuprite

SRCNN
no

2754976 10−4 100k 27.799 0.9766 10.136
SRONN 8264096 10−4 2.5k 27.882 0.9743 10.044
sSRONN 2024720 10−4 15k 27.863 0.9746 10.061
SRCNN

yes
2754976 10−4 5k, 40k 27.783 0.9731 10.118

SRONN 8264096 10−4 2.5k 27.927 0.9774 9.993
sSRONN 2024720 10−4 2.5k 27.959 0.9775 9.961

Pavia
University

SRCNN
no

1306727 10−4 5k, 40k 35.396 0.977 4.346
SRONN 3919591 10−4 2.5k 35.857 0.9775 4.209
sSRONN 938503 10−4 50k 35.693 0.9768 4.606
SRCNN

yes
1306727 10−4 2.5k, 10k, 30k 35.597 0.9768 4.388

SRONN 3919591 10−4 5k, 40k 35.914 0.9783 4.056
sSRONN 938503 10−4 5k, 40k 35.926 0.9782 4.033

Salinas

SRCNN
no

2515596 10−4 5k 44.074 0.9943 1.462
SRONN 7545996 10−4 2.5k 43.941 0.994 1.549
sSRONN 1845180 10−4 5k, 40k 43.558 0.9937 1.622
SRCNN

yes
2515596 10−4 5k, 40k 44.025 0.9941 1.517

SRONN 7545996 10−4 10k 44.223 0.9944 1.461
sSRONN 1845180 10−4 4.5k, 30k 44.286 0.9945 1.412

Urban
SRCNN

no
2587410 10−4 5k, 40k 25.231 0.8878 14.811

SRONN 7761426 10−4 5k, 40k 25.941 0.8935 13.94
sSRONN 1899042 10−4 3k 25.818 0.8912 14.22
SRCNN

yes
2587410 10−5 5k, 40k 25.872 0.8916 13.958

SRONN 7761426 10−4 2k 25.892 0.8999 13.613
sSRONN 1899042 10−4 4k 26.065 0.8963 13.681

Fig. 4. Output of models with no residual connection or normalization on the Pavia University dataset. The mean absolute error between the predicted and
true spectra across the patch is shown on the left. Slice 80 of the original HSI is shown in the middle. LR, predictions, HR and the absolute difference between
prediction and HR are shown on the right.

significantly smaller than the search space of the SRONN
model. One explanation for this could be that the sSRONN
model might be slightly under-parameterized for direct image-
to-image mapping. However, it may have sufficient parameters
to learn the residual, resulting in a bigger performance im-
provement when the residual connection is added to the model.
The larger SRONN model, which may be well-parameterised
for image-to-image mapping but slightly over-parameterised
for residual learning, does not see as much of a performance
improvement as the smaller sSRONN model.

Since both SRONN and sSRONN outperform SRCNN,

this demonstrates the power of the non-linear filters over
the standard linear convolutional filters. The non-linear filters
provide the operational layer with an enhanced ability to
produce sharper edges and thus produce sharper contrast
between pixels resulting in a more detailed output image,
which is evident in the resulting images shown in Figure 5
and Figure 7.

B. Effects of Normalization

Our results in Tables III, IV, V, and VI show the effects
of incorporating normalization layers into our SRONN and
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Fig. 5. Output of models with a residual connection on the Pavia University dataset. The mean absolute error between the predicted and true spectra across
the patch is shown on the left. Slice 80 of the original HSI is shown in the middle. LR, predictions, HR and the absolute difference between prediction and
HR are shown on the right.

Fig. 6. True super-resolution output of models with no residual connection on slice 80 of the Pavia University dataset. Spectral plots of the center pixel of
each coloured image patch for each model output are shown on the left. The original HSI is shown in the middle. Test tiles bilinearly interpolated up to 2x
their original size and super-resolution results on the interpolated tiles are shown on the right.

sSRONN models are largely varied and highly dataset de-
pendent. It appears that normalization has a greater impact
on the datasets with larger spatial dimensions. We found L2
normalization to be the most effective, providing a slight
performance boost to the SRONN model across all metrics
on the Cuprite, Pavia University and Urban datasets while
boosting the SAM on the Salinas dataset. For the sSRONN
model, the performance improvement from adding L2 nor-

malization is less significant, providing only a performance
boost to SSIM and SAM on the Cuprite dataset, PSNR on
the Pavia University dataset and SSIM on the Urban dataset.
No performance improvement was provided by using L2
normalization over no normalization on the Salinas dataset.

Our results show that normalization is generally more effec-
tive when utilized in conjunction with a residual connection.
This is likely due to the fact the normalization layers will
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Fig. 7. True super-resolution output of models with a residual connection on slice 80 of the Pavia University dataset. Spectral plots of the center pixel of
each coloured image patch for each model output are shown on the left. The original HSI is shown in the middle. Test tiles bilinearly interpolated up to 2x
their original size and super-resolution results on the interpolated tiles are shown on the right.

normalize the data around a zero mean which makes it more
difficult for the models without a residual connection to map
the zero mean feature maps to the true mean of the output.
However, when a residual connection is introduced, the model
learns the residual between the input and the target, which
should have a mean near zero. Therefore, normalization may
offer a greater benefit in this scenario as it assists the model in
transforming the data to the target mean, rather than moving
it away from the target mean.

Interestingly, we found instance normalization to be espe-
cially detrimental to all results. This could be because instance
normalization normalizes each channel individually which
may have an adverse effect on the channel dependencies.

VI. CONCLUSION

We show that Self-ONNs outperform equivalent well known
CNNs in the task of HSI SR, even when the Self-ONN models
have a lower number of parameters than the CNNs. The Self-
ONN results produced sharper images and contained more
detail which is likely a direct result of the enhanced non-linear
filters.

We found that adding a residual connection to our SRONN
and sSRONN models provided a significant performance
improvement and greatly increased convergence times. We
hypothesize that Self-ONNs suffer more from the vanishing
gradient problem than CNNs due to their more complex search
spaces and thus the residual connection helps mitigate this
issue, even in relatively shallow models.

We examined the effects of adding a residual connection
and various normalization layers to our ONN models. Our

results show that L2 normalization layers in ONNs can offer a
moderate performance improvement when used in conjunction
with a residual connection, but the benefit of normalization
appears to be highly dependent on the dataset.

We show that the superior non-linear capabilities of ONNs
compared to CNNs allow for sharper and more detailed HSI
SR results. This indicates that Self-ONNs can outperform
CNN models in such image-to-image mapping tasks. Finding
the best Self-ONN models with the right hyperparameters will
be the topic of our future work.
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APPENDIX

SELF-ONNS

Generalized Operational Perceptrons (GOPs) [45], [46],
[47], [48], [49] have recently been developed towards the
goal of modeling biological neurons with distinct synaptic
connections. GOPs have demonstrated a superior diversity,
as encountered in biological neural networks, which resulted
in an elegant performance level on numerous challenging
problems where conventional MLPs entirely failed. Following
in the GOP’s footsteps, Operational Neural Networks (ONNs)
[8], [50], [9] were developed as a superset of CNNs. ONNs
not only outperform CNNs significantly, but they are also able
to learn certain problems where CNNs fail entirely. However,
ONNs also exhibit certain drawbacks such as strict dependabil-
ity to the operators in the operator set library, the mandatory
search for the best operator set for each layer/neuron, and the
need for setting (fixing) the operator sets of the output layer
neuron(s) in advance. The operator diversity is also limited
since a single operator set is assigned one or usually more
neurons and this makes all (synaptic) connections have the
same operator.

Furthermore, the operator set for the “right” transformation
may or may not exist in the library. For this purpose, “Self-
Organizing” ONNs (Self-ONNs) [10] were recently proposed
with the generative neuron model that addresses this drawback
by customizing each nodal operator on the fly. This is in fact
the case for biological neurons where the synaptic connections
can exhibit any arbitrary form or pattern. In brief, a generative
neuron is basically an operational neuron with a composite
nodal operator that can be generated during training without
any restrictions. As a result, with such generative neurons, a
Self-ONN can self-organize its nodal operators during training,
and thus, it will have the nodal operator functions “optimized”
by the training process to maximize the learning performance.
For instance, in the sample illustration shown in Figure 8, the
CNN and ONN neurons have static nodal operators (linear
and harmonic, respectively) for their 3x3 kernels, while the
generative neuron can have any arbitrary nodal function, Ψ,
(including possibly standard types such as linear and harmonic
functions) for each kernel element of each connection. This

is a great flexibility that permits the formation of any nodal
operator function and also allows the creation of the optimal
nodal operators during training to maximize the learning per-
formance. As illustrated in Figure 8 (middle), for conventional
ONNs the input map of the ith neuron at the layer l+1, x

(
il+1),

is composed in Eq. (7):

xl+1
i = bl+1

i +

Nl∑
k=1

(
oper2D(ylk, w

l+1
ik ,

′
NoZeroPad

′
)

xl+1
i (m,n)|(M−1,N−1)(0,0) = bl+1

i +

Nl−1∑
i=1

(
P l+1
i

[
Ψl+1

i

(
ylk(m,n), wl+1

ik (0, 0)
)
, . . . ,

Ψl+1
i

(
ylk(m + r, n + t), wl+1

ik (r, t)
)
, . . .

])
(7)

where ylk are the final output maps of the previous layer
neurons operated with the corresponding kernels, wl+1

ik , with a
particular nodal function, Ψl+1

i such as linear (multiplication),
sinusoid, exponential, Gaussian, chirp, Hermitian, etc. A close
look at Eq. (7) reveals the fact that when the pool operator is
“summation”, P l+1

i = Σ, and the nodal operator is “linear”,
Ψl+1

i

(
ylk(m + r, n + t), wl+1

ik (r, t)
)

= ylk(m + r, n + t) ×
wl+1

ik (r, t), for all neurons, then the resulting homogenous
ONN will be identical to a CNN. Hence, ONNs are indeed
a superset of CNNs as the GOPs are a superset of MLPs.

Self-ONNs with generative neurons differ from ONNs by
the following two points:

1) Each “fixed-in-advance” nodal operator function with a
scalar kernel element, Ψl+1

i (ylk(m+r, n+t), wl+1
ik (r, t)),

is approximated by the composite nodal operator,
Ψ(ylk(m + r, n + t),wl+1

ik (r, t)), as expressed by the
Maclaurin series,

2) The scalar kernel parameter, wl+1
ik (r, t), of the kernel of

an ONN neuron, is replaced by a Q-dimensional array,
wl+1

ik (r, t).
In this way, any nodal operator function can be approxi-

mated with Maclaurin series near the origin as shown in Eq.
(8):

Ψ(y,w) = w0 + w1y + w2y
2 + · · ·+ wQy

Q (8)

Fig. 8. An illustration from [9] of the nodal operations in the kernels of the ith CNN (left), ONN (middle), and Self-ONN (right) neurons at layer l + 1.
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where wq = f(q)(0)
q! is the qth coefficient of the Qth order

polynomial. During the back-propagation (BP) training, each
wq of a kernel element is optimized for the learning problem at
hand. Thanks to this ability, there is no need for any operator
search for Self-ONNs and arbitrary nodal operators can be
customized by the training process as illustrated in Figure 8
(right). This results in enhanced flexibility and diversity over
an operational neuron where only a standard nodal operator
function has to be used for all kernels, each connected to an
output map of a neuron in the previous layer. With this ability,
in various 1D and 2D applications, Self-ONNs outperformed
both conventional ONNs and CNNs with a significant gap
[10], [51], [37], [36], [35], [52], [53], [54], [55], [56], [57].

TRAINING PLOTS

A. Pavia University

(a) Training loss plot.

(b) Validation SSIM plot.

(c) Validation PSNR plot.

(d) Validation SAM plot.
Fig. 9. SRONN training and validation plots on the Pavia University dataset
with and without a residual connection.

13

Operational neural networks for parameter-efficient hyperspectral single-image super-resolution

���

����

����

����

����

���

���

���

���

���

���

���

��

��

��

��

��

��

�������
� ������������ ����� ������

� �������� �����������

�� �� �� ��

������
� ������������ �����������

� �������� ����� ������

�� �� ��

������
� ������������ ����� ������

� �������� ����� ������

�� �� �� ��

�����
� ������������ ����� ������

� �������� �����������

�� �� ��

���

��

���

��

���

��

���

��



B. Salinas

(a) Training loss plot.

(b) Validation SSIM plot.

(c) Validation PSNR plot.

(d) Validation SAM plot.
Fig. 10. SRONN training and validation plots on the Salinas dataset with and
without a residual connection.

C. Cuprite

(a) Training loss plot.

(b) Validation SSIM plot.

(c) Validation PSNR plot.

(d) Validation SAM plot.
Fig. 11. SRONN training and validation plots on the Cuprite dataset with
and without a residual connection.
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D. Urban

(a) Training loss plot.

(b) Validation SSIM plot.

(c) Validation PSNR plot.

(d) Validation SAM plot.
Fig. 12. SRONN training and validation plots on the Urban dataset with and
without a residual connection.

NORMALIZATION RESULTS
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TABLE III
NORMALIZATION RESULTS ON CUPRITE DATASET.

Model Residual Normalization # parameters lr lr steps PSNR ↑ SSIM ↑ SAM ↓

SRCNN no none 2754976 10−4 100k 27.799 0.9766 10.136
yes none 2754976 10−4 5k, 40k 27.783 0.9731 10.118

SRONN

no

batch 8264480 10−4 50k 26.998 0.9522 10.959
instance 8264096 10−4 25k 26.248 0.9296 11.744
l1 8264096 10−4 50k 27.506 0.971 10.438
l2 8264096 10−4 10k 27.921 0.9807 9.99
none 8264096 10−4 2.5k 27.882 0.9743 10.044

yes

batch 8264480 10−4 5k, 40k 26.968 0.9501 11.041
instance 8264096 10−4 50k 27.324 0.9626 10.662
l1 8264096 10−4 50k 27.911 0.9761 10.005
l2 8264096 10−4 5k, 40k 27.939 0.9774 9.98
none 8264096 10−4 2.5k 27.927 0.9774 9.993

sSRONN

no

batch 2024816 10−4 50k 27.562 0.9689 10.371
instance 2024720 10−4 50k 26.56 0.9501 11.286
l1 2024720 10−4 50k 26.448 0.9607 11.787
l2 2024720 10−4 50k 27.886 0.9758 10.029
none 2024720 10−4 15k 27.863 0.9746 10.061

yes

batch 2024816 10−4 50k 27.823 0.9732 10.104
instance 2024720 10−4 50k 27.699 0.9701 10.242
l1 2024720 10−4 5k, 40k 27.372 0.9708 10.628
l2 2024720 10−4 2.5k, 35k 27.956 0.9775 9.96
none 2024720 10−4 2.5k 27.959 0.9775 9.961

Bold values are the overall best value for the given metric. Values in italics are the best values for the given model in
the absence of a bold value.

TABLE IV
NORMALIZATION RESULTS ON PAVIA UNIVERSITY DATASET.

Model Residual Normalization # parameters lr lr steps PSNR ↑ SSIM ↑ SAM ↓

SRCNN no none 1306727 10−4 5k, 40k 35.396 0.977 4.346
yes none 1306727 10−4 2.5k, 10k, 30k 35.597 0.9768 4.388

SRONN

no

batch 3919975 10−4 10k 34.103 0.965 6.013
instance 3919591 10−4 20k 27.385 0.8828 11.12
l1 3919591 10−4 50k 34.475 0.9713 4.956
l2 3919591 10−4 5k 35.16 0.9756 4.495
none 3919591 10−4 2.5k 35.857 0.9775 4.209

yes

batch 3919975 10−4 10k 34.705 0.9688 5.242
instance 3919591 10−4 50k 32.456 0.95 6.277
l1 3919591 10−4 50k 35.828 0.9775 4.288
l2 3919591 10−4 10k, 20k, 30k 36.069 0.9785 4.055
none 3919591 10−4 5k, 40k 35.914 0.9783 4.056

sSRONN

no

batch 938599 10−4 20k 34.441 0.9681 5.323
instance 938503 10−4 50k 27.792 0.8957 11.675
l1 938503 10−3 50k 33.884 0.9655 5.453
l2 938503 10−4 50k 34.934 0.9741 4.708
none 938503 10−4 50k 35.693 0.9768 4.606

yes

batch 938599 10−4 20k 35.126 0.972 4.878
instance 938503 10−4 50k 32.559 0.9518 6.524
l1 938503 10−4 50k 35.672 0.9756 4.338
l2 938503 10−4 10k, 30k 36.001 0.9779 4.118
none 938503 10−4 5k, 40k 35.926 0.9782 4.033

Bold values are the overall best value for the given metric. Values in italics are the best values for the given model in the
absence of a bold value.
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TABLE V
NORMALIZATION RESULTS ON SALINAS DATASET.

Model Residual Normalization # parameters lr lr steps PSNR ↑ SSIM ↑ SAM ↓

SRCNN no none 2515596 10−4 5k 44.074 0.9943 1.462
yes none 2515596 10−4 5k, 40k 44.025 0.9941 1.517

SRONN

no

batch 7546380 10−4 5k, 40k 37.767 0.9754 3.79
instance 7545996 10−4 50k 23.106 0.7458 18.164
l1 7545996 10−4 50k 36.285 0.9887 2.523
l2 7545996 10−4 3.5k 38.077 0.9918 2.082
none 7545996 10−4 2.5k 43.941 0.994 1.549

yes

batch 7546380 10−3 50k 42.656 0.9918 1.632
instance 7545996 10−3 50k 32.233 0.9529 7.342
l1 7545996 10−4 50k 43.923 0.9937 1.422
l2 7545996 10−4 5k, 40k 44.12 0.9943 1.4
none 7545996 10−4 10k 44.223 0.9944 1.461

sSRONN

no

batch 1845276 10−4 20k 41.029 0.9879 2.455
instance 1845180 10−4 30k 26.377 0.8708 11.622
l1 1845180 10−3 50k 34.107 0.9801 3.147
l2 1845180 10−4 50k 37.75 0.9913 2.287
none 1845180 10−4 5k, 40k 43.558 0.9937 1.622

yes

batch 1845276 10−4 50k 42.429 0.991 1.918
instance 1845180 10−3 20k 39.24 0.9843 2.532
l1 1845180 10−4 50k 43.73 0.9935 1.446
l2 1845180 10−4 5k 44.039 0.9943 1.42
none 1845180 10−4 4.5k, 30k 44.286 0.9945 1.412

Bold values are the overall best value for the given metric. Values in italics are the best values for the given model in
the absence of a bold value.

TABLE VI
NORMALIZATION RESULTS ON URBAN DATASET.

Model Residual Normalization # parameters lr lr steps PSNR ↑ SSIM ↑ SAM ↓

SRCNN no none 2587410 10−4 5k, 40k 25.231 0.8878 14.811
yes none 2587410 10−5 5k, 40k 25.872 0.8916 13.958

SRONN

no

batch 7761810 10−4 5k, 40k 22.853 0.7566 19.631
instance 7761426 10−4 5k, 40k 20.775 0.6761 22.462
l1 7761426 10−4 50k 25.082 0.8675 15.33
l2 7761426 10−4 50k 25.48 0.8905 14.332
none 7761426 10−4 5k, 40k 25.941 0.8935 13.94

yes

batch 7761810 10−6 50k 24.558 0.8345 15.995
instance 7761426 10−4 50k 23.953 0.8437 16.478
l1 7761426 10−4 50k 26.09 0.8959 13.515
l2 7761426 10−4 5k, 40k 26.116 0.9023 13.42
none 7761426 10−4 2k 25.892 0.8999 13.613

sSRONN

no

batch 1899138 10−4 5k, 40k 23.38 0.8022 18.544
instance 1899042 10−5 5k, 40k 19.992 0.6549 22.723
l1 1899042 10−4 50k 24.352 0.8338 16.279
l2 1899042 10−5 50k 25.4 0.8809 14.812
none 1899042 10−4 3k 25.818 0.8912 14.22

yes

batch 1899138 10−4 5k, 40k 24.53 0.8345 16.218
instance 1899042 10−4 5k, 40k 24.75 0.8434 15.372
l1 1899042 10−4 50k 25.918 0.8895 13.783
l2 1899042 10−5 50k 26.019 0.8964 13.752
none 1899042 10−4 4k 26.065 0.8963 13.681

Bold values are the overall best value for the given metric. Values in italics are the best values for the given model
in the absence of a bold value.
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