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ABSTRACT  

Immunohistochemical (IHC) localisation of protein expression is a widely used tool in 

pathology. This is semi-quantitative and exhibits substantial intra-and inter-observer 

variability. Digital approaches based on stain quantification applied to IHC are precise but still 

operator-dependent and time-consuming when regions of interest (ROIs) must be defined to 

quantify protein expression in a specific tissue area. This study aimed at developing an IHC 

quantification workflow that benefits from colour deconvolution for stain quantification and 

artificial intelligence for automatic ROI definition. The method was tested on 10 Whole Slide 

Images (WSI) of Alpha-Smooth Muscle Actin (aSMA) stained mouse kidney sections. The 

task was to identify aSMA-positive areas within the glomeruli automatically. Total aSMA 

detection was performed using two channels (DAB, haematoxylin) colour deconvolut ion. 

Glomeruli segmentation within the same IHC WSI was performed by training a convolutiona l 

neural network with annotated examples of glomeruli. For both aSMA and glomeruli, binary 

masks were created. Co-localisation was performed by overlaying the masks and assigning 

red/green colours, with yellow indicative of a co-localised signal. The workflow described and 

exemplified using the case of aSMA expression in glomeruli can be applied to quantify the 

expression of IHC markers within different structures of immunohistochemically stained 

slides. The technique is objective, has a fully automated threshold approach (colour 
deconvolution phase) and uses AI to eliminate operator-dependent steps.  
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Introduction  

The expression and localisation of proteins are key to the understanding of physiological and 

pathological mechanisms. A well-established method for identifying specific antigens in tissue 

sections is immunohistochemistry (IHC) (1–3). After labelling with specific antibodies and 

revelation systems, proteins of interest are commonly visualised in brightfield light using 

chromogen 3,3′-Diaminobenzidine (DAB). In a standardised experiment, despite the lack of 

true quantitative power, a stronger DAB intensity corresponds to a higher protein expression 

in the tissue despite the absence of a stochiometric connection between the intensity of the 

chromogen and the amount of antigen present (4). Semiquantitative IHC intensity scoring is 

frequently approached in diagnostics and research environments to assess the amount of protein 

expressed and typically uses a four-point scale (0, 1, 2, 3 or absent, mild, moderate, severe)(5–

7). This semi-quantitative method, however, exhibits substantial intra-and inter-observer 

variability and can be highly subjective and inaccurate (8). The use of digital image analys is, 

which is valuable for automating workflows, represents a solution to improve repeatability and 

consistency (9). With the advent of whole slide images (WSI) and the increase in computationa l 

power available to investigators, digital image analysis on a WSI is possible and within reach 

(10). However, even when digital image analysis based on colour identification is applied to 

immunohistochemically stained slides, two main challenges remain: Firstly, the presence of 

false positive areas arising from possible background staining or similarly coloured structures 

(e.g., melanin, hemosiderin, bile pigments) necessitates manual removal to avoid 

overestimation of protein expression (11,12). Secondly, in scenarios where the protein 

expression of interest is confined to a specific tissue compartment or region of interest (ROI), 

analysing the entire tissue as a whole, introduces bias, particularly when other regions express 

the protein at baseline levels under normal conditions. Addressing this concern requires the 

manual creation of ROIs to compensate for the potential bias, which is a time-consuming step 

reliant on human input.  

In the context of a healthy kidney, the immunohistochemical expression of Alpha-smooth 

muscle actin (aSMA) is confined primarily to vascular smooth muscle cells, with a secondary 

presence in the kidney capsule. Nevertheless, under specific pathological conditions, the 

expression of aSMA may extend to encompass certain glomerular mesangial cells and 

interstitial myofibroblasts, as evidenced in relevant literature (13,14). In an experimenta l 

scenario focused on the quantification of aSMA within glomeruli as a consequence of tissue 

damage, the utilisation of automated techniques for quantifying the DAB colouration 
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throughout the entire Whole Slide Image (WSI) could introduce a significant degree of 

"background noise" data. This occurs unless we manually select ROIs or exclude non-ROI 
areas, thereby resulting in a labour-intensive process. 

In recent years, Artificial intelligence and, in particular, Deep Learning (DL) using 

Convolutional Neural Networks (CNN) have revolutionised the strategy to automatica l ly 

classify or segment specific areas of images based on their patterns in a similar way to a human 

(15). While this approach has primarily been applied to haematoxylin and eosin (HE) stained 

sections thus far (16), the objective of this study is to propose a generic and open workflow 

where immunomarkers need to be automatically quantified within a specific tissue 

compartment on a single IHC-stained slide. To demonstrate this concept as a proof of princip le, 

we combined colour deconvolution to obtain a global quantification of the 

immunohistochemical staining (aSMA) and deep learning to detect and segment the tissue 

compartment (Glomeruli) in a mouse kidney. The resulting image overlays were merged as a 

final step, and co-localisation was detected based on the coloured pixels that corresponded both 

to glomeruli and SMA stain, leading to a precise quantification of aSMA expression within the 

glomerular area only.  

Methods 

For immunohistochemistry, 4-μ-thick sections were obtained from formalin-fixed paraffin-

embedded tissue samples (FFPEs) of mouse kidneys originating from previous experiments of 

chronic IRI mouse models of kidney injury (17). Antigen retrieval was performed by calibrated 

water bath capable of maintaining the epitope retrieval solution (10 mM sodium citrate buffer 

pH 6.0) at 97 °C for 30 min (Agilent Technologies Ltd., Stockport, UK). The sections were 

allowed to cool down to room temperature for 20 min. Endogenous peroxidase was blocked 

using 100 µL Dako REALTM peroxidase blocking solution for 10 min (Agilent Technologies 

Ltd., Stockport, UK). Rabbit polyclonal to alpha smooth muscle Actin antibody (ab5694, 

Abcam, Cambridge, UK) diluted 1:500 was added and incubated overnight at +4°C. This was 

followed by a 30-minute incubation at room temperature with the secondary antibody and 

polymer peroxidase-based detection system (Anti Rabbit Envision+, Agilent Technologies 

Ltd). The reaction was visualised with diaminobenzidine (DAB- Agilent Technologies Ltd) at 

room temperature after 5’ application and subsequent wash. Consecutive sections incubated 

with monoclonal rabbit unrelated monoclonal antibody served as negative control. The positive 

reaction was represented by a distinct brown cytoplasmic reaction. Slides were mounted with 
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a coverslip using a xylene-based mounting media. aSMA-stained slides were digitally scanned 

using an Aperio CS2 slide scanner (Leica Biosystems, Nussloch, Germany), with Plan Apo 

20X objective lens setup, and visualised using ImageScope™ software (Leica Biosystems, 

Nussloch, Germany). Phase 1 consisted of aSMA staining detection using colour 

deconvolution by specifying a stain matrix for both the Haematoxylin (H) and 

Diaminobenzidine (DAB) stainings (18,19). The stain matrix used in this study represented the 

colour of each stain through optical density, expressed as a unit vector indicating the relative 

attenuation of red, green, and blue channels. For channel one (Haematoxylin), the optical 

density values are as follows: red = 0.650, green = 0.704, and blue = 0.286. Similarly, for 

channel two (Diaminobenzidine), the optical density values are red = 0.268, green = 0.570, and 

blue = 0. 776. After the separation of staining, masks were created for the DAB channel only, 

where the stain of interest is represented by white pixels (R255, G255, B255) over a black 

background (R0, G0, B0). Phase 2 consisted of glomeruli segmentation on the same IHC-

stained WSI using deep learning, implementing a CNN with UNET architecture (20). 10 WSIs 

were used in this experiment. To train the network, a total number of 1131 annotation examples 

of 3 classes representing glomeruli, kidney tissue (any morphological structure of the kidney 

except glomeruli) and background (area of the slide characterised by the homogeneous white 

area without the presence of any histological structure) were created as an output for the DL 

algorithm. Examples of glomeruli included all ranges of aSMA-stained intensity. The 

employed CNN model was trained at a learning magnification of 20X for 2550 epochs and a 

learning rate of 5.00E-06. The computer system used was equipped with 4x Nvidia® Quadro® 

RTX8000 GPUs (Nvidia, Santa Clara, California) using dedicated software MIMPro (Medical 

Image Manager Pro with Deep Learning Add On; HeteroGenius®) based on TensorFlow 

library, which was used for both Phase 1 and 2. To evaluate the CNN’s performance, we 

constructed a multiclass confusion matrix. From this matrix, we extracted several key metrics 

for each class, including precision (the fraction of predictions that were true positives), recall 

(sensitivity), specificity, and F1 score (the harmonic mean of precision and recall). These 

metrics allowed us to calculate the overall model accuracy, mean precision, recall and F1 

(21,22).   

After the learning process finished, a black-and-white overlay image (mask) was created where 

each pixel classified as glomeruli were assigned as white (R255, G255, B255), and each pixel 

classified as either kidney or background was assigned as black (R0, G0, B0). The overlays 

created using DL and colour deconvolution were size-matched, as performed from the WSI. 
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Using Fiji software (23), a pure RGB colour was assigned: red (R255, G0, B0) for the glomeruli 

in the CNN image; Green (R0, G255, B0) for the aSMA immunostaining in the colour 

deconvolution image. The two images were then merged into one image, where the co-

localisation of each pixel was expressed as yellow pixels (R255, G255, B0). A colour threshold 

was then applied for the hue range of yellow and measured. Consequently, the colour threshold 

was set to pick up the whole range of coloured pixels, and measurement was performed. Then, 

a series of different quantifications were performed for the yellow pixels area (23). Total aSMA 

stain within glomeruli was normalised over the glomerular total area, the total Kidney aSMA 

stain and the total kidney surface. 

Results 

The immunohistochemical stain of aSMA was successful (Fig. 1A) and allowed a precise 

colour deconvolution for the aSMA stain (Fig. 1B). The CNN training process yielded 

favourable results, demonstrating an overall model accuracy of 0.96. Furthermore, the mean 

precision, a measure of the proportion of correctly predicted positive samples, was found to be 

0.97. The mean recall or sensitivity, which quantifies the proportion of actual positive samples 

correctly identified by the model, also achieved a value of 0.97. Lastly, the mean F1 score, a 

harmonic mean of precision and recall, reached a value of 0.96, indicating a balanced 

performance between precision and recall. Consequently, the mask obtained overlapped 

correctly with the glomeruli area visible in the IHC stained slide (Fig 1 C). The merged 

coloured image efficiently shows the aSMA expression within the glomeruli as a yellow signal 

representing co-localised pixels for aSMA stain and glomerular area (Fig 1 D). Crucially, the 

CNN identification of the glomerular area was irrespective of aSMA intensity expression, as 

clearly shown by a comparison of an intensely aSMA-stained glomerulus (Fig. A, B, C arrow) 

to a very poorly stained one (Fig. A, B, C arrowhead). Identification of the glomerular area and 

aSMA stain allowed different quantifications; a non-comprehensive list of possible 
measurements is summarised in Table 1.  
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Figure 1: Immunohistochemical localisation of aSMA in the mouse kidney glomeruli. A: aSMA-positive areas 

were detected in the blood vessels, glomeruli and interstitium on IHC stained slide; Arrow: poorly aSMA-stained 

glomerulus; Arrowhead: intensely aSMA-stained glomerulus. Lower left Insert: higher magnification of a 

glomerulus and associated blood vessels. Higher right Insert: Glomerulus and tubules negative control B: aSMA 

staining detection using colour deconvolution; Arrow: Barely evident aSMA stain on a glomerulus; Arrowhead: 

intense aSMA stain on a glomerulus. Insert shows aSMA detection both in vessels and glomerular structures. C: 

Glomeruli segmentation using deep learning; Arrow and arrowhead: equally well-segmented glomeruli despite 

the difference in aSMA stain; insert shows higher magnification of the segmentation of two glomeruli; D: Merging 

of signal in B and C with the glomerular surface in red and aSMA staining in green with co-localisation of the 

two signals represented as yellow pixels; Arrow: low aSMA expression within the glomerular area; Arrowhead: 

strong aSMA expression in the glomerular area; Insert: higher magnification of the glomerular structure. 

Immunoperoxidase (A) and digital image analysis (B, C, D); Scale bar = 350µm 
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Table 1: Example of different quantifications of aSMA expression in glomeruli in one of the kidneys.  

aSMA expression quan�fica�ons Result 
Glomerular aSMA / Total glomerular area  0.37% 
Glomerular aSMA/ Total kidney area  0.01% 
Glomerular aSMA / Total kidney aSMA  2.39 % 

Glomerular aSMA area 1463.24 micron2 
Non-glomerular kidney aSMA area 59867.24 micron2 

 

Discussion 

The presented methodology showcases a successful quantification of alpha-smooth muscle 

actin (aSMA) expression within the glomeruli of a mouse kidney. The approach combines the 

traditional colour deconvolution technique with a deep learning algorithm, offering two distinct 

methods to extract information from immunohistochemically (IHC) stained sections. Deep 

learning algorithms can be trained on large datasets of histological images, allowing them to 

learn the complex patterns and relationships between different structures and cells. This can 

lead to accurate and reliable analysis of histological sections. This has been shown in several 

studies—however, most of those focus on the classification of traditional Haematoxylin-Eos in-

stained sections (24). In our approach, we demonstrated that CNN could be efficiently trained 

to identify a microanatomical structure in an IHC (Haematoxylin and DAB) slide (in our case, 

the glomeruli) irrespective of the intensity of the IHC staining of such structures. This is clearly 

demonstrated in our results, as two glomerular structures that dramatically differ in the amount 

of aSMA positivity (almost absent vs. strong and diffuse) resulted in the correct identifica t io n 

of the glomerular class in the mask. This is due to the particular way of functioning of the 

CNNs, which gives relevance to patterns irrespective of stain intensities if the stains are not 

highly characteristic of the examples given during the training  (25). The deep learning software 

employed in this study is based on Tensor Flow, an accessible AI open environment, alongside 

other software components utilised in constructing the workflow. The presented technique 

promises broad applicability through CNN's versatility and well-known applicability of colour 

deconvolution to DAB stain and potentially different chromogens and enzyme substrates, 

irrespective of the marker used, enabling the quantification of diverse protein biomarkers 

within different tissue compartments after training the CNN on samples from various micro-

anatomical structures. In conclusion, the proposed methodology combines traditional colour 

deconvolution with deep learning techniques, providing a non-subjective and automated 

workflow for the quantification of aSMA expression in glomeruli. Leveraging the power of 
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CNNs and accessible software frameworks, this approach holds promise for quantifying other 

protein biomarkers within different tissue compartments, offering a valuable tool for 
histological analysis. 
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