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A B S T R A C T   

Evolution in geoscientific data provides the mineral industry with new opportunities. A direction of geochemical 
data generation evolution is towards big data to meet the demands of data-driven usage scenarios that rely on 
data velocity. This direction is more significant where traditional geochemical data are not ideal, which is the 
case for evaluating unconventional resources, such as tailing storage facilities (TSFs), because they are not static 
due to sedimentation, compaction and changes associated with hydrospheric and lithospheric processes (e.g., 
erosion, saltation and mobility of chemical constituents). In this paper, we generate big secondary geochemical 
data derived from Sentinel-2 satellite-remote sensing data to showcase the benefits of big geochemical data using 
TSFs from the Witwatersrand Basin (South Africa). Using spatially fused remote sensing and legacy geochemical 
data on the Dump 20 TSF, we trained a machine learning model to predict in-situ gold grades. Subsequently, we 
deployed the model to the Lindum TSF, which is 3 km away, over a period of a few years (2015-2019). We were 
able to visualize and analyze the temporal variation in the spatial distributions of the gold grade of the Lindum 
TSF. Additionally, we were able to infer extraction sequencing (to the resolution of the data), acid mine drainage 
formation and seasonal migration. These findings suggest that dynamic mineral resource models and live 
geochemical monitoring (e.g., of elemental mobility and structural changes) are possible without additional 
physical sampling.   

1. Introduction 

The threshold to ‘big data’ varies but is generally the result of a 
bottleneck in the supply-to-demand system of data (e.g., if a bottleneck 
exists in supply, the data is small and vice versa). Traditional 
geochemical data including survey data is small data because of low data 
velocity. Big geochemical data is improbable to achieve using traditional 
sampling, preparation and analysis (e.g., Govett, 1983; Friske and 
Hornbrook, 1991; Moon et al., 2006), resulting in expensive and 
low-velocity data (Dramsch, 2020). Sustained deployment of artificial 
intelligence methods tend to occur in domains with data that is near or 
at big data (Chen and Lin, 2014; Zhang and Lu, 2021; He et al., 2022). A 
lack of big geochemical data to sustain the use of big data methods 
hampers the adoption of transdisciplinary methods (artificial intelli
gence, machine learning and data science) in geosciences (e.g., He et al., 

2022; Dramsch, 2020; Zhang et al., 2023; Ghorbani et al., 2022, 2023). 
Data re-purposing of traditional data is a stop-gap solution, because data 
is always gathered for a purpose, and changing data analysis methods 
necessitates changes in data generation. Furthermore, traditional 
geochemical data (in terms of velocity but also latency) is unsuitable for 
a range of tasks that include dynamic resource profiling and live envi
ronmental monitoring. However, modern sensors, data and analytics 
solutions are feasible, like for the exploration of critical raw materials 
(Booysen et al., 2020; Zhang et al., 2022) or real-time control and 
management (Ghorbani et al., 2022, 2023). Because geochemical data is 
universally useful across the mineral value chain, from prospecting 
(Grunsky and de Caritat, 2017, 2019; Zuo, 2020; Lawley et al., 2021), 
exploration (Edwards and Atkinson, 1986; Hogson, 1990; Carranza, 
2012), metal accounting and reconciliation (Ghorbani et al., 2020; Mery 
et al., 2020), to waste valorisation (Nwaila et al., 2021a, b; Blannin 
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et al., 2022, 2023), it is important to seek modern solutions towards big 
geochemical data. 

Remote sensing data is closely related to geochemistry and exhibits 
big data characteristics (e.g., scalability, automation potential, velocity, 
coverage and coverage rate). Remote sensing data is already useful for a 
variety of geoscientific tasks (Booysen et al., 2020; Xiao and Wan, 2021; 
Ghorbani et al., 2022, 2023). Deriving secondary geochemical data from 
remote sensing data would imbue the secondary data with big 
data-characteristics of remote sensing data (Shen et al., 2019; Cheng 
et al., 2021; Xiao et al., 2021; Zhang et al., 2023). Consequently, remote 
sensors become ‘soft’ or ‘virtual’ geochemical sensors (Fortuna et al., 
2006; Kadlec et al., 2009). However, this solution is not universally 
practical, because of complications due to overburden, variable terrain, 
the scale of the application and ambiguity of inversion outcomes. 
Additionally, remote sensing-data inversion usually occurs to mineral 
species and not elemental composition (Asokan et al., 2020; Marghany, 
2022). Zhang et al. (2023) developed an inferential method that used 
geostatistical data augmentation and machine learning to invert remote 
sensing data into geochemical data. Prototyping of the method occurred 
using geochemical and remote sensing data from a tailing storage fa
cility (TSF). A high-resolution resource model was spatially integrated 
with a temporally matched remote sensing dataset, to produce an inte
grated dataset that paired features (spectral band data) with data labels 
(resource grade). Furthermore, Zhang et al. (2023) demonstrated that a 
variety of machine learning algorithms can generate useable models. 

TSFs are engineered structures that consist of confining embank
ments (also known as ‘tailings dams’) and associated linings, which are 
used to store mining and mineral processing wastes, and manage water 
associated with them. TSFs are an unconventional source of raw mate
rials and metals (Blannin et al., 2022, 2023; Nwaila et al., 2021a, 
2021b), particularly historic tailings because extraction methods of the 
past were less selective and multi-elemental, and orebodies were 
generally higher in grade (Nwaila et al., 2019). TSFs require manage
ment and monitoring to prevent unauthorised access and use, and 
reduce environmental risks (e.g., of acid mine drainage (AMD), air and 
water dispersal, and rupture of containment walls or dams) (Carlà et al., 
2017, 2019; Grebby et al., 2021). However, some historic TSFs, similar 
to open pit mines, either have been or will be extracted for further 
processing. Pragmatically, TSFs are generally remote from civil infra
structure, and some are exposed surficially, which provides a remote 
sensing response (Ciampalini et al., 2013). 

In this study, we carry the method that was developed in Zhang et al. 
(2023) into deployment and demonstrate model deploy-ability across 
space, leveraging the knowledge that Witwatersrand tailings are 
consistent in mineral composition. By choosing a TSF similar to that in 
Zhang et al. (2023), we can ensure that mineral assemblages and 

chemistry are reasonably similar, such that the deployed models could 
produce sensible results. Specifically, we generate big geochemical data 
of the surface of a tailing storage facility (TSF) over an extraction period 
of four years (2015–2019). The resulting data is big in the sense that it is 
much more voluminous and of far higher velocity compared with 
traditional geochemical data, and that traditional resource modelling 
and exploration was not designed to handle such data. We compare the 
temporal predictions of the gold grade with that of a geostatistical model 
(not used for predictive modelling). We showcase the effectiveness of big 
geochemical data for online resource assessment, environmental moni
toring and other purposes by observing changes in the distribution of 
gold in the TSF and relating those changes with existing knowledge. 

2. Background 

The data for this study originates from a TSF that hosts mine waste 
from the Witwatersrand Basin. It is one of many that are located near 
Randfontein, which is about 40 km west of Johannesburg, South Africa 
(Fig. 1a). The name of the TSF is Lindum, because it contains tailing 
materials from the now-exhausted Lindum reef orebody. The location of 
Lindum TSF is located 4.2 km south of the Dump 20 TSF which was 
studied by Zhang et al. (2023) (Fig. 1b). The Witwatersrand Basin is 
famous for its gold endowment, having produced, to date, >30% of the 
world’s total gold (Frimmel, 2019; Frimmel and Nwaila, 2020). A long 
history of gold extraction from the Witwatersrand Basin resulted in an 
accumulation of mine waste immediately surrounding the city, with 
some of the TSFs currently surrounded by informal settlements (Fig. 1b; 
Ngigi, 2009; Durand, 2012; Dlamini, 2014; McCarthy, 2010; IHRC, 
2016; Nwaila et al., 2017). The Lindum reef-tailings are composed of 
primarily crushed conglomerate remnants, with minor amounts of 
meta-sedimentary host rocks (e.g., quartzites, shales, greywackes). Gold 
is hosted inside of the conglomerate remnants. The grain 
size-distribution of the TSF is not exactly known, but local knowledge 
suggests that the particles are mainly cm-sized. This implies that the 
TSFs containing Witwatersrand gold-mine tailings are comparable in 
composition, despite their individual genetic histories, because both the 
nature of the reefs and extraction methods were comparable. For our 
purpose of generating geochemical data from remote sensing data, it is 
relevant to understand that the Witwatersrand gold is hosted inside thin 
meta-conglomerate beds with spatially extensive but geologically 
consistent mineral assemblages and chemistries (Frimmel, 2019). 
Furthermore, it was empirically demonstrated that the characteristics of 
the conglomerate beds at the deposit scale are quantitatively predictive 
of the gold grade (Nwaila et al., 2020; Zhang et al., 2021c). Conse
quently, it can be expected that remote sensing data capturing variations 
in material characteristics are likely effective covariates of the gold 

Fig. 1. Location of the studied tailings storage facility located near Randfontein (South Arica). The coordinates provided are in UTM. (a) Close-up of the Lindum 
tailings facility. Included in the figure is the location of the facility within Africa. (b) The location of Lindum tailings facility is located 4.2 km south of the Dump 20 
tailings facility. The satellite image was acquired on 2021-09-25. 
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grade. 
According to high-resolution satellite imagery, the TSF consists of a 

main portion south of a public roadway and a smaller portion to the 
north-eastern portion of the map (Fig. 1a). The areal extent of the tailing 
body is approximately 3.6 × 105 m2. The TSF is tabular in shape, with a 
maximal vertical height of about 20 m, as measured in 2014. According 
to the mine, the TSF in this study was first assessed for its resource po
tential in 2014, with extraction starting in 2015 and lasting until 2020. 
At the time of this writing, there is a small amount of remaining material 
at the TSF. Additionally, drilling was conducted during at least two 
campaigns in the TSF, with the most recent results used to produce a 
single static resource model (a geostatistical model), which was used to 
guide mine planning and the extraction process. Using the supplied 
borehole data, we recreated the geostatistical model for comparison 
purposes, but we did not rely on any geochemical data from the studied 
TSF for training purposes. The erosion of TSFs creates a constant 
dispersal of fine dust, which implies that there is a contamination of 
surrounding areas that could give rise to spectral signatures associated 
with the tailing material (Schonfeld et al., 2014). Hence, we constrain 
our analysis to the area inside the TSF. 

3. Data and methods 

3.1. Sentinel-2 dataset 

The remote sensing data used in this study is sourced from the 
constellation of Sentinel-2 Earth observation satellites, which are part of 
a mission that continuously gathers optical images with a high spatial 
resolution (10–60 m) over land and coastal areas (Ge et al., 2018). De
tails of the satellite capabilities were given in Zhang et al. (2023). Here, 
we summarize the key details. The Sentinel-2 satellites each contains a 
multispectral imager (MSI) that captures four bands at 10 m, six bands at 
20 m, and three atmospheric correction bands at 60 m spatial resolution 
(Vaiopoulos and Karantzalos, 2016; Park et al., 2017). The atmospheric 
correction bands include: band 1 for aerosol scattering and cloud 
detection; band 9 mainly for aerosol retrieval; and band 10 for cloud 
detection (uncalibrated, see Ge et al., 2020). There are ten visible and 
near-infrared (VNIR) bands and three short-wave infrared (SWIR) bands 
make up the image (Clerc and Team, 2022; https://sentinel.esa.int/ 
web/sentinel/missions/sentinel-2). Sentinel-2’s MSI is superior to that 
of the Landsat and the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER), in terms of spectral, spatial and tem
poral resolution from the VNIR to SWIR range (Beiranvand Pour et al., 
2016, 2019). The radiometric resolution is 12 bits (per-pixel brightness 
intensity range of 0–4095). This study uses cloud-free level 1T (L1T, 
terrain-corrected) images from the top-of-atmosphere (TOA) subset, 
which and has automatically undergone atmospheric correction to 
produce a surface reflectance product using the European Space Agen
cy’s Sen2Cor processing algorithm’s ATCOR model (ESA; Kristollari and 
Karathanassi, 2020). The images were sourced through the USGS Earth 
Resources Observation and Science Centre (USGS-EROS at http://earth 
explorer.usgs.gov/). 

Sentinel-2 images of the deployment area that contains a legacy TSF 
cover an area of 1.12 km2 (277.63 Acres). All suitable images from the 
August 24, 2015 to the October 4, 2019 were collected, which resulted 
in a total of 17 useable images. Images that were unable to meet the 
criteria of being cloud-free L1T were discarded. The metadata infor
mation for the first image of the series is: “coordinate reference system 
(CRS) from European Petroleum Survey Group (EPSG) 32735, Transform: 
Affine [20, 0, 499980, 0, -20, 7200040]; ID: COPERNICUS/S2/ 
20150824T082656_20150824T082659_T35JNM; Version: 1618001523 
716097; Data taken identifier: GS2A_20150824T082656_000890_N02.04; 
‘SPACECRAFT_NAME’: ‘Sentinel-2A’“. Bands 1 to 12, except for the at
mospheric correction bands (1, 9 and 10), were used for the data. In 
total, the images captured the deployment area on: 2015-08-24; 2015- 
10-03; 2016-02-07; 2016-04-30; 2016-07-06; 2016-10-07; 2017-03-16; 

2017-04-02; 2017-07-06; 2017-10-04; 2018-03-03; 2018-04-07; 2018- 
10-07; 2019-01-22; 2019-04-27; 2019-07-01; and 2019-10-04. 

Data pre-processing is purposely kept maximally identical to that 
employed in Zhang et al. (2023), which used the Rasterio and GEEMAP 
Python libraries (Wu et al., 2019; Wu, 2020). The only change from 
Zhang et al. (2023) in our data pre-processing methodology for machine 
learning-based predictive modelling is that we employed a clipping 
process to remove excessively high-intensity pixels. Here, we provide a 
brief summary of the steps that were executed: (1) affine translation to 
project the satellite images into the Universal Transverse Mercator 
(UTM) projection and the World Geodetic System 84 (WGS84) datum; 
(2) radiometric correction/calibration using the FLAASH method (ENVI, 
2009); and, (3) clipping the pixels to the 99.8th percentile and rescaling 
the bands using a MinMax-based re-scaler (re-scaling all data to the 
range of the data per band). The only image that contained pixel in
tensities substantially above the theoretical maximum of 4095 was the 
image taken on 2017-04-02, which contained an anomalous pixel with 
an intensity of 11,250. Clipping all images to the 99.8th percentile 
heuristically standardised the dynamic range of all images and made the 
entire series of images more comparable in terms of exposure. For more 
detailed descriptions, see Zhang et al. (2023). All images taken capture 
the same area, which is primarily centred around the TSF (Fig. 1a). 
Outside of the TSF, the images show some vegetation coverage, 
anthropogenic structures associated with the TSF and local roads 
(Fig. 2). 

3.2. Training data 

The training data were generated using the methodology from Zhang 
et al. (2023) and contains a spatially fused geochemical and remote 
sensing dataset over a different TSF in the vicinity of the studied TSF in 
South Africa (Fig. 1b). To ensure that the training data are maximally 
comparable to the deployment data, we adopted the same remote 
sensing data pipeline as that of the deployment area. Silbanye-Stillwater 
supplied the geochemical data in the form of gold assays contained in a 
high-resolution 3D resource model. The geostatistical modelling essen
tially served to both: (1) augment the data to achieve an abundance of 
training data; and (2) address the change-of-support problem of point 
samples representing areal averages. Zhang et al. (2023) performed 
dimensionality reduction on the 3D model by skimming the top surface 
of the model, which was then spatially fused (integrated) with remote 
sensing data from a Sentinel-2 satellite. The resulting dataset contained 
spatially-matched data points that contained both the band amplitudes 
of the remote sensing data and unweighted averages of the gold grades 
within each grid cell. Thereafter, because portions of the TSF had been 
extracted when the Sentinel-2 satellite was launched, the mis-matched 
portion was removed (Fig. 3). For detailed background and methodol
ogy on the generation and validation of the training data, see Zhang 
et al. (2023). The training dataset contains a total of 14,721 records. 

3.3. Geostatistical resource model 

To understand the feasibility of our predicted resource concentration 
maps using remote sensing data and machine learning, we opt to 
perform a qualitative and quantitative comparison between the pre
dicted maps and a geostatistical model built using all data supplied by 
the mine (borehole data only, no grab samples). Because grab-sample 
data were unavailable for the construction of the geostatistical model, 
the surface of the geostatistical model is substantially lower in resolution 
and in representativeness of the actual TSF condition as compared to the 
geostatistical model in Zhang et al. (2023). The geostatistical model is 
tabular with a maximal depth of about 20 m and a physical extent that 
approximates the boundaries of the TSF. The grid spacing is purposely 
kept the same as the grid spacing of the remote sensing images (10 m), 
while the vertical grid size is 5 m. The geochemical survey was con
ducted in 2014 and has not been updated since that time. This implies 

S.E. Zhang et al.                                                                                                                                                                                                                                

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/


Artificial Intelligence in Geosciences 4 (2023) 137–149

140

that the model does not account for subsequent changes to the TSF due 
to internal (e.g., consolidation, slumping and drainage) and external 
processes (e.g., extraction and other anthropogenic disturbances). 
Therefore, to facilitate the fairest comparison between the predicted 
maps and the geostatistical model, we chose to use the remote sensing 
image that was temporally best matched with the creation of the geo
statistical model (which was just before the onset of extraction). This 
image was captured by a Sentinel-2 satellite on 2015-08-24, which 
corresponds to the first image of our series of snapshots. 

As the geostatistical model occurs in 3D, we performed two separate 
dimensional reduction methods on the 3D model to produce two 2D 

models for comparison purposes: (1) a surficial model that skims only 
the blocks of the 3D model at the highest elevations (Fig. 4a); and (2) a 
vertically averaged model that uniformly averages blocks column-wise 
(Fig. 4b). The model produced through the process (1) leads to a surfi
cial resource map intended to be used for a static comparison of the 
prediction results of the satellite image taken on 2015-08-24. The model 
produced through process (2) is intended for comparisons with the 
subsequent images, as ongoing extraction would have revealed deeper 
layers that may be more resemblant of the vertical average. Unfortu
nately, matching the topography exactly with the depths of the 3D 
model is not possible because: (1) the digital elevation model in this area 
was not available at the beginning of the extraction process and its 
resolution is insufficient to allow us to reconstruct actual topography; 
and (2) slumping and internal processes were significant during the 
imaging period from 2015 to 2019. In relative comparison, the surficial 
model is generally lower in grade, especially in the interior of the TSF. 
The vertically averaged model generally features higher grades, which is 
particularly prominent near the south edge and the south-eastern 
portion of the TSF (Fig. 4). This implies that the gold grade generally 
increases with depth. The heterogeneity of the gold distribution verti
cally and horizontally (e.g., enrichment at the south edge) are caused by 
several mechanisms: chemical reactions within the TSF with rainwater, 
which produced metal-laden water (e.g., AMD), down-slope transport of 
water and fine fragments that included gold and gold-bearing particles; 
and a lack of surficial grab samples in the construction of the geo
statistical model. 

3.4. Machine learning methodology 

Inferential data modelling can be performed using machine learning 
approaches (Mitchell, 1997). Aspects of geoscientific inquiry that are 
inferential in nature can be formulated into machine learning tasks, 

Fig. 2. Mean of all bands (re-scaled) for the remote sensing images taken on the (a) 24th of August 2015, (b) 6th of July 2017, and (c) 4th of October 2019. The 
coordinates provided are in UTM. 

Fig. 3. Spatial data fusion of the resource model and the Sentinel-2 data 
following Zhang et al. (2023). The polygon shows the mismatched portion due 
to extraction of the Dump 20 TSF (Fig. 1b), which was removed from the 
training dataset. The coordinates provided are in UTM. 
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which has been used in remote sensing for a variety of purposes 
(Cracknell and Reading, 2014; Harvey and Fotopoulos, 2016; Bachri 
et al., 2019; Chakouri et al., 2020; Mather and Tso, 2009; Sehgal, 2012; 
Al-doski et al., 2013; Madhuanand et al., 2021). A method development 
study (Zhang et al., 2023) specifically focused on a machine 
learning-based remote sensing-data inversion method, by modelling 
relationships between the remote sensing response and geochemical 
data. A key limiting factor is the availability of high quality and abun
dant geochemical data, that could be fused with remote sensing data for 
model training. Zhang et al. (2023) addressed the data abundance issue 
through geostatistical data augmentation, which transformed sparse 
survey data into a high-resolution resource model. Additionally, because 
remote sensing captures an areal response, whereas geochemical sam
ples are essentially point objects, the use of geostatistical data 
augmentation also solved the change-of-support problem (Gelfand et al., 
2001; Gotway and Young, 2002). However, some obvious limitations 
were identified as well, which include essentially all limitations asso
ciated with remote sensing data, such as its mainly two-dimensional 
nature and occurrences of overburden (Zhang et al., 2023). For the 
deployment data, remote sensing data from Sentinel-2 was used from 
bands 1 to 12, except for bands 1, 9 and 10 (Zhang et al., 2023). 

The entire methodology used in this study was developed in Zhang 
et al. (2023). Zhang et al. (2023) explored a variety of supervised 
learning algorithms and determined that for the task of inferential 
inversion of remote sensing data, and specific to the training dataset that 
was used, the best algorithms among the explored ones were the: 
k-nearest neighbours (kNN); random forest (RF); and adaptive boosting 
of decision trees (AdaBoost or AB) algorithms. In this deployment study, 
we adopt the same algorithms and workflow. The kNN algorithm (Cover 
and Hart, 1967; Fix and Hodges, 1951) is a non-parametric method that 
averages the data label of a number of training samples (hyperparameter 
k) that are closest to the target’s features to produce an inference 
(Kotsiantis et al., 2007; Witten and Frank, 2005). RF is an ensemble 
method that constructs a forest of decision trees in parallel and averages 
their output. This mitigates the noise sensitivity of decision trees, pro
vided that tree outputs are decorrelated through, e.g., feature boot
strapping (Ho, 1995). The hyperparameters of the RF algorithm 
includes: maximum number of features per tree; the number of trees; 
and the minimum number of samples per split, in addition to the tree 
depth parameter that is inherited from decision trees. Similarly, AB is 
also an ensemble method of decision trees but uses adaptive boosting, 
which is conceptually trees constructed in series (Freund and Schapire, 
1995). It uses a weighted sum of the output of decision trees as the 
inference. Weight adjustment occurs through adaptation, whereby the 
weights of successor trees depend on the error of predecessor trees. The 

number of trees is the main model hyperparameter, in addition to those 
inherited from decision trees. Further details of these algorithms, as well 
as their hyperparameters, are fully described in Zhang et al. (2021a, b 
and references therein). The choice of algorithms for scientific purposes 
should also consider algorithm complexity in addition to performance, 
to address model and result explainability (Zhang et al., 2023). In this 
deployment study, we do not focus on model explainability, although it 
would be feasible to conduct SHAP analysis (SHapley Additive exPla
nations, Lundberg and Lee, 2017; Rodríguez-Pérez and Bajorath 2020). 
Model selection was performed through 10-fold cross-validation using 
the coefficient of determination (CoD or R2) metric, while the perfor
mance profiling was conducted over an average of 100 random runs 
using the CoD, median absolute error (MedAE) and the mean absolute 
percentage error (MAPE, which is usually given in fractions despite the 
name). The MAPE metric is the absolute value of the true minus the 
predicted value, divided by the true value. The MedAE is the median of 
all absolute differences between the true and the predicted values. The 
MedAE is robust to outliers. The algorithm parameter grid is given in 
Table 2, and the top 3 models and their performance metric scores are 
given in Table 3 (for model parameters and other details, see Zhang 
et al., 2023). 

In this study, deployment of the method in Zhang et al. (2023) occurs 
by our deploying the best kNN, RF and AB machine learning models to a 
different TSF. This permitted us to generate temporal snapshots and 
animations of resource distribution in the TSF. However, in this study, 
we added a data pre-processing step, which is the clipping of 
over-saturated pixel values due to discrepancies between images as part 
of a series of snapshots. This change in the data pre-processing led to a 
small but consistent improvement (of a few percent maximum in terms 
of net change) in predictive modelling performance across all chosen 
algorithms in Zhang et al. (2023). A performance comparison shows that 
there is improvement across the CoD and MAPE metrics, but a loss of 
performance as evaluated by the MedAE metric, see Table 3. The 
training dataset otherwise remains identical to that in Zhang et al. 
(2023). 

Fig. 4. (a) Surficial 2D geostatistical resource model (block model) of the studied TSF, constructed from borehole data and overlaid on top of the satellite-born 
imagery of the TSF. (b) Surficial 2D geostatistical resource model (block model) that is produced through vertical averaging of the 3D model of the TSF and 
overlaid on top of satellite-born imagery of the TSF. The coordinates provided in the figure are in UTM. 

Table 2 
Parameter grid for employed machine learning algorithms.  

Algorithm Parameter Grid 

kNN k = {2 to 16 in intervals of 1} 
RF Ensemble size = {1000, 1500}; maximum depth = {9, 11, 13, 15, 

unlimited}, maximum number of features = {2, 3, 4, 5, 6, 7, 8, 
unlimited}, minimum number of samples for a split = {2, 3, 4, 5, 6}, 
minimum number of samples for a leaf = {1, 2, 3, 4, 5, 6} 

AB Number of classifiers = {100, 200, 300}, base algorithm = decision tree 
with the same parameter grid as the random forest algorithm  
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4. Deployment results and analysis 

4.1. Static deployment and geostatistical results 

Deployment of the trained models to the TSF in this study is 
straightforward. For each algorithm that was found to work well for this 
task (kNN, RF and AB), the best model is deployed to the sequence of 
processed satellite-born remote sensing images. To validate the predic
tion results, we compare our machine learning-based results with our 
surficial geostatistical model. Because the geostatistical model was 
created using borehole data from 2014 in anticipation of waste reuse, 
the most comparable image snapshot for this comparison was taken on 
2015-08-24. Subsequent images capture the TSF in a dynamic state 
during various stages of an extraction process. To facilitate this com
parison, we spatially trimmed the predicted maps at the grid level 
(without re-gridding or re-interpolating to minimize errors) to best 
match the physical extent of the geostatistical model. The comparisons 
are provided for the best models using the kNN, RF and AB algorithms 
(Fig. 5). At a large scale and qualitatively across all results, there exists a 
high-grade cluster of blocks (or pixels) at the north-eastern tip of the 
TSF, which is internally graded (Fig. 5a, b and c). This is corroborated by 
the geostatistical model (Fig. 5d). The internal contrast within the TSF is 
remarkable across all results, with the lowest grades occurring in a west- 

east trend towards the south-eastern end of the TSF. This depletion 
pattern is the result of the drainage of the TSF due to its topography. 
Drainage in TSFs is known to re-distribute various elements internally 
and leads to chemical stratification (Hansen, 2018; Nwaila et al., 2021a, 
b). The high-grade region near the southeastern end of the TSF in the 
geostatistical model can be attributed to this internal reaction-transport 
process. At the southern tip of the TSF, all predicted maps demonstrate a 
gold enrichment, which is corroborated by a similar observation in the 
geostatistical model. The existence of a weak west-east enrichment trend 
near the north of the TSF below the public roadway is not visually 
observable in the surficial geostatistical model (Fig. 4a). However, this 
trend is visible in the vertically averaged geostatistical model (Fig. 4b). 
The south-western lobe of the TSF exhibits a similar level of gold 
enrichment that is not seen in either the surficial or vertically averaged 
geostatistical models. In comparison with the geostatistical models, the 
predicted gold concentration maps are systematically less smooth with 
more detail internal to the TSF. The drainage pathway is completely 
unobvious in the geostatistical model. 

Qualitatively, the maximum grade of all the predicted maps is sub
stantially lower (by a factor of over 2) than the geostatistical models 
(either the surficial or vertically averaged model). However, this is 
almost entirely due to the presence of a high-grade region near the 
south-eastern portion of the TSF in the geostatistical model. However, 
although it is clear from the predicted maps that this enrichment is most 
likely the result of internal reaction-transport due to weathering and 
subsequent drainage, it is actually not sampled by any of the boreholes 
(Fig. 4). Hence, as far as any geostatistical model is concerned, this re
gion is extrapolated; as such, we have less confidence in its actual gold 
concentration. A quantitative comparison of key statistical moments is 
given in Table 4. The total grade is computed as the sum total of the area 
of each grid cell, multiplied by the grade of that cell, which has di
mensions of g/t⋅m2. The total surficial grade is substantially different 
between the geostatistical model and the remote-sensing derived models 

Table 3 
Best prediction results compared across several performance metrics and a 
comparison with previously published results.  

Algorithm Zhang et al. (2023) This Study  

CoD MAPE MedAE CoD MAPE MedAE 
kNN 0.667 0.068 0.017 0.700 0.014 0.059 
RF 0.853 0.045 0.012 0.884 0.011 0.040 
AB 0.917 0.027 0.006 0.946 0.005 0.022  

Fig. 5. Predictions of the gold resource map for the image taken on 2015-08-24 using (a) kNN, (b) RF, and (c) AB algorithms, as compared to the geostatistical 
surficial (GS) model in (d). The coordinates provided in the figure are in UTM. 
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using any algorithm. Even accounting for the difference in the number of 
cells, the relative difference of the total surficial grade of the average of 
the machine learning resource models is about 25.81% higher than the 
surficial geostatistical model. However, this difference narrows to just 
0.08% if the average of the machine learning-based predictions is 
compared with the vertically averaged geostatistical model. The stan
dard deviations of the surficial grade are the most contrasting between 
the geostatistical models and the machine learning-based predictions. 
This is also clear from a histogram analysis (Fig. 6). It is obvious that the 
geostatistical models feature gold grades that are more asymmetrically 
distributed with a pronounced shift of the mean towards lower gold 
grades, whereas the machine learning-based predictions are more 
normal with a higher mean. In terms of the resource model mean and 
median values, the vertically averaged geostatistical model is the most 
comparable with those predicted by the machine learning algorithms 
(Table 4). In general, we would expect that the geostatistical model is of 
higher confidence since it is produced with direct sampling of the TSF, 
whereas the machine learning-based predictions are made using models 
that are trained on a different (although materially similar) TSF. How
ever, we make an exception to the level of confidence of the geo
statistical model at the high-end of the gold concentration since its 
estimation occurs outside of the borehole coverage and is a clear result 
of reaction-transport due to drainage within the TSF. In our case, as 
some time has elapsed since the sampling for the geostatistical model 
has taken place, we are unable to eliminate the possibility of extraction 
and natural physical processes that could have changed the surficial 
grade distribution. 

4.2. Dynamic model deployment – online mineral resource modelling 

Deployment of the trained models can also occur to the TSF over 
time, from 2015 to 2019 (Figs. 7 and 8). This produces temporal snap
shots of the surficial resource model dynamically, through the extraction 
period. The results from the kNN, RF and AB models are qualitatively 

similar. Therefore, we chose to present the results of the best AB model 
and provide similar results for the RF model as a comparison. In terms of 
the temporal coverage, we chose to illustrate the predicted TSF surficial 
resource grades using one remote sensing image per year, with a tem
poral interval that is as close to 1 year as possible, except for the in
clusion of the image from 2017-04-02 (Figs. 7c and 8c). Our choice to 
include this image is because this image is the most dissimilar with the 
rest of the images, as it contained the highest anomalous pixel in
tensities. The predicted resource grade map of this image is compared 
with the predictions of the closest related (temporally) maps. This pro
vides qualitative verification that the data pre-processing was effective 
in remediating the outlier nature of this image. Without the clipping of 
pixel values, the resource model predicted using this image is substan
tially lower in grade in general. For all resource models, they (Figs. 7 and 
8) demonstrate a change in the surface of the TSF every year. The sig
nificant qualitative changes include the gradual disappearance of the 
drainage channel, which is no longer discernible by 2017-07-06. The 
results are similar between the predictions of all algorithms, although 
the RF algorithm yielded the smoothest image (e.g., Figs. 7 and 8). 

A major change during the imaging period is the gradual disap
pearance of the drainage channel. Remnants of the drainage channel are 
visible in all predictions by July of 2017 (Figs. 7d and 8d). This implies 
that the extraction had substantially altered the topography of the TSF, 
such that surficial drainage patterns were affected. However, the time
span of this activity would have occurred substantially before July of 
2017, as the cumulative changes of surficial gold grade that follows 
changes in TSF drainage patterns is not immediate. This process could 
occur on the order of months to years, depending on a competition of 
further extraction-induced structural changes and natural processes and 
is accelerated during the wet seasons. In addition, the highest gold 
grades near the northeastern portion of the TSF have been extracted the 
earliest, which is consistent with typical extraction sequencing. As the 
extraction progressed into 2018 and 2019, a major occurrence is the 
presence of high gold grades in isolated spots near the southern tip of the 
TSF, which is likely indicative of extraction-induced exposure of 
consolidated material through internal reaction and transport due to 
drainage in the years prior to extraction. The enrichment of the deeper 
depths of the TSF, especially to the south-eastern edge of the TSF (but 
also along the southern edge), can be expected from the geostatistical 
models, which exhibited a similar trend (Fig. 4). Another visible change 
within the TSF is the gradual disappearance of moderate gold-grade 
areas to the northern portion of the main body of the TSF. Although 
this appeared to have been in progress from 2015 to 2017, the most 
prominent visual changes occurred in 2018–2019. By 2019, the mod
erate enrichment of gold to the northern portion of the main body seems 
to have disappeared entirely. This is consistent with the known time of 
onset of the second extraction phase, targeting less enriched areas. 
Another approach that demonstrates the big geochemical data nature of 
our method is the visualisation of changes in daily snapshots in the form 
of a movie. For this purpose, we linearly interpolated between all 17 
images, using a standard frame interval of 3 days to create a smoothly 
varying animation of the surficial changes of the TSF in gold grade. The 
images are then rendered into animated movies for each of the algo
rithms considered (kNN, RF and AB; see Supplementary data). The 

Table 4 
Comparison of predicted resource maps between several methods. STD is the abbreviation for standard deviation.  

Resource model type Number of samples Total surficial resource (g/ 
t⋅m2) 

Surficial grade STD (g/t) Surficial grade mean (g/ 
t) 

Surficial grade median (g/ 
t) 

Geostatistical - surficial 3819 132,267.4 0.22 0.35 0.23 
Geostatistical - vertical 

average 
3819 166,529.4 0.23 0.44 0.38 

kNN 4048 177,798.9 0.05 0.44 0.44 
RF 4048 175,367.4 0.04 0.43 0.43 
AB 4048 176,607.6 0.05 0.44 0.43  

Fig. 6. Histograms of various predictions of the surface gold grade of the TSF 
and comparison with the geostatistical (GS) resource models. 
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animated movies are intended for qualitative purposes since the remote 
sensing images were unevenly spaced temporally due to discarding of 
images that do not meet cloud-free L1T criteria. This implies that the 
frames of the animations are variably representative of the state of the 
TSF. Statistical comparisons between the dynamic geochemical state of 
the TSF as predicted by various models is similar (RF shown in Fig. 9). In 
general, there is a fluctuation of the overall surface grade both in terms 
of the mean and median. Both the mean and median surficial grades as 
predicted through time are close to the mean but not the median grade 
in the vertically-averaged geostatistical model (Fig. 9). This can be ex
pected given that the gold grades of the geochemical models are heavily 
non-normally distributed, whereas the predicted grades are more nor
mally distributed (Fig. 6). The surficial geostatistical model is a poor 
match of any of the predicted snapshots through time (Fig. 9). 

5. Discussion 

5.1. Transferability of trained machine learning models to new 
environments 

In the context of this study, a key factor contributing to the ability to 
deploy existing trained machine learning models from their original TSF 
to the current TSF is that we have a-priori knowledge of similarity of the 
composition of both TSFs. This knowledge was not obtainable remotely, 
because remote sensing data are unable to directly capture elemental or 
mineral distributions. A data-only comparison is ambiguous and insuf
ficient to ensure model transferability due to the physics of (low energy) 
remote sensing. Ground reflections originate from photon-mineral in
teractions primarily. Consequently, ground reflections contain an 
ambiguous combination of both compositional and microstructural 
signatures (e.g., mineral structure; Marghany, 2022). Hence, even where 

Fig. 7. Temporal snapshots of the surficial resource model of the TSF as predicted using the AdaBoost (AB) algorithm. The snapshots have been rendered into a 
movie for each of the algorithms used (kNN, RF and AB) and can be viewed in Supplementary Information. The coordinates provided are in UTM. 
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a deployment area shows spectral signatures that are similar to a 
training area, it is not possible to conclude that the material composition 
is similar without additional knowledge. In this case, deployment of 
models could be met with misleading or unrealistic results. As was 
noticed by Zhang et al. (2023), although trained models could be 
theoretically deployed over any surface, the results require further 
validation. The general case of geostatistical transferred learning is not 
yet solved and, cross-validation in the training area can seriously 
over-estimate actual model performance due to spatial correlation of 
covariates (and other effects, Hoffimann et al., 2021). In Zhang et al. 
(2023), the authors purposely deployed the trained models outside of 
their TSF and observed that although predicted resource grades were 
expectedly low, they were not zero. Incorporating training data outside 
of the TSF can suppress the models’ response to non-relevant spectral 
signatures (e.g., of buildings and trees). However, this cannot be per
formed universally because the types of landcover that does not corre
spond to one or a few types of the composition of interest can arise from 

Fig. 8. Temporal snapshots of the surficial resource model of the TSF as predicted using the random forest (RF) algorithm. The snapshots have been rendered into a 
movie for each of the algorithms used (kNN, RF and AB) and can be viewed in Supplementary Information. The coordinates provided are in UTM. 

Fig. 9. Statistics of the snapshot predictions of the surface gold grade of the TSF 
using the random forest (RF) algorithm and comparison with the geostatistical 
(GS) resource models. 
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an infinite combination of terrains. Hence, the feature space spanned by 
non-target land cover is infinitely complex in general. If this approach 
were to be taken, care would also have to be taken such that the spectral 
response of non-interesting compositions does not significantly overlap 
with that of the interesting compositions. Open tailings such as the 
Dump 20 and Lindum TSFs are affected by material dispersal mecha
nisms, such as surficial erosion, wind, rain and transport losses (e.g., 
Tutu et al., 2008; Ojelede et al., 2014). Unfortunately, this means that 
remote sensing-image pixels near such TSFs are likely contaminated by 
spectral signatures of minerals from the TSF. It would seem that some 
knowledge of the nature of remote sites, where there is uncertainty 
regarding their composition, is important to the spatial transferability of 
trained models. 

5.2. Spatio-temporal changes of gold grade distribution in the tailings 
storage facilities 

The most important contribution of this study lies in the demon
stration of streams of geochemical data. Certainly, the derived 
geochemical data that was used to analyze temporal changes in the TSF 
are produced at a spatial and temporal resolution far surpassing that of 
traditional geochemical surveys. In the case of monitoring TSFs, our 
method is capable of both identifying natural processes (e.g., drainage 
pattern) and monitoring anthropogenic activity (extraction). The 
response rate, or latency of monitoring depends on the imaging fre
quency, which in this case is controlled by Sentinel-2 satellite’s capa
bility. The data are considered ‘big’ in the sense of a stream of constant 
images that cover the area of interest. This type of data is essentially 
modernised non-contact sensor data, which is yet to be popularised in 
the domains of geochemistry, geology, resource estimation and mine 
operations. However, clearly, the big data approach to geochemistry 
adds tremendous value to every discipline where geochemistry is 
currently significant in practice. For resource estimation, the resource 
model could be dynamically generated and modified, at the pace of 
sensor output. Should even higher rates of output, or alternatively, 
higher spatial and/or spectral accuracy be required, it is an engineering 
matter to switch from satellite-born remote sensing to drone-based 
remote sensing (hybridised approaches are also possible). In this case, 
the frequency of snapshots could become as high as desired and certainly 
once per day is feasible (Booysen et al., 2020). In addition, with 
drone-based remote sensing, spatial resolution at the cm-scale would be 
possible. Even in the case of satellite-born remote sensing data, the idea 
of weekly or monthly updates to a resource model at a resolution of 
decametres is unheard of within the traditional practices of geochemical 
sampling and analysis. To be able to monitor extraction, where surface 
exposure exists (TSFs or e.g., open pit mines), remote sensing-derived 
geochemical data greatly facilitates the adoption of big data and mod
ern sensors into traditional workflows. If such workflows were utilised, a 
company could dynamically prioritise extraction sequencing to maxi
mise their business outcome. This would undoubtedly create enhanced 
competitiveness within the industry and especially in the case of waste 
valorisation, where resource grades are lower and therefore profit 
margins are thinner and business continuity is more influenced by 
external variables, such as market conditions. Where the companies are 
more competitive, more waste could be re-used, enhancing primary 
resource sustainability. In the case of the Witwatersrand gold TSFs, 
because they contain substantial radionuclides (uranium), heavy and 
semi-metals and are near human settlements (Schonfeld et al., 2014), 
the environmental and health argument for their immediate and com
plete re-use and land remediation is strong. This is in addition to their 
relatively high mineral resource grades, given that their accumulation 
from mining began over 100 years ago (Tutu et al., 2008; Frimmel, 
2019). 

5.3. Implication of the proposed method in geosciences 

The ability to generate big geochemical data may be of high rele
vance to the exploration community. This benefit mainly includes the 
ability to generate data at a pace and a resolution that is far higher than 
current standards of practice, which spans years from survey planning to 
data availability at the regional level. Where there had been geochem
ical surveys, legacy data, especially surficial geochemical data is of 
tremendous value because it is essentially training data to derive sec
ondary geochemical data. However, as with all big data types of ap
proaches, the increase in data abundance can be expected to offset some 
losses due to the precision of the data generation method using predic
tive modelling compared with analytical instrumentation. This may be a 
worthwhile balance in favour of activities such as exploration (and 
hence mapping) because such activities are exploratory in nature and 
makes use of a system-level of data (e.g., coherent spatial patterns rather 
than a single concentration outlier). For this activity, the availability of 
geochemical data at a fixed grid spacing with a resolution on the order of 
decametres implies that much finer signatures could be recognised. In 
fact, the resolution of remote sensing-derived geochemical data may be 
sufficiently high to essentially render regional scale surveys into 
greenfield surveys, where they were once brownfield due to existing 
discoveries and resolution limitations of traditional primary geochem
ical data. This can obviously facilitate the discovery of more mineral 
occurrences that may lead to the additional discovery of deposits. An 
additional benefit of the big data aspect of geochemical data is that they 
can be averaged through time and space to increase the precision of the 
data. Such an approach is very popular in the astrophysics/astronomy 
community, for example, for the purpose of planetary and space 
exploration. This is predicated on the fact that natural geological land
scapes evolve very slowly relative to the pace of remote sensing-based 
data generation. Hence, averaging through time can be used to 
improve the resolving power of the data. This aspect would be entirely 
impossible without the big data aspect of geochemical data. 

The case for adopting big geochemical data is even stronger in the 
modern usage of geoscientific data through data analytics. Trans
disciplinary techniques that primarily use methods from artificial in
telligence, machine learning and data science require copious amounts 
of data that cannot be sustained through legacy data alone. In fact, the 
sparsity of big data in geosciences is probably the most important 
obstacle to adopting modern data talents (Karpatne et al., 2018; He 
et al., 2022). Skilled scientists trained in artificial intelligence for 
example, already face a barrier of entry into geosciences that primarily 
consists of discipline-specific knowledge and context (He et al., 2022). 
The added issue of sparsity of a sustainable data supply means that even 
the keenest geodata scientists would have to switch between isolated 
projects as data are quickly consumed. An implication of this is that 
geodata scientists may be forced to adopt projects from multiple 
sub-disciplines of geosciences to maximise success (as data-driven ac
tivities are exploratory and high risk). This type of multi-disciplinary 
agility is rare because each sub-domain of geosciences requires its 
own knowledge to understand its data, pre-processing methods (e.g., 
denoising, transformations and subjective interpretations) and scientific 
concepts. In addition, data-driven and hypothesis-driven science are 
philosophically incompatible in terms of their requirements on data. In 
other domains where transdisciplinary techniques have found success 
(e.g., behavioural analytics and recommender engines in online com
merce), models are typically trained and deployed on identical data 
streams. Deployment of models is a relatively rare event in traditional 
geosciences because of data characteristics that include a low data ve
locity (data streams are rare). As it pertains to geochemistry, big 
geochemical data are not a concept that could be arrived at from within 
traditional analytical laboratories and within the discipline. As such, it 
represents an evolutionary leap and not an incremental development. 
Integrating remote sensing, legacy geochemical data, geostatistical data 
augmentation and machine learning proved to be an effective bridge to 
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bring the benefits of high-data-velocity from remote sensing into 
geochemistry. Alternatively, using the tools of geochemistry, such as 
resource estimation, it is possible to continuously analyse sustainable 
sources of remote sensing data, to derive stronger proxies to natural 
processes in the form of elemental concentrations. 

6. Conclusion 

This study deployed a machine learning-based inferential inversion 
method to produce snapshots of big geochemical data. The pre- 
requisites to our approach include the availability of a high-quality 
training dataset that covers a terrain with a similar composition to an 
area of deployment. In the sense that remote sensing data are considered 
big data, the derived geochemical data would also be big data. The 
ability to generate big geochemical data brings many benefits to both 
geoscience and engineering communities, in the form of: (1) cheap 
secondary geochemical data that realises the additional value in legacy 
geochemical data; (2) a sustainable supply of geochemical data to sus
tain data-driven applications; (3) the ability to dynamically model and 
monitor locations of interest; (4) the ability to adopt data analysis ap
proaches (e.g., resource estimation) that were previously foreign to the 
remote sensing community; and (5) a low-cost method to plan surficial 
mining processes that support resource sustainability. We think the 
ability to provide a sustainable supply of geochemical data to down
stream applications is probably our study’s most significant and timely 
implication. By our observation, there is a pervasive desire from many 
scientific and engineering domains to adopt data-driven methods, but 
the need for sustainable data generation and the system-nature of data- 
driven methods (as opposed to the typical needs of scientific reduction) 
has been overshadowed by the more prominent rise of glamorous 
applicative examples of artificial intelligence, machine learning and 
data science. However, a sustainable supply of geoscientific data is an 
absolute necessity to sustainably attract geodata scientists, whose sta
bility and career progression within the field of geosciences is the ulti
mate determinant of the long-term success of data-driven methods. 
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Churchill Province, Québec and Labrador. Artif. Intell. Geosci. 2, 128–147. https:// 
doi.org/10.1016/j.aiig.2022.02.002. 

S.E. Zhang et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2666-5441(23)00028-X/sref29
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref29
https://doi.org/10.3390/rs12183028
https://doi.org/10.3390/rs12183028
https://doi.org/10.3390/rs10040638
https://doi.org/10.1093/biostatistics/2.1.31
https://doi.org/10.1093/biostatistics/2.1.31
https://doi.org/10.1080/08827508.2020.1784164
https://doi.org/10.1016/j.exis.2022.101089
https://doi.org/10.1016/j.exis.2022.101089
https://doi.org/10.1016/j.mineng.2022.107971
https://doi.org/10.1016/j.mineng.2022.107971
https://doi.org/10.1198/016214502760047140
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref37
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref37
https://doi.org/10.1038/s43247-020-00079-2
https://doi.org/10.1038/s43247-020-00079-2
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref39
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref39
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref39
https://doi.org/10.1144/geochem2019-031
https://doi.org/10.1144/geochem2019-031
https://doi.org/10.1016/j.apgeochem.2018.05.017
https://doi.org/10.1016/j.apgeochem.2018.05.017
https://doi.org/10.5194/isprsarchives-XLI-B8-423-2016
https://doi.org/10.1016/j.apgeochem.2022.105273
https://doi.org/10.1016/j.apgeochem.2022.105273
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.3389/fams.2021.689393
https://doi.org/10.3389/fams.2021.689393
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref46
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref46
https://hls.harvard.edu/today/clinic-highlights-human-rights-costs-south-african-gold-mining/
https://hls.harvard.edu/today/clinic-highlights-human-rights-costs-south-african-gold-mining/
https://doi.org/10.1016/j.compchemeng.2008.12.012
https://doi.org/10.1016/j.compchemeng.2008.12.012
https://doi.org/10.1109/TKDE.2018.2861006
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref50
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref50
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref50
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref50
https://doi.org/10.3390/rs12121923
https://doi.org/10.3390/rs12121923
https://doi.org/10.1016/j.oregeorev.2021.103985
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref53
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref53
https://doi.org/10.1080/22797254.2021.1920341
https://doi.org/10.1201/9781003033776
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref56
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref56
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref57
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref57
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref57
https://doi.org/10.1007/s11053-019-09601-6
https://doi.org/10.1007/s11053-019-09601-6
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref59
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref60
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref60
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref61
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref61
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref61
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref61
https://doi.org/10.1007/s11053-019-09522-4
https://doi.org/10.1016/j.jenvman.2021.113013
https://doi.org/10.1016/j.jenvman.2021.113553
https://doi.org/10.1016/j.jenvman.2021.113553
https://doi.org/10.1007/s11053-019-09498-1
https://doi.org/10.1007/s11053-019-09498-1
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref66
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref66
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref66
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref66
https://doi.org/10.1016/j.aeolia.2011.03.010
https://doi.org/10.1016/j.aeolia.2011.03.010
https://doi.org/10.3390/rs9101080
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1016/j.canep.2014.06.003
https://doi.org/10.1016/j.canep.2014.06.003
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref71
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref71
https://doi.org/10.1016/j.saa.2019.117191
https://doi.org/10.1016/j.apgeochem.2008.09.002
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref74
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref74
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref74
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref75
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref75
https://doi.org/10.21105/joss.02305
https://doi.org/10.1016/j.rse.2019.04.015
https://doi.org/10.1016/j.saa.2020.119168
https://doi.org/10.1007/s11053-021-09876-8
https://doi.org/10.1007/s11053-021-09876-8
https://doi.org/10.1016/j.jii.2021.100224
https://doi.org/10.1016/j.aiig.2022.02.002
https://doi.org/10.1016/j.aiig.2022.02.002


Artificial Intelligence in Geosciences 4 (2023) 137–149

149

Zhang, S.E., Bourdeau, J.E., Nwaila, G.T., Ghorbani, Y., 2022. Advanced geochemical 
exploration knowledge using machine learning: prediction of unknown elemental 
concentrations and operational prioritization of re-analysis campaigns. Artif. Intell. 
Geosci. 3, 86–100. 

Zhang, S.E., Nwaila, G.T., Bourdeau, J.E., Ashwal, L.D., 2021b. Machine learning-based 
prediction of trace element concentrations using data from the Karoo large igneous 
province and its application in prospectivity mapping. Artif. Intell. Geosci. 2, 60–75. 
https://doi.org/10.1016/j.aiig.2021.11.002. 

Zhang, S.E., Nwaila, G.T., Bourdeau, J.E., Ghorbani, Y., Carranza, E.J.M., 2023. Towards 
big geochemical data from high-resolution remote sensing data via machine 

learning: application to a tailings storage facility in the Witwatersrand goldfields. 
Artif. Intell. Geosci. https://doi.org/10.1016/j.aiig.2023.01.005 (in press).  

Zhang, S.E., Nwaila, G.T., Tolmay, L., Frimmel, H.E., Bourdeau, J.E., 2021c. Integration 
of machine learning algorithms with Gompertz Curves and Kriging to estimate 
resources in gold deposits. Nat. Resour. Res. 30, 39–56. https://doi.org/10.1007/ 
s11053-020-09750-z. 

Zuo, R., 2020. Geodata science-based mineral prospectivity mapping: a review. Nat. 
Resour. Res. 29, 3415–3424. https://doi.org/10.1007/s11053-020-09700-9. 

S.E. Zhang et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2666-5441(23)00028-X/sref82
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref82
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref82
http://refhub.elsevier.com/S2666-5441(23)00028-X/sref82
https://doi.org/10.1016/j.aiig.2021.11.002
https://doi.org/10.1016/j.aiig.2023.01.005
https://doi.org/10.1007/s11053-020-09750-z
https://doi.org/10.1007/s11053-020-09750-z
https://doi.org/10.1007/s11053-020-09700-9

	Big geochemical data through remote sensing for dynamic mineral resource monitoring in tailing storage facilities
	1 Introduction
	2 Background
	3 Data and methods
	3.1 Sentinel-2 dataset
	3.2 Training data
	3.3 Geostatistical resource model
	3.4 Machine learning methodology

	4 Deployment results and analysis
	4.1 Static deployment and geostatistical results
	4.2 Dynamic model deployment – online mineral resource modelling

	5 Discussion
	5.1 Transferability of trained machine learning models to new environments
	5.2 Spatio-temporal changes of gold grade distribution in the tailings storage facilities
	5.3 Implication of the proposed method in geosciences

	6 Conclusion
	Funding
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


