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Acceleration-Based Kalman Tracking for
Super-Resolution Ultrasound Imaging in vivo
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Abstract— Super-resolution ultrasound can image mi-
crovascular structure and flow at sub-wave-diffraction res-
olution based on localising and tracking microbubbles.
Currently, tracking microbubbles accurately under limited
imaging frame rates and high microbubble concentrations
remains a challenge, especially under the effect of cardiac
pulsatility and in highly curved vessels. In this study, an
acceleration-incorporated microbubble motion model is
introduced into a Kalman tracking framework. The tracking
performance was evaluated using simulated microvas-
culature with different microbubble motion parameters,
concentrations and acquisition frame rates, and in vivo
human breast tumour ultrasound datasets. The simulation
results show that the acceleration-based method outper-
formed the non-acceleration-based method at different
levels of acceleration and acquisition frame rates and achieved significant improvement in true positive rate
(up to 11.3%), false negative rate (up to 13.2%). The proposed method can also reduce errors in vasculature
reconstruction via the acceleration-based nonlinear interpolation, compared with linear interpolation (up to 16.7
µm). The tracking results from temporally downsampled low frame rate in vivo datasets from human breast
tumours show that the proposed method has better microbubble tracking performance than the baseline method,
if using results from the initial high frame data as reference. Finally, the acceleration estimated from tracking
results also provides a spatial speed gradient map that may contain extra valuable diagnostic information.

Index Terms— Kalman filter, medical imaging, microbubbles, microvasculature, motion model, ultrasound
localisation microscopy.

I. INTRODUCTION

SUPER-resolution ultrasound (SRUS), also known as ul-
trasound localisation microscopy (ULM), based on local-
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ising and tracking sparse microbubbles (MBs), is capable of
mapping microvasculature beyond the wave diffraction limit
in vitro[1], [2] and in vivo[3]–[5]. Subsequently, the technique
has been applied in a range of in vivo models, such as rat tumor
angiogenesis [6], mouse acute kidney injury [7], rat kidney
[8]–[10], rabbit kidney perfusion study [11], renal tumor in
chicken embryo [12] and sheep ovary vasculature [13] and in
human, including the breast [14], limbs [15], the liver [16],
lymph nodes [17], and the brain [18].

Flows in microvasculature can be measured by SRUS via
MB tracking, the performance of which is affected by ac-
quisition frame rates and MB concentrations [19], [20]. As
high frame rate acquisitions are not generally available in
commercial US systems, a low MB concentration is often
required to maintain tracking accuracy, leading to a long
acquisition time to reconstruct vasculature [21]. More tissue
motion might happen during a longer acquisition, which makes
motion correction more challenging [15]. It is valuable to
develop algorithms to track MBs at high concentrations and
low frame rates. Various MB motion models have been used
in SRUS to deal with the aforementioned problems. These
algorithms are associated with detected MB positions based
on a probabilistic optimisation. A Markov Chain Monte Carlo
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Highlights

• An acceleration-incorporated Kalman motion model is introduced into a microbubble tracking framework for microbubble
tracking.

• The acceleration-based method outperformed the non-acceleration-based method in both microbubbles tracking performance
and microvasculature reconstruction accuracy.

• The acceleration information can be used to improve super-resolution ultrasound imaging at low frame rates, when there are
tortuous vessels and accelerations in flow.

data association algorithm (MCMCDA) [14], [22] and multi-
ply hypothesis tracking (MHT) procedure [23] was proposed
to handle MB tracking at high MB concentration. Yet, one
limitation of both methods is the relatively high computational
cost. A multi-feature-based tracking algorithm was proposed
in [20], whereas the linear motion model was combined with
MB image features. Similarly, a hierarchical algorithm with
Kalman filtering has also been developed to track MBs at
different speed ranges [9]. However, all the aforementioned
methods were using a linear motion model where MB move-
ment between consecutive frames was assumed in constant
velocity. However, vessels are with curvature and pulsating
flow. A motion model with constant curvature radius and
speed was proposed by [24], and an unscented Kalman filter
was implemented to handle the model’s nonlinearity. Kalman
filtering was also used in [19] to smooth the MB trajectory
after MB pairing.

Movement of MBs are sampled by SRUS at the frame rate
of acquisition, which can consequentially generate a discon-
tinuity in estimated speed and/or direction of MB movement
between frames in case of significant changes in flow velocity.
In general, the problem of discontinuity is exacerbated by
lower frame rates and faster flow speeds. In general, lower
acquisition frame rates and faster flow speed exacerbate the
problem of discontinuity, resulting in larger gaps between
adjacent MB locations. The reconstruction of vasculature from
the accumulation of MB locations in such situation is lack of
saturation, i.e., portion of the vascular space filled by MBs,
compared to the accumulation of continuous MB trajectories.
Therefore, interpolating tracked MB locations between frames
has been used to fill the gaps and enhance the visualisa-
tion quality by linking paired MBs with straight lines [20]
or further adaptively changing distance between interpolated
points [19]. However, the assumption that MBs were moving
in straight lines between frames is not true for curved vessels.
A nonlinear interpolation for MB trajectory reconstruction is
worth exploring to provide a more accurate reconstruction of
the microvasculature.

MB tracking allows dynamic flow parameters to be mapped
at super-resolution, such as flow speed and direction [3],
which adds significant value to potential clinical applications
of SRUS. Opacic [14] and Zhu [25] have shown that regularity
of microvascular flow directions can be a potential marker for
cancer in human. A previous clinical study of breast cancer
found that the acceleration time index is a useful parameter for
differentiating benign breast tumours from malignant tumours
by using Doppler ultrasonography [26].

In this study, based on the assumption that MBs may travel

in non-straight vessels and may have non-zero acceleration, we
aim to improve the MB tracking algorithm by incorporating an
acceleration term in the current Kalman filtering framework,
to account for changes of flow speed and direction between
frames. Curved trajectories of MBs were reconstructed via
Kalman state vectors. A spatial speed gradient map calculated
from acceleration was presented.

II. METHODS

This section firstly describes the acceleration incorporated
Kalman tracking framework and a 3D graph-based method
for initialising the velocity of new MBs. Next, the nonlinear
MB trajectory interpolation method based on estimated ac-
celeration was described. Finally, the proposed method was
evaluated on both simulation and in vivo datasets.

A. Acceleration-based Kalman Tracking with 3-frame
Initialisation

MBs can be effectively tracked via the graph-based as-
signment framework [19]. We have recently developed a
framework which pairs MBs between two consecutive frames
by minimising the total cost constructed by image features and
a linear motion model [20]. The linear motion model was used
to predict the movement of MBs, where each MB is assumed
to move at a constant velocity between two adjacent frames.
This assumption is not valid when MB moves in a curved
vessel and flow acceleration is significant, especially when the
acquisition frame rate is low. A more accurate motion model
is required.

A nonlinear motion-based Kalman filtering has been applied
to MB tracking, where the motion model is incorporated as
part of the MB tracking cost. To be more specific, a probability
(p) that indicates the likelihood of an MB pair between frames
is defined as a cost, given below

Costtrack = 1/p = 1/N(µ,Σ) (1)

µ = Hk × Sk|k−1 (2)

Σ = Hk × Pk|k−1 ×HT
k +Rk (3)

where N is defined by the Gaussian distribution, Hk and Rk

are the observation model and the covariance of observation
noise, respectively, Sk|k−1 and Pk|k−1 are the predicted state
vector and predicted estimate covariance matrix, respectively,
and are both predicted by the state transition matrix F . The
state transition model is shown in Eq. (4) and (5).

Sk|k−1 = F × Sk−1|k−1 (4)
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(5)

In this study, we modelled the MB movement between
frames as an accelerated motion. Thus, the state S contains
two-dimensional MB location (x, y), velocity (vx, vy) and
acceleration (ax, ay). ∆t is the time interval between frames.
Q is the covariance of processing noise, which is used to
describe the uncertainty of the true motion from the motion
model. σ2

a is the variance of noise when assuming constant
acceleration between frames.

The state vector of a new MB, including its moving di-
rection, is unknown and can be initiated by using multiple
frame tracking. To enable motion model for the new MB,
a 3-frame state initialisation method was proposed to give
new MBs an initial guess of their states, rather than be set
with zero velocity. An assumption for this initialisation is
that MB moves smoothly between frames, which indicates
the motion direction of MBs between frames will not change
dramatically [27] (Fig. 1). Thus, the true MB pairs can be
found by minimising a cost defined by the normalised vector
difference among three frames. The cost and state initialisation
are given below

Costinit =

∥∥∥−→L23 −
−→
L12

∥∥∥∥∥∥−→L23

∥∥∥+
∥∥∥−→L12

∥∥∥ (6)

−−→vinit =

−→
L12 +

−→
L23

2×∆t
(7)

−−→ainit =

−→
L23 −

−→
L12

∆t2
(8)

where
−→
L12 and

−→
L23 are the position vectors between frames,

−−→vinit and −−→ainit indicate the initialised velocity and accelera-
tion vector. The cost was minimised via a 3D graph-based
assignment algorithm adapted from a 2D one [28], where a
topology constraint that each MB can only be paired with no
more than one MB at the next frame was set. The motion
parameters, including velocity and acceleration, were then
initialised from the paired MBs. Only new MBs were paired in
the 3D graph-based assignment to initiate their state vectors,
and subsequently, all MBs in two consecutive frames were
paired using the 2D graph-based method.

B. Acceleration-based Nonlinear Interpolation of MB
Tracks

The microvasculature can be reconstructed by plotting
tracked MBs. In this study, based on the estimated motion
state from the Kalman-based tracking, we proposed a nonlinear
interpolation method for MB trajectory reconstructions (Fig.
2).

Fig. 1. Illustration of 3-frame initialisation. The black line indicates the
true MB pairing. The red line indicates the incorrect MB paring. Green
lines indicate the vector difference calculated; the normalised difference
is defined as the cost (Eq. (6)) for initialisation. The blue arrow indicates
the velocity estimated from the initial MB pairs (Eq. (7)).

Fig. 2. Examples of microvasculature simulation datasets for interpola-
tion.

The nonlinear interpolation used the MB’s acceleration
estimated from Kalman states. The missing MB’s position
between two frames was calculated following the motion
model, given below{

xi = x1 + v1x × dt+ 0.5× ax est × dt2

yi = y1 + v1y × dt+ 0.5× ay est × dt2
(9)

where x1 and y1 indicate the starting coordinates of an MB,
v1x and v1y are the estimated MB velocity from Kalman fil-
tering, ax est and ay est are the estimated MB acceleration for
interpolation, and dt is the time interval between the starting
position and the position (xi, yi) that needs to be interpolated.
The acceleration ax est and ay est are first calculated with
Eq. (9) by replacing (xi, yi) with (x2, y2), where (x2, y2) is
the MBs’ position at the next frame. The estimated accel-
eration (ax est, ay est) guarantees the continuous trajectory
interpolation along all the paired MBs. The speed gradient for
each MB can be calculated between the interpolated positions
(xi, yi) and (xi+1, yi+1). The spatial speed gradient was then
generated by averaging all the speed gradient at the same
positions.

C. Evaluation via Simulations

The evaluation and comparison of the performance of
acceleration-based MB tracking and trajectory interpolation
methods are presented in this section. The algorithm and sim-
ulation dataset generation was implemented with MATLAB
(R2022b, MathWorks, MA, USA).
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1) Evaluation of MB tracking: For the MB tracking per-
formance comparison between models with and without ac-
celeration components, we generated ten microvasculature
simulation datasets. Each dataset had two main vessels each
branching into another three downstream vessels. Three dif-
ferent acquisition frame rates (15 Hz, 25 Hz, and 35 Hz) and
three different MB concentrations, estimated from the clinical
dataset (2.54×107 MBs/mL, 3.82×107 MBs/mL, 6.36×107

MBs/mL), were used in the simulation. To simulate the effect
of pulsatile blood flow from cardiac cycles, we accelerated and
decelerated the MBs periodically, around the flow speed of 3
mm/s according to a heart rate of 75 bpm, for 30 seconds. Four
different flow accelerations were set: 0 mm/s2, 37.5 mm/s2,
75.0 mm/s2, 112.5 mm/s2 [29], and a total of 360 localisation
datasets were used to evaluate the tracking performance.

Both the acceleration-based tracking method (proposed)
and the non-acceleration-based method (baseline) were tested
using a non-parametric two-related-sample test, i.e., the
Wilcoxon Signed Rank Test, in SPSS (Version 28.0, IBM
Corp, NY, USA) at a significance level of 0.017, value of
which was obtained via dividing 0.05 by the number of null
hypotheses, i.e., 3, after applying the Bonferroni correction.
The null hypothesis for this test is that there is no significant
difference in the median of tracking performance between the
proposed nonlinear method and the baseline linear method.
Both methods were evaluated under various acceleration,
frame rate, and MB concentration settings. The metrics for
evaluating the tracking performance evaluation for each sim-
ulation setting were based on [30] which has been used in
a recent super-resolution ultrasound challenge (https://ultra-
sr.com) and includes true positive rate (TPR), false negative
rate (FNR), defined as:

TruePositiveRate :
TP

TP + FP
(10)

FalseNegativeRate : 1− TP

TP + FN
(11)

where TP is the number of true positive MB pairs, FP is
the number of false positive MB pairs, FN is the number of
false negative MB pairs.

2) Evaluation for MB trajectory interpolation: Six additional
datasets, each containing a single vessel, were generated to
test the performance of MB trajectory interpolation. In this
simulation, only one MB was inside each vessel to ensure
the tracking precision, moved at a constant speed of 30
mm/s. Images were captured at frame rates of 15 Hz, 25
Hz, and 35 Hz for 60 seconds to ensure enough MBs passed
through the vessel. Two different interpolation methods, linear
interpolation, and acceleration-based nonlinear interpolation,
were used for comparison. The linear interpolation method
plotted straight trajectories between linked MB positions from
adjacent frames, while the acceleration-based method plotted
curved trajectories additionally with MB velocities estimated
by either a linear or nonlinear motion model. Corresponding
accelerations were calculated using Eq. (9). The reconstruc-
tion error was calculated by a pointwise Euclidean distance
between interpolated results and the ground truth.

D. In vivo experiment
Two ultrasound datasets of breast cancer patients were

acquired at The Royal Marsden Hospital (London, UK),
for a clinical trial (KORTUC Phase 2, ClinicalTrials.gov:
NCT03946202) led by the The Institute of Cancer Research
and The Royal Marsden NHS Foundation Trust. Ethics ap-
proval was granted by West of Scotland Research Ethics
Committee (REC ref 20/WS/0019). The patients were in-
formed by and signed on written contents. The ultrasound
datasets were acquired using a Verasonics Vantage (Verasonics
Inc., Kirkland, WA, USA) and a GE LE-12D probe (GE
Healthcare, NY, USA) with a centre frequency of 5 MHz. 2.5
mL of SonoVue MBs (Bracco, Milan, Italy) were administered
intravenously. 5 seconds of the dataset was used for the super-
resolution processing. Images were acquired at a frame rate of
100 Hz using a mechanical index (MI) of 0.1. An amplitude
modulation (AM) was used to generate contrast-enhanced
ultrasound (CEUS) sequences.

Tissue motion in datasets were estimated from the B-
mode sequences, reconstructed from the AM pulse, using a
non-rigid registration algorithm. The CEUS sequences were
corrected correspondingly [15], [31]. A moving-average across
11 frames around the frame of interest was subtracted from
the sequence to remove remaining tissue signals. The moving-
average window size was chosen after considering the frame
rate, the velocity of the slowest blood flow to be captured, and
the rate of tissue motion. The datasets were smoothed spatially
and temporally using a Gaussian filter, and logarithmically
compressed. To further reduce noises, a noise only dataset
was acquired by imaging air and subtracted from the dataset
of interest. The MB signal was localised by peaks in the map
obtained by normalised cross-correlation with an estimated
point spread function.

The acceleration-based and non-acceleration-based tracking
methods were compared. To evaluate the influence of frame
rate only and maintain the same data size, downsampling was
conducted by 1) extracting the dataset by a time interval of 4
frames into 4 subgroups, 2) tracking MBs in each subgroup,
and 3) combining all the tracking results to generate the final
super-resolution map. Taking the tracking results obtained at
100 Hz as references, the tracking performance was evaluated
by the consistency between the 25 Hz and 100 Hz frame rate
tracking results.

III. RESULTS

A. Simulations
1) MB tracking: The evaluation results of MB tracking

based on simulation data are shown in Fig. 3, Fig. 4 and
Fig. 5. From the statistical analysis of MB tracking results,
the proposed algorithm outperformed the baseline algorithm.
We first evaluated the tracking performance of the proposed
and baseline method on different acceleration settings (n=90
for each group). When there is no speed changing in the
simulation, the results indicated there is still a small but
significant improvement from the proposed method, as shown
in Fig. 3. When there is an acceleration of MB moving speed,
compared with the baseline method, the performance of both
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Fig. 3. Paired-sample test between results from different accelerations.
A: Proposed nonlinear model-based method. B: Baseline linear model-
based method. TP: true positive MB pairs. FP: false positive MB pairs.
FN: false negative MB pairs. ConstantFlow: constant flow speed. Acc1:
simulation with an acceleration of 37.5 mm/s2. Acc2: 75.0 mm/s2. Acc3:
112.5 mm/s2. TPR: overall median true positive rate from proposed and
baseline methods. FNR: overall median false negative rate.

Fig. 4. Paired-sample test between results from different acquisition
frame rates. Captions are the same as in Fig 3.

methods dropped, as the scenario became more challenging.
The improvement of the proposed method is also significant
under different frame rates and MB concentrations, as demon-
strated in Fig. 4 and Fig. 5, indicated by higher number of TP
pairs, lower number of FP and FN pairs with proposed method.

The visualisation of the tracking results is shown in Fig. 6.
The ground truth of each vasculature is shown on the left. SR
density maps reconstructed using the baseline linear motion
model method and the proposed nonlinear motion model
method are shown in B-D and E-G, respectively. Figures B
and E correspond to the simulation with the lowest acquisition
frame rate, acceleration, and MB concentration, while figures
C and F correspond to the simulation with the highest acceler-
ation and frame rate but lowest MB concentration. Figures D
and G are results from the highest MB concentration, with
the highest frame rate and lowest acceleration. In the first
simulation, both methods showed high tracking precision when
compared with the ground truth vasculature. However, the
density map obtained with the baseline method displayed some
dimmed segments in the zoomed-in region, indicating a higher
pairing FNR compared to the proposed method. In the second
simulation where the acceleration was set as the maximum,

Fig. 5. Paired-sample test between results from different MB con-
centrations. Captions are the same as in Fig 3. Concentration1:
2.54×107 MBs/mL. Concentration2: 3.82×107 MBs/mL. Concentra-
tion3: 6.36×107 MBs/mL.

Fig. 6. Visualisation of super resolution density maps at three simula-
tion settings. Figure A: Ground truth vasculature. Figures B-C: Density
maps from the linear motion model. Figures E-G: Density maps from the
nonlinear motion model. The green boxes indicate the region of interest.

Fig. 7. Comparison of interpolation errors among two nonlinear
interpolation methods and a linear interpolation method at acquisition
frame rates of 15, 25, and 35 Hz. Orange bar: nonlinear interpolation
applied on acceleration-based nonlinear tracking results. Blue bar: non-
linear interpolation applied on linear tracking results. Green bar: linear
interpolation applied on linear tracking results.

the density map from the proposed method showed a higher
pairing TPR than the baseline method, as there were fewer
incorrect links between the vessels. In the third simulation,
the baseline method showed a lower pairing TPR compared
to the proposed method, as observed from the blur between
two closely situated vessels in figures D and G.

2) Trajectory interpolation: The errors between the vessel
structure and trajectories interpolated by the three aforemen-
tioned implementation methods are shown in Fig. 7. The pro-
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Fig. 8. Examples of MB trajectory interpolation results using three
interpolation methods. Column 1: Visualisation of MB trajectory recon-
struction results using acceleration based-nonlinear interpolation on
nonlinear tracking results. Column 2: nonlinear interpolation on linear
tracking results. Column 3: linear interpolation results on linear tracking
results. Row 1 to 3: simulations at acquisition frame rates of 15, 25, and
35 Hz.

Fig. 9. Estimation of imaging resolution by the Fourier ring coefficient
method with a 1/2 bit threshold curve for in vivo dataset one (A) and
dataset two (B).

posed nonlinear interpolation, utilizing velocity estimates from
a nonlinear motion model, exhibited the lowest average error.
A visual comparison of the interpolation results is presented in
Fig.8. Both methods yielded similar results in sections where
the vessels are relatively straight. However, when the vessels
were more tortuous, the nonlinear interpolation based on the
nonlinear motion model outperformed the linear interpolation
method in tracking the curved ground truth trajectory. In the
interpolation simulation dataset, the average error of velocity
estimation from the nonlinear model is lower than that from
the linear model tracking (5.11 mm/s vs. 16.2 mm/s, 2.51
mm/s vs. 10.9 mm/s and 1.71 mm/s vs. 3.32 mm/s for 15
Hz, 25 Hz, 35 Hz, respectively).

B. In Vivo Experiments
We reconstructed SR density maps of two 100 Hz frame

rate datasets using both tracking algorithms respectively. The
imaging resolution was estimated on the high frame rate
dataset using the Fourier ring coefficient (FRC) method [8],
[32], [33], as shown in Fig. 9. For dataset one, the resolution of
the linear and nonlinear model-based tracking method was 145
µm and 150 µm, respectively. For dataset two, the resolution
for both methods was 128 µm. The estimated resolution

exceeds the half wavelength of the transmitting ultrasound
(154 µm). The density maps reconstructed from full-frame-rate
data by both algorithms show a high structural similarity index
(calculated using the Matlab ‘ssim’ function): 0.98 for dataset
one and 0.99 for dataset two. Therefore, we used the MB
density map obtained from the 100 Hz dataset with the linear
model-based tracking method as the reference for comparison
with the reduced-frame-rate data, as shown in Fig. 10 and Fig.
11.

When we down-sampled the dataset 4 times, the proposed
acceleration-based method outperformed the baseline method.
From Fig. 10 and Fig. 11, more information is kept in the
25 Hz frame rate results of the proposed method than in
the baseline method. The arrows in Fig. 10 and Fig. 11
highlight some differences in results from the proposed and
baseline methods. For the proposed method, there was a higher
consistency of vessels presenting in the 25 Hz and 100 Hz
results indicating a better tracking performance. For dataset
one, the proposed nonlinear method achieved an SSIM of 0.65
with the reference density map obtained from the 100 Hz
dataset using the linear baseline method, while the baseline
method achieved an SSIM of 0.63. For dataset two, the SSIM
for the proposed method and the baseline method is 0.85 and
0.83, respectively. Compared to the MB density maps of the
100 Hz dataset, fewer MBs were tracked in the down-sampled
25 Hz dataset. Notably, the proposed method can better track
MBs at positions with higher spatial speed gradients. Arrows
in Fig. 10 highlight vessel branches that were reconstructed
at 100 Hz but were missed by the baseline method at 25 Hz.
Two curved vessels are presented with the proposed method
in Fig. 10, while the baseline method failed to depict these
vessels.

A spatial speed gradient map was generated for each of
the datasets by averaging all the estimated speed gradients
at the same position temporally, which is readily available
after the proposed acceleration-based Kalman tracking. This
information is in addition to MB density and flow velocity
maps and may have diagnostic value.

IV. DISCUSSION

A. Main Findings

In this study, we introduced an acceleration term into the
Kalman-filtering-based MB tracking framework to improve
MB tracking performance at low acquisition frame rates. Be-
sides the MB tracking, incorporating acceleration also allows
more accurate reconstruction of MB trajectories than linear
interpolation. Results from simulation and in vivo experiments
demonstrate improvement in MB tracking and vasculature
reconstruction by the proposed methods. Additionally, a new
type of super-resolution map, the spatial speed gradient map,
is generated in this study to provide additional information.

The proposed algorithm was evaluated under different
flow acceleration, MB density settings and acquisition frame
rates, showing a consistently better tracking performance than
the baseline. The constant acceleration assumption in the
acceleration-based motion model becomes less reliable as
the time interval between frames increases. Consequently,
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Fig. 10. Comparison of super-resolution imaging results from the first in vivo dataset. (A): One frame of the B-mode images from the dataset.
(B): MB density map obtained from the 100 Hz dataset with the linear model-based tracking method. (C): Magnified blue region of interest (ROI)
in (B). (D): Density map obtained by the nonlinear model-based tracking method on the 25 Hz dataset in the same blue ROI as (C). (E): Density
map obtained by the linear model-based tracking method on the 25 Hz dataset in the same blue ROI as (C). (F): Corresponding magnified speed
gradient map in the blue ROI. (G): Maximum intensity projection of the original 100 Hz contrast-enhanced dataset. (H): A spatial speed gradient
map generated from the nonlinear model-based tracking result. (I-L): Same layout of figures for the green ROI in (B). The colour bars denote the
intensity of MB density and the speed gradient.

Fig. 11. Super-resolution results from the second in vivo dataset. Captions are the same as in Fig. 10.
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the improvement achieved with acceleration over methods
without acceleration can be less significant when the frame
rate is too low, as observed in the results at a frame rate
of 15 Hz. In the performance comparison involving different
flow accelerations, the nonlinear motion model inherently
outperforms the linear model. When there is ”no acceler-
ation” in moving speed, the acceleration still plays a role
in changing the direction of MBs in curved vessels. The
nonlinear model consistently demonstrates better performance
with fewer missed pairs, as shown in Fig 6 (B and E),
where there is no speed change in the simulation. When the
acceleration is set to its maximum (112.5mm/s2), the TP,
FP and TN still show significant improvement. The proposed
method consistently outperforms the baseline method across
various MB concentrations.

The proposed nonlinear interpolation method had a lower
reconstruction error on average when compared with the linear
interpolation. Although nonlinear interpolation can also be
implemented with the baseline tracking method, the lower
accuracy of velocity estimation results in more errors in
acceleration estimation, which subsequently leads to greater
misalignment in vessel reconstruction compared to the non-
linear tracking method, as shown in Fig. 8. In addition, the
proposed nonlinear interpolation with the nonlinear motion
model might still result in significant errors if the frame rate is
relatively low compared to the flow speed, as demonstrated in
Fig. 7. This implies that a frame rate that is too low can reduce
the image resolution when using MB trajectories to enhance
image saturation.

From the in vivo studies, the performance between the
proposed and baseline method has no significant difference
when the frame rate is high, as it indicated by the high SSIM
index. As it shown in the arrows in 10, the proposed method
benefits MBs tracking in curved vessels. In Fig. 11, vessels
with branches were pointed, where a higher magnitude of ac-
celeration was also presented in the speed gradient map. From
the corresponding speed gradient map, a higher magnitude of
acceleration (more red or blue colour) can be observed at
this branch. The spatial speed gradient visualisation proves
the proposed method’s benefits of tracking the MBs with
acceleration.

B. Difference from Previous Works
The nonlinear motion used for MB tracking tasks was

mentioned in [24] to generate curved tracks. They modelled
the MB movement with a constant speed and turning rate
between frames. Compared with the linear motion model, their
nonlinear model was a better approximation. An unscented
Kalman filtering framework was used to incorporate their
proposed nonlinear motion model [34]. In this paper, we
proposed an acceleration motion model, approximating the
MB movement as a curved motion with a changing speed.
Compared with the linear motion model used in previous
works, the acceleration term in the motion model avoided
discontinuity in estimation of MB velocity in the tracking and
is suitable for the scenario where pulsatile flow existed.

The Kalman filtering-based MB tracking framework was
also used in others’ work. However, the initialisation of MB

movement vectors has not been reported as far as we are aware.
Inspired by the particle tracking velocimetry, we introduced a
3-frames-based MB motion state initialisation method for the
first time in SRUS. A 3D graph-based algorithm was used to
find the optimal initial pairing for new MBs.

The MBs’ trajectory reconstruction for super-resolution
needs interpolation between linked MBs’ positions. To esti-
mate the missing positions of MBs, linear interpolation was
used in previous studies. Instead of using a fixed interpolation
factor, an adaptive interpolation factor was also introduced by
[19]. However, the hypothesis for linear interpolation that an
MB kept moving with a constant velocity between frames may
not hold in the case of low acquisition frame rates, tortuous
vessels, and high flow speeds. In this study, we used nonlinear
interpolation to reconstruct the trajectory and investigated the
interpolation error between linear and nonlinear methods for
the first time.

From our proposed MB tracking framework, we presented
the spatial speed gradient maps for the microvasculature.
The spatial gradient map may potentially indicate abnormal
structural changes in the microvasculature, such as change of
curvature or diameter, that results in a sudden change of MB
movement.

C. Limitation and Future Work
In the MB motion state initialisation, we use a 3-frame-

based method to estimate each newly appeared MB’s motion
parameter. This proposed nonlinear-based method can be
readily adapted to the 3D MB tracking application by adding
an additional set of parameters to the Kalman state vector
and covariance matrices for the elevational direction. It is
worth exploring a 4-frame-based initialisation method, so the
acceleration motion model can be implemented to estimate the
MB’s state better. However, the higher computational cost of
the 4D graph-based algorithm for 4-frame initialisation needs
to be optimised in the future. The clinical application of the
spatial speed gradient map from SRUS is also worth exploring.

V. CONCLUSION

In this paper, we introduced an acceleration-based motion
model for MB tracking. A 3-frame-based motion state ini-
tialisation method was combined with an existing Kalman
tracking framework. From the evaluation of both simulation
and in vivo datasets, the proposed method is shown to improve
MB tracking performance at low frame rates when there are
tortuous vessels and accelerations in flow. The acceleration
information can also be used for more accurate interpolation
of MB trajectories between localised positions. Finally, a
spatial speed gradient map is presented for the first time
and could help explore the potential abnormal changes in the
microvasculature.
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