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Abstract: Caffeine is a psychoactive substance widely consumed worldwide, mainly via sources
such as coffee and tea. The effects of caffeine on kidney function remain unclear. We leveraged
the genetic variants in the CYP1A2 and AHR genes via the two-sample Mendelian randomization
(MR) framework to estimate the association of genetically predicted plasma caffeine and caffeine
intake on kidney traits. Genetic association summary statistics on plasma caffeine levels and caffeine
intake were taken from genome-wide association study (GWAS) meta-analyses of 9876 and of
>47,000 European ancestry individuals, respectively. Genetically predicted plasma caffeine levels
were associated with a decrease in estimated glomerular filtration rate (eGFR) measured using either
creatinine or cystatin C. In contrast, genetically predicted caffeine intake was associated with an
increase in eGFR and a low risk of chronic kidney disease. The discrepancy is likely attributable to
faster metabolizers of caffeine consuming more caffeine-containing beverages to achieve the same
pharmacological effect. Further research is needed to distinguish whether the observed effects on
kidney function are driven by the harmful effects of higher plasma caffeine levels or the protective
effects of greater intake of caffeine-containing beverages, particularly given the widespread use of
drinks containing caffeine and the increasing burden of kidney disease.

Keywords: caffeine level; caffeine intake; genetically predicted coffee consumption; causal inference;
Mendelian randomization; kidney function; estimated glomerular filtration rate

1. Introduction

Caffeine, a central nervous system stimulant, is present in coffee beans, tea leaves, and
cacao beans and is commonly added to energy and carbonated drinks as well as analgesic
drugs [1]. By inhibiting phosphodiesterase enzyme, antagonizing adenosine receptors,
and activating ryanodine receptors, the adverse effects of caffeine on kidney function and
structure have been postulated [2,3].
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Increasing evidence has indicated that caffeine may have detrimental effects on kidney
function, although the literature remains controversial. Animals’ investigations have shown
an increase in proteinuria and renal vascular resistance, leading to marked renal failure [3,4].
In patients suffering from autosomal dominant polycystic kidney disease, studies have
reported an increased risk of cyst enlargement with increasing caffeine intake [5,6], while
others did not show such consequences [7,8]. Observational studies and meta-analyses
observed a lower risk of developing chronic kidney disease (CKD) with increasing coffee
consumption [9–14]. However, these studies suffered potential bias related to their observa-
tional design and assessed caffeine exposure as a self-reported intake of cups of coffee/day,
not accounting for the wide interindividual variation in the metabolism of caffeine that
could modify any associations. Indeed, a recent study in 1180 adults showed that the risks
of albuminuria and hyperfiltration were over 2-fold higher among slow metabolizers of
caffeine who consumed more than three cups of coffee per day compared to those with
low coffee intake, while there was no difference among fast metabolizers [15]. Over 95%
of caffeine in humans is metabolized via cytochrome P450 1A2 (CYP1A2), and the gene
expression of this enzyme is regulated via the aryl hydrocarbon receptor (AHR) [16,17].
The heritability of coffee consumption was estimated at 36% to 58% [18].

Here, we leveraged the genetic variants in the CYP1A2 and AHR genes via the two-
sample Mendelian randomization (MR) framework to estimate the association of geneti-
cally predicted plasma caffeine level and caffeine intake on kidney traits, which comprised
glomerular filtration rate estimated from creatinine (eGFRcrea) and glomerular filtration
rate estimated from cystatin-c (eGFRcyst), urinary sodium, urinary, blood urea nitrogen
(BUN), albumin-creatinine ratio (UACR), and risk of CKD. With this study, we aimed to
overcome the limitations of traditional observational methods, including environmental
confounding and reverse causation, by employing the MR paradigm. In particular, because
the genetic variants used as instrumental variables in MR are randomly allocated at con-
ception, their associations are not typically affected by environmental confounding factors.
Additionally, their allocation precedes the exposure and outcome, protecting against re-
verse causation bias. Further, we consider both caffeine intake and plasma caffeine levels,
respectively, as the relevant exposures of interest.

2. Materials and Methods
2.1. Plasma Caffeine Level Measurement and Data Sources

Genetic association summary statistics for plasma caffeine level were retrieved from a
meta-analysis of six genome-wide association studies (GWAS) on caffeine metabolites: the
Prospective Study of the Vasculature in Uppsala Seniors (PIVUS), the Study of Health in
Pomerania TREND (SHIP-TREND), the Swiss Kidney Project on Genes in Hypertension
(SKIPOGH), TwinGene, TwinsUK and the Uppsala Longitudinal Study of Adult Men (UL-
SAM), including a total of 9876 European ancestry individuals [17]. Plasma caffeine level
was measured with ultraperformance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS) in ULSAM, PIVUS, TwinGene, SKIPOGH cohorts, or ultra-performance
liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) in
SHIP-TREND and TwinsUK cohorts. Details are shown in Appendix A.

2.2. Definition of Caffeine Intake and Data Sources

Caffeine intake summary statistics were derived from a GWAS meta-analysis including
>47,000 individuals of European descent from 5 studies (Atherosclerosis Risk in Communi-
ties (ARIC), the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), the
Nurses’ Health Study (NHS), the Health Professionals Follow-Up Study (HPFS), Women’s
Genome Health Study (WGHS)) [16]. In each study, the caffeine intake was assessed with a
food frequency questionnaire (FFQ). Raw caffeine intake values were skewed across studies
and adjusted for age, sex, case–control status, study site, smoking, and study-specific
eigenvectors. Details are shown in Appendix A.
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2.3. Definition of the Outcomes and Data Sources

Summary statistics related to estimated glomerular filtration rate (eGFR), urinary
albumin-creatinine ratio (UACR), blood urea nitrogen (BUN), and chronic kidney dis-
ease (CKD) were retrieved from CKDGen consortium GWASs [18–21]. The eGFR data
were obtained from a meta-analysis of CKDGen and UK Biobank [19]. The creatinine-
based eGFR (eGFRcrea) was available for >1 million individuals of European ancestry
and was computed using the Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) formula [22]. The serum cystatin-C-based eGFR (eGFRcyst) was calculated using the
CKD-EPI formula [22], and the summary statistics were available only in the trans-ancestry
population (n = 460,826). As described in the original study, both eGFR estimations were
winsorized between 15 and 200 mL/min/1.73 m2 and log transformed [19]. Urinary sodium
was obtained from 326,831 individuals in UK Biobank GWAS summary statistics [23]. BUN
was computed by multiplying blood urea (mg/dL) by 2.8 [20]. UACR (mg/g) was calcu-
lated as the ratio of urinary albumin (mg/L) and urinary creatinine (in mg/dL) multiplied
by 100 [21]. Both measures were log-transformed. CKD (defined as eGFRcrea below
60 mL/min/1.73 m2) was available for 41,395 cases and 439,303 controls [20]. Details are
shown in Appendix A.

2.4. Statistical Analysis

As instruments, we selected single nucleotide polymorphisms (SNPs) within a 100 kb
window of the CYP1A2 and AHR gene regions that were associated with plasma caffeine
levels [17] or caffeine intake [16], respectively. These genes were chosen because of their role
in increasing the metabolism of caffeine [17] and have been used as instruments for plasma
caffeine level and caffeine intake in previous MR analyses [24,25]. The SNPs within each
locus were in linkage disequilibrium (r2 ranging from 0.21 to 0.96 in European populations).
Therefore, we selected the strongest signal at each locus, that is, rs4410790 at AHR and
rs242297 at CYP1A2 for plasma caffeine level and rs4410790 at AHR and rs2470893 at
CYP1A2 for caffeine intake, with details shown in Table 1.

Table 1. Association of the genetic variants with the exposures.

Exposure Effect Allele Other Allele Beta SE p-Value Gene EAF

Plasma caffeine
rs4410790 T C 0.109 0.015 1.80 × 10−10 AHR 0.36
rs2472297 C T 0.150 0.016 1.00 × 10−17 CYP1A2 0.73

Caffeine intake
rs4410790 C T 0.150 0.017 2.36 × 10−19 AHR 0.38
rs2470893 T C 0.120 0.016 5.15 × 10−14 CYP1A2 0.31

Abbreviation: SE: standard error; EAF: effect allele frequency.

Two-sample summary data MR analysis was performed using the random effects
inverse-variance weighted method. This generates Wald ratios as the variant-outcome
association divided by the variant-exposure association, with MR standard errors estimated
as the standard error of the variant-outcome association divided by the variant-exposure
association. Estimates for the two instrument variants were pooled via random-effects
inverse-variance meta-analysis. The statistical analysis and figure were generated using R
statistical software version 4.3.1.

3. Results

The MR analysis identified that a 1-SD increase in genetically predicted plasma caffeine
level was associated with a decrease in eGFR (beta [95% confidence interval] = −0.025
[−0.028,−0.022]; p = 4.1 × 10−53 for log(eGFRcrea); −0.018 [−0.025,−0.011]; p = 1.6 × 10−6

for log(eGFRcyst)), and log(UACR) (−0.179 [−0.215,−0.143]; p = 1.7 × 10−22). Genetically
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predicted plasma caffeine levels were also associated with higher urinary sodium levels
(0.149 [0.115,0.170]; p = 1.6 × 10−24) and BUN (0.04 [0.025,0.055]; p = 1.9 × 10−7).

In contrast, higher genetically predicted caffeine intake associated with an increase
in both eGFR measures (0.020 [0.014,0.015]; p = 1.8 × 10−11 for log(eGFRcrea) and 0.013
[0.03,0.02]; p = 0.01, for log(eGFRcyst)), and log(UACR) (0.163 [0.120,0.206]; p = 1.6 × 10−3).
A 1-SD increase in genetically predicted caffeine intake was also associated with a lower
risk of CKD (odds ratio [95% confidence interval]: 0.84 [0.75,0.94]; p = 0.003), lower urinary
sodium (−0.125 [−0.158,−0.093]; p = 2.6 × 10−14), and BUN (−0.034 [−0.064,−0.005];
p = 0.023). A graphical summary of the results is shown in Figure 1.
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4. Discussion

This study supports evidence of a detrimental effect of higher genetically predicted
plasma caffeine levels on kidney function according to two different measures of eGFR.
Additionally, the results showed adverse associations of genetically predicted plasma caf-
feine levels with biological markers of CKD progression, including urinary sodium and
BUN [26–28], but not UACR. Our results provide evidence supporting similar detrimental
effects to those found in experimental studies investigating long-term caffeine consump-
tion on rats and mice carrying less genetic variability [4,6]. It was suggested that caffeine
modulates changes in eGFR via diuresis and natriuresis through binding adenosine recep-
tors, interferes with the anti-inflammatory effects of adenosine, and stimulates some of
the key proliferative mechanisms involved in glomerular remodeling and sclerosis [3,29].
It is interesting to note that we found no evidence of a detrimental effect of genetically
predicted plasma caffeine levels on albuminuria, reinforcing the idea that the potentially
detrimental effects of caffeine do not act via an increase in glomerular capillary hydraulic
pressure which would cause glomerular damage and therefore albuminuria, but via other
mechanisms such as those mentioned in the experimental studies cited above.

In contrast, a protective effect of higher genetically predicted caffeine intake on kid-
ney function was found. The discrepancy is likely attributable to faster metabolizers of
caffeine requiring a greater caffeine intake to achieve the same stimulant effect. In addi-
tion, this could potentially explain the beneficial or absence of association between coffee
intake and CKD shown in the literature because all studies assessed coffee consumption
rather than plasma caffeine levels as the exposure. Indeed, a recent study that investi-
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gated caffeine and kidney function provided evidence that coffee has different effects
on kidney function in slow versus fast metabolizers [15]. When assessing the effect of
genetically predicted amount of caffeine intake on kidney function, we found, however, a
potential protective effect similar to that found in most prospective observational studies
and meta-analyses [9–14]. This result was also similar to a recent MR study conducting a
two-sample MR of genetically predicted coffee consumption using also the CKDGen Con-
sortium GWAS [25]. They selected 25 SNPs, however, including the ones we considered,
and found that an extra cup of coffee per day conferred a protective effect against CKD.
The discrepancy in the effect of caffeine on kidney function when assessing caffeine levels
or coffee consumption as exposure in our study and the literature is of high importance.
This provides evidence that there may be an interaction between the amount of coffee
consumption and genetic predisposition to metabolize this caffeine on the effect of caffeine
on kidney function. Future research exploring the effect of coffee on an outcome should
take this into account.

However, with our current study, it is not possible to distinguish whether the observed
evidence for the effects of caffeine on kidney traits is driven by the harmful effects of plasma
caffeine in slower metabolizers or the protective effects of greater caffeine intake in faster
metabolizers. The former may be explained by the diuretic properties of caffeine having
harmful effects on kidney function, while the latter may be due to the protective effects
of greater caffeine intake through improved hydration status, given that the majority of
caffeine intake is via beverages. Further research is warranted to disentangle these findings,
particularly given the widespread use of caffeine-containing drinks and the increasing
burden of kidney disease.

The MR design used in our study was a strength for reducing bias from environmental
factors when assessing associations to infer causal effects. Moreover, because genetic vari-
ants are fixed at conception, reverse causation is unlikely. A limitation of MR is pleiotropic
effects (i.e., the plasma caffeine level SNPs affect the outcome not only through the expo-
sure), which was minimized in this study by selecting genetic instruments with effects
that plausibly act directly on the trait in question (i.e., genes encoding enzymes with an
established role in caffeine metabolism, either directly via the CYP1A2 enzyme or indirectly
(AHR) by the regulation of CYP1A2 expression. A limitation of this study is that our
findings might not be generalizable to a population of non-European ancestry because all
genetic summary statistics are from European ancestry. Nevertheless, a previous study
confirmed that AHR and CYP1A2 polymorphisms are associated with caffeine consumption
in a non-European population, which provides an argument that the genetic predictors of
plasma caffeine level we used might be similar in non-European ethnicity individuals [30].
Another potential shortcoming of our study is that we could not conduct statistical sensi-
tivity analyses using commonly employed MR methods for detecting possible pleiotropy,
such as MR-Egger regression and MR-PRESSO, because those approaches require at least
three or more instrumental variables.

5. Conclusions

This MR analysis provides evidence that there is an effect of coffee consumption and
genetic predisposition to caffeine metabolism on kidney function. It suggests a detrimental
effect of genetically predicted higher plasma caffeine levels and a protective effect of a
genetically predicted higher amount of caffeine intake on kidney function. Further research
is needed to distinguish whether the observed effects on kidney traits are driven by the
harmful effects of plasma caffeine in slower metabolizers or the protective effects of greater
caffeine intake in faster metabolizers.
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Appendix A

Table A1. Data sources of genetic association for the exposures and the outcomes.

Trait Unit Cohort(s) or Consortium Simple Size or
Cases/Sample Size First Author, Year

Exposures PIVUS, SHIP-TREND, SKIPOGH,
TwinGene, TwinsUK, ULSAMPlasma caffeine level SD 9876 Cornelis, 2016 [17]

Caffeine intake SD ARIC, PLCO, NHS, HPFS, WGHS 47,341 Cornelis, 2011 [16]

Outcome
eGFRcyst log(mL/min/1.73 m2) CKDGen + UK Biobank 460,826 Stanzick, 2021 [19]
eGFRcrea log(mL/min/1.73 m2) CKDGen + UK Biobank 1,004,040 Stanzick, 2021 [19]

Urinary sodium SD UK Biobank 326,831 Hemani, 2018 [23]
BUN log/mg/dL) CKDGen 480,698 Wuttke, 2019 [20]

UACR log(mg/mmol) CKDGen 192,868 Teumer, 2019 [21]
CKD log(OR) CKDGen 41,395/439,303 Wuttke, 2019 [20]

Abbrevations: ARIC: Atherosclerosis Risk in Communities; BUN: Blood Urea Nitrogen; CKD: Chronic Kidney
Disease; CKDGen: Chronic Kidney Disease Genetics Consortium; eGFRcyst: Glomerular Filtration Rate estimated
using cystatin C; eGFRcrea: Glomerular Filtration Rate estimated using creatinine; HPFS: the Health Professionals
Follow-Up Study; NHS (the Nurses’ Health Study); PIVUS: the Prospective Study of the Vasculature in Uppsala
Seniors (PIVUS); PLCO: the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; SHIP-TREND:
the Study of Health in Pomerania TREND; SKIPOGH: the Swiss Kidney Project on Genes in Hypertension;
UACR: urine albumin-creatinine ratio; ULSAM: Uppsala Longitudinal Study of Adult Men (ULSAM); WGHS: the
Women’s Genome Health Study.
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