
Autonomous Robots manuscript No.
(will be inserted by the editor)

Real-Time Motion Planning with a Fixed-Wing UAV using an
Agile Maneuver Space

Joshua M. Levin · Meyer Nahon · Aditya A. Paranjape

Received: date / Accepted: date

Abstract Small fixed-wing unmanned aerial vehicles

(UAVs) are becoming increasingly capable of flying at

low altitudes and in constrained environments. This pa-

per addresses the problem of automating the flight of

a fixed-wing UAV through highly constrained environ-

ments. The main contribution of this paper is the de-

velopment of a maneuver space, integrating steady and

transient agile maneuvers for a class of fixed-wing air-

craft. The maneuver space is integrated into the Rapidly-

Exploring Random Trees (RRT) algorithm. The RRT-

based motion planner, together with a flight control sys-

tem, is demonstrated in simulations and flight tests to

efficiently generate and execute a motion plan through

highly constrained 3D environments in real-time. The

flight experiments – which effectively demonstrated the

usage of three highly agile maneuvers – were conducted
using only on-board sensing and computing.

Keywords Aerial robotics · Real-time motion

planning · Agile flight · Control

Joshua M. Levin
Department of Mechanical Engineering
McGill University
Montreal, QC H3A 0C3
Tel.: +1 (647) 270 - 5909
E-mail: joshua.levin@mail.mcgill.ca

Meyer Nahon
Department of Mechanical Engineering
McGill University
Montreal, QC H3A 0C3

Aditya A. Paranjape
Tata Research, Development and Design Centre
Tata Consultancy Services Ltd.
Hadapsar, Pune 411013

Fig. 1 A small agile fixed-wing UAV

1 Introduction

The research and development of autonomous unmanned

aerial vehicles (UAVs) has been steadily growing over

recent years due to the range of applications they are,

and could potentially be, suitable for. Examples of jobs

UAVs are filling include: search and rescue, aerial pho-

tography, road traffic monitoring, and pipeline monitor-

ing. Many tasks for autonomous UAVs involve flight at

high altitudes, in open airspace, where basic path plan-

ning techniques, such as waypoint following, are suf-

ficient. With recent technological developments, how-

ever, UAVs are becoming increasingly competent at fly-

ing at low altitudes and in constrained environments,

i.e. environments that are obstacle-dense and/or in-

clude challenging passages.

A class of UAVs that are well-suited to this type

of flight are small agile fixed-wing UAVs (see Fig. 1).

Among other characteristics, their high thrust-to-weight

2 Joshua M. Levin et al.

ratio and powerful slipstream make them distinct from

conventional fixed-wing aircraft. For years, remote con-

trol (RC) pilots have been flying these UAVs for leisure

and competition. As the name suggests, these aircraft

are highly agile, and thus require an extremely profi-

cient pilot to control. More recently, these fixed-wing

UAVs (along with other similar aircraft configurations)

have been the subject of autonomous flight research. A

significant portion of the existing literature has focused

on dynamics modeling, trajectory generation, and con-

trol design techniques for hover transitions and perch-

ing maneuvers (Sobolic, 2009; Wickenheiser and Garcia,

2006, 2008; He et al, 2018). Maneuvers that make use of

the lateral dynamics have also been investigated (Park,

2012; Barry, 2012; Selig, 2014). The primary value of

the design of these aircraft for autonomous flight is their

ability to combine efficient forward flight with high ma-

neuverability. Many unique challenges accompany the

pursuit of autonomous flight with these fixed-wings due

to their large flight envelope and complex dynamic be-

havior; here we focus primarily on the problem of mo-

tion planning.

The specific planning problem we address in this

work is that of efficiently generating a feasible motion

plan in a highly constrained, three-dimensional, known

environment with static obstacles. Sampling-based plan-

ning algorithms are well suited for efficient real-time

planning with limited computational resources. The most

prevalent sampling-based methods are the Probabilis-

tic Roadmap (PRM) (Kavraki et al, 1996), Rapidly-

Exploring Random Trees (RRT) (LaValle, 1998), and

their variants (Karaman and Frazzoli, 2011b). The PRM

algorithm is a multi-query algorithm that is probabilis-

tically complete, but requires solving two-point boundary-

value problems to steer the system between two states.

Solving a boundary-value problem is a costly operation

that is impractical for our application. The RRT algo-

rithm is a single-query planner that is highly effective

at generating dynamically feasible trajectories rapidly.

The RRT algorithm handles complex constraints eas-

ily, finding a path to the goal region with minimal map

exploration. As such, it is well-aligned with the aim of

this work. Although the algorithm is not designed to

produce optimal trajectories, our implementation en-

sures the resulting paths are smooth in the horizontal

plane, i.e. continuity of heading is ensured. It is worth

noting that an asymptotically optimal version of RRT

has been developed, called RRT* (Karaman and Fraz-

zoli, 2011b). Like PRM, RRT* requires solving costly

boundary-value problems, and thus has not been pur-

sued here.

A modern and prevalent alternative for robot plan-

ning and control is model predictive control (MPC),

also known as receding horizon control (Kim et al, 2002;

Schouwenaars et al, 2004a). The MPC planning method

repeatedly solves an optimal control problem on-line,

with obstacles as additional constraints. This method

can be highly effective with linear and even nonlinear

models, but the model we plan to take advantage of in

this work is too complex to be used in a real-time opti-

mization with the available on-board resources. Instead,

we use the model for off-line pre-computations of ma-

neuvers that can be used by the planner in real-time, in

a framework similar to that which has been described as

a ‘maneuver automaton’ (Frazzoli et al, 2005). The ma-

neuver automaton, which captures formal properties of

a trajectory library, is used as a hybrid representation of

a vehicle model, wherein motion primitives are used to

pre-compute a cost-to-go map. In Frazzoli et al (2002),

the states of the automaton are trim states of the vehi-

cle, and maneuvers are used to transition between the

states. In Gavrilets et al (2001), the concept is explored

for learning motion primitives from human-piloted aer-

obatic flight, and in Schouwenaars et al (2004b), the

hybrid model replaces trim states with ‘linear time-

invariant modes’ and fixed-duration transitions. We em-

ploy a similar hybrid representation concept here, where

the model of the aircraft’s dynamics is represented by

a maneuver space made up of motion primitives. Each

motion primitive we generate pairs a dynamically fea-

sible trajectory with its associated feedforward control

inputs. The size of the maneuver space (i.e. the num-

ber of motion primitives) was chosen to balance our

need to manage limited computational resources with

our goal of representing a significant portion of the air-

craft’s flight envelope. The maneuver space consists of

trim states, as well as the three agile maneuvers devel-

oped in a paper currently under review for publication.

Prior literature includes a number of similar plan-

ning methodologies for UAVs. In Lee and Shim (2014),

a pre-defined motion primitive set is used for 2D RRT-

based path planning with a fixed-wing UAV. Pre-computed

motion primitives are used in an A*-based planner in

MacAllister et al (2013). In Allen and Pavone (2015), a

real-time framework was developed, which incorporates

a look-up table of boundary-value problem solutions

into a sampling-based algorithm called Fast Marching

Trees (FMT*). Trajectory funnels for robust motion

planning were applied to a highly maneuverable fixed-

wing aircraft in Majumdar and Tedrake (2017).

The key contribution of this paper is the develop-

ment of the maneuver space and its implementation

within the RRT-based algorithm. Relative to the ex-

isting literature, these contributions differentiate this

work in the following ways. The dynamic feasibility

constraints used to generate the maneuver space rep-

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 3

resent a high-fidelity, physics-based model. The model

is used to generate aggressive and agile motion primi-

tives that fully exploit the aircraft’s flight envelope. The

trajectory solutions are composed of the aircraft’s full

12-state vector, as well as all of its control inputs. Ad-

ditionally, we note that by the way in which the motion

primitives are integrated into the planning algorithm,

the size of the library has no effect on planning time;

typically, the computational cost of RRT increases with

the number of primitives (Vieira and Grassi, 2014). Fur-

thermore, our implementation places no constraints on

the sequencing of primitives. Eliminating the need for

an extremely large set of pre-defined transition maneu-

vers, a transition heuristic is applied to allow any prim-

itive to follow another. With respect to the existing lit-

erature, the contributions work to produce an efficient

motion planner that is capable of generating more ag-

gressive trajectories, with high-fidelity optimal control

policies.

This paper builds on the authors’ previous work.

The dynamics of these UAVs are highly nonlinear, and

cannot accurately be represented with linear models

or the traditional fixed-wing stability-derivatives ap-

proach. We instead rely on a full nonlinear six degree-of-

freedom model developed by Khan and Nahon (Khan,

2016). In a work that is currently under review for pub-

lication, we used this model to develop trajectory gen-

eration and control strategies for aggressive agile ma-

neuvers. Here, we aim to incorporate the control system

and these maneuvers into a planning framework. Note

that another agile maneuver, the knife-edge, was inves-

tigated by the authors in Levin et al (2017), however it

does not fit the framework of the motion planning al-

gorithm developed here. During flight, the feedforward

control inputs of the primitives are paired with a sta-

bilizing feedback controller that accounts for errors, in-

accuracies, noise, and disturbances. This controller was

first presented in Bulka and Nahon (2018), and con-

sists of a position tracker, a quaternion-based attitude

tracker, and a thrust controller. In a number of ways,

the work here is a significant extension of Levin et al

(2018a), in which the basic motion planning framework

was originally proposed. With respect to this work, the

new developments here are as follows:

1. The planning algorithm is augmented to run in real-

time and select trajectories intelligently.

2. A transition maneuver heuristic is included in the

planning framework to switch between motion prim-

itives.

3. The planner is compared in simulations to a baseline

approach that uses Dubins curves.

4. More extensive flight testing is performed and dis-

cussed in depth. The flight tests are the first to

Fig. 2 High-level automation architecture

demonstrate their level of implementation, in terms

of the extent of the flight envelope utilized, and fully

relied on on-board sensing and computing.

The paper is organized as follows. In Section 2, we

present a high-level view of the various algorithmic com-

ponents brought together in the remainder of the pa-

per. The aircraft configuration and model are described

in Section 3. Section 4 details the development of the

maneuver space, and the feedback controller is briefly

described in Section 5. The motion planning algorithm

is presented in Section 6, with a focus on the integra-

tion of the maneuver space. In Section 7, simulations

are run to compare the planner to a baseline approach

(using Dubins curves), and evaluate trajectory tracking

performance. Flight test experiments are demonstrated

in Section 8, and concluding remarks follow in Section

9.

2 High-Level Automation Architecture

The high-level automation architecture can be parti-

tioned into off-line and on-line components, as seen in
Fig. 2. In the off-line process, the model is used, in Sec-

tion 4, within an optimization framework – in effect, as

a set of dynamic constraints – to generate a set of ma-

neuvers, also termed ‘motion primitives’. Without the

need to be executed in real-time, the model – without

any simplifications – can be used to ensure the gener-

ated maneuvers are optimized and dynamically feasible.

We call the set of maneuvers a ‘maneuver space’.

The planner and control system both run on-board

the aircraft. The RRT-based planner begins running

once the aircraft is in its initial condition, so that this

state can be measured and used in the algorithm. The

plan is generated and iteratively sent to the control sys-

tem, which proceeds to execute it.

The maneuver space is used mainly by the control

system. All the relevant information detailing the ma-

neuvers is stored on-board the aircraft’s autopilot and

accessed by the control system therein. In short, the

planner, described in Section 6, tells the control sys-

tem which motion primitive to execute at a given time,

4 Joshua M. Levin et al.

and the controller seeks out this primitive from the ma-

neuver space to compute the exact trajectory to track,

and feedforward control inputs to use. The maneuver

space is also used by the planner, although the planner

does not need to store its entire contents. By way of ex-

ample, unlike the control system, the planner does not

need to know the time-dependent trajectory, nor the

control inputs corresponding to an agile maneuver. It

simply needs to know where the maneuver begins and

ends, and with what particular heading.

3 Aircraft

The methodology described in this paper is applied to

a small agile fixed-wing UAV (Fig. 1). This UAV be-

longs to a class of aircraft that are characterized by

such features as a high thrust-to-weight ratio, a power-

ful slipstream, and a low aspect ratio. All together, the

characteristics of these aircraft make them extremely

maneuverable. A notable example of their maneuver-

ability is that they are able to transition into and hold

a nose-up hover; thus they can maintain a stationary

airborne configuration.

3.1 Dynamics Model

A comprehensive model of the aircraft’s dynamics is

used in this work to build the maneuver space and to

run simulations. The model is largely derived from the

work of Khan and Nahon. The full details of the model

can be found in Khan and Nahon (2013) for the thruster

dynamics, Khan and Nahon (2015a) for the slipstream

modeling, and Khan and Nahon (2015b) for the non-

linear aerodynamic modeling. A brief summary of the

model can also be found in Levin et al (2018b). Here,

a few notes on the most relevant aspects of the model

will be provided.

For the purpose of calculating the forces and mo-

ments, the model is broken down into three main sec-

tions, for the thruster, the slipstream, and the aero-

dynamics. The thruster model uses blade element mo-

mentum theory to compute the aerodynamic and gyro-

scopic forces and moments produced by the motor and

propeller. This model captures static, axial, oblique,

and reverse flow conditions. It accounts for the battery,

electronic speed controller, motor, and propeller. The

thruster model was experimentally validated in Khan

and Nahon (2013).

The model in Khan and Nahon (2015a) computes

the velocity field and swirl effect that represent the slip-

stream (also known as ‘propwash’). The velocity of the

additional airflow of the slipstream can be as great as,

if not greater than the speed of the aircraft itself, and

has a significant effect on the aircraft’s dynamics. The

main reason the slipstream effect is so important for ag-

ile fixed-wings is that the additional airflow enhances

the control authority of the aircraft’s flaps. It is this

effect alone that grants the aircraft the ability to sta-

bilize itself in a hover, when it has zero groundspeed.

In Levin et al (2018b), slipstream effects are quantified

for an agile fixed-wing UAV.

The aerodynamic modeling uses a component break-

down approach, which splits the aircraft’s main compo-

nents (wing, tail, rudder, and fuselage) into segments

whose aerodynamics are computed independently and

then summed together. This method is employed be-

cause aerodynamic effects vary over the span of the

aircraft. The model includes lift, drag, and moment co-

efficients that adjust for low- and high-angle-of-attack

regimes. Effects of aspect ratio, stall, control surface

deflection, bound vortices, and trailing vortices are all

accounted for in the model, as described in Khan and

Nahon (2015b).

3.2 Aircraft Configuration

Model parameters are selected in accordance with the

aircraft platform used for flight testing, see Fig. 1. For

the airframe of the UAV, we use the RC plane model

McFoamy by West Michigan Park Flyers, which has

a 0.86 m wingspan. Sitting on the nose of the plane

is an Electrifly PowerFlow 10×4.5 propeller, attached

to a RimFire 400 Outrunner brushless DC Motor by

Great Planes. The motor is controlled via an Electrifly

Silver Series 25A brushless electronic speed controller.

Metal gear servomechanisms actuate the control sur-

faces, ailerons, elevator, and rudder. The on-board com-

puting equipment consists of a Pixhawk Mini autopilot

and an ODROID XU4, which will both be discussed in

further detail in Section 8. The Pixhawk Mini sits on

top of the aircraft’s body, and the ODROID is fixed

undernearth. All electronic components on the aircraft

are powered by an 11.1 V lithium polymer battery. Fully

equipped, the aircraft weighs 0.576 kg.

4 Maneuver Space

The maneuver space is a key aspect of the planner be-

cause it allows the planning algorithm to generate dy-

namically feasible trajectories – which exploit the air-

craft’s full flight envelope – in real-time, without hav-

ing to solve complex dynamic constraints. It acts as

a hybrid representation of the aircraft’s dynamics, in

place of the nonlinear ordinary differential equations.

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 5

The maneuver space consists of finitely many motion

primitives, which are dynamically feasible trajectories

and their associated feedforward control inputs. The

set of primitives, which are generated off-line, is large

enough to represent a significant portion of the air-

craft’s flight envelope, and compact enough to fit in

limited computational resources. The motion primitives

are classified as either trim primitives or agile maneuver

primitives. Trim primitives are steady maneuvers with

constant control inputs that can be coasted along indef-

initely. Agile maneuver primitives are finite-time tran-

sitions that accomplish a specific, purposeful change in

the aircraft’s configuration.

4.1 Trim Primitives

Trim primitives are the aircraft’s basic flight modes,

and the set of them make up the greater portion of

the maneuver space. Because the feedforward control

inputs used to hold them remain constant, trim primi-

tives can be used by the planner for any length of time.

The trim primitives included in the maneuver space are:

– straight and level flight

– climbs/descents

– banked turns

– helical banked turns

– hover

Trim primitives can be solved for in various ways; for

example, using MATLAB’s fsolve function, or a bifurca-

tion analysis (Ananthkrishnan and Sinha, 2001). With

the exception of hover, all trim primitives are found

here by solving a trajectory optimization problem. The
exact form of the cost function used to solve for the

trim primitives is not relevant, except to preclude over-

actuation if there are multiple sets of control inputs

that can be used to achieve the same trim condition.

min J ,
∫ tf

0

(
δ2
a + δ2

e + δ2
r +

(ωT
8000

)2
)
dt

subject to the first-order dynamics of the aircraft,

and the path constraints:

V = Vd, φ̇ = θ̇ = 0, ψ̇ = ψ̇d, ż = żd

δa ∈ [−δamax , δamax], δ̇a = 0◦ s−1

δe ∈ [−δemax
, δemax

], δ̇e = 0◦ s−1

δr ∈ [−δrmax
, δrmax

], δ̇r = 0◦ s−1

ωT ∈ [ωTmin
, ωTmax

], ω̇T = 0 rpm/s

(1)

The weight in the denominator of the last term of

the cost function makes the penalty on thrust roughly

similar in magnitude to that on the control surface in-

puts, so that it does not dominate the cost. The weight

is proportional to the control input units, radians for

control surfaces and rpms for thrust. The control in-

puts, ailerons, δa, elevator, δe, rudder, δr, and thrust,

ωT , may take on any value within their physical lim-

its, but constraints are put on their derivatives so that

they remain constant. The desired speed, Vd, is set to

a constant 7 m s−1, which is a normal cruising speed

for this aircraft. The roll and pitch rates, φ̇ and θ̇, are

set to be zero so that the maneuvers are steady. The

optimization problems are solved here using GPOPS-II

(Patterson and Rao, 2014), which is MATLAB-based

general purpose optimal control software.

As mentioned, the planner is developed for constant

speed flight, except when hovering and when perform-

ing agile maneuvers. Fixed-wing aircraft can maximize

their range and endurance predictably at specific flight

speeds, and the aircraft would navigate close to some

such suitable speed. Operating at a specific flight speed

is consistent with the objective of the motion planner,

which is to guide the aircraft to a desired goal region.

The objective does not, for instance, include arrival

time constraints. While further agility could be har-

nessed by loosening constraints on the flight speed, do-

ing so would increase the size of the maneuver space and

presumably result in a more difficult trajectory tracking

problem. Exploring various flight speeds is a worthwhile

endeavor for future work, but was considered superflu-

ous in this context.

Each trim primitive, except hover, is obtained for

different combinations of the desired yaw rate, ψ̇d, and

climb/descent rate, żd. For example, straight and level

flight sets both of these values to zero. To keep the size

of the maneuver space compact, primitives are solved

for in incremental values. For the yaw rate, we find

primitives from -110 ◦ s−1 to 110 ◦ s−1 in increments of

10 ◦ s−1 and for the climb/descent rate we sample from

-2 m s−1 to 2 m s−1 in increments of 1 m s−1. There

are a total of 116 trim primitives; straight and level

flight, 4 climbs/descents, 22 banked turns, 88 helical

banked turns, and the hover. The states and control

inputs that define each maneuver are stored in a look-

up table used by the control system. The look-up table

also includes the states and control inputs of the hover

primitive, which are determined via solution of the air-

craft’s equations of motion.

4.2 Agile Maneuver Primitives

Agile maneuver primitives enhance the maneuver space

– and thus the motion planner – with functional changes

of the aircraft’s pose that could not otherwise be achieved,

6 Joshua M. Levin et al.

or at least not as effectively, using trim primitives. In

contrast to the trim primitives, an agile maneuver must

be executed over a pre-computed finite amount of time,

and the states and control inputs are time-dependent.

Three agile maneuvers were developed for use in the

maneuver space: a cruise-to-hover transition (CTH),

a hover-to-cruise transition (HTC), and an aggressive

turn-around (ATA). The cruise-to-hover transition, as

its name suggests, transitions the aircraft from straight

and level flight (cruise) to a hover, and the hover-to-

cruise transition performs the reverse maneuver. To-

gether, these two maneuvers allow the aircraft to start

and stop in a hover. The aggressive turn-around ma-

neuver rapidly reverses the aircraft’s heading. With this

maneuver in its repertoire, the aircraft can turn away

from dead ends with only one primitive, and using less

space than would be required by piecing together even

the most aggressive trim primitives.

The agile maneuver primitives are also found by

solving trajectory optimization problems:

min J , 4tf +

∫ tf

0

((
δ̇a

10

)2

+

(
δ̇e

10

)2

+

(
δ̇r

10

)2

+

(
ω̇T

2000

)2
)
dt

subject to the first-order dynamics of the aircraft,

the path constraints:

δa ∈ [−δamax
, δamax

], δ̇a ∈ [−δ̇amax
, δ̇amax

]

δe ∈ [−δemax
, δemax

], δ̇e ∈ [−δ̇emax
, δ̇emax

]

δr ∈ [−δrmax
, δrmax

], δ̇r ∈ [−δ̇rmax
, δ̇rmax

]

ωT ∈ [ωTmin
, ωTmax

], ω̇T ∈ [−ω̇Tmax
, ω̇Tmax

]

and the boundary conditions (see Table 1):

x(0) = x0, u(0) = u0

x(tf) = xf , u(tf) = uf

(2)

Eq. 2 includes a minimum-time cost function that

additionally penalizes control inputs rates to produce

smooth control input time histories. It is well known

that abrupt changes in control inputs can be detrimen-

tal to a mechanical system, and smooth inputs tend to

result in more robust trajectories. The weights in the

cost function are again proportional to units and aim

to balance the penalties on each control input. The ma-

neuvers are no longer steady, but the control inputs and

their derivatives are constrained by the physical limits

of the aircraft, namely, the limits and rate limits of the

motor and control surface servomechanisms. Addition-

ally, the maneuvers are finite-time transitions and thus

must satisfy boundary conditions on the state and con-

trol vectors, x = [u, v, w, p, q, r, q1, q2, q3, q4, x, y, z]
T

and u = [δa, δe, δr, ωT]T, at t = 0 and t = tf . The

boundary conditions for each maneuver are listed in

Table 1. Euler angles are listed in the table, in place of

the actual nonlinear constraints on quaternions, to give

an intuitive representation of the problem.

The solutions to each problem come in the form of

time-dependent reference trajectories and feedforward

control inputs. These are stored in matrices that are

interpolated by time in the control system. Figure 3

displays visualizations of the three agile maneuver tra-

jectories. The three maneuvers alone prove to be useful

for motion planning, and simple to integrate into the

framework without compromising any of its attributes

– most notably computational efficiency.

4.3 Transitioning Between Primitives

The aircraft has finite agility and thus requires time

to transition from one primitive to another. In theory,

finite-time transition primitives could be used, but to

connect the 116 trim primitives alone would require a

massive expansion of the maneuver space. Instead, we

implement a transition maneuver heuristic in the plan-

ner and control system.

To smooth the transition between any two primi-

tives (trim or agile), a time-delay heuristic is imple-

mented. For the duration of the time-delay, the feedfor-

ward inputs and reference trajectory of the subsequent

primitive are commanded, except for the path and head-

ing, which are extended from the previous primitive.

Consider Fig. 4, in which A to B is one trim primitive,

and B′ to C is another. The trajectory from B to B′

is the transition maneuver. The maneuver extends the

curvature of the path and heading of the A to B prim-

itive, while all steady states tracked and control inputs

commanded are that of theB′ to C primitive. This mea-

sure is performed by the motion planner, rather than

as a post-processing step, meaning that the tracked tra-

jectory is equivalent to the desired/planned one.

The rationale behind the transition maneuver is based

on the time-scale separation principle, as it applies to

the physics of fixed-wing flight (Snell et al, 1992); in

particular, the modal time-scales of the fast rotational

and slow translational dynamics. Accordingly, we di-

minish position tracking errors by allowing the aircraft

a short amount of time to continue along the path pre-

dicted by its current motion as it begins to transition

into the steady states of the next primitive. What this

enables is a transition that avoids sudden changes in

variables that cannot react fast enough, while preparing

the fast variables for the next state. The time-scale sep-

aration principle is mirrored in the design of the feed-

back controller, which has independent inner (attitude)

and outer (position) control loops.

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 7

Table 1 Boundary conditions for agile maneuver primitives. Straight and level trim conditions denoted by subscript SL, hover
trim conditions denoted by subscript H .

States Boundary Conditions
and ATA CTH HTC

Controls t = 0 t = tf t = 0 t = tf t = 0 t = tf
u uSL uSL uSL 0 0 uSL

v 0 0 0 0 0 0
w wSL wSL wSL 0 0 wSL

p, q, r, φ 0 0 0 0 0 0
θ θSL θSL θSL 90◦ 90◦ θSL

ψ 0 π 0 0 0 0
x 0 0 0 – 0 –
y 0 0 0 0 0 0
z 0 0 0 – 0 –
δa 0 0 0 0 0 0
δe δeSL

δeSL
δeSL

0 0 δeSL

δr 0 0 0 0 0 0
ωT ωTSL

ωTSL
ωTSL

ωTH
ωTH

ωTSL

(a) Cruise-to-hover (b) Hover-to-cruise

(c) Aggressive turn-around

Fig. 3 Agile maneuver trajectories. The aircraft are drawn slightly smaller than to scale, and the path lines progress from
darker to lighter grey with time

An analysis of the aircraft’s dynamics is used to de-

termine the duration of the delay. Essentially, we want

to determine the time it typically takes for the roll an-

gle to reach a commanded value. It is the roll dynamics

which should dominate the calculation of the duration

because the roll angles are undergoing large discontinu-

ous changes. Pitch angles are also discontinuously com-

manded, but the changes are relatively small. Under the

control system (the combination of feedforward inputs

and feedback control laws), the roll dynamics behave

similarly to a low-pass filter of the form 1
τs+1 . This

low-pass filter may be viewed as the first-order Padé

approximation of a time-delayed input, td (Kuo and

Golnaraghi, 2003, p.183). For step input commands (as

is the case for the change in commanded roll angle be-

tween primitives), it can be shown that τ is a suitable

value of the time-delayed input, td (Paranjape et al,

2015).

To determine the value of τ , simulations of the air-

craft model and control system were run in Simulink.

Step input commands for roll were given, and the out-

puts of these commands superimposed with low-pass

8 Joshua M. Levin et al.

A B0

B

C

Fig. 4 Structure of a transition maneuver. A to B is one
trim primitive, B to B′ is the transition maneuver, and B′

to C is the subsequent primitive

Fig. 5 Comparison of actual roll dynamics to low-pass filter

filters was observed. The value of τ in the low-pass filter

was tuned until the output of the filter closely matched

the aircraft’s actual dynamics under the control system.

The value of τ found this way, 0.23 s (at V = 7m s−1),

was given to the transition trajectory time-delay con-
stant, td. Fig. 5 shows the simulated roll dynamics as

the controller tracks a pre-defined motion plan that in-

volves three trim primitives. During the first 10 seconds,

the reference trajectory is the straight and level primi-

tive. During the next 20 seconds, a banked turn at a rate

of ψ̇ = −60◦ s−1 is commanded; and finally a banked

turn with ψ̇ = 60◦ s−1 is commanded. The blue line

is the commanded roll angle throughout the plan, and

the black line shows the actual roll, under the control

system. The final line, in magenta, plots the reference

roll angle having gone through the low-pass filter. As

can be seen, with τ = 0.23 s, the actual roll dynamics

are approximated closely by the low-pass filter.

The transition maneuver heuristic was also validated

in trajectory tracking simulations. A series of primitives

were sequenced in the following order: straight and level

flight, a banked turn to the left, and a banked turn to

the right. Using the feedback controller and simulation

environment (described in Sections 5 and 7.2, respec-

tively), the primitive sequence was tracked; first with

Fig. 6 Position tracking errors with and without using
the time-delay transition maneuvers, for turns using ψ̇ =
±30◦ s−1. The background is colored light blue during the
time periods when the transition maneuver is being executed

and then without including the transition maneuver.

Two sets of trials were conducted, one using turns of

ψ̇ = 30◦ s−1, and another using turns of ψ̇ = 60◦ s−1. In

both cases, the transition maneuver reduced the over-

all position tracking errors by approximately 35%. With

the 30◦ s−1 turns, the root-mean-square error (RMSE)

on position was reduced from 0.33 m to 0.21 m, and

with 60◦ s−1 turns, the error was reduced from 0.44 m

to 0.28 m. The position tracking errors for the first case,

ψ̇ = ±30◦ s−1, are plotted in Fig. 6. The plot illustrates

how the position tracking performance is improved by

using the time-delayed transitions. Notice as well that

the position error, ep, remains stable throughout the

transition maneuvers (the light blue sections).

5 Feedback Controller

The control system is tasked with tracking the refer-

ence trajectories generated by the motion planner. The

controller combines feedforward and feedback control

inputs. The feedforward control inputs are associated

with the primitives, and thus come from the motion

planner. The control system, as implemented on the

Pixhawk Mini, reads in a list of maneuvers sent by the

planner, and uses the information stored in the maneu-

ver space to interpret the data in the list as full-state

time-dependent trajectories and feedforward control in-

puts. The feedback controller is intended to account for

modeling inaccuracies, external disturbances, and sen-

sor measurement noise. It is made up of three compo-

nents: a position tracker, a quaternion-based attitude

tracker, and a thrust controller. The feedback controller

is discussed at length in Bulka and Nahon (2018), and

a brief summary follows here.

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 9

Fig. 7 Block diagram of feedback controller

The position tracker takes the desired attitude as

input and modifies it in accordance with errors such

that the direction of the aircraft’s thruster points to-

wards the desired position. The attitude tracker di-

minishes quaternion-based attitude errors, using con-

trol laws largely grounded in the aerodynamic proper-

ties of the UAV to actuate the control surfaces. The

control laws in the attitude tracker account for the lo-

cal airflow – due to airspeed and slipstream – over the

control surfaces. The thrust controller uses PID control

laws to regulate forward speed and altitude. A basic

block diagram of the feedback controller architecture

is presented in Fig. 7; where q and p are the attitude

quaternion and position, respectively, and u and z are

the forward speed and altitude. The term q′ref repre-

sents the modified desired attitude. The full feedback

control inputs, ∆ufb, include the control surface inputs,

∆δfb, and thrust input, ∆ωT .

6 Motion Planner

The motion planner is based on the RRT algorithm,

which is a single-query planning method that efficiently

explores an environment such that a feasible path to

the goal region can be constructed rapidly. A tree is

built by steering towards randomly generated points

until the goal region is reached. Steering is done using

the dynamically feasible trajectories of the maneuver

space, which is implemented as a library of trajectories.

The algorithm is run in real-time and initiates with

the aircraft’s actual configuration. The ways in which

the planner deviates from the standard RRT algorithm

will be discussed in this section. The deviations mainly

center around incorporating the library, and using the

agile maneuvers intelligently. A pseudo-code version of

the high-level algorithm is presented in Algorithm 1.

Note that the algorithm is specifically set up to guide

the aircraft from an initial hover to a hover in the goal

region.

Algorithm 1: RRT

input: Map, initial configuration (xi)

Initialize tree with xi

Generate hover-to-cruise primitive from xi via
SteerAgile (HTC)

while the goal region has not been reached do
while time interval has not elapsed do

Generate a random point in the map, prand

ExtendTree towards prand (Algorithm 2)
end
UpdateTree (Algorithm 3)

end

Fig. 8 Nodes and motion primitives

6.1 Tree Data Structure

The tree that is built by the planner consists of nodes,

each of which defines the state of the aircraft and the

type of motion primitive that precedes it. In Fig. 8, the

node n2, for example, contains not only the pose and

time when the aircraft should reach it, but the edge (or

motion primitive) that connects it to n1. The full list

of information stored in each node is as follows:

– Position (in Cartesian coordinates)

– Heading

– Time

– Type of preceding trajectory

The state of the aircraft at the node is defined by

the position, heading, and time. The type of preceding

trajectory denotes the type of primitive (trim or agile

maneuver) that was used to arrive at that state from

the previous node. If the preceding trajectory is a trim

primitive, the type of preceding trajectory will include

the yaw rate and climb/descent rate. In the case of an

agile maneuver primitive, the type simply defines which

of the agile maneuver primitives it is.

6.2 Extend Tree

The Extend Tree function aims to add a new node to the

tree. In general, a random node is generated and steered

towards (using a motion primitive) from the nearest

node in the tree. This method biases the search into

10 Joshua M. Levin et al.

the largest Voronoi regions, i.e. the unexplored areas

(LaValle, 1998); in our case, in the three-dimensional

Cartesian space, C = R3. This concept is known as the

Voronoi bias and is the key aspect of the RRT algo-

rithm. We add a slight goal node bias, sampling the

end point instead of a random one every 40 iterations.

This balances exploration with movement towards the

goal region. If the primitive extended from the nearest

node ends up colliding with an obstacle, a new attempt

is made with the next nearest node, and so forth for five

iterations. These few iterations help build through nar-

row corridors and around walls (Frazzoli et al, 2002).

The chosen value of five was arrived at via manual tun-

ing. A value too high results in the aforementioned ben-

efit of the endeavor being lost, while too high a value

needlessly slows down the algorithm while searching for

connections in hopeless dead ends.

The Extend Tree function terminates in any of the

following cases: a collision-free primitive is found, the

list of tree nodes has been exhausted, or the maximum

number of iterations through the list has been reached.

Upon completion, the function outputs the node that

is being extended away from, the primitive used for

steering, and, in the case of a trim primitive, the time

to remain along it.

The planning algorithm makes use of the agile ma-

neuver primitives in specific ways. The plan is designed

to begin from a hover, and thus the first primitive gener-

ated is always a hover-to-cruise maneuver. The cruise-

to-hover maneuver is attempted every time it would

land the aircraft in the goal region. The algorithm,

therefore, always terminates with this maneuver, and

thus with the aircraft in a hover. The aggressive turn-

around maneuver is generated if a trim primitive ex-

tended from the nearest node results in a collision. This

signals that the tree is headed towards an obstacle, and

the aggressive turn-around maneuver can be used to im-

mediately steer away from it, in a minimal amount of

space. The maneuver is connected to the nearest node

to which the random sample failed to connect. Note

that the maneuver is only attempted after the first of

the five iterations mentioned above. Although sequen-

tial turn-around maneuvers would be unlikely to occur

anyway – because the end of the maneuver points the

aircraft back into previously charted, obstacle-free ter-

ritory – a simple amendment to the algorithm elimi-

nates the possibility of this occurring. The basics of the

Extend Tree logic are described in Algorithm 2.

6.3 Steer

There are two steer functions, one for trim primitives,

Steer, and the other for agile maneuver primitives, Steer-

Algorithm 2: ExtendTree

input: prand

List nodes in order of nearness to prand

if maximum number of iterations have not been
reached then

foreach node, η, in the list do
if a cruise-to-hover maneuver would land the

aircraft in the goal region then
Generate maneuver primitive ρprim from
η via SteerAgile (CTH)

else
Generate ρprim from η via Steer (prand)
if η is the first node in the list and ρprim

results in a collision then
Generate ρprim from η via
SteerAgile (ATA)

end

end
if ρprim is collision-free then

break
end

end

end

Agile. These functions determine the connections of new

nodes to the tree. The primary goal of the steer func-

tions designed here is to efficiently expand the tree.

They waste no time sampling primitives, nor attempt-

ing to solve for an optimal connection (e.g. the shortest

path between two nodes). The primary steer function,

that for trim primitives, analytically determines which

single trim primitive to use for the connection, and for

how long to coast along it. The function solves for yaw

rate, ψ̇, climb/descent rate, ż, and coasting time, ∆t (as

will be described in Eq. 3). This approach to steering

highlights a salient feature of our methodology, which

is that the size of the motion primitive library can be

increased indefinitely without having any effect on the

time spent creating connections. We found that in prac-

tice, for our purposes, nothing apparent is lost by failing

to make more accurate connections, nor neglecting to

consider a larger subset of available connections (i.e.

piecing together multiple primitives to connect nodes).

Results demonstrating this observation are provided in

Section 7.1.

The steer function for trim primitives searches in

the neighborhood of circular arc parameters. It takes

as input the configuration of the node it is steering

away from, p1(x1, y1, z1) and ψ1, and the point it is

steering towards, p2(x2, y2, z2) = prand. Determining

which trim primitive to use and for how long to coast

along it is solved for analytically. This information is

derived from the geometry of the circular arc connect-

ing the two node points, as seen in Fig. 9. Recalling that

the transition maneuvers are generated in the planning

phase, the point p1 is not in fact the node being steered

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 11

r

r

θL

d

L

p1(x1; y1; z1)

p2(x2; y2; z2)

Fig. 9 Top-down view of three-dimensional circular arc
defining trim primitive geometry

away from, but the node that automatically proceeds it

by way of the time-delay. Referring back to Fig. 4, p1

would correspond with B′ and p2 with C. The equa-

tions relating to Fig. 9 solve for the trim primitive (yaw

rate, ψ̇, and climb/descent rate, ż) and coasting time,

∆t, that bring the aircraft as close as possible to p2:

d = ||p2 − p1||

θL = arctan(
y2 − y1

x2 − x1
)− ψ1

rx,y =

√
(x2 − x1)2 + (y2 − y1)2

2 sin θL

L =
dθL

sin θL
(3)

ψ̇ =
V

rx,y

∆t =
L

V

ż =
z2 − z1

∆t
,

where θL measures the difference between the vec-

tor d and the heading, ψ1, of the node at p1. The term

rx,y is the projection of r on the horizontal plane. The

desired constant speed, V = 7m s−1, appears in these

equations to calculate the coasting time. Given that

there are a finite number of trim primitives in the tra-

jectory library, the yaw rate and climb/descent rate cal-

culated in Eq. 3 are each approximated to the closest

available rates. In addition to the end node of the trim

primitive, intermediate nodes are also returned by this

function. This is useful to the planner in that it gener-

ates more tree node options to be steered away from in

the next Extend Tree phase.

The steer function that handles agile maneuver prim-

itives requires as input only the the type of agile maneu-

ver (of the three) and the node to steer away from. The

function uses this information to output the end node

of the maneuver, the data of which is pre-computed. No

intermediate nodes are returned from this steer function

because the planner and controller are not designed to

exit agile maneuvers partway through.

6.4 Collision Check

The collision checking function detects if a primitive

is outside the bounds of the environment or overlap-

ping an obstacle. The function performs checks in in-

tervals along the primitive and discards the primitive

as a whole if any segment has a collision. The displace-

ments of each of the three agile maneuvers are nearly

restricted to the vertical plane, as can be seen in Fig.

3, and are pre-computed. Therefore, the collision check

on agile maneuvers is trivial; it looks for any collision

along a path with the same forward and vertical dis-

placements.

As implemented here, the function detects collisions

with obstacles that are rectangular prisms, based on

geometric constraints. It could presumably be replaced

with a function that can handle more complex obsta-

cle geometries, so long as they can be approximated by

polyhedrons. For an alternative approach based on cir-

cular or cylindrical obstacles and circular trajectories,

see Paranjape et al (2015).

To account for the aircraft’s geometry (i.e. that it is

not a point mass) and non-ideal tracking performance

from the controller, a buffer distance is added to all ob-

stacles and environment boundaries. In effect, obstacles

are inflated in the collision checker so that the aircraft

stays a safe distance away from them.

6.5 Update Tree

The update function allows the planner to run in real-

time, and is the point of communication between the

planner and the control system. Its jobs are to choose

which nodes of the tree the aircraft should follow un-

til the next time the function is called, and to update

the tree of nodes to account for the aircraft’s real-time

motion. The function is called iteratively as the aircraft

moves up the tree.

The update function first determines the optimal

node (of those available at the time) to guide the air-

craft towards. It checks all nodes to find out which is

‘nearest’ (as will be defined) to the goal. It then deter-

mines how far along the tree to move in the direction

of that node for the current iteration, i.e. how many

nodes to commit to for one time interval given the

aircraft’s dynamics. The aircraft commits to following

12 Joshua M. Levin et al.

1
2

3

current root node

goal node

Fig. 10 Nearness quantity. Node number 3 is ‘nearest’ to the
goal node when compared to nodes 1 and 2

these nodes, and they are sent to the control system

to be tracked. In the unlikely scenario that the opti-

mal node is reached in this step but is not in the goal

region, the planner continues to run while the aircraft

moves towards this node and then along its children. It

is possible that within this time new nodes that lead to

the goal (or might eventually) are added to the tree. If

the aircraft happens to catch up to the optimal node,

is not within the goal region, and has no children to

follow, the algorithm ends by sending a cruise-to-hover

primitive to the controller. From here, the user has the

option to re-initiate the motion planner or recover the

aircraft.

The ‘nearness’ quantity is calculated based on the

length of the path to the node, the straight-line dis-

tance between the node and the goal, and the distance

between the current root and the node, see Equation 4.

In the hypothetical situation depicted in Fig. 10, node

number 3 would be ‘nearest’ to the goal of the three

options. It is not as close to the goal as node 1, nor is

the path to it from the root node as short as node 2, but

the balance of these quantities (evaluated by Equation

4) makes it ‘nearest’ the goal.

nearness =

length of path

to node
+

distance from

node to goal

distance from current root to node

(4)

To account for the aircraft’s real-time motion, the

update function also prunes the tree of the nodes that

become infeasible as a result of the commitment; nodes

that will be ‘behind’ the aircraft in time (and their chil-

dren) as it moves ‘up’ the tree. The Update Tree func-

tion is presented in Algorithm 3.

7 Simulations

In this section, two types of simulations are run. First,

the motion planner itself is simulated over various obstacle-

dense maps. To help evaluate its performance, the plan-

ning algorithm is compared to a baseline approach. The

other form of simulation uses the aircraft dynamics

Algorithm 3: UpdateTree

input: ηroot, pgoal

Find tree node, ηopt, nearest pgoal

Get list of nodes connecting ηroot to ηopt
for ηtemp ← ηroot to ηopt do

if ηtemp is in goal region or ηtemp exceeds time
interval then

break
end
if ηtemp is ηopt then

if ηopt has children then
Continue along children of ηopt

else
Send cruise-to-hover node to controller

end

else
Send ηtemp to controller

end

end
Prune tree of infeasible nodes

model and feedback controller to track trajectory so-

lutions solved for by the motion planner.

7.1 Motion Planning Simulations

Simulations were run to validate the motion planner

and contrast it against a baseline approach. The ap-

proach employed for this purpose is RRT with Dubins

curves, which is a commonly used technique for path-

planning with ground vehicles (Takei et al, 2010; Kara-

man et al, 2011) and fixed-wing UAVs (Lugo-Cárdenas

et al, 2014; Owen et al, 2014; Allen and Pavone, 2015;

Karaman and Frazzoli, 2011a). Dubins curves are minimum-

distance paths between two points with prescribed head-

ings, for a vehicle that is subject to the constraints of

the Dubins kinematic model (Dubins, 1957):

ẋ = V cosψ

ẏ = V cosψ (5)

ψ̇ = u,

where (x, y) is the position of the vehicle, V is a con-

stant speed, and ψ is the heading. By incorporating an

additional configuration variable for altitude, the Du-

bins model has been extended to 3D problems (Chitsaz

and LaValle, 2007), but for simplicity we will use the 2D

model here for comparison. From these equations, we

see the most apparent difference between the two ap-

proaches, which is that Dubins curves are the product

of a very simple kinematic model evolving on the config-

uration space C = R2×S1. Using this model, p1 and p2

of Fig. 9 (in 2D and with prescribed headings) are con-

nected using the shortest feasible path. The solution to

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 13

this problem, given the constraints of Eq. 5, is proven to

always consist of minimum-radius circular arcs and/or

straight line segments (Dubins, 1957). Therefore, using

the Dubins curve approach, every time the trajectory

changes heading, it does so using the most aggressive

turn.

To employ the Dubins curve approach, we replaced

our steer functions with one that solves for the optimal

Dubins path. Both motion planning frameworks were

run on a 100 m by 100 m map that includes 50 ran-

domly generated obstacles. Representative samples of

trajectory solutions are shown in Fig. 11. To compare

the two approaches, Maps A and C use the same layout,

as do Maps B and D. In the figures, the axes stretch the

length of the environment, the black objects represent

obstacles, and the orange spheres are the desired goal

regions. The trajectories flown are colored blue, except

for the agile maneuvers, where magenta is the hover-to-

cruise maneuver, green is the cruise-to-hover maneuver,

and the aggressive turn-arounds are colored red. The

remaining parts of the tree, which were not flown, are

colored black. Note that we had to incorporate a part of

our maneuver space, the hover transitions, into the Du-

bins curve approach just to be able to solve the desired

planning problem, which includes stationary initial and

final states.

The few cases plotted in Fig. 11 highlight features

of the proposed approach. Because the maneuver space

includes many more primitives than there are Dubins

curves, the turns of the trajectories tend to be smoother

and less aggressive. Although the Dubins curves do

solve for the shortest paths connecting individual nodes,

this optimality tends to be lost in terms of the full tra-

jectory solutions, as can be seen in figures 11(c) and

11(d).

In a different map, we investigate how the two ap-

proaches would fare in a situation that necessitated a

near 180-degree turn-around; the results are plotted in

Fig. 12. While Dubins curves can indeed be used to

generate a feasible path through this map, there are

disadvantages to the approach relative to ours. The

planner using Dubins curves generally takes more time

to solve such a problem (the greater number of black

paths in Fig. 12(b) signifies the longer time it took to

find a feasible solution). This is because many posi-

tive collision checks have to occur before the Dubins

curves can navigate a path out of the dead end. Us-

ing the proposed maneuver space, however, one of the

first positive collision checks results in the generation

of the functionally-designed aggressive turn-around ma-

neuver, which immediately provides the beginning of a

way out. Fig. 12 also illustrates how our planner tends

to generate smoother trajectories through narrow cor-

ridors, where the Dubins approach bounces around be-

tween the minimum-radius curves. Though the Dubins

model is restricted to two dimensions, we demonstrate

the applicability of our planner for a 3D environment

in Figure 13.

We evaluated the performance of each algorithm,

in terms of computational efficiency and cost (length of

the path solution). To do so, we programmed them both

on the test platform’s computer (an ODROID XU4 –

see Section 8.1). Each algorithm was run 1000 times

over the map of Fig. 11, and again over the map of Fig.

12. Only the former map uses randomly generated ob-

stacles, but in either case the planner itself is random

in its sampling of the environment, making each solu-

tion unique. For the map of Fig. 11, the average time

to find a feasible trajectory using the maneuver space

was 150 milliseconds, compared to 96 milliseconds us-

ing Dubins curves. The average path length was 180

m using the maneuver space, and 182 m using Dubins

curves. These results reinforce the point that the opti-

mality of individual Dubins paths does not carry over

to the full solution. For the map of Fig. 12, in which

the aircraft had to retreat from a dead end, the average

computation time and path length using the maneuver

space was 20 milliseconds and 71 m, respectively. With

Dubins curves, the algorithm took slightly longer, 26

milliseconds, and averaged a significantly longer path

of 102 m.

A final matter of differentiation between the two

approaches is how well they lend themselves to the tra-

jectory tracking problem. In this respect, there are a

few things to note about the Dubins curves approach.

There are no transition maneuvers between curves, and

the kinematic model assumes accelerations can be con-

trolled directly. Being restricted by the aircraft’s dy-

namics, no such arbitrary accelerations can in fact be

generated. Also recall that the only turns available are

the minimum-radius turns. A conservatively chosen turn-

rate constraint will limit the abilities of the planner to

navigate around obstacles, while a high turn-rate will

require the aircraft to track a more aggressive trajec-

tory. Minimum-radius turns without transitions make

the tracking problem demanding, and on top of this,

the Dubins model offers no feedforward control input

solutions for the aircraft’s actuators.

7.2 Trajectory Tracking

Prior to conducting flight tests, the aircraft dynamics

model was used to simulate motion plan tracking. Rel-

ative to the actual testing area, the simulation environ-

ment allows for flight through larger maps. The simu-

lation architecture is illustrated in Fig. 14 as a block

14 Joshua M. Levin et al.

(a) Map A: using maneuver space (b) Map B: using maneuver space

(c) Map C: using Dubins curves (d) Map D: using Dubins curves

Fig. 11 Motion plans through a 100 m by 100 m map with 50 randomly generated obstacles. Maps A and B use the proposed
maneuver space approach; Maps C and D use Dubins curves

(a) Map E: using maneuver space (b) Map F: using Dubins curves

Fig. 12 Motion plans involving a retreat from a narrow corridor with a dead end. Map E uses the proposed maneuver space
approach; Map F uses Dubins curves

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 15

Fig. 13 3D motion planning with maneuver space through
environment with narrow gaps

Fig. 14 Block diagram of simulation environment

diagram. The motion planner outputs reference trajec-

tories, xref , and feedforward control inputs, uff . The

output of the feedback controller, ∆ufb, is summed with

the feedforward part to produce the full control input,

u.

The Dubins approach solves only for the reference

path and heading, since it is based on the simple kine-

matic model of Eq. 5. Of particular note is that the Du-

bins model provides no means of calculating the feedfor-

ward control inputs. Accordingly, these terms were set

to zero when tracking the Dubins curves (we made the

exception to include feedforward inputs during hover

transitions). For good measure, we ran the set of sim-

ulations associated with the Dubins approach an extra

time, including the feedforward inputs generated using

the high-fidelity model. In effect, we thereby treat the

Dubins paths as a small subset of our trim primitives:

straight and level flight, a sharp banked turn to the

right, and a sharp banked turn to the left.

We simulated all of Maps A-F in Figures 11 and

12. As an example, the path tracking performance for

the trajectory shown in 11(b) is plotted in Fig. 15. The

RMSE and maximum error on position for each sim-

ulation are listed in Table 2. Maps A, B, and E use

the maneuver space, while Maps C, D, and F use Du-

Fig. 15 Simulated path tracking

Table 2 Root-mean-square errors and maximum errors for
position tracking in simulations. Feedforward control inputs
denoted by ‘FF’.

Map RMSE [m] max(ep)[m]max(ep)[m]max(ep)[m]
A (Maneuver Space) 0.22 0.86
B (Maneuver Space) 0.27 0.62
E (Maneuver Space) 0.38 0.71

C (Dubins) 5.04 12.37
D (Dubins) – –
F (Dubins) 3.81 13.68

C (Dubins + FF) 1.21 2.76
D (Dubins + FF) 1.58 2.91
F (Dubins + FF) 2.13 3.79

bins curves – note the large discrepancies in tracking

performance between the two approaches. In the case

of Map D, the aircraft essentially failed to track the

trajectory; the position errors grew so large we opted

not to list them. Also shown in this table are the re-

sults of tracking the Dubins curves whilst incorporating

the feedforward inputs generated using the high-fidelity

model. Even after integrating this aspect of our motion

primitives into the Dubins approach, the tracking per-

formance remained inferior. With respect to the RMSE

values, there was still a difference in position error by a

factor of approximately five between the two methods.

These results can be attributed to the lack of transition

modeling between the straight segments and highly ag-

gressive turns.

With respect to the maneuver space approach, the

position errors, along with the 0.86 m wingspan of the

aircraft, can be used to inform the buffer distance pa-

rameter found in the collision checker. Given these val-

ues, it would be reasonable to set the buffer distance

to at least 1.5 m to ensure safe, collision-free flight.

16 Joshua M. Levin et al.

The tracking performance and buffer size must be in-

terpreted with respect to the environment the aircraft

is tasked with passing through. As long as there is suf-

ficient room left after the obstacles are buffered for the

tree to efficiently expand through the map, as has been

the case here, the 1.5 m distance is acceptable.

8 Flight Test Experiments

Flight tests with the small agile fixed-wing UAV were

conducted in the Concordia Stinger Dome. The dome

is made of fabric that is GPS-transparent. The flights

were mainly limited to one quarter of the dome, a 30

m by 60 m field.

8.1 Experimental Setup

The control system is programmed on the Pixhawk Mini

flight controller as a module in the PX4 open-source

flight stack firmware. Inside the Pixhawk Mini is a sen-

sor suite comprised of a barometric pressure sensor and

two motion tracking devices with gyroscopes, accelerom-

eters, and a compass. An external GPS is mounted on

the aircraft’s nose. On-board state estimation is per-

formed using Pixhawk ’s default Extended Kalman Fil-

ter.

The motion planning algorithm is programmed in

C++ on an ODROID XU4. The ODROID is a single-

board computer with a 2GHz quad-core processor and

2GB of RAM. The board runs Ubuntu on a Linux ker-

nel. The ODROID is connected to the Pixhawk via an

FTDI USB to UART cable. Communication goes both

ways and uses the MAVLink protocol. When the mo-

tion planner is triggered to begin, the Pixhawk sends

the aircraft’s initial pose to the ODROID. As the mo-

tion planning algorithm runs, the ODROID sends indi-

vidual nodes to the Pixhawk (in the update function),

which gets read within the control system module. The

tree data stored in each node is interpreted by the Pix-

hawk’s control system as a reference trajectory for a

specific time interval.

The experimental procedure is as follows. Using a

Futaba T7C RC transmitter, a trained pilot manually

takes off and flies the aircraft into a hover. The pilot

then flicks a switch on the transmitter to put the air-

craft into an autonomously controlled hover (the hover

trim primitive). Next, he flicks another switch to trig-

ger the motion planner to begin. It is at this time

that the Pixhawk Mini sends the aircraft’s current mea-

sured configuration (position and heading) to the mo-

tion planner as the initial condition to the algorithm.

As a practical measure, the planner was programmed

to delay the first iteration of the Update Tree function

until the tree reached the goal region. While not strictly

necessary, this ensured a feasible path to the goal re-

gion existed before taking off from the hover. The delay

never lasted more than a few seconds; and often less

than one. Note that the planner continues to run while

in flight, and as per the Update Tree function, may end

up on a more direct path towards the goal.

8.2 Results and Discussion

Due to logistical constraints, the actual environment is

obstacle-free. To no different effect than having actual

obstacles, three different maps of virtual obstacles were

programmed onto the ODROID. The available sections

of the dome are relatively small and thus the flights are

short; nonetheless, they showcase many features of the

motion planner.

Figure 16 shows trajectories and path tracking re-

sults for three new maps. The maps are different than

those of Section 7 because the space in the dome is lim-

ited to a smaller area. Again, in Fig. 16, the plot edges

match the maps’ boundaries. The plots show the ref-

erence paths and the actual paths flown, and the grey

spheres are the goal regions. In the first map, the air-

craft must climb to and navigate through a narrow gap.

In the second map, the aircraft begins with a heading

that is pointed towards a dead end, and thus must turn

around to proceed in the proper direction. It executes

an aggressive turn-around maneuver here to do so. The

third map uses a larger portion of the dome, a 60 m by

60 m field, and the virtual obstacles overlay actual ob-

stacles in the dome – wires and meshing that separate

quarters of the field. A supplementary video (Online

Resource 1) includes the flight test results for Maps 1

and 2, and one other flight. Objects are edited into the

video to give the effect of actual obstacles being present.

Figure 17 shows time histories of the state variables

and control inputs for the flight test associated with

Map 3 in Fig. 16(c). We take a closer look at the re-

sults of this map because it has the longest trajectory

of the three, and the discussion of its results largely ex-

tends to the findings of the other maps. The position

errors along each axis and in total, ep, are shown in

Fig. 17(a). Note that the x, y, and z axes are aligned

with the map, as in Fig. 16(c). We see that around 2 s

the position errors start to grow as the hover-to-cruise

maneuver is occurring. Thereafter, the errors more or

less plateau and only diminish around when the cruise-

to-hover maneuver takes place. The reason the errors

plateau instead of diminish is attributed to the fact that

the aircraft is continually being destabilized by switch-

ing motion primitives. As demonstrated in Section 4.3,

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 17

(a) Map 1

(b) Map 2

(c) Map 3

Fig. 16 Flight test results. Commanded paths are drawn
as dashed lines, and actual paths flown as solid lines. Grey
spheres represent the goal regions and obstacles are drawn in
black

the transition maneuver heuristic helps deal with this

tracking problem, however, it does not eliminate it. The

change from one primitive to the next can most clearly

be seen in Fig. 17(b), where every step input change in

the reference roll angle implies that a new primitive is

being commanded.

Figure 17(b) plots the attitude history of Map 3’s

trajectory as Euler angles. Note that the aircraft is in a

hover at the beginning and end of the plan. This causes

a singularity in the Euler angle attitude representation,

(a) Position errors

(b) Attitude tracking

(c) Speed tracking

(d) Control inputs

Fig. 17 Flight test states and control inputs for Map 3 of
Fig. 16(c)

18 Joshua M. Levin et al.

Table 3 Root-mean-square errors and maximum errors for
position tracking in flight tests.

Map 1 Map 2 Map 3
RMSE [m] 2.82 3.03 3.88
max(ep)[m]max(ep)[m]max(ep)[m] 4.49 4.56 6.30

which is why the roll and yaw values are spiking back

and forth. The reference yaw angle time history is con-

tinuous, but the roll and pitch values change in steps

because they are associated with the primitives. This

highlights the importance of the transition maneuvers,

which allow the aircraft time to reach (and ideally set-

tle) at the state of the new primitive. The attitude

tracking is at its worst at the beginning of the plan.

At approximately two seconds in, the hover-to-cruise

maneuver is initiated. We note that the pitch profile is

not tracked as accurately during this maneuver as it is

for the remainder of the plan.

In Fig. 17(c), the speed throughout the plan is plot-

ted. Throughout the middle portion of the plan, the

aircraft is able to stay near the desired constant speed

of V = 7m s−1. The most challenging sections for the

speed tracking portion of the control system are the

hovers. The aircraft is inherently unstable in this con-

figuration, and often has to use non-zero velocities to

maintain a commanded position.

The feedforward and full control inputs are plotted

in Fig. 17(d). The difference between the feedforward

and actual inputs is the feedback control. By compar-

ing the solid and dashed lines, we can see from these

plots that both feedforward and feedback inputs are

valuable. The elevator, rudder, and thrust control are
largely guided by the feedforward inputs, i.e. the actual

control is close to the feedforward control. The ailerons,

however, are using a large amount of feedback control.

The aileron response is proportional to the large step

input changes in roll that are being commanded.

The values of RMSE and max error in position for

all three maps are given in Table 3. The position er-

rors are larger than those found in the simulations of

Section 7.2, in part because of the presence of mea-

surement noise, imperfect state estimation, and mod-

eling inaccuracies in the experimental setup. We also

note the availability of the dome limited the time that

could be spent tuning controller gains and the time-

delay constant, all of which can have a significant effect

on the feedback controller’s performance. The errors

could presumably be resolved in future work. In addi-

tion to more extensive tuning, one option would be to

implement gain scheduling, so that the optimal gains

for the hover-to-cruise maneuver could be used, and

thus the initial errors could be reduced. An investiga-

tion of alternative methods for nonlinear control, such

as time-varying linear quadratic regulators (TVLQRs)

Barry (2012) would also be valuable. Furthermore, posi-

tion errors could be addressed on the side of the motion

planner: a re-planning algorithm could be implemented

for when position tracking errors become sufficiently

large. The framework for such an algorithm is described

in Appendix A.

As a general remark about the flight control, we be-

lieve that the weight and weight distribution of the fully

equipped aircraft is contributing to tracking deficien-

cies. The layout of the fixed-wing UAV makes it impos-

sible to place all heavy equipment at its center of grav-

ity, and thus the weight distribution is less than ideal.

We noticed a decline in tracking performance when the

ODROID was added to the aircraft. If it were possi-

ble for only one computer to handle the autopilot and

planning systems, it could be placed near the aircraft’s

center of gravity.

9 Conclusions

In this work, a real-time motion planner for a small ag-

ile fixed-wing UAV was implemented for flight through

highly constrained three-dimensional environments. We

found the method of solving optimal control problems

to be an effective way of generating dynamically fea-

sible motion primitives that take advantage of the air-

craft’s physical capabilities. The trajectories were as-

sembled into a maneuver space and thereby incorpo-

rated into the planning algorithm. The time-delay ap-

proach to switching between primitives helps smooth

the transitions without compromising the efficiency of

the algorithm or using any extra on-board resources.

The RRT-based planning algorithm, tested on multiple

maps, was able to consistently and rapidly find a plan

to the goal region, and make effective use of three agile

maneuvers.

The algorithm and control system were validated

in simulations and flight tests. In simulations, the plan-

ner was evaluated against a baseline approach that uses

Dubins curves. Using the proposed planning approach,

the root-mean-square errors on position were approxi-

mately 0.3 m; using Dubins curves, the errors were more

than an order of magnitude greater. In flight tests, the

RMSE values were higher, approximately 3 - 4 m. The

errors appeared to arise as a result of the hover-to-cruise

maneuver, and then persist throughout the flight. Po-

tential solutions to this problem were suggested for fu-

ture work, including more extensive gain tuning, gain

scheduling, and the addition of a re-planning phase in

the motion planning algorithm.

Real-Time Motion Planning with a Fixed-Wing UAV using an Agile Maneuver Space 19

We note that the algorithm was not designed with

any specific intention of dealing with wind gusts, which

are a serious consideration for outdoor flight and should

also be the subject of future work. The aforementioned

re-planning step in the algorithm would presumably be

able to help in this respect.

Acknowledgements This research was supported by the
Natural Sciences and Engineering Research Council of Canada
(grant no. PGSD3-490220-2016) and by le Fonds de Recherche
du Quebec - Nature et Technologies (grant no. 2016-PR-
191001).

A Re-planning

This appendix outlines how a re-planning step can be in-
corporated into the motion planner to eliminate cumulative
position errors if and when they grow sufficiently large. The
actions of re-planning would neatly fit at the end of Algorithm
3, under a conditional statement that gets added to check for
position error against a user-defined constant: if ep > ε.

Re-planning involves two actions, the first of which is
to modify the nodes being sent to the controller during the
update, such that they align with the actual position and
heading of the aircraft. The motion primitives themselves re-
main the same, i.e. ψ̇, ż, and ∆t are known, but the positions
and headings of each node must be recalculated. This is done
through rearrangement of Eq. 3:

x2 = x1 +

(
V

ψ̇
sin(ψ1 + ψ̇∆t)−

V

ψ̇
sinψ1 cos(arcsin

ż

V
)

)

y2 = y1 +

(
−
V

ψ̇
cos(ψ1 + ψ̇∆t) +

V

ψ̇
cosψ1 cos(arcsin

ż

V
)

)
z2 = z1 + ż∆t (6)

ψ2 = ψ1 + ψ̇∆t

The other action taken during re-planning is to prune the
tree of all nodes other than the ones being sent to the aircraft
during the update. While it may seem detrimental to throw
away these previously generated nodes, the algorithm is very
efficient at building (or re-building) a tree in real-time. The
alternative, to keep the tree nodes, would require translating
each node and re-checking each primitive for collisions. This is
a much more costly process (namely, the collision checking),
that would not be of any great benefit given how quickly the
tree can be re-built.

Tests were run on the ODROID XU4 to evaluate the
practicality of employing the re-planning step. We investi-
gated whether the planner was efficient enough to recover
from pruning almost all of the tree nodes in real-time. Using
the map of Fig. 13, the motion planning algorithm was run
twenty times. The planner was left to run until the Update
Tree function had commanded a path that ended in the goal
region; as though the aircraft were in flight and the algorithm
were running in real-time. Instead of setting up the ODROID
in a simulation loop with the aircraft dynamics model, we
simply programmed fake position errors into the algorithm
such that the re-planning step would be repeatedly triggered;
for each run, the re-planning step was triggered twice. Each
time the re-planning step occurred, the algorithm was able

to rapidly rebuild a new tree. By the next time the Update
Tree function was called after re-planning (it is called every
half second), the tree would have already grown to hold ap-
proximately 1000 new nodes, on average. For reference, the
tree rarely ever grew to have many more than 2000 nodes at
a time, for the map in question. In the twenty runs, nineteen
successfully resulted in a path to the goal region. In the one
other case, the planner got stuck and had to send a command
to perform the cruise-to-hover maneuver before reaching the
goal region. It cannot necessarily be determined that the re-
planning step was the cause of this failure. We observed that
the number of tree nodes in subsequent calls of the Update
Tree function, before and after re-planning, was barely af-
fected, and thus we can at least rule out the notion of the
failure being caused by a lack of trajectory options post-tree-
pruning.

References

Allen R, Pavone M (2015) Toward a Real-Time Frame-
work for Solving the Kinodynamic Motion Planning Prob-
lem. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, pp 928–934, DOI
10.1109/ICRA.2015.7139288

Ananthkrishnan N, Sinha NK (2001) Level flight trim and
stability analysis using extended bifurcation and continu-
ation procedure. Journal of Guidance, Control, and Dy-
namics 24(6):1225–1228, DOI 10.2514/2.4839

Barry AJ (2012) Flying between obstacles with an au-
tonomous knife-edge maneuver. Master’s thesis, Mas-
sachusetts Institute of Technology

Bulka E, Nahon M (2018) Automatic control for aerobatic
maneuvering of agile fixed-wing UAVs. Journal of Intelli-
gent & Robotic Systems DOI 10.1007/s10846-018-0790-z

Chitsaz H, LaValle SM (2007) Time-Optimal Paths for
a Dubins Airplane. In: 2007 46th IEEE Conference
on Decision and Control, IEEE, pp 2379–2384, DOI
10.1109/CDC.2007.4434966

Dubins LE (1957) On curves of minimal length with a con-
straint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal of
Mathematics 79(3):497–516, DOI 10.2307/2372560

Frazzoli E, Dahleh MA, Feron E (2002) Real-time mo-
tion planning for agile autonomous vehicles. Journal of
Guidance, Control, and Dynamics 25(1):116–129, DOI
10.2514/2.4856

Frazzoli E, Dahleh MA, Feron E (2005) Maneuver-based
motion planning for nonlinear systems with symmetries.
IEEE Transactions on Robotics 21(6):1077–1091, DOI
10.1109/TRO.2005.852260

Gavrilets V, Frazzoli E, Mettler B, Piedmonte M, Feron
E (2001) Aggressive maneuvering of small autonomous
helicopters: A human-centered approach. The Interna-
tional Journal of Robotics Research 20(10):795–807, DOI
10.1177/02783640122068100

He Z, Li D, Lu Y (2018) Disturbance compensation-Based
piecewise linear control design for perching maneuvers.
IEEE Transactions on Aerospace and Electronic Systems
pp 1–16, DOI 10.1109/TAES.2018.2849898

Karaman S, Frazzoli E (2011a) Optimal Kinodynamic Motion
Planning Using Incremental Sampling-Based Methods. In:
49th IEEE Conference on Decision and Control (CDC),
IEEE, pp 7681–7687, DOI 10.1109/CDC.2010.5717430

Karaman S, Frazzoli E (2011b) Sampling-based algo-
rithms for optimal motion planning. The Interna-

20 Joshua M. Levin et al.

tional Journal of Robotics Research 30(7):846894, DOI
10.1177/0278364911406761

Karaman S, Walter MR, Perez A, Frazzoli E, Teller S (2011)
Anytime Motion Planning Using the RRT*. In: 2011 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE

Kavraki LE, Svestka P, Latombe JC, Overmars MH
(1996) Probabilistic roadmaps for path planning in
high-dimensional configuration space. IEEE Transac-
tions on Robotics and Automation 12(4):566–580, DOI
10.1109/70.508439

Khan W (2016) Dynamics modeling of agile fixed-wing un-
manned aerial vehicles. PhD thesis, McGill University

Khan W, Nahon M (2013) Toward an accurate physics-
based UAV thruster model. IEEE/ASME Trans-
actions on Mechatronics 18(4):1269–1279, DOI
10.1109/tmech.2013.2264105

Khan W, Nahon M (2015a) Development and validation
of a propeller slipstream model for unmanned aerial
vehicles. Journal of Aircraft 52(6):1985–1994, DOI
10.2514/1.C033118

Khan W, Nahon M (2015b) Real-time Modeling of Agile
Fixed-Wing UAV Aerodynamics. In: 2015 International
Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, pp 1188–1195, DOI 10.1109/icuas.2015.7152411

Kim HJ, Shim DH, Sastry S (2002) Nonlinear Model
Predictive Tracking Control for Rotorcraft-based Un-
manned Aerial Vehicles. In: Proceedings of the Amer-
ican Control Conference, IEEE, pp 3576–3581, DOI
10.1109/ACC.2002.1024483

Kuo BC, Golnaraghi F (2003) Automatic Control Systems.
John Wiley & Sons, New York

LaValle SM (1998) Rapidly-exploring random trees: A new
tool for path planning. TR 98-11, Computer Science Dept,
Iowa State University

Lee D, Shim DH (2014) RRT-Based Path Planning for Fixed-
Wing UAVs with Arrival Time and Approach Direction
Constraints. In: 2014 International Conference on Un-
manned Aircraft Systems, IEEE, pp 317–328

Levin JM, Paranjape A, Nahon M (2017) Agile Fixed-
Wing UAV Motion Planning with Knife-Edge Maneu-
vers. In: 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), IEEE, pp 114–123, DOI
10.1109/icuas.2017.7991475

Levin JM, Paranjape AA, Nahon M (2018a) Motion Plan-
ning for a Small Aerobatic Fixed-Wing Unmanned Aerial
Vehicle. In: The International Conference on Intelligent
Robots and Systems (IROS), IEEE, pp 8464–8470, DOI
10.1109/IROS.2018.8593670

Levin JM, Paranjape AA, Nahon M (2018b) Sideslip and slip-
stream in extreme maneuvering with fixed-wing unmanned
aerial vehicles. Journal of Guidance, Control, and Dynam-
ics 41(7):1610–1616, DOI 10.2514/1.G003086

Lugo-Cárdenas I, Flores G, Salazar S, Lozano R (2014)
Dubins Path Generation for a Fixed Wing UAV.
In: 2014 International Conference on Unmanned Air-
craft Systems (ICUAS), IEEE, pp 339–346, DOI
10.1109/ICUAS.2014.6842272

MacAllister B, Butzke J, Kushleyev A, Pandey H,
Likhachev M (2013) Path Planning for Non-Circular
Micro Aerial Vehicles in Constrained Environments.
In: 2013 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, pp 3933–3940, DOI
10.1109/ICRA.2013.6631131

Majumdar A, Tedrake R (2017) Funnel libraries for real-
time robust feedback motion planning. The Interna-

tional Journal of Robotics Research 36(8):947–982, DOI
10.1177/0278364917712421

Owen M, Beard RW, McLain TW (2014) Handbook of
Unmanned Aerial Vehicles. Springer Netherlands, DOI
10.1007/978-90-481-9707-1 120

Paranjape AA, Meier KC, Shi X, Chung SJ, Hutchin-
son S (2015) Motion primitives and 3-D path plan-
ning for fast flight through a forest. The Interna-
tional Journal of Robotics Research 34(3):357–377, DOI
10.1177/0278364914558017

Park S (2012) Autonomous aerobatics on commanded path.
Aerospace Science and Technology 22(1):64–74, DOI
10.1016/j.ast.2011.06.007

Patterson MA, Rao AV (2014) GPOPS-II: A MATLAB
software for solving multiple-phase optimal control prob-
lems using HP-adaptive gaussian quadrature colloca-
tion methods and sparse nonlinear programming. ACM
Transactions on Mathematical Software 41(1):1–37, DOI
10.1145/2558904

Schouwenaars T, How J, Feron E (2004a) Receding Horizon
Path Planning with Implicit Safety Guarantees. In: Pro-
ceedings of the 2004 American Control Conference, IEEE,
pp 5576–5581, DOI 10.23919/ACC.2004.1384742

Schouwenaars T, Mettler B, Feron E, How J (2004b) Hybrid
model for trajectory planning of agile autonomous vehi-
cles. Journal of Aerospace Computing, Information, and
Communication 1:629–651, DOI 10.2514/1.12931

Selig MS (2014) Real-time flight simulation of highly ma-
neuverable unmanned aerial vehicles. Journal of Aircraft
51(6):1705–1725, DOI 10.2514/1.c032370

Snell SA, Enns DF, Jr WLG (1992) Nonlinear inversion
flight control for a supermaneuverable aircraft. Journal
of Guidance, Control, and Dynamics 15(4):976–984, DOI
10.2514/3.20932

Sobolic FM (2009) Agile flight control techniques for a fixed-
wing aircraft. Master’s thesis, Massachusetts Institute of
Technology

Takei R, Tsai R, Shen H, Landa Y (2010) A Practical
Path-Planning Algorithm for a Simple Car: a Hamilton-
Jacobi Approach. In: Proceedings of the 2010 Amer-
ican Control Conference, IEEE, pp 6175–6180, DOI
10.1109/ACC.2010.5531607

Vieira HL, Grassi V (2014) Improving RRT’s Efficiency
through Motion Primitives Generation Optimization. In:
2014 Joint Conference on Robotics: SBR-LARS Robotics
Symposium and Robocontrol, IEEE, pp 37–42, DOI
10.1109/SBR.LARS.Robocontrol.2014.20

Wickenheiser AM, Garcia E (2006) Longitudinal dynamics of
a perching aircraft. Journal of Aircraft 43(5):1386–1392,
DOI 10.2514/1.20197

Wickenheiser AM, Garcia E (2008) Optimization of perch-
ing maneuvers through vehicle morphing. Journal of
Guidance, Control, and Dynamics 31(4):815–823, DOI
10.2514/1.33819

