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Abstract— Adaptive control architectures often make use of
Lyapunov functions to design adaptive laws. We are specifically
interested in adaptive control methods, such as the well-known
L1 adaptive architecture, which employ a parameter observer
for this purpose. In such architectures, the observation error
plays a critical role in determining analytical bounds on the
tracking error as well as robustness. In this paper, we show how
the non-existence of coercive Lyapunov operators can impact
the analytical bounds, and with it the performance and the
robustness of such adaptive systems.

I. INTRODUCTION

Lyapunov equations with non-coercive solutions are a
peculiar feature of infinite dimensional systems [3], [14].
In a finite dimensional setting, the Lyapunov equation cor-
responding to a Hurwitz matrix yields a positive definite
solution. In semilinear systems of the form ẇ = Aw+f(w),
where A is Hurwitz, one can use this solution to determine
permissible bounds on f(w) as well as the associated bounds
on the solution w(t).

In infinite dimensional systems, the impact of non-
coercivity can be felt on the nature of bounds that can
be derived for w(t); see [8], [5] for example. There are
ways to get around the non-coercivity, by invoking additional
assumptions on the system (e.g., a stronger form for the
Lyapunov equation [1]) or delicate fictitious modifications
which aid the derivation of a coercive Lyapunov function
[16].

In this paper, we will consider robust adaptive control of
systems of semilinear partial differential equations (PDEs)
of the form ẇ(t) = Aw(t) + Bu(t) + f(w), y(t) = Cw(t),
where w(t) denotes the system state, u(t) is the control input,
and y(t) is the output. The operators A, B and C are the
state, control, and output operators, respectively. Coercive
Lyapunov functions feature prominently in the derivation of
adaptive laws, and help ensure appropriate bounds on the
tracking error [9], [10], [11]. Our objective is to determine
how the guaranteed bounds change in the absence of a co-
ercive solution to the usual, unmodified Lyapunov equation.

A. Contribution

In this paper, we examine the effects of non-coercive
Lyapunov functions on the performance and stability of semi-
linear infinite dimensional systems controlled by an adaptive
controller based on the L1 philosophy [4]. In particular, we
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Fig. 1: A block diagram of the DAC framework, with the
subscripts p and h denoting signals from the particular
and homogeneous components. The symbols v(t), y(t), and
r(t) denote the system state, output and reference signal,
respectively.

consider a semilinear system with unmatched uncertainties,
and a dyadic adaptive architecture based on [11], see Fig. 1.

It has been shown previously [9], [11] how a coercive
Lyapunov function helps derive tight bounds on the tracking
performance and the control inputs. In this paper, we ex-
tend the analysis to derive weaker bounds when a coercive
Lyapunov function cannot be found.

Although we consider a specific dyadic adaptive architec-
ture in this paper, our conclusions or results can be extended
to other adaptive architectures such as model reference
adaptive control (MRAC) where Lyapunov analysis is used
to derive the adaptive laws and prove that the error between
the reference model and the system is suitably bounded.

The paper is organized as follows. We introduce the
mathematical preliminaries in Sec. II, and the problem for-
mulation in Sec III. In Sec. IV, we present the design of
the control law. In Sec. V, we show the boundedness of
the observation error. We discuss closed-loop stability and
model-following in Sec. VI.

II. PRELIMINARIES

A. Spaces, operators and norms

Definition 1 (L∞ and L1 norms): Given q(t) ∈ Rn with
components qi(t) (1 ≤ i ≤ n), we define

‖q(t)‖∞ = max
1≤i≤n

|qi(t)|, ‖q‖L∞ = ess sup
t≥0
‖q(t)‖∞

‖q‖L∞,τ = ess sup
0≤t≤τ

‖q(t)‖∞

If ‖q‖L∞ < ∞, then we denote q ∈ Ln∞. The 1-norm
of a matrix F : Rm → Rn is defined as ‖F‖1 =



sup‖p‖∞=1 ‖Fp‖∞, p ∈ Rm. The L1 norm of a lin-
ear operator F : Lm∞ 7→ Ln∞ is defined as ‖F‖L1

=
sup‖q‖L∞=1 ‖Fq‖L∞ , q ∈ Lm∞

The spatial domain of interest in this paper is the closed
interval [0, L] for some finite L > 0. Let Z = L2([0, L], Rn)
denote the Hilbert space of square integrable functions with
the usual inner product and norm.

Definition 2: We define W as the space of Z-valued
functions on R≥0 satisfying ess supt≥0 ‖w(t)‖Z < ∞.
The space W is a Banach space with the norm ‖w‖W =
ess supt≥0 ‖w(t)‖Z. For τ ≥ 0, we define the truncated norm
given by ‖w‖W,τ = ess sup0≤t≤τ ‖w(t)‖Z and the associated
Banach space by Wτ .

Definition 3: We denote a linear operator between spaces
X and Y by L(X,Y ).

Definition 4 ([15], Definition 1.1, Ch. 6): Consider a
system ẇ = Aw + f(t, w), w(t = 0) = w0 ∈ Z, where A
is the infinitesimal generator of a C0 semigroup T (t) and
f(t, w) is continuous in t and satisfies a Lipschitz condition
in w. The mild solution w(t) is given by

w(t) = T (t)w0 +

∫ t

0

T (t− τ)f(τ, w(τ)) dτ, (1)

Definition 5 (Convolution): Given a C0 semigroup T (t)
and τ ≥ 0, we define the operator T ? (t)(τ) : Wτ 7→Wτ as
T ? (τ)f =

∫ τ
0
T (τ − s)f(s, w(s)) ds ∀ f ∈Wτ . We define

the induced norm ‖T ∗ ‖ , ess sup(t≥0) ‖T ? (t)‖.
We recall the following result from [15] for solutions of

initial value problems in Definition 4.
Theorem 1 (Theorems 6.1.4, 6.1.5, [15]): Let A be the

infinitesimal generator of a C0 semigroup T (t) on the Hilbert
space Z. If f : [0, T ]×Z→ Z is continuously differentiable
with respect to both arguments, for T > 0, then the mild
solution (1) is a classical solution of the initial value problem
in Definition 4 for t ∈ [0, T ]. If the solution exists only up
to Tmax < T , then ‖w(t)‖Z →∞ as t→ Tmax.

Next, we define the projection operator [6] which will be
used for constructing the adaptive laws. Let π : Rk → R be
defined by

π(α) ≡ π(α;κ, ε) =
〈α, α〉 − κ2

εκ2
, α ∈ Rk, κ ∈ R+

The number ε ∈ R+ is chosen to be arbitrarily small. The
Fréchet derivative of π at α1 ∈ Rk is denoted by π′(α1) ∈
Rk and it satisfies

〈π′(α1), α2〉 =
2〈α1, α2〉
εK2

∀α2 ∈ Rk

Definition 6: The projection operator Proj : Rk ×Rk →
Rk is defined as

Proj(α1, α2)=


α2, if π(α1) ≤ 0 or 〈π′(α1), α2〉≤0

α2− π′(α1)
‖π′(α1)‖2×

〈
π′(α1)
‖π′(α1)‖2 , α2

〉
π(α1),

otherwise
(2)

Lemma 1 (Lemma 9 in [6]): Let Ω0 and Ω1 denote the
convex sets satisfying

Ω0 = {α | π(α) ≤ 0} , Ω1 = {α | π(α) ≤ 1}

Suppose that α∗1 ∈ Ω0. Then, for all α1, α2 ∈ Rk, (α1 −
α∗1) (Proj(α1, α2)− α2) ≤ 0. Moreover, the solution of the
initial value problem α̇1 = Proj (α1, α2) , α1(0) = α10,
has the property that if α10 ∈ Ω1, then α1(t) ∈ Ω1 for all t.

B. Stability

We will need the following weaker notion of asymptotic
stability, in addition to the more usual notions of stability.

Definition 7: We say that a function f : R≥0 → R
converges to 0 almost asymptotically if

lim
n→∞

f(nx) = 0 for almost allx ≥ 0

Lemma 2 ([7], Theorem 1): If f(t) ∈ L2(R≥0,R), then
f(t) converges to 0 almost asymptotically, in the sense of
Definition 7.

Consider the abstract system ż = Amz+g(z), z(0) = z0,
where z0 ∈ D(Am) and Am is the infinitesimal generator
of an exponentially stable semi-group T (t) and g is satisfies
a Lipschitz condition in z. The following lemma asserts the
existence of a Lyapunov function corresponding to Am.

Assumption 1 (based on [9]): Let Q > 0 be a self-
adjoint, boundedly invertible operator on Z; i.e., Q−1 ∈
L(Z) and with D(Am) ⊆ D(Q). We assume that there exists
P ∈ L(Z) with P > 0 such that,

〈Amz,Pz〉Z+〈Pz,Amz〉Z ≤ −〈z,Q z〉Z,
∀ z ∈ D(Am) (3)

We note that a solution P ∈ L(Z) exists if Q ∈ L(Z) [2].
Remark 1: If Am +A∗m < 0 or if Am is the infinitesimal

generator of C0 group [14], then it is possible to find Q
satisfying Assumption 1 such that the P ∈ L(Z) is coercive.

III. PROBLEM FORMULATION

This paper is concerned with the control of systems of
semilinear infinite dimensional systems described by

ẇ(t) = Aw(t) + Bu(t) + αf(w), y(t) = Cw(t) (4)

where w(t) ∈ Z and u(t) ∈ R, B ∈ L(R,R) and C ∈
L(Z,R). The control objective is to design u(t) so that the
output y(t) tracks a reference signal r(t), and the resulting
closed-loop system is stable and robust in the sense of L∞.

Assumption 2: The nonlinearity f(w) is a known C1

function of w, while α ∈ Rn is unknown but satisfies
|αi| < να for all i ∈ {1, 2, . . . , n}.
The analysis in the paper does not require that αi be a
constant, and neither is it necessarily restricted to a single
“basis” function f(w) (see [13]). This assumption does,
however, simplify the presentation.

Assumption 3: The permissible initial conditions are re-
stricted by ‖w0‖Z < ρ0, and w0 ∈ D(A).

Assumption 4 (Stabilizability): There exists K ∈ L(Z,R)
such that A − BK is the infinitesimal generator of an
exponentially stable semi-group.

Lemma 3: For every ρ > 0, there exist constants ν1(ρ)
and ν2(ρ) such that if ‖w‖W,τ < ρ for some τ > 0, then
‖f(w)‖W,τ ≤ ν1(ρ)‖w‖W,τ + ν2(ρ).



IV. CONTROL DESIGN

A. Control Signal

Consider the system

ẇh(t) = Awh(t) + Bu(t), yh = Cwh (5)

which is found by neglecting the nonlinearity in (4). Us-
ing Assumption 4, we deduce that there exists a bounded
stabilizing gain K : Z → U such that A − BK generates
an exponentially stable C0 semigroup. We formalize this as
follows.

Definition 8: The operator Am = A − BK generates
an exponentially stable semigroup T (t); i.e., there exist
constants M, β > 0 such that ‖T (t)‖i ≤Me−βt. Moreover,
‖T ∗ ‖ is bounded.

Based on our prior work [12], [10], we use the following
control law for the system (4):

u(t) = −Kw(t)−HCp(t) (6)
ṗ(t) = HAp(t) +HBσ(t), p(0) = p0 (7)

with HA Hurwitz. The term σ(t), on which p(t) de-
pends, will be defined presently. The terms HC and
HB are chosen to satisfy the DC gain condition
C(−Am)−1BHC(−HA)−1HB = −1.

The system (4) can now be written as

ẇ(t) = Amw(t)− BHCp(t) + αf(w(t)) (8)

Using the linear term as a pivot, we decompose the system
in (4) into two sub-systems

ẇp = Amwp + αf(w), yp = Cwp (9)
ẇh = Amwh − BHCp(t), yh = Cwh (10)

The two systems (9) and (10) are referred to as the particular
and homogeneous halves, respectively. In the next section, we
will derive an observer for estimating the states; for now, we
use (9) and (10) to investigate tracking.

If we could choose σ(t) = r(t) − yp(t), we would get
that the tracking error y(t)− r(t) = yh(t)− σ(t); therefore,
σ(t) can serve as the reference signal for yh(t). Since yp(t)
is not known, we will choose

σ(t) = r(t)− ŷp(t) (11)

where ŷp(t) is the output of an observer which will be
designed presently (see (12)).

B. Observer Design

We use the symbol “∧” to denote observer states, and the
subscripts p and h to denote states of the particular and the
homogeneous halves, respectively. The dynamics of the two
halves are given by

˙̂wp=Amŵp + α̂(t)f(w), ŷp = Cŵp (12)
˙̂wh=Amŵh − BHCp(t), ŷh = Cŵh (13)

with the initial conditions ŵh(0) = w(0) and ŵp(0) = 0.

The predicted values α̂(t) are found using the projection
operator (see [6], [9] for details).

˙̂αi(t) = γ Proj (α̂i, −〈Pw̃(t), f(w)ei〉Z) ,

|α̂i(t)| < να(1 + ε) (14)

where ε ∈ R+ is arbitrarily small; w̃ = ŵp + ŵh − w; α̂i
(1 ≤ i ≤ n) is the ith component of α̂, ei denotes the
ith column of the n × n identity matrix, and γ > 0 is the
adaptation gain.

The operator P > 0 in (14) is found by solving the
Lyapunov equation (3) with Q chosen as follows:

Q =

{
−(Am +A∗m) if Am +A∗m < 0

I otherwise
(15)

where I is the identify operator on Z. In the first case, it
can be seen that P = I, which is coercive.

In summary, the closed-loop system consists of the orig-
inal system (4), together with the controller (6), and the
dyadic observer (12), (13) and (14).

C. Well-Posedness

To analyze the well-posedness of the closed-loop
system, we construct the augmented vector w =
[w, ŵp, ŵh, p(t)]

> ∈ V = Z×Z×Z×Rnp . The dynamics
of w is given by

ẇ(t) = Āw + f̄(α̂(t), w(t), r(t)) (16)
w(0) = ŵh = w0, ŵp(0) = 0, p(0) = p0

Ā =


Am 0 0 −Bkr
0 Am 0 0
0 0 Am −Bkr
0 −HB 0 HA


where the exogenous signal α̂(t) is known to be C1 in
time. Therefore, it can be checked readily that f̄(·) is a
C1 function of its arguments. Furthermore, the operator Ā
is the infinitesimal generator of a semigroup. We state the
following result without proof, but as a direct application of
Thm. 1.

Lemma 4: There exists Tmax > 0 such that the system
(16) has a unique classical solution w(t) for t ∈ [0, Tmax].
Moreover, if Tmax <∞, then limt→Tmax

‖w(t)‖V →∞.

D. A Necessary Condition for Tracking

Lemma 5 (Necessary condition for tracking): Suppose
that w is suitably bounded and we design u(t) to ensure
that ŷh(t) tracks σ(t) = r(t)− ŷp(t), where the signals have
been defined in (11), (12) and (13). Then, y(t) tracks r(t)
only if y(t) tracks ŷ(t).
The necessary condition stated here is quite obvious, but its
role will become clear in the subsequent analysis. Informally
speaking, when coercivity is lost, it may no longer be
possible to prove asymptotic bounds on the observer states
themselves, but one can prove asymptotic bounds on the
observer output. In the next section, we will prove output
error regulation.



V. OBSERVER ERROR REGULATION

In this section, we derive bounds on the observation
error between ŵh and ŵp on the one hand and wp and
wh, respectively, on the other. Let ŵ = ŵh + ŵp, and let
(̃·) = (̂·) − (·) denote the error between predicted and the
actual terms. We have two objectives: derive tight bounds on
w̃ and ỹ, and show that ỹ converges to zero asymptotically if
an arbitrarily tight bound (in a sense that will become clear
presently) cannot be derived.

From (8), (12) and (13), the observation error dynamics
are given by

˙̃w(t) = Amw̃(t) + α̃(t)f(w(t)), ỹ(t) = Cw̃(t), w̃(0) = 0
(17)

We recall that C is bounded.
We start by proving a bound on w̃(t) that relies only on the

boundedness of α̃(t). Understandably, this is a weak bound
and we will subsequently make it stronger in the following
subsections under additional assumptions. A key point is that
it does not rely on the coercivity of P in the projection-based
adaptive laws.

Lemma 6: Suppose that ‖w‖W,τ < ρw for some constant
ρw > 0. Then, the adaptive laws in (14) ensure that ‖w̃‖W,τ
and |ỹ(t)| are bounded for t < τ .

Proof: From (17), note that

‖w̃‖W,τ ≤ ‖T ? (τ)‖‖α̃f(w)‖W,τ

Notice that α̃(t) is bounded for all t due to the projection-
based laws. Furthermore, from Lemma 3, it follows that
‖f(w)‖W,τ is bounded. Since T is exponentially stable and
since all other terms on the RHS are bounded, it follows that
‖w̃‖W,τ is bounded. Since the output operator C is bounded,
it follows that |ỹ(t)| is bounded for t < τ . �

In the subsequent sections, we will strengthen the bounds
on w̃ and ỹ. In particular, coercivity of P will play an
essential part in strengthening the bounds on w̃. We will
show that it is possible to obtain stronger bounds on ỹ (but
not necessarily w̃) in the absence of coercivity.

A. Case 1: Am permits a coercive P
We start with the case where Am permits a coercive solu-

tion to the Lyapunov equation. This result is a combination
of those in [9] and [11].

Lemma 7: Suppose that ‖w‖W,τ < ρw for some constant
ρw > 0. Suppose that a coercive solution P exists for (3)
and is used in the projection operator (14). Then, we have
that all of the following terms are uniformly bounded for
t < τ : (i) the total observation errors ‖w̃(t)‖Z and |ỹ(t)|; (ii)
the observation errors ‖w̃p(t)‖Z and |ỹp(t)| for the particular
half, and (iii) the observation errors ‖w̃h(t)‖Z and |ỹh(t)| for
the homogeneous half. Moreover, the bounds can be made
arbitrarily small by increasing γ.

Proof: We start by proving the bounds for the total observer
error. We consider the Lyapunov function

V (t) = 〈w̃(t), Pw̃(t)〉+
1

γ
α̃(t)>α̃(t) (18)

where the choice of P > 0 is explained in Sec. IV-B.
Differentiating the Lyapunov function gives

V̇ (t) = 〈Pw̃, Amw̃〉+ 〈Amw̃, Pw̃〉

+2〈Pw̃, α̃(t)f(w)〉+ 1

γ
α̃(t)> ˙̂α(t) (19)

Using (14) and the properties of the projection operator in
Lemma 1, it follows that

V̇ ≤ −〈w̃, Qw̃〉 (20)

Since Q is boundedly invertible, exists a constant λp > 0
satisfying

V̇ ≤ −λp〈w̃, Pw̃〉

Substituting into (20), and by adding and subtracting α̃>α̃
with suitable scaling, we get

V̇ ≤ −λpV +
λp
γ
α̃(t)>α̃(t)

Since ‖w‖Z < ρ, and α̃ is bounded, it follows that there
exists constant ρ1 > 0, which is independent of γ, such that

V (t) ≤ V (0)e−λpt +
ρ1
λpγ

(1− e−λpt) (21)

Since w̃(0) = 0, we have that

V (0) =
1

γ
α̃(0)>α̃(0) (22)

Using the coercivity of P , we deduce that

‖w̃(t)‖Z ≤
µp,1 + µp,2e

−λt
√
γ

≤ µp,1 + µp,2√
γ

,

where the constant µp,1 and µp,2 depend on P and ρ1.
A similar bound for ỹ follows from the fact that C is
bounded. Clearly, the bounds can be made arbitrarily small
by increasing γ.

The proof for the boundedness of ‖w̃p(t)‖Z and |ỹp(t)| for
t < τ is identical to that for ‖w̃‖Z and |ỹ(t)|. This is because
the error equation for w̃p is identical to (17), except with w̃
therein replaced by w̃p. Thereafter, we infer the bounds on
‖w̃h(t)‖Z and |ỹh(t)| for t < τ using the triangle inequality.
This completes the proof. �

B. Case 2: Am does not permit a coercive P
In this section, we consider the case where a coercive

solution to (3) cannot be found. We prove two results here;
informally speaking, these are either weaker results for the
same set of assumptions as earlier, or equally strong results
under stronger assumptions on the system.

The first result is motivated by [1] (Theorem 2 therein).
We use the conditions of the Kalman-Yakubovich-Popov
(KYP) lemma to derive a strong bound on |ỹ(t)|, similar to
Lemma 7. The KYP lemma is used routinely when dealing
with output feedback problems, as in [1]. In our paper, it
provides a way to deal with non-coercive settings when its
conditions are met.

Theorem 2: Consider the observer error dynamics (17)
and let ‖w‖W,τ < ρw be suitably bounded. Suppose that



there exists a constant F ∈ L(D(Am),Z), P ∈ L(Z) with
P ≥ 0, Q : D(Am) → Z with 〈z, Qz〉 ≥ εQ‖z‖2Z for all
z ∈ D(Am) and an operator E ∈ L(Z,R) such that

A∗mPz + PAmz = −F∗Fz −Qz (23)
EPz = Cz

for all z ∈ D(Am). Then, ‖P 1/2w̃‖Z and |ỹ| are bounded
and, moreover, the bound can be made arbitrarily small by
increasing γ.

Proof: The proof is a continuation of that for Lemma 7. Since
〈Fz, Fz〉 ≥ 0, we recover (21) and (22) to obtain

V (t) ≤ 1

γ

((
α̃(0)>α̃(0)− ρ1

λp

)
e−λpt +

ρ1
λp

)
which, via V (t) ≥ 〈P 1

2 w̃(t), P
1
2 w̃(t)〉, implies that

‖P 1
2 w̃(t)‖Z ≤

√
1

γ

√((
α̃(0)>α̃(0)− ρ1

λp

)
e−λpt +

ρ1
λp

)
(24)

Notice that the term on the RHS is bounded, and can be
made arbitrarily small by reducing γ.

Since ỹ = Cw̃, we get using (23)

|ỹ(t)| = |Cw̃(t)| = ‖EP 1
2P 1

2 w̃(t)‖Z ≤ ‖EP
1
2 ‖‖P 1

2 w̃(t)‖Z

Since ‖EP 1
2 ‖ is bounded, we conclude using (24) that |ỹ(t)|

is bounded and the bound can be made arbitrarily small by
increasing γ. �

Remark 2: If the operator E in Thm. 2 exists, it must sat-
isfy the condition that (Am, E) form a controllable pair. For
the conditions of the KYP lemma to be satisfied, (Am, E , C)
must satisfy a strictly positive real (SPR) condition.

Next, we show the almost asymptotic convergence of ỹ
(the output of the observer error dynamics) to 0 for more
general cases when the stronger assumptions of Thm. 2
cannot be met.

Theorem 3: Suppose that ‖w‖W,τ < ρw for some τ > 0
and some constant ρw > 0. Then, the adaptive laws in (14)
ensure that

∫ t
0
|ỹ(s)|2 ds is bounded for t < τ . Furthermore,

if the solution to (16) exists for all t and ‖w‖W < ρw,
then ỹ converges to 0 almost asymptotically in the sense
of Definition 7.

Proof: We start by defining a state v ∈ R whose dynamics
is defined via

d

dt

(
v2

2

)
= ỹ2, v(0) = 0

Restricting v to satisfy v ≥ 0, this equation has a well-
defined solution for all t.

Recall that I is the identity operator (on Z). Let ε1 be an
arbitarily small number such that I > ε1C∗C. We define a
Lyapunov function

V = V0 + ε1
v2

2

where V0 is the same Lyapunov function as in (18), and P
is chosen to satisfy (3) with Q = I, the identity operator.
Differentiating with respect to time, we get

V̇ ≤ −〈w̃, w̃〉+ ε1ỹ
2 < 0

Hence, V (t) is bounded for t < τ and it follows that v(t)2

is bounded for t < τ .
If the solution to (16) exists for all t, it follows that ‖ỹ‖L2

is bounded. Lemma 2 then implies that ỹ → 0 in the almost
asymptotic sense of Definition 7. �

VI. PERFORMANCE AND STABILITY

A. Stability

In this section, we assert the boundedness of the control
input and the stability of the closed-loop system. These
results, and their proofs, are identical to those in our prior
work [9], [11]. These results are not altered by the lack of
a coercive solution to the Lyapunov function

We start by asserting the boundedness of ŷp in (12).
Lemma 8: Suppose that ‖w‖W,τ ≤ ρw for some ρw > 0.

Then, there exist constants δ0 and δ1 such that ‖ŷp‖L∞,τ ≤
δ0 + δ1‖w‖W,τ .

The boundedness of ŷp allows us to assert that the control
input u(t), given by (6) and (7), is bounded. Let ur =
−HCp(t), the second term on the RHS of (6). Let H(s) =
HC(sI −HA)−1HB .

Lemma 9: Let ‖w‖W,τ < ρw for some τ and ρw > 0.
Then, the control input u(t) is bounded and a C1 function
of time for t < τ . Moreover, there exist constants δ0w ≡
δ0w(H(s), ρ), δ0r ≡ δ0r(H(s), ρ) and δ0u ≡ δ0u(H(s), ρ)
such that ‖ur‖L∞,τ ≤ δ0w‖w‖W,τ + δ0r‖r‖L∞,τ + δ0u.

Finally, we assert the stability of the complete closed-loop
system, in the sense of W-boundedness of signals, using the
following small gain.

Assumption 5 (Small-gain condition): We assume that
there exists a constant ρw, an arbitrarily small εs > 0, and a
stable strictly proper H(s) such that the following inequality
is satisfied:

Mρ0 + ‖T ∗ ‖(ν2(ρw)+δ0r‖r‖L∞ +δ0u)

1− ‖T ∗ ‖(ν1(ρw) + ‖B‖δ0w)
≤ ρw − εs

where the constants have been defined in Lemmas 3 and 9.
Theorem 4: The closed-loop system (8), (12), (13), (14),

(6) and (7) is bounded-input-bounded-state stable in the sense
of W if Assumption 5 is satisfied. Moreover, the solution
exists for all time and ‖w‖W < ρw.

B. Reference signal tracking

Ideally, we would design u(t) to ensure that ŷh(t) in (13)
tracks σ(t) in (11). Guarantees on the tracking error between
y(t) and r(t) depend, therefore, on the provable bounds
on ỹ(t). Notice that Theorems 2 and 3 provide relatively
strong bounds, albeit of different natures, on |ỹ|. In particular,
Theorem 3 shows that it ŷh tracks σ asymptotically, then y
tracks r almost asymptotically.

However, in neither of these cases (Theorems 2 and 3)
is it possible to guarantee a strong bound on ‖w̃(t)‖Z. This



implies that bounds on the transient characteristics of the
output tracking error cannot be asserted, unlike in the case
where P is coercive.

C. Impact on Model-Following

In L1 adaptive control, unlike MRAC, there is no explicitly
prescribed reference model. Instead, we define an auxiliary
reference system

ẇref(t)=Amwref(t)+Buref,r(t)+f(wref), wref(0)=w(0)

yref =Cwref (25)

where f(·) is assumed to be known. For the auxiliary system,
we don’t need state observers for the homogeneous and
particular halves. Instead we write their dynamics as

ẇref,h = Amwref,h + Buref,r
ẇref,p = Amwref,p + f(wref) (26)

and calculate uref,r as

uref,r = −Hcpref(t), ṗref(t) = HApref(t) +HBσref(t)

σref(t) = r(t)− yref,p(t) (27)

Note that this equation is similar to (6).
We define the model-tracking error ew = w − wref , and

the error ep = p− pref . It can be checked that the dynamics
of these variables are given by

ėw = Amew − BHcep + f(w)− f(wref)

ėp = HAep −HBCew −HB ỹp (28)

Subject to the small gain condition in Assumption 5, (28)
represents a stable system driven by ỹp. This allows us to
assert the following result.

Proposition 1: Suppose that that the closed-loop system
is well-posed and bounded for all time. Then, if Am permits
a coercive solution P to (3) or if the conditions of Theorem 2
are satisfied, the error ‖ew‖W is bounded and the bound can
be made arbitrarily small by increasing γ.

The above proposition does not cover the case of Thm 3. It
is not possible to provide strong guarantees on the transient
model-following error in the absence of stronger bounds on
‖ew‖W.

Remark 3 (Implications for MRAC): In traditional model
reference adaptive control (MRAC), adaptive laws are de-
signed by considering the error between the actual system
and a reference model, rather than between the actual system
and an observer. Equation (17) is sufficiently representative
of the dynamics of the model-tracking error. Since the lack
of a coercive solution to (3) prevents us from deriving a
strong bound on w̃, it is not possible to guarantee that the
transient response of the actual system matches that of the
reference model. This is significant for MRAC because the
primary role of the reference model is to specify desirable
closed-loop transient response characteristics.

VII. CONCLUSION

In this paper, we examined adaptive control problems
where the Lyapunov equation used to derive adaptive laws
and closed-loop performance guarantees does not permit a
coercive solution. We showed how, in the absence of coer-
civeness, it is still possible to provide limited guarantees on
the tracking error. We showed, in particular, that is generally
possible to show that the tracking errors decay in a weakly
asymptotic manner. Under extra assumptions resembling
those in the KYP lemma, we derived tracking performance
guarantees closer to the case where the Lyapunov equation
permits a coercive solution. We demonstrated the effect of the
lack of coercivity on the nature of the provably guarantees
for the transient response of the closed-loop system.
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