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Abstract
Reliable estimates of population size and demographic rates are central to assess-
ing the status of threatened species. However, obtaining individual-based demo-
graphic rates requires long-term data, which is often costly and difficult to collect. 
Photographic data offer an inexpensive, noninvasive method for individual-based 
monitoring of species with unique markings, and could therefore increase available de-
mographic data for many species. However, selecting suitable images and identifying 
individuals from photographic catalogs is prohibitively time-consuming. Automated 
identification software can significantly speed up this process. Nevertheless, auto-
mated methods for selecting suitable images are lacking, as are studies comparing the 
performance of the most prominent identification software packages. In this study, 
we develop a framework that automatically selects images suitable for individual 
identification, and compare the performance of three commonly used identification 
software packages; Hotspotter, I3S-Pattern, and WildID. As a case study, we con-
sider the African wild dog, Lycaon pictus, a species whose conservation is limited by 
a lack of cost-effective large-scale monitoring. To evaluate intraspecific variation in 
the performance of software packages, we compare identification accuracy between 
two populations (in Kenya and Zimbabwe) that have markedly different coat colora-
tion patterns. The process of selecting suitable images was automated using convolu-
tional neural networks that crop individuals from images, filter out unsuitable images, 
separate left and right flanks, and remove image backgrounds. Hotspotter had the 
highest image-matching accuracy for both populations. However, the accuracy was 
significantly lower for the Kenyan population (62%), compared to the Zimbabwean 
population (88%). Our automated image preprocessing has immediate application for 
expanding monitoring based on image matching. However, the difference in accuracy 
between populations highlights that population-specific detection rates are likely and 
may influence certainty in derived statistics. For species such as the African wild dog, 
where monitoring is both challenging and expensive, automated individual recogni-
tion could greatly expand and expedite conservation efforts.
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1  |  INTRODUC TION

Reliable estimates of population size and demographic rates are cen-
tral to monitoring the status of threatened species. However, ob-
taining individual-based demographic parameters require long-term 
data, gathered through intensive monitoring that is often costly 
and difficult to conduct (Caughlan,  2001; Horswill et al.,  2018). 
Identification of individuals from photographic records could pro-
vide an inexpensive alternative, and open up the possibility of using 
camera traps and citizen scientists to expand the spatial coverage of 
monitoring (Marnewick et al., 2014; Seber, 1965; Wearn & Glover-
Kapfer,  2019). This method can be used for species where indi-
viduals can be identified from individual markings, including many 
threatened species (Durant et al., 2014; Pierce & Norman, 2016).

Photographic records have already been used to estimate de-
mographic parameters in several endangered species. For example, 
long-term photographic data have been used to obtain survival and 
abundance estimates of tigers, Panthera tigris, and cheetahs, Acinonyx 
jubatus, (Karanth & Nichols, 2011; Kelly et al., 1998), and tourist im-
ages have been used to estimate population sizes of whale sharks, 
Rhincodon typus (Davies et al., 2013). In addition, photographs can 
provide data on individual movement, ranging behavior, and social 
structure (Armstrong et al., 2019; Randić et al., 2012). Many species 
are photographed frequently as part of monitoring programs, and 
by members of the public, including tourists. Such image catalogs 
therefore represent a large, and potentially underused data resource 
that inform conservation action.

Nevertheless, visually identifying all individuals in large image 
databases is time-consuming. To partly automate this process, sev-
eral software packages are available to match images based on an 
individual's unique body markings (e.g., APHIS and WildID, Bolger 
et al.,  2012; Óscar et al.,  2015). These image-matching software 
packages assist the user by ranking potential image matches using 
a similarity score. The algorithms underpinning the software pack-
ages find these potential matches by comparing images on either 
a pixel-by-pixel or feature basis. Pixel-based algorithms, such as 
APHIS, have been successfully applied to numerous species, includ-
ing horseshoe whip snakes, Hemorrhois hippocrepis, and Balearic 
lizards, Podiarcis lilfordi (Óscar et al., 2015; Rotger, 2019). However, 
they are susceptible to differences in camera angle, scale, and crop-
ping (Matthé et al., 2017), and are therefore unsuitable for animals 
that cannot be caught and photographed using a standardized 
methodology. By contrast, feature-based software packages, such 
as WildID (Bolger, 2012), I3S-Pattern (Reijns, 2014), and Hotspotter 
(Crall et al., 2013), match images based on unique features includ-
ing spots, stripes, blotches, or other marks. The algorithms that 

feature-based packages use vary, but all have a higher tolerance to 
differences in camera angle, scale, and lighting conditions than pixel-
based algorithms.

The feature-based packages have been tested on a range of 
taxa (Table  1), and the reported proportion of true matches that 
the software detects, that is, accuracy rate, varies markedly, rang-
ing between 36% and 100%. This variation can be attributed to dif-
ferences in species markings, image quality, size of database, how 
many potential matches were inspected per image, and the image-
matching software used (Crall et al., 2013; Matthé et al., 2017; Nipko 
et al.,  2020). Studies directly comparing the accuracy of different 
feature-based packages are considerably more limited, even though 
the most accurate software differs between species. For example, 
studies on jaguars, Panthera onca, ocelots, Leopardus pardalis, and 
Saimaa ringed seals, Phoca hispida saimensis, found that Hotspotter 
outperformed WildID (Chehrsimin et al., 2018; Nipko et al., 2020), 
while studies on amphibian species found that WildID outperformed 
I3S-Pattern (Matthé et al., 2017; Nipko et al., 2020) and Hospotter 
(Morrison et al.,  2016). The only study that directly compared all 
three software packages found that Hotspotter was superior to I3S-
Pattern and WildID for identifying individual green toads, Bufotes 
viridis (Burgstaller et al., 2021). To date, studies comparing image-
matching accuracy across all three software packages for a mammal 
species are lacking.

Although feature-based algorithms are better at matching im-
ages from different viewpoints than pixel-based algorithms, re-
searchers are still required to select images that are suitable for 
identification, in that the distinctive marks must face the camera and 
must be clearly visible. Furthermore, when these suitable images are 
selected, the user has to crop the region of interest from the image. 
For photos that only contain a single animal, this process can be 
completed in less than 10 s. However, photographs of group-living 
animals are likely to contain multiple animals, some of which might 
be suitable for identification, while others might not. Consequently, 
manually selecting animals whose marks are clearly visible and 
then cropping these can take minutes per photo if photos contain 
a large number of animals. This laborious process is potentially pre-
venting the application of image-matching software to large image 
catalogs (Miguel et al., 2019). Parham et al.  (2018) automated this 
preprocessing for giraffes (Giraffa camelopardalis tippelskirchi and G. 
reticulata), sea turtles (Chelonia mydas and Eretmochelys imbricata), 
humpback whales (Megaptera novaeangliae), and zebras (Equus grevyi 
and E. quaggas), by using convolutional neural networks (CNNs) to 
automatically detect these species, putting boundary boxes around 
individuals, classifying the viewpoint of the image, and partially re-
moving the image background. This work highlights the potential 

K E Y W O R D S
automated individual recognition, Hotspotter, I3S-Pattern, Lycaon pictus, photographic 
identification, WildID

T A X O N O M Y  C L A S S I F I C A T I O N
Conservation ecology, Demography, Population ecology, Zoology



    |  3 of 13de LORM et al.

that machine learning methods have for automating this process, 
although it has only been automated for a few species.

African wild dogs, Lycaon pictus, (hereafter “wild dogs”) have 
unique coat markings, which vary between individuals (Figure  1, 
Maddock & Mills, 1994). Wild dogs are classified as globally endan-
gered, and a lack of cost-effective large-scale monitoring has been 
highlighted as a major limitation in developing effective conserva-
tion strategies (Woodroffe & Sillero-Zubiri,  2020). Consequently, 
there is a pressing need to devise new approaches for monitoring 
wild dogs. Demographic processes of African wild dogs are typically 
studied by monitoring a subset of individuals fitted with tracking col-
lars (Jenkins et al., 2015; Rabaiotti & Woodroffe, 2019; Woodroffe 
et al.,  2019). Such collar-based monitoring is labor-intensive and 
expensive, so upscaling is difficult. However, many wild dog packs 

have already been systematically photographed as part of monitor-
ing programs, and many are also regularly photographed by tour-
ists. Therefore, photographic identification of wild dogs potentially 
offers a noninvasive, cheaper approach for monitoring, and could 
reduce uncertainties in demographic rates and expand the spatial 
representation of monitoring (Maddock & Mills,  1994; Marnewick 
et al., 2014).

Wild dog coat patterns contain tan, white, and black patches that 
can vary considerably between populations. For example, wild dogs 
in eastern African populations tend to have coats consisting of pre-
dominantly black fur, while those in southern African populations 
have relatively more white and tan blotches (Figure  1, McIntosh 
et al.,  2016). In amphibian species with contrasting color patterns 
of similar blotches, WildID, Hotspotter, and I3S-Pattern have been 

TA B L E  1 A selection of studies that tested the identification accuracy achieved by different image-matching software packages.

Species
Software 
package Accuracy (%)

Number of inspected 
ranks per image Reference

Jaguar (Panthera onca) Hotspotter 77 1 Nipko et al. (2020)

Ocelot (Leopardus pardalis) 76

Jaguar WildID 68

Ocelot 63

Thornicroft's giraffe (Giraffa camelopardalis thornicrofti) WildID 71.6 20 Halloran et al. (2015)

Thornicroft's giraffe WildID 100 1 Bolger et al. (2012)

Leopard cat (Prionailurus bengalensis) Hotspotter 100 1 Park et al. (2019)

Jaguar Hotspotter 100 1 Crall et al. (2013)

Giraffe (G. giraffa) 100

Ambystoma opachum I3S-Pattern 30.8–48.4 10 Matthé et al. (2017)

WildID 65.9–82.3

Yellow-bellied toad (Bombina variegata) I3S-Pattern 88.6–92.0

WildID 96.4–97.3

Rio grande cooter (Pseudemys gorzugi) I3S-Pattern 41.94 20 Suriyamongkol and 
Mali (2018)WildID 66.13 20

Green toad (Bufotes viridis) I3S-Pattern ~100 1 Burgstaller et al. (2021)

WildID ~60

Hotspotter ~60

Wyoming toad (Anaxyrus baxteri) WildID 53 20 Morrison et al. (2016)

Hotspotter 36

Italian crested newt (Triturus carnifex) I3S-Pattern 100 5 Sannolo et al. (2016)

F I G U R E  1 An example of an African 
wild dog from the Kenyan study site (left), 
and from the Zimbabwean study site 
(right).
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shown to effectively match images of the same individual, reach-
ing accuracy rates of up to 97% (Burgstaller et al.,  2021; Matthé 
et al., 2017). Therefore, it is likely that feature-based image-matching 
algorithms will effectively identify individual wild dogs from image 
catalogs. However, variation in the degree of contrast in the color 
patterns among populations could affect the image-matching accu-
racy, and the best performing software package could therefore also 
vary between populations.

In this study, we develop a method to automatically isolate and 
crop images from catalogs that are suitable for automated image 
matching. We then use these images to compare the efficacy of 
three feature-based software packages with different underlying 
image-matching algorithms (I3S-Pattern, Hotspotter, and WildID; 
Bolger, 2012; Crall et al., 2013; Reijns, 2014). Finally, we compare 
whether there is a difference in the accuracy of each software pack-
age between two populations with differing coat patterns.

2  |  METHODS

2.1  |  Image datasets

To examine whether the performance of feature-based image-
matching software packages varies for different populations of 
African wild dogs, we considered image catalogs from two wild 
dog populations, one that spans Laikipia, Samburu, and Isiolo 
Counties in Kenya (37°2′ E, 0°6′ N) and another from the Savé Valley 
Conservancy in Zimbabwe (32°4′ E, 20°3′ S). The Kenyan dataset 
contained images taken between 2004 and 2017 (n = 9139), and 
the Zimbabwean dataset contained images taken between 2010 
and 2013 (n = 2066). In Kenya, these images were taken with 10 
different cameras (Olympus© C765UZ, Canon© PowerShot A720IS, 
EOS Digital Rebel XT, 10D, 40D, 60D, Fujifilm© FinePix S5500, 
Kodak© Easyshare Z1015IS, Nikon© D70s, and Nikon© Coolpix90). 
In Zimbabwe, they were taken with five different cameras (Canon© 
EOS 450D, 20D, Digital Rebel XT, Panasonic© DMC-FZ20, and 
Zoran© Coach). Both datasets were collected as part of long-term 
monitoring programs, and contained images of both single wild dogs 
and groups of wild dogs, ranging in their posture from lying down 
to walking.

2.2  |  Preprocessing steps

To automate the selection of suitable images for image matching, we 
developed a five-step image preprocessing method (Figure 2).

2.2.1  |  Detecting and cropping individuals 
from images

The aim of the first step in the image preprocessing method was to 
automatically detect and crop wild dog individuals from the images. 

To do this, we used the Microsoft AI for Earth MegaDetector 
(hereafter “MegaDetector”, Beery et al.,  2019) that automatically 
detects and crops animals in images. We assessed the efficacy of this 
method by visually recording the presence of wild dogs in a subset 
of 1060 images from the Kenyan dataset and 246 images from the 
Zimbabwean dataset, and comparing the results to the cropped 
images (hereafter “crops”) produced by the MegaDetector for the 
same subset of images. In this way, we obtained the MegaDetector's 
number of true positives (wild dogs that were successfully detected), 
false positives (detections which did not contain a wild dog), and 
false negatives (wild dogs which were found by visual inspection, 
but not by the MegaDetector). All images contained wild dogs, so 
there were no true negatives in the dataset.

2.2.2  |  Aspect-ratio filtering

The aim of the second step in the image preprocessing method was 
to filter out images that were unsuitable for identification due to the 
individual's body rotation in the image, or because of occlusion of the 
animal's flank by another object or individual. This down-selection of 
images ensures that all images depict individuals from roughly the 
same viewpoint, to maximize the confidence with which images can 
be matched. We considered crops suitable for image matching if ap-
proximately ≥80% of the individual's flank was visible, and the angle 
between the image axis and animal's flank was less than approxi-
mately 30°, that is, the flank was facing the camera. Crops where 
the angle between the image axis and the animal's flank was more 
than 30°, and crops where a part of the flank is obscured by an-
other animal were expected to be narrower than crops suitable for 
image matching and therefore demonstrate a relatively low aspect 
ratio. By contrast, crops where the flank was concealed because 
the individual was lying down, or obscured by vegetation, were ex-
pected to be considerably wider and demonstrate a relatively high 
aspect ratio. These criteria were visually assessed for the crops that 
the MegaDetector produced in the previous step. We then calcu-
lated the range of aspect ratios for suitable crops, that is, where an 
unobscured flank was facing the camera, using the “jpeg” package 
(Urbanek, 2021) in program R (version 4.0.4, R Core Team, 2020). 
Images with an aspect ratio outside of this range were removed from 
the dataset.

2.2.3  |  Selecting standing individuals

Not all sitting or lying individuals could be filtered out solely using 
image aspect ratios. Therefore, the aim of the third step in the image 
preprocessing method was to filter out the remaining crops that 
were unsuitable for identification because the individual's body po-
sition, that is, sitting or lying, obscured the full coat pattern. To do 
this, we trained a CNN to classify crops as either a standing wild dog 
or a sitting wild dog. To obtain data to train this image classifier, we 
used the full image catalogs from both sites (n = 11,205). The crops 
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produced by steps 1 and 2 of the preprocessing (n = 21,745) were 
then manually classified as containing either a standing wild dog 
(n = 13,500) or a sitting wild dog (n = 6512). We removed all crops 
depicting anything other than wild dogs (e.g., birds, rocks, or logs), or 
wild dogs where it could not be confirmed whether they were stand-
ing or sitting, because only a small part of the animal was visible 
(n = 1733). We trained a CNN using the remaining 20,012 preproc-
essed crops, to classify these as containing either a standing wild dog 
or not. The CNN was made using TensorFlow (Abadi et al., 2016) in 
Python (Version 3.6.10). The model was trained with 16,012 crops, 
validated with 2000 crops, and tested with 2000 crops.

CNNs consist of convolutional layers (Albawi et al., 2017): filter 
layers which digitally “slide” over the image and aim to recognize 

specific features. The convolutional layers pass a map of specific 
features to the next layer, a max pooling layer. The max pooling 
layer reduces the resolution of this feature map, thus reducing the 
importance of the position of features within this map. This step 
can help prevent the model from becoming too fine-tuned to the 
training data, which causes overfitting and reduces the generaliz-
ability of the classifier. After this, a dropout layer is applied, which 
randomly removes 50% of connections made between layers. 
This benefits the model by teaching it to recognize robust fea-
tures, again preventing overfitting. The data are then passed on 
to a flattening layer, which turns the data into a one-dimensional 
string, which is passed onto the final two layers. First, the string 
goes through a layer which connects all the data from the previous 

F I G U R E  2 A flowchart describing the 
image preprocessing steps applied to the 
combined Zimbabwean and Kenyan image 
catalog, illustrated using two example 
images. Images outlined in red are filtered 
out of the dataset.
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layer and produces prediction scores from the inputs. Second, an-
other layer turns these scores into a single prediction: standing, or 
not standing (for a more detailed description of CNNs, see Albawi 
et al., 2017; O'Shea & Nash, 2015).

The number of convolutional layers and the size of the filters that 
they comprise was optimized using KerasTuner (O'Malley et al., 2019). 
KerasTuner runs CNNs with a range of values, and automatically selects 
the model with the highest validation accuracy, that is, the proportion of 
correct classifications on the validation database. KerasTuner ran CNNs 
with between one and three convolutional layers, with 16, 32, and 64 
filters per layer, and with a kernel size (the number of pixels in the filters) 
of 3 × 3 pixels. This was done for 20 different random combinations for 
the number of convolutional layers and number of filters per layer. Test 
runs showed that the maximum accuracy was reached before the 70th 
epoch, and therefore each combination was run for 70 epochs, mean-
ing that the training data were passed through the CNN 70 times. The 
learning rate of the model, that is, the speed at which the model im-
proved itself, was also optimized with KerasTuner, testing a rate of 10−3, 
10−4, and 10−5, with the optimal number of convolutional layers. The 
model with the highest test accuracy was selected as the final model.

2.2.4  |  Separating left and right flanks

The aim of the fourth step in the image preprocessing method was to 
separate crops depicting left and right flanks of a wild dog, because 
image-matching software packages can only match images for one 
side of the animal. To do this, we made another CNN to automate the 
separation of left and right flanks. To obtain training data for this CNN, 
we visually classified all crops of standing dogs used for the CNN in 
step three (n = 12,357) whose side was facing the camera, as showing 
the right (n = 6140) or left flank (n = 6217). We optimized this CNN's 
parameters as described in step three of the image preprocessing 
method, using KerasTuner to find the optimal number of convolutional 
layers and learning rate. Each CNN ran for 100 epochs, because test 
runs showed that this model took longer than the previous model to 
reach its maximum accuracy. The first layer of this CNN was an aver-
age pooling layer, a layer which reduced the resolution of the input 
images by a factor of four, which prevents overfitting. This layer was 
added to this CNN, because preliminary runs showed this CNN was 
more prone to overfitting than the CNN developed in step three of the 
image preprocessing method. We used 9857 crops as training data, 
1246 as validation data, and 1246 as testing data. All other layers were 
equal to the previous CNN. For the full model conditions, see Table S1.

2.2.5  |  Image background removal

Lastly, we removed the image backgrounds of suitable images using 
the “rembg” package in Python (Gatis,  2020). We removed image 
backgrounds to remove the risk of the background confounding 
image-matching results, while eliminating the need to manually se-
lect an individual's flank.

2.3  |  Image-matching software packages

We compared the performance of three feature-based image-
matching software packages that differ in the underlying algorithms 
used to match individuals: I3S-Pattern (Reijns, 2014), WildID (Bolger 
et al.,  2012), and Hotspotter (Crall et al.,  2013). All three assist 
the user by listing potential matches for each image, ranked by a 
similarity score. The user then confirms which of these potential 
matches are true matches.

2.3.1  |  I3S-Pattern

I3S-Pattern uses the Speeded Up Robust Features (SURF) algorithm 
(Bay et al., 2008; Reijns, 2014) that selects key points and compares 
each image pair in a dataset based on the size and position of these 
key points. The software requires the user to select three reference 
points per image, as well as the outline of the animal. As reference 
points, we used the base of the tail, the withers (i.e., the ridge 
between the shoulder blades), and the base of the neck (Figure S1).

2.3.2  | WildID

WildID uses the Scale Invariant Feature Transform (SIFT) algorithm 
(Bolger et al., 2012; Lowe, 2004). It requires the user to input crops 
of the region of interest: the part of the animal which bears unique 
marks. The SIFT algorithm detects salient features regardless of 
their scale and viewpoint. For each image pair in a database, these 
features are compared, both in how the features look and how the 
different features are positioned relative to each other. Based on 
these two characteristics, a goodness-of-fit score is computed per 
image pair.

2.3.3  |  Hotspotter

Hotspotter also uses the SIFT algorithm to conduct pairwise com-
parisons (Crall et al., 2013; Lowe, 2004). Users enter either entire 
pictures of individuals and select the rectangular region of inter-
est, or image crops containing the region of interest. Hotspotter 
supplements the pairwise comparisons used by WildID with a one-
vs-many approach that uses a Local Naive Bayes Nearest Neighbor 
method (McCann & Lowe, 2012) to take all of the images in the 
database into account when computing similarity scores.

2.4  |  Performance of the image-matching software

To test which image-matching software most accurately matched 
crops of the same individual, we created two separate datasets for 
the Kenyan and Zimbabwean populations. To select suitable crops, 
we used the four-step image preprocessing method described 
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above. We also visually inspected discarded crops to avoid missing 
suitable crops. We then manually identified individuals from the 
dataset of right flank crops, to provide a standard against which 
automated identifications could be compared, and randomly se-
lected two crops per individual. To prevent similar lighting condi-
tions and posture from creating a bias towards matching images 
of the same individual, we ensured selected images were taken 
on different days. The two generated datasets consisted of 104 
individuals from the Kenyan population and 48 individuals from 
the Zimbabwean population. To increase the dataset for the 
Zimbabwean population, we also included left-flank crops for 41 
individuals and horizontally mirrored the crops to enable compari-
son with the right-flank crops. This increased the total number of 
unique flanks from the Zimbabwean population to 89. The coat 
pattern of wild dogs differs between right and left flanks, and we 
have no reason to expect that including left-flank crops would bias 
our results.

We analyzed the Kenyan dataset with each of the three image-
matching software packages: Hotspotter, WildID, and I3S-Pattern. We 
then analyzed the Zimbabwean dataset with Hotspotter and WildID. 
I3S-Pattern was not tested with the Zimbabwean dataset because 
tests with the Kenyan dataset identified it to be considerably less ac-
curate than the other software packages and considerably more time-
consuming to input images and assign reference points.

We also examined whether image background removal in-
creased the accuracy of WildID and Hotspotter. I3S-Pattern requires 
users to manually select the outline of the animal in the program 
and therefore was not included in this analysis, because it does not 
take the background into account in its default use. We compared 
the image-matching results obtained using images from which we 
manually cropped just the individuals' flanks with those based on 
crops of complete individuals from which the background was au-
tomatically removed (see Figure  S2). For three of the 178 images 
from the Zimbabwe site, the algorithm did not crop out the wild dog, 
instead cropped out vegetation in the foreground. For these images, 
a manually cropped flank of the wild dog was used.

To compare the image-matching performance of each software 
package, we examined the 10 crops identified as most similar to the 
sample individual. We used the first 10-ranked images, as the best 
performing software's accuracy started leveling off around this rank, 
indicating that inspecting the first 10 image matches could maximize 
recognition rates, while minimizing the time spent visually inspecting 
and confirming potential matches. We used a mixed effects logis-
tic regression to test for differences in the efficacy of the software 
packages. Here, the response variable was a binary variable describ-
ing whether or not an individual was successfully matched in the 
first 10-ranked images, and software package was the explanatory 
variable. Individual identity was included as a random effect to avoid 
pseudoreplication. Post-hoc pairwise comparisons were carried out 
using Tukey contrasts. This analysis was performed separately for 
the Zimbabwean and Kenyan datasets. Models were run using the 
“lme4” (v 1.1-27.1, Bates et al., 2015) package in program R (R Core 
Team, 2020, version 4.0.4).

Previous studies have shown that the image-matching perfor-
mance of different software packages is affected by database size 
(Matthé et al., 2017). Therefore, to compare software performance 
on wild dogs from Kenyan and Zimbabwean populations, we ran-
domly selected a subset of the Kenyan individuals to equal the num-
ber of identified individuals in the Zimbabwean dataset (n = 89). We 
then used the best performing software package identified in the 
previous step of the analysis to rerun the image-matching analysis 
for both datasets. Differences in software performance between 
the two populations were then assessed using a mixed effects lo-
gistic regression with a binomial link function. The response vari-
able in the model was whether or not a match was detected in the 
first 10-ranked images, and study site (Kenya or Zimbabwe) was the 
explanatory variable. To correct for possible differences in image 
quality, two proxies for image quality were included in the model. 
First, we included image size (total number of pixels of the crop) 
as a continuous predictor. Second, all images were visually scored 
on a scale of 1–3, based on how well their distinct marks could 
be recognized. This approach followed Nipko et al.  (2020), where 
score 1 was given to images that were out of focus, of a moving 
animal, or badly lit, score 2 was given to images of intermediate 
quality, and score 3 was given to images where all features were 
clearly visible (e.g., see Figure S3). Score was included as a fixed 
effect and individual identity was included as a random effect. 
Furthermore, a Wilcoxon rank sum test was performed to test for 
differences between the quality score of crops from Kenya and 
Zimbabwe. The model was fit using the “lme4” package (v 1.1-27.1, 
Bates et al., 2015) in R (version 4.0.4, R Core Team, 2020).

3  |  RESULTS

3.1  |  Automatic detection and aspect ratio filtering

The Microsoft AI for Earth MegaDetector, which is designed to auto-
matically detect and crop animals from images, produced 2652 crops 
from the test dataset of 1306 images, meaning that on average, ap-
proximately two detections were made per image. Of these, 2523 
crops contained a wild dog (true positive rate = 0.951), 129 were false 
detections, such as rocks or vegetation (false positive rate = 0.049), 
while 531 wild dogs were not successfully detected (false negative 
rate = 0.174). However, only five of these false negatives were im-
ages suitable for image matching. By contrast, the flank of the wild 
dog was not visible in the other 526 false negatives. In total, 722 
crops were suitable for identification using image-matching soft-
ware, of which five were not detected by the automated processing 
(false negative rate = 0.007). For the 2652 crops that were produced 
by the MegaDetector, all crops considered suitable for identifica-
tion on visual inspection had an aspect ratio between 0.65 and 2.25. 
Applying the MegaDetector to the entire image dataset (n = 11,205), 
as opposed to the test dataset, resulted in 21,745 crops. Of these, 
5788 (21%) fell outside the suitable range of aspect ratios and were 
therefore removed from the dataset.
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3.2  |  Using convolutional neural nets to filter out 
unsuitable images

The optimal conditions for the CNN trained to recognize wild dogs 
standing up were two convolutional layers with 32 and 64 filters, 
respectively, and a learning rate of 10−5. This model achieved a 
training accuracy of 100%, a validation accuracy of 91% (95% CI 
90–92), and a testing accuracy of 90% (95% CI 88–91, Table 2). For 
the CNN designed to separate images of the left and right flanks, 
the optimal conditions were three convolutional layers, one with 
64 filters and two with 32 filters, with a learning rate of 10−4. Its 
training, validation, and testing accuracy were 100%, 96% (95% CI 
95–97), and 95% (95% CI 94–96), respectively.

3.3  |  Performance of the image-matching 
software packages

For both the Kenyan and Zimbabwean datasets, Hotspotter 
achieved the highest image-matching accuracy (Figure  3). For the 
Kenyan dataset, using Hotspotter with crops of the full individual 
from which the background was removed, was most effective. This 
method detected 62% of the matches in the 10 highest ranked 
crops (Figure 3b). This was significantly higher than using manually 
cropped flanks of the individual in both WildID (z = 5.0, p < .01) and 
Hotspotter (z = 2.8, p = .046), as well as crops of the full individual 
in WildID (z = 4.7, p < .01) and I3S-Pattern (z = 5.0, p < .01).For the 
Zimbabwean dataset, Hotspotter detected 88% of matches within 
the first 10-ranked images when the background was removed from 
crops of the full individual (Figure 3a). The matching performance 
was significantly lower when crops of just the flank were used 
(z = 2.7, p = .03). Hotspotter with background removal performed 
significantly better than WildID with background removal, (z = 4.7, 
p < .01), and WildID with crops of the flanks (z = 5.1, p < .01).

The probability of accurate image matching occurring within the 
first 10-ranked images was significantly higher for wild dogs from 
Zimbabwe than for wild dogs from Kenya (OR = 9.64, 95% CI 3.65–
15.63, Figure  4). The proportion of matched individuals identified 
in this analysis was not significantly associated with image size 
(X2

1 = 0.16, p = .69) or image quality (ORQuality Score 2/Quality Score 1 = 0.89, 
95% CI −2.26 to 4.04, ORQuality Score 3/Quality Score 1 = 1.82, 95% CI −2.20 

to 5.83). In addition, the image quality score did not differ between 
the populations (W = 15,008, p = .33).

4  |  DISCUSSION

This study presents a novel framework for automating the indi-
vidual recognition of species with distinct marks. The framework 
includes an automated preprocessing method for identifying im-
ages suitable for image matching, and then using image-matching 
software for individual recognition. The automated preprocessing 
method consists of five steps that (1) crop all images containing ani-
mals from a large database, (2) filter out a portion of the unsuitable 
images based on image aspect ratio, (3) use CNNs to select images 
of standing individuals (accuracy of 90%), (4) separate images into 
left and right flanks (accuracy of 95%), and (5) remove image back-
grounds. As a case study, we applied the described methods to an 
image catalog of African wild dogs and found that Hotspotter (Crall 
et al.,  2013) was the most efficient software package for match-
ing images. Image-matching performance was also significantly 
improved by using the full image of an individual from which the 
background was removed, as opposed to just the cropped flank. 
Finally, we found that image-matching performance differed be-
tween populations of wild dogs with different coat coloration 
patterns. This work showed that image-matching software could 
become a powerful method for monitoring populations of African 
wild dogs. However, caution is needed as detection rates are likely 
to vary between—and even within—populations. This could affect 
the certainty of derived population-specific demographic param-
eters, such that careful consideration is needed to account for 
individual heterogeneity in detection when large variation in coat 
coloration occurs within a population.

The automated preprocessing method presented in this study 
could eliminate the need to manually select suitable images for 
image matching and crop individuals from original photographs. This 
method thus enables processing of large image catalogs where se-
lection using visual inspection would be extremely time-consuming. 
We found that the method does discard a small number of suitable 
images, and therefore in situations where it is important to include 
all suitable images, the preprocessing method outlined here could 
also be used as a presorting approach. The user could then visually 
review images that were classified as not suitable, to prevent usable 
images from being discarded.

The described method of preprocessing is particularly useful for 
wild dogs, since an individual's posture varies substantially between 
images. Images taken by tourists provide an opportunity to bolster 
and spatially extend image catalogs. However, these images are also 
likely to contain many images unsuitable for identification, as they 
are not taken for the purpose of identification. Accordingly, filtering 
unsuitable images from these datasets using an automated approach 
could be especially timesaving. The described preprocessing method 
is therefore highly suitable to species targeted by wildlife-watching 
excursions, that have distinctive marks and where individual 

TA B L E  2 The accuracy and 95% confidence intervals of the best 
performing Convolution Neural Networks aiming to classify images 
of African wild dog into (1) those depicting an individual standing 
up and not standing up and (2) those depicting left or right flanks.

Model
Training 
accuracy (%)

Validation 
accuracy (%)

Testing 
accuracy (%)

Standing/not 
standing 
classifier

100 91 (90–92) 90 (88–91)

Left/right flank 
classifier

100 96 (94–97) 95 (94–96)
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posture influences image suitability, for example, cheetahs, leopards 
(Panthera pardus), and tigers.

Hotspotter outperformed I3S-Pattern and WildID at matching 
images of individual wild dogs. This finding agrees with studies on 
green toads that compared Hotspotter and I3S-Pattern (Burgstaller 
et al.,  2021), as well as studies comparing Hotspotter and WildID 
(Burgstaller et al., 2021; Chehrsimin et al., 2018; Nipko et al., 2020). 
Nevertheless, this result is not ubiquitous. WildID was superior to 
Hotspotter at matching images for a blotched amphibian species, 
the Wyoming toad, Anaxyrus baxteri (Morrison et al.,  2016). This 
indicates that the identification performance of different software 
packages is dependent on species, even when two species' pat-
terns show similarities. Consequently, we recommend that all three 

software packages are tested on new species before deciding on 
which one to use.

Using crops of full individuals from which the background was 
removed significantly increased the image-matching accuracy of 
Hotspotter, compared to using crops of just individuals' flanks. This 
method also speeds up image preprocessing by eliminating the need 
to manually crop the region of interest. The improved accuracy is 
likely caused by two factors. First, removing the background pre-
vents images being matched based on similar backgrounds, as the 
flanks are not perfect rectangles, meaning that crops of the flank also 
contain some background (see Figure S2). Second, using complete 
individuals allow images to be matched based on unique features on 
the legs, in addition to the flanks. This result is in line with studies 

F I G U R E  3 The proportion of true 
matches in the dataset that were detected 
within the top 20-ranked images using 
different software packages for (a) 89 
Zimbabwean and (b) 104 Kenyan African 
wild dogs, that were visually matched as a 
reference.
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on Saimaa ringed seals, Pusa hispida, and Thornicroft's giraffes, G. 
camelopardalis thornicrofti, which found evidence that using a full 
individual from which the background is removed, could result in 
a higher accuracy (Chehrsimin et al.,  2018; Halloran et al., 2015). 
However, neither of these previous studies statistically tested 
whether background removal increased identification accuracy. Our 
study therefore provides the first statistical evidence that back-
ground removal can increase the performance of image-matching 
software. This also indicates that the common usage of Hotspotter, 
in which a rectangular region of interest is manually cropped (e.g., 
Dunbar et al., 2021; Nipko et al., 2020), could be improved by remov-
ing the image background.

Hotspotter was significantly better at matching images from 
Zimbabwean wild dogs, compared to Kenyan individuals. The higher 
image-matching accuracy found for the Zimbabwean population is 
likely to reflect the regional difference in wild dog coat coloration 
patterns. The Kenyan population has darker, more uniform coats, 
consisting of large black patches, often with few white or tan areas 
(Daniels et al.,  2022; McIntosh et al.,  2016). By contrast, the pro-
portion of tan fur is ~1.5 times higher, and the proportion of white 
fur is almost seven times higher for the Zimbabwean population 
(Figure 1, Daniels et al., 2022). Therefore, the higher contrast within 
the patterns of the Zimbabwean wild dogs could make it easier for 
the software to match images of these individuals. The identified 
relationship between image-matching performance and software 
package remained unaltered when image quality and image size 
were included in analyses, and there was no significant difference 
between the image quality scores between the Zimbabwean and 
Kenyan populations. The image quality score approach was modeled 

after Nipko et al. (2020), who found that it significantly affected the 
probability of matching ocelot and jaguar individuals. As a result, 
we are confident that the differences in coat coloration patterns 
between wild dogs from Zimbabwe and Kenya reflect variation in 
identification performance between populations.

Interpopulation variation in image-matching performance indi-
cates that detection probabilities derived from using this approach 
will not be directly comparable between populations. Since the 
probability of finding an accurate image match depends on individual 
coat pattern, this finding highlights that individual heterogeneity in 
detection may also occur if large variation in coat coloration occurs 
within a population. Capture-mark-recapture techniques assume 
individuals' experience equal detection probability across a popu-
lation (White & Burnham, 2009). Therefore, individual coat pattern 
may also need accounting for when deriving survival estimates using 
such analysis. This also applies to other species whose coat pattern 
varies regionally, such as Asian golden cats, Catopuma temminckii, 
and ocelots (Allen et al., 2011; Khan et al., 2017). Furthermore, the 
coat patterns of other wild dog populations can differ considerably 
from the two populations included in this study (Daniels et al., 2022, 
McIntosh et al., 2016). Consequently, we advocate that estimating 
a population-specific image-matching accuracy score becomes an 
essential prerequisite step for applying these techniques in different 
locations.

Automatically preprocessing wild dog image datasets and using 
image-matching software facilitates the use of archived and citizen 
science image catalogs where visually identifying all individuals 
would be extremely time-consuming. Although the best perform-
ing image-matching software did not detect all matches, it could be 
used to identify a large proportion of the individuals in a dataset. 
Afterwards, individuals that were not matched to any other images 
could be visually identified, to prevent missing actual matches. Using 
image-matching software in this way still saves time by rapidly iden-
tifying a large portion of the matches, without compromising on ac-
curacy. Furthermore, it is plausible that the likelihood of correctly 
detecting matching images increases if more than two images per 
individual are included, for example, if multiple viewpoints per in-
dividual are present in a dataset, the probability of matching these 
is expected to increase (Crall et al.,  2013). Our accuracy values 
therefore represent a conservative estimate of Hotspotter's true 
accuracy.

Our study indicates that image matching could provide a valu-
able new approach for monitoring wild dogs. A combination of 
citizen science and image matching has already been successfully 
employed to monitor other species, such as Blanding's turtles, 
Emydoidea blandingii, and whale sharks (Araujo et al., 2017; Cross 
et al., 2021). Similarly, previous studies have used tourist images to 
estimate the population size of wild dogs in Kruger National Park, 
South Africa (Marnewick et al.,  2014). Combining citizen science, 
image-matching software, and capture–recapture methods there-
fore has the potential to improve the understanding of wild dog 
demography. However, more research is needed to investigate 
whether photographic data could improve our understanding of 

F I G U R E  4 The proportion of image matches detected within the 
10 highest ranked images by Hotspotter for the Zimbabwean and 
Kenyan populations (n = 89 individuals for both populations). Error 
bars denote 95% confidence intervals.
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wild dog demography beyond population size, by estimating param-
eters such as pack structure, dispersal rates, and death and birth 
rates. This can be achieved by applying image-matching software 
to existing image datasets, to assess whether they generate enough 
data to estimate key demographic parameters, or whether more 
intensive monitoring—for example, using long-term camera trap 
surveys—would be necessary.

In conclusion, we have developed a new automated method for 
preprocessing image datasets, by automatically cropping animals 
from images, removing images in which the individuals' posture hin-
ders identification, separating left and right flanks, and removing the 
image background. This framework will enable large image datasets 
to be analyzed rapidly, thereby expanding monitoring efforts and ex-
pediting conservation action. Furthermore, we have shown how well 
different image-matching software packages perform on African 
wild dogs. Hotspotter outperformed the other software packages, 
while its performance differed between two populations which ex-
hibit intraspecific variation in their coat patterns. Our preprocessing 
method, in combination with Hotspotter, has immediate application 
in research and monitoring efforts for wild dogs and other species. 
Data obtained in this way could provide cost-effective large-scale 
monitoring for endangered species, therefore supporting the imple-
mentation of effective conservation.
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