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Abstract
Reliable	 estimates	 of	 population	 size	 and	demographic	 rates	 are	 central	 to	 assess-
ing	 the	 status	 of	 threatened	 species.	 However,	 obtaining	 individual-	based	 demo-
graphic	 rates	 requires	 long-	term	data,	which	 is	often	costly	and	difficult	 to	collect.	
Photographic	 data	 offer	 an	 inexpensive,	 noninvasive	 method	 for	 individual-	based	
monitoring	of	species	with	unique	markings,	and	could	therefore	increase	available	de-
mographic	data	for	many	species.	However,	selecting	suitable	images	and	identifying	
individuals	 from	photographic	catalogs	 is	prohibitively	 time-	consuming.	Automated	
identification	software	can	significantly	speed	up	 this	process.	Nevertheless,	auto-
mated	methods	for	selecting	suitable	images	are	lacking,	as	are	studies	comparing	the	
performance	of	the	most	prominent	identification	software	packages.	In	this	study,	
we	 develop	 a	 framework	 that	 automatically	 selects	 images	 suitable	 for	 individual	
identification,	and	compare	the	performance	of	three	commonly	used	identification	
software	 packages;	Hotspotter,	 I3S-	Pattern,	 and	WildID.	As	 a	 case	 study,	we	 con-
sider	the	African	wild	dog,	Lycaon pictus,	a	species	whose	conservation	is	limited	by	
a	 lack	of	cost-	effective	 large-	scale	monitoring.	To	evaluate	 intraspecific	variation	in	
the	performance	of	software	packages,	we	compare	identification	accuracy	between	
two	populations	(in	Kenya	and	Zimbabwe)	that	have	markedly	different	coat	colora-
tion	patterns.	The	process	of	selecting	suitable	images	was	automated	using	convolu-
tional	neural	networks	that	crop	individuals	from	images,	filter	out	unsuitable	images,	
separate	 left	and	 right	 flanks,	and	 remove	 image	backgrounds.	Hotspotter	had	 the	
highest	 image-	matching	accuracy	for	both	populations.	However,	 the	accuracy	was	
significantly	 lower	 for	 the	Kenyan	population	 (62%),	 compared	 to	 the	Zimbabwean	
population	(88%).	Our	automated	image	preprocessing	has	immediate	application	for	
expanding	monitoring	based	on	image	matching.	However,	the	difference	in	accuracy	
between	populations	highlights	that	population-	specific	detection	rates	are	likely	and	
may	influence	certainty	in	derived	statistics.	For	species	such	as	the	African	wild	dog,	
where	monitoring	 is	both	challenging	and	expensive,	automated	 individual	recogni-
tion	could	greatly	expand	and	expedite	conservation	efforts.
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1  |  INTRODUC TION

Reliable	estimates	of	population	size	and	demographic	rates	are	cen-
tral	 to	monitoring	 the	 status	of	 threatened	 species.	However,	 ob-
taining	individual-	based	demographic	parameters	require	long-	term	
data,	 gathered	 through	 intensive	 monitoring	 that	 is	 often	 costly	
and	 difficult	 to	 conduct	 (Caughlan,	 2001;	 Horswill	 et	 al.,	 2018).	
Identification	 of	 individuals	 from	photographic	 records	 could	 pro-
vide	an	inexpensive	alternative,	and	open	up	the	possibility	of	using	
camera	traps	and	citizen	scientists	to	expand	the	spatial	coverage	of	
monitoring	(Marnewick	et	al.,	2014;	Seber,	1965;	Wearn	&	Glover-	
Kapfer,	 2019).	 This	 method	 can	 be	 used	 for	 species	 where	 indi-
viduals	can	be	 identified	 from	 individual	markings,	 including	many	
threatened	species	(Durant	et	al.,	2014;	Pierce	&	Norman,	2016).

Photographic	 records	 have	 already	 been	 used	 to	 estimate	 de-
mographic	parameters	in	several	endangered	species.	For	example,	
long-	term	photographic	data	have	been	used	to	obtain	survival	and	
abundance	estimates	of	tigers,	Panthera tigris,	and	cheetahs,	Acinonyx 
jubatus,	(Karanth	&	Nichols,	2011;	Kelly	et	al.,	1998),	and	tourist	im-
ages	have	been	used	to	estimate	population	sizes	of	whale	sharks,	
Rhincodon typus	 (Davies	et	al.,	2013).	 In	addition,	photographs	can	
provide	data	on	 individual	movement,	 ranging	behavior,	and	social	
structure	(Armstrong	et	al.,	2019;	Randić	et	al.,	2012).	Many	species	
are	photographed	 frequently	 as	 part	 of	monitoring	programs,	 and	
by	members	of	 the	public,	 including	 tourists.	 Such	 image	catalogs	
therefore	represent	a	large,	and	potentially	underused	data	resource	
that	inform	conservation	action.

Nevertheless,	 visually	 identifying	 all	 individuals	 in	 large	 image	
databases	is	time-	consuming.	To	partly	automate	this	process,	sev-
eral	software	packages	are	available	to	match	 images	based	on	an	
individual's	unique	body	markings	 (e.g.,	APHIS	and	WildID,	Bolger	
et	 al.,	 2012;	 Óscar	 et	 al.,	 2015).	 These	 image-	matching	 software	
packages	assist	the	user	by	ranking	potential	 image	matches	using	
a	similarity	score.	The	algorithms	underpinning	the	software	pack-
ages	 find	 these	 potential	matches	 by	 comparing	 images	 on	 either	
a	 pixel-	by-	pixel	 or	 feature	 basis.	 Pixel-	based	 algorithms,	 such	 as	
APHIS,	have	been	successfully	applied	to	numerous	species,	includ-
ing	 horseshoe	 whip	 snakes,	 Hemorrhois hippocrepis,	 and	 Balearic	
lizards,	Podiarcis lilfordi	(Óscar	et	al.,	2015;	Rotger,	2019).	However,	
they	are	susceptible	to	differences	in	camera	angle,	scale,	and	crop-
ping	(Matthé	et	al.,	2017),	and	are	therefore	unsuitable	for	animals	
that	 cannot	 be	 caught	 and	 photographed	 using	 a	 standardized	
methodology.	By	contrast,	 feature-	based	 software	packages,	 such	
as	WildID	(Bolger,	2012),	I3S-	Pattern	(Reijns,	2014),	and	Hotspotter	
(Crall	et	al.,	2013),	match	 images	based	on	unique	features	 includ-
ing	 spots,	 stripes,	 blotches,	 or	 other	 marks.	 The	 algorithms	 that	

feature-	based	packages	use	vary,	but	all	have	a	higher	tolerance	to	
differences	in	camera	angle,	scale,	and	lighting	conditions	than	pixel-	
based	algorithms.

The	 feature-	based	 packages	 have	 been	 tested	 on	 a	 range	 of	
taxa	 (Table 1),	 and	 the	 reported	 proportion	 of	 true	 matches	 that	
the	software	detects,	 that	 is,	accuracy	rate,	varies	markedly,	rang-
ing	between	36%	and	100%.	This	variation	can	be	attributed	to	dif-
ferences	 in	 species	markings,	 image	quality,	 size	of	database,	how	
many	potential	matches	were	inspected	per	image,	and	the	image-	
matching	software	used	(Crall	et	al.,	2013;	Matthé	et	al.,	2017;	Nipko	
et	 al.,	2020).	 Studies	 directly	 comparing	 the	 accuracy	 of	 different	
feature-	based	packages	are	considerably	more	limited,	even	though	
the	most	accurate	software	differs	between	species.	For	example,	
studies	 on	 jaguars,	Panthera onca,	 ocelots,	 Leopardus pardalis,	 and	
Saimaa	ringed	seals,	Phoca hispida saimensis,	found	that	Hotspotter	
outperformed	WildID	(Chehrsimin	et	al.,	2018;	Nipko	et	al.,	2020),	
while	studies	on	amphibian	species	found	that	WildID	outperformed	
I3S-	Pattern	(Matthé	et	al.,	2017;	Nipko	et	al.,	2020)	and	Hospotter	
(Morrison	 et	 al.,	2016).	 The	 only	 study	 that	 directly	 compared	 all	
three	software	packages	found	that	Hotspotter	was	superior	to	I3S-	
Pattern	 and	WildID	 for	 identifying	 individual	 green	 toads,	Bufotes 
viridis	 (Burgstaller	et	al.,	2021).	To	date,	 studies	comparing	 image-	
matching	accuracy	across	all	three	software	packages	for	a	mammal	
species	are	lacking.

Although	 feature-	based	 algorithms	 are	 better	 at	matching	 im-
ages	 from	 different	 viewpoints	 than	 pixel-	based	 algorithms,	 re-
searchers	 are	 still	 required	 to	 select	 images	 that	 are	 suitable	 for	
identification,	in	that	the	distinctive	marks	must	face	the	camera	and	
must	be	clearly	visible.	Furthermore,	when	these	suitable	images	are	
selected,	the	user	has	to	crop	the	region	of	interest	from	the	image.	
For	 photos	 that	 only	 contain	 a	 single	 animal,	 this	 process	 can	 be	
completed	 in	 less	 than	10 s.	However,	photographs	of	group-	living	
animals	are	likely	to	contain	multiple	animals,	some	of	which	might	
be	suitable	for	identification,	while	others	might	not.	Consequently,	
manually	 selecting	 animals	 whose	 marks	 are	 clearly	 visible	 and	
then	cropping	these	can	take	minutes	per	photo	 if	photos	contain	
a	large	number	of	animals.	This	laborious	process	is	potentially	pre-
venting	the	application	of	image-	matching	software	to	large	image	
catalogs	 (Miguel	et	al.,	2019).	Parham	et	al.	 (2018)	automated	 this	
preprocessing	for	giraffes	(Giraffa camelopardalis tippelskirchi	and	G. 
reticulata),	 sea	 turtles	 (Chelonia mydas	 and	Eretmochelys imbricata),	
humpback	whales	(Megaptera novaeangliae),	and	zebras	(Equus grevyi 
and	E. quaggas),	by	using	convolutional	neural	networks	 (CNNs)	 to	
automatically	detect	these	species,	putting	boundary	boxes	around	
individuals,	classifying	the	viewpoint	of	the	image,	and	partially	re-
moving	 the	 image	 background.	 This	 work	 highlights	 the	 potential	
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that	machine	 learning	methods	 have	 for	 automating	 this	 process,	
although	it	has	only	been	automated	for	a	few	species.

African	 wild	 dogs,	 Lycaon pictus,	 (hereafter	 “wild	 dogs”)	 have	
unique	 coat	 markings,	 which	 vary	 between	 individuals	 (Figure 1,	
Maddock	&	Mills,	1994).	Wild	dogs	are	classified	as	globally	endan-
gered,	and	a	lack	of	cost-	effective	large-	scale	monitoring	has	been	
highlighted	as	a	major	 limitation	 in	developing	effective	conserva-
tion	 strategies	 (Woodroffe	 &	 Sillero-	Zubiri,	 2020).	 Consequently,	
there	 is	a	pressing	need	 to	devise	new	approaches	 for	monitoring	
wild	dogs.	Demographic	processes	of	African	wild	dogs	are	typically	
studied	by	monitoring	a	subset	of	individuals	fitted	with	tracking	col-
lars	(Jenkins	et	al.,	2015;	Rabaiotti	&	Woodroffe,	2019;	Woodroffe	
et	 al.,	 2019).	 Such	 collar-	based	 monitoring	 is	 labor-	intensive	 and	
expensive,	so	upscaling	 is	difficult.	However,	many	wild	dog	packs	

have	already	been	systematically	photographed	as	part	of	monitor-
ing	 programs,	 and	many	 are	 also	 regularly	 photographed	 by	 tour-
ists.	Therefore,	photographic	identification	of	wild	dogs	potentially	
offers	 a	 noninvasive,	 cheaper	 approach	 for	monitoring,	 and	 could	
reduce	 uncertainties	 in	 demographic	 rates	 and	 expand	 the	 spatial	
representation	 of	monitoring	 (Maddock	&	Mills,	1994;	Marnewick	
et	al.,	2014).

Wild	dog	coat	patterns	contain	tan,	white,	and	black	patches	that	
can	vary	considerably	between	populations.	For	example,	wild	dogs	
in	eastern	African	populations	tend	to	have	coats	consisting	of	pre-
dominantly	 black	 fur,	while	 those	 in	 southern	African	 populations	
have	 relatively	 more	 white	 and	 tan	 blotches	 (Figure 1,	 McIntosh	
et	 al.,	2016).	 In	 amphibian	 species	with	 contrasting	 color	 patterns	
of	similar	blotches,	WildID,	Hotspotter,	and	 I3S-	Pattern	have	been	

TA B L E  1 A	selection	of	studies	that	tested	the	identification	accuracy	achieved	by	different	image-	matching	software	packages.

Species
Software 
package Accuracy (%)

Number of inspected 
ranks per image Reference

Jaguar	(Panthera onca) Hotspotter 77 1 Nipko	et	al.	(2020)

Ocelot	(Leopardus pardalis) 76

Jaguar WildID 68

Ocelot 63

Thornicroft's	giraffe	(Giraffa camelopardalis thornicrofti) WildID 71.6 20 Halloran	et	al.	(2015)

Thornicroft's	giraffe WildID 100 1 Bolger	et	al.	(2012)

Leopard	cat	(Prionailurus bengalensis) Hotspotter 100 1 Park	et	al.	(2019)

Jaguar Hotspotter 100 1 Crall	et	al.	(2013)

Giraffe	(G. giraffa) 100

Ambystoma opachum I3S-	Pattern 30.8–	48.4 10 Matthé	et	al.	(2017)

WildID 65.9–	82.3

Yellow-	bellied	toad	(Bombina variegata) I3S-	Pattern 88.6–	92.0

WildID 96.4–	97.3

Rio	grande	cooter	(Pseudemys gorzugi) I3S-	Pattern 41.94 20 Suriyamongkol	and	
Mali	(2018)WildID 66.13 20

Green	toad	(Bufotes viridis) I3S-	Pattern ~100 1 Burgstaller	et	al.	(2021)

WildID ~60

Hotspotter ~60

Wyoming	toad	(Anaxyrus baxteri) WildID 53 20 Morrison	et	al.	(2016)

Hotspotter 36

Italian	crested	newt	(Triturus carnifex) I3S-	Pattern 100 5 Sannolo	et	al.	(2016)

F I G U R E  1 An	example	of	an	African	
wild	dog	from	the	Kenyan	study	site	(left),	
and	from	the	Zimbabwean	study	site	
(right).
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shown	 to	 effectively	match	 images	 of	 the	 same	 individual,	 reach-
ing	 accuracy	 rates	 of	 up	 to	 97%	 (Burgstaller	 et	 al.,	2021;	Matthé	
et	al.,	2017).	Therefore,	it	is	likely	that	feature-	based	image-	matching	
algorithms	will	effectively	identify	individual	wild	dogs	from	image	
catalogs.	However,	variation	 in	the	degree	of	contrast	 in	the	color	
patterns	among	populations	could	affect	the	image-	matching	accu-
racy,	and	the	best	performing	software	package	could	therefore	also	
vary	between	populations.

In	this	study,	we	develop	a	method	to	automatically	isolate	and	
crop	 images	 from	 catalogs	 that	 are	 suitable	 for	 automated	 image	
matching.	We	 then	 use	 these	 images	 to	 compare	 the	 efficacy	 of	
three	 feature-	based	 software	 packages	 with	 different	 underlying	
image-	matching	 algorithms	 (I3S-	Pattern,	 Hotspotter,	 and	 WildID;	
Bolger,	2012;	Crall	 et	 al.,	2013;	Reijns,	2014).	 Finally,	we	compare	
whether	there	is	a	difference	in	the	accuracy	of	each	software	pack-
age	between	two	populations	with	differing	coat	patterns.

2  |  METHODS

2.1  |  Image datasets

To	 examine	 whether	 the	 performance	 of	 feature-	based	 image-	
matching	 software	 packages	 varies	 for	 different	 populations	 of	
African	 wild	 dogs,	 we	 considered	 image	 catalogs	 from	 two	 wild	
dog	 populations,	 one	 that	 spans	 Laikipia,	 Samburu,	 and	 Isiolo	
Counties	in	Kenya	(37°2′ E,	0°6′ N)	and	another	from	the	Savé	Valley	
Conservancy	 in	 Zimbabwe	 (32°4′ E,	 20°3′ S).	 The	 Kenyan	 dataset	
contained	 images	 taken	 between	 2004	 and	 2017	 (n = 9139),	 and	
the	 Zimbabwean	 dataset	 contained	 images	 taken	 between	 2010	
and	 2013	 (n = 2066).	 In	 Kenya,	 these	 images	 were	 taken	 with	 10	
different	cameras	(Olympus©	C765UZ,	Canon©	PowerShot	A720IS,	
EOS	 Digital	 Rebel	 XT,	 10D,	 40D,	 60D,	 Fujifilm©	 FinePix	 S5500,	
Kodak©	Easyshare	Z1015IS,	Nikon©	D70s,	and	Nikon©	Coolpix90).	
In	Zimbabwe,	they	were	taken	with	five	different	cameras	(Canon©	
EOS	 450D,	 20D,	 Digital	 Rebel	 XT,	 Panasonic©	 DMC-	FZ20,	 and	
Zoran©	Coach).	Both	datasets	were	collected	as	part	of	 long-	term	
monitoring	programs,	and	contained	images	of	both	single	wild	dogs	
and	groups	of	wild	dogs,	 ranging	 in	their	posture	from	 lying	down	
to	walking.

2.2  |  Preprocessing steps

To	automate	the	selection	of	suitable	images	for	image	matching,	we	
developed	a	five-	step	image	preprocessing	method	(Figure 2).

2.2.1  |  Detecting	and	cropping	individuals	
from	images

The	aim	of	the	first	step	in	the	image	preprocessing	method	was	to	
automatically	detect	and	crop	wild	dog	individuals	from	the	images.	

To	 do	 this,	 we	 used	 the	 Microsoft	 AI	 for	 Earth	 MegaDetector	
(hereafter	 “MegaDetector”,	 Beery	 et	 al.,	 2019)	 that	 automatically	
detects	and	crops	animals	in	images.	We	assessed	the	efficacy	of	this	
method	by	visually	recording	the	presence	of	wild	dogs	in	a	subset	
of	1060	images	from	the	Kenyan	dataset	and	246	images	from	the	
Zimbabwean	 dataset,	 and	 comparing	 the	 results	 to	 the	 cropped	
images	 (hereafter	 “crops”)	 produced	by	 the	MegaDetector	 for	 the	
same	subset	of	images.	In	this	way,	we	obtained	the	MegaDetector's	
number	of	true	positives	(wild	dogs	that	were	successfully	detected),	
false	 positives	 (detections	which	 did	 not	 contain	 a	wild	 dog),	 and	
false	 negatives	 (wild	 dogs	which	were	 found	 by	 visual	 inspection,	
but	not	by	 the	MegaDetector).	All	 images	contained	wild	dogs,	 so	
there	were	no	true	negatives	in	the	dataset.

2.2.2  |  Aspect-	ratio	filtering

The	aim	of	the	second	step	in	the	image	preprocessing	method	was	
to	filter	out	images	that	were	unsuitable	for	identification	due	to	the	
individual's	body	rotation	in	the	image,	or	because	of	occlusion	of	the	
animal's	flank	by	another	object	or	individual.	This	down-	selection	of	
images	ensures	that	all	 images	depict	 individuals	 from	roughly	the	
same	viewpoint,	to	maximize	the	confidence	with	which	images	can	
be	matched.	We	considered	crops	suitable	for	image	matching	if	ap-
proximately	≥80%	of	the	individual's	flank	was	visible,	and	the	angle	
between	 the	 image	 axis	 and	 animal's	 flank	was	 less	 than	 approxi-
mately	30°,	 that	 is,	 the	 flank	was	 facing	 the	camera.	Crops	where	
the	angle	between	the	image	axis	and	the	animal's	flank	was	more	
than	 30°,	 and	 crops	where	 a	 part	 of	 the	 flank	 is	 obscured	 by	 an-
other	animal	were	expected	to	be	narrower	than	crops	suitable	for	
image	matching	and	therefore	demonstrate	a	relatively	 low	aspect	
ratio.	 By	 contrast,	 crops	 where	 the	 flank	 was	 concealed	 because	
the	individual	was	lying	down,	or	obscured	by	vegetation,	were	ex-
pected	to	be	considerably	wider	and	demonstrate	a	relatively	high	
aspect	ratio.	These	criteria	were	visually	assessed	for	the	crops	that	
the	MegaDetector	produced	 in	 the	previous	 step.	We	 then	calcu-
lated	the	range	of	aspect	ratios	for	suitable	crops,	that	is,	where	an	
unobscured	flank	was	facing	the	camera,	using	the	“jpeg”	package	
(Urbanek,	2021)	 in	program	R	 (version	4.0.4,	R	Core	Team,	2020).	
Images	with	an	aspect	ratio	outside	of	this	range	were	removed	from	
the dataset.

2.2.3  |  Selecting	standing	individuals

Not	all	sitting	or	lying	individuals	could	be	filtered	out	solely	using	
image	aspect	ratios.	Therefore,	the	aim	of	the	third	step	in	the	image	
preprocessing	 method	 was	 to	 filter	 out	 the	 remaining	 crops	 that	
were	unsuitable	for	identification	because	the	individual's	body	po-
sition,	that	is,	sitting	or	lying,	obscured	the	full	coat	pattern.	To	do	
this,	we	trained	a	CNN	to	classify	crops	as	either	a	standing	wild	dog	
or	a	sitting	wild	dog.	To	obtain	data	to	train	this	image	classifier,	we	
used	the	full	image	catalogs	from	both	sites	(n = 11,205).	The	crops	
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produced	by	 steps	1	and	2	of	 the	preprocessing	 (n = 21,745)	were	
then	 manually	 classified	 as	 containing	 either	 a	 standing	 wild	 dog	
(n = 13,500)	or	 a	 sitting	wild	dog	 (n = 6512).	We	 removed	all	 crops	
depicting	anything	other	than	wild	dogs	(e.g.,	birds,	rocks,	or	logs),	or	
wild	dogs	where	it	could	not	be	confirmed	whether	they	were	stand-
ing	 or	 sitting,	 because	 only	 a	 small	 part	 of	 the	 animal	was	 visible	
(n = 1733).	We	trained	a	CNN	using	the	remaining	20,012	preproc-
essed	crops,	to	classify	these	as	containing	either	a	standing	wild	dog	
or	not.	The	CNN	was	made	using	TensorFlow	(Abadi	et	al.,	2016)	in	
Python	(Version	3.6.10).	The	model	was	trained	with	16,012	crops,	
validated	with	2000	crops,	and	tested	with	2000	crops.

CNNs	consist	of	convolutional	layers	(Albawi	et	al.,	2017):	filter	
layers	which	digitally	“slide”	over	the	image	and	aim	to	recognize	

specific	features.	The	convolutional	layers	pass	a	map	of	specific	
features	 to	 the	next	 layer,	 a	max	pooling	 layer.	The	max	pooling	
layer	reduces	the	resolution	of	this	feature	map,	thus	reducing	the	
importance	of	the	position	of	features	within	this	map.	This	step	
can	help	prevent	the	model	from	becoming	too	fine-	tuned	to	the	
training	data,	which	causes	overfitting	and	reduces	the	generaliz-
ability	of	the	classifier.	After	this,	a	dropout	layer	is	applied,	which	
randomly	 removes	 50%	 of	 connections	 made	 between	 layers.	
This	 benefits	 the	model	 by	 teaching	 it	 to	 recognize	 robust	 fea-
tures,	 again	preventing	overfitting.	The	data	are	 then	passed	on	
to	a	flattening	layer,	which	turns	the	data	into	a	one-	dimensional	
string,	which	is	passed	onto	the	final	two	layers.	First,	the	string	
goes	through	a	layer	which	connects	all	the	data	from	the	previous	

F I G U R E  2 A	flowchart	describing	the	
image	preprocessing	steps	applied	to	the	
combined	Zimbabwean	and	Kenyan	image	
catalog,	illustrated	using	two	example	
images.	Images	outlined	in	red	are	filtered	
out	of	the	dataset.
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layer	and	produces	prediction	scores	from	the	inputs.	Second,	an-
other	layer	turns	these	scores	into	a	single	prediction:	standing,	or	
not	standing	(for	a	more	detailed	description	of	CNNs,	see	Albawi	
et	al.,	2017;	O'Shea	&	Nash,	2015).

The	number	of	convolutional	layers	and	the	size	of	the	filters	that	
they	comprise	was	optimized	using	KerasTuner	(O'Malley	et	al.,	2019).	
KerasTuner	runs	CNNs	with	a	range	of	values,	and	automatically	selects	
the	model	with	the	highest	validation	accuracy,	that	is,	the	proportion	of	
correct	classifications	on	the	validation	database.	KerasTuner	ran	CNNs	
with	between	one	and	three	convolutional	layers,	with	16,	32,	and	64	
filters	per	layer,	and	with	a	kernel	size	(the	number	of	pixels	in	the	filters)	
of	3 × 3	pixels.	This	was	done	for	20	different	random	combinations	for	
the	number	of	convolutional	layers	and	number	of	filters	per	layer.	Test	
runs	showed	that	the	maximum	accuracy	was	reached	before	the	70th	
epoch,	and	therefore	each	combination	was	run	for	70	epochs,	mean-
ing	that	the	training	data	were	passed	through	the	CNN	70	times.	The	
learning	rate	of	the	model,	 that	 is,	 the	speed	at	which	the	model	 im-
proved	itself,	was	also	optimized	with	KerasTuner,	testing	a	rate	of	10−3,	
10−4,	and	10−5,	with	the	optimal	number	of	convolutional	 layers.	The	
model	with	the	highest	test	accuracy	was	selected	as	the	final	model.

2.2.4  |  Separating	left	and	right	flanks

The	aim	of	the	fourth	step	in	the	image	preprocessing	method	was	to	
separate	crops	depicting	 left	and	right	flanks	of	a	wild	dog,	because	
image-	matching	 software	 packages	 can	 only	 match	 images	 for	 one	
side	of	the	animal.	To	do	this,	we	made	another	CNN	to	automate	the	
separation	of	left	and	right	flanks.	To	obtain	training	data	for	this	CNN,	
we	visually	classified	all	crops	of	standing	dogs	used	for	the	CNN	in	
step	three	(n = 12,357)	whose	side	was	facing	the	camera,	as	showing	
the	right	(n = 6140)	or	left	flank	(n = 6217).	We	optimized	this	CNN's	
parameters	 as	 described	 in	 step	 three	 of	 the	 image	 preprocessing	
method,	using	KerasTuner	to	find	the	optimal	number	of	convolutional	
layers	and	learning	rate.	Each	CNN	ran	for	100	epochs,	because	test	
runs	showed	that	this	model	took	longer	than	the	previous	model	to	
reach	its	maximum	accuracy.	The	first	layer	of	this	CNN	was	an	aver-
age	pooling	 layer,	a	 layer	which	 reduced	 the	 resolution	of	 the	 input	
images	by	a	factor	of	four,	which	prevents	overfitting.	This	layer	was	
added	to	this	CNN,	because	preliminary	runs	showed	this	CNN	was	
more	prone	to	overfitting	than	the	CNN	developed	in	step	three	of	the	
image	preprocessing	method.	We	used	9857	crops	as	 training	data,	
1246	as	validation	data,	and	1246	as	testing	data.	All	other	layers	were	
equal	to	the	previous	CNN.	For	the	full	model	conditions,	see	Table S1.

2.2.5  |  Image	background	removal

Lastly,	we	removed	the	image	backgrounds	of	suitable	images	using	
the	 “rembg”	 package	 in	 Python	 (Gatis,	2020).	We	 removed	 image	
backgrounds	 to	 remove	 the	 risk	 of	 the	 background	 confounding	
image-	matching	results,	while	eliminating	the	need	to	manually	se-
lect	an	individual's	flank.

2.3  |  Image- matching software packages

We	 compared	 the	 performance	 of	 three	 feature-	based	 image-	
matching	software	packages	that	differ	in	the	underlying	algorithms	
used	to	match	individuals:	I3S-	Pattern	(Reijns,	2014),	WildID	(Bolger	
et	 al.,	 2012),	 and	 Hotspotter	 (Crall	 et	 al.,	 2013).	 All	 three	 assist	
the	 user	 by	 listing	 potential	matches	 for	 each	 image,	 ranked	 by	 a	
similarity	 score.	 The	 user	 then	 confirms	 which	 of	 these	 potential	
matches	are	true	matches.

2.3.1  |  I3S-	Pattern

I3S-	Pattern	uses	the	Speeded	Up	Robust	Features	(SURF)	algorithm	
(Bay	et	al.,	2008;	Reijns,	2014)	that	selects	key	points	and	compares	
each	image	pair	in	a	dataset	based	on	the	size	and	position	of	these	
key	points.	The	software	requires	the	user	to	select	three	reference	
points	per	image,	as	well	as	the	outline	of	the	animal.	As	reference	
points,	 we	 used	 the	 base	 of	 the	 tail,	 the	 withers	 (i.e.,	 the	 ridge	
between	the	shoulder	blades),	and	the	base	of	the	neck	(Figure S1).

2.3.2  | WildID

WildID	uses	the	Scale	Invariant	Feature	Transform	(SIFT)	algorithm	
(Bolger	et	al.,	2012;	Lowe,	2004).	It	requires	the	user	to	input	crops	
of	the	region	of	interest:	the	part	of	the	animal	which	bears	unique	
marks.	 The	 SIFT	 algorithm	 detects	 salient	 features	 regardless	 of	
their	scale	and	viewpoint.	For	each	image	pair	in	a	database,	these	
features	are	compared,	both	in	how	the	features	look	and	how	the	
different	 features	 are	 positioned	 relative	 to	 each	 other.	 Based	 on	
these	two	characteristics,	a	goodness-	of-	fit	score	 is	computed	per	
image	pair.

2.3.3  |  Hotspotter

Hotspotter	also	uses	the	SIFT	algorithm	to	conduct	pairwise	com-
parisons	(Crall	et	al.,	2013;	Lowe,	2004).	Users	enter	either	entire	
pictures	of	 individuals	and	select	the	rectangular	region	of	 inter-
est,	or	 image	crops	containing	the	region	of	 interest.	Hotspotter	
supplements	the	pairwise	comparisons	used	by	WildID	with	a	one-	
vs-	many	approach	that	uses	a	Local	Naive	Bayes	Nearest	Neighbor	
method	 (McCann	&	Lowe,	2012)	 to	 take	all	of	 the	 images	 in	 the	
database	into	account	when	computing	similarity	scores.

2.4  |  Performance of the image- matching software

To	test	which	image-	matching	software	most	accurately	matched	
crops	of	the	same	individual,	we	created	two	separate	datasets	for	
the	Kenyan	and	Zimbabwean	populations.	To	select	suitable	crops,	
we	 used	 the	 four-	step	 image	 preprocessing	 method	 described	
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above.	We	also	visually	inspected	discarded	crops	to	avoid	missing	
suitable	crops.	We	then	manually	 identified	 individuals	 from	the	
dataset	of	 right	 flank	crops,	 to	provide	a	standard	against	which	
automated	 identifications	 could	 be	 compared,	 and	 randomly	 se-
lected	two	crops	per	individual.	To	prevent	similar	lighting	condi-
tions	and	posture	 from	creating	a	bias	 towards	matching	 images	
of	 the	 same	 individual,	we	 ensured	 selected	 images	were	 taken	
on	different	days.	The	 two	generated	datasets	 consisted	of	104	
individuals	 from	 the	Kenyan	 population	 and	 48	 individuals	 from	
the	 Zimbabwean	 population.	 To	 increase	 the	 dataset	 for	 the	
Zimbabwean	population,	we	also	 included	 left-	flank	crops	for	41	
individuals	and	horizontally	mirrored	the	crops	to	enable	compari-
son	with	the	right-	flank	crops.	This	increased	the	total	number	of	
unique	 flanks	 from	 the	 Zimbabwean	 population	 to	 89.	 The	 coat	
pattern	of	wild	dogs	differs	between	right	and	left	flanks,	and	we	
have	no	reason	to	expect	that	including	left-	flank	crops	would	bias	
our	results.

We	analyzed	 the	Kenyan	dataset	with	each	of	 the	 three	 image-	
matching	software	packages:	Hotspotter,	WildID,	and	I3S-	Pattern.	We	
then	analyzed	the	Zimbabwean	dataset	with	Hotspotter	and	WildID.	
I3S-	Pattern	 was	 not	 tested	 with	 the	 Zimbabwean	 dataset	 because	
tests	with	the	Kenyan	dataset	identified	it	to	be	considerably	less	ac-
curate	than	the	other	software	packages	and	considerably	more	time-	
consuming	to	input	images	and	assign	reference	points.

We	 also	 examined	 whether	 image	 background	 removal	 in-
creased	the	accuracy	of	WildID	and	Hotspotter.	I3S-	Pattern	requires	
users	 to	manually	 select	 the	outline	 of	 the	 animal	 in	 the	 program	
and	therefore	was	not	included	in	this	analysis,	because	it	does	not	
take	the	background	into	account	 in	 its	default	use.	We	compared	
the	 image-	matching	 results	 obtained	using	 images	 from	which	we	
manually	 cropped	 just	 the	 individuals'	 flanks	with	 those	 based	on	
crops	of	complete	 individuals	 from	which	the	background	was	au-
tomatically	 removed	 (see	 Figure S2).	 For	 three	 of	 the	 178	 images	
from	the	Zimbabwe	site,	the	algorithm	did	not	crop	out	the	wild	dog,	
instead	cropped	out	vegetation	in	the	foreground.	For	these	images,	
a	manually	cropped	flank	of	the	wild	dog	was	used.

To	compare	the	image-	matching	performance	of	each	software	
package,	we	examined	the	10	crops	identified	as	most	similar	to	the	
sample	individual.	We	used	the	first	10-	ranked	images,	as	the	best	
performing	software's	accuracy	started	leveling	off	around	this	rank,	
indicating	that	inspecting	the	first	10	image	matches	could	maximize	
recognition	rates,	while	minimizing	the	time	spent	visually	inspecting	
and	confirming	potential	matches.	We	used	a	mixed	effects	 logis-
tic	regression	to	test	for	differences	in	the	efficacy	of	the	software	
packages.	Here,	the	response	variable	was	a	binary	variable	describ-
ing	whether	 or	 not	 an	 individual	was	 successfully	matched	 in	 the	
first	10-	ranked	images,	and	software	package	was	the	explanatory	
variable.	Individual	identity	was	included	as	a	random	effect	to	avoid	
pseudoreplication.	Post-	hoc	pairwise	comparisons	were	carried	out	
using	Tukey	contrasts.	This	 analysis	was	performed	separately	 for	
the	Zimbabwean	and	Kenyan	datasets.	Models	were	run	using	the	
“lme4”	(v	1.1-	27.1,	Bates	et	al.,	2015)	package	in	program	R	(R	Core	
Team,	2020,	version	4.0.4).

Previous	studies	have	shown	that	the	 image-	matching	perfor-
mance	of	different	software	packages	is	affected	by	database	size	
(Matthé	et	al.,	2017).	Therefore,	to	compare	software	performance	
on	wild	dogs	from	Kenyan	and	Zimbabwean	populations,	we	ran-
domly	selected	a	subset	of	the	Kenyan	individuals	to	equal	the	num-
ber	of	identified	individuals	in	the	Zimbabwean	dataset	(n = 89).	We	
then	used	the	best	performing	software	package	identified	in	the	
previous	step	of	the	analysis	to	rerun	the	image-	matching	analysis	
for	both	datasets.	Differences	 in	software	performance	between	
the	two	populations	were	then	assessed	using	a	mixed	effects	lo-
gistic	regression	with	a	binomial	 link	function.	The	response	vari-
able	in	the	model	was	whether	or	not	a	match	was	detected	in	the	
first	10-	ranked	images,	and	study	site	(Kenya	or	Zimbabwe)	was	the	
explanatory	variable.	To	correct	 for	possible	differences	 in	 image	
quality,	two	proxies	for	image	quality	were	included	in	the	model.	
First,	we	 included	 image	 size	 (total	number	of	pixels	of	 the	crop)	
as	a	continuous	predictor.	Second,	all	images	were	visually	scored	
on	 a	 scale	 of	 1–	3,	 based	 on	 how	well	 their	 distinct	marks	 could	
be	recognized.	This	approach	followed	Nipko	et	al.	 (2020),	where	
score	1	was	given	 to	 images	 that	were	out	of	 focus,	of	a	moving	
animal,	 or	 badly	 lit,	 score	 2	was	 given	 to	 images	 of	 intermediate	
quality,	and	score	3	was	given	to	 images	where	all	 features	were	
clearly	 visible	 (e.g.,	 see	Figure S3).	 Score	was	 included	as	 a	 fixed	
effect	 and	 individual	 identity	 was	 included	 as	 a	 random	 effect.	
Furthermore,	a	Wilcoxon	rank	sum	test	was	performed	to	test	for	
differences	 between	 the	 quality	 score	 of	 crops	 from	 Kenya	 and	
Zimbabwe.	The	model	was	fit	using	the	“lme4”	package	(v	1.1-	27.1,	
Bates	et	al.,	2015)	in	R	(version	4.0.4,	R	Core	Team,	2020).

3  |  RESULTS

3.1  |  Automatic detection and aspect ratio filtering

The	Microsoft	AI	for	Earth	MegaDetector,	which	is	designed	to	auto-
matically	detect	and	crop	animals	from	images,	produced	2652	crops	
from	the	test	dataset	of	1306	images,	meaning	that	on	average,	ap-
proximately	 two	detections	were	made	per	 image.	Of	 these,	2523	
crops	contained	a	wild	dog	(true	positive	rate = 0.951),	129	were	false	
detections,	such	as	rocks	or	vegetation	(false	positive	rate = 0.049),	
while	531	wild	dogs	were	not	successfully	detected	(false	negative	
rate = 0.174).	However,	only	 five	of	 these	 false	negatives	were	 im-
ages	suitable	for	image	matching.	By	contrast,	the	flank	of	the	wild	
dog	was	not	visible	 in	 the	other	526	 false	negatives.	 In	 total,	 722	
crops	 were	 suitable	 for	 identification	 using	 image-	matching	 soft-
ware,	of	which	five	were	not	detected	by	the	automated	processing	
(false	negative	rate = 0.007).	For	the	2652	crops	that	were	produced	
by	 the	MegaDetector,	 all	 crops	 considered	 suitable	 for	 identifica-
tion	on	visual	inspection	had	an	aspect	ratio	between	0.65	and	2.25.	
Applying	the	MegaDetector	to	the	entire	image	dataset	(n = 11,205),	
as	opposed	to	the	test	dataset,	resulted	in	21,745	crops.	Of	these,	
5788	(21%)	fell	outside	the	suitable	range	of	aspect	ratios	and	were	
therefore	removed	from	the	dataset.



8 of 13  |     de LORM et al.

3.2  |  Using convolutional neural nets to filter out 
unsuitable images

The	optimal	conditions	for	the	CNN	trained	to	recognize	wild	dogs	
standing	up	were	 two	convolutional	 layers	with	32	and	64	 filters,	
respectively,	 and	 a	 learning	 rate	 of	 10−5.	 This	 model	 achieved	 a	
training	 accuracy	 of	 100%,	 a	 validation	 accuracy	 of	 91%	 (95%	 CI	
90–	92),	and	a	testing	accuracy	of	90%	(95%	CI	88–	91,	Table 2).	For	
the	CNN	designed	 to	 separate	 images	of	 the	 left	and	 right	 flanks,	
the	 optimal	 conditions	 were	 three	 convolutional	 layers,	 one	 with	
64	 filters	 and	 two	with	32	 filters,	with	 a	 learning	 rate	of	10−4. Its 
training,	validation,	and	testing	accuracy	were	100%,	96%	(95%	CI	
95–	97),	and	95%	(95%	CI	94–	96),	respectively.

3.3  |  Performance of the image- matching 
software packages

For	 both	 the	 Kenyan	 and	 Zimbabwean	 datasets,	 Hotspotter	
achieved	 the	 highest	 image-	matching	 accuracy	 (Figure 3).	 For	 the	
Kenyan	dataset,	 using	Hotspotter	with	 crops	of	 the	 full	 individual	
from	which	the	background	was	removed,	was	most	effective.	This	
method	 detected	 62%	 of	 the	 matches	 in	 the	 10	 highest	 ranked	
crops	(Figure 3b).	This	was	significantly	higher	than	using	manually	
cropped	flanks	of	the	individual	in	both	WildID	(z = 5.0,	p < .01)	and	
Hotspotter	 (z = 2.8,	p = .046),	as	well	as	crops	of	 the	 full	 individual	
in	WildID	 (z = 4.7,	 p < .01)	 and	 I3S-	Pattern	 (z = 5.0,	 p < .01).For	 the	
Zimbabwean	dataset,	Hotspotter	detected	88%	of	matches	within	
the	first	10-	ranked	images	when	the	background	was	removed	from	
crops	of	 the	 full	 individual	 (Figure 3a).	The	matching	performance	
was	 significantly	 lower	 when	 crops	 of	 just	 the	 flank	 were	 used	
(z = 2.7,	 p = .03).	 Hotspotter	 with	 background	 removal	 performed	
significantly	better	 than	WildID	with	background	 removal,	 (z = 4.7,	
p < .01),	and	WildID	with	crops	of	the	flanks	(z = 5.1,	p < .01).

The	probability	of	accurate	image	matching	occurring	within	the	
first	10-	ranked	 images	was	significantly	higher	 for	wild	dogs	 from	
Zimbabwe	than	for	wild	dogs	from	Kenya	(OR = 9.64,	95%	CI	3.65–	
15.63,	 Figure 4).	 The	proportion	of	matched	 individuals	 identified	
in	 this	 analysis	 was	 not	 significantly	 associated	 with	 image	 size	
(X2

1 = 0.16,	p = .69)	or	image	quality	(ORQuality	Score	2/Quality	Score	1 = 0.89,	
95%	CI	−2.26	to	4.04,	ORQuality	Score	3/Quality	Score	1 = 1.82,	95%	CI	−2.20	

to	5.83).	In	addition,	the	image	quality	score	did	not	differ	between	
the	populations	(W = 15,008,	p = .33).

4  |  DISCUSSION

This	 study	 presents	 a	 novel	 framework	 for	 automating	 the	 indi-
vidual	 recognition	of	 species	with	distinct	marks.	The	 framework	
includes	 an	 automated	 preprocessing	method	 for	 identifying	 im-
ages	suitable	for	 image	matching,	and	then	using	 image-	matching	
software	for	individual	recognition.	The	automated	preprocessing	
method	consists	of	five	steps	that	(1)	crop	all	images	containing	ani-
mals	from	a	large	database,	(2)	filter	out	a	portion	of	the	unsuitable	
images	based	on	image	aspect	ratio,	(3)	use	CNNs	to	select	images	
of	standing	individuals	(accuracy	of	90%),	(4)	separate	images	into	
left	and	right	flanks	(accuracy	of	95%),	and	(5)	remove	image	back-
grounds.	As	a	case	study,	we	applied	the	described	methods	to	an	
image	catalog	of	African	wild	dogs	and	found	that	Hotspotter	(Crall	
et	 al.,	2013)	was	 the	most	efficient	 software	package	 for	match-
ing	 images.	 Image-	matching	 performance	 was	 also	 significantly	
improved	by	using	 the	 full	 image	of	an	 individual	 from	which	 the	
background	was	 removed,	 as	 opposed	 to	 just	 the	 cropped	 flank.	
Finally,	 we	 found	 that	 image-	matching	 performance	 differed	 be-
tween	 populations	 of	 wild	 dogs	 with	 different	 coat	 coloration	
patterns.	 This	work	 showed	 that	 image-	matching	 software	 could	
become	a	powerful	method	for	monitoring	populations	of	African	
wild	dogs.	However,	caution	is	needed	as	detection	rates	are	likely	
to	vary	between—	and	even	within—	populations.	This	could	affect	
the	 certainty	of	 derived	population-	specific	 demographic	param-
eters,	 such	 that	 careful	 consideration	 is	 needed	 to	 account	 for	
individual	heterogeneity	in	detection	when	large	variation	in	coat	
coloration	occurs	within	a	population.

The	 automated	 preprocessing	method	 presented	 in	 this	 study	
could	 eliminate	 the	 need	 to	 manually	 select	 suitable	 images	 for	
image	matching	and	crop	individuals	from	original	photographs.	This	
method	thus	enables	processing	of	large	image	catalogs	where	se-
lection	using	visual	inspection	would	be	extremely	time-	consuming.	
We	found	that	the	method	does	discard	a	small	number	of	suitable	
images,	and	therefore	in	situations	where	it	is	important	to	include	
all	 suitable	 images,	 the	preprocessing	method	outlined	here	 could	
also	be	used	as	a	presorting	approach.	The	user	could	then	visually	
review	images	that	were	classified	as	not	suitable,	to	prevent	usable	
images	from	being	discarded.

The	described	method	of	preprocessing	is	particularly	useful	for	
wild	dogs,	since	an	individual's	posture	varies	substantially	between	
images.	Images	taken	by	tourists	provide	an	opportunity	to	bolster	
and	spatially	extend	image	catalogs.	However,	these	images	are	also	
likely	to	contain	many	images	unsuitable	for	 identification,	as	they	
are	not	taken	for	the	purpose	of	identification.	Accordingly,	filtering	
unsuitable	images	from	these	datasets	using	an	automated	approach	
could	be	especially	timesaving.	The	described	preprocessing	method	
is	therefore	highly	suitable	to	species	targeted	by	wildlife-	watching	
excursions,	 that	 have	 distinctive	 marks	 and	 where	 individual	

TA B L E  2 The	accuracy	and	95%	confidence	intervals	of	the	best	
performing	Convolution	Neural	Networks	aiming	to	classify	images	
of	African	wild	dog	into	(1)	those	depicting	an	individual	standing	
up	and	not	standing	up	and	(2)	those	depicting	left	or	right	flanks.

Model
Training 
accuracy (%)

Validation 
accuracy (%)

Testing 
accuracy (%)

Standing/not	
standing	
classifier

100 91	(90–	92) 90	(88–	91)

Left/right	flank	
classifier

100 96	(94–	97) 95	(94–	96)
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posture	influences	image	suitability,	for	example,	cheetahs,	leopards	
(Panthera pardus),	and	tigers.

Hotspotter	 outperformed	 I3S-	Pattern	 and	WildID	 at	matching	
images	of	 individual	wild	dogs.	This	finding	agrees	with	studies	on	
green	toads	that	compared	Hotspotter	and	I3S-	Pattern	(Burgstaller	
et	 al.,	2021),	 as	well	 as	 studies	 comparing	Hotspotter	 and	WildID	
(Burgstaller	et	al.,	2021;	Chehrsimin	et	al.,	2018;	Nipko	et	al.,	2020).	
Nevertheless,	 this	result	 is	not	ubiquitous.	WildID	was	superior	to	
Hotspotter	 at	matching	 images	 for	 a	 blotched	 amphibian	 species,	
the	Wyoming	 toad,	 Anaxyrus baxteri	 (Morrison	 et	 al.,	 2016).	 This	
indicates	that	the	identification	performance	of	different	software	
packages	 is	 dependent	 on	 species,	 even	 when	 two	 species'	 pat-
terns	show	similarities.	Consequently,	we	recommend	that	all	three	

software	 packages	 are	 tested	 on	 new	 species	 before	 deciding	 on	
which	one	to	use.

Using	crops	of	 full	 individuals	 from	which	the	background	was	
removed	 significantly	 increased	 the	 image-	matching	 accuracy	 of	
Hotspotter,	compared	to	using	crops	of	just	individuals'	flanks.	This	
method	also	speeds	up	image	preprocessing	by	eliminating	the	need	
to	manually	 crop	 the	 region	of	 interest.	The	 improved	accuracy	 is	
likely	 caused	by	 two	 factors.	 First,	 removing	 the	background	pre-
vents	 images	being	matched	based	on	similar	backgrounds,	as	 the	
flanks	are	not	perfect	rectangles,	meaning	that	crops	of	the	flank	also	
contain	some	background	 (see	Figure S2).	Second,	using	complete	
individuals	allow	images	to	be	matched	based	on	unique	features	on	
the	legs,	in	addition	to	the	flanks.	This	result	is	in	line	with	studies	

F I G U R E  3 The	proportion	of	true	
matches	in	the	dataset	that	were	detected	
within	the	top	20-	ranked	images	using	
different	software	packages	for	(a)	89	
Zimbabwean	and	(b)	104	Kenyan	African	
wild	dogs,	that	were	visually	matched	as	a	
reference.
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on	Saimaa	 ringed	 seals,	Pusa hispida,	 and	Thornicroft's	 giraffes,	G. 
camelopardalis thornicrofti,	 which	 found	 evidence	 that	 using	 a	 full	
individual	 from	which	 the	 background	 is	 removed,	 could	 result	 in	
a	higher	accuracy	 (Chehrsimin	et	al.,	 	2018;	Halloran	et	al.,	2015).	
However,	 neither	 of	 these	 previous	 studies	 statistically	 tested	
whether	background	removal	increased	identification	accuracy.	Our	
study	 therefore	 provides	 the	 first	 statistical	 evidence	 that	 back-
ground	 removal	 can	 increase	 the	 performance	 of	 image-	matching	
software.	This	also	indicates	that	the	common	usage	of	Hotspotter,	
in	which	a	rectangular	region	of	 interest	 is	manually	cropped	(e.g.,	
Dunbar	et	al.,	2021;	Nipko	et	al.,	2020),	could	be	improved	by	remov-
ing	the	image	background.

Hotspotter	 was	 significantly	 better	 at	 matching	 images	 from	
Zimbabwean	wild	dogs,	compared	to	Kenyan	individuals.	The	higher	
image-	matching	accuracy	found	for	the	Zimbabwean	population	 is	
likely	 to	reflect	 the	regional	difference	 in	wild	dog	coat	coloration	
patterns.	 The	 Kenyan	 population	 has	 darker,	more	 uniform	 coats,	
consisting	of	large	black	patches,	often	with	few	white	or	tan	areas	
(Daniels	 et	 al.,	2022;	McIntosh	et	 al.,	2016).	By	 contrast,	 the	pro-
portion	of	tan	fur	is	~1.5	times	higher,	and	the	proportion	of	white	
fur	 is	 almost	 seven	 times	 higher	 for	 the	 Zimbabwean	 population	
(Figure 1,	Daniels	et	al.,	2022).	Therefore,	the	higher	contrast	within	
the	patterns	of	the	Zimbabwean	wild	dogs	could	make	it	easier	for	
the	 software	 to	match	 images	 of	 these	 individuals.	 The	 identified	
relationship	 between	 image-	matching	 performance	 and	 software	
package	 remained	 unaltered	 when	 image	 quality	 and	 image	 size	
were	 included	 in	analyses,	and	there	was	no	significant	difference	
between	 the	 image	 quality	 scores	 between	 the	 Zimbabwean	 and	
Kenyan	populations.	The	image	quality	score	approach	was	modeled	

after	Nipko	et	al.	(2020),	who	found	that	it	significantly	affected	the	
probability	 of	matching	 ocelot	 and	 jaguar	 individuals.	 As	 a	 result,	
we	 are	 confident	 that	 the	 differences	 in	 coat	 coloration	 patterns	
between	wild	dogs	 from	Zimbabwe	and	Kenya	 reflect	 variation	 in	
identification	performance	between	populations.

Interpopulation	 variation	 in	 image-	matching	 performance	 indi-
cates	that	detection	probabilities	derived	from	using	this	approach	
will	 not	 be	 directly	 comparable	 between	 populations.	 Since	 the	
probability	of	finding	an	accurate	image	match	depends	on	individual	
coat	pattern,	this	finding	highlights	that	individual	heterogeneity	in	
detection	may	also	occur	if	large	variation	in	coat	coloration	occurs	
within	 a	 population.	 Capture-	mark-	recapture	 techniques	 assume	
individuals'	 experience	 equal	 detection	 probability	 across	 a	 popu-
lation	(White	&	Burnham,	2009).	Therefore,	individual	coat	pattern	
may	also	need	accounting	for	when	deriving	survival	estimates	using	
such	analysis.	This	also	applies	to	other	species	whose	coat	pattern	
varies	 regionally,	 such	 as	Asian	 golden	 cats,	Catopuma temminckii,	
and	ocelots	(Allen	et	al.,	2011;	Khan	et	al.,	2017).	Furthermore,	the	
coat	patterns	of	other	wild	dog	populations	can	differ	considerably	
from	the	two	populations	included	in	this	study	(Daniels	et	al.,	2022,	
McIntosh	et	al.,	2016).	Consequently,	we	advocate	that	estimating	
a	 population-	specific	 image-	matching	 accuracy	 score	 becomes	 an	
essential	prerequisite	step	for	applying	these	techniques	in	different	
locations.

Automatically	preprocessing	wild	dog	image	datasets	and	using	
image-	matching	software	facilitates	the	use	of	archived	and	citizen	
science	 image	 catalogs	 where	 visually	 identifying	 all	 individuals	
would	 be	 extremely	 time-	consuming.	 Although	 the	 best	 perform-
ing	image-	matching	software	did	not	detect	all	matches,	it	could	be	
used	 to	 identify	a	 large	proportion	of	 the	 individuals	 in	 a	dataset.	
Afterwards,	individuals	that	were	not	matched	to	any	other	images	
could	be	visually	identified,	to	prevent	missing	actual	matches.	Using	
image-	matching	software	in	this	way	still	saves	time	by	rapidly	iden-
tifying	a	large	portion	of	the	matches,	without	compromising	on	ac-
curacy.	Furthermore,	 it	 is	plausible	 that	 the	 likelihood	of	correctly	
detecting	matching	 images	 increases	 if	more	 than	 two	 images	per	
individual	are	 included,	 for	example,	 if	multiple	viewpoints	per	 in-
dividual	are	present	in	a	dataset,	the	probability	of	matching	these	
is	 expected	 to	 increase	 (Crall	 et	 al.,	 2013).	 Our	 accuracy	 values	
therefore	 represent	 a	 conservative	 estimate	 of	 Hotspotter's	 true	
accuracy.

Our	study	indicates	that	image	matching	could	provide	a	valu-
able	 new	 approach	 for	 monitoring	 wild	 dogs.	 A	 combination	 of	
citizen	science	and	 image	matching	has	already	been	successfully	
employed	 to	 monitor	 other	 species,	 such	 as	 Blanding's	 turtles,	
Emydoidea blandingii,	 and	whale	sharks	 (Araujo	et	al.,	2017; Cross 
et	al.,	2021).	Similarly,	previous	studies	have	used	tourist	images	to	
estimate	the	population	size	of	wild	dogs	in	Kruger	National	Park,	
South	Africa	 (Marnewick	 et	 al.,	2014).	Combining	 citizen	 science,	
image-	matching	 software,	 and	capture–	recapture	methods	 there-
fore	 has	 the	 potential	 to	 improve	 the	 understanding	 of	wild	 dog	
demography.	 However,	 more	 research	 is	 needed	 to	 investigate	
whether	 photographic	 data	 could	 improve	 our	 understanding	 of	

F I G U R E  4 The	proportion	of	image	matches	detected	within	the	
10	highest	ranked	images	by	Hotspotter	for	the	Zimbabwean	and	
Kenyan	populations	(n = 89	individuals	for	both	populations).	Error	
bars	denote	95%	confidence	intervals.
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wild	dog	demography	beyond	population	size,	by	estimating	param-
eters	 such	as	pack	 structure,	dispersal	 rates,	 and	death	and	birth	
rates.	This	can	be	achieved	by	applying	 image-	matching	software	
to	existing	image	datasets,	to	assess	whether	they	generate	enough	
data	 to	 estimate	 key	 demographic	 parameters,	 or	 whether	 more	
intensive	 monitoring—	for	 example,	 using	 long-	term	 camera	 trap	
surveys—	would	be	necessary.

In	conclusion,	we	have	developed	a	new	automated	method	for	
preprocessing	 image	 datasets,	 by	 automatically	 cropping	 animals	
from	images,	removing	images	in	which	the	individuals'	posture	hin-
ders	identification,	separating	left	and	right	flanks,	and	removing	the	
image	background.	This	framework	will	enable	large	image	datasets	
to	be	analyzed	rapidly,	thereby	expanding	monitoring	efforts	and	ex-
pediting	conservation	action.	Furthermore,	we	have	shown	how	well	
different	 image-	matching	 software	 packages	 perform	 on	 African	
wild	dogs.	Hotspotter	outperformed	the	other	software	packages,	
while	its	performance	differed	between	two	populations	which	ex-
hibit	intraspecific	variation	in	their	coat	patterns.	Our	preprocessing	
method,	in	combination	with	Hotspotter,	has	immediate	application	
in	research	and	monitoring	efforts	for	wild	dogs	and	other	species.	
Data	obtained	 in	 this	way	could	provide	cost-	effective	 large-	scale	
monitoring	for	endangered	species,	therefore	supporting	the	imple-
mentation	of	effective	conservation.
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