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Abstract

Heterogeneous systems, in which a CPU and an accelerator can execute together while sharing

memory, are becoming popular in several computing sectors. Nowadays, programmers can split

their computation into multiple specialised threads that can take advantage of each specialised

component. FPGAs are popular accelerators with configurable logic for various tasks, and

hardware manufacturers are developing platforms with tightly integrated multicore CPUs and

FPGAs. In such tightly integrated platforms, the CPU threads and the FPGA threads access

shared memory locations in a fine-grained manner. However, architectural optimisations will

lead to instructions being observed out of order by different cores. The programmers must

consider these reorderings for correct program executions.

Memory models can aid in reasoning about these complex systems since they can be used to

explore guarantees regarding the systems’ behaviours. These models are helpful for low-level

programmers, compiler writers, and designers of analysis tools. Memory models are specified

according to two main paradigms: operational and axiomatic. An operational model is an

abstract representation of the actual machine, described by states that represent idealised com-

ponents such as buffers and queues, and the legal transitions between these states. Axiomatic

models define relations between memory accesses to constrain the allowed and disallowed be-

haviours.

This dissertation makes the following main contributions: an operational model of a CPU/F-

PGA system, an axiomatic one and an exploration of simulation techniques for operational

models. The operational model is implemented in C and validated using all the behaviours

described in the available documentation. We will see how the ambiguities from the documen-

tation can be clarified by running tests on the hardware and consulting with the designers.

Finally, to demonstrate the model’s utility, we reason about a producer/consumer buffer im-

plemented across the CPU and the FPGA.

The simulation of axiomatic models can be orders of magnitude faster than operational models.

For this reason, we also provide an axiomatic version of the memory model. This model allows

us to generate small concurrent programs to reveal whether a specific memory model behaviour

can occur. However, synthesising a single test for the FPGA requires significant time and

prevents us from directly running many tests. To overcome this issue, we develop a soft-core
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processor that allows us to quickly run large numbers of such tests and gain higher confidence

in the accuracy of our models.

The simulation of the operational model faces a path-explosion problem that limits the explo-

ration of large models. Observing that program analysis tools tackle a similar path-explosion

problem, we investigate the idea of reducing the decision problem of “whether a given memory

model allows a given behaviour” to the decision problem of “whether a given C program is

safe”, which can be handled by a variety of off-the-shelf tools. Using this approach, we can

simulate our model more deeply and gain more confidence in its accuracy.
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Chapter 1

Introduction

The end of Dennard scaling in the early 2000s led to CPU designers resorting to duplicating

processor cores to make computational gains, exploiting additional transistors that became

available year on year thanks to Moore’s law [Rup15]. Now, with the future of Moore’s law

looking uncertain [HP19], this homogeneous approach to parallelism is under threat. System

designers and application developers must look to heterogeneous systems, comprising multiple

architecturally distinct computational units, for performance and energy efficiency.

Heterogeneous systems consist of different specialised computing elements that can work con-

currently to solve complex tasks. These complex tasks must be partitioned into small sub-tasks

that take advantage of the particularities of each distinct computational unit. These distinct

specialised computational units can solve sub-tasks more efficiently and energy efficient than a

general-purpose processor. As a result, computer architects have been designing systems that

integrate general-purpose computation with different types of specialised accelerators.

One promising category of accelerators is field-programmable gate arrays (FPGAs) [Moo17].

FPGAs are composed of configurable logic and memory blocks. This structure allows for many

different configurations, which provides the potential to create custom designs that can offer

increased parallelism and efficient access to irregular data patterns. Furthermore, FPGAs only

need to power the circuitry that is needed to perform the computation of interest and all the

circuitry that is not needed is eliminated, resulting in much less energy usage [Xil23]. Generally,
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2 Chapter 1. Introduction

FPGAs are used when a manufacturer wants to avoid the prohibitive cost of manufacturing

an application-specific integrated circuit or maintain the flexibility to change the design of the

circuit in the future.

A recent trend in heterogeneous systems is to combine a homogeneous multicore CPU with an

FPGA. These combined CPU/FPGA systems are of special interest because the FPGA compo-

nent can be configured to represent one or more processing elements customised for a particular

computationally-intensive sub-task. At the same time, the general application can be written

to run on the general-purpose CPU. This combination of CPU and FPGA devices has provided

significant performance gains in several domains, including video processing [AKK+16], neural

networks [GSQ+18], and image filtering [DS13].

Until recently, data movement in CPU/FPGA systems has been coarse-grained : large amounts

of data are transferred back and forth between the memory spaces of the FPGA and CPU

via special memcpy-like API calls. However, recent devices – including Intel’s Xeon+FPGA

system [OSC+11, Int19], the IBM CAPI [SBJS15], the Xilinx Alveo [Xil18] and the Enzian

platform [CRS+22]– offer a fine-grained shared-memory interface between the CPU and FPGA.

This shared-memory interface enables synchronisation idioms where data is exchanged in ar-

bitrary (potentially small) amounts, such as work stealing, which has been shown to enable

significant speedups in difficult-to-accelerate applications (e.g. [RWWC16, TPO10, FBL+16]).

Combined CPU/FPGA systems with fine-grained shared memory have the potential to acceler-

ate irregular applications in an energy-efficient manner but present significant programmability

challenges. They inherit the well-known challenges associated with concurrent programming

on homogeneous shared-memory systems and present new challenges due to complex interac-

tions between heterogeneous processing elements that each have distinct memory semantics.

Furthermore, fine-grained CPU/FPGA systems are new, and applications that exploit them

are only just emerging, so this an opportune time to examine their semantics rigorously and

lay solid foundations for compiler writers and low-level application developers.

Writing correct and efficient programs for such systems requires a formal specification of mem-

ory semantics, called a memory consistency model [AG96b]. The study of memory models
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has helped programmers understand concurrent programs for CPUs [OSS09, SSA+11] and

GPUs [ABD+15]. However, it is challenging to develop memory models for complex systems

and validate their accuracy. Such memory models must accurately describe the interaction

between threads that run on different hardware and must account for the idiosyncrasies of each

type of thread. Different types of threads with different types of operations can interact with

each other leading to some behaviours that are often not intuitive. This thesis shows how

this type of heterogeneous system can be modelled and how we can gain confidence that our

modelling decisions resulted in an accurate description of the underlying system.

The increased complexity of these systems also leads to more simulation challenges. These

challenges stem from the many different components with non-deterministic behaviours that

generate multiple paths through the execution of the model. These paths must be understood

and sometimes explored to guarantee a system’s behaviour. However, exploring all these paths

must be done efficiently, so that simulation time does not become infeasible. Moreover, there

are many cases where just exploring some of these paths can provide the user with sufficient

information to understand the system’s behaviour. In this thesis, we also explore multiple tools

a memory model developer can use to understand a memory model’s behaviour.

We provide a detailed formal case study of the memory semantics of Intel’s CPU/FPGA sys-

tems. These combine a multicore Xeon CPU with an Intel FPGA, and allow them to share

main memory [Int19]. We refer to this class of systems as X+F (Xeon+FPGA) throughout.1

1.1 Contributions

Operational memory model In chapter 3 we present a formal semantics for the X+F

memory system in operational form. To understand the variety of complex behaviours that the

system can exhibit, we have studied the available X+F documentation in detail and empirically

investigated the memory semantics of the real system that integrates a Broadwell Xeon CPU

with an Arria 10 FPGA. The operational semantics describes the X+F memory system using

1Other works have called these systems HARP e.g. [MKN+18], but we could find no official documentation
from Intel using this terminology. Our naming scheme is consistent with recent work [CCF+19].



4 Chapter 1. Introduction

an abstract machine. We have implemented the operational semantics in C, which is suitable

for analysis with the CBMC model checker [CKL04]. This model allows an engineer to explore

the possible behaviours of a given memory model litmus test, and supports the generation of

counterexamples that can be understood with respect to the abstract machine.

To demonstrate the utility of our formal model, we use it to reason about a producer/consumer

queue linking the CPU and the FPGA. First, we investigate various design choices for the

queue, using our model to argue why they provide correct synchronisation, and we compare

their performance. Then, guided by our model, we develop lossy versions of the queue that omit

some synchronisation, risking loss or reordering of elements as a result, but in a well-defined

manner that our formal model describes. Finally, we present experimental results exploring the

performance/quality trade-off associated with these queue variants, which is relevant in appli-

cation domains where some loss is tolerable, such as image processing and machine learning.

We also show that lossy behaviour is exacerbated when the FPGA is configured to contain ad-

ditional processing elements that stress the shared-memory system; these “enemy” components

can serve as a debugging aid to help shake out bugs arising from missing synchronisation.

Axiomatic memory model In Chapter 4 we provide the axiomatic semantics that declara-

tively characterises the executions permitted by the memory system. The axiomatic semantics

has been mechanised in the Alloy modelling language [Jac12]. The Alloy Analyzer can then au-

tomatically generate allowed or disallowed executions, subject to user-provided constraints on

the desired number of events and actors that should feature in a generated execution. We have

used the Alloy description of our axiomatic semantics to generate a set of disallowed executions

that feature only critical events (i.e. removing any event from an execution would make the

execution allowed). Using a back-end that converts an execution into a corresponding C pro-

gram, we have used these executions and the CBMC model checker to validate our operational

model both ‘from above’ and ‘from below’; that is, every disallowed execution generated from

the axiomatic model is also disallowed by the operational model, and removing any event from

such an execution causes it to become allowed by the operational model. This back-and-forth

process is a compelling demonstration of the value of developing operational and axiomatic
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models in concert, which we hope will inspire other researchers to follow suit.

Having gained confidence in the accuracy of our models via this cross-checking process, we

proceeded to run tests against hardware both to check that execution results disallowed by

the model are indeed not observed (increasing confidence that our model is sound), and to see

how often unusual-but-allowed executions are observed in practice. Since synthesising an FPGA

design from Verilog takes several hours, performing synthesis on an execution-by-execution basis

was out of the question. Instead, we present the design of a soft-core processor customised to

execute litmus tests described using a simple instruction set. The processor is synthesised once,

after which the CPU can send a series of tests to the FPGA for execution, allowing us to process

hundreds of tests in a matter of hours, rather than weeks.

Simulating operational models Simulating the operational memory model is required to

decide if a potentially unwanted state of the system can be reached. However, this simulation is

the bottleneck in our previous experiments; therefore, in Chapter 5 we search for alternatives.

A similar problem is tackled by a wide range of off-the-shelf tools to decide whether a program

can reach a particular state and are available for several languages such as C, C++, Java or

Python. This leads to the following idea: instead of implementing a bespoke memory model

simulator, why not implement the simulator logic as a computer program that takes a particular

test scenario as input? Determining whether the test scenario is allowed would then boil down

to determining whether a particular state of the program that encodes the memory model

is reachable when executed on an input describing the scenario of interest, and off-the-shelf

reachability analysis tools for the language of interest could be leveraged to answer this question.

We investigate the idea of reducing to C and then leveraging existing tools with respect to three

diverse analysis tools for C: a SAT-based model checker, CBMC [CKL04]; a dynamic symbolic

execution engine, KLEE [CDE08], and a coverage-guided fuzzer, libFuzzer [Ser22]. Of these,

CBMC is a fully symbolic analyser, libFuzzer is a fully dynamic analyser, and KLEE mixes

symbolic and dynamic analysis.

In summary, this thesis makes three main contributions:
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• an operational model of a heterogeneous CPU/FPGA system alongside a case-study on

how our model affects a producer/consumer queue (Chapter 3)

• an axiomatic model of the same system alongside the techniques to validate the models

(Chapter 4)

• an experience report on methods that can be used to efficiently simulate operational

memory models (Chapter 5)

The work is a compelling demonstration of the combined power of formal techniques and

program analysis technology in bringing rigorous to an emerging computing domain.

1.2 Publications

The material presented in this thesis has either been published in conference articles or is

currently under submission. Organised by chapter, these publications are as follows:

• The contents of Chapter 3 and Chapter 4 have been previously published in OOPSLA

2021 [IDSW21b], published as a full-length article in the Proceedings of the ACM Pro-

gramming Languages journal. These chapters include the operational model, the ax-

iomatic model, the technique to validate them and the case study for the producer/con-

sumer queue.

• The contents of Chapter 5 is based on our work that is currently under review at TSE

2022 [IWD]. This includes the techniques we used to simulate operational memory models

that allowed us to fix some infidelities in the original model.

In addition to this work, the author of this thesis led the following publication work at RTAS

2020 [ISWD20]. This paper deals with testing multicore systems to assess their suitability for

real-time applications.



Chapter 2

Background

This chapter provides a brief introduction to weak memory (Section 2.1) and an introduction

to the heterogeneous system that we have modelled (Section 2.2).

2.1 Weak memory

Sequential consistency states that the result of any execution of a multicore system is the

same as if the operations of all cores were executed in some sequential order. As a result, the

operations of each process appear in this sequence in the order specified by its program. Modern

architectures do not implement sequential consistency (SC) as defined by Lamport [Lam79].

Therefore, programmers cannot expect their programs to access memory in the order in which

loads and stores appear in their source code without additional synchronisation. Accessing main

main
memory
(DRAM)

x86
arch

. . .

SB

core

SB

core

Figure 2.1: A pictorial representation of the x86 memory model. The store buffers (SB) present
in each core can cause weak memory behaviours. Each core will first write to its store buffer
before committing to main memory.
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8 Chapter 2. Background

init: x = y = 0

1 x ← 1 1 y ← 1
2 r0 ← y 2 r1 ← x

Allowed: r0 = 0 and r1 = 0

Figure 2.2: Store buffering using two threads

memory has high latency, and optimisations are required to hide this latency. Optimisations

that cause weak memory effects are present in all modern architectures [AG96a]. These

weak memory effects are only observable when multiple threads access the same data in shared

memory, and the reorderings that can result from this are often quite subtle.

2.1.1 Memory models

A memory model is an abstract representation of the system that defines the memory-related

behaviours a system permits. Memory models allow reasoning about the correctness of multi-

threaded programs and are generally used by the compiler to understand what optimisations

can be safely applied [Gha95, HKV98]. A memory model stipulates synchronisation operations

and when changes to a variable should be made visible to other threads.

As an example, let us consider the operational memory model of the x86 architecture [OSS09],

illustrated in Figure 2.1. Each core has its own store buffer. When a core issues a write to

memory, the write temporarily resides in the store buffer, and all writes in a store buffer are

bulk-transferred to main memory periodically. When loading from a location, a core will first

check whether a write to that location is pending in its store buffer. If so, it will return the

value associated with that write, thus avoiding the expensive operation of reading from the

main memory. As a result, each core has a different view of the system’s memory: a core

may be able to observe the writes that it has issued before other cores can observe them.

These different views of main memory can lead to unintuitive behaviours, where cores observe

memory operations as having occurred in an order that is not sequentially consistent : it does not

correspond to any interleaving of instructions executed by individual threads. Programmers can

recover sequential consistency with the aid of special fence operations, which force store buffers
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to be flushed, so that writes become visible to all cores. However, because fence operations are

expensive, they should be used sparingly.

The weak memory effects differ from architecture to architecture. Therefore, each architecture

has its memory model, and concurrent programs running on them must consider this to ensure

correct and predictable execution. A memory model provides an abstraction of the reorderings

allowed by the hardware that the compiler should understand so that programs are portable

and hide away the complexity of each processor to the programmer.

Memory models usually are more conservative and describe all the potential reordering, even

if they do not manifest in all versions of a specific architecture [SSA+11]. While adding unre-

quired fence operations can degrade performance, it is generally prefered to code that executes

incorrectly.

Memory models are specified according to two main paradigms: operational and axiomatic. An

operational model is an abstract representation of the actual machine, described by states that

represent idealised components such as buffers and queues, and the legal transitions between

these states. On multicore systems, there may be several available transitions from any given

state, and hence one gets an exponential blow-up in the number of paths to explore. On the

other hand, an axiomatic model defines relations between memory accesses to constrain the

allowed and disallowed behaviours. Simulation of axiomatic models “can be orders of magnitude

faster” than the simulation of operational models, but “operational models are often considered

more intuitive” [AMT14], and there is a great deal of recent work that relies on operational

models [PFD+17a, SFP+20, PPPK+19].

2.1.2 Litmus tests

Litmus tests are small concurrent programs designed to reveal whether a specific memory

model behaviour can occur. A litmus test usually comprises a sequence of shared memory

write and read operations, followed by an assertion over the values observed by reads.

Specific litmus tests have been designed to characterise particular architectural features that



10 Chapter 2. Background

might give rise to certain weak behaviours. For example, in Figure 2.2 the well-known store-

buffering litmus test is illustrated. These litmus tests can reveal the write buffers of the x86

memory model seen in Figure 2.1. The test requires both writes to be buffered in order for the

CPU cores to observe the old values of variables x and y. If this happens, the old values of the

variables will be observed.

Typically a litmus test should be executed many times on a processor of interest to gain confi-

dence as to whether or not the assertions associated with the litmus test hold because concurrent

systems with weak memory models are highly non-deterministic. Moreover, it is possible that

some weak behaviours only manifest when the system is under heavy stress [AMSS10, SD16,

KSTM20, ABD+15].

2.1.3 Simulating memory models

Constructing and using such models is facilitated by simulators that reveal which behaviours

of a given program are allowed. An accurate memory model should describe the entire set of

allowed behaviours on the hardware. Therefore, running code on the memory model should

potentially reveal the same behaviours as running on the actual hardware.

However, there can be cases when the reorderings described by the memory model do not

manifest on the actual hardware. This behaviour can be due to the conditions required by the

reordering to occur only when certain very improbable conditions are encountered or due to the

architect of the processor choosing not to implement a feature in a particular iteration of the

processor that causes that reordering. As an example, load-buffering has never been observed

on PowerPC machines even though theoretically it can occur[SSA+11].

A litmus test can be run on an operational memory model and an axiomatic memory model [AMT14].

The operational and axiomatic models should be equivalent, meaning that both should accu-

rately describe the same behaviours when simulating litmus tests. A memory model takes as

input a litmus test describing the sequence of instructions for each concurrent component of

the system and a description of a final state of interest. While extensive work has been done
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FPGA
(Arria 10)

user
logic

memory
interface

channels
(QPI, PCI-E)

main
memory
(DRAM)

CPU
(Xeon)

. . .

SB

core

SB

core

Figure 2.3: Overview of the X+F memory system. The FPGA (left) is composed of user logic
and a memory interface. The memory interface uses channels mapped to hardware buses to
reach the main memory. The Xeon CPU (right) communicates through coherent caches. Each
CPU core contains a store buffer (SB), which allows write/read reorderings.

on simulating axiomatic memory models [KV21, AMT14, WBSC17], there has been little work

on the simulation of operational models [ABC+22] . Operational models are often considered

more intuitive but are challenging to simulate due to the vast number of paths through the

model’s transition system.

An operational memory model will facilitate searching for transitions of the system that might

lead from an initial state of the litmus test to the final state of interest. A trace that leads to the

final state indicates that this behaviour is allowed ; if no such trace exists, it is disallowed. Non-

determinism arises due to the order in which the concurrent components issue the instructions

and due to the internals of the memory system (such as flushing policies for buffers and caches).

Once a trace that reaches a state of interest has been found, the programmer or memory model

engineer can use the simulator to step through the trace in detail to understand its behaviour

better.

An axiomatic memory model will analyse if the axioms describing the system allow for the out-

come of the litmus test to be reached from the system’s initial state. In contrast to operational

models, axiomatic models do not provide a trace through the system that can explain how the

final state of the test has been reached. However, these models are generally much faster to

simulate.

2.2 The heterogeneous X+F system

We now provide an overview of the X+F memory system, which we depict in Figure 2.3. The

system contains a multicore CPU (Xeon) and an FPGA (Altera 10). The FPGA is composed
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of programable user logic and a fixed memory interface. The user logic can interact with the

main memory via the fixed memory interface. The goal of the memory interface is to provide

a layer of abstraction for low-level communication channels. On the other hand the CPU is

connected to the main memory via well-know caches.

A typical heterogeneous program starts with the CPU allocating a region of shared memory

and then communicating the address and size of that region to the FPGA via dedicated control

registers. The FPGA can then be treated as an additional core, accessing the shared memory

via read and write requests.

The FPGA thread The user logic on the FPGA does not have any notion of thread. Mul-

tiple threads can be implemented within the same logic and run in parallel, but it is up to the

user to define how they communicate. Since the user’s choices in implementing the multiple

threads can have a profound impact on the memory model, we choose to have a single thread on

the user logic. This assures us the the resulting memory model will be defined by the available

hardware and not choices of the user.

As with any shared-memory system, the behaviour of loads and stores is governed by a memory

model. Since most modern CPU architectures use a relaxed memory model, we can expect the

same behaviour from this system. In the case of the X+F system, the behaviour of loads

and stores by the CPU and the FPGA is defined by the Intel standard from [Int19]. The

fixed logic provides a layer of abstraction for the actual bus interface, facilitating portability.

To reason about the X+F system, the distinct ways in which different compute-units access

shared memory must be considered: the CPU system has a traditional coherent cache hierarchy,

while the FPGA must directly target low-level channels that correspond to hardware buses, as

depicted in Figure 2.3. The specification for operations that target these channels is given in

official documentation [Int19]. This system’s most recent version has three channels: a cache-

coherent Quick Path Interconnect (QPI) channel 1 and two Peripheral Component Interconnect

Express (PCI-E) channels. By sending read and write requests along these channels, the CPU

1While this channel is described as coherent, our initial model treats all channels symmetrically, i.e. non-
coherent. The QPI channel is referred to as Ultra Path Interconnect (UPI) in later versions.



2.2. The heterogeneous X+F system 13

init: x = 0

1 x ← 1
2 r0 ← x

allowed? r0 = 0

(a) Basic test

init: x = 0

FPGA: 1 ch1: x ← 1
2 await write resp.
3 ch1: r0 ← x

disallowed: r0 = 0

(b) Single-channel synchronisation

init: x = 0

FPGA: 1 ch1: x ← 1
2 ch1: fence
3 await fence resp.
4 ch2: r0 ← x

disallowed: r0 = 0

(c) Multi-channel synchronisation

Figure 2.4: Litmus tests for write/read coherence on the FPGA. Programs (b) and (c) show
two distinct ways to disallow the non-coherent behaviour described in (a).

and FPGA can concurrently access main memory (DRAM) in a fine-grained manner.

There are three primary sources of relaxed memory behaviours. First, the Xeon CPU imple-

ments the x86-TSO memory model [OSS09]. Each core has a store buffer (SB), which may

allow writes to be reordered with subsequent reads. Second, memory accesses initiated by

the FPGA can be reordered before they are sent to the communication channels. Third, those

memory accesses might be sent along different channels with different latencies. This multitude

of relaxed behaviours can be attributed to two architectural features of the X+F: (1) writes

and reads initiated by the FPGA can be reordered before they are sent to the communication

channels, and (2) they might be sent on different channels that have different latencies and

drain asynchronously. Furthermore, since the CPU memory is significantly larger than the

local memory of the FPGA, applications can effectively utilise it as a shared memory between

the CPU and FPGA.

We use examples to illustrate the relaxed nature of the X+F memory model, showing that

not even single-address consistency (coherency) is guaranteed for the FPGA (Section 2.2.1),

and discussing more complicated CPU/FPGA interactions using standard litmus tests, instan-

tiated for the X+F system, where one thread is on the CPU, and the other is on the FPGA

(Section 2.2.2).
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2.2.1 FPGA Coherency

The write/read litmus test of Figure 2.4a contains two memory instructions: a write to a

location x and then a read from x. The test asks whether the read can observe the (stale)

initial value of 0. A memory interface that allows this behaviour violates coherence, which

is a property provided by all mainstream shared-memory CPU architectures. However, if the

memory instructions are compiled to a sequential FPGA circuit that uses the Core Cache

Interface (CCI-P) interface to memory, the behaviour is allowed. This is documented [Int19,

page 41], and observable in practice: we ran 1M iterations of Figure 2.4a under heavy memory

traffic and observed non-coherent behaviour in around 0.1% of them.

One of two CCI-P interface features must be used to disallow this extremely weak behaviour.

Single-Channel Synchronisation First, FPGA-issued memory instructions can specify an

explicit channel (cf. Figure 2.3). For instance, in Figure 2.4b, instructions 1 and 3 target

channel 1, as indicated by “ch1:”. However, targeting the same channel is not enough to

restore coherence: although channels are strictly ordered, CCI-P allows accesses to be re-

ordered before reaching a channel. Thus, the interface provides response events, which can be

waited on. For instance, instruction 2 in Figure 2.4b is a write response that indicates that the

write to x has reached the channel. The read instruction (instruction 3) will then be inserted

into the channel after the write, disallowing the non-coherent behaviour.

Multi-Channel Synchronisation The other mechanism for ensuring coherence is illus-

trated in Figure 2.4c, in which the write to and read from x do not target the same channel. A

write response guarantees that the value has been committed to the target channel, but differ-

ent channels are allowed to flush asynchronously and in any order. Instead, Figure 2.4c uses a

fence for synchronisation. Once the fence response is observed, all writes must have reached the

main memory, so subsequent reads from different channels are guaranteed to observe up-to-date

values.
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init: x = y = 0

FPGA: 1 ch1: y ← 1 CPU: 1 x ← 1
2 await write resp. 2 fence
3 ch1: r0 ← x 3 r1 ← y

disallowed: r0 = 0 and r1 = 0

Figure 2.5: Heterogeneous variant of the store buffering (SB) test. The left instruction stream
corresponds to an FPGA circuit while the right instruction stream represents a CPU program.
Each device needs its own synchronisation variant to disallow the relaxed behaviour.

2.2.2 CPU/FPGA Synchronisation

The previous example showed that sequential streams of shared-memory accesses on the FPGA

can allow counterintuitive behaviours. Now, we complicate things further by adding a CPU

thread. This is a challenge because the FPGA and the CPU implement distinct memory models

and require different types of synchronisation depending on the desired orderings.

Store Buffering We begin with the classic store buffering (SB) test. The heterogeneous

variant is shown in Figure 2.5: an FPGA instruction stream is shown on the left and a CPU

stream on the right. The FPGA stream has its specific synchronisation constructs: channel

annotations and response-waiting. On the other hand, the CPU stream resembles standard

tests in the literature, i.e. without channels and using traditional CPU fences.

In order to disallow the SB weak behaviour, the write/read ordering between instructions 1 and

3 on both the CPU and the FPGA must be enforced. On the CPU side of the X+F system,

we must reason about the TSO memory model. Recall from Figure 2.3 that each CPU thread

contains a store buffer, which can allow reads to overtake writes at run-time. To disallow this,

we can place a write/read fence (e.g. MFENCE in x86) to flush the store buffer. The FPGA stream

must also enforce ordering and, as in Section 2.2.1, there are two ways to do this, depending on

whether memory instructions target the same or different channels. In this example, we show

the single-channel variant, where the memory operations can be ordered simply by waiting for

the write response before issuing the read instruction. Without this wait, there is no guarantee

that the write and read will be inserted into the channel in the issue order. Recall that the

write response guarantees that the write operation has been inserted into the channel.
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init: x = y = 0

FPGA: 1 ch1: x ← 1 CPU: 1 r0 ← y

2 all: write fence 2 r1 ← x

3 ch2: y ← 1

disallowed: r0 = 1 and r1 = 0

(a) FPGA producer, CPU consumer

init: x = y = 0

FPGA: 1 ch1: r0 ← y CPU: 1 x ← 1
2 await read resp. 2 y ← 1
3 ch2: r1 ← x

disallowed: r0 = 1 and r1 = 0

(b) CPU producer, FPGA consumer

Figure 2.6: A heterogeneous message passing (MP) test. A producer writes a value (in x) and
then a ready-flag (in y). The query asks if a consumer is allowed to observe a positive ready-flag
but then read stale data.

Message Passing Now we move on to some heterogeneous variants of the classic message-

passing (MP) litmus test, shown in Figure 2.6. In this test, one instruction stream (the pro-

ducer) attempts to communicate a data value to another instruction stream (the consumer).

Because streams execute asynchronously and in parallel, an auxiliary ready-flag message must

be sent. The test asks whether the consumer can read a positive, ready flag but still observe

stale data. On the producer side, ensuring that stale data cannot be observed requires ordering

the two writes, i.e. the write of the data followed by the write of the ready flag. On the con-

sumer, the two reads must be ordered, i.e. the read of the ready flag followed by the reading

of the data. Unlike the SB test, the MP test is asymmetric: different types of synchronisation

are required depending on the role of the instruction stream (producer or consumer) and the

device.

Figure 2.6a shows a variant of the test where the FPGA is the consumer. The data is written

to one channel (ch1 in the example), and synchronisation is achieved through another channel

(ch2 in the example). This may happen, e.g. if the synchronisation is implemented in a library

that does not constrain the client’s channels. To prevent the writes from being reordered,

a fence that synchronises across all channels is required [Int19, page 41]. The CPU side of

synchronisation is much simpler: TSO preserves read/read order, so no additional instructions
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Write
Request

Await Write
Response

Read
Request

Await Read
Response

Return

write request
sent

write response
received

read request sent

read response
received

Figure 2.7: A state machine corresponding to the litmus test in Figure 2.4b. The FPGA
will only exit the Write/Read Request states once it has managed to send the corresponding
request. It will only exit the Await Write/Read Response once the corresponding response has
been received.

.

are required. (A weaker CPU architecture, such as PowerPC or Arm, would require different

reasoning.)

Figure 2.6b shows another variant of the test, where the FPGA is the consumer this time.

Unlike the CPU consumer, the FPGA does allow read/read reorderings if synchronisation is

not used. In this case, the FPGA needs to wait for the read response, which means that the

read has been satisfied; no further synchronisation is required [Int19, page 41]. The CPU side

does not require additional synchronisation because write/write order is preserved in TSO.

2.2.3 Implementing Litmus Tests on the FPGA

While the CPU threads in a litmus test are executed in a conventional instruction-by-instruction

fashion, the FPGA ‘thread’ of a litmus test is handled differently: it is compiled to a sequential

circuit implemented on the FPGA. The circuit takes the form of a state machine. As an

example, Figure 2.7 illustrates the state machine corresponding to the litmus test in Figure 2.4b.

The FPGA remains in the first state while it issues the write request. It then remains in the

second state, constantly monitoring the memory interface until it receives the corresponding

response. The next two states perform the read request/response similarly, after which the test

is finished.
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The FPGA will only exit a request state once it has sent the corresponding request. Likewise,

the FPGA will only exit a response state once it has received a response. Of course, a response

will only be issued after it has been requested, but the FPGA does not guarantee when it will

be received. Therefore, if the user wants to observe a response, it will await it immediately

after the request has been issued.

The amount of time spent in any state is not known. While in a request state, the interface

can be occupied for an unknown number of clock cycles, forcing the FPGA to wait until this

is no longer the case. Correspondingly, the FPGA will constantly monitor the interface in a

response state until a response has been received.

As another example, the litmus test from Figure 2.4a can be obtained by removing the “Await

Write Response” state from Figure 2.7. Likewise, the litmus test of Figure 2.4c can be obtained

by replacing the “Await Write Response” state with a “Fence Request” state followed by an

“Await Fence Response” state.
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Operational model

As the examples in Section 2.2 show, the low-level shared-memory interface on the X+F sys-

tem is complex and nuanced. We could only determine these tests’ outcomes through careful

documentation-reading, discussion with the X+F engineers, and empirical testing.

We thus present an operational memory model (Section 3.1), describing the actions that the

CPU and FPGA can take, the system states and the possible transitions between these states.

Having presented the model, we then justify our key modelling decisions concerning available

documentation about the X+F system (Section 3.2) and present our implementation of the

model (Section 3.3). This model is also the basis for reasoning about the memory model idioms

that underpin efficient implementations of synchronisation constructs (Section 3.4). We then

present related works (Section 3.5) and conclude with a summary of our findings (Section 3.6).

3.1 A formalisation of the memory model

We now present a formal operational semantics for this heterogeneous shared-memory interface

that faithfully accounts for these behaviours. We begin by describing the actions that the

FPGA and the CPU can use to interact with the memory system (Section 3.1.1). We then

describe the set of states in which the memory system can reside (Section 3.1.2), and the set of

19
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transitions between states that the memory system can make in response to the FPGA’s and

CPU’s actions (Section 3.1.3).

3.1.1 Actions

We model the CPU’s and the FPGA’s interactions with the memory system using actions. On

the CPU, an action represents the execution of a memory-related instruction. On the FPGA,

an action represents a request sent to the memory system or a response received from it. There

are four types of requests that the FPGA can make to the memory system:

• WrReq(c, l, v,m) is a request to write value v to location l along channel c. The request is

tagged with metadatam so that it can later be associated with its corresponding response.

• RdReq(c, l,m) is a request to read from location l along channel c, with metadata m as

above.

• FnReqOne(c,m) is a request to perform a fence on channel c, with metadata m as above.

• FnReqAll(m) is a request to perform a fence on all channels, with metadata m as above.

There are four actions that can be received by the FPGA from the memory system:

• WrRsp(c,m) represents a response from the memory system indicating that an earlier

write request with metadata m has entered its channel (though the write may not yet

have propagated all the way to the main memory). The FIFO property of the channel

ensures that all subsequent writes to the same channel will not get reordered. The c field

is required because the original request might not have specified a channel.

• RdRsp(c, v,m) represents a response from the memory system containing, in v, the value

requested by an earlier read request on channel c with metadata m.

• FnRspOne(c,m) represents a response from the memory system that a fence requested on

channel c with metadata m has finished and that all writes on that channel requested

prior to this fence have reached main memory.
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• FnRspAll(m) represents a response from the memory system that a requested all-channel

fence with metadata m has finished and that all writes requested prior to this fence (on

any channel) have reached main memory.

Finally, there are three actions by which the CPU can interact with the memory system, each

parameterised by thread-identifier t:

• CPUWrite(t, l, v) represents the execution of an instruction that writes value v to location

l.

• CPURead(t, l, v) represents the execution of an instruction that reads value v from location

l.

• CPUFence(t) represents the execution of a fence instruction.

3.1.2 States

Figure 3.1 describes the states in which the system can reside.

Working through the definitions in Figure 3.1a, we see the locations, values, metadata tags, and

channels that we have encountered already. We use the notation X⊥ for the set X extended

with an additional ⊥ element, which represents a blank.

Read requests from the FPGA enter the system via the read-request pool, which is a list of

records, each of which contains the channel that the request is to be sent along, the location to

be read, and the metadata to identify the request. The write-request pool is similar, but since

it can hold both write requests and fence requests, each record is additionally tagged as W or

F. Fence requests leave the location and value fields blank, and an all-channel fence request

also leaves the channel field blank. Requests reside in a pool before migrating to a channel

(discussed next), and this is where some reordering is possible: migration from pool to channel

is not always first-in-first-out.
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l ∈ Loc
def
= N

t ∈ Tid
def
= {0, . . . , T − 1}

v ∈ Val
def
= Z

c ∈ Chan
def
= {0, . . . , N − 1}

m ∈ Mdata
def
= Z

RP ∈ RdReqPool
def
= (Chan × Loc ×Mdata) list

WP ∈ WrReqPool
def
= ({W,F} × Chan⊥ × Loc⊥ × Val⊥ ×Mdata) list

UpstreamBuffer
def
= ({R,W} × Loc × Val⊥ ×Mdata) list

UB ∈ UpstreamBuffers
def
= Chan → UpstreamBuffer

DownstreamBuffer
def
= (Loc × Val ×Mdata) list

DB ∈ DownstreamBuffers
def
= Chan → DownstreamBuffer

FPGAState
def
= WrReqPool × RdReqPool × UpstreamBuffers × DownstreamBuffers

CPUWriteBuffer
def
= (Loc × Val) list

WB ∈ CPUWriteBuffers
def
= Tid → CPUWriteBuffer

CPUState
def
= CPUWriteBuffers

SM ∈ SharedMem
def
= Loc ⇀ Val

SyState
def
= FPGAState × SharedMem × CPUState

(a) Formal definitions

WrReqPool
W/F Chan Loc Val Mdata

RdReqPool
Chan Loc Mdata

UpstreamBuffer
R/W Loc Val Mdata
UpstreamBuffer
R/W Loc Val Mdata
UpstreamBuffer
R/W Loc Val Mdata

DownstreamBuffer
Loc Val Mdata
DownstreamBuffer
Loc Val Mdata
DownstreamBuffer
Loc Val Mdata

SharedMem
Loc Val

CPUWriteBuffer
Loc Val
CPUWriteBuffer
Loc Val
CPUWriteBuffer
Loc Val

FPGA memory model
CPU memory

model

WrReq/

FnReqOne/

FnReqAll

WrRsp/

FnRspOne/

FnRspAll

RdReq

RdRsp

CPURead

CPUWrite/

CPUFence

(b) The system state, pictorially

Figure 3.1: The memory system state that combines the FPGA view and the CPU view
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The model contains N channels that link the FPGA to the shared memory. (For the current

version of X+F, N is 3, and in an earlier version, N was 1 [CCF+19]. Our model applies to

any value of N .) Each channel is split into an upstream buffer heading towards shared memory

and a downstream buffer heading towards the FPGA. Each upstream buffer is modelled as a

list of records, each of which is tagged as being a read request (R) or a write request (W). Read

requests leave the value field blank. Downstream buffers only hold read responses, so do not

need tagging. The upstream and downstream buffers are both FIFO and no reordering can

happen within them. Fences are not sent to the upstream buffer; rather, they guard entry to

the upstream buffer.

The FPGA’s view of the memory system thus consists of the write- and read-request pools, a

set of upstream buffers and a set of downstream buffers, together with a shared memory that

maps locations to values. Meanwhile, the CPU’s view of the memory system consists of the

same shared memory together with a write buffer per core, each holding writes destined for

shared memory. The overall memory system that combines the FPGA view and the CPU view

is depicted in Figure 3.1b.

3.1.3 Transitions

The state of the system can evolve by the CPU or FPGA performing one of the actions listed

in Section 3.1.1 or by an internal action of the memory system. We write

old state a−→ new state

to denote a state transition that coincides with the sending or receiving of action a. Internal

actions are labelled with τ . We divide transitions into those that only affect the FPGA’s view

of the memory system (Figure 3.2) and those that only affect the CPU’s view (Figure 3.3).

These two sets of transitions can be combined (Figure 3.4) to describe the evolution of the

entire system state.

The FPGA-related transitions defined in Figure 3.2 can be understood as follows.
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Write Request

(WP ,RP ,UB ,DB , SM ) WrReq(c, l, v,m)−−−−−−−−→
FPGA

(WP ++ (W, c, l, v,m),RP ,UB ,DB , SM )

Read Request

(WP ,RP ,UB ,DB , SM ) RdReq(c, l,m)−−−−−−−→
FPGA

(WP ,RP ++ (R, c, l,m),UB ,DB , SM )

Fence Request One Channel

(WP ,RP ,UB ,DB , SM ) FnReqOne(c,m)−−−−−−−−→
FPGA

(WP ++ (F, c,⊥,⊥,m),RP ,UB ,DB , SM )

Fence Request All Channels

(WP ,RP ,UB ,DB , SM ) FnReqAll(m)−−−−−−−→
FPGA

(WP ++ (F,⊥,⊥,⊥,m),RP ,UB ,DB , SM )

Flush Write Request to Upstream Buffer

WP = head ++ (W, c, l, v,m) ++ tail (F, c, , , ) /∈ head (F,⊥, , , ) /∈ head

(WP ,RP ,UB ,DB , SM ) WrRsp(c,m)−−−−−−→
FPGA

(head ++ tail ,RP ,UB [c := UB [c] ++ (W, l, v,m)],DB , SM )

Write to Memory

UB [c] = (W, l, v,m) ++ tail

(WP ,RP ,UB ,DB , SM ) τ−−−→
FPGA

(WP ,RP ,UB [c := tail ],DB , SM [l := v])

Fence Response One Channel

WP = (F, c,⊥,⊥,m) ++ tail UB [c] = ∅
(WP ,RP ,UB ,DB , SM ) FnRspOne(c,m)−−−−−−−−→

FPGA
(tail ,RP ,UB ,DB , SM )

Fence Response All Channels

WP = (F,⊥,⊥,⊥,m) ++ tail ∀c ∈ Chan.UB [c] = ∅
(WP ,RP ,UB ,DB , SM ) FnRspAll(m)−−−−−−−→

FPGA
(tail ,RP ,UB ,DB , SM )

Flush Read Request to Upstream Buffer

RP = head ++ (R, c, l,m) ++ tail

(WP ,RP ,UB ,DB , SM ) τ−−−→
FPGA

(WP , head ++ tail ,UB [c := UB [c] ++ (R, l,m)],DB , SM )

Read from Memory

UB [c] = (R, l,m) ++ tail SM (l) = v

(WP ,RP ,UB ,DB , SM ) τ−−−→
FPGA

(WP ,RP ,UB [c := tail ],DB [c := DB [c] ++ (l, v,m)], SM )

Read Response

DB [c] = (l, v,m) ++ tail

(WP ,RP ,UB ,DB , SM ) RdRsp(c, l, v,m)−−−−−−−−→
FPGA

(WP ,RP ,UB ,DB [c := tail ], SM )

Figure 3.2: Operational semantics, FPGA side.
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CPU Write

(SM ,WB) CPUWrite(t, l, v)−−−−−−−−→
CPU

(SM ,WB [t := WB [t] ++ (l, v)])

CPU Flush Write Buffer to Memory

WB [t] = (l, v) ++ tail

(SM ,WB) τ−−→
CPU

(SM [l := v],WB [t := tail ])

CPU Fence
WB [t] = ∅

(SM ,WB) CPUFence(t)−−−−−−→
CPU

(SM ,WB)

CPU Read from Memory

SM (l) = v (l, ) /∈WB [t]

(SM ,WB) CPURead(t, l, v)−−−−−−−−→
CPU

(SM ,WB)

CPU Read from Write Buffer
WB [t] = head ++ (l, v) ++ tail (l, ) /∈ tail

(SM ,WB) CPURead(t, l, v)−−−−−−−−→
CPU

(SM ,WB)

Figure 3.3: Operational semantics, CPU side (following [OSS09])

FPGA Step

(WP ,RP ,UB ,DB , SM ) a−−−→
FPGA

(WP ′,RP ′,UB ′,DB ′, SM ′)

(WP ,RP ,UB ,DB , SM ,WB) a−→ (WP ′,RP ′,UB ′,DB ′, SM ′,WB)

CPU Step

(SM ,WB) a−−→
CPU

(SM ′,WB ′)

(WP ,RP ,UB ,DB , SM ,WB) a−→ (WP ,RP ,UB ,DB , SM ′,WB ′)

Figure 3.4: Operational semantics, FPGA and CPU combined
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Write Request adds a new write entry to the write-request pool, and Read Request adds

a new read entry to the read-request pool. Fence Request One Channel adds a new fence

entry with a specified channel to the write-request pool, while Fence Request All Channels

adds a new fence entry on all channels. Flush Write Request to Upstream Buffer says

that if the write-request pool contains a write entry and there are no older fences on the same

channel (or on all channels) in the pool, then the write entry can be removed and appended

to the corresponding upstream buffer, issuing a write response back to the FPGA. Note that

this rule allows writes in the pool to overtake one another if they are not separated by fences.

Write to Memory says that a write entry can be removed from the head of an upstream

buffer, whereupon shared memory is updated. Fence Response One Channel removes a

single-channel fence from the head of the write-request pool providing the named channel is

empty, issuing a fence response back to the FPGA. Fence Response All Channels similarly

removes an all-channel fence providing all channels are empty. Flush Read Request to

Upstream Buffer removes any read entry from the read-request pool and adds it to the tail

of the corresponding upstream buffer. Read from Memory removes a read entry from the

head of an upstream buffer and updates the corresponding downstream buffer with a new entry

containing the value found in the shared memory. Read Response removes an entry from the

head of a downstream buffer, issuing a corresponding read response to the FPGA.

Figure 3.3 defines the following CPU-related transitions. CPU Write adds an entry to the

tail of the write buffer. CPU Fence blocks the CPU from completing a fence action until

the write buffer is empty. CPU Flush Write Buffer to Memory removes the entry at the

head of the write buffer and updates the shared memory with the corresponding value. CPU

Read from Memory reads from shared memory the value of a location that is not in the

write buffer, while CPU Read from Write Buffer reads the latest value of a location that

is in the write buffer.

Finally, Figure 3.4 presents the FPGA Step and CPU Step rules, which describe how the

overall system can evolve as a result of a step either on the FPGA side or on the CPU side.
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3.2 Justifications for modelling decisions

The model presented above was informed by studying the CCI-P manual [Int19]. We now

describe how the various modelling decisions we made – such as the use of read- and write-

request pools, and the inclusion of both upstream and downstream buffers – are justified by

reference to the text from the manual.

Read- and Write-request Pools Even though they are not explicitly mentioned in the

manual, our model contains read- and write-request pools. These are motivated by the system

behaviour when a single channel is used for reads and writes.

“Memory may see two writes to the same [channel] in a different order from their execution,

unless the second write request was generated after the first write response was received.”

[Int19, page 40]

“Reads to the same [channel] may complete out of order; the last read response always

returns the most recent data.” [Int19, page 42]

This indicates the presence of a staging area before the writes are committed to their corre-

sponding channel. Thus we deduce that this staging area is responsible for reordering write

requests with other write requests and read requests with other read requests. From this, it is

unclear whether there are separate pools for read and write requests, but since CCI-P exposes

different interfaces for checking whether the memory system can accept read and write requests,

we keep these staging areas separate. We think this also makes the model easier to read. There

would be no semantic difference if they were combined since fences do not affect reads.

Upstream Buffers Once the read and write requests leave their corresponding pools it might

be tempting to think that they arrive in the shared memory. However, these requests must first

travel through the channels before reaching the shared memory.
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“A memory write response does NOT mean the data are globally observable across channels.

A subsequent read on a different channel may return old data and a subsequent write on a

different channel may retire ahead of the original write.” [Int19, page 39]

No reordering within upstream buffers Once requests arrive in the upstream buffer,

reordering can no longer occur.

“All future writes on the same physical channel replace the data.” [Int19, page 38]

The previous observations indicate that requests can only be reordered while they are in their

corresponding pools and not once they have reached an upstream buffer. Responses are sent

to the FPGA user logic once these have reached an upstream buffer, and it is only then that

users have a guarantee of some order.

Downstream Buffers Figure 3.5 shows an allowed execution, adapted from the CCI-P man-

ual [Int19, Table 37 on page 41], that motivated us to introduce the downstream buffers. A

CPU core performs two write actions on the location x where the FPGA performs two read

requests on x using two different channels (ch1 and ch2). The first FPGA read observes the

first value written by the CPU, while the second FPGA read observes the second value. This

indicates that reads have reached the shared memory in program order. However, the responses

arrive back to the FPGA in reverse order. This indicates that reordering occurred after the

reads reached the shared memory. In our model, this reordering is performed in the downstream

buffers.

Fences The Flush Write Request to Upstream Buffer rule is somewhat unclear since the

manual does not clearly specify if writes can be prevented from being flushed to the upstream

buffer by an older fence on any channel or the specific channel for which the write is destined.

The CCI-P manual states that a fence
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init: x = 0

CPU: FPGA:
1 CPUWrite(x, 1) 1 RdReq(ch1, x, m1)
2 CPUWrite(x, 2) 2 RdReq(ch2, x, m2)

3 RdRsp(ch2, v1 , m2)
4 RdRsp(ch1, v2 , m1)

Allowed: v1 = 2 and v2 = 1

Figure 3.5: A litmus test that motivates
downstream buffers

init: x = y = 0

CPU: FPGA:
1 CPURead(y, v1 ) 1 WrReq(ch1, x, 1, m1)
2 CPURead(x, v2 ) 2 WrRsp(ch1, m1)

3 FnReqOne(ch2, m2)
4 FnRspOne(ch2, m2)
5 WrReq(ch1, y, 1, m3)
6 WrRsp(ch1, m3)

Allowed: v1 = 1 and v2 = 0

Figure 3.6: A litmus test to check our under-
standing of Flush Write Request to Up-
stream Buffer

“guarantees that all [. . . ] writes preceding the fence are committed to memory before any

writes following [the fence] are processed.” [Int19, page 39]

It is unclear whether the channel of a fence matters here. We know that the channel of a

fence affects which writes are flushed to memory, as captured in the Fence Response One

Channel rule; the question is whether single-channel fences impose ordering on accesses to

different channels. The question is captured by the Message Passing (MP)-style litmus test in

Figure 3.6, in which the FPGA writes to x then y over channel ch1, and between the writes

is a fence on channel ch2. Without the fence, the weak outcome was observable on hardware,

but enabling the fence prevented it, even with stress testing. Nevertheless, we choose to err on

the side of caution and enforce ordering between writes only when the fence specifies the same

channel as the writes.

3.3 CBMC Implementation and Litmus Tests

We have implemented our model in CBMC [CKL04] and validated it with all of the 17 traces

(5 explicitly written out and 12 described in prose) that are given as examples in the CCI-P

manual [Int19].

Our CBMC implementation comprises a C file that contains code corresponding to every rule by

which the X+F system can take a step according to the semantics in Figures 3.2 and 3.3. The
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Table 3.1: Simulation bounds for our CBMC executable model.

Parameter Value

Number of simulation steps 30
Number of CPU threads 2
Size of upstream buffers 2
Size of downstream buffers 2
Size of write-request pool 4
Size of read-request pool 4
Size of CPU write buffer 2

state of the system is held in several variables and arrays. The premises of the operational rules

are implemented using assume statements; any rule whose premises are met can be chosen non-

deterministically. The effect of the rule is achieved by imperatively updating the state variables

and arrays. Where non-deterministic choice is required by the semantic rules, corresponding

features for requesting non-deterministic values in CBMC are used, combined with assume

statements to limit the scope of non-determinism to an appropriate range.

Reasoning about a litmus test scenario with the CBMC implementation involves combining the

model C file with a test-specific harness. This harness uses assume statements to encode the

initial state of the trace and the sequence of actions that each of its threads must take. An

assert statement is then used to check whether a particular final state is observable.

CBMC is invoked on the combined model and test harness by pointing the tool at the entry

point for the test harness and specifying a suitable loop-unwinding depth. The tool symbolically

unwinds the program up to this depth, producing a SAT formula that is satisfiable if and only

if the unwound program contains an instance of the assertion associated with the test that can

be violated; that is, all valid paths up to the unwinding depth are explored. In this case, the

associated satisfying assignment provides a concrete trace witnessing the assertion violation.

Furthermore, assertions are used to sanity check the correctness of the model. For example, we

check that buffers are indeed empty after a fence finishes executing.

Simulation Bounds Naturally, the guarantees provided by this kind of simulation are limited

by its bounded nature. Table 3.1 shows the parameters that must be bounded, together with the
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specific bounds we have used when experimenting with our model. The total number of CPU

threads has been chosen such that interesting weak behaviours are exhibited but simulation

times are kept reasonable. Another important parameter is the total number of simulation

steps, which describes the number of times each component has an opportunity to take a step.

We empirically determined whether this value was high enough via a “smoke test” where we

temporarily included assert(false) at certain points that should be reachable – if the assertion

failed then we could be assured that the machine had taken enough steps to reach the program

point. Furthermore, we invoked CBMC with the --unwinding-assertions option, whereby it

checks that unwinding the program further does not lead to any more states being explored.

In this mode, CBMC can prove that the program under test is free from assertion failures: if

an insufficiently large unwinding depth for loops is used then an “unwinding assertion” fails,

indicating that a higher bound is required for the proof to succeed. We used scripts to run

CBMC repeatedly until sufficient unwinding bounds are found.

Since we do not have access to all of the microarchitectural features of the system, we cannot

know the maximum number of requests that can be stuck in transit in the request pools,

channels, and buffers. We have chosen numbers that are high enough to exhibit all the weak

behaviours described in the manual but small enough for the SAT formulas generated by the

bounded model checker to be solvable in a reasonable amount of time.

Confidence in the Model and Test Encoding We acknowledge that the trustworthiness

of our findings using our CBMC-based implementation are subject to coding mistakes on our

part in writing the model, amplified by the unsafe nature of the C programming language.

We chose CBMC because it is a widely used, robust and practical tool well suited for the

system-level modelling work associated with X+F. It was straightforward for us to implement

the model and associated tests using only very basic C features: integer variables and ar-

rays. No dynamic memory allocation/deallocation or non-trivial use of pointers and pointer

arithmetic was required. Furthermore, CBMC checks for many common sorts of undefined be-

haviour, including out-of-bounds array accesses, as a matter of course, so our implementation
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is guaranteed to be free from these (assuming CBMC works correctly).

To guard against implementation mistakes we made heavy use of assertions in the code as-

sociated with our model during its development, e.g. to check various invariants of the X+F

system state. We also employed smoke testing in our litmus tests, confirming that each test

always failed when its post-condition was replaced with false. We deemed this important due

to our heavy use of assume statements in our modelling effort: careless use of multiple assume

statements can easily lead to false being assumed, in turn leading to vacuous reasoning; our

smoke tests demonstrated that our implementation is not subject to these errors.

Michael Adler, a senior Principal Engineer at Intel involved in the design of the X+F system,

with whom we communicated frequently during this research, described our operational model

as ‘definitive’ in an email, saying that they would point engineers to it as a reference.

3.4 Case study: reasoning about a producer/consumer

queue

A common pattern in heterogeneous CPU/FPGA systems is to deploy a kernel on the FPGA

and then stream work to it for processing. For example, one work [WHN19] employed such

queues to implement graph algorithms (Dijkstra’s single-source shortest path and breadth-first

search) on the X+F system. These graph algorithms work by having the CPU decide the order

in which the CPU nodes are going to be processed while the FPGA is responsible for the actual

node processing. This algorithm takes advantage of the CPU’s ability to effectively process

highly sequential code and the FPGAs ability to process multiple nodes in a parallel manner.

Because the CPU/FPGA shared memory interface does not support atomic operations, the

data structure used for synchronisation must not depend on them. A single-writer, single-

reader producer/consumer queue can be used to achieve CPU/FPGA communication without

requiring complex synchronisation primitives. The CPU can use such a queue to send work to

the FPGA. The FPGA can either write its results to a designated area of shared memory, or
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Queue

SIZE=32

Head

Tail

Figure 3.7: A producer/consumer queue

1 Head ← *HeadAddr

2 if ((Tail+1) % SIZE == Head) goto 1

3 Queue[Tail] ← new_value

4 *TailAddr ← (Tail+1) % SIZE

Listing 3.1: Enqueue

send them back to the CPU via a second queue.

We present a case study demonstrating that our formalisation of the X+F memory model

allows rigorous reasoning about the memory operations that are required to correctly implement

producer/consumer queues between the CPU and the FPGA.We present two ways to implement

queues correctly and evaluate their relative performance. We also investigate what happens

when insufficient synchronisation instructions are used: our memory model predicts that this

should lead to a queue that loses messages or gets them the wrong order, and indeed we observe

this behaviour on the hardware in practice.

We now describe how to implement a producer/consumer queue abstractly (Section 3.4.1), and

various approaches to implementing it concretely for the X+F system, showing that the CBMC-

based implementation of our formal model can help with reasoning about the correctness of

the idioms that underpin this implementation. We then present performance results comparing

the various X+F implementation options (Section 3.4.2), and study the performance/qual-

ity trade-off associated with various incorrect but – thanks to our model – still well-defined

1 Tail ← *TailAddr

2 if (Head == Tail) goto 2

3 ret_value ← Queue[Head]

4 *HeadAddr ← (Head+1) % SIZE

Listing 3.2: Dequeue



34 Chapter 3. Operational model

implementations (Section 3.4.3).

3.4.1 Implementation

A producer/consumer queue can be implemented using a circular array, as shown in Figure 3.7.

The SIZE of the array limits the total number of elements that can be added.

Listings 3.1 and 3.2 present the pseudocode of the enqueue and dequeue operations. The pro-

ducer (resp. consumer) must ensure that the queue is not full (resp. empty) before adding

(resp. dequeuing) an element. To achieve this, a simple lock-free implementation will continu-

ously read Head (or Tail), spinning until it can operate on the queue. With a single producer

and consumer, only the producer updates Tail and only the consumer updates Head. Two

important synchronisation behaviours must be preserved between the producer and the con-

sumer. First, Head (or Tail) must be read (line 1) before accessing the queue (line 3). Second,

they must only update their respective pointers (line 4) after accessing the queue (line 3) to

ensure correct message-passing behaviour.

X+F Implementations Recall that there are two possible ways of synchronising between

the CPU and FPGA on the X+F system: (1) using a single channel and waiting for responses or

(2) using multiple channels and issuing fences. Therefore, we implemented two variants of the

producer/consumer queue, using C++ for the CPU and Verilog for the FPGA, with associated

litmus tests validated using CBMC as described above. The single channel variant uses a

single channel for communication and waits for write responses whenever reordering could lead

to incorrect behaviour. The multiple channel variant allows writes and reads to choose any

available channel, which may lead to better performance under heavy traffic, but does require

fences. In both cases the queue is designed to store 64-bit integer elements.

Listing 3.3 shows a single channel snippet of the code that enqueues new value at the Tail of

the queue. After writing the value to the queue (line 4), we wait for the corresponding response

(line 5) to ensure that the Tail does not get updated before the queue has the value. Since we
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1 RdReq(ch1, HeadAddr, mdata0)

2 RdRsp(Head, mdata0)

3 if ((Tail + 1) % SIZE == Head) goto 1

4 WrReq(ch1, Queue + Tail, new_value, mdata1)

5 WrRsp(mdata1)

6 WrReq(ch1,TailAddr, Head + 1, mdata2)

Listing 3.3: Enqueue (single channel)

1 RdReq(ch1, TailAddr, mdata0)

2 RdRsp(Tail, mdata0)

3 if (Tail == Head) goto 1

4 RdReq(ch1, Queue + Head, mdata1)

5 ret_value ← RdRsp(mdata1)

6 WrReq(ch1, HeadAddr, Head + 1, mdata2)

7 WrRsp(mdata2)

Listing 3.4: Dequeue (single channel)

do not get incorrect behaviour if the Tail write request (line 6) gets reordered with the next

queue update, we do not have to wait for its response.

Listing 3.4 shows a single-channel snippet of the code that dequeues from the Head. When the

Head of the queue is updated (line 7), we need to wait for a response so that the Head does not

get reordered with the next Head update.

Listing 3.5 shows a multiple channel snippet of the code that enqueues value new value at the

Tail of the queue. Notice that instead of waiting for a response from the first write request

(line 4), a fence operation on all channels is inserted (line 5). There is no need to wait for the

response of the fence operation since we are only interested in providing a order between the

two write operations. The response of the fence operation would have provided the additional

1 RdReq(⊥, HeadAddr, mdata0)

2 Tail ← RdRsp(mdata0)

3 if ((Tail + 1) % SIZE == Head) goto 1

4 WrReq(⊥, QUEUE + Tail, new_value, mdata0)

5 FnReqAll(mdata1)

6 WrReq(⊥, TailAddr, Tail + 1, mdata1)

Listing 3.5: Enqueue (multiple channels)
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1 RdReq(⊥, TailAddr, mdata0)

2 Tail ← RdRsp(mdata0)

3 if (Tail == Head) goto 1

4 RdReq(⊥, QUEUE + Head, mdata1)

5 r1 = RdRsp(mdata1)

6 WrReq(⊥, HeadAddr, Head + 1, mdata2)

7 FnReqAll(mdata2)

Listing 3.6: Dequeue (multiple channels)

init: Head = 0, Tail = 0, Queue = [0,0]
FPGA: enqueue(42)

enqueue(43)
assert: Head = 0, Tail = 2, Queue = [42,43]

(a) FPGA double enqueue

init: Head = 0, Tail = 2, Queue = [42,43]
FPGA: r1 = dequeue()

r2 = dequeue()
assert: Head = 2, Tail = 2, r1 = 42, r2 = 43

(b) FPGA double dequeue

init: Head = 0, Tail = 0, Queue = [0]
FPGA: enqueue(42) CPU: r1 = dequeue()
assert: Head = 1, Tail = 1, r1 = 42

(c) FPGA enqueue, CPU dequeue

init: Head = 0, Tail = 0, Queue = [0]
FPGA: r1 = dequeue() CPU: enqueue(42)

assert: Head = 1, Tail = 1, r1 = 42

(d) FPGA dequeue, CPU enqueue

Figure 3.8: Four litmus tests for validating the queue

guarantee that all previous writes have reached a point where they are globally visible between

all threads in the system.

Listing 3.6 shows a multiple channel snippet of the code that dequeues from the Head. We

have the same synchronisation issues in this version as with the single-channel version, but

since traffic can flow on any channel (written ⊥), we need to use fences on all channels ( line

7) instead of just waiting for responses. Similarly to the enqueue case, there is no need to wait

for the response of the fence operation since there is no need for the writes to become globally

visible.
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Validation Using Our Operational Model Before implementing the producer/consumer

queue in C++ and Verilog, we identified four litmus tests that capture the key interactions

upon which the correctness of the queue depends. These tests include two successive enqueues,

two successive dequeues, an FPGA enqueue followed by a CPU dequeue, and a CPU enqueue

followed by an FPGA dequeue. We used the CBMC-based mechanism of our operational

memory model (Section 3.3) to confirm that these litmus tests are all guaranteed to behave

correctly according to our model. The tests that validate the queue primitives can be summaries

as following:

Successive FPGA enqueues Two successive enqueues are performed on the FPGA as seen

in Figure 3.8a. The assertion checks if the queue contains the correct values and if the

head and tail are at the correct position.

Successive FPGA dequeues The queue is initialised with 2 elements and the FPGA per-

forms two dequeues as seen in Figure 3.8b. The assertion checks if the FPGA received

the values in order and the head and tail have the correct value.

FPGA enqueue, CPU dequeue The FPGA does an enqueue and the CPU does a dequeue

as seen in Figure 3.8c. The assertion checks if the CPU received the correct values and if

the head and tail are at the correct position.

CPU enqueue, FPGA dequeue The FPGA does a dequeue and the CPU does an enquque

as seen in Figure 3.8d. The assertion checks if the FPGA received the correct values and

if the head and tail are at the correct position.

These tests do not establish the correctness of the queue since they do not provide a complete

formal evaluation. While a complete formal evaluation of the correctness of these queues is

possible using our memory model, these tests give us the confidence that the basic operations

of the queues are correct.
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3.4.2 Performance comparison

Cloud providers widely deploy FPGAs as application-specific accelerators for customer use.

Since most FPGAs contain more logic elements than a typical user can efficiently utilise, these

providers multiplex their FPGAs among customers [VPK18, KLP+18]. Therefore we can expect

that there will be multiple applications running on the FPGA that will use the same CCI-P

interface. Therefore a realistic use case would be when the queue runs alongside an unknown

amount of traffic. Moreover, it has been shown that some weak memory effects can only be

exposed when the memory system is stressed with enough traffic [AMSS11, SD16].

To understand the effectiveness of the producer/consumer queue and its robustness to stress, we

gained access to an X+F system though the Intel Academic Compute Environment [Int21]. This

X+F system comprises a Broadwell Xeon CPU and an Arria 10 FPGA. While Intel provides

a OpenCL SDK that can be used to run code for these category of devices, this SDK is based

on an old version of OpenCL that does not provide access to all the fine-grain synchronisation

that our memory model describes. Therefore, we use C++ to write code for the processor and

SystemVerilog to write code for the FPGA.

We implemented the two versions of the queue (synchronised using a a single channel and

synchronised using multiple channels) and we make the CPU add the data and the FPGA was

remove the data. We also implemented the mirror case where the FPGA is the one adding the

data and the CPU is the one removing the data. We want to evaluate the effectiveness of these

queues and therefore we measure their execution time with various number of elements being

transferred. We repeat each experiment 10 times, but after observing that there was virtually

no variance, we decided to report results just from the first.

Stressing the system We simulate traffic on the FPGA by sending write requests and read

requests to the main memory at regular intervals. We call these requests enemy requests. The

shorter the interval, the more traffic is created. Internally, we measure the length of the interval

by using a counter that increments at every clock cycle. To avoid corrupting the state of our

producer/consumer queue, we make sure to send requests to main memory addresses that are
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Figure 3.9: Execution time of the two variants of the queue, transferring different number of
elements in isolation and with heavy stress.

not utilised by any of the elements of the queue.

Figure 3.9 shows the execution time with a varying number of elements transferred. The number

of elements transferred is always a power of two. We experiment with two scenarios: one where

the FPGA continuously enqueues elements and the CPU continuously dequeues, and another

where the roles are switched. In both cases, the SIZE of the buffer is 32. Afterwards, we repeat

the same scenario but we add stress. For the same number of elements transferred, the FPGA

can enqueue faster than it can dequeue. This can be explained by two factors: (1) FPGA main

memory accesses are slower than CPU main memory accesses and (2) writes are more expensive

than reads.
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Without memory stress In the absence of enemy traffic, using one or multiple channels does

not have significant impact on execution speed, whether the FPGA is enqueuing or dequeuing.

Indeed, in Figure 3.9a, the lines indicating the execution time of the 1-channel and the 3-

channels versions coincide. However, Figure 3.9b shows that using multiple channels is (slightly)

slower. This decrease in execution time is marginal when the number of elements transferred is

small, but becomes visible when more elements are transferred. We start to observe a decrease

in execution time of 3% when 216 elements are sent, reaching 12% when more than 222 elements

are sent.

To explain this, we consult the information related to channel utilisation that the CCI-P in-

terface provides, and in this case, we can see that only one channel was used, regardless of

the number of elements transferred. Allowing the use of multiple channels requires fences, but

these operations are expensive and can cause a performance penalty when very few writes are

present, as in the dequeue operation.

With memory stress Contention on shared resources of multicore systems caused by mem-

ory stressing can significantly impact execution time of completely independent processes [ISWD20,

BY19, RGG+12]. We see the same effect on FPGAs, where adding stress significantly increases

the execution time in all our experiments. In this case, the request pools are quickly filled and

the FPGA is blocked until there is enough space to add a new request. In Figures 3.9c and 3.9d

we can observe that the multiple channel variant has a consistently shorter execution time

– about 60% of the execution time of the single channel variant. The decrease in execution

time ranges from 35% (when just 210 elements are transferred), up to 42% when more than 218

elements are transferred. By examining the profiling information provided by CCI-P, we can

see that this can be attributed to the fact that under heavy stress, queue traffic gets evenly

distributed across all channels.

Summary From these experiments, we see that using a single channel can be the better option

if we know that no unknown traffic will be present: if multiple channels are used unnecessarily,

the queue will still only use a single channel but will require costly fences to ensure correctness.
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However, when when there may be heavy traffic present, it is better to allow the CCI-P interface

to redirect traffic onto multiple channels, and the cost of fences is justified.

3.4.3 Exploring Incorrect Behaviour

The implementations described in Section 3.4.1, and the associated performance results in Sec-

tion 3.4.2, are with respect to correct synchronisation, so that elements are dequeued from the

producer/consumer queue in the same order in which they were enqueued, even in the pres-

ence of stressing traffic. We now explore the effects of incorrect synchronisation, showing that

stressing traffic helps to expose incorrect synchronisation and get a quantitative handle on how

unreliable an insufficiently-synchronised queue is in practice. The idea of eliminating synchro-

nisation that is strictly necessary for correctness has been explored by previous work [Rin12].

Furthermore, while an insufficiently synchronised queue is unacceptable for use in a domain

where the notion of correctness is binary, it is well-known that performance/quality trade-

offs are of interest in approximate computing domains, such as image processing and machine

learning. A queue that performs more efficiently at the expense of losing elements with some

probability may have useful application in such domains, and our formal memory model gives

precise semantics to such a queue implementation.

An improperly synchronised queue can result in lost messages, duplicate messages or reordered

messages. In our experiments, any message that does not arrive in its correct position is

considered a lost message. We call such a improperly synchornised queue, a lossy queue.

We conduct our case study by eliminating all write responses and fences and measuring the

number of elements that are lost. The fences on the CPU side are kept to make reasoning

about the queue easier. We run our experiments for different numbers of elemens transferred.

Figure 3.10 shows a comparison of multiple versions of the fully synchronised queue with their

coresponding version without synchronistion primitives.

We first run the experiments in isolation (without stressing traffic) and observe that weak

behaviour seldom occurs. The lossy versions of the enqueue tend to be about 20–27% faster
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103 104 105 106 107
10−3

10−2

10−1

100

101

0

0

0
0

0
0

0
0

0
0

1
2

3
0

Elements transferred

E
x
ec
u
ti
on

ti
m
e[
s]

with sync
without sync

(c) FPGA enqueue, 3 channels, without stress
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Figure 3.10: Comparing multiple versions of the the fully synchronised queue with the improp-
erly synchronised versions. The numbers next to the data points give the number (percentage)
of elements received incorrectly when synchronisation is omitted.
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than the correctly synchronised versions, while the lossy dequeues are about 30–40% faster. We

can see that without adding any kind of stress, the queue only manifests weak behaviour rarely

and lost elements can be observed with large tranfers. This is true for both the versions of the

queue that use a single channel and the versions of the queue that that uses multiple channels.

An interesting behaviour can be observed in Figure 3.10b where elements are lost only when

the 107 elements are transferred in the queue.

The stress exacerbates the weak behaviours in the enqueue. We experimented with many

different configurations of the stress parameters but we only show the ones that were able to

cause the most weak behaviour. Here we can observe a loss of about 11% of the elements.

The performance benefits are clearer in this case, ranging from 14% to 22% faster for the

enqueue and from 50% to 60% faster for the dequeue. This improved performance is of course

irrelevant if the queue is intended for deployment in a scenario where no loss of messages can

be tolerated. However, the reliability/performance trade-off may be of interest in approximate

computing domains.

Summary A lack of synchronisation causes elements to be lost, but this behaviour can only

be observed when significant stress is applied. There is a clear performance benefit of the lossy

versions, which might be tempting if the application can tolerate data loss. However, we do

not recommend this version of the queue unless we clearly know the data loss tolerance of the

application.

3.5 Related work

CPU/FPGA Applications [ZCP16] have shown that implementing large-scale merge sort

on an earlier version of the X+F can improve its throughput by 2.9× and 1.9× compared

respectively to CPU-only and FPGA-only systems. [WHN19] and [ZP17] have shown that

some graph algorithms are similarly well-suited to these platforms. In such platforms, the

work is shared between the FPGA and the CPU threads and better results are obtained com-
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pared to the CPU working alone. [WC17] have demonstrated similar results about K-means

clustering applications using a different CPU/FPGA system called the Intel Cyclone V. More

recently, some machine learning applications have improved their throughput when ported from

a CPU/GPU implementation to a CPU/FPGA implementation [MKP20, GLL+19, GSQ+18].

FPGA Synchronisation Synchronisation primitives such as locks and barriers have been

shown to be effective at enforcing orderings between FPGA threads [YFAE14]. Other works

have shown how threads running on GPUs can be synchronised [SDB+16]. However, we are

not aware of any work showing how to reason about the synchronisation of threads running on

a CPU and on an FPGA. One work closely connected to ours [WC17] shows how OpenCL can

be extended to support shared virtual memory (SVM) and its performance benefits. However

we are not aware of any work showing how the memory model impacts this synchronisation.

Memory Modelling CPUmemory models such as x86 [OSS09], POWER [SSA+11], Arm [PFD+17b],

and RISC-V [PPPK+19] are now fairly well understood, as are some GPU memory mod-

els [ABD+15, LSG19]. However, these models do not apply to systems where threads are on

different devices.

[LTPM15] provide a framework for translating between different memory consistency models.

This is done with the aid of a format for specifying the semantics of memory orderings. Rea-

soning about the combination of two different memory models is not in the scope of that work,

so it would not directly help with modelling a heterogeneous system like X+F.

Heterogeneous models between CPUs and GPUs have also been explored. [HHB+14] describe

scoped memory models that arise principally in GPU computing, where threads are organised

hierarchically into workgroups, and where it is desirable to be able to guarantee consistency at

a particular level of this hierarchy. The X+F system does not have a scoped memory model,

so the context of the [HHB+14] model is largely irrelevant to our setting. Furthermore, in

their model, all compute units in the heterogeneous system are treated uniformly, whereas our

model is sensitive to the respective idiosyncrasies of the CPU and the FPGA components. Also,
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their model is pitched at the language level (OpenCL), rather than at the level of a particular

architecture.

[ZTM+18] show how to reason about systems-on-chip by building what is called an instruction-

level abstraction (ILA) [HZS+18] for each component. They do not address the challenge of

coming up with (or validating) each ILA, so in this sense, our work can be seen as complemen-

tary to theirs. It is also not clear how to generalise their framework to deal with an FPGA

memory model like ours, where reads and writes are split into requests and responses, and ac-

cesses are allocated to channels. We also note that none of the works mentioned above provide

a means to generate test-cases for heterogeneous systems.

3.6 Summary

CPU/FPGA systems represent an attractive heterogeneous option, though they offer some

unique programmability challenges. Therefore, we provided formal semantics in operational

format for this system and mechanised them in C. The semantics can aid in reasoning about

concurrent programs that run on the CPU and the FPGA. Moreover, the C implementation of

the operational semantics provides a means by which executions can be explored through this

system.

Furthermore, we have provided two correct versions of a popular producer/consumer synchro-

nisation primitive and compared their performance in different scenarios. We have also shown

how the lack of synchronisation can cause incorrect behaviours and how these behaviours can be

exposed. Since these incorrect behaviours are rare, we consider our work the first step towards

principled approximate computing on CPU/FPGA systems.
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Axiomatic model

While operational models are often considered more intuitive, a memory model based on ax-

iomatic semantics can be orders of magnitude faster than one based on operational ones [AMT14].

Furthermore, axiomatic semantics can efficiently generate allowed and disallowed executions

that can be used to test the model empirically. We develop an axiomatic memory model of the

X+F system and aim to show that this is equivalent to the operational one. By automatically

generating tests and running them on the actual hardware, we can also gain more confidence

in the accuracy of our model.

In this chapter, we start with a formal description of the axiomatic semantics (Section 4.1) and

show how sequential consistency can be recovered (Section 4.2); we then show the method used

to test the model and gain confidence in its accuracy (Section 4.3). Afterwards we investigate

the experimental results (Section 4.4) and conclude by presenting related works (Section 4.5)

and a summary of our findings (Section 4.6).

4.1 A formalisation of the memory model

We now present an axiomatic formalisation of the X+F memory model. Axiomatic formali-

46
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sations are attractive because they can be easily compared against each other [AMT14]. The

more immediate advantage for us is the possibility of generating a suite of conformance tests

automatically from the axioms (Section 4.3.1).

Notation We write r∗ for the reflexive transitive closure and r−1 for the inverse of a binary

relation r. Given binary relations r1 and r2 we define their join r1 ; r2 as {(x, z) | ∃y. (x, y) ∈

r1 ∧ (y, z) ∈ r2}. We write [S] for the identity relation restricted to a set S, so [S] ; r ; [T ] =

r∩ (S×T ). We use the convention that sets begin with an uppercase letter and relations begin

with a lowercase letter.

4.1.1 Executions

We define an execution as a structure comprising a set of events plus several relations among

those events. Each event represents one of the WrReq, WrRsp, RdReq, RdRsp, FnReqOne, FnRspOne,

FnReqAll, FnRspAll, CPUWrite, CPURead, or CPUFence actions that we saw in Section 3.1.1.

In what follows, given an execution X, we shall write WrReq for the set of events in X that

represent WrReq actions, and so on. It is useful to define a few further subsets of events, so we

write:

• E for the set of all events in the execution,

• W for CPUWrite ∪ WrRsp,

• R for CPURead ∪ RdRsp,1

• Req for RdReq ∪ WrReq ∪ FnReqAll ∪ FnReqOne,

• Rsp for RdRsp ∪ WrRsp ∪ FnRspAll ∪ FnRspOne,

• CPU for the events from the CPU, i.e. CPUWrite ∪ CPURead ∪ CPUFence, and

• FPGA for the events from the FPGA, i.e. Req ∪ Rsp.
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Remark. It is unusual in axiomatic memory models to have separate events for requests and
responses – usually there is just a single event for each read, write or fence. However, we find
it necessary to track requests and responses explicitly in executions, as their relative order
can affect whether an execution is allowed. For instance, consider the following executions:

init: x = 0

FPGA: 1 RdReq(ch1, x, m1)
2 WrReq(ch1, x, 1, m2)
3 WrRsp(ch1, m2)
4 RdRsp(ch1, v , m1)

Allowed: v = 0

init: x = 0

FPGA: 1 WrReq(ch1, x, 1, m2)
2 WrRsp(ch1, m2)
3 RdReq(ch1, x, m1)
4 RdRsp(ch1, v , m1)

Disallowed: v = 0

These two executions differ only by the position of the read request (highlighted), but the
execution on the left is allowed (the read can observe the old value 0 because the read request
preceded the write of the new value), while the execution on the right, where the read is
requested after the write completes, is not.

The relations among the events in an execution are as follows:

• sch (‘same channel’) is an equivalence relation among all events that correspond to actions

that specify a channel – that is, all events in FPGA except FnReqAll and FnRspAll.

• sthd (‘same thread’) is an equivalence relation that partitions all events into threads. In

our model, the FPGA acts as a separate thread.

• sloc (‘same location’) is an equivalence relation among all non-fence events that connects

events that access the same memory location.

• rf (‘reads from’) connects writes (either CPU writes or FPGA write responses) to reads

(either CPU reads or FPGA read responses) at the same location – that is,

rf ⊆ [W] ; sloc ; [R].

No read has more than one incoming rf edge. We use rfe as a shorthand for rf \ sthd,

which refers to a read from an external thread.

1Note that W and R contain CPU writes/reads and FPGA responses but not FPGA requests. W and R could
have contained requests, or some mixture of requests and responses, but we found that these options led to
more complicated axioms.
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• po (‘program order’) is a strict, total order over all events within each thread. We further

define poloc = po ∩ sloc and poch = po ∩ sch.

• co (‘coherence order’) is a strict total order per location over all writes (either CPU writes

or FPGA write responses).

• fr (‘from-read’) connects each read to all the writes that overwrite the write the read

observed. Following [LWPG17], we define

fr = ([R] ; sloc ; [W]) \ (rf−1 ; (co−1)∗).

and we use fre as a shorthand for fr \ sthd.

• readpair connects each RdReq to its corresponding RdRsp.

• writepair connects each WrReq to its corresponding WrRsp.

• fenceonepair connects each FnReqOne to its corresponding FnRspOne.

• fenceallpair connects each FnReqAll to its corresponding FnRspAll.

• pair is a shorthand for readpair ∪ writepair ∪ fenceonepair ∪ fenceallpair.

• fencepair is a shorthand for fenceonepair ∪ fenceallpair.

We assume that requests and responses are paired up exactly; that is, every request has a pair

edge to exactly one corresponding response, and vice versa. This means that we cannot reason

about programs with dangling requests. It also means that we cannot reason about programs

that use the same metadata tag for more than one request/response pair, but then again, such

oddities are not interesting because they are easily rooted out by a preprocessing pass.

4.1.2 Consistency axioms

Before stating the axioms that capture when an execution is deemed consistent, we require a

few more derived relations. The following derived relations capture the effect of fences on the
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CPU and on the FPGA:

fenceCPU = po ; [CPUFence] ; po

poFnRsp = (poch ; [FnRspOne]) ∪ (po ; [FnRspAll])

fenceFPGA = [WrRsp] ; poFnRsp ; po ; [E \ RdRsp]

fence = fenceCPU ∪ fenceFPGA

The fenceCPU relation holds between any CPU events in program order that are separated by

a fence. The fenceFPGA relation captures the guarantee that when a fence response is received

by the FPGA, all previous writes on the specified channel (or all channels if the fence does

not specify one) have propagated to memory, so any subsequent read requests will see the new

values. The [E \ RdRsp] part is to allow for the fact that responses to reads that have already

been requested may still contain old values.

The following derived relations capture the ‘preserved program order’ [AMT14] for the CPU

and the FPGA:

ppoCPU = po \ (W× R) ∩ CPU2

ppoFPGA = ([Rsp] ; poch ; [E \ RdRsp]) ∪ ([RdRsp] ; po ; [E \ RdRsp]) ∪ pair

ppo = ppoCPU ∪ ppoFPGA

The ppoCPU relation is inherited from the TSO memory model (with the added restriction

that it only applies to CPU events). The ppoFPGA relation captures that (1) responses are not

reordered with subsequent events on the same channel, (2) read responses are not reordered

any subsequent event. and (3) request/response pairs are kept in order.

We are now ready to state the consistency axioms. An X+F execution is deemed consistent if

the rules defined in figure 4.1 hold.

sc-per-loc is familiar from the TSO memory model; we have added the restriction to CPU

events. propagation is the other standard TSO axiom, which we have enhanced with
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acyclic((poloc ∪ rf ∪ fr ∪ co) ∩ CPU2) sc-per-loc

acyclic(ppo ∪ fence ∪ rfe ∪ fre ∪ co) propagation

irreflexive(fr ; poch ; readpair) read-after-write

irreflexive(fr ; poFnRsp ; po ; readpair) read-after-fence

irreflexive(rf ; po) no-read-from-future

acyclic(fre ∪ rfe ∪ (rf \ sch) ∪ poch ∪ ppoCPU) observe-same-channel

irreflexive(po ; fencepair ; po ; writepair−1) fence-response

irreflexive(po ;(fencepair ∪ writepair); po ; fenceallpair−1) fence-block

irreflexive(rf ; poloc ; co) write-order-channel

Figure 4.1: The axioms of the X+F memory model.

Remark. The original published version of these semantics (OOPLSA21 [IDSW21b]) con-
tained some infidelities. These infidelities were caused by some limitations in our simulation
technique that we were able to overcome by using the techniques presented in Chapter 5. The
semantics presented here are the revised ones that do not contain the mistakes present in the
original paper.

fenceFPGA and ppoFPGA . The two read-after-* axioms concern the situation where a read

request (say r) is po-after a write response (say w) on the same location; they say that when

r and w are on the same channel (read-after-write), or are separated by a fence that is

either on the same channel as w or on all channels (read-after-fence), then r must observe

w (or a co-later write). no-read-from-future prevents reads observing writes that haven’t

been issued yet and observe-same-channel prevents writes from a different thread being

observed out-of-order on the same channel. The fence-response and fence-block axioms

describe the reorderings that fences enforce on the executions. The write-order-channel

deals with ordering guarantees of multiple writes to the same channel.

4.2 Restoring sequential consistency

The memory provided by the X+F system is weaker than traditional CPU systems, allowing

even executions that could violate coherency. However, the system allows sequential consistency

to be recovered using the appropriate synchronisation. Here, we show how this can gradually

be achieved through different examples.
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a: CPUWrite(x, 1) b: RdReq(ch1, x, m1)

c: RdRsp(ch1, 1 , m1)

d: RdReq(ch2, x, m2

e: RdRsp(ch2, 0 , m2)

rf

rf

(a) coRR1

a: RdReq(ch1, x, m1)

b: RdRsp(ch1, 2 , m1)

c: WrReq(ch2, x, 1, m2)

d: WrRsp(ch2, m2)

e: CPUWrite(x, 2)

rf

co

(b) coRW

a: WrReq(ch1, x, 1, m1)

b: WrRsp(ch1, m1)

c: RdReq(ch1, x, m2)

d: RdRsp(ch1, 2 , m2)

e: CPUWrite(x, 2)

co

rf

(c) coWR

a: WrReq(ch1, x, 1, m1)

b: WrRsp(ch1, m1)

c: WrReq(ch1, x, 1, m2)

d: WrRsp(ch1, m2)

co

(d) coWW

Figure 4.2: Coherancy litmus test

We focus on what we consider the most illustrative executions from the POWER and ARM

Litmus Tests [Sew23] (these are also more commonly known as ”The Periodic Table of Litmus

tests). The names of the tests are taken from the original work. We show how each of these

executions can be disallowed with the proper synchronisation.

4.2.1 Restoring coherancy

The X+F system does not guarantee coherency since requests can get reordered in their cor-

responding pools or travel via different channels at different speeds. Figure 4.2 shows how

coherency can be assured, and different behaviour is forbidden.

Figure 4.2a shows the read-after-read test. To prevent the second read (e) from observing an

old value, its corresponding read request (d) must only be issued after the first read response

(c) has arrived.

Similarly, Figure 4.2b shows the write-after-read test. To prevent the FPGA write (d) from

occurring before the CPU write(e), we must issue the write request (c) only after the previous

read response (b) has returned with the observed CPU value.
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a: CPUWrite(x, 1)

fence

b: CPURead(y, 0)

c: WrReq(ch1, y, 1 , m1)

d: WrRsp(ch1, m1)

e: RdReq(ch1, x, m2)

f : RdRsp(ch1, 0 , m2)

rf

rf

(a) Store buffering

a: RdReq(ch1, x, m1)

b: RdRsp(ch1, 1 , m1)

c: WrReq(ch2, y, 1, m2)

d: WrRsp(ch2, m2)

e: CPURead(y, 1)

f : CPUWrite(x, 1)

rf

rf

(b) Load buffering

Figure 4.3: Load and store buffering

Figure 4.2c shows the read-after-write test. To prevent this execution, we need to ensure that

the read request (c) is only issued after the write response has arrived (b) and also assure that

both utilise the same channel. If different channels are used, the read can altogether bypass

the write and observe the CPU write (e) and only afterwards, the write from the FPGA (b)

reach the main memory.

Figure 4.2d again shows an example where the same channel must be utilised for both writes

to prevent the behaviour described. If different channels are used, the writes can effectively be

reordered with each other.

4.2.2 Store and load buffering

Store buffering and load buffering are popular litmus tests used to characterise most memory

models. We can see these tests in Figure 4.3. The store buffering effect can be observed on x86

processors while the load buffering one can not.

Store buffering is presented in Figure 4.3a. The execution can happen if the CPU write (a)

gets reordered with the CPU read (b) or the response of the FPGA write (d) gets reordered

with the response of the FPGA read (f). To prevent reordering on the CPU side, we need to

add a fence operation between the two operations. Furthermore, to prevent the reordering on

the FPGA side, we need to issue the read request (e) only after we have received the response

from the FPGA write (d) and use the same channel for both operations.

Load buffering is presented in Figure 4.3b. The execution can happen if the CPU read (e) gets
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a: WrReq(ch, x, 1, m1)

b: WrRsp(ch, m1)

c: CPURead(x, 1)

d: CPUWrite(y, 1)

e: CPURead(y, 1)

f : CPURead(x, 0)

rf rf
rf

(a) WRC1

a: CPUWrite(x, 1) b: RdReq(ch1, x, m1)

c: RdRsp(ch1, 1 , m1)

d: WrReq(ch2, y, 1, m2)

e: WrRsp(ch2, m2)

f : CPURead(y, 1)

g: CPURead(x, 0)

rf

rf

rf

(b) WRC2

a: CPUWrite(x, 1) b: CPURead(x, 1)

c: CPUWrite(y, 1)

d: RdReq(ch1, y, m1)

e: RdRsp(ch1, 1 , m1)

f : RdReq(ch2, x, m2)

g: RdRsp(ch2, 0 , m2)

rf

rf

rf

(c) WRC3

Figure 4.4: Causal consistency litmus tests

reordered with the CPU write (f) or the response of the FPGA read (b) gets reordered with

the response of the FPGA write (d). To prevent the reordering from occurring, we need to

wait for the FPGA read response (b) before issuing the FPGA write (c). Since no reordering

can occur on the CPU side, there is no reordering required on that side.

4.2.3 Causal consistency

Causal consistency is a property of memory models that ensures that the order of events is

preserved across multiple threads in the system. It ensures that if an event occurs before

another event in one thread, the exact ordering of events should also be observed in any other

thread in the system. This can be used to coordinate the execution of multiple threads, ensuring

that memory accesses are performed in a predictable order.

Figure 4.4 shows an example with multiple threads that need to coordinate with each other.
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Table 4.1: The total number of disallowed and allowed litmus tests, grouped by event count.

#Events Disallowed Allowed

4 9 0
5 10 0
6 38 2
7 72 26
8 454 152

Total: 583 180

In Figure 4.4a, the first thread is set on the FPGA, in Figure 4.4b, the second thread is set on

the FPGA, while in Figure 4.4c, the third thread is set on the FPGA. No synchronisation is

required in the first case, but in the second and third cases, we need to wait for the previous

responses to arrive before sending the subsequent requests.

4.3 Testing the axiomatic model

In this section, we present our method for validating the accuracy of our axiomatic memory

model. We start by presenting how we can automatically generate executions from the ax-

iomatic memory model; we then present our idea for cross-checking the operational model,

the axiomatic model and the actual hardware. The final part of this Section presents how we

optimised testing on the actual hardware.

4.3.1 Generating executions from the axioms

By encoding the above constraints in the Alloy modelling language, we can use the Alloy

Analyzer to generate a large number of executions that violate at least one axiom, as shown

by previous work by [LWPG17]. This corpus of executions can serve as a conformance suite.

We generated executions that had a single FPGA thread and at least one write that we can

observe.

Following [LWPG17], we only generate ‘interesting’ disallowed executions – those that use the

least synchronisation necessary to prevent a particular outcome. We use this to generate only



56 Chapter 4. Axiomatic model

the disallowed traces where every event is critical : i.e. removing any event from such trace

will cause the trace to become allowed. This ensures that exhaustive test generation remains

feasible as the event count grows. Every event in an interesting test is critical : i.e. removing

any event from such trace will cause the trace to become allowed. Exhaustively generating

all executions quickly becomes infeasible as the number of events increases. Moreover it is

unnecessary to do so as such a suite would contain a large amount of redundancy. Tests may

use overly-strong synchronisation, may contain operations that have no effect, or may simply

duplicate a pattern already covered by another test in the suite. Conversely, a test is in fact

useful if it covers some pattern not already tested within the suite.

We modify the technique of [LWPG17] to take into account the fact that in contrast to their

CPU counterparts, FPGA events always occur in pairs: requests and their corresponding re-

sponse. Using this approach, we are able to generate a total of 583 interesting disallowed

executions. The second column of Table 4.1 breaks these executions down by event count.

We further generate a total of 180 allowed executions by removing one or more fences from these

disallowed executions. Removing any CPU instruction or any pair of FPGA events from each of

these 583 executions will cause it to become allowed. Removing any fence will therefore cause

the execution to become allowed. Since only a subset of the disallowed executions contain fences,

using this approach we generate an additional 180 allowed execution. We could remove reads

or writes as well as fences, but this would require the test’s postcondition to be recalculated.

4.3.2 Cross-checking the axiomatic and operational model

The operational model and the axiomatic model should be equivalent as both should accurately

describe the X+F system. While developing both models we repeatedly cross-validated them

against each other as can be seen in Figure 4.5. We wrote a back-end to turn an Alloy-generated

execution into an input to the CBMC model, using assume statements to describe the sequence

of events in the execution and assert statements to validate whether final condition can be

realised. This process revealed several discrepancies between the models during development.

We manually inspected each discrepancy, fixed the inaccurate model, and added the execution
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axiomatic
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Figure 4.5: Cross-validation flow

that identified the discrepancy to our regression test suites for both models. For example, in

our initial modelling attempt we oversimplified the axiomatic model by merging requests and

responses into single events, as remarked in Section 4.1. As a result, the automatic cross-

validation flow generated traces that were disallowed in the axiomatic model but allowed in the

operational model. This modelling decision proved incorrect and was later fixed.

We used this cross-validation approach to gain confidence that the axiomatic and operational

models agree for all of the litmus tests discussed in Section 4.3.1, except that we skipped 34

tests that involve more than two CPU threads: our CBMC implementation only supports two

CPU threads as we found that model checking for larger thread counts did not scale. In our

view, the ability to cross-validate is a key reason for developing mechanised axiomatic and

operational semantics for the same memory model.

We also aimed to validate these models against the actual hardware using the Alloy-generated

tests. However, synthesising a test-case for the FPGA is quite slow and didn’t initially allow us

to execute many tests. We were able to overcome this challenge with the aim of the soft-core

processor described in the next section.

4.3.3 A Soft-core processor

To validate the memory model, we need to run a large number of litmus tests on the X+F

hardware. Compiling the CPU part of the litmus test is fast, but synthesising the corresponding

FPGA part takes between one and two hours. This long time might be due to the fact that the
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idle PC := 0

fetch

decode

read req

read rsp

write req
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PC = #EVENTS
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Instruction format:

Figure 4.6: A simplified representation of the soft-core state machine and the instructions it
processes.

current flow re-synthesises some elements such as the virtual-to-physical-address translator.2

Therefore, performing synthesis separately per litmus test is not feasible.

To overcome this, we have designed a simple soft-core processor that runs on the FPGA and

only needs to be synthesised once. A litmus test is encoded as a sequence of instructions and

sent by the CPU to the FPGA for execution. Each instruction captures the event type, and (if

relevant) an associated address, channel, metadata and value.

For each litmus test, the CPU allocates and initialises the necessary shared memory locations.

It then communicates these to the FPGA, along with the instruction sequence that the FPGA

thread should execute and the number of times the test should be repeated. The CPU detects

when the FPGA thread has finished executing a litmus test by busy-waiting on a designated

flag location in shared memory.

Once setup is finished, the CPU can start the litmus test by starting the CPU threads, signalling

the FPGA to start its thread and then wait for the CPU and FPGA thread to finish. The CPU

will get the state of the FPGA thread by waiting in a loop while repeatedly checking a shared

memory value. It will then assert if the behaviour observed is valid.

Figure 4.6 depicts the soft-core processor as a state machine. At the beginning of execution,

the processor is in the idle state. When the FPGA receives the signal from the CPU to

2Changing the Intel-provided flow might reduce synthesis time, but we anticipate that it will still be several
minutes per test. This would be feasible for the final testing campaign but would still make iterative development
of the model intolerable.
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start, it jumps to fetch the first instruction from its local memory, initially from a location

associated with program counter value 0, then proceeds to decode it to decide what to execute.

The soft-core processor can issue a WrReq, RdReq, FnReqOne, or FnReqAll, or it can wait for

the corresponding WrRsp, RdRsp, FnRspOne or FnRspAll; each instruction type is handled via

a dedicated state. The program counter is then incremented and, based on the number of

remaining instructions, the processor either fetches the next instruction or, if the litmus test

has finished executing, proceeds to write back the test results. In the write back state, the

soft-core processor needs to inform the CPU about the state of the litmus test just executed.

Since a litmus test can dictate the order in which read, write, and fence requests are issued but

cannot control the order in which associated responses arrive, the desired sequence of events

associated with a particular litmus test might be impossible to reproduce. Furthermore the

FPGA cannot easily display the data it has read from a RdReq. This needs to be communicated

back to the CPU so that it can validate (a) whether the sequence of events that occurred during

test execution respects the sequence required by the litmus test, and (b) if so, whether the weak

behaviour has been observed. After sending back this information, the soft-core either repeats

the litmus test, if it has not yet performed the required number of test iterations, or informs

the CPU (via a flag in shared memory) that it is ready to move on to the next test, and returns

to idle.

Stress Generation Previous work [SD16, AMSS11] has shown how stress testing can expose

weak memory behaviour. It motivated us to incorporate a stress generator in our processor.

This is comprised of a simple circuit that monitors the request interface and issues random

requests at specific intervals. The frequency of these requests is given by a parameter received

from the CPU. To ensure that stress-related requests do not corrupt requests that form part

of a litmus test, they are only issued on clock cycles during which the processor state machine

does not need to issue a litmus test-related request of the same type.
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Table 4.2: The total number of disallowed and allowed litmus tests generated, and the number
of observed behaviours without stress and with stress. We write m/n for ‘m observed out of n
tests’. The experiments with stress were only done for a small sample of the litmus tests.

All interesting tests, Sample of interesting tests,
run without stress run with stress

#Events Disallowed Allowed Disallowed Allowed

4 0/9 0/0 0/1 0/0
5 0/10 0/0 0/2 0/0
6 0/38 0/2 0/2 0/0
7 0/72 0/26 0/2 1/4
8 0/454 0/152 0/3 3/6

Total: 0/583 0/180 0/10 4/10

4.4 Experimental evaluation

The cross-validation efforts described in Section 4.3 gave us a high degree of confidence in our

formalization of the X+F memory model, but we also wanted to validate our model against real

hardware. For this purpose, we used the same experimental setup described in Section 3.4.2.

This X+F system comprises a Broadwell Xeon CPU and an Arria 10 FPGA. We used our

axiomatic model to generate disallowed and allowed executions as described in Section 4.3.1

(Table 4.1). This process was feasible for up to 8 events, after which the Alloy Analyser

increased in execution time dramatically.

We developed a translator that converts Alloy executions into litmus tests for the X+F hard-

ware. This translator generates the C++ code describing the CPU threads, the instructions to

be sent to the soft-core, and the assertions that check the final state. Our translator encodes

each event as a separate instruction with the corresponding address, channel, metadata and

value. These fields are determined based on the edges that connect these events. As an exam-

ple, events that are connected by an sch edge will be assigned to the same channel. Executions

that require more resources than are available on the actual hardware (e.g. more than three

channels) are discarded.

Our approach using the soft-core processor allows us to quickly run our generated litmus tests

1 million times each. The results of these experiments can be seen in the left half of Table 4.2.
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Reassuringly, we did not observe any of the disallowed behaviours, even when enabling the

stress generator. Recall that the allowed litmus tests are ‘only just’ allowed, being derived from

disallowed tests via the removal of one critical event. We were unsure whether we would observe

these behaviours in practice: they might be allowed by the X+F documentation in principle

but impossible to observe on our test platform in practice, or they might be observable only

extremely rarely. Indeed, we did not observe any of these behaviours when we ran tests in

isolation. However, we did observe a subset of the behaviours after experimenting with a

variety of configurations for stress traffic, as described below.

Tuning Stress The low number of observed allowed litmus tests indicated that we need to

find a better way to expose weak behaviour. The deterministic nature of FPGAs makes some

executions highly unlikely. [KSTM20] have shown that tuning stress has an important role in

exposing weak behaviour. We attempted to automatically script the repeated running of tests

under many different stressing configurations, but found that the device was prone to becoming

unresponsive, making automated tuning impossible. (We have contacted Intel to make them

aware of the problem.) In the meantime, we manually tuned stress for 10 allowed tests and

10 disallowed tests, re-flashing the board each time it became unresponsive. Repeating this

manual process for more tests would have taken an infeasible amount of time. As shown on

the right half of Table 4.2, we were able to observe weak behaviour in 4 out of the 10 allowed

executions and (again, reassuringly) no weak behaviour in the 10 disallowed executions.

Observed Behaviours Some allowed behaviours were easier to observe than others. The

10 allowed litmus tests that we executed with fine-tuned stress can be roughly categorised into

three categories:

1. The easiest weak behaviours to reproduce were those caused by reorderings between

channels. In such a case, if the first request was sent on a slow channel, the second one on

a fast channel and the correct amount of extra traffic was added just to the slow channel,

it was highly likely that weak behaviours would be observed. There were three of these

tests, and all eventually exhibited weak behaviour.
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2. It was significantly harder to provoke weak behaviours in litmus tests that require re-

ordering in the request pools. There were three of these tests, and we only managed to

observe weak behaviour in one of them.

3. A separate category of litmus tests were the ones that required the responses to arrive

in a very specific, and often rather improbable, order. In this category there were four

litmus tests. The responses are controlled by the interface logic, so the FPGA logic

cannot explicitly control them. We were not able to expose any weak behaviour in this

category, and it could be that such weak behaviours cannot be observed due to the way

the hardware is implemented (but the Intel documentation provides no guarantees about

this).

To illustrate the importance of tuning enemy traffic, consider a litmus test where two writes

utilise different channels. In such a litmus test we only want to stress the channel corresponding

to the first write. This causes the first write to be delayed and possibly be inverted with the

second write, causing the weak behaviour. We similarly explored the effect of stress testing to

expose weak behaviour in Section 3.4.3.

4.5 Related work

Axiomatic memory models represent an alternative to operational memory models that are

easier to simulate [AMT14] than operational ones. A significant amount of CPUs [MSS12,

AMT14, PPPK+19, PFD+17b] and GPUs [WBBD15, LSG19] have been modelled axiomati-

cally. However, none of these works have axiomatically modelled a system where part of the

threads run on the CPU and the other run on an FPGA

Axiomatic models enable the generation of large amounts of litmus tests, and previous work has

taken advantage of this to automatically compare memory models [LWPG17, LSG19, WBSC17].

These works have focused on the memory model provided by various programming languages

and architectures. However, these works have not tackled the problem of automatically gener-

ating litmus tests for CPU/FPGA systems.
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Litmus testing does not always uncover all the weak memory effects, and previous work [AMSS10,

SD16, KSTM20, ABD+15] has shown that some of these effects can only be uncovered when

properly configured stress is added. Our work similarly utilises stress as a method to uncover

weak memory effects but is adapted to the idiosyncrasies of the FPGA.

4.6 Summary

While axiomatic models can be considered less intuitive than operational ones, the simulation

time required for such models is significantly lower. Furthermore, this axiomatic model allows

us to automatically generate executions that can be used to cross-check against the operational

model and the actual hardware.

While testing against the operational model did not require significant engineering effort, testing

against the operational one required more effort. Therefore, we developed a soft-core processor

to aid in running tests against the hardware. This process allowed us to gain confidence in the

accuracy of our model.



Chapter 5

Simulating operational memory models

using off-the-shelf tools

The effectiveness of the cross-checking in Section 4.3.2 is limited by the limited scalability of

the operational model. Scaling up the number of events simulted by the operational memory

model represents the bottleneck in our approach and limits the confidence of our evaluation.

This motives us to investigate alternatives simulation techniques.

This chapter is divided into two parts: (1) a study of the strengths and weaknesses off three

off-the-shelf C analysis tools and a comparison with RMEM [ABC+22] in the context of the

well-known x86 memory model, and (2) an in-depth study of our CPU+FPGA memory model,

enabled by our use of off-the-shelf tools.

Part 1: x86 case study. In the first part of this chapter, we are interested in the following

top-level research questions:

RQ1 Can reducing the problem of memory model simulation to the analysis of a C program

yield competitive performance compared with bespoke simulators?

RQ2 Of the variety of C analysis tools that are available, which are most effective for memory

model simulation?

64
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Part 2: CPU/FPGA case study. We then apply our ideas to a memory model for

which there is no bespoke simulator: our X+F memory model presented in Chapter 3. It poses

particular challenges due to the complexity of shared memory interactions between CPU cores

and FPGA logic. In Chapter 3 we have already presented a C-based realisation of this memory

model and used CBMC to validate it against a supposedly-equivalent axiomatic memory model,

but our previous evaluation was restricted to small litmus tests, featuring at most 8 instructions

per test, due to scalability limitations of CBMC. Given our finding from Part 1 that libFuzzer

performed very well for x86 litmus tests, we investigate the following research questions in the

context of the X+F model:

RQ3 How does the manner in which the memory model and litmus test are encoded as a C

program impact the performance of the different tools?

RQ4 Can our approach allow more in-depth analysis of the X+F memory model, allowing it

to be better validated against its axiomatic counterpart?

Thanks to the better scalability of coverage-guided fuzzing compared with SAT-based model

checking, we were able to perform a substantially deeper analysis than our previous attempts.

This allowed us to find four infidelities in the X+F axiomatic memory model. We have fixed

the infidelities in the model so that it now accounts for additional ordering guarantees that we

previously overlooked.

We start with an overview of our approach in Section 5.1. Section 5.2 shows how we have

tackled RQ1 and RQ2 while Section 5.3 shows how we have tacked RQ3 and RQ4. We

discuss related work in Section 5.4 and conclude in Section 5.5.

5.1 Overview of our approach

An operational memory model takes as input the litmus test that defines the sequence of

instructions for each concurrent component of the system, and a description of a final state
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of interest. It then facilitates searching for transitions of the system that might lead from an

initial state to the final state of interest. A trace that leads to the final state indicates that

this behaviour is allowed ; if no such trace exists it is disallowed. Non-determinism arises due

to the order in which the instructions are issued by the concurrent components, and due to the

internals of the memory system (such as flushing policies for buffers and caches). Once a trace

that reaches a state of interest has been found, the programmer or memory model engineer can

use the simulator to step through the trace in detail to better understand its behaviour.

A state-of-the-art simulator for operational memory models is RMEM [ABC+22], which has

been used to simulate the memory models of ARM [PFD+17b, FGP+16], Power [SSA+11,

BMO+12, SMO+12], RISC-V [PPPK+19] and x86 [OSS09]. Building a bespoke simulator such

as RMEM requires a lot of engineering effort: not only must the memory model of interest be

encoded, but algorithms for efficient reachability analysis must be implemented.

Reachability has been studied extensively in the context of program analysis, and a range

of off-the-shelf tools that attempt to decide whether a program can reach a particular state

are available for several languages. This leads to the following idea: instead of implementing

a bespoke memory model simulator, why not implement the simulator logic as a computer

program that takes a particular test scenario as input? Determining whether the test scenario

is allowed would then boil down to determining whether a particular state of the program that

encodes the memory model is reachable when executed on an input describing the scenario

of interest, and off-the-shelf reachability analysis tools for the language of interest could be

leveraged to answer this question. Subsequent detailed examination of traces would then be

possible by stepping through the simulator code using a standard debugger.

We use the x86 memory model since it is simple and widely-used. Since a significant amount of

recent work utilises RMEM to simulate operational models, we consider this the state-of-the-art

and compare our approach to it. We investigate our idea of reducing to C and then leveraging

existing tools with respect to three diverse analysis tools for C: a SAT-based model checker,

CBMC [CKL04]; a dynamic symbolic execution engine, KLEE [CDE08], and a coverage-guided

fuzzer, libFuzzer [Ser22]. Of these, CBMC is a fully symbolic analyser, libFuzzer is a fully
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dynamic analyser, and KLEE mixes symbolic and dynamic analysis.

Despite the advantages of coverage-guided fuzzing, for particularly complex litmus tests where

an allowed behaviour is exhibited by only a tiny fraction of paths, SAT-based model checking

is able to demonstrate that the behaviour is allowed while exploration using coverage-guided

fuzzing gets lost. Furthermore, because symbolic execution and SAT-based model checking

are capable of exhaustive exploration—unlike fuzzing—they can be used to demonstrate that

certain memory model behaviours are disallowed. We report on our experience putting this

idea into practice, using C as the implementation language. We focus on C not out of any

particular fondness for the language, but due to the availability of a diverse range of C analysis

tools. We notice that there are a lot of off-the-shelf tools for deciding reachability of program

paths and aim to investigate if these tools can be better used to tackle the path explosion

problem. Our vision is to take advantage of these tools by first converting the model into a

C program and then plug in any such tool that can analyse C programs. We can summarise

our approach as reducing the decision problem of “whether a given operational model allows

a given program behaviour” to the decision problem of “whether a given C program is safe”,

which can be handled by a variety of off-the-shelf tools.

In this section, we show how the x86 memory model can be encoded as a C program (Sec-

tion 5.1.1) and illustrate how program analysis tools can be used to simulate memory models

(Section 5.1.3).

The simulation will result in a program that takes as input the program described by the litmus

test, explores paths allowed by the semantics of the memory model, and decides if the behaviour

expected by the litmus test is possible.

5.1.1 Reducing x86 Analysis to C Reachability

Our approach is to encode memory models using the C programming language, and to leverage

off-the-shelf C program analysis tools for simulation purpose. We make this idea concrete by

implementing a C model of the x86 memory model in Listing 5.3. The sequence of instructions
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1 struct Operation {

2 Opcode type;

3 int var;

4 int val;

5 };

Listing 5.1: The structure of an operation

1 enum Action {

2 CPU_THREAD,

3 FLUSH_BUFFER

4 };

Listing 5.2: The possible actions

1 int sim_steps = choose(SIMULATION_STEPS);

2 for (int i = 0; i < sim_steps; i++) {

3 // Can be one of the n threads in the system

4 int thread = choose(NUM_THREADS);

5 // Can be either CPU_THREAD or FLUSH_BUFFER

6 Action action = choose(NUM_ACTIONS);

7 switch (action) {

8 case CPU_THREAD:

9 if (!(thread_ops[thread].empty())) {

10 Operation op = thread_ops[thread].pop();

11 if (op.type == WRITE)

12 write_to_buffer(thread, op.var, op.val);

13 if (op.type == READ)

14 read_buffer_or_memory(thread, op.var);

15 }

16 case FLUSH_BUFFER:

17 if (!(buffer[thread].empty()))

18 flush_buffer(thread);

19 }

20 }

21 assert(final_state);

Listing 5.3: The pseudocode of the mechanised x86 memory model

describing the litmus test is initialised in the thread ops queue of C structures and Listing 5.1

shows the structure of a thread operation. Whenever a non-deterministic value is required,

we use the choose function. This is only a placeholder function and will be replaced by the

corresponding API of a program analysis tool. We first use this function at the beginning of

the simulation, for the number of simulation steps since we don’t know many steps are required

for each litmus test. Afterwards, the main loop of the program should ensure that the program

runs for that specific number. At each loop of the simulation, the choose function will be

invoked again to select the action that will be performed by a thread. The possible actions

that the system can make are enumerated in Listing 5.2.
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Each case-statement corresponds to an operational semantic rule and is guarded by an if-

statement that verifies if the preconditions of the rule holds. If the CPU THREAD action is

chosen, the simulator will first check if there are any thread operations left for that specific

thread, remove the next one from the thread ops queue and attempt to process it. If this is a

read operation, the x86 simulator will search for that value in the thread buffer and if it does

not find it there, will search for it in main memory. Correspondingly, if the operation is a write,

the simulator will add this operation to the store buffer. If instead a FLUSH BUFFER action is

chosen and the buffer is not empty, the simulator will transfer the data from the buffer to main

memory.

It is possible to commit to an action (via the switch) before realising that its guard does not

actually hold. In such a case, nothing would happen on this iteration of the for-loop. At the

end of the execution, we check whether the program has reached the state that the litmus test

describes. By exploring all the possible combinations of thread and action allowed values,

the simulation will explore all the possible outcomes, given the thread ops provided as input.

Generalisation We can generalise the structure of an operational model with the following

general structure:

1. Define opcodes, operation structure and actions. Different systems will have different

operation types and will perform different types of actions.

2. Initialise all memory model components. In our example, this means having store buffers

be initially empty. In a more complex memory model there might be more complex

components such as pools or caches.

3. Initialising a per-thread queue of instructions. At this point, the simulator should interface

with the per-test harness so that it can initialise the queue of instructions.

4. Write the state machine as a loop. At each simulation step, the deployed tool will decide

if the machine will consume user input or if one of the components of the machine will

perform a transition. If the component has multiple choices (such as being able to flush

different elements), the tool will decide which choice to explore.
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5. Check if the assertion holds. Here the simulator should again interface with the per-test

harness so that it can check if the re-orderings described by it occurred.

We are unlikely to have access to all the microarchitectural features of the system. Therefore,

we cannot know the exact size of all the buffers in the model. However, we can choose sizes

for these buffers that are large enough to allow all reorderings that the system is capable of

performing, but no larger, so as not to add any unnecessary burden on simulation. Even

though this kind of simulation is limited by its bounded nature, we can empirically verify that

the bounds are sufficiently large for our litmus tests. We do this by adding assert statements

within our model that verify if the buffers ever reach their total capacity and limit the paths

available through the program.

Having described this general recipe for extending the model, we show in Section 5.3 how we can

put it into practice for modelling a more intricate model for a combined CPU/FPGA system.

5.1.2 Designing the per-test harness

Reasoning about a litmus test involves combining the model with a test-specific harness. Each

test-specific-harness will describe the sequence of operations for each concurrent component of

the system, check if the simulation has run for a sufficient number of steps and if the reordering

has been reached and finally, assert whether a particular outcome is observable.

There are multiple ways of encoding the litmus test, and the choice of encoding may affect the

scalability of the program analysis tool that is subsequently applied to the resulting program.

An important dimension for consideration here is branching: a piece of code that exhibits a lot

of branching can be well-suited for coverage-guided fuzzing, as the branching will lead to many

different coverage targets, which can help to identify diverse inputs to the program. In contrast,

for symbolic tools, excessive branching can either lead to path explosion (in the case of a tool

such as KLEE, that generates a seperate SMT query per path), or to a formula that involves

a lot of disjunction (in the case of a tool such as CBMC that encodes an unwound version

of the whole program as a single formula). Listing 5.4 shows an encoding designed to exhibit
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1 check_litmus_test(){

2 // Check if final state reached

3 if (writesExecuted < totalWrites) return 0;

4 if (readsExecuted < totalReads) return 0;

5

6 // Check if the expected order was reached

7 if (timeEvent[0] < timeEvent[1]) return 0;

8 ...

9 if (timeEvent[n-1] < timeEvent[n]) return 0;

10

11 // Assert if register values are as expected

12 assert(reg[0]==a && ... && reg[m] ==z);

13 }

Listing 5.4: Encoding the litmus test to favour high coverage.

1 check_litmus_test(){

2 // Check if final state reached

3 int reached = 1;

4 reached &= (writesExecuted == totalWrites);

5 reached &= (readsExecuted == totalReads);

6

7 // Check if the expected order was reached

8 int observed = 1;

9 observed &= (timeEvent[0] < timeEvent[1]);

10 ...

11 observed &= (timeEvent[n-1] < timeEvent[n]);

12

13 // Assert if register values are as expected

14 assert(reached & observed &

15 reg[0]==a & ... & reg[m]==z);

16 }

Listing 5.5: Encoding the litmus test for fewer paths

more branching, while Listing 5.5 shows an encoding designed to exhibit less branching. In both

cases, a set of preconditions must ensure that the program has executed enough simulation steps

and correctly models the test. Lines 2-4 in Listing 5.4 and lines 3-5 in Listing 5.5 check if the

executed writes and reads (described by the writesExecuted and readsExecuted variables) are

equal to the writes and reads in the litmus test (described by the totalWrites and totalReads

variables). More complex models might require additional checks, such as verifying that buffers

are empty. Furthermore, lines 6-9 in Listing 5.4 and lines 7-11 in Listing 5.5 ensure that the

events in the litmus test, (recorded in the timeEvent array) have occurred in the expected
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order. The first encoding will immediately return when one of these preconditions is not met,

while the second encoding will set the reached and observed variables to record the status of

all preconditions.

Whenever a read operation is performed, its results are stored in the reg array. We can now

assert if the operations observed by our model in the register do not contradict the litmus test.

While Listing 5.4 will simply assert on the values observed in the registers, Listing 5.5 will only

assert if the reached and observed variables have been set accordingly. Since the short-circuiting

&& operation will only evaluate its second operand if the first one is true, while the & operator

will evaluate all terms regardless. We use the && in Listing 5.4 to create additional coverage

points and & in Listing 5.5 to create fewer branching points.

We expect different tools to favour different encoding types and explore these options in Sec-

tion 5.3.3 by automatically generating litmus tests using the two alternative options.

5.1.3 Using C Analysis Tools to Simulate Memory Models

The choose function from Listing 5.3 shows all the points in the C program where the non-

determinism needs exploring, and we can plug in an analyser. To do so, we need to furnish the

analyser with a means of exploring this non-determinism. Here, we describe the peculiarities

of each approach and how the model needs to adjust for each specific tool.

CBMC-based Validation CBMC [CKL04] is a bounded model checker for C and C++

programs. CBMC is purely symbolic, yielding a single SAT or SMT formula encoding all

executions of a program up to a certain depth. It can potentially scale poorly due to the

formula getting large, leading to long SAT/SMT solving times. On the other hand, solving this

big formula is all that needs to be done. Since the formula that CBMC constructs encodes all

paths through the program up to the given depth, CBMC can be used to verify conclusively

that a given scenario is not possible for execution traces below a certain length. Furthermore, as

detailed below, we can establish conditions under which we guarantee unrolling deeply enough

that all paths are considered. We chose CBMC as our model checker because it is widely used,
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robust and practical and is well suited for system-level modelling.

CBMC will symbolically unwind the main simulation loop up to a certain loop-unwind depth,

which is given as a parameter to the program. The final state may never be reached if the

unwind depth is not sufficiently high enough. We can place assert statements to empirically

verify if certain intermediate states have been reached. Furthermore, we invoke CBMC with

the --unwinding-assertions option, whereby it checks that unwinding the program further

does not lead to any more states being explored. In this mode, CBMC can prove that the

program under test is free from assertion failures: if an insufficiently large unwinding depth for

loops is used then an “unwinding assertion” fails, indicating that a higher bound is required for

the proof to succeed. When using CBMC for memory model analysis, we use per-litmus test

information to estimate a suitable unwinding depth, and use a script to iteratively increase this

depth while it proves to be too low.

The operational semantic rule triggered at each point in the simulation is chosen non-deterministically.

The premises of the operational rules are implemented using assume statements. If the premises

of the rule are met, the operational rule can be executed and the state of the system updated.

However, if the premises are not met, CBMC will update the query it sends to the SAT/SMT

solver to mark that the path is not feasible.

CBMC for x86 Recall the code snippet from Listing 5.3 and note the updates in Listing 5.6

required for CBMC. The CBMC version of this model utilises a nondet int() statement to

allow the simulation to execute a nondeterministic number of steps. Furthermore, the thread

and action is similarly chosen non-deterministically by corresponding statements. assume

statements are utilised to guarantee that the premises of the semantic are met and infeasible

paths terminated. The final assert statement verifies if the reordering has been detected.

KLEE-based Validation KLEE [CDE08] is a dynamic symbolic execution engine built on

top of the LLVM compiler infrastructure. It encodes every path of the program separately in a

symbolic manner, invoking an SMT solver to determine whether a path is feasible each time a

conditional statement or assertion condition is reached. KLEE has the potential to scale better
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1 // Non-deterministic number of simulation steps

2 int sim_steps = nondet_int();

3 for (int i = 0; i < sim_steps; i++) {

4 // Non-deterministic thread choice

5 int thread = nondet_thread(NUM_THREADS);

6 // Non-deterministic action choice

7 Action action = nondet_action(NUM_ACTIONS);

8 switch (action) {

9 case CPU_THREAD:

10 assume(!thread_ops[thread].empty());

11 Operation op = thread_ops[thread].pop();

12 if (op.type == WRITE)

13 write_to_buffer(thread, op.var, op.val);

14 if (op.type == READ)

15 read_buffer_or_memory(thread, op.var);

16 case FLUSH_BUFFER:

17 assume(!buffer[thread].empty());

18 flush_buffer(thread);

19 }

20 }

21 assert(final state);

Listing 5.6: The CBMC adaptation of the x86 memory model

than CBMC since solving formulas on a per-path basis might be easier than solving a single

large formula encoding all program paths. Like CBMC, KLEE can verify that a scenario is

not feasible if the associated program has a finite number of paths (though the path explosion

problem means this is not always feasible in practice).

KLEE can be configured to exit when it encounters a specific type of error and record the test

case required to reach it. Given our use case, we configure it to exit when an assertion failure

is encountered. We utilise the klee make symbolic() command to mark the variables where

we require non-determinism. KLEE will try different values of these variables to increase code

coverage. We kill paths with unsatisfied premises by marking them with klee silent exit().

In contrast with CBMC, KLEE utilises coverage information and, therefore, will prioritise

generating test cases for paths that cover new code. This prioritisation means that KLEE has

the potential to uncover paths that lead to assertion failures faster and terminate sooner. This

means that the program transformation defined in Section 5.1.1 have the potential to aid the

execution of the KLEE based simulation.
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1 // Make number of simulation steps symbolic

2 klee_make_symbolic(sim_steps, sizeof(sim_steps));

3 for (int i = 0; i < sim_steps; i++) {

4 // Make current thread symbolic

5 klee_make_symbolic(thread, sizeof(thread));

6 // Make current action symbolic

7 klee_make_symbolic(action, sizeof(action));

8 switch (action) {

9 case CPU_THREAD:

10 if (thread_ops[thread].empty()) klee_silent_exit();

11 Operation op = thread_ops[thread].pop();

12 if (op.type == WRITE)

13 write_to_buffer(thread, op.var, op.val);

14 if (op.type == READ)

15 read_buffer_or_memory(thread, op.var);

16 case FLUSH_BUFFER:

17 if (buffer[thread].empty()) klee_silent_exit();

18 flush_buffer(thread);

19 }

20 }

21 assert(final_state);

Listing 5.7: The KLEE adaptation of the x86 memory model

KLEE for x86 Recall the code snippet from Listing 5.3 and note the updates in Listing 5.7

required for KLEE. The thread and action variables are declared symbolic and chosen at each

simulation step. If the premises of the semantics are not meet, the simulation will exit using

klee silent exit() statements. After the end of each simulation, the conditions that check

if the assertion holds are verified.

libFuzzer-based Validation libFuzzer [Ser22] is an in-process library for coverage-guided

fuzz testing. Coverage-guided fuzzing consists of generating test cases, monitoring their effect

on the target binary’s execution and updating the list of tests to increase coverage. It can be

used to prove that a given behaviour is allowed, but because it is completely dynamic and does

not keep track of the paths that it has already explored, it cannot be used to prove that a given

behaviour is not allowed. However, this approach does not require expensive SAT queries and

can quickly execute the program binaries with many different inputs and monitor for potential

errors. It has the potential to quickly find counter-examples, but can also miss paths that lead

to interesting behaviours. The fuzzer instruments the code to keep track of the areas of the
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1 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

2 // Additional checks to determine if size is not too small

3 action_list = data[MAX_ACTIONS];

4 thread_list = *data + MAX_ACTIONS;

5 for (int i = 0; i < MAX_ACTIONS; i++){

6 int thread = thread_list[thread_index++] % THREAD_COUNT;

7 Action action = action_list[action_index++] % ACTION_COUNT;

8 switch (action){

9 case CPU_THREAD:

10 if (thread_ops[thread].empty()) continue();

11 Operation op = thread_ops[thread].pop();

12 if (op.type == WRITE)

13 write_to_buffer(thread, op.var, op.val);

14 if (op.type == READ)

15 read_buffer_or_memory(thread, op.var);

16 case FLUSH_BUFFER:

17 if (buffer[thread].empty()) continue();

18 flush_buffer(thread);

19 }

20 }

21 assert(final_state);}

Listing 5.8: The libFuzzer adaptation of the x86 memory model

code that it has already explored. It utilises this information to generate mutations on the

corpus of inputs to maximise the coverage.

libFuzzer provides an array of bytes that can be used as input. We manipulate the array

such that it matches the input of the system and use it whenever a source of non-determinism

is required. This involves splitting the array into separate sections and ensuring that these

sections do not overlap. We perform a modulo operation on each one of these bytes so that

they match the encoding that we require. If the input requires the code to perform an action

that does not have its premises met, the simulation will simply ignore that input and move to

the next one.

libFuzzer for x86 Recall the code snippet from Listing 5.3 and note the updates in Listing 5.8

required for libFuzzer. The fuzzer provides as input to the system an array called data and its

size. We partition the data array into two arrays: one that keeps the list of actions and one

that keeps the list of threads. However, before this can actually be done, we have to ensure
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Table 5.1: A comparison of the tools available, their underlying technique, memory model
implementation, potential to validate disallowed behaviours and their utilisation of coverage
information.

Tool Technique Model Exhaustive Guided by coverage
RMEM [ABC+22] enumeration Lem ✓ ✗

RMEM [ABC+22] random Lem ✗ ✗

Näıve fuzzing C ✗ ✗

CBMC [CKL04] SAT C ✓ ✗

KLEE [CDE08] SAT C ✓ ✓

libFuzzer [Ser22] fuzzing C ✗ ✓

that the size of the data is large enough to hold our statically assigned maximum number of

transitions. We use simple if-statements to verify if the premises of an action are valid and if

it is not, we skip it.

5.2 First case study: x86

We now present and discuss our first case-study, relating our results to research questions RQ1

and RQ2. By implementing the x86 memory model according to the outline presented in

Section 5.1.1, and using the CBMC, KLEE and libFuzzer tools described in Section 5.1.3, we

can determine their viability in uncovering weak behaviours and their relative effectiveness to

a state-of-the-art simulator, RMEM.

We run our experiments on an Intel Xeon CPU E5-2640 with 32GB RAM, under Ubuntu

20.04. We use RMEM version 0.1, CBMC version 5.11, KLEE version 5.11, and the libFuzzer

deployed with clang 12. The SAT engine used by KLEE is STP version 2.3.3 and the one used

by CBMC is MiniSat version 2.2.1. In pilot experiments with different solvers we observed slight

differences in execution times but not significant enough to impact the comparisons between

the tools. For this reason, for each tool, we use the default solver.

Table 5.1 summarises the tools that we experiment with, alongside some of their characteristics.

We start our experiments by exploring the strengths of RMEM which can be considered the

state-of-the-art tool at the moment and implements the memory model in a custom semantics

language called Lem [MOG+14]. RMEM can run in either exhaustive mode or random mode
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init: x0 = x1 = . . .= xn−1 = 0

1 x0 ← 1 1 x1 ← 1 1 xn−2 ← 1 1 xn−1 ← 1
2 r0 ← x1 2 r1 ← x2 . . . 2 rn−2 ← xn−1 2 rn−1 ← x0

Allowed: r0 = 0 and r1 = 0 and . . . and rn−1 = 0

(a) Store buffering using n threads

init: x0 = x1 = . . .= xn−1 = 0

1 r0 ← x1 1 r1 ← x2 . . . 1 rn−2 ← xn−1 1 rn−1 ← x0

2 x0 ← 1 1 x1 ← 1 2 xn−2 ← 1 2 xn−1 ← 1

Allowed: r0 = 1 and r1 = 1 and . . . and rn−1 = 1

(b) Load buffering using n threads

Figure 5.1: Store buffering and load buffering for n threads.

but can only prove that a behaviour is disallowed when set for exhaustive mode. Unfortunately,

RMEM does not stop when it uncovers the behaviour of interest, as do all the other tools at

our disposal. This means that RMEM does not report that a behaviour is allowed until it has

finished exhaustive exploration, and we found that it was not trivial to temporarily modify the

tool to change this.

As a sanity check, for our C models, we first utilise a näıve fuzzer, which randomly explores

paths through the program’s execution, similar to how the random version of RMEM does.

Afterwards, we focus on the off-the-shelf CBMC, KLEE and libFuzzer tools. All tools have the

potential to uncover allowed behaviours, but only RMEM, CBMC and KLEE can prove that

a behaviour is not possible (because they consider all executions). Out of all the tools, only

libFuzzer and KLEE use coverage information to guide their search.

To benchmark our approach, we can utilise litmus tests that generalise to any number of

threads. In Figure 5.1, we present the generalisation of two such tests. In Figure 5.1a we

have the allowed store-buffering litmus test while in Figure 5.1b we have the disallowed load-

buffering litmus test. These tests enable us to vary the number of threads and observe how the

different simulators handle them.

Given the C implementation of the x86 model, the set of program analysis tools and the litmus

test, we can recall and answer our first research question:
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(a) Näıve Fuzzer

10−1 100 101 102 103 104
2
3
4
5

Timeout
Timeout
Timeout

Time (s)

T
h
re
ad

s

(b) RMEM random

10−1 100 101 102 103 104
2
3
4
5

Time (s)

T
h
re
ad

s

(c) RMEM random eager

10−1 100 101 102 103 104
2
3
4
5

Time (s)

T
h
re
ad

s

(d) libFuzzer

10−1 100 101 102 103 104
2
3
4
5 Timeout

Time (s)
T
h
re
ad

s

(e) RMEM exhaustive

10−1 100 101 102 103 104
2
3
4
5

Time (s)

T
h
re
ad

s

(f) RMEM exhaustive eager

10−1 100 101 102 103 104
2
3
4
5 Timeout

Time (s)

T
h
re
ad

s

(g) KLEE

10−1 100 101 102 103 104
2
3
4
5

Time (s)

T
h
re
ad

s

(h) CBMC

Figure 5.2: Analysis times for an allowed litmus test (store buffering) using all tools.

RQ1 Can reducing the problem of memory model simulation to the analysis of a C program

yield competitive performance compared with bespoke simulators?

We take each litmus test for different number of threads and try to determine if the reorder-

ing they describe is possible using all the tools at our disposal. We run each test/simulator

combination ten times and create a box plot of the uncovered executions. For each one of the

executions, we set a maximum execution time of 2 hours, and if, after this amount of time, the

program still does not terminate, we stop it and report this as a timeout. Figure 5.2 shows

the time in seconds required to uncover the reorderings of the store buffering litmus test and

in Figure 5.3 we have the time required to prove that the load-buffering effect is not possible.

We have observed that RMEM has many possible options that we can optionally enable during

simulation. Out of all these options, we have observed that one option, described as ”eagerly

take transitions that do not affect observable states”, has the highest impact on performance.

Unfortunately, there is insufficient documentation to clarify why this option is not enabled by
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Figure 5.3: Analysis times for a disallowed litmus test (load buffering) using those tools that
are capable of exhaustive search.

default and the possible cost of utilising it. We are in contact with the developers to clarify this

and we have decided to include results with and without this option enabled for completion.

While specific optimisations can enable RMEM to scale better than KLEE and CBMC, it is

still outperformed by libFuzzer for large number of threads. Furthermore, the out-of-the-box

tools do not require any extra engineering effort.

The näıve fuzzer was only able to uncover the trivial executions and faired poorly in all other

cases. RMEM was able to handle all the test cases we have provided and fairer significantly

better in the exhaustive mode but only when the option to eagerly take transitions was enabled.

KLEE unfortunately timed out for larger executions, and while CBMC was able to handle all of

them, it was at a significant performance overhead. However, out of all the tools we explored,

libFuzzer was the fastest one.

Finding from RQ1. Our approach of reducing the problem of memory model simulation

to the analysis of a C program yields competitive results, in some cases even scaling better

than RMEM. The wide range of executions time we have uncovered, indicate that the search

strategy is the main factor that dictates the effectiveness of the approach.

Having seen that our approach of leveraging off-the-shelf tools does yield competitive results,
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we move to RQ2, which can further be subdivided as follows:

RQ2 Of the variety of C analysis tools that are available, which are most effective for memory

model simulation?

(a) How is performance influenced by the test case size under simulation?

(b) How is performance influenced by whether the behaviour associated with the test-

case is allowed according to the memory model?

Regarding RQ2a, the small litmus tests that feature only two threads are solved by all tech-

niques. However, the more heavyweight SAT-based analysis performed by CBMC puts it as a

disadvantage, due to the overhead of solving a SAT query reflecting a fully-unwound program.

However, we can observe that the simpler methods are not always capable of uncovering the

complex executions involving more threads. The näıve fuzzer is not able to handle tests fea-

turing more than two threads, and KLEE does not scale to the five-threaded case. In this set

of experiments, the only tool that is not significantly affected by the size of the litmus test is

libFuzzer. However, we show in Section 5.3.4 that the execution time associated with libFuzzer

does increase when we apply it to a more complex memory model with larger associated litmus

tests.

Finding from RQ2a. While it makes little difference which analysis tool we deploy for

small litmus tests, that is no longer the case for larger ones. In such cases, it is advisable

to use libFuzzer and CBMC. While libFuzzer has been shown to be extremely effective at

discovering allowed executions, unlike CBMC it cannot show that executions are disallowed.

In a context where the allowed/disallowed status of a litmus test is not known, running both

techniques in parallel would be advisable.

Since not all tools can prove that a behaviour is not allowed, we can only answer RQ2b for the

ones that do. The tools have to consider all execution paths, and as a result, they require more

time to do so. Having to explore all paths means that coverage information does not help. If

we consider only off-the-shelf tools, CBMC is the best choice.
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Finding from RQ2b. Although a heavyweight solution for simple test cases, the SAT-

based approach of CBMC pays off for larger, more complex test cases when behaviours are

disallowed. The coverage-guided searech of KLEE is not useful in this context, since the

disallowed nature of the test case means that there is no possibility of an early exit: all

executions will eventually need to be considered.

Summary libFuzzer is surprisingly effective at uncovering allowed executions, proving to be

a better choice that the other tools that we have analysed. On the other hand, CBMC is better

at proving large disallowed executions. Armed with this new insight, we now explore a more

recent and challenging memory model for which a bespoke simulator does not exist, to get more

insight into its behaviour.

5.3 Second case study: CPU/FPGA

We now describe our experience applying the previously-described techniques to a more complex

model for a hybrid CPU/FPGA system. After introducing the system (Section 5.3.1) we

present our experimental setup (Section 5.3.2), our analysis of the impact of the test harness

(Section 5.3.3), scalability assessment (Section 5.3.4), and conclude by discussing the infidelities

in the X+F model that we found and fixed thanks to our approach (Section 5.3.5).

5.3.1 The X+F memory model

A recent trend in heterogeneous systems is to combine a multicore CPU with a field-programmable

gate array (FPGA). These hybrid CPU/FPGA systems are of particular interest because the

FPGA can be customised for a specific computationally-intensive sub-task, while the overall

application is coordinated by the general-purpose CPU. We focus on the Xeon+FPGA (X+F)

memory model [IDSW21b] that was originally analysed using only CBMC for a small number

of memory operations.
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The memory model is illustrated graphically in Figure 2.3. Conceptually, the FPGA is a

separate thread that runs alongside the CPU threads. In contrast to CPU threads, which

issue atomic reads, writes and fences, the FPGA breaks this operations down into requests and

responses. For instance, to write to memory the FPGA issues a write request, containing the

location and value to be written. Later, if the FPGA receives a write response this guarantees

that the write request has entered the FPGA’s memory subsystem but does not guarantee

that it has been committed to main memory. A fence request can be issued to indicate that

writes should be propagated to main memory, and this propagation is only guaranteed to have

occurred when a corresponding fence response is received.

The FPGA’s memory subsystem is composed of request pools, upstream buffers and down-

stream buffers as shown in Figure 2.3. Requests and responses have to travel through all this

components when travelling between the FPGA thread and he main memory.

We can implement the C model of the X+F system by extending the code of the x86 system from

Section 5.1.1. Extending it involves adding opcodes for the FPGA thread, channel identifiers to

the structure in Listing 5.1, and actions to the enumeration in Listing 5.2. The actions should

correspond to the FPGA thread, request pools, upstream buffers and downstream buffers. Each

of these elements has a separate data structure that takes into account its ordering guarantees

(e.g. FIFO order for the upstream buffer)

5.3.2 Experimental setup

We reuse the same configuration described in Section 5.2. Similar to the approach described in

the original work of the X+F model [IDSW21b], we generate allowed executions of different sizes

from the axiomatic model and run them on the operational model. The size of the litmus test

is described by the number of events it contains and these events represent different operations

of the CPU or FPGA.

Since there is a large number of executions that can be generated, we can limit our exploration

only to more challenging and non-trivial executions. Therefore, we generate disallowed exe-
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cutions where each event is critical as described in previous work [LWPG17]. By removing a

fence operation from this executions, we can create allowed non-trivial executions.

5.3.3 Impact of test harness
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(b) KLEE
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Figure 5.4: The percentage of executions uncovered under a certain amount of time using the
two alternative encodings for the litmus tests.

We start by adapting the test generator to enable the alternative options described in Sec-

tion 5.1.2. These options involve encoding the litmus test for more coverage points (Listing 5.4)

or fewer program paths (Listing 5.5). The alternative versions of the litmus test can be sent

to the different tools to evaluate their impact on performance. We generate traces with events

ranging from 6 up to 9.

We can now recall our research question:

RQ3 How does the encoding of the litmus test impact the performance of the different tools?

Figure 5.4 shows how the encoding affects the different tools. The graphs show the percentage
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of executions uncovered under a certain amount of time. We have set a limit of 2000 seconds

for each execution and ran them using the different encodings and tools.

We can see that libFuzzer takes advantage of the coverage points provided by the first en-

coding of the litmus tests. Furthermore, we can corroborate these results with the ones from

Section 5.2 where we have seen the poor performance of the näıve fuzzer. This result high-

lights the importance of coverage in fuzzing tools in uncovering the transitions that expose the

behaviour needed by the litmus test.

KLEE is not significantly affected by the encoding. This indicates that while the high-coverage

version of the litmus test creates more SAT queries, these are easier for the solver to solve.

CBMC similarly is not significantly impacted by the encoding utilised. Moreover, we can

notice a stairway pattern in its execution time. This pattern results from the different number

of events in the executions.

Finding from RQ3. libFuzzer is sensitive to the encoding of the litmus test and will benefit

from the extra coverage points. However, KLEE and CBMC will not be substantially affected

by the encoding of the tests.

5.3.4 Scaling up simulation

Section 5.3.3 shows that encoding the litmus tests for higher coverage benefits all of the tools.

We can use this to further explore the scalability of the tools. We can now recall our research

question:

RQ4 Can our approach allow more in-depth analysis of the X+F memory model, allowing it

to be better validated against its axiomatic counterpart?

We start with small executions, with few thread operations that should not challenge any of the

simulators. Therefore, we limit each execution to a maximum of five events, which allows us to

generate a total number of 2481 allowed executions. To ensure that the tools do not hang, we
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Figure 5.5: The percentage of executions uncovered under a certain amount of time using
different tools. All tools were able to uncover the allowed executions in (a). However, when
scaling the number of events in (b) this was no longer the case: out of 350 executions, libFuzzer
uncovered 335 executions, CBMC uncovered 202, and KLEE uncovered only 189.

limit the total execution time to 500 seconds. After verifying that the performance of the tools

translates to this model, we generate executions with more operations to evaluate scalability.

We generate 50 executions for each thread size from 6 up to 16 operations, summing up to 350

executions. We also increase the timeout from 500 seconds to 2000 seconds.

Figure 5.5 shows the percentage of reordering that was proven allowed after a certain amount

of time. For a small number of events, all tools were able to find the path through the program

that led to the reordering required by all 2481 executions. However, this is no longer the case

when scaling the number of events. Out of 350 executions, libFuzzer uncovered 335 executions,

CBMC uncovered 202 and KLEE uncovered only 189.

libFuzzer outperforms both CBMC and KLEE, managing to uncover the path that leads to

the reorderings faster than the other tools. The time required by CBMC depends on the test

size and explains the stair-like pattern that we see in both figures. However, despite its slow

execution, CBMC never got stuck like libFuzzer or KLEE and was the only tool that managed

to uncover some of the more challenging executions. It can thus be considered the slowest yet

most reliable tool.

Our strategy for fast model evaluation. We can assume that every given set of test-cases

will be composed of challenging and easy executions. Our experiments show that libFuzzer

can uncover easy executions quite quickly but fails with some of the more challenging ones.
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On the other hand, CBMC can uncover any executions, regardless of difficulty, but requires a

significant amount of time to do so. We can therefore come up with a strategy where for any

given set of executions, we can first run libFuzzer to uncover the easy ones and only utilise

CBMC for the more challenging ones. We will see in Section 5.3.5 how this technique has

allowed us to fix some infidelities in the model.

Finding from RQ4. Deploying both libFuzzer and CBMC enables feasible exploration of

the model for a considerably higher number of events and has allowed us to uncover some

infidelities in the original model.

Tool limitation. For some executions, KLEE is very fast, while for others, it never termi-

nates even after more than 24 hours. We sent sample test cases to the developers, and they

informed us that these cases revealed a limitation of the tool. KLEE compares each new query

with previous solved ones to reduce execution time. However, some executions create large

expressions that KLEE is unable to evaluate, leading to it getting stuck. The developers are

currently working on a fix.

5.3.5 Fixing the CPU/FPGA model

Throughout our experiments, we used the artefact from the work that describes the X+F

memory model [IDSW21a] to generate executions that we can send to the different versions of

the operational model. In the original work, experiments were run with executions with up to

8 events, but due to the increased scalability that libFuzzer offers, we were able to scale up to

16 events successfully for allowed events. These traces were significantly more complex than

the original ones and allowed us to explore the model more deeply. While most executions

were proven allowed by the fuzzer as expected, some were not. After also running them with

CBMC and then finally manually inspecting them, we realised that these reorderings were not

possible. Thus, we discovered some infidelities in the original model that we were able to fix.

As a result of this work, four axioms in the original work have been modified. For completeness,
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acyclic((poloc ∪ rf ∪ fr ∪ co) ∩ CPU2) sc-per-loc

acyclic(ppo ∪ fence ∪ rfe ∪ fre ∪ co) propagation

irreflexive(fr ; poch ; readpair) read-after-write

irreflexive(fr ; poFnRsp ; po ; readpair) read-after-fence

irreflexive(rf ; po) no-read-from-future

acyclic(fre ∪ rfe ∪ (rf \ sch) ∪ poch ∪ ppoCPU) observe-same-channel

irreflexive(po ; fencepair ; po ; writepair−1) fence-response

irreflexive(po ;(fencepair ∪ writepair); po ; fenceallpair−1) fence-block

irreflexive(rf ; poloc ; co) write-order-channel

Figure 5.6: The revised axioms of the X+F memory model, with modifications highlighted.

we list the complete set of corrected axioms in Figure 5.6. All of the relations mentioned in the

axioms have the same definitions as in [IDSW21b], with the additional definition of fencepair

as fenceonepair ∪ fenceallpair.

The observe-same-channel was originally an irreflexivity axiom that prevented writes from

different threads from being observed out-of-order on the same channel and now has been

extended to disallow this behaviour for more types of events. The fence-response and

fence-block axioms were present in the original paper and describe the reorderings that

fences enforce on the executions. These axioms have been extended to take into account

additional restrictions that fences impose on operations. The write-order-channel is a

new axiom, added to deal with additional ordering guarantees of multiple writes to the same

channel.

5.4 Related work

Operational memory models have been proposed for widely used memory models including

x86 [OSS09], POWER [SSA+11], ARM [PFD+17a, SFP+20] and RISC-V [PPPK+19], and

model checkers have been widely used to simulate them. For instance, [AKNT12] showed

how to transform the problem of verification under a weak memory model into the problem of

verification under SC, by transforming each memory access in the program so that it explicitly

manipulates a buffer rather than main memory directly. The verification-under-SC problem can
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then be handled by an off-the-shelf model checker; [AKNT12] use CBMC, while [SB18] in later

work use DIVINE. In both cases, the approach differs from ours because it relies on the design

of program transformations that correspond to specific memory models (x86, PSO, RMO, and

POWER), while we show how to encode the transition system of an arbitrary memory model

directly in C. This makes our approach more suitable for a memory model that is still in active

development, whose transition system may still be in flux, and which is not yet sufficiently

well understood to be confidently translated into equivalent program transformations. Besides,

it is not clear how some of the more complicated memory models, like the X+F model we

considered, can be recast as program transformations; indeed, [LV16] have shown that some

memory models, notably ARM’s, cannot be explained solely using program transformations.

RMEM [ABC+22] is a bespoke simulator for a variety of operational memory models [SFP+20,

ABC+19, PFD+17a]. It is widely used, but involves a substantial amount of engineering effort

to implement the desired algorithms for exploring the models (e.g. randomly, exhaustively,

or in a user-guided fashion). In our approach, we outsource the exploration task to a range

of off-the-shelf tools instead. Murphi is another simulator for operational semantics that has

been used to explore GPU memory models [SGG13] and also to verify heterogeneous cache

coherency protocols [OGN+22], but again, it lacks the generality of our approach because it

only supports the exploration algorithms that are hardcoded into it.

Axiomatic memory models are an alternative way of representing memory models, with

numerous memory models implemented in the herd simulator [AMT14]. This simulator enables

users to run litmus tests on top of axiomatic models. Since then, other alternatives based

on axiomatic memory models have been shown effective for various other tasks. Alloy is an

open source language and analyser for software modelling that has been used to simulate

memory models [WBSC17]. The flexibility of this approach has allowed it to be configured

such that only non-trivial executions are generated [LWPG17]. CDSChecker [ND13] is a model-

checker for C++ programs that uses several techniques to minimise the number of executions

behaviours that need exploring. GenMC [KV21] is a stateless model checker built on top of the

LLVM infrastructure that can be efficiently utilised to verify C++ programs. While axiomatic

memory model simulators such as these can be considered faster, they lack intuitive features of



90 Chapter 5. Simulating operational memory models using off-the-shelf tools

operational ones, such as providing execution paths that lead to the reordering.

The idea of problem reduction to a C program has been explored in other domains; for

instance, Verilator [Sny22] is a popular open-source Verilog simulator that works by translating

a Verilog design into a C program that can then be executed or otherwise analysed [TSC+21].

The trinity of CBMC, KLEE and libFuzzer have been previously employed by [PZS+21],

and shown to complement each other and uncover bugs in different applications. Moreover,

coverage-guided fuzzing has been used as a model-exploration technique in domains where for-

mal verification or symbolic reasoning techniques do not scale well, such as demonstrating the

satisfiability of SMT formulas for floating-point arithmetic [LCDS19].

5.5 Summary

In this chapter, we have investigated how operational memory models can be simulated by

reducing the decision problem of “whether a given operational model allows a given program

behaviour” to the decision problem of “whether a given C program is safe”, which can be

handled by a variety of off-the-shelf tools. This technique has allowed us to evaluate three such

tools: a model checker (CBMC), a symbolic analysis tool (KLEE) and a fuzzer (libFuzzer),

comparing them to a bespoke simulator (RMEM).

Our main finding is that coverage-guided fuzzing, implemented by libFuzzer, is extremely effec-

tive at confirming allowed behaviours for the litmus test configurations we consider, generally

vastly outperforming both model checking and symbolic execution. Furthermore, we find that

(a) the coverage-guided feature that libFuzzer offers is essential—we also present results using a

näıve fuzzer that is not guided by coverage, which does not perform nearly as well as libFuzzer,

and (b) the exhaustive and random approaches that RMEM utilises do not scale well enough

to allow meaningful analysis of memory model litmus tests with a large number of events.

The key takeaway from our experience is that we highly recommend that researchers and

engineers interested in operational memory model simulation consider our “reduction to C”
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approach because it lifts the burden of implementing various analysis algorithms in a bespoke

tool. Our experience is that the coverage-guided libFuzzer tool particularly shines when it

comes to the fast analysis of allowed behaviours, while the symbolic CBMC tool is effective

at the exhaustive exploration of reasonably large litmus tests. Our second case study, on a

CPU/FPGA memory model, showcases the value of our approach by allowing a number of

discrepancies in an axiomatic description of this memory model to be found and fixed.
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Conclusion

Here we present the summary of our findings in Section 6.1 and an overview of potential future

work in Section 6.2.

6.1 Summary

This work presents the first formalisation of the memory model of a heterogeneous CPU/FPGA

system. In such systems, the CPU and the FPGA can access the same shared memory in a

fine-grained manner. While this provides the potential for applications to take advantage of

the unique features of each component, it also creates the risk of incorrect synchronisation due

to each component’s particular weak memory effects. This thesis shows how one can reason

about these complex systems in a formal manner.

Modelling Memory in CPU/FPGA Systems We provide a detailed formal case study of

the memory semantics of Intel’s CPU/FPGA systems. These combine a multicore Xeon CPU

with an Intel FPGA, and allow them to share main memory through Intel’s CCI-P [Int19].

To gain an understanding of the variety of complex behaviours that the system can exhibit,

we have studied the available X+F documentation in detail and empirically investigated the

92
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memory semantics of the FPGA device and of CPU/FPGA interactions using a real system

that integrates a Broadwell Xeon CPU with an Arria 10 FPGA.

Based on our investigations, we present a formal semantics for the X+F memory system in two

forms: an operational semantics that describes the X+F memory system using an abstract ma-

chine, and an axiomatic semantics that declaratively characterises the executions permitted by

the memory system independently of any specific implementation. We have mechanised the op-

erational semantics in C, in a form suitable for analysis with the CBMC model checker [CKL04].

This allows an engineer to explore the possible behaviours of a given memory model litmus test,

and supports the generation of counterexamples that can be understood with respect to the

abstract machine. The axiomatic semantics, meanwhile, has been mechanised in the Alloy

modelling language [Jac12]. The Alloy Analyzer can then be used to automatically generate

allowed or disallowed executions, subject to user-provided constraints on the desired number

of events and actors that should feature in a generated execution.

Validating Our Models We have used the combination of our mechanised operational and

axiomatic semantics, plus access to concrete X+F hardware, to thoroughly validate our models.

Specifically, we have used the Alloy description of our axiomatic semantics to generate disal-

lowed executions that feature only critical events (i.e. removing any event from an execution

would make the execution allowed). Using a back-end that converts an execution into a corre-

sponding C program, we have used these executions and the CBMC model checker to validate

our operational model both ‘from above’ and ‘from below’; that is, every disallowed execution

generated from the axiomatic model is also disallowed by the operational model, and removing

any event from such an execution causes it to become allowed by the operational model(due

to the critical nature of events). This combination of a mechanised operational and axiomatic

semantics allowed us to set up a virtuous cycle where we would cross-check the models using

a batch of generated tests, find a discrepancy, confirm the correct behaviour by referring to

the manual or discussing with an Intel engineer, refine our axioms or our operational model,

and repeat. This back-and-forth process is a compelling demonstration of the value of develop-

ing operational and axiomatic models in concert, which we hope will inspire other researchers
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to follow suit. The operational model that we reached by the end of this process has been

described by an Intel Senior Principal Engineer as ‘definitive’.

Having gained confidence in the accuracy of our models via this cross-checking process, we

proceeded to run tests against hardware both to check that execution results disallowed by the

model are indeed not observed (increasing confidence that our model is sound), and to see how

often unusual-but-allowed executions are observed in practice. Since synthesising an FPGA

design from Verilog takes several hours, performing synthesis on an execution-by-execution

basis was out of the question. Instead, we present the design of a soft-core processor customised

to execute litmus tests described using a simple instruction set. The processor is synthesised

once, after which the CPU can send a series of tests to the FPGA for execution, allowing us

to process hundreds of tests in a matter of hours, rather than weeks. We find that when we

execute our tests on the hardware 1 million times each, the 583 disallowed outcomes are never

observed, but some of the 180 allowed outcomes are. We run all tests in an environment that

simulates heavy memory traffic, in the hope of coaxing out weak behaviours that may otherwise

be unobservable.

Putting Our Models to Use To demonstrate the utility of our formal model, we use it

to reason about a producer/consumer queue linking the CPU and the FPGA. We investigate

various design choices for the queue, using our model to argue why they provide correct syn-

chronisation, and we compare their performance. Then, guided by our model, we develop lossy

versions of the queue that omit some synchronisation, risking loss or reordering of elements

as a result, but in a well-defined manner that is described by our formal model. We present

experimental results exploring the performance/quality trade-off associated with these queue

variants, which is relevant in the context of application domains where some loss is tolerable,

such as image processing and machine learning. We also show that lossy behaviour is exacer-

bated when the FPGA is configured to contain additional processing elements that stress the

shared-memory system; these “enemy” components can serve as a debugging aid to help shake

out bugs arising from missing synchronisation.
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Simulating operational models Finally, our experiments have shown that simulating op-

erational memory models is a bottleneck in developing such systems. Validating the system’s

behaviours using CBMC is slow and not scalable, limiting our ability to scale in terms of the

size of tests and the number of tests. Therefore we have investigated alternative methods that

can be used to gain insight into the behaviour of these systems quickly. We observed that writ-

ing these models in a language such as C and using off-the-shelve tools for program analysis

provides valuable insight into the behaviour of these systems. For example, libFuzzerallowed

us to quickly gain insight into the system’s behaviour and fix some infidelities in the previously

developed models.

6.2 Future Work

Heterogeneous systems such as the one investigated here are still relatively new and under

constant development [CCF+16, CCF+19]. This fast evolution is an opportunity for researchers

to help build these systems. We can identify the following research directions for such systems:

Generalising the model This thesis focuses on the Intel X+F system and provides rigorous

semantics that help understand the system’s behaviour. However, it does not answer how well

these models generalise to other heterogeneous devices. Many industry developers have adopted

the Compute-Express Link (CXL) standard for interconnecting devices, and it is expected that

soon we will have heterogeneous devices powered by it. Furthermore, many academic projects

focus on heterogeneous CPU/FPGA systems [CRS+22]. Given that the FPGA accelerator is

usually connected to the CPU main memory via some network that resembles the Peripheral

Component Interconnect Express (PCIe) one, we expect many similarities. However, these

assumptions should be tested once the devices are available.

Improving the soft-core processor The soft-core processor enables us to quickly run many

litmus tests without considering the prohibitive cost of synthesing each. However, the downside

of using such an approach is that it adds a certain amount of overhead to the testing process that
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could hide some of the weak behaviours of the systems. The different stages of the processor

increase delay between the different instructions of the litmus test, a delay that can hide some

of this behaviour. It could be helpful to think of a system where the litmus tests are stored in

the memory of the FPGA, and a simple memory controller would be able to run with much

lower overhead.

Synchronisation mechanisms Our work investigates the challenges of implementing a pro-

ducer/consumer queue on such systems. However, multicore systems offer various synchro-

nisation primitives that can be used for concurrent programming. It would be interesting to

understand how many of these primitives can be used for such heterogeneous systems and which

one of them is more effective. This research question can be more efficiently answered if we

also consider different applications that run on such systems and how such primitives impact

them.

Heterogeneous programming languages Future work can also evaluate the impact of

these memory models on heterogeneous programming languages. For example, SYCL enables

code for heterogeneous processors to be written using standard ISO C++ [Khr22]. Like most

programming languages, SYCL offers different methods that can be used to communicate be-

tween the host and the accelerator. Therefore, it would be necessary to have a translation from

the memory model it offers to the one that a heterogeneous CPU/FPGA system offers.
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