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Abstract

This thesis improves the physical understanding of a dynamically responding offshore
Oscillating Water Column (OWC) of a fixed and cylindrical type. The study concerns
the analytical models of the linear potential flows and the numerical simulations of
the fully nonlinear viscous flows of OWCs undergoing different excitation mechanisms
and conditions.

Of particular interest in this research are the physical origin and the significance
of nonlinearities in the forces acting on a water column. The vortex shedding at the
lowermost end of an OWC has a marked influence on the forcing caused by wave
excitation at the resonant and a higher frequency. On the other hand, the free-surface
nonlinearity has a negligible effect on this force. Furthermore, an evaluation of the
hydrodynamic and the air forces demonstrates the diminishing role of the vortex
shedding as the amplitude of the response (or motion) of a water column increases.

The vortex shedding and the nonlinear inertial forcing are responsible for any
nonlinear characteristics of the internal water surface elevation within an OWC.
The former causes the progressively decreasing response amplitude operator and
progressively varying phase difference of the water elevation, while the latter provokes
the response asymmetry.

The hydrodynamic coefficients crucially depend on the amplitude of the water
column motion, the mouth shape, and the dimensions of an OWC. When flow sepa-
ration occurs, the added-mass coefficient progressively increases with the amplitude.
It is consistent with the departures from linear radiation theory when considering
the radiated wave elevation near an OWC with a sharp-edged mouth.

Formation of the vortex that primarily contributes to the nonlinear damping co-
efficient most significantly reduces the response at the resonant frequency. This role
of vortex formation is more pronounced under a high- than a low-frequency exci-
tation. These insights and the dominance of the flow driven by the water column
(in relative comparison to the wave flow) explain the applicability of the hydrody-
namic coefficients evaluated from a forced oscillation test to predict a wave-induced
response.
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1
Introduction

1.1 Motivation

The idea of converting wave energy into a useful energy resource through the in-
stallation of a marine structure has long been considered. This is not surprising
given the fact that ocean waves carry a substantial proportion of their energy at the
ocean surface. Indeed, the concept of wave energy extraction was initially conceived
around 1885 by J. M. Courtney when he invented a whistling buoy as a navigational
aid. Later in 1947, a similiar idea was introduced by Yoshio Masuda, a Japanese
naval commander, who tested a self-powered navigational Light-buoy in the sea. His
design consisted of a surface-piercing floater and a vertical tube. This formed an air
chamber, that was open to the atmosphere through an upper passage, where an im-
pulse turbine was installed. The lower inlet of the tube was submerged and open to
the water, thereby trapping a water column that oscillated in response to the wave
excitations. Initially, his small-scale buoy device was only able to light a 60-watt
bulb and to drive a flasher unit. Nowadays, his concept, also known as an Oscil-
lating Water Column (OWC), has been adapted for higher-rated power extractions,
ranging from 30kW to 2.5MW in full-scale design (Heath, 2011).

Over the past few decades, numerous designs for OWCs have been proposed. For
example, the concept of an OWC being integrated into a breakwater or a shore-
protection structure has been studied from field experiments. A caisson breakwater
that extracts wave-energy rated at 60kW was constructed in Sakata Port, Japan
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1.1 Motivation

(Takahasi et al., 1992) and a multi-chamber OWC with the power rate at 320 kW
was built in Mutriku Port, Spain (Torre-Enciso et al., 2009, Heath, 2011). Research
investigations into the efficiencies of such devices based upon small-scale experimen-
tal models also indicate the potential of capturing wave energy (Thiruvenkatasamy
& Neelamani, 1997, Tseng et al., 2000, Boccotti, 2007, 2012, He et al., 2016). The
shoreline protection and the shared construction cost are considered as the addi-
tional benefits, especially at coastlines with relatively low wave-energy potential. In
the northern hemisphere, designs of isolated and shore-connected OWCs have even
reached the stage of full-scale model testing. An OWC plant in Norway (Falcão,
2010), the Pico Plant in Portugal (Falcão, 2000), and LIMPET in Scotland (Heath
et al., 2001) are examples of nearshore (full-scale) devices. A picture of the Pico
OWC plant integrated into a natural gully is shown in Figure 1.1(a). The air mass
in the pneumatic chamber, shown schematically in Figure 1.1(b), flows into or out
of an upper passage as an incident wave approaches the water column. This con-
sequently drives the Wells turbine inside the passage. The turbine power is then
converted into the electrical power rated at 400 kW (Falcão, 2000).

(a) (b)

Figure 1.1: (A) The Pico OWC integrated into a natural gully in Azores, Portugal and (B) the
corresponding cross-section representing the plant’s primary components (Aqua-RET, 2008).

The full-scale breakwater-integrated and shore-connected OWC plants have been
shown capable of extracting wave energy in real sea-states. However, problems as-
sociated with the dissipative effects of seabed friction and the occurence of wave
breaking due to shoaling effects in the nearshore area are among several critical fac-
tors reducing operational performance. Moreover, there is a growing concern over
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the potential noise pollution from such plants. While the consequences of underwater
noise pollution are inconclusive, the airborne noise is produced within the audible
range for humans and may potentially affect the nearby populations (De Moura
et al., 2010). In parallel, the UK government has made an ambitious plan to achieve
a target of net-zero CO2 emissions by 2050 (UKERC, 2019). The proportion of the
electricity supply derived from renewable energies in the UK was low during the ini-
tial years of conception. Nevertheless, it had grown to thirty-three percent by 2018.
In fact, renewable energies produced the majority of UK electricity for the first time
in the following year (CarbonBrief, 2019). To date, the target of net-zero CO2 emis-
sions is, however, far from achievable. This fact, together with the challenges of
shore-connected OWC devices highlighted above, explain the urgent need to further
explore renewable energy sources, including the potential of deep water wave energy.

From the perspective of design maturity, offshore OWC Wave Energy Convert-
erters (WECs) are still at a very early stage of commercialisation. For instance, the
Ocean Energy Buoy, a 1:4 scaled model of the Backward-Bent-Duct-Buoy (BBDB)
type OWC located in the Galway Bay of Ireland, completed the first three stages
of model testing in 2011 (Heath, 2011). The Spar Buoy, an axisymmetric OWC
that consists of a relatively long and submerged vertical tail tube, has been designed
as wave-powered navigation buoys (Falcão, 2010). However, no large-scale energy
production based upon a full-scale prototype has been reported. One major chal-
lenge is to produce the wave energy at a cost that can compete economically in the
global energy market. To achieve this requires, at the very least, a significant effort
to optimise the power output. This must be coupled with a firm understanding of
the behaviour of the device, including the response in actual sea conditions. This,
in turn, requires an in-depth understanding of the physical mechanisms that are re-
sponsible for instigating the response behaviour, as well as the physical parameters
that govern the response characteristics.

In pursuit of the aforementioned goal, the dynamic response of the water column
inside the device has to be reliably estimated. This involves modelling the hydrody-
namic force and wave-excitation force, taking due account of all the nonlinearities
that play a role in the response. In particular, when operating in a resonant state,
where most of the power will be generated, the effects of flow separation and vortex
shedding must be addressed. Force quantification must take into account this non-
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linear flow behaviour, as well as other physical effects. With the inclusion of all the
relevant forces, realistic dynamic responses of the water column can then be achieved
and understood. Furthermore, analysing the flow field is an essential first step in
providing physically grounded evidence that supports an improved understanding of
the response behaviour.

Of the many geometrical configurations of offshore OWC being investigated, de-
vices with cylindrical geometries have thus far received rather less attention. This
trend is probably explained by the research outline in Evans & Porter (1997). The
optimal capture width for a cylindrical OWC is generally lower than that of a bottom-
standing OWC (Evans & Porter, 1995). However, when developed in combination
with offshore wind energy, and after accounting for the fact that it is independent
of wave direction, harnessing offshore wave energy using a cylindrical body may still
be promising. Moreover, it provides the perfect test case to consider the role of
nonlinear factors including flow separation and nonlinear free-surface effects, from a
fundamental perspective. For these reasons, a study of cylindrical OWCs is worth
pursuing to advance our knowledge of the offshore wave energy field. Cylindrical
offshore OWC will thus be the focus of the present study.

1.2 Engineering significance

In offshore engineering design, Morison’s equation has been extensively used to model
the hydrodynamic loading on a slender, cylindrical body (Keulegan & Carpenter,
1958, Sarpkaya, 1975, Chakrabarti et al., 1976, Sarpkaya, 1977). The implementation
of this equation necessitates information concerning some experimentally-calibrated
loading coefficients. For each given coefficient, the loading is then described as a
function of the instantaneous velocity and acceleration of the incident (un-disturbed)
fluid flow. Consequently, the accuracy of the loading calculation is critically depen-
dent on these hydrodynamic/loading coefficients. As such, the extent to which the
coefficients closely represent the actual flow condition becomes very important.

In the context of an OWC, understanding the flow behaviour represented by
the coefficients, over the full range of flow conditions, is necessary to estimate the
dynamic response of the water column. In fact, all of the physical processes governing
the body response need to be fully considered. This includes the scattered and
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radiated waves around the structure, as well as the vortex shedding at the base of
the OWC. To date, determination of the loading coefficients is largely based upon
knowledge of the hydrodynamic forces acting on equipment commonly used in the
offshore Oil & Gas industry (Babarit et al., 2012). Furthermore, to ensure that any
calculations are relevant to full-scale conditions, a full range of length scales needs to
be considered. In effect, research outcomes based upon lab-scaled data should assist
in the reliable prediction of the water column response of a full-scale OWC.

In order to evaluate the flow behaviour over a broad range of flow conditions, the
mechanisms responsible for the excitation of the water column motion need to be
widely varied. One approach is to dynamically fluctuate the air pressure above the
water column in the absence of incident waves; this is referred to as forced excitation.
A second approach is to incorporate a pressure fluctuation at the open-ended inlet
through a wave excitation. In traditional hydrodynamic theory, the hydrodynamic
properties obtained from the two excitations are assumed to be comparable; the flow
field from a forced excitation co-existing with the wave field around a fixed body. As
a result, they can be linearly superposed to estimate the wave-induced response. This
is a widely accepted approach in the design of many offshore structures (Himeno,
1981, Faltinsen, 1999). However, for a non-rigid body such as an OWC, the evaluation
of this approach may not be straightforward since the wave-excitation force cannot
be immediately estimated by considering a fixed water column. Specifically, the
nonlinear forces resulting from the interaction of the waves and the vortex shedding
at the bottom inlet may not be adequately represented by the incident wave pressure.
Clarification as to the validity of the linear superposition approach is of fundamental
importance and will be addressed within this thesis.

1.3 Thesis contribution

The overall contribution of this thesis is to provide an improved physical understand-
ing of a dynamically responding OWC. The research analysis involves modelling an
OWC under two different excitation mechanisms, a forced oscillation and a wave
induced excitation; both undertaken in the absence of a power-take-off (PTO). In
seeking to achieve this overall goal, individual aspects of the study will address:

1. The numerical modelling of OWCs with varying geometries. In each case, the
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model will undergo free decay, forced oscillation and regular wave excitation,

2. The description of the water particle kinematics defining the rotational flow
fields that arise due to varying excitation mechanisms,

3. Characterisation of the wave fields around an OWC; key points being the in-
fluence of vortex shedding and the validity of linear radiation theory,

4. Identifying the physical origin and significance of all nonlinearities in the forcing
and motion of water columns,

5. Assessing the hydrodynamic coefficients appropriate to a practical range of flow
conditions,

6. Fundamental guidance as to the importance of any vortex formation and mo-
tion in defining the response behaviour of a water column,

7. The applicability of forced oscillation tests and the validity of the principle of
linear superposition.

In undertaking this work, it is important to note that a number of simplifications
have been applied. These particularly relate to the absence of a PTO mechanism,
the use of prescribed forcing, the assumption of air incompressibility and the reduced
scale of the OWCs under investigation. The present work focuses on understanding
the influence of the various sources of nonlinearity on the response behaviour and
the excitation forces that act. As such, the work provides fundamental insights into
the behaviour of an OWC.

A flow chart describing the various aspects of the investigation is presented in
Figure 1.2. This also highlights the linkage between the chapters. As a first step, the
physical sources of nonlinearity contributing to the radiated wave field, the response
(or motion) and the forces acting on a water column are considered. These potential
sources of nonlinearity are associated with the vortex shedding, free-surface nonlin-
earity and large excursion of the water column. In order to establish their effects,
OWCs with a variety of dimensions undergoing different excitation mechanisms are
analytically modelled using linear potential theory and numerically simulated in a
viscous flow. These methods for evaluating and modelling an OWC are indicated by
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Figure 1.2: Flow chart describing the various aspects of the investigation [ ] and the methods
for modelling and evaluating an OWC [ ].

the grey rectangles on Figure 1.2. The other rectangles represent specific aspects of
the investigation and the methods implemented.

The next stage evaluates the nonlinearities in the radiated wave fields around
an OWC. This requires an analysis of the rotational flow fields generated by forced
oscillations. The aim, at this stage, is to understand the influence of vortex shedding
on the radiated wave fields and the validity of linear radiation theory. The following
step analyses the nonlinearities in the forces acting on and the motions of the water
column. The forces considered are the wave-excitation force, the hydrodynamic and
the air forces. Within this analysis, both forced oscillation and wave excitation
problems are explored. The overall purpose of this work is to understand the sources
and importance of all the nonlinearities arising.

Following on, the hydrodynamic coefficients appropriate to an OWC undergoing
forced oscillations are evaluated; the purpose being to understand their variation
with key parameters. The description of the rotational flow field, established (in
Chapters 4 and 5), will help explain these variations. Based upon these results, the
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importance of vortex induced damping on the response behaviour and the applica-
bility of these coefficients to wave-excitation problems will be evaluated. With an
improved understanding of the relevant nonlinear effects and their significance, guid-
ance as to how best to develop the appropriate time-domain modelling of an OWC
is provided. Building upon this work, the relevance of linear potential theory and
the principle of linear superposition will be established.

1.4 Thesis overview

As indicated by Figure 1.2, the thesis which follows is divided into six chapters:
Chapter 2 provides the hydrodynamic theory describing the loads acting on

slender structures. It addresses the key physical parameters and geometrical effects.
The implementation of Morison’s equation and its extended forms for load estima-
tions on cylindrical structures is critically reviewed. A linear analytical solution to
the OWC problem is provided and a critical assessment of existing numerical and
experimental models of OWCs are discussed. The rigid-body dynamics of a fixed
OWC based upon the principle of linear superposition is also described.

Chapter 3 presents the numerical model of an OWC developed within the
present study. This implements a volume of fluid method, based upon the open
source Computational Fluid Dynamics (CFD) code, Open Foam. Most impor-
tantly, this chapter provides the validation and convergence studies for various ap-
plications. This comprises simulations and boundary conditions of three-dimensional
OWCs that experience freely decaying displacements, forced oscillations, as well as
regular wave excitations. Additional proof of the method is provided using estab-
lished test cases. These include regular wave modelling and wave interactions with
plate structures.

Chapter 4 investigates the characteristics of the radiated waves in the near- and
far-fields. The effect of vortex shedding on these wave fields is evaluated. For this
purpose, an analytical solution of the wave field around an OWC is implemented
and compared with the numerically predicted wave fields from the developed model.
Furthermore, methods for quantifying the kinematic properties of flow fields are
described. Lastly, the validity of the linear radiation damping is critically evaluated.

Chapter 5 provides evidence of nonlinearities in the forcing and in the motions
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of water columns. The physical cause of these nonlinearities are investigated by
comparing the responses subjected to different excitation mechanisms. Furthermore,
differing mouth shapes or geometries are compared to reveal vortex effects on the
nonlinearity. To understand nonlinear free-surface effects on the forces and response,
the depth-inline pressure distributions over the cylinder drafts are evaluated. These
are shown to be particularly informative. Finally, the physical significance of the
nonlinear factors is investigated.

Chapter 6 discusses the behaviour of the hydrodynamic coefficients over a broad
range of governing parameters. Based upon these research findings, the relative im-
portance of vortex formation and motion as the nonlinear damping force in an OWC
is evaluated. The applicability of the linear superposition theory is then investi-
gated by comparing the hydrodynamic properties of OWCs under the two different
excitation mechanisms.

Chapter 7 provides a summary of the work undertaken and discusses the prin-
cipal findings. It also provides suggestions for future work.
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Background

2.1 Chapter overview

This chapter reviews the critical issues relating to modelling of dynamically respond-
ing OWCs. It begins with an overview of a fluid loading analysis of two contrasting
geometrical shapes involving circular cylinders and sharp edges. Section 2.2 re-
views the implementation of Morison’s equation when modelling the fluid loading on
slender circular and sharp-edged cylinders. Within this review, the key parameters
determining the fluid loading regimes are carefully described.

The next two sections concentrate on modelling OWCs in potential and viscous
flows. Section 2.3 provides a review of the linear potential solutions from earlier
studies, the governing equation and the boundary conditions appropriate to these
models. The linear analytical model adopted within this thesis is also described.
In addition, Sections 2.4 and 2.5 review the nonlinear potential flow models and the
nonlinear viscous flow models applied for OWCs, respectively. The latter involves the
physical experiments and numerical simulations in a real fluid flow. Critical issues
that have yet to be fully explored and that require further investigations are high-
lighted therein. Following on, the time-domain modelling of dynamically responding
OWCs is described in Section 2.6. Finally, concluding comments are provided in
Section 2.7 to summarise the aspects that require evaluation given the goals outlined
in Chapter 1 and the background theories in this chapter.
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2.2 Overview of fluid loading analysis

The prediction of the wave loading on a cylindrical body is often related to the
diffraction parameter. This dimensionless number is defined by D/λ; where D is
the dimension of the body and λ the incident wave length. In effect, it determines
whether the incident wave “feels” the body and will thus be disturbed; the latter
taking the form of a scattered wave field. For a slender body (D/λ < 0.2), the
geometrical dimension is sufficiently small that the wave field experiences little or no
disturbance, except for the development of a local wake.

Most cylindrical OWCs designed to operate in offshore waves are slender body
structures. In fact, it was suggested by Newman (1974) and Evans & Porter (1995,
1997) that the cross-sectional dimension of an OWC be determined to ensure a
Helmholtz (piston) mode being the predominant motion mode of the water column
rather than a higher-order mode; an example of the latter being a sloshing motion.
Such a geometrical condition would ensure that the water column achieves a larger
response and uniform displacement. This is usually attained by defining an OWC
to have a relatively small diameter that lies within the slender body region, and a
length consistent with a deep water draft.

For flows around a slender body, the fluid loading is traditionally predicted using
Morison’s equation (Morison et al., 1950). Although the present study does not seek
to further our understanding of the drag or inertia forces acting on such a body,
Morison’s equation is relevant to the implementation of the hydrodynamic force
model appropriate to an OWC. As such, it will be reviewed herein. Furthermore, the
mathematical formulations and, particularly, the variations of the force coefficients
with key parameters will be considered in detail.

2.2.1 Morison’s equation

In fluid dynamics, Morison’s equation is a semi-empirical equation for the in-line
force on a fixed or moving body in a fluid flow. In the present study, the equation
will be used in a rather different context, hence the wider considerations discussed
below. Within Morison’s equation, the fluid loading is decomposed into two force
components; an inertia force and a drag force. The inertia force, expressed as a
function that is in phase with the local flow acceleration u̇, is assumed to be due to
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acceleration of the fluid in inviscid and attached flow around a body. This component
of the load is commonly referred to as the potential flow force. In contrast, the
drag force is assumed to be force proportional to the square of the instantaneous
flow velocity, u. This represents the contribution due to viscous effects and flow
separation; the latter commonly referred to as the vortex force. These two force
components are assumed linearly independent and simply added to give the total
in-line force. For a fixed body in an oscillatory flow, the Morison’s force per unit
length is defined by:

F (t) = Finertia (t) + Fdrag (t) , (2.1)

F (t) = ρCM
π

4 D2u̇ (t) + 1
2ρCDDu (t)|u (t)|, (2.2)

where CM is the inertia coefficient, CD the drag coefficient, ρ the fluid density and
D is the cylinder diameter.

2.2.2 Physical parameters

Extensive experimental work has sought to determine the drag and inertia coef-
ficients for cylinders over the last few decades. These studies established a clear
dependence on certain physical parameters. For a smooth cylinder in an oscillatory
flow, the coefficients are commonly presented as a function of the Reynolds number
Re (= uD/ν), the Keulegan-Carpenter number KC (= uT/D) or viscous-frequency
parameter β (= D2/νT ) (Sarpkaya, 1975, 1977, 1986, Bearman et al., 1985). Within
these parameters, u denotes the velocity, T the period of oscillation, ν the kinematic
viscosity and D a characteristic length-scale defined by the cylinder diameter. From
a physical point of view, the Re number denotes the relative importance of the vis-
cous force over the inertial force, while the KC number indicates the importance of
flow separation. The β number represents the ratio of Re over KC numbers.

Using Equation (2.2), one can deduce the dominance of each force component
from the phase shift between the in-line force and the flow velocity. The relative
dominance of one force component establishes the flow condition as being either
inertia-dominated, drag-dominated, or a combination of the two. This characterisa-
tion can be estimated from a plot of the force-velocity phase shift as a function of the
KC number. A relatively small phase shift indicates a smaller ratio of the inertial
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force over the drag force; the former component being less dominant than the latter.
The exact upper limit of KC that characterises the dominance of the inertial force
for a circular cylinder in an oscillatory flow, will differ due to the flow dependence
on the Re number. However, generally speaking, the flow is either inertia or drag
dominated when KC is respectively defined by:

0 < KC < 5, for inertia-dominated flow (2.3)

KC > 20, for drag-dominated flow. (2.4)

For very small KC numbers, a potential flow is assumed; the CD values being
set to zero. However, the laboratory data does not suggest this. Sarpkaya (1986)
conducted experimental studies involving circular cylinders and compared measured
data with the analytical solution provided by Stokes (1851). On the basis of Sarp-
kaya’s (1986) experimental results, it is clear that at small KC numbers, when the
flow is expected to lie within the inertia-dominated regime, the CD values are sub-
stantially larger than expected. In fact, comparisons between the analytical Stokes’
(1851) solution and the experimental data in Figure 2.1 show good agreement at
extremely small KC numbers. The agreement is because the assumptions defining
the flow by which the analytical solution has been derived, meet the actual flow
conditions; the flow being unseparated, stable and laminar. This explains why zero
CD values at very small KC numbers do not arise. Specifically, the shear stress
associated with surface friction applies on a wall boundary in a viscous flow.

The validity of the Stokes’ (1851) solution does not, however, cover the full range
of KC numbers. Figure 2.1 also shows that the experimental data describing CD

deviates from the analytical Stokes’ (1851) solution when KC > 0.7. This relates to
the first occurence of vortical instabilities; the force induced by the flow separation
becoming more important than the viscous surface friction. Importantly, the CD

coefficient increases sharply when the flow begins to shed vortices. In the current
figure, this occurs for KC > 2. As the KC number increases, the importance of the
drag force becomes progressively more significant. This is consistent with the fluid
loading regime defined in Equation (2.4).

In other Re number regimes, the dependence on the physical parameters will
differ. For example, in a subcritical flow condition, the variations of the force coeffi-
cients are largely determined by the KC number (Sarpkaya, 1975). This means that
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Figure 2.1: Drag CD [+] and inertia CM [◦] coefficients for a fixed circular cylinder in planar
oscillatory flows with varying KC numbers at β = 1035; the analytical Stokes’ (1851) solution
defined by [ ] and all data in the figure taken from Sarpkaya (1986).

for a small-scaled structure, commonly studied in a physical model test, the flow may
be solely varied based upon the KC number. However, if the flow is at a critical or
transcritical Reynolds number, the force coefficients will be dependent on both the
Re and KC numbers (Sarpkaya, 1977). This leads to important scaling effects; the
force coefficients depending on the Re number. This is particularly important when
calculating the loads on full-scale structures.

The dependence of the force coefficient on both the Re and KC numbers high-
lights the importance of the flow behaviour. Most importantly, it is possible to infer
the loading regimes within which the different force components dominate. This, in
turn, helps to evaluate which force component will critically affect the dynamic re-
sponse of a moving structure. In considering the design of an OWC for offshore wave
energy generation, the loading regime will most likely involve both drag and inertia
loading. In considering this, it is important to highlight that vortex shedding does
not only occur as the flow separates from the upstream and downstream surfaces of
cylinder. Vortices may also form and shed at the open-ended mouth of the OWC. As
a result, depending on the mouth shape, the drag-dominated flow regime may exist
at a lower KC number for a certain range of Re numbers. In the case of an OWC
with a streamlined mouth shape, the definition of the fluid loading regimes may be
similar to those given for a circular cylinder. However, for an OWC with a straight
and sharp mouth, also referred to as a sharp-edged OWC hereafter, significant vortex

39



2.2 Overview of fluid loading analysis

shedding may be produced at its lower end. As a result, the fluid loading regime has
the potential to be very different. Following a similar line of argument, one would
expect the force coefficients appropriate to sharp-edged cylinders and their depen-
dence on the Re and KC numbers to be very different. A review of work related to
these effects is given in the following section.

2.2.3 Geometrical shape effects

The local cross-sectional shape of a body has a strong influence on the flow behaviour
and hence the variations of the force coefficients and their dependence on the physical
parameters. Keulegan & Carpenter (1958) confirmed the insensitivity of flows past
a flat plate to the variation in the Re numbers. The Re number dependence of
the associated loading coefficients is markedly reduced relative to those associated
with circular cylinders. However, they showed that for a plate oriented normal to
an oscillatory flow, the flow is strikingly influenced by the KC number. In general,
the drag coefficients appropriate to bodies with sharp-edged geometries, are large at
small KC numbers and have an asymptotic value at large KC numbers. Evidence of
this has been reported in Bearman et al. (1984, 1985), Hamel-Derouich (1991) and
Vengatesan et al. (2000). The large coefficients are associated with the fact that flow
separation consistently occurs even at small KC numbers. For instance, the onset
of vortex shedding occurs at KC = 0.2 for flows past a square cylinder with β =
O(104)(Troesch & Kim, 1991). In contrast, the corresponding KC number is defined
by KC = 3 for flows past circular cylinders under relatively similar β conditions
(Sarpkaya, 1986, Troesch & Kim, 1991). As a result, the range within which the flow
is dominated by the drag force will be extended to relatively smaller KC numbers
when compared to the corresponding range for a circular cylinder.

For a sharp-edged geometry, the characteristic length-scale appropriate to a KC

number is defined by the geometric dimension that is normal to the encountering flow
velocity (Bearman et al., 1985). An illustration of this variable is shown in Figure
2.2(a); a longitudinal axis parallel to the characteristic length is also indicated. The
importance of this length on CD values has been confirmed in Tanaka et al. (1983),
Bearman et al. (1985) and Hamel-Derouich (1991). Tanaka et al. (1983) showed
that reducing this length decreased the value of CD. His study further confirmed
the effect of flow orientation or angle of attack. As depicted in Figure 2.2(b), this
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angle is defined by the difference between the longitudinal axis and the flow velocity
direction. The drag forcing is markedly reduced if the velocity direction is parallel to
the longitudinal axis. In other words, the value of CD decreases if the encountering
flow has a zero angle of attack with respect to the longitudinal axis that defines the
characteristic length of a sharp-edged geometry.

(a) (b)

Figure 2.2: Illustration of a sharp-edged geometry with a characteristic length-scale D encoun-
tered by a flow velocity u that acts (A) normal to the longitudinal axis and (B) at an angle of
attack, ζ, relative to this axis.

Based upon those aforementioned studies, two things are notable when analysing
the fluid loading of an OWC. First, the criterion for drag or inertial flow dominance
should be based upon the flow separation at the open-ended mouth of the OWC. For
a sharp-edged OWC, the fluid loading at the draft is very likely to be affected by
vortices even at a small KC number. Second, the vortex shedding at the mouth of the
OWC may primarily be dictated by the vertical velocity induced by the oscillating
water column. This speculation is suggested by the study of the vortex ring generated
during the ejection of fluid out of a circular tube. In this latter flow problem, the
fluid displacement within the tube relative to the cylinder diameter is an important
parameter defining the vortex ring formation (Gharib et al., 1998). The horizontal
velocity of the fluid outside the tube less significantly contributes to the vortex
formation at the tube entrance. The study defines the diameter and the vertical
velocity of the water column as the characteristic length-scale and characteristic flow
velocity, respectively. This definition is consistent with the explanation of the flow
orientation noted above. Importantly, it may be reasonable to consider the vertical
velocity determined from the oscillation of the water column as the characteristic
velocity in a wave-excitation problem.
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2.3 Linear potential theory for an OWC

2.3.1 Analytical models

An OWC consists of a water column and air volume inside an enclosing chamber.
A piece of turbo machinery that functions to take off the power output, is placed
inside an upper passage above the water column free-surface (see Figure 1.1(b)).
To understand the complex flow behaviour within an OWC, early researchers have
put significant effort into deriving linear analytical models. Within these models,
fluid problems are simplified by making assumptions to derive efficient and powerful
analytical models. First, the fluid is assumed to be incompressible, irrotational and
inviscid. As a result, a potential flow can thus be defined in the fluid domain.

Another consideration is to treat the (oscillating) water column as a body that
has certain degrees of freedom. When considering only a heave mode (a simple
piston motion), the internal free-surface relating to the water column is assumed to
move uniformly. As such, the pressure distribution on this free surface is considered
uniform. This approach was adopted in the analytical models developed by Evans
& Porter (1995, 1997).

A deformable internal free-surface condition has also been considered by earlier
researchers. In this case, the pressure variations accross the internal free-surface need
to be taken into account. Evans (1982) considered varying pressure distributions on
the internal free-surface within a fixed body, while Falnes & McIver (1985) modelled
both varying pressure distributions and oscillating bodies.

2.3.2 Governing equation and boundary conditions

The following description explains the equations that govern a linear potential flow in
a linear analytical model. The boundary conditions appropriate to a computational
flow domain are also discussed. In considering the focus of the present study, a
truncated and hollow cylinder with an infinitesimally thin wall-thickness inside a
wave tank of constant water depth h, is depicted in Figure 2.3. The cylinder of
draft B and radius b consists of a circular wall that encloses a water column with an
internal free-surface Si.
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Figure 2.3: Schematic view of a cylindrical OWC inside a wave tank

Within the present study, two potential flow problems relevant to an OWC are
modelled. These are described as follows:

(1) A pure radiation potential flow. In this problem, no incident waves are
approaching the column; the initial conditions are described by a still water
condition. Instead, the water column is excited by an oscillating air pressure p

of a period T that acts uniformly on the internal free-surface Si. The air volume
above the internal free-surface is fully closed by a rigid wall.

(2) A scattering potential flow. In this case, the water column is excited by
an incident wave of amplitude Ao and period T . The internal free-surface Si is
exposed to the local atmosphere; the oscillating air pressure p being zero.

In any potential flow problem, the water column inside the cylinder is assumed to be
rigid and the internal free-surface non-deformable. Therefore, the horizontal pressure
variation on the internal free-surface Si is negligible. The atmospheric pressure pa is
constant on the external free-surface Se outside the water column.

In the framework of linear wave theory, a velocity potential exists in any potential
flow problem and satisfies the following equations:

∇2Φ = 0, in the fluid (2.5)

Φn = 0, on solid boundaries (2.6)

where the suffix n denotes the normal derivative (to the boundary). On the linearised
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free-surface, the boundary conditions satisfy:

gη − ∂Φ
∂t

=

⎧⎪⎪⎨⎪⎪⎩
(pa + p) /ρ, on Si

pa/ρ, on Se

(2.7)

where η (x, z, t) is the surface elevation and is related to the velocity potential through
a kinematic boundary condition given by

∂η

∂t
= ∂Φ

∂z
. (2.8)

If the motion is assumed to vary harmonically with time, t, the unknown variables
Φ, p and η can be represented as functions of ωt as follows:

Φ (x, y, z, t) = Re
[
φ (x, y, z) e−iωt

]
, (2.9)

p (t) = Re
[
Poe

−iωt
]

, (2.10)

η (x, y, z, t) = Re
[
η (x, y, z) e−iωt

]
, (2.11)

where ω = 2π/T is the angular frequency, T the period of oscillation and Po is the
amplitude of air pressure.

Combining Equations (2.5)-(2.8) produces a boundary-value problem expressed
in terms of the time-independent velocity potential φ that satisfies these conditions:

∇2φ = 0, in the fluid (2.12)

φn = 0, on solid boundaries (2.13)

Kφ + ∂φ

∂z
=

⎧⎪⎪⎨⎪⎪⎩
−iωPo/ρg, on Si

0, on Se

(2.14)

where K = ω2/g and the atmospheric pressure pa has been set to zero. The po-
tential solution for an OWC subjected to the air pressure and the incident wave is
decomposed into two components; the scattered and radiated potentials defined by

φ = φS − iωPo

ρg
φR. (2.15)

The scattered potential, φS, represents the flow excited by the incident wave in the
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absence of oscillating air pressure. This potential also includes the flow solely driven
by the incident wave. In contrast, the radiated potential, φR, describes the flow
due to the oscillating air pressure on the internal free-surface in the absence of an
incident wave. The total potential in a pure radiation potential flow can be written
only in terms of φR. Equation (2.14) may thus be re-expressed by

KφR + ∂φR

∂z
=

⎧⎪⎪⎨⎪⎪⎩
1, on Si

0, on Se.
(2.16)

Linear analytical solutions to problems involving a cylindrical OWC in the pres-
ence or in the absence of an incident wave excitation have been proposed in Evans
& Porter (1997). In their model, a velocity potential describing the boundary-
value problem in a cylindrical coordinate system (r, θ, z) is defined as Φ (r, θ, z, t) =
φ (r, θ, z) e−iωt. A variable separation procedure, φ (r, θ, z) = φn (r, θ) ψn (z), that re-
quires the definition of a depth-dependent eigenfunction ψn (z), is employed. Within
the present study, the radiated and scattered potential flow solutions proposed by
Evans & Porter (1997) will be adopted and described in the sections that follow.

2.3.3 A linear analytical model: wave radiation

To define this potential solution, the fluid domain is divided into two regions. The
inner domain is defined by the fluid volume inside a virtual cylinder of radius b and
draft that extends to the tank bottom h. The outer domain consists of the volume
outside this virtual cylinder. The definition of the radiated velocity potential, φR, in
terms of a general expansion is based upon this domain decomposition:

φR (r, z) = αR
0 H0 (kr) ψ0 (z) +

∞∑
n=1

αR
n K0 (knr) ψn (z) , for r ≥ b (2.17)

φR (r, z) = βR
0 J0 (kr) ψ0 (z) +

∞∑
n=1

βR
n I0 (knr) ψn (z) + K−1, for r ≤ b. (2.18)

Within the outer solution, r ≥ b, the first term represents the outgoing radiated
wave and the infinite series represents the exponentially decaying modes. In these
equations, J0, H0, I0, and K0 are the Bessel and Hankel functions of the first kind
and the modified Bessel functions of the first kind and second kind, respectively. All
are of order 0; the suffix 0 of all these functions is given to indicate the independency
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of the radiated potential on angular variation.
The depth-dependent eigenfunctions, ψ0 and ψn, are associated with the wave

numbers of the progressive and standing modes, k and kn, respectively. The former
is determined from the dispersion relationship, while the latter is quantified from
the positive real roots of K + kn tan knh = 0. Furthermore, αR

0 , βR
0 , αR

n and βR
n

are coefficients defining the radiation potential problem, based upon a solution of
the boundary conditions. Further description of the derivation of the integral equa-
tion and the implementation of a Galerkin approximation to solve the problem are
provided in Appendix A.

Having established a convergent solution to the radiated potential problem, the
internal surface elevation (the response) and external surface elevation (the radiated
wave) around an OWC may be quantified. In parallel, the hydrodynamic properties
of the OWC subjected to an air pressure oscillation may also be evaluated by using
this solution. It is well known that these properties are related to the hydrodynamic
force that can be approximated by inertia and damping terms (Wehausen, 1971).
This force quantification requires the evaluation of the added-mass and radiation
damping coefficients using the radiated potential at the internal free-surface.

Figure 2.4 presents the hydrodynamic coefficients as functions of frequency and
cylinder radius. The relative draft B/h is held constant, while the relative radius
b/h is varied. Within this figure, the added mass, Am, is normalised by the average
mass of the water column, and the radiation damping coefficient, Bm, is normalised
by the average volume of the water column. The added-mass coefficient, Am/ρAcB,
is shown to be relatively invariant over most of the frequency range, but significantly
dependent on the radius. In contrast, the dimensionless radiation damping coeffi-
cient, Bm/ρAcBω, is clearly a function of both geometry and frequency. Moreover,
the curves of Bm/AcB show the more pronounced coefficient at frequencies below
the theoretical natural frequency (ω2B/g = 1). This arises due to the added mass.

The radiated wave elevation at radial locations from the outer wall of the OWC
may be quantified directly from the radiated potential using the linearised dynamic
free-surface boundary condition. Alternatively, the radiated wave elevation in the far-
field, ηe, may be estimated from the radiation damping coefficient. This approach is
based upon the relationship between the linear wave power and the power loss that
arises from wave radiation. It is shown in Appendix B that these approaches are
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Figure 2.4: (A) Added mass Am and (B) radiation damping coefficient Bm plotted for varying
ω2B/g in the case of B/h = 1

2 for a cylinder radius of b/h : 1
8 [ ], 1

4 [ ] and 1
2 [ ].

in good agreement. Furthermore, the radiation damping coefficients obtained from
WAMIT (WAMIT, 2013) were employed to estimate the radiated wave elevations.
These computed elevations also compare well with the present analytical solution
(again, see Appendix B). The agreement between these solutions confirm that the
analytical radiation solution has been correctly implemented.

2.3.4 A linear analytical model: wave scattering

The scattering potential flow problem can be solved using a similar approach. One
substantial difference between the two solutions is the inclusion of the so-called az-
imuthal mode q. This seeks to incorporate the angular dependence of the wave scat-
tering in the presence of an incident wave. The scattered potential φS, constructed
using general expansion terms, is given by:

φS (r, θ, z) =
∞∑

q=0
εqi

qcosqθ
[ (

Jq (kr) + αS
q,0Hq (kr)

)
ψ0 (z) +

∞∑
n=1

αS
q,nKq (knr) ψn (z)

]
,

for r ≥ b

(2.19)

φS (r, θ, z) =
∞∑

q=0
εqi

qcosqθ
[
βS

q,0Jq (kr) ψ0 (z) +
∞∑

n=1
βS

q,nIq (knr) ψn (z)
]

for r ≤ b.

(2.20)
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Within these solutions, ε0 = 1 and εq = 2, for q ≥ 1. For the outer region, r ≥ b,
αS

q,0 represents the amplitudes of the outgoing progressive wave mode, and the terms
arising within the series expansion over n express the exponentially decaying modes.
Likewise, βS

q,0 denotes the amplitudes of the standing wave modes inside the cylinder
( r ≤ b). Furthermore, the first term of the scattered potential inside the square
bracket for the outer region represents the incident potential φI associated with the
incident wave. The remaining terms of this potential represent the superposition of
the wave field due to the oscillating water column and the disturbed wave field as a
result of the cylinder existence in the fluid domain.

Further details concerning the derivation of the integral equation and the im-
plementation of the Galerkin approximation are provided in Appendix C. To verify
the present implementation of the analytic wave scattering model, comparisons of
the Response Amplitude Operator (RAO) and the phase of this response are shown
in Appendix C. Once again, these comparisons involve the results predicted from
WAMIT simulations, the existing data presented in Evans & Porter (1997) and the
present analytical model. The good agreement shown between these results confirms
the successful implementation of the linear potential flow solution.

The far-field amplitude associated with the scattering potential αS
q,0 may be es-

timated by ignoring the exponentially decaying terms in the scattering potential
function for r > b. Moreover, the Hankel function for large argument can be approx-
imated analytically. Adopting these simplifications, the scattered potential can be
expressed as follows:

φS ∼ RS (θ)
( 2

πkr

)1/2
eikr−iπ/4ψ0 (z) , (2.21)

where RS (θ) is defined by the following expression:

RS (θ) =
∞∑

q=0
εqα

S
q,0 cos qθ, (2.22)

and αS
q,0 =

−γqJ
′
q (kb)

γqH ′
q (kb) + 2iAS

q

, (2.23)

AS
q =

∫
Lg

uS
q (z) ψ0 (z) dz, (2.24)

γq = πkbkhJ ′
q (kb) . (2.25)
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Having estimated the modulus of the far-field scattered wave amplitude, | RS (θ) |,
from Equation (2.22), the results are presented in Figure 2.5. This also provides a
comparison with the corresponding results relating to a bottom-mounted cylinder
predicted using the analytical solution of Mei (1983). In both cases, four incident
wave frequencies are considered; the waves propagating in a wave tank with a one-
metre water depth. Within this figure, the dashed and solid lines correspond to
the modulus RS (θ) around the bottom-mounted cylinder and the OWC with the
B/h value set to 1/2, respectively. In all cases, the modulus in an angular direction
is indicated by the distance between the line and the origin O. This data effec-
tively highlights the wave frequencies at which the wave reflection is larger than
the wave transmission and the excitation condition when the wave radiation is most
pronounced.

In Figure 2.5, the scattered wave fields around the bottom-mounted cylinder are
as expected; the trends being interpreted from the modulus quantity. With the
increasing wave frequencies, the amplitudes of waves scattered upstream increase.
This is a direct result of the D/λ ratio discussed earlier; the largest scattered wave
occuring in the highest frequency (Figure 2.5(d)).

In the case of the OWC, the scattered wave pattern can be substantially affected
by the amplified oscillation of the water column. This is particularly evident when
the incident wave is either of a low frequency or a resonant frequency. At the low wave
frequency of ω2B/g = 0.5, for instance, the transmitted wave elevation behind the
cylinder exceeds the reflected wave elevation in front of the cylinder (Figures 2.5(a)).
In this case, the radiated wave reduces the reflected wave, whereas the former wave
component adds to the transmitted wave. This reduction and amplification of the
superposed waves become more evident as the water column experiences a larger
amplitude of response. Overall, the transmitted waves are larger than the reflected
for low frequencies (Figures 2.5(a) and (b)). Under the resonant condition, when
ω2B/g = 0.875, the theoretical amplification of the water column is extremely large.
As a result, a radial pattern that resembles a wave radiation exists around the OWC
(Figure 2.5(c)). This clearly indicates that the influence of the water column is at
its most significant in this state. Conversely, in the frequency range of ω2B/g ≥ 1,
the scattered wave pattern associated with the OWC resembles that around the
bottom-mounted cylinder. In this case, the water column effect (denoted by the

49



2.3 Linear potential theory for an OWC

(a) ω2B/g = 0.5 (b) ω2B/g = 0.75

(c) ω2B/g = 0.875 (d) ω2B/g = 1.25

Figure 2.5: The modulus of the far-field scattered wave amplitudes | RS (θ) | around a cylindrical
OWC of radius r/h = 1/8 and draft B/h = 1/2 [ ] compared to that around a bottom-mounted
cylinder [ ]; the incident waves with varying frequencies ω2B/g propagating from θ = π.

difference between the lines) is small. This is consistent with its fact that in this
high frequency regime, the incident wave does not excite the water column highly;
the RAO indicated in Figure C.2(a) of Appendix C being small.

2.3.5 Numerical models

In an analytical model, the boundary conditions are defined specifically to solve the
problem under investigation. An analytical solution is thus (usually) only appli-
cable to a simple geometrical shape. When modelling a more complex geometry,
a Boundary Element Method (BEM) may be utilised as an alternative numerical
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model to solve a boundary-value problem. Unlike the analytical model, the BEM
solves a Boundary Integral Equation (BIE) on the boundaries of a computational
domain. The domain is discretised into a number of discrete panels on which a con-
stant or higher-order velocity potential is defined; the former known as a constant
panel method (CPM) and the latter referred to as Higher-order Boundary Element
Method (HOBEM). A set of linear algebraic equations relating the unknown veloc-
ity potentials to some source terms is derived when implementing the BIE and the
boundary conditions on each panel. By solving these equations through an iterative
solver, the velocity potential of each panel on the computational boundaries may be
estimated.

The BEM has been employed to numerically model an OWC in a linear potential
flow using commercial or open-source wave-analysis programmes. These include
WAMIT (Lee & Newman, 1996, Delaure & Lewis, 2003), AQUADYN (Brito-Melo
et al., 1999) and NEMOH (Babarit & Delhommeau, 2015). The governing equation
and boundary conditions are identical to those described in Section 2.3.2; the flow
assumptions remain unchanged. In undertaking such calculations, the above noted
studies highlight the need to have an adequate number of discrete panels to achieve
a convergent result. This finding is unsurprising; the CPM was adopted in their
studies and this method depends significantly on the panel number (Bai & Eatock
Taylor, 2006).

An alternative numerical approach is based upon a finite element method (FEM).
In this method, the computational domain is discretised into a finite number of
elements. The velocity potential on each element is approximated by the sum of
products of the velocity potential and shape function at a finite number of nodes.
The number of computational nodes is thus higher than that in a BEM, yet the
global coefficient matrix is symmetric and sparse (Davidson & Costello, 2020). As
such, the computational storage is less costly and the matrix can be solved with
reduced CPU time. A study by Nader et al. (2012) has implemented an FEM to
model arrays of cylindrical OWCs.
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2.4 OWC modelling in fully nonlinear potential flow

In a linear potential model, the free-surface boundary conditions are approximated
at the mean free-surface. This contrasts with a fully nonlinear potential flow model
in which the dynamic and kinematic free-surface boundary conditions are imposed
on the instantaneous free-surface. Such models are usually developed in a time-
domain simulation. For a two-dimensional modelling approach, Koo & Kim (2010)
used an acceleration potential method to calculate the time-derivative of the velocity
potential. In contrast, Ning et al. (2015) and Wang et al. (2018) employed a HOBEM
in their OWC models.

To control the moving free-surface boundaries, a mixed Eulerian-Lagrangian
(MEL) approach and a high-order Runge-Kutta (typically fourth-order) time-integration
scheme were adopted in all these cited studies. The MEL approach necessitates that
any node on the free-surface boundaries move along with the water particle velocities
on these boundaries; the direction of travel not being limited to a single direction.
The fully nonlinear dynamic and kinematic free-surface boundary conditions on the
internal free-surface in a Lagrangian frame are expressed respectively as follows:

∂Φ
∂t

= −gη + 1
2 |∇Φ|2 − p

ρ
− μ2

∂Φ
∂z

, (2.26)

∂η

∂t
= ∇Φ, (2.27)

where p is again the air pressure above the internal free-surface. To incorporate
dissipative forces, Koo & Kim (2010), Ning et al. (2015) and Wang et al. (2018)
added another term involving a damping coefficient μ2. The value was estimated
by tuning the numerically predicted RAO with existing experimental or numerical
results. Taken together these studies indicate the importance of the viscous effect.
The importance of the additional damping coefficient raises questions concerning the
appropriateness of all but the simplest (linear) potential flow solutions.

52



2.5 OWC modelling in fully nonlinear viscous flow

2.5 OWC modelling in fully nonlinear viscous flow

2.5.1 Physical experiments

There have been a small number of earlier studies concerning the significance of
vortex shedding in OWCs. These studies were undertaken experimentally, typically
involving simple models. For example, Knott & Flower (1979) utilised two submerged
parallel-sided plates. These plates were of finite height, extending from the tank
bottom to a certain height below the mean free-surface. The energy loss, quantified
using the reflected and transmitted wave amplitudes, was estimated to be 5% of the
incident wave energy. The wave steepness in the experiment was small, suggesting
that wave breaking was not significant. As a result, it was concluded that vortex
shedding was the physical cause.

With advances in flow visualisation, Knott & Mackley (1980) were able to reveal
the marked contribution of vortex shedding in dissipating the energy stored in an
oscillating water column. The enclosing wall was a surface-piercing tube of a finite
draft. The tube had a straight-ended and sharp-edged or a bell-shaped mouth with a
finite radius of curvature. The water column, as illustrated in Figures 2.6(a) and (b),
was initially displaced above the still water level (SWL) in an initially stagnant water
tank. The water column was then released and gradually decayed over a sequence of
oscillations until it became completely still. In this so-called “decay test”, the flow
field was visualised by seeding the water with fine polyethylene particles. The water
was illuminated by an optical system appropriate for the photography. The formation
of a vortex ring was observed during both an upward and downward displacement
of the water column inside the straight and sharp-edged tube. The first downward
displacement gave the strongest, most evident, vortex motion.

The effect of the tube mouth shape was investigated and shown to be signifi-
cant. Specifically, it was found that the energy stored in the water column inside
the straight and sharp-edged tube was significantly dissipated. However, a marked
decrease of energy loss occured if the mouth shape was replaced with a streamlined
shape. Following on, the relationship between the shed vortex ring and the de-
caying water column amplitude was evaluated. This was undertaken by comparing
(quantitatively) the energy loss with the kinetic energy bounded in a vortex ring.
The kinetic energy was estimated based upon the size of the vortex ring generated
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(a) (b)

(c)

Figure 2.6: Schematic descriptions of: (A) an intially-displaced water column in a decay test (B)
a close-up view of (A), and (C) a water column subjected to a forced oscillation test. These figures
were redrawn from Knott & Mackley (1980) and Knott & Flower (1980).

from the first decay. These comparisons suggest that the major damping mecha-
nism within the freely decaying water column was associated with the vortex ring
formation. The decay rate was found to be dependent on the amplitude of the water
column. A mathematical formula based upon the drag force in Morison’s equation
was expressed to represent this nonlinear damping force.

In Knott & Flower (1980)’s experiment, the water column inside a cylindrical
tube was forced to heave by a sinusoidally displaced piston. This was located above
the water column. The experimental setup is schematically depicted in Figure 2.6(c).
A piston was displaced by a crank shaft connected to a heavy flywheel and driven
by a small d.c. motor. The air volume in the pump chamber acted as a stiff spring.
The water column thus moved rigidly in accordance with the displacement of the
piston. In effect, the power transferred from the motor provided the water column the
necessary amount of energy to oscillate steadily. In this so-called “forced oscillation
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test”, the displacement of the water column and its frequency of oscillation were
measured by using two stainless-steel needles. These needles, as shown in Figure
2.6(c), were placed inside the tube and projecting into the internal free-surface. To
measure the air pressure in the pump chamber, a pressure transducer was placed
at a certain height above the free-surface. The product of this measured pressure
and the free-surface velocity gave an estimation of the amount of power required to
displace the water column.

Knott & Flower (1980) analysed the minimum amplitude of oscillation at which
the vortex shedding began to play a damping role. This analysis was undertaken by
showing a relation between the power and the free-surface velocity. For a straight-
ended and sharp-edged tube, the flow separation occured immediately, even with
a small amplitude displacement. The identification of a minimum amplitude was
thus not straightforward; the nonlinear damping due to vortex shedding consistently
outweighing the radiation damping. In contrast, the minimum amplitude markedly
increased with the radius of curvature of a streamlined mouth. With the introduction
of a streamlined mouth, the vortex shedding only acts as the primary damping
mechanism at large amplitudes of oscillation. In considering the importance of the
vortex induced damping in general, a broader range of test conditions are required.
In particular, investigations should be undertaken to understand the role of varying
cylinder diameter and oscillation frequency. In undertaking these steps, it is expected
that the dependence of the damping on key parameters may be understood and
ultimately, the dynamic response of an OWC under the various flow conditions may
be fully comprehended.

In seeking to understand the operation of an OWC, related work concerning the
so-called gap flow inside a moonpool is also relevant. This is justified because a
moonpool, also known as a vertical well in the context of a drilling ship, is defined
by a similar set of forces applied to the control volume surrounding the gap fluid
(effectively water column). Aalbers (1984) experimentally studied the response of
a cylindrical moonpool. Within this study, a variety of test arrangements were
considered. This include moonpools that were freely decaying, forced to oscillate in
still water, and excited by incident waves. In the first case, the experimental setup
was similar to the physical experiments in Knott & Mackley (1980).

Aalbers (1984) estimated the nonlinear damping coefficients from the decay tests,
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2.5 OWC modelling in fully nonlinear viscous flow

while the other hydrodynamic coefficients (added-mass and radiation damping coef-
ficients) were simply predicted from a linear potential solution. Unfortunately, the
applicability of these coefficients to simulate the responses of the moonpool under-
going the forced oscillations are invalid, particularly where high frequencies were
addressed. Indeed, the over-estimation of the simulated response may indicate a
higher level of damping associated with the vortex shedding in these cases. Interest-
ingly, the deviation may have also been due (in part) to inconsistencies in the water
column amplitudes and oscillation frequencies prescribed for the two test cases: the
forced oscillation and decay tests. In contrast, the wave-excitation tests are more
encouraging. However, Aalbers (1984) provides little by way of justification for using
a decay test to estimate the damping and a potential solution to predict the added
mass when the goal is to predict a wave-induced response.

(a) (b)

Figure 2.7: Schematic figures of (A) a symmetrical detached and (B) an asymmetrical bottom-
standing OWC that undergoes wave excitation in the experimental study by Sarmento (1992)

The significance of vortex shedding on the response of a water column to incident
waves has also been reported in the experimental studies by Sykes et al. (2008) and
Wang & Falzarano (2017). In both cases, their models involved hollow cylindrical
structures. The dynamic magnification factors of the responses (RAOs) were sig-
nificantly under-estimated by the linear potential solutions at or near the resonant
condition. An experimental model of an OWC is, however, more representative when
it incorporates a power-take-off (PTO) system. This is typically undertaken by mod-
elling the relationship between the pressure drop and the discharge of the air flow
through the turbine; the former being the difference between the air pressure in the
chamber and the atmospheric pressure. The characteristics of the modelled turbine

56



2.5 OWC modelling in fully nonlinear viscous flow

is set according to the intended nature of the PTO. A porous membrane or an orifice
may be utilised to model a linear or nonlinear PTO, respectively. This was imple-
mented in Sarmento (1992) to investigate the energy loss associated with the water
column in a regular wave test. His experiment involved two slightly-immersed OWC
types: (i) a symmetrical and detached double-plate structure, and (ii) an asymmet-
rical double-plate with its rear plate extended to the tank bottom. These models
are depicted in Figures 2.7(a) and (b), respectively. At first, the amount of energy
absorption was estimated based upon the measured air pressure p and air discharge
q; the air assumed to be incompressible. As such, the air velocity was assumed equal
to the internal free-surface velocity. In this case, the power ratio, ε, available for
extraction was determined by:

ε = 1
Pi

1
wT

∫ T

0
p (t) q (t) dt, (2.28)

where T is the incident wave period, w the tank width and Pi the incident wave
power; the last variable estimated from Equation (B.4). This power ratio ε, also
referred to as the hydrodynamic efficiency, is clearly dependent on the air discharge
q, air pressure p, and the phase difference of these two variables.

Finally, the energy loss coefficient, Cl, was deduced from the ratios of the reflected
and transmitted wave heights, Hr and Ht, relative to the incident wave height, Hi.
Adopting these definitions, Cl is defined by

Cl = 1 −
[
(Cr)2 + (Ct)2

]
− ε, (2.29)

where Cr = Hr

Hi

and Ct = Ht

Hi

, (2.30)

with Cr and Ct representing the reflection and transmission coefficients, respectively.
At a wave steepness of Aok ≤ 0.05, the energy loss coefficients Cl were less than 20%
and 10% in a symmetrical and asymmetrical OWC device, respectively. These were
based upon comparisons with the theoretical result (Sarmento & Falcao, 1985).

In response to these earlier studies, Morris-Thomas MT & Thiagarajan (2006)
studied the hydrodynamic efficiencies of an asymmetrical and bottom-standing OWC
with various front plate shapes, wall-thickness and draft conditions. The experimen-
tal model was similar to the OWC type shown in Figure 2.7(b), except that the
front-plate draft B was relatively deep lying in the range of 0.16 ≤ B/h ≤ 0.25.

57



2.5 OWC modelling in fully nonlinear viscous flow

Furthermore, a relatively wide range of wave steepness at 0.01 ≤ Aok ≤ 0.22 was
considered. Within this model, an orifice was implemented at the top enclosing wall
of the OWC to model a nonlinear PTO.

Some notable findings given by Morris-Thomas MT & Thiagarajan (2006) are
discussed as follows:

(i) The frequency-dependent hydrodynamic efficiencies were smaller than the ana-
lytically predicted values (Evans & Porter, 1995); the maximum percentage of
reduction being 30%.

(ii) The wall thickness only moderately affects the hydrodynamic efficiencies in the
high frequency range. In contrast, the draft has considerably more influence
over a similar frequency range.

(iii) The measured natural frequency is reduced relative to the analytically predicted
value.

(iv) The end shape (a sharp or semicircular end) of the front plate had an in-
significant effect on the hydrodynamic efficiencies across a broad range of wave
frequencies.

The first suggests that the incident wave steepness and plate draft do indeed af-
fect the amount of energy loss. This is supported by the second result and a direct
comparison with the earlier findings of Sarmento (1992); the latter estimating the
efficiency reduction to be of the order of 10%. The third result has implications
for the change in the excitation condition within the water column. As such, the
response of the water column may be significantly modified due to vortex sheddding,
and implementations of linear potential theory and linear superposition theory may
thus be inappropriate. Unfortunately, these experimental studies did not study these
aspects, but focused on the overall effect of vortex shedding on the efficiency. Fur-
thermore, the fourth result may be associated with the state when flow separation
becomes less sensitive to a local cross-sectional shape, provided that a certain KC

number is exceeded. A similar finding has been reported by Bearman et al. (1985)
for oscillatory flows past sharp-edged plates with various cross-sectional shapes; the
measured drag coefficients for all the shapes varying similarly with the KC number.
However, direct evidence of the damping coefficients and energy loss associated with
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the shapes considered in Morris-Thomas MT & Thiagarajan (2006), is not provided.
Consequently, futher interpretation is not possible.

2.5.2 Numerical calculations

Although a physical model presents the actual physics, subject to any scaling in-
accuracies, it can be challenging to record multiple different physical quantities in
an experimental study. For example, simultaneously recording the response of the
water column, pressure and the velocity fields in an experimental model can be
overwhelming. In contrast, a high-fidelity numerical solver can capture all the im-
portant physics from a single numerical viscous flow modelling, particularly the water
particle kinematics. Specifically, a sequence of measuring activities, multiple mea-
surement devices and complex image post-processing are not necessary. At present,
the majority of numerical models of OWCs in a viscous flow has been limited to two-
dimensional problems. Notable examples include the pioneering work by Şentürk &
Özdamar (2011) and Zhang et al. (2012). While some fully three-dimensional numer-
ical studies of detached or bottom-standing OWCs with rectangular cross-sections
have also been undertaken, the interpretation (and generality) of the results arising
is limited.

The numerical viscous flow modelling of OWCs have been developed using both
commercial and open-source viscous solvers. For example, a two-phase level set
method was employed in an in-house solver (Zhang et al., 2012) and in an open-source
hydrodynamics programme, REEF3D (Kamath et al., 2015), to model a bottom-
standing OWC. Furthermore, a volume fluid of method (VOF) was implemented in a
commercial programme Fluent to model a geometrically similar OWC in Luo et al.
(2014) and a detached OWC in Şentürk & Özdamar (2011). The interface-capturing
method (appropriate to VOF) supported in an open-source IHFoam viscous solver
was also utilised to capture the internal surface elevation of a detached and box-
shaped OWC model in Iturrioz et al. (2014, 2015). Similarly, the VOF method
developed in the Star–CCM+ viscous solver was used to investigate the energy
losses in a bottom-standing and detached OWC (Elhanafi et al., 2016, 2017a).

In most cases, validation of the models were undertaken by comparing the hydro-
dynamic efficiencies, the air pressures and velocities as well as the internal surface
elevations. Furthermore, an interpretation of the hydrodynamic efficiencies esti-
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mated from these quantities is based upon the description of the flow fields. For
example, Kamath et al. (2015) observed the vortex shedding at the bottom tip of
the front plate of a bottom-standing OWC and showed that the change in the phase
shift between the air pressure and air velocity was related to the vortices. Iturrioz
et al. (2015) also showed the vorticity fields near the bottom edges of a detached
OWC and further argued that the energy loss was associated with these vorticity
fields. Following on, the influence of incident wave length and wave height on the
vortex generation was interpretated from qualitative descriptions of the flow fields
in Elhanafi et al. (2017a,b).

Although these numerical models of OWCs have advanced our understanding,
complementing the earlier experimental models, they are not directly relevant to the
present study. The explanation for this lies in two parts:

(i) The wave scattering (diffraction) around a box, or the wave reflection and
transmission by a rectangular section, can be very different to the problem
involving a cylindrical body. This was first discussed in Section 2.5.1.

(ii) The vortex shedding at the mouth of an OWC will markedly differ. Kamath
et al. (2015) found that a single vortex was generated at the front plate of
a bottom-standing OWC during the displacement of the water column, while
Iturrioz et al. (2015) and Elhanafi et al. (2017b) observed that two vortices
were formed in the case of a detached OWC.

The points noted above may indicate the following considerations:

(i) The interaction between wave and an OWC affects the hydrodynamic efficiency.
For instance, the theoretical optimal hydrodynamic efficiencies of a symmet-
rical and asymmetrical OWC in a two-dimensional problem are 0.5 and 1.0,
respectively (Sarmento & Falcao, 1985, Sarmento, 1992), and

(ii) The damping coefficients arising from vortex may not be identical due to the
incomparable strength and behaviour of vortices.

More fundamentally, the nonlinearities arising in the description of an OWC have
received very little attention. This is surprising given the fact that nonlinearities are
clearly evident in the above noted studies. For example, high-frequency content and
asymmetrical records are observed in the time-varying air velocity and air pressure
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in a pneumatic chamber (Zhang et al., 2012, Iturrioz et al., 2015, Kamath et al.,
2015, Elhanafi et al., 2017a). Moreover, the surface elevations inside an OWC also
exhibit nonlinearities (Zhang et al., 2012, Kamath et al., 2015). These nonlinearities
are important for two reasons:

(i) The air pressure and motion (response) of a water column, as well as their
relative phase shift, determine the hydrodynamic efficiency, and

(ii) A good understanding of these nonlinearities is required to develop an appro-
priate time-domain modelling of an OWC.

Given the points noted above, it is necessary to understand the physical origins of the
nonlinear characteristics. This includes the high-frequency content, asymmetrical
shape and nonlinear dependence on the incident wave. This inevitably involves
an investigation of how force affects the motions based upon forcing mechanisms
appropriate to an OWC. However, it remains a real challenge to identify whether a
nonlinear characteristic arises from the free-surface nonlinearity or vortex shedding.
This is, in part, because the viscous flow solvers implemented thus far couple all
these effects in a single model. To address this issue, an alternative viscous flow
model needs to be proposed.

The present study seeks to understand the nonlinear forcing and motions of a
detached and cylindrical OWC. Given the fundamental nature of this work, the
incorporation of a PTO system into the numerical modelling of an OWC may obscure
the relation between vortices and nonlinear forces and motions; an increase in the
damping arising from a PTO reducing the response yet magnifying the air pressure.
As a result, it was decided to exclude a PTO damping in the viscous flow model.
While this undoubtedly detracts from the practical application of the work, it allows
the work to focus on the other sources of nonlinearity. Nevertheless, it is important
to note that the range of geometrical dimensions in the present study is based upon
typical cylindrical OWCs in intermediate and deep water conditions (Knott & Flower,
1980, Knott & Mackley, 1980, Gomes et al., 2012).

2.6 Modelling the rigid-body dynamics of an OWC

This section explains the present implementation of the time-domain modelling of an
OWC. Two excitation mechanisms are adopted to drive the oscillation of the water
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column. The first, indicated in Figure 2.8(a)(i), is driven by a regular wave excitation
and the second, indicated in Figure 2.8(a)(ii), is driven by a forced excitation. In
both cases, the water column is inside a cylindrical wall. For the wave excitation
problem, the cylinder has a top end exposed to the local atmosphere. The pressure
induced by an incident wave of amplitude Ao and period T determines the pressure
Pb, that acts perpendicularly on the bottom cross-sectional area Ac. This pressure
is shown to have an asymmetrical distribution in Figure 2.8(a)(i).

For the forced excitation model, the internal surface elevation is fully closed by a
solid wall placed above the free surface. The wall movement is prescribed to mimic
a moving piston as described in Knott & Flower (1980). As a result, a non-zero
air pressure p with a uniform distribution acts on the free surface to respond to
the prescribed wall movement. This, in turn, produces an axisymmetric pressure
distribution Pb at the bottom inlet as shown in Figure 2.8(a)(ii).

In response to the applied forces, the water column oscillates to balance the
net force. A schematic showing the dynamic system of the water column and its
cartesian coordinate system of Xi = (x1, x2, x3) is illustrated in Figure 2.8(b). The
water column has a control volume of Ω. On Figure 2.8(b), this volume is indicated
by the grey rectangle and bounded by a top surface, St, and a bottom surface, Sb.
Taking the upward direction as positive, the unit outward normal vector on St is +1,
and on Sb is -1.

(a) (b)

Figure 2.8: Schematic figures showing (A) pressure distributions that act on the top and bottom
areas of the enclosed water column undergoing (i) a wave excitation and (ii) a forced excitation and
(B) the dynamic system of the water column and its coordinate system.
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A mathematical model to predict the response of the water column subject to
an excitation force is presented as follows. In all excitation problems, the water col-
umn is treated as a rigid body. As such, a piston mode is considered to be the only
relevant dynamic model. In this case, the internal free-surface and the water parti-
cles in the water column are therefore assumed to move in unison. The convective
acceleration term can thus be canceled out. This leaves only the unsteady term of
the time derivative. In the cartesian coordinate system, momentum conservation is
represented by:

∂

∂t

∫
Ω

ρu3 dΩ = −
∫

Sb

Pbn3dS + pAc − F3, (2.31)

where F3 is the body force, Pb and p are respectively the pressures on the bottom
and above the internal free-surface. The first term of the right hand side of Equation
(2.31) is approximated using the Bernoulli equation and given as:

∫
Sb

Pbn3dS =
∫

Sb

ρ
∂Φ
∂t

n3dS +
∫

Sb

1
2ρu2

3n3dS −
∫

Sb

ρgBn3dS, (2.32)

where B is the draft. Combining Equations (2.31) and (2.32) gives

∂

∂t

∫
Ω

ρu3dΩ +
∫

Sb

ρ
∂Φ
∂t

n3dS +
∫

Sb

1
2ρu2

3n3dS =
∫

Sb

ρgBn3dS + pAc − ρgΩ. (2.33)

In the absence of an incident wave, the potential flow in a forced oscillation is only
associated with a radiated velocity potential. Therefore, the time-derivative of this
velocity potential in Equation (2.33) may be expressed as a summation of an added-
mass force and wave-radiation damping force as follows:

∫
Sb

ρ
∂Φ
∂t

n3dS = Amẍ3 + b1Acẋ3. (2.34)

This equation applies to the forced oscillation case illustrated in Figure 2.8(a)(ii).
Am is again the added mass and b1 is the wave-radiation damping coefficient per unit
cross-sectional area of the water column Ac; the coefficient being related to the former
notation of radiation damping Bm in Section 2.3.3 by Bm = b1Ac. Substituting for
the instantaneous volume of water in the column Ω (t) = Ac(B + x3(t)), the added-
mass and wave-radiation damping forces of Equation (2.34) into Equation (2.33)
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produces a mathematical form of the dynamic system of water column:

{ρAc(B + x3) + Am}ẍ3 + b1Acẋ3 + ρgAcx3 + 1
2ρAcẋ

2
3 = pAc. (2.35)

If an equivalent power loss Pl due to a nonlinear damping force is expressed as:

Pl = 1
2b2ρAcẋ

2
3|ẋ3|, (2.36)

then b2 denotes a nonlinear damping coefficient that may arise either from vortex
shedding or surface friction or both. The absolute notation adopted in Equation
(2.36) is to correctly identify the dependence of this damping on the velocity direc-
tion.

Dividing Equation (2.36) by the velocity ẋ3 generates the formula of a nonlinear
damping force. To take this damping into account, the nonlinear damping force is
added to the mathematical form of the dynamic system of water column given in
Equation (2.35). This produces a complete mathematical formulation of the dynamic
system of an OWC undergoing a forced oscillation.

[ρAc(B + x3) + Am] ẍ3(t) + b1Acẋ3(t) + 1
2b2ρAcẋ3(t)|ẋ3(t)|

+ ρgAcx3(t) + 1
2ρAcẋ

2
3 = Ft (t) ,

(2.37)

where 1
2ρAcẋ

2
3 is the second-order excitation force, and Ft is the excitation force given

by pAc. It should be noted herein that a forced excitation may be undertaken either
by prescribing the water column displacement, which is similar to the moving piston
wall, or by defining the air pressure oscillation. In the following chapters, the former
will be referred to as a forced water column test and the latter as a forced air pressure
test. For both cases, the time-domain OWC modelling expressed in Equation (2.37)
may be applied.

The mathematical formulation noted above will be used in the subsequent chap-
ters for two research objectives. First, the physical significance of the nonlinearity
sources that contribute to the forcing and motions in a forced oscillation model will
be investigated in Chapter 5. Second, the nonlinear dependence of the added mass
Am and the nonlinear damping coefficient b2 on the key parameters will be evaluated
in Chapter 6. In both analyses, the mathematical formulation expressed in Equa-
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tion (2.37) will be adopted. Prior to the second analysis, it is necessary to evaluate
the validity of the linear radiation theory and the justification for using the linear
potential solution to estimate the radiation damping coefficient b1. This requires an
investigation of the radiated wave field around the OWC, which will be explained in
Chapter 4.

In the presence of an incident wave, the time-derivative of velocity potential
in Equation (2.33) is associated with an incident ΦI , diffracted ΦD and radiated
potential ΦR. The derivative term of the superposed potential Φ may be written as:

∫
Sb

ρ
∂Φ
∂t

n3dS =
∫

Sb

ρ

(
∂ΦI

∂t
+ ∂ΦD

∂t
+ ∂ΦR

∂t

)
n3dS, (2.38)

=
∫

Sb

ρ

(
∂ΦI

∂t
+ ∂ΦD

∂t

)
n3dS + Amẍ3 + b1Acẋ3. (2.39)

Substituting Equation (2.39) into Equations (2.32) and (2.31) and incorporating the
power loss due to a nonlinear damping force (as described previously), produces a
mathematical formulation of the dynamic system of an OWC subjected to a wave
excitation.

[ρAc(B + x3) + Am] ẍ3(t) + b1Acẋ3(t) + 1
2b2ρAcẋ3(t)|ẋ3(t)|

+ ρgAcx3(t) + 1
2ρAcẋ

2
3 = Fext (t) ,

(2.40)

where p is known to be zero in this wave excitation case, as indicated in Figure
2.8(a)(ii). The diffracted potential ΦD is essentially the difference between the scat-
tered potential and the incident and radiated potential. For a slender body, the
diffracted potential can be assumed to be negligible as explained previously.

Furthermore, the wave-excitation force, Fext = − ∫
Sb

ρ
(

∂ΦI

∂t
+ ∂ΦD

∂t

)
n3dS, is the

summation of the contributions from the incident and diffracted waves. To esti-
mate the incident wave-excitation force, the incident potential ΦI may be evaluated
analytically using the Stokes 5th-order theory (Fenton, 1985). The nonlinear contri-
butions to this excitation force Fext may also arise from the nonlinear wave-structure
interaction and vortex shedding. Within the present study, these two sources and its
significance will be investigated in Chapter 5. Finally, the applicability of the added
mass and the nonlinear damping coefficient evaluated from a forced oscillation test
to the problem of a wave excitation, will be evaluated in Chapter 6. This will be
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undertaken by implementing the mathematical formulation given in Equation (2.40).

2.7 Concluding remarks

Having identified the critical issues concerning the fluid loading and the dynamic
responses of the different types of OWCs, the aspects that require further evaluation
in each subsequent chapter are summarised as follows:

(1) Chapter 3: The capability of the viscous flow solver that will be implemented to
model cylindrical OWCs and relevant problems of fluid dynamics.

(2) Chapter 4:

(i) The characterisation of the radiated wave fields around the OWCs,

(ii) The description of the water particle kinematics defining the rotational flow
fields that arise due to forced excitations, and

(iii) The validity of linear radiation theory and linear potential solution in a
viscous flow.

(3) Chapter 5:

(i) The physical origins of the nonlinear characteristics in the motions and
forces applied to the OWCs under forced excitations and regular wave ex-
citations, and

(ii) The significance of these nonlinearity sources in the motions and forces.

(4) Chapter 6:

(i) The added-mass and nonlinear damping coefficients for the OWCs,

(ii) The effect of vortex damping on the responses of the water columns, and

(iii) The applicability of the hydrodynamic coefficients computed from forced
oscillation tests to the prediction of the responses due to wave excitations.
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3
Model description and validation

3.1 Chapter overview

Evaluating the accuracy of a numerical model is a crucial task; the quality of any
physical interpretations depending critically on it. With this in mind, validations
against all relevant and existing experimental results have to be carried out. Within
the present study, several numerical models of OWCs using a viscous flow solver were
built to investigate the fluid dynamics below the internal and external free-surfaces.
This chapter aims to evaluate the following topics:

1. The capability of the implemented viscous flow solver to model the fluid dy-
namics under investigation, identifying possible causes of discrepancies,

2. The key numerical aspects required to achieve good accuracy, and

3. An initial physical interpretation of the simulation results.

The present study utilises Open Foam (Version 2.3.0) as the viscous flow solver.
This is an open-source software for CFD written in the C++ programming language.
Overall, the validation studies in this chapter can be divided into four parts. The
first two validation studies described in Sections 3.2 and 3.3, address numerical simu-
lations of OWCs undergoing freely damped (decay) oscillations and forced sinusoidal
excitations, respectively. These numerical models are set in a three-dimensional sys-
tem for which a grid independence study is presented. In Section 3.4.1, calculation
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are presented to evaluate the capabilities of Open Foam to model wave generation
and to investigate the accuracy of the numerical schemes implemented within the
models. In undertaking this work, comparisons against analytical wave theories are
presented. Having identified the preferred numerical schemes, an energy balance
analysis is undertaken to assess the reliability of the numerical models in capturing
the physics underpinning a fluid-structure interaction problem. In this regard, val-
idations of surface waves interacting with a single plate and bi-plate structure in a
two-dimensional wave tank are given in Section 3.4.2. Finally, the capability of the
viscous solver to estimate important physical quantities in a three-dimensional OWC
is addressed in Section 3.5.

3.2 Numerical modelling of freely damped oscilla-

tions

3.2.1 Geometry and boundary conditions

As stated in Chapter 1, a PTO model is not incorporated in the OWC system
evaluated in the present study. Therefore, a surface-piercing hollow structure is nu-
merically modelled to represent an OWC. A schematic view of the numerical domain
and the setup of the OWC is provided in Figure 3.1. This includes: (A) an isometric
view of the entire domain, (B) a plan view of the resonant fluid chamber and (C)
a cross-sectional view of the domain. The cylindrical fluid chamber is defined by a
fixed draft B, an internal radius b (or diameter D = 2b), and a wall thickness tw.
This structure is placed within a cylindrical numerical test tank of water depth h

and radius Rf . The polar coordinate system in this domain is defined by (r, θ, z); the
origin of (r, θ) is placed on the centre line of the OWC, and z is defined as positive
in the upward direction with z = 0 located at the still water level (SWL). The initial
height of the displaced water column in a Decay Test (DT) is denoted by ηi

o, also
measured from the SWL.

Given the problem definition, the numerical domain shown in Figure 3.1 is dis-
cretised and solved using the open-source finite volume solver Open Foam. Details
of Open Foam’s numerical implementation are widely available; a clear example
provided in Greenshields (2015). To complement this, a brief summary is given in
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(a) Isometric view (b) Plan view of OWC wall

(c) Cross-sectional view of computational domain

Figure 3.1: Schematic of numerical domain

Appendix D. In the present case, a computational domain that includes both the
water and the air domain is required. For such a multiphase problem, Open Foam

provides a Volume of Fluid interface capturing method. Within this method, the
kinematic and dynamic free-surface boundary conditions are not solved at the in-
stantaneous free-surface. Instead, the domain boundary of the free atmosphere is
located at a predetermined height (z = zmax) above the SWL. As a result, the atmo-
sphere boundary is stationary. The surface-piercing hollow cylinder is also stationary
and so is the wall boundary. On this basis, all the boundaries enclosing the computa-
tional domain are stationary. An Eulerian-based mesh can therefore be used for the
purpose of the numerical computation. The multiphase problem solver interFoam,
supported in Open Foam, is implemented to model the free-surface displacement
in a DT.

A schematic of the boundary conditions imposed on the numerical domain is
shown in Figure 3.1(c). The corresponding mathematical conditions that stipulate
the physical behaviour of the fluid on these boundaries are given in Table 3.1, and
are expressed in terms of the pressure p, velocity u, volume fraction α, and outward
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normal n. The volume fraction α describes whether the numerical cell is entirely
filled with water (α = 1), air (α = 0), or represents the location of the interface
if 0 < α < 1. By solving the governing Navier-Stokes equations subject to the
boundary conditions in an iterative manner, the field variables p, u and α can be
obtained.

Within the present numerical setup, two types of boundaries exist. The first
describes a ‘water-solid’ interface and applies on the impermeable bed ΓB, the OWC’s
wall surface Γw and the reflective outlet boundary ΓO. On these solid boundaries,
the conditions given in Table 3.1 are imposed as follows:

(a) zero gradient in the volume fraction at the wall,

(b) no normal flow into the wall,

(c) zero pressure gradient at the wall.

In addition, a no-slip condition is also imposed at each of these boundaries.
The second type of boundary describes an ‘air-atmosphere’ type boundary. This

applies to the atmosphere boundary ΓF S and the chamber boundary ΓC ; the latter
boundary being labelled with (DT) for a Decay Test in Table 3.1. The volume
fraction at these boundaries is imposed as follows. During an inflow (u · n < 0),
the volume fraction at this boundary is set to zero. During an outflow (u · n > 0),
the volume fraction is set to zero gradient. This type of condition ensures that any
‘splash’ of fluid occurring during an outflow is accounted for. This is in line with
standard modelling definitions. In the context of the present work, no ‘splash’ or
disintegration of any free surface is observed, and the distinction between the inflow
and the outflow cycles is believed to be of little practical importance. Furthermore,
the velocity gradient at the ‘air-atmosphere’ boundaries is set to zero along with zero
pressure.

Given the symmetry of the problem under consideration, the flow inside the water
column and at the water column mouth may be assumed radially symmetric. As a
result, only one quarter of the numerical domain is solved to maximise computational
efficiency; the cut computational boundaries defined by symmetry slip conditions.
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3.2 Numerical modelling of freely damped oscillations

Table 3.1: Boundary conditions implemented in the numerical models of a freely damped or Decay
Test (DT), Forced Water Column Test (FWCT) and a Forced Air Pressure Test (FAPT).

Boundary type Imposed on (a) Volume fraction (b) Velocity (c) Pressure

Water-solid Γw, ΓB , ΓO ∇α · n = 0 u · n = 0 ∇p · n = 0

Air-Atmosphere ΓF S α = 0, ∇u · n = 0 p = 0

if u · n < 0

Chamber ΓC and

DT : ∇α · n = 0 , ∇u · n = 0 p = 0

FWCT, prescribed ηi
o : if u · n > 0 (u − uc) · n = 0 ∇p · n = 0

FAPT, prescribed Po : ∇u · n = 0 p = −Posinωf t

3.2.2 Mouth shape configurations

For the purpose of the DT, the water column was initially displaced to a prescribed
elevation, ηi

o, above the SWL. At the initial time, this displaced water column expe-
riences an acceleration due to gravity, with no other external forcing being applied.
A very similar test was undertaken experimentally by Knott & Mackley (1980). To
enable a direct comparison to the latter experimental data, the geometry of the water
column was defined to be identical to their experimental setup; all relevant dimen-
sions being given in Table 3.2. Furthermore, the initial height of the displaced water
column was also chosen to match Knott & Mackley (1980). This leads to three
distinct cases for the free-decay comparisons: (I) ηi

o/D = 0.27, (II) ηi
o/D = 0.54

and (III) ηi
o/D = 0.73. The overall extent of the cylindrical test tank was chosen

to ensure that the DT can be observed without contamination from spurious wave
reflections at the outlet boundaries. Specifically, a domain radius of Rf/λn = 4 was
found sufficiently large for this purpose, where λn is the wavelength corresponding
to the theoretical natural period of the water column, Tn = 2π

√
B/g. This wave-

length is computed as λn = 2π/k, where k is the solution to the dispersion equation
ω2

n = gk tanh kh, with ωn = 2π/Tn and g the acceleration due to gravity.
Three different mouth shape configurations were investigated. The first is a

straight and sharp-edged (SE) mouth as described by Knott & Mackley (1980). In
contrast, the second configuration has a curved mouth which radiates out similarly
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3.2 Numerical modelling of freely damped oscillations

Table 3.2: Geometrical parameters of the computational domain in various tests.

Parameter name Dimensionless parameter Parameter value

Inner diameter of wall D/B 0.64
Wall thickness tw/D 0.043

Water column draft B/h 0.11
Radius of NWT Rf /λn 4

to a flared glass. This specific configuration will be hereafter referred to as a bell-
shaped (BS) mouth and it has a lip radius of rl = 0.5D. The third configuration is
a semicircular-ended (SC) mouth and will be investigated in Chapters 5 and 6. A
schematic showing cross-sectional views of these mouth shapes and their dimensions
of wall thickness is given in Figure 3.2.

(a) (b) (c)

Figure 3.2: Cross-sectional view of an OWC with: (A) a straight and sharp-edged (SE), (B) a
bell-shaped (BS) and (C) a straight and semicircular-ended (SC) mouth.

3.2.3 Internal water surface

Figure 3.3 concerns the heave decay characteristics for Case III with an initial dis-
placement height of ηi

o/D = 0.73. All of the data relates to the OWC with a SE
mouth outlined in Figure 3.2(a). In this figure, the instantaneous internal elevations
and the instantaneous time are normalised by the initial displacement height ηi

o and
the theoretical natural period Tn, respectively. Figure 3.3(a) provides time-histories
of the normalised internal surface elevations, ηi/ηi

o, predicted by six simulations
based upon varying grid arrangements. All of the calculations were undertaken us-
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3.2 Numerical modelling of freely damped oscillations

ing the LES dynamic Smagorinsky turbulence model (Germano et al., 1991), with
full details of the adopted grids given in Table 3.3. A total of 11 grids were inves-
tigated. These include variation in the vertical grid size Δz near the free surface,
and the radial grid size Δr of water column. In all cases, the grid resolution near
the wall is effectively determined by the number of radial cells. Having employed
the exponential function of grid-space grading within the blockMesh option of Open

Foam, the normal distance of the first cell to the wall can be determined. Since
the mesh is static throughout the simulation, this normal distance directly dictates
the wall spacing unit, a variable that indicates the resolution of the boundary layer.
With the flow modelling under investigation involving an unsteady-periodic flow,
the boundary layer thickness will change periodically. Table 3.3 gives the maximum
wall-spacing unit, y+, calculated at the time when the thickness of boundary layer
is at minimum. The grids outlined in Table 3.3 form the basis of the present grid
independence study.

Table 3.3: Grid arrangements for a freely decaying water column inside the OWC with a SE
mouth

Grid ID Grid Resolutions Max Wall Cell Aspect-ratio Number of cells
b/Δr ηi

o/Δz Spacing Unit y+ AR (million)

A1 14 5 21 5.96 0.1
A2 14 1.99 0.4
B1 7 4.86 0.2
B2 16 10 20 3.40 0.3
B3 14 2.43 0.5
C1 10 3.81 0.4
C2 18 14 18 2.72 0.6
C3 20 2.01 0.7
D1 10 5.95 1.0
D2 28 14 16 4.25 1.4
D3 30 1.99 2.3

Table 3.3 indicates that for each radial grid size, Δr, the grid resolutions near
the free surface were varied vertically. The vertical grid size in the volume above
the SWL was uniform; the associated cell aspect ratio, AR = Δz/Δr, outlined in
the table. In contrast, the vertical grid resolution located closer to the sharp edge
was increased such that the AR at this edge was approximately equal to one. This
generated the highest resolution at this location, where high gradients of velocity
and pressure fields were expected to exist. Unlike the variation in Δz, the grid in
the azimuthal direction at a radial location had comparable size. This was directly
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3.2 Numerical modelling of freely damped oscillations

dictated by the Δr of the structured mesh implemented in the present computational
domain.

The purpose of the present calculations was to evaluate the sensitivity of the
predicted internal water surface elevation, ηi, on the grid resolution. This analy-
sis reveals that the vertical grid size, Δz, is the most influential factor. Compar-
isons of time-histories of the internal water surface elevation obtained from Grid
B2, C1, and D1, where Δz = ηi

o/10, give identical results; the root-mean-square
variation being less than 0.5%. Likewise, in the case where Δz = ηi

o/14, Grid
B3, C2 and D2 also produce near-identical results; the root-mean-square variation
being less than 0.6%. These results confirm that grid resolution in the radial direc-
tion, Δr, is less crucial. This in turn suggests that the boundary layer at y+ ≤ 20
provides an insignificant change in predicting the internal water surface.

The selected cases shown in Figure 3.3(a) also confirm that the simulated internal
water surface elevations converge to the experimental data of Knott & Mackley (1980)
as the mesh is refined. Grid A1, having the coarsest mesh (Δz = ηi

o/5), results in the
largest discrepancies. Although the natural period of the oscillating water column is
well predicted, its corresponding peak values deviate from the experimental maxima
by 15%; the percentage errors becoming larger for smaller peak amplitudes. For
grids with Δz = ηi

o/10, the differences with the experimental data appear to be very
small. Moreover, no significant improvements are related for small values of Δz.
These results suggest that with Δz ≤ ηi

o/10 adopted as a minimum grid resolution
in a freely decaying OWC model, the time-history of the internal surface elevation
is expected to be accurate.

The results shown in Figure 3.3(a) were acquired using the LES dynamic Smagorin-
sky model. This model necessitates a double filtering when modelling the subgrid-
scale stress. As a result, the computational requirement is more expensive than the
classical Smagorinsky model (Smagorinsky, 1963). However, a comparison between
calculations based upon these alternative turbulence models given in Figure 3.3(b),
shows that the classical Smagorinsky model is less accurate in predicting both the
peak amplitudes and the natural period of oscillation. This unphysical behaviour is
due to the constraint of the eddy viscosity model, in which the Smagorinsky constant
is held constant throughout the flow simulation. As a result, the subgrid-scale stress
is unlikely to diminish at the wall boundary; at this boundary, only the viscous
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Figure 3.3: (A) A grid independence study of the normalised internal water surface elevations,
ηi/ηi

o, that freely decay inside an OWC with a SE mouth is undertaken for Case III using the LES
dynamic Smagorinsky with various grids: Grid A1 [ ], Grid B2 [ ], Grid C2 [ ], and
Grid D3 [ ], and (B) Comparisons of internal water surface elevations from different turbulence
modellings: LES classical Smagorinsky [ ] and RANS k-ω SST [ ]. All simulated elevations
are compared to the experimental data [◦] by Knott & Mackley (1980).

shear-stress applies, and any additional viscosity may cause excessive dissipation.
This argument is supported by the two features of the predictions shown in Figure
3.3(b): the under-estimation of the peak amplitude and the longer natural period of
oscillation estimated from the classical Smagorinsky model. This result has wider im-
plications, suggesting limitations in applying the classical Smagorinsky model when
seeking to describe a wall-bounded flow. The model is well known for its inability
to smoothly transition the eddy-viscosity values near the solid wall. This has been
observed, when using this particular flow model, in the context of channel flows (Pi-
omelli et al., 1988) and axisymmetric bluff body flows (Lee & Cant, 2017). Given
the present simulations, it is proven that this latter model also has a tendency to
over-estimate the physical dissipation near the wall in the unsteady-periodic flow
bounded by a cylindrical hollow structure. Conversely, the RANS k-ω SST model
gives very good agreement with the experimental data relating to this flow problem.
This suggests that both the LES dynamic Smagorinsky and the RANS k-ω SST
models are sufficiently accurate to predict the internal surface elevation within an
OWC with a SE mouth modelled under the present grid arrangement. A further
description of all the turbulence models implemented within the present study is
provided in Appendix D.

In considering the advantages and downsides of the turbulence modellings imple-

75



3.2 Numerical modelling of freely damped oscillations

mented in the present study, the computational time and root-mean-square error in
each model are provided in Table 3.4. This data relates to the earlier comparisons
of the internal water surface elevations during three theoretical natural periods Tn

shown in Figure 3.3(b). The numerical simulation for any turbulence modelling was
undertaken using four processors handling an identical mesh (based upon Grid B2).
Table 3.4 indicates that the LES classical Smagorinsky model has the largest per-
centage of error estimated to be 41%. The dynamic Smagorinsky model produces a
more accurate result; however, the computational time is about 20% more costly than
the classical model. The longest computational time corresponds to the RANS k-ω
SST model. This is associated with iteratively solving the two additional governing
equations in the model for every time increment in the simulation; these equations
governing the turbulent kinetic energy and turbulent specific dissipation rate.

Table 3.4: The computational time and the root-mean-square error from different turbulence
modellings.

Turbulence modelling Computational time Root-mean-square error
[min] [%]

LES classical Smagorinsky 90 41
LES dynamic Smagorinsky 108 11
RANS k-ω SST 132 12

Figure 3.4 provides additional comparisons to the experimental data of Knott &
Mackley (1980). This concerns varying initial surface displacements ηi

o/D. Taken as
a whole, the agreement between the experimental data and the numerical simulation
(based upon Grid B2 and the LES dynamic Smagorinsky model) is good. Full
details of the root-mean-square errors can be seen from Table 3.5. These errors were
computed using data of the internal surface elevations at various times. Specifically,
the comparisons shown in Figure 3.4 confirm two important aspects of the system
dynamics. First, the natural period of oscillation agrees well; evidence of this being
provided by the phase match at subsequent oscillations in Figure 3.3(a). Second, the
damping characteristic is also modelled accurately; the simulated rate of decay being
very similar to the experimental observations (Figures 3.3(a) and 3.4). In Figure
3.4, the decay rate is largest in the case of the maximum ηi

o/D (Figure 3.4(c)). This
implies that the decay rate is dependent on the amplitude of the motion of the water
column.
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Figure 3.4: Comparison of decaying peak amplitude values of water surface oscillations predicted
from the numerical viscous model [◦] and the experimental model (∗) (Knott & Mackley, 1980) and
the 2nd-order polynomial fits for the experimentally predicted peak amplitudes [ ].

Table 3.5: The root-mean-square errors in different decay tests.

ηi
o/D Root-mean-square error [%]

0.27 11
0.54 10
0.73 11

In order to confirm the wider applicability of these findings, a convergence study
was also undertaken for an OWC with a BS mouth; the duct geometry being defined
by a streamlined and radially curved mouth as shown in Figure 3.2(b). A circular
wall with a lip radius of rl = D/2 was fitted to a straight tube; the height of
this curved section defined so that the draft is equal to that of the OWC with
a SE mouth. The cylinder diameter and wall thickness were also kept constant.
Data relating to this case is provided on Figure 3.5. This concerns time-histories
of the internal water surface elevation for the case with an initial displacement of
ηi

o/D = 0.86. Comparisons are provided between the experimental observation of
Knott & Mackley (1980) and a number of numerical simulations involving different
grid resolutions; full details of the latter are provided in Table 3.6.

As in the previous case, a set of grid arrangements was utilized and the sensitivity
of the predicted internal water surface elevations to the grid parameters is evaluated.
The grid sensitivity study reveals that the time-series of elevations calculated using
the grids with identical vertical grid resolutions yield good agreement with the ex-
perimental data; the difference in amplitude and phase being unidentifiable. The
effects of radial grid and boundary layer resolutions are, once again, considered in-
significant. Furthermore, grids with Δz ≤ ηi

o/10, as shown in Figure 3.5(a), provide

77



3.2 Numerical modelling of freely damped oscillations

sufficiently accurate predictions. Evidence of this is provided by the errors of the
numerically predicted peak amplitudes which are consistently less than 5%. How-
ever, caution needs to be exercised when using grids with a high cell aspect-ratio.
Such grids may cause unphysical results such as “wiggles” in the velocity field at the
interface. However, the present result suggests that provided the cell aspect-ratio is
less than six, the numerical simulations exhibit no unphysical extreme values. Given
this aspect-ratio constraint (AR ≤ 6), and a vertical grid-resolution of Δz ≤ ηi

o/10
as minimum requirements, the estimation of the time-varying internal water surface
elevations in an OWC with a BS mouth is expected to be accurate.

Table 3.6: Grid arrangements for a freely decaying water column inside the OWC with a BS
mouth

Grid ID Grid Resolutions Max Wall Cell Aspect-Ratio Number of cells
b/Δr ηi

o/Δz Spacing Unit y+ AR (million)

A1 14 5 24 4.84 0.1

B1 7 6.21 0.1
B2 16 10 23 4.34 0.2
B3 14 3.10 0.3
C1 18 10 4.86 0.3
C2 14 22 3.47 0.4
D1 10 7.60 0.8
D2 28 14 18 5.43 1.1
D3 18 4.22 1.4
E1 14 6.52 1.8
E2 30 18 17 5.07 2.3
E3 22 4.11 2.6

With regard to the turbulence modelling, the classical Smagorinsky model again
inaccurately predicts the peak amplitudes and the natural period of oscillation in-
side the OWC with a BS mouth. Figure 3.5(b) indicates the under-estimation of
the amplitudes and the over-estimation of the natural period by this Smagorinsky
model. Once again, the excessive dissipation by the eddy viscosity at the wall and the
implementation of a fixed Smagorinsky constant are the main causes. In contrast,
both LES dynamic Smagorinsky model and the RANS k-ω model give equally good
agreement with the experimental data. Given a reliable turbulence model, Figure
3.5 provides an insight into the decay rate of the oscillating water column inside a
bell-shaped mouth. The water surface elevation inside this streamlined mouth shape
is damped more slowly when compared to the OWC with a SE mouth. This obser-
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Figure 3.5: Comparisons between the experimental data [◦] and (A) a grid independence study
of the normalised internal water surface elevations, ηi/ηi

o, that freely decay inside an OWC with
a BS mouth using the LES dynamic Smagorinsky from various grids: Grid A1 [ ], Grid C2
[ ], Grid D3 [ ], and Grid E3 [ ], and (B) computations of predicted elevations from
different turbulence modellings: LES classical Smagorinsky [ ] and RANS k-ω SST [ ].

vation is confirmed by both the progressively smaller reductions of successive peak
amplitudes and the smaller natural period of oscillation; the latter being closer to
the theoretical value, Tn. The reduced damping is readily explained in terms of the
reduced flow separation associated with this specific mouth inlet. This is confirmed
by qualitative observation of the flow field reported by Knott & Mackley (1980).

3.2.4 Circulation and vortex trajectory

When the boundary layer separates at a sharp corner, this shear layer will move along
with the boundary layer and form a rolled-up vortex sheet. For a specific geometry
like a cylindrical OWC, the vortex formation is similar to the process of fluid ejection
from a tube or nozzle, generating a vortex ring at the lower edge outside the water
column. This occurs during the downward displacement of the water column. A
positive vorticity at the inner wall of the water column feeds the cylindrical vortex
sheet with an inner circulation Γi. In contrast, a negative vorticity at the external
wall with a circulation Γe reduces the total circulation Γ. The total circulation Γ,
that roughly defines the strength of a vortex ring, is the summation of the inner
circulation, Γi, and external circulation, Γe. According to Didden (1979), the total
circulation is derived from the circulation rate dΓ/dt. For the case of axisymmetric

79



3.2 Numerical modelling of freely damped oscillations

flow during vortex formation, this is defined as:

dΓ
dt

= dΓi

dt
+ dΓe

dt
, (3.1)

Γ (t) =
∫ t

0

∫ b

0
ωθuzdxdt +

∫ t

0

∫ ∞

bo

ωθuzdxdt, (3.2)

where bo is the outer wall radius, ωθ the azimuthal component of vorticity perpen-
dicular to an angular cross-sectional area and uz is the z-component of fluid velocity.

Figure 3.6(a) shows the convergence study appropriate to the description of the
total circulation that feeds the first downstroke vortex being formed when the water
column moves downwards, in the negative z direction. The reduction of the total
circulation Γ by the increasing external circulation Γe indicates the onset of the
vortex shedding. Figure 3.6(b) describes the corresponding trajectory of the first
vortex ring during the first two periods of oscillation. To define the position of the
vortex core (Xv, Zv), the central weight of the vorticity distribution is quantified at
every instant in time. This method has been formerly implemented by Lawson &
Dawson (2013) and serves as an alternative to tracking the peak vorticity location.
By adopting the first method, fluctuations in the position of the vortex core were
minimised. The important process in this quantification is to identify the region of
vorticity that is located inside the vortex core Score. This was achieved by adopting
a vortical structure identification based upon the Q-criterion (Hunt et al., 1988).

It can be seen from Figure 3.6 that during the initial formation stage when the
circulation is feeding from the vorticity at the boundary layer into the cylindrical
vortex sheet, the vortex ring increases in diameter (increasing Xv). This occurs
alongside the increasing total circulation. When the formation phase ends at time
t = 0.483Tn, a contraction phase begins during which the shedded vortex ring ex-
periences a sudden reduction in diameter. This occurs during the following upward
displacement of the water column. This evident contraction phase is in line with
many former findings, notably by Didden (1979) and Hettel et al. (2007). The inter-
action of the vortex with a solid boundary, in this case the mouth-inlet wall, leads to
the formation of an upwardly moving vortex ring with an oppositely-signed vorticity
field. This develops inside the water column and leads to a reduction in the strength
of the former vortex ring.

Following the end of the contraction phase, when the water column again reverses
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Figure 3.6: (A) Total circulation that forms the first downstroke vortex ring Γ, and (B) the
corresponding trajectory motions of the vortex ring (Xv/D, Zv/B) during the first two periods of
oscillations inside an OWC with a SE mouth from Case III (ηi

o/D = 0.73) predicted from various
grids: Grid A1 [ ], Grid C2 [ ], and Grid D3 [ ]; details of the latter given in Table
3.3.

its direction of travel (at t = Tn), the viscous diffusion process begins. This is
characterised by the increasing diameter of the vortex ring and the growing size of
the vortex core; this final phase begins at time t = Tn in Figure 3.6.

Within Figure 3.6, it is notable that both the total circulations and the vortex
trajectory motions converge as the mesh density is increased. The difference in the
vortex motions during the formation and contraction phases under varying grid ar-
rangements is unidentifiable when compared to that in the diffusion phase. This fact
and the similarity of the vortex phases with the observation from the former studies,
suggest that the present numerical model is reliable when it comes to predicting the
vortex dynamics. Furthermore, the good agreement of the internal surface eleva-
tions (Figure 3.3(a)) indicate that the large-scale motions, including the vortex ring
formation in the numerical model, were sufficiently resolved.

The only exception to the mesh convergence relates to the vortex trajectory during
the viscous diffusion phase. This is expected since the mesh resolution located far
from the mouth inlet is much coarser than that very close to the mouth inlet. Most
importantly, it may be argued that the process of the viscous diffusion due to time-
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dependent diffusion entrainment may not be closely relevant to a damping mechanism
of an OWC system. This can be justified on three counts:

(i) the energy bounded in a vortex is not conserved,

(ii) the vortex location in the beginning of this final stage is far from the mouth
inlet (Zv/B ≈ −1.50) and,

(iii) the vortex propagates away from this location.

Based upon these arguments, it is safe to neglect the numerical error due to the
coarse mesh in this distant area. Quantitative evidence confirming that the energy
loss associated with the damping of an OWC system is largely determined by the
kinetic energy of the vortex located close to the inlet is provided in Chapter 6.

3.3 Numerical modelling of forced water column os-

cillations

3.3.1 Boundary conditions

An oscillating water column that decays in amplitude will continuously be in a tran-
sient state. As such, the steady and periodic behaviour of the flow in an OWC is
not represented. It therefore follows that, an estimation of the hydrodynamic force,
which is known to be a function of the oscillation frequency and amplitude, is not
appropriate if the estimation is based upon a transient state.

Within a Forced Water Column Test (FWCT), a sinusoidal function of displace-
ment is prescribed to mimic a moving piston (wall) placed above the internal surface
elevation within the OWC. The air trapped between this wall and the water surface
is assumed to be incompressible so that the water column moves in unison with
the displacement of the ‘rigid’ air volume. Consequently, the elevation of the water
column is directly dictated by the prescribed wall displacement. The surface at the
chamber boundary, noted in Figure 3.1(c), is now acting as the wall and its dis-
placement is varied in the form of η (t) = ηi

o cos (ωf t), where ηi
o is now the amplitude

of the internal water surface elevation, ηi (t), and ωf = 2π/Tf is the angular forc-
ing frequency. Previously, in Chapter 2, ω was defined as the angular frequency in
both radiation and scattering potential flow problems. Hereafter, ωf is specifically
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defined for radiation and forced oscillation problems to distinguish it from the wave
frequency, ω.

The boundaries of the computational domain in a Forced Water Column Test
(FWCT) necessitate slightly different conditions to those that have been imple-
mented in the earlier decay tests (DT). Specifically, the moving chamber boundary,
Γc, is one on which the amplitude of the internal water surface elevation or the forcing
amplitude, ηi

o, is prescribed. This is noted in Table 3.1 as prescribed ηi
o for FWCT.

On this boundary, Γc, a kinematic boundary condition is applied to impose a zero-
flux condition and hence the normal fluid velocity is set equal to the normal velocity
of the chamber wall �uc. A Dirichlet boundary condition for the velocity variable is
thus applied. Accordingly, the pressure variable would be defined by a Neumann
boundary condition. The boundary conditions appropriate to the numerical model
of this forced oscillation test are mathematically expressed in Table 3.1.

3.3.2 Internal water surface and air pressures

Two different forcing amplitudes were considered for the convergence studies. These
cover the full range over which the subsequent analysis will be undertaken. The two
test cases, Case I and II, correspond to forcing amplitudes of ηi

o/D = 0.25 and 1.6,
respectively. The forcing frequencies were fixed for both cases at ω2

fB/g = 0.87,
where the draft B is set at 0.16 m and the cylinder aspect-ratio D/B is now 0.435.
For a FWCT, the variables of interest are:

(i) the internal water surface defining the water column displacements,

(ii) the external water surface to evaluate the wave radiation profile, and

(iii) the air pressure to quantify the hydrodynamic properties of the water column.

The sensitivity of these variables to the grid parameters is evaluated by varying one
parameter at one time.

It is important to note that the mesh implemented within the FWCTs is dynamic;
the mesh having to follow the movement of the chamber wall boundary. As a result,
interDyMFoam, an Open Foam multiphase problem solver for a dynamic mesh, is
employed to solve the boundary value problem. The grid arrangement is similar to
the static mesh in the DT. Tables 3.7 and 3.8 show the grid details for the present
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cases. Case I involves a small forcing amplitude and, as a result, it is easier to achieve
a higher resolution of boundary layer (y+ = 10). A less dense mesh may be used for
this case. However, a resolution with y+ ≥ 16 is not suggested here, because a larger
wall spacing unit will set a lower radial grid resolution (Δr ≥ b/12). This, in turn,
enforces cells with a high aspect-ratio at the outer computational boundary.

Table 3.7: Grid arrangements for a FWCT: Case I, ηi
o/D = 0.25.

Grid ID Grid Resolutions Max Wall Cell Aspect-Ratio Number of cells
b/Δr ηi

o/Δz λ/Δx Spacing Unit y+ AR (million)

A1 12 5 180 16 1.27 0.16

B1 5 180 1.96 0.34
B2 14 7 250 14 1.40 0.56
B3 10 360 0.98 1.07
C1 5 180 1.61 0.78
C2 16 7 250 13 1.12 1.32
C3 10 360 0.81 2.23
D1 7 180 3.07 1.22
D2 18 10 250 11 2.15 2.25
D3 14 500 1.54 3.56
E1 22 10 250 10 1.64 2.58

Table 3.8: Grid arrangements for a FWCT: Case II, ηi
o/D = 1.6.

Grid ID Grid Resolutions Max Wall Cell Aspect-Ratio Number of cells
b/Δr ηi

o/Δz λ/Δx Spacing Unit y+ AR (million)

A1 12 5 45 30 4.36 0.28

B1 10 65 6.20 0.68
B2 16 14 75 27 3.57 1.00
B3 16 85 2.75 1.18
C1 14 75 4.36 1.60
C2 20 16 85 25 4.31 1.86
C3 20 105 2.85 2.44
D1 16 85 4.67 2.67
D2 24 20 105 21 3.94 3.45
D3 24 125 2.78 4.20

Given the grid parameters outlined in both tables, the water surface simulations
using the grids with identical vertical grid resolutions have matching results in both
phase and amplitude. This again confirms that the radial grid resolutions are less
important in capturing the water surface elevations. Overall, the numerically pre-
dicted internal surface elevation in Figure 3.7 is near convergent as the vertical grid
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3.3 Numerical modelling of forced water column oscillations

size is progressively refined. Evidence of this is given by the peak amplitude of the
normalised water surface elevation, approaching the expected value of one. Grids
with a vertical resolution of Δz = ηi

o/10 result in errors of approximately 5% in
both cases. This resolution is deemed to be sufficiently accurate for the present
study. Furthermore, the fact that the computed internal free-surface elevations of
both cases match the prescribed wall displacements suggests that the assumption of
air incompressibility works as expected. Simulated internal water surface elevations
can thus be prescribed based upon the displacement of a moving wall above the
internal free-surface.
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Figure 3.7: Internal water surface elevations of the water column, ηi, due to forced excitations are
normalised with the forcing amplitude, ηi

o, for an OWC with a SE mouth, diameter of D = 0.07m
and forcing frequency of ff = 1.16Hz. Comparisons are given from various grids: Grid A1 [ ],
Grid B2 [ ], Grid C3 [ ] and Grid D3 [ ].

In addition to the internal water surface elevations, convergence studies were also
undertaken in respect of the air pressures. The air pressure data were collected at
one location consistently above the instantaneous free-surface. For all simulations,
the wall chamber distance from the mean water surface, as depicted in Figure 3.1(c),
was defined by Zmax ≥ 5ηi

o. This allowed the water surface to reach the maximum
excursion with no possiblity of water entering the chamber boundary. In doing so,
unambiguous air pressure data can be obtained. Since the air pressures in the simu-
lations are spatially invariant in both the vertical and horizontal directions, recording
data of time-varying air pressure at one location for each case was considered accurate
and sufficient; the data being representative of all locations.

The time-varying air pressures of the two forced oscillation cases are presented in
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Figure 3.8: (A)-(B) Grid independence studies of air pressures, p, normalised by a pressure of
ps = ρgηi

o for the two cases of an OWC with a SE mouth. The results are based upon the LES
dynamic Smagorinsky with various grids: Grid A1 [ ], Grid B2 [ ], Grid C3 [ ] and
Grid D3 [ ], and (C)-(D) computations undertaken using different turbulence models but a
constant grid resolution (Grid C3): LES classical Smagorinsky [ ] and RANS k-ω SST [ ].

Figure 3.8. In this figure, the instantaneous air pressures are normalised by a pressure
ps = ρgηi

o. Unlike the water surface elevations, the pressure fields are insensitive to
the vertical grid resolution. This is to be expected as the air pressures are spatially
uniform above the instantaneous water surface. However, with respect to the radial
grid and boundary layer resolutions, the predicted air pressures vary. Overall, the
time-varying air pressures are near convergent with increases in the mesh density.
Evidence of this is provided by the converged period and positive peak pressures in
Figures 3.8(a) and (b). In contrast, achieving a converged solution for the double-
peaked characterisctic of the pressure time-history, that occurs when the free surface
is descending, appears to be more challenging. Despite the slight difference in the
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characterisation of the double peaks predicted using different grid arrangements,
grids with a resolution of Δr ≤ b/20 and y+ ≤ 25 produce insignificant changes in
the other peak values when compared to the finest mesh resolution.

At this stage, it is necessary to comment further on the implementation of turbu-
lence models in the FWCTs, particularly in estimating the time-varying air pressures.
First, it is relevant to note that the water surface elevations are identical regardless of
the turbulence model employed. This is to be expected given the forced nature of the
problem. However, the predictions of the air pressure are more sensitive and exhibit
marked differences (Figures 3.8(c) and (d)). While the LES dynamic Smagorinsky
model and the RANS k-ω SST model give effectively identical results, the classical
Smagorinsky model differs. Although the period of the pressure oscillations appears
to be uniformly well predicted (again consistent with a forced problem), the classical
Smagorinsky model over-estimates the air pressures (see Figures 3.8(c) and (d)).
In seeking to explain this, it should be noted that the air pressure drives the water
column to move according to the prescribed displacement. Therefore, the correspond-
ing force must balance all other forces that act on the water column. This includes
the damping force associated with the eddy viscosity that is over-estimated near a
wall boundary by the classical Smagorinsky model. Based upon these results, it is
therefore concluded that in modelling an OWC, the implementation of the classical
Smagorinsky model is not recommended.

3.3.3 Verification of air pressures

The success of the present numerical calculations in respect of the air pressures aris-
ing in a forced oscillation test can be judged by comparisons to the experimental data
of Fung (1998). This former study involved forced displacements of water columns
inside an OWC with a SE mouth by making use of piston (wall) movement as the
excitation mechanism. Both forcing frequencies and amplitudes were varied. In ad-
dition to verifying the numerical calculations, these comparisons will provide further
insights into the characteristics of air pressures under varying forcing frequencies.

The geometry of the numerical domain was identical to that adopted by Fung
(1998); a sketch provided in Figure 3.1. Three excitation frequencies were consid-
ered corresponding to ω2

fB/g = 0.20, 0.79 and 1.34; the middle value corresponding
to the damped natural frequency and hence a resonant condition. The forcing am-
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plitude was held fixed for the three cases. Figure 3.9 provides comparisons with
the experimental data. The vertical grid resolutions employed in these tests are
Δz = ηi

o/10, and the radial grid and boundary layer resolutions are respectively set
at the minimum requirements discussed earlier: Δr = b/16 and y+ = 20. In general,
the comparisons show good agreement both in respect of the phase and the pressure
amplitudes. One notable exception arises in the resonant condition, where the air
pressure measurements are distinctly nonlinear. Although the numerical simulation
shown in Figure 3.9(b) is able to capture some of the double-peaked characteristics
of the air pressure, the discrepancies with the laboratory data are clear. This occurs
in both the magnitude and phase of the calculated air pressures. However, given
that the recorded pressures at this frequency have the smallest amplitude, it may be
reasonable to conclude that the error is (at least) partly due to experimental effects.
Nevertheless, given the satisfactory agreement observed in Figures 3.9(a) and (c),
the numerical model is clearly capable of capturing the nonlinear characteristics of
the observed pressures in these forced oscillation tests.

The characteristics of the phase shift between the internal water surface eleva-
tions and their corresponding air pressures are notable. At the lower frequency,
ω2

fB/g = 0.20, the air pressure is in phase with the water column displacement (Fig-
ure 3.9(a)). In contrast, at the higher frequency, the air pressure is π out of phase
from the displacement (Figure 3.9(c)). At the resonant condition, a phase shift of
approximately π/2 is apparent from the time-history shown in Figure 3.9(b). These
varying phase shifts observed within the air pressures, reflect the significance of the
damping force. The in-phase or π-out-of-phase conditions suggest a small damping
force, while the π/2 phase difference indicates the largest damping force.

Clearly, the magnitude of the air pressure that excites the oscillating water column
under the resonant condition is the smallest. This may be explained by the fact that
under a resonant condition, the inertial force almost balances the restoring force
driven by buoyancy. Therefore, the air pressure acting above the internal free-surface
only has to act against the damping forces; a relatively small pressure required to
keep the water column oscillating according to the prescribed displacement.

Further consideration of the amplitudes of the air pressures under varying forced
frequencies is provided in Figure 3.10. Specifically, the data relates to conditions
when the water column is at its maximum (or minimum) displacement. Interestingly,
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Figure 3.9: Time-histories of the internal water surface elevations, ηi/ηi
o [ ], and the corre-

sponding air pressures, p/ps [ ], above the water columns undergoing forced excitations with
the sinusoidal excitation amplitude of ηi

o/D = 0.144 and D = 0.104m; the calculations compared
to the experimental data [◦] by Fung (1998) for varying forcing frequencies: ω2

f B/g = 0.20, 0.79,
and 1.34.

the air pressures are found to be asymmetrical with respect to the frequency axis.
This suggests that at lower forcing frequencies, the magnitudes of the air pressures
that excite the water column to move downwards are larger than those during an
upward displacement. The explanation for this can be understood from the following
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mathematical formula derived from Equation (2.37):

pηi
min

=
[
ρ(B − ηi

o) + Am

]
ω2

fηi
o − ρgηi

o, (3.3)

pηi
max

= −
[
ρ(B + ηi

o) + Am

]
ω2

fηi
o + ρgηi

o, (3.4)

where pηi
min

and pηi
max

are the air pressures when the water column is at its minimum
and maximum displacement, respectively. At the lower frequency, the restoring
force is the dominant force component. Clearly, this force is less reduced when the
water column displacement is minimum (Equation (3.3)). As a result, the absolute
magnitude of the air pressure is larger than that at the maximum displacement.
Conversely, with a higher forcing frequency, the air pressure has a larger absolute
magnitude when the water column is at its maximum displacement. This is related
to the dominance of the inertia force under a high-frequency excitation. In this case,
the force has its largest amplitude when the instantaneous mass bounded by the
wall is at its peak value (Equation (3.4)). This happens when the water column
arrives at its maximum position. Importantly, the unequal absolute magnitudes
of the air pressure at the maximum and minimum displacement given a constant
forcing frequency indicate nonlinearity in the air pressure. This nonlinearity source
is associated with the instantaneous mass (or excursion) of the water column.
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Figure 3.10: Air pressures p when the water columns are at their maximum displacement [ ,
, ] and at their minimum displacement [ , , ] are numerically predicted

over varying forcing frequencies and amplitudes and are compared to the experimental data from
Fung (1998): [��, ��] for ηi

o/D = ± 0.096, [��, ��] for ηi
o/D = ± 0.144, and [•◦, •◦] for ηi

o/D = ± 0.24.

At a resonant condition, nonlinearities in the air pressure may be associated with
vortex. At present, this is simply a speculation based upon the argument that the
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damping force associated with vortex under a resonant condition is important. The
vortex may introduce high-harmonic contents in the air pressure. A large excursion
of water column oscillation may also contribute to the nonlinearities. This is sug-
gested from the earlier explanation about the air pressures at the lower and higher
frequencies and the dependence of the normalised air pressure on the forcing ampli-
tude; the latter indicated from Figures 3.8(a)-(b). An investigation of the vortex
formation and motion under a forced oscillation is provided in Chapter 4, with a
further confirmation of the nonlinearities in forces provided in Chapter 5.

3.3.4 Wave radiation profiles

The results of a convergence study relating to the external water surface elevation
at the radial location of r/λ = 0.04, is presented in Figure 3.11(a). In this case,
the external water wave radiates away from the OWC; the latter undergoing the
forced excitation described in Section 3.3.2. The external water surface elevations
are found to be very small. As a result, achieving a resolution as high as that
described in respect of the internal water surface is challenging. Indeed, there is no
possibility that we could achieve a vertical resolution of Δz = a (r) /10, where a (r)
is the local radiated wave amplitude. In an attempt to address this, the vertical grid
size in the external wave field is set equal to that adopted to describe the internal
free-surface in absolute terms, Δz = ηi

o/10.
Figure 3.11(a) provides comparisons of the time-varying external wave elevations

calculated using various grid configurations. The external wave radiates under the
forcing amplitude condition of ηi

o/D = 1.6. These comparisons show that the wave
elevation calculated using Grid C3 (Δz = ηi

o/20, Δr = b/20), exhibits small devi-
ations (less than 5 %), when compared to the two coarser meshes, Grids A1 and
B2. Furthermore, no significant difference is evident when the surface elevation is
calculated using the finest mesh; Grid C3∗ with Δz = ηi

o/80. In this latter grid,
the external free-surface area has been locally refined twice; the resulting number of
cells being prohibitively large at almost 45 million cells. Interestingly, comparison
with the data generated on Grid D3 (Δz = ηi

o/24, Δr = b/24) shows that the wave
crest heights predicted using Grid C3 and Grid D3 are equal; the root-mean-square
variation being less than 0.6%. In Grid D3, the refinement is applied in all direc-
tions, across the entire computational area. Based upon these results, it is reasonable
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to consider that Grid B2 is sufficiently fine to accurately model the external wave
elevations. This is based upon two facts: the insignificant differences between the
simulation results of Grids C3, C3∗ and Grid D3, and the small deviation of the
result from Grid B2 when compared to Grid C3.
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Figure 3.11: (A) Time-histories of external water surface elevations, ηe, normalised with the
forcing amplitude, ηi

o, for Case II, predicted using various grids: Grid A1 [ ], Grid B2 [ ],
Grid C3 [ ] and Grid C3∗ [ ], and (B) The effect of wave reflections from the outer
boundaries on ηe at r/λ = 0.5 for Rf = λ [ ], 4λ [ ], and 8λ [ ].

In seeking to achieve a steady state for the entire flow field, including the ex-
ternally radiated wave field, it is necessary to simulate multiple oscillations of the
water column. However, the longer the simulation the greater the potential problem
of wave reflections from the outer boundary of the cylindrical test tank. In order
to investigate this, three cylindrical test tanks with varying radial dimensions were
considered (Rf = 1, 4 and 8λ). Figure 3.11(b) shows a comparison between the ra-
diated wave fields predicted at r/λ ≈ 0.5. This location has been shown because it
is sufficiently distant from the outer wall of the OWC that the evanescent modes are
negligible. Comparison with the longest domain, Rf = 8λ, reveals that the radiated
wave amplitudes in the last two wave periods differ by about 2% for Rf = 4λ, and
about 10% for Rf = λ. Given the need to address steady-state conditions, data
sampling will be required for up to 6 oscillations of the water column. The present
results suggest that if Rf = 4λ, the predicted data will be free from any reflected
wave components arising from the outer domain boundary.

Finally, Figure 3.12 concerns the spatial variation of the radiated wave amplitude
for two very different amplitudes. The discretisation of one wave length is deter-
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mined, so that the cell aspect-ratio along the external interface is fixed (AR = 2);
the number of cells in one wave length is thus determined by this requirement, with
the values given in Tables 3.7 and 3.8. The external wave amplitudes are then com-
puted using a Fast Fourier Transform (FFT) analysis of the time-varying external
waves at a number of radial locations. The amplitudes of the fundamental frequency,
ηe(1)

o , are then taken as the wave amplitudes at the respective radial distance from
the outer wall cylinder; the radial variation in the amplitude being normalised by the
corresponding forcing amplitude, ηi

o. These normalised wave profiles collapse well at
the far-field. This suggests the validity of linear wave radiation. However, in the
near-field, the profile appears to be reduced with the increasing forcing ampliude.
This hints at the possible importance of vortex shedding in the near-field. Further
discussion of the wave radiation in the near- and far-fields is provided in Chapter 4.

Figure 3.12: Radial variations in the amplitude of the fundamental frequency of the radiated wave
field arising due to OWCs undergoing two various forcing amplitudes: Case I with ηi

o/D = 0.25 [◦],
and Case II with ηi

o/D = 1.6 [�].

3.4 Two-dimensional wave modelling

3.4.1 Numerical wave tank

Investigations of a numerical wave tank were carried out to understand how best to
model wave generation and to evaluate the wave-modelling capability of OpenFOAM.
In terms of numerical wave generation, waves2Foam is a toolbox that is built upon
Open Foam. Within this toolbox, the boundary conditions at the numerical wave
generator are defined using the theoretical water wave theories supported by the
toolbox. On the inlet boundary, the theory is used to define u, α, and ∂p/∂n. On
the open atmosphere boundary and bed (or wall) boundary of the numerical wave
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tank, the boundary conditions are similar to those illustrated in Figure 3.1.
To successfully model wave propagation, wave reflection at the outlet boundary

needs to be minimised. This is achieved by using a relaxation zone which seeks
to gradually blend the computed solution with a known condition. At the outlet
boundary, this known condition relates to still water. Accordingly, a fixed value of
zero is defined for u, while a zero gradient (Neumann) boundary condition is given
for α and p. Furthermore, when the wave domain includes a structure, in the present
case of an OWC, this will also reflect waves which must be dissipated at the inlet
boundary. To achieve this, a second relaxation zone is also necessary immediately
in front of the inlet boundary. Within the present study, the relaxation zones were
defined according to Mayer et al. (1998). This approach is readily utilised within
waves2Foam. A wave relaxation zone of length LR = λ was employed at the wave
making or inlet boundary, while a zone of length LR = 1.5λ was adopted at the outlet
boundary. These zone lengths are expected to minimise wave reflections to less than
1% (Jacobsen et al., 2012). A sketch of a numerical wave tank with the boundaries
defined and the position of the relaxation zones noted is provided in Figure 3.13.

Figure 3.13: Sketch of a numerical wave tank, its boundary conditions and relaxation zones.

Initially, a RANS model was implemented within the numerical wave tank and
it was found that the wave amplitudes were excessively dissipated; the time-varying
water surface elevation reducing with time. This result is associated with the build-
up of unphysical turbulence at the free-surface. As described in Appendix D, the
production term P̃k in the transport equation of the turbulence kinetic energy is
defined on the basis of strain rate. This approach introduces an unphysical large
eddy-viscosity in a potential-flow area defining a non-breaking wave field. Jacobsen
et al. (2012) suggests that this can be avoided by expressing the productions in terms
of the curl of velocity field in a RANS model. However, this improvement has not
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been provided in any RANS model within OpenFOAM. In contrast, the simulations
using an LES model show little or no evidence of excessive large-eddy viscosity at
the free-surface. Accordingly, the LES dynamic Smagorinsky model will be employed
for all subsequent simulations. This is consistent with the earlier findings in which
the LES dynamic Smagorinsky model was also shown to be the preferred option in
terms of modelling the flow separation and physical dissipation in an OWC.

Apart from the aforementioned issues, numerical wave attenuation with increas-
ing horizontal distance from the wave maker was also problematic. To illustrate this
problem, a numerical wave tank with its inlet and outlet boundaries respectively
located at x = −3.5λ and 6λ was considered. The dimensions of the wave relaxation
zones defined for these boundaries were in accordance with those indicated in Figure
3.13. Various time-marching numerical schemes were adopted. These included the
Backward (three-time level) scheme, the Crank-Nicholson scheme with the option of a
blending factor, and the Euler scheme (Ferziger & Peric, 2002). All these schemes are
supported and implicitly applied within Open Foam. The simulated results arising
from this numerical set-up are presented in Figure 3.14. This shows the downstream
variation in the computed wave height, H, normalised by the theoretical wave height,
Ho, for a wave of period T = 1.0s and wave steepness of 1

2Hok = 0.1. In each case,
the wave heights at different relative horizontal locations x/λ are presented. In this
way, the energy conservation of a time-marching scheme for a numerically generated
wave in an initially still water tank can be evaluated. This figure indicates that the
higher-order schemes such as the Backward and Crank-Nicholson schemes lead to
small wave height amplifications. Conversely, the low-order Euler scheme produces
a reduction; the magnitude of which increases with the horizontal distance x/λ from
the wave maker. Considering these results, the Crank-Nicolson scheme with a blend-
ing factor of 0.5 gives the best result. As a result, this approach was adopted for all
subsequent simulations of regular waves propagating into a stagnant ambient.

Having investigated the appropriate relaxation zone length and the preferred
time-marching scheme, the grid resolution adopted in the model was evaluated. A
minimum vertical resolution of Δz = Ho/10 and a maximum cell aspect-ratio of
AR = 2 were set for the numerical cells near the water surface. The time step, Δt,
is chosen such that the Courant-number was set to Co = 0.1, where Co = uΔt/Δx,
with Δx being the horizontal cell length near the free surface. The success of the
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Figure 3.14: Predicted wave heights H, normalised by the theoretical input wave height Ho, at in-
creasing horizontal locations, x/λ, based upon different time-marching schemes: the Backward [�],
Crank-Nicholson 09 [	], Crank-Nicholson 05 [∗], Crank-Nicholson 02 [�], and the Euler scheme[◦].

numerical simulations is presented in Figure 3.15. This concerns time-histories of the
water surface elevations, η (t), at different locations; the numerical results compared
to the analytical Stokes’ second-order solution. Two different wave conditions are
considered. The first, Case I, corresponds to the case presented in Figure 3.14.
The second, Case II, considers a wave period of T = 1.3s and a wave steepness
of 1

2Hok = 0.06. In both figures, the theoretical wave elevations have been shifted
so that they match the time-varying numerical elevations at their first wave gauge.
At all subsequent gauge locations, only the corresponding time-varying numerical
elevations are presented.
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Figure 3.15: Time-histories of the incident wave elevations, η (t), for (A) wave case I at x/λ = −3.2
[ ], x/λ = −1.7 [ ], x/λ = 0 [ ] and x/λ = 1.7 [ ], and (B) wave case II at
x/λ = −2.5 [ ], x/λ = −1.0[ ], x/λ = 0 [ ] and at x/λ = 1.0 [ ]. In both cases
the numerical predictions are compared to the analytical wave theory [ ] at x/λ = −3.2 and
−2.5.

The data presented in Figure 3.15 highlights two points: (i) the numerically
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predicted wave amplitudes at different locations are uniform, and (ii) the phase
shifts of the waves also match the theoretical values. Evidence of this latter effect
is provided by the fact that the normalised elevation η/Ho at x = −3.2λ is π out
of phase relative to that at x = −1.7λ in Case I. Likewise, the value of η/Ho at
x = −2.5λ shows a π phase shift from the elevation at x = −1.0λ in Case II.
These two figures suggest that the numerical dissipation of the wave amplitude has
been successfully minimised. Moreover, the chosen grid resolution and the numerical
scheme are sufficiently accurate to effectively model waves.

3.4.2 Scattering and dissipation of surface waves by plates

Having established the success of the wave generation, this section considers the wave
interactions with a single-plate and a bi-plate structure. Figure 3.16 gives a schematic
view of a rigid plate located at the centre of the numerical wave tank. In defining
this layout, the length of the relaxation zones are exactly as described previously.
Moreover, within this system, the energy components correspond to the incident
waves, the reflected and transmitted wave components and the energy loss. The first
is defined by the input energy, while the last is associated with flow separations and
other dissipative mechanisms. The validation was undertaken by evaluating these
energy components using an energy conservation principle. In undertaking this step,
the relative importance of these energy components and the physics underpinning
this particular fluid-structure interaction problem can be explored. To achieve this,
the reflection coefficient, Cr, and the transmission coefficient, Ct, are as defined in
Equation (2.30) and calculated using the method proposed by Lin & Huang (2004).

Figure 3.16: A schematic description of a single rigid plate fixed in a numerical wave tank.

In applying this method, the numerical wave tank was first alllowed to achieve a
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steady state and an FFT analysis was applied to the predicted water surface eleva-
tions. The method by Lin & Huang (2004) was implemented for this analysis. The
time-histories of wave elevations at four wave gauges were sampled at 40/T , where T

is the wave period. In terms of the reflection coefficient, data was predicted at gauge
positions G1, G2, G3 and G4 (on Figure 3.16) located in the upstream field in front
of the single plate. Likewise, the transmitted amplitude was obtained from an FFT
analysis of η (t) recorded at the downstream wave gauge, G6. All gauge positions
were sufficiently distant from the wall so that the effect of any standing wave modes
(or evanescent modes) was negligible. This was achieved by ensuring that the gauge
positions were at least twice the water depth from the wall. Given the incident wave
amplitude, both the transmission and reflection coefficients were quantified solely
from the first-order harmonic components arising from the FFT analysis.

Figure 3.17 concerns the variation of the reflection and transmission coefficients,
Cr and Ct, with KB, where B is the draft of the plate and K = ω2/g is the deep
water wave number corresponding to 2π/λo; λo defining the deep water wave length.
Two plate drafts corresponding to B = 0.1m and 0.2m are considered. Overall, the
data presented in Figure 3.17 exhibits the expected trends:

(i) The proportion of wave energy transmitted into the far-field increases with the
wave length,

(ii) The plate with a deeper draft reflects more incident wave energy, and

(iii) The reflection coefficients increase and, consequently, the transmission coeffi-
cients decrease with increasing KB.

However, comparisons with the experimental data given by Stiassnie et al. (1984)
show some departures. This is almost certainly due to an inconsistency in the inci-
dent wave amplitudes; full details of which are not explicitly stated in the account
of the experimental study. Nevertheless, the numerical model clearly captures the
underpinning physics. This is indicated most clearly by two points:

(i) The smaller values of the transmission coefficients, Ct, when compared to the
theoretical values, and

(ii) The reflection coefficients, Cr, being in close agreement with the analytical
results.
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3.4 Two-dimensional wave modelling

Importantly, these effects are observed in both the laboratory data and the numerical
predictions.
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Figure 3.17: Reflection Cr, transmission Ct and energy loss coefficients Cl for a vertical plate
rigidly held in a wave tank with the water depth of h = 1.3m and varying incident wave frequencies
ω2B/g; comparisons between numerical predictions for drafts of B/h = 0.08 [◦, �] and B/h = 0.16
[�, 	], experimental data [��, •◦, ��, �] and analytical coefficients, Cr [ ] and Ct [ ],
extracted from Stiassnie et al. (1984). The numerically predicted Cl [∗] is also shown.

Adopting an energy balance principle, the energy loss coefficient Cl can be eval-
uated. This is expressed as Cl = 1 − (C2

r + C2
t ). The results presented on Figure

3.17(b) show that Cl has a maximum value of about 20%. Evidently, Cl is more pro-
nounced for longer wave periods; the coefficient being inversely proportional to the
KB parameter at a constant incident wave amplitude. This result may be explained
by the fact that given a constant incident wave amplitude, a longer wave has a longer
fluid particle path length. In effect, the longer the wave the larger the major axis of
the elliptical motion describing the orbital motion. Since this path is normal to the
bottom tip of the plate, longer waves will be associated with vortex shedding having
a strong circulation. This effect is directly akin to an increase in the effective KC

number.
Given points (i) and (ii) noted above, it may be concluded that the energy loss

associated with the vortices shed at the plate edge is due to a reduction of the trans-
mitted waves; the surface friction being assumed to be negligible. In contrast, the
reflected waves are not influenced by the vortex shedding. In an attempt to verify
this argument, additional tests were undertaken. These involved predicting the re-
flection and transmission coefficients for three different ω2B/g cases. In each case,
multiple values of the wave steepness, 1

2Hk, were considered, where H is the incident
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3.4 Two-dimensional wave modelling

wave height and k the wave number. The data arising from these calculations are
presented on Figure 3.18(a). These results show that the reflection coefficients, Cr,
are relatively invariant to the increasing wave steepness 1

2Hk, whereas the trans-
mission coefficients, Ct, exhibit a decrease. This, in turn, produces an increase of
the energy loss coefficients, Cl (Figure 3.18(b)). This analysis explains the former
experimental observation shown in Figure 3.17.

(a) (b)

Figure 3.18: (A) Reflection Cr, transmission Ct , and (B) energy loss coefficients Cl for a vertical
plate over varying wave steepness 1

2 Hk conditions. Cr [�, ◦, �], Ct [��, •◦ and ��], and Cl [��, •◦, ��]
are numerically predicted for ω2B/g = 0.12, 0.24, and 0.4, respectively.

A similar energy transfer mechanism applies when an incident wave encounters
a bi-plate structure. In this case, a gap space exists between two parallel-sided
plates. Figure 3.19 presents the reflection, transmission and energy loss coefficients
for a bi-plate structure with a gap space of w = 3B and draft B being equal to the
single plate discussed earlier. The transmission coefficients, Ct, predicted from the
viscous solver and the experimental data are again over-estimated by an analytical
solution. Conversely, the reflection coefficients, Cr, are generally well predicted by
the analytical solution except in the range of very high frequencies. This finding is
important for two reasons. First, a bi-plate structure is close to an OWC. Second, it
reveals that the transfer of energy from the ‘transmission’ components to the ‘loss’
components remain significant. Moreover, related laboratory results showing similar
effect have been reported by Knott & Mackley (1980) and Sarmento (1992).
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Figure 3.19: Reflection Cr [◦], transmission Ct [�] and energy loss coefficients Cl [∗] for a bi-plate
with draft B = 0.1m and gap space w = 3B placed inside a wave tank under varying incident wave
frequencies ω2B/g; the present numerical predictions compared to the experimental results [��, •◦]
and analytical solutions [ , ], extracted from Stiassnie et al. (1986).

3.5 Numerical modelling of cylindrical OWCs

Validations of two-dimensional problems involving an analysis of energy components
have been described above. For a cylindrical OWC, an investigation of the wave-
induced oscillations requires a three-dimensional model. Unfortunately, there are no
existing experimental studies in defining the energy components in such a domain.
As an alternative, the discussion that follows concerns other relevant variables.

Figure 3.20 concerns the response amplitude operators (RAO) of an OWC with
a cylinder aspect-ratio of D/B = 0.31. The draft B is set to 0.3m. Within this
model, the incident wave frequencies are varied, defining the wave steepness within a
range of 0.04 ≤ 1

2Hok ≤ 0.06. The hydrodynamic pressures at two vertically varying
locations inside the water column are also shown. These pressures correspond to
the magnitude of the first-harmonic pressure, normalised by 1

2ρgHo. The normalised
pressures at the higher vertical location are denoted by p1, while those nearer the
bottom mouth by p3. The numerically predicted variation in the RAO and the two
pressures are compared to the experimental data (Sykes et al., 2008).

The comparisons provided on Figure 3.20 show good agreement across the full
range of frequencies. In particular, the RAO is well predicted at frequencies near the
resonant condition. Interestingly, both the RAO and the pressures rapidly reduce
in the higher frequency range (ω2B/g ≥ 0.9); the pressures p3 being close to zero
for frequencies lying within the range (ω2B/g ≈ 1.1 − 1.12). In this regard, the
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Figure 3.20: Numerically predicted RAOs [ • ] inside a cylindrical OWC in a three-dimensional
wave tank, and the hydrodynamic pressures p1 and p3, measured on the wall at two vertical positions
z1 = −0.48B [ � ] and z3 = −0.9B [ � ] in the water column. In each case, comparisons are
provided with the experimental data given by Sykes et al. (2008) [•◦ ,�� , �� ].

viscous flow solver provides a very good description of the laboratory data. Fur-
thermore, both the numerical and experimental data indicate that the pressure near
the mouth of the OWC, p3, is relatively invariant across the lower frequencies. It is
also relevant to note that the hydrodynamic pressure p3 at the location closer to the
mouth is smaller than the pressures p1 near the internal free-surface across the entire
frequencies. In seeking to explain this, the smaller pressures at the wall and near
the mouth may indicate a local increase in the velocity field. As such, non-uniform
velocity profiles along the draft and at the cross-sectional area of the bottom mouth
should not be discounted. Indeed, that the velocity field within the water column is
non-uniform is provided in Chapter 4.

To further validate the numerical prediction of the wave excited OWC, the phase
shifts of the pressure measured at different vertical locations are considered in Fig-
ure 3.21; the phase shifts being relative to the internal water surface. While the
agreement is far from perfect, the overall trend matches the experimental data. In
particular, the numerical predictions reveal that the pressures are in phase with the
internal water surface elevations in the lower frequency range and have a π phase
shift in the higher frequency range. This is similar to the data relating to the forced
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Figure 3.21: The relative phase shifts φp1 , φp2 , and φp3 at three locations inside the OWC: z1 =
−0.48B [��], z2 = −0.67 [•◦] and z3 = −0.9B [��]; the numerical predictions compared to the
laboratory data [�� , •◦ , �� ] reported by Sykes et al. (2008).

oscillation tests outlined in Figure 3.9. Further detailed consideration of these phase
changes is given in Chapter 5.

3.6 Concluding remarks

This chapter has evaluated the capability of Open Foam to model OWCs under
various excitation mechanisms. The freely damped and forced oscillations of water
columns placed within a cylindrical test tank have been numerically simulated. Hav-
ing established the minimum grid requirements as Δz ≤ ηi

o/10 and y+ ≤ 20, both
the internal water surface and the air pressure were accurately modelled. While the
accuracy of the internal water surface was less sensitive to the boundary layer resolu-
tion y+, the accuracy of the air pressure prediction was less sensitive to the vertical
grid resolution, Δz. Having considered the appropriateness of several turbulence
models, the preferred approach is to apply the LES dynamic Smagorinsky model.
Importantly, the adoption of the LES classical Smagorinsky model for the imple-
mentation in a wall-bounded flow problem within an OWC tends to under-estimate
both the internal water surface elevation and the natural period. In contrast, the air
pressure acting above the internal water surface is over-estimated.

Having adopted the preferred viscous solver, the characteristics of the air pres-
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sures, notably the double peaks under a resonant state and during a downstroke
displacement of water column could be successfully predicted. Equally, the asym-
metrical pressures measured when the water column was at its extreme displacement
could also be predicted. It is speculated that these nonlinear characteristics in the
forcing may be related to both vortex shedding and large excursion of water column
oscillation.

Finally, the evaluation of the solver capability has been extended to model wave
generation and wave interactions with the structures in two- and three-dimensional
wave basins. In both cases, comparative studies have demonstrated the solver’s
capability to capture the physics in the flow problem under investigation. The crucial
requirement is to minimise the numerical dissipation and wave attenuation, showing
the generation and preparation of the desired wave amplitudes. The present model
has been shown to be capable of predicting the scattered and transmitted waves by
the plate structures. Furthermore, the response amplitude operators of the water
column inside a cylindrical OWC can also be estimated accurately.

Having minimised the numerical dissipation and wave attenuation, the physical
energy loss can be reliably quantified based upon an energy conservation principle.
Application of this principle has confirmed the correlation of the transmitted wave
energy with the energy loss. Preliminary calculations suggest that the energy loss
associated with vortex shedding explains the over-estimation of the transmitted wave
energy by an inviscid linear analytical solver. This will be further considered in
subsequent chapters.
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4
Radiated wave and rotational flow

fields

4.1 Chapter overview

Building upon the model validations described in Chapter 3, an investigation of the
radiated wave fields around OWCs is undertaken. This investigation includes an
analysis of the radiated waves in the fields near and far from the OWCs. In order to
simulate the radiated wave fields, a linear potential and a viscous flow model were
implemented. The linear analytical solution proposed by Evans & Porter (1997) was
adopted in the former, while the forced water column oscillation described in earlier
chapters were numerically modelled in the latter. A comparison between the two
solutions provided in Section 3.3.4 has briefly shown the reduction of the radiated
wave amplitude in the viscous flow, and indicated the nonlinear dependence of the
radiated wave amplitude on the amplitude of the internal water surface elevation.

Returning to gap flow or moonpool studies, Ananthakrishnan (1999, 2015) con-
firmed that the radiated wave amplitudes were smaller than those predicted by the
inviscid solutions. Indeed, he concluded that the reductions of the wave amplitudes
arose as a result of the damping effects of viscosity. However, Kristiansen & Faltin-
sen (2008) and Kristiansen & Faltinsen (2012) confirmed that discrepancies in the
predicted wave radiations generated by two closely adjacent boxes shown in Faltinsen
et al. (2007) were associated with flow separation. The explanation for this relates
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to the deviations being evident both in the near- and far-fields from the boxes. The
deviation was even more pronounced as the amplitude of the box motion increased.

At this stage, it is important to acknowledge the potential vortex effect on the
radiated wave fields associated with OWCs. This will be explained in the present
chapter. By comparing the two solutions and analysing the radiated wave and rota-
tional flow fields arising due to the forced water column oscillations, it is expected
that the validity of the linear potential theory can be understood on the basis of a
physical explanation. Overall, this chapter concerns the following topics:

1. Methods for analysing the rotational flow field arising in a forced water column
oscillation model,

2. Description of the water particle kinematics defining the rotational flow fields
under forced excitations with varying key parameters,

3. Characterisation of the radiated waves in the fields around an OWC, and

4. Vortex effects on these wave fields and the validity of linear radiation theory.

This chapter is organised as follows. Section 4.2 provides the key parameters
of the test cases under investigation. At first, the rotational flow fields and the
external water surface elevations at the outer wall of the OWCs are described. The
characteristics of these radiated waves are explained in Section 4.3. Furthermore,
the failure of the linear radiation theory is discussed. To confirm the physical cause
of the evident nonlinearities, methods to evaluate the properties of a vortex and the
flow repeatability are described in Section 4.4.

Using these methods, the variations of the vortex properties with the key param-
eters are investigated, and the influence of the vortex motion on the characterisation
of the near-field radiated waves is explored. Based upon this work, the physical
mechanisms that provoke the nonlinear characteristics of the motions are discussed
in Sections 4.5-4.8. Following on, the far-field radiated waves are observed. The
description of these wave fields is provided in Section 4.9. Finally, the influence of
the vortex on the effective draft of the OWCs, and the consistency of this result with
the characteristics of the near-field radiated waves are explained in Section 4.10.
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4.2 Test cases

4.2 Test cases

In the present analysis, the radiated wave field produced by an OWC was numerically
generated in a Forced Water Column Test (FWCT). The time-varying internal water
surface elevation in this model was computed as a harmonic function of ηi (t) =
ηi

o cos (ωf t), where the amplitude of this internal water surface elevation, ηi
o, was

prescribed. The boundary conditions imposed in the computational domain was as
defined earlier in Table 3.1; the validation study relating to this numerical model
having been described in Section 3.3.

In undertaking the present analysis, the internal water surface amplitude or forc-
ing amplitude, ηi

o, prescribed in the FWCT was varied. This changes the values of
two key parameters: the forcing amplitude number (Fn = ηi

o/B) and the Keulegan-
Carpenter number (KC = 2πηi

o/D). In addition to varying the forcing amplitude
ηi

o, the cylinder aspect-ratio D/B and the draft of the water column B were varied.
The range of these parameter values is outlined in Table 4.1. The angular frequency
ωf in each case is fixed at 7.28 rad/s. In respect of the mouth shape condition, the
OWCs under consideration have either a straight and sharp-edged (SE) mouth or
a bell-shaped mouth (BS) with a lip radius rl set to 0.5D. All these OWC models
have a fixed wall thickness tw defined as 0.043D.

Table 4.1: Test cases for analysing the radiated wave field

Test cases D/B Fn KC Frequency B Mouth shape
(ηi

o/B) (2πηi
o/D) (ω2

f B/g) [m]

FWCT 1 0.150 0.11-0.71 4.50-29.00 0.87 0.16 SE
FWCT 2 0.435 0.11-0.71 1.60-10.00 0.87 0.16 SE
FWCT 3 1.250 0.11-0.71 0.50-3.50 0.87 0.16 SE
FWCT 4 0.250 0.39 10.00 0.52 0.28 SE
FWCT 5 0.150 0.24 10.00 0.32 0.46 SE
FWCT 6 0.072 0.11 10.00 0.16 0.96 SE
FWCT 7 0.150 0.11-0.71 1.60-10.00 0.87 0.16 BS

4.3 An observation of near-field radiated waves

4.3.1 Radiated waves in a linear potential and viscous flow

Having defined all the relevant model parameters, this section contrasts the wave ra-
diation generated by the OWCs with SE mouths in a linear potential and a viscous
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4.3 An observation of near-field radiated waves

flow model. The results from these models show that the radiated wave amplitudes
are axisymmetric and exponentially decaying with the radial distance from the wa-
ter column. Examples of the radiated wave profiles generated at different forcing
frequencies were shown earlier in Figure B.2. This means that the radiated wave
profile resembles the wave radiation arising from a heaving truncated cylinder. The
explanation for this relates to the principle of energy conservation applied to the
energy flux of the radiated wave due to an oscillating cylindrical body (see Equa-
tion B.5). Given this fact, the characterisation of the radiated wave field around an
axisymmetric OWC can be evaluated in one angular direction.

To begin, the test cases noted as FWCT 1, 2 and 3 in Table 4.1 are considered.
In each case, the external water surface elevation, ηe, at the outer wall was closely
observed given that the radiated wave propagates outwardly from the centre of the
water column. Figure 4.1 presents the time-varying external water surface elevations,
ηe (t), at the wall of the three cylinders. In this figure, the external water surface
elevation, ηe, for each case is normalised by the corresponding internal water surface
amplitude (or forcing amplitude), ηi

o, to indicate the relative external surface eleva-
tion, ηe = ηe/ηi

o. This normalised external surface elevation ηe at the outer wall,
also referred to as the normalised near-field radiated wave elevation, is presented
along with a fraction of the normalised internal water surface elevation, ηi = ηi/ηi

o,
to provide a comparison between these two elevations. Specifically, Figure 4.1 shows
that the near-field radiated wave elevations ηe in all cases respond immediately to
the forced excitations in a transient state once the corresponding water column was
released from its initial displacement; the latter being determined from the forcing
amplitude, ηi

o. Importantly, the near-field radiated wave elevations, ηe, achieved a
steady-state response within the first two forcing periods, Tf .

Figure 4.1 confirms the similarity between the steady-state wave shapes in the
steady states predicted by the linear potential and viscous flow models. This suggests
that the oscillatory responses of the near-field wave elevation subjected to the forced
water column oscillation can be reasonably predicted by the linear potential solu-
tion. Specifically, the physical phase difference between the near-field wave elevation
and the water column in the viscous flow may be qualitatively estimated from the
linear potential flow model. Theoretically, the near-field wave elevation, ηe, has an
approximately π/2 phase difference relative to the water column, (or internal water
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Figure 4.1: Time-histories of the normalised near-field radiated wave elevations, ηe (t), and the
normalised internal surface elevation, ηi (t) [ ], for various cylinders D/B and varying forcing
amplitude numbers ηi

o/B: 0.11 [ ], 0.22 [ ], 0.44 [ ] and 0.71 [ ] predicted from
the viscous flow solver and compared to the linear potential solutions [ ].

surface). From a physical standpoint, this points to the presence of a peak value in
the near-field wave elevation when the water column is in an equilibrium condition
or vice versa.
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4.3.2 Streamlines of a linear potential flow in near-field

Figure 4.2 presents a sequence of plots describing the potential flow streamlines
that pass around the outer wall and the bottom of an OWC with a SE mouth; the
chosen flow-field representing the near-field flow area. The streamline arrows are
also presented in this figure to indicate the flow direction. The figure demonstrates
the theoretical phase of the external water surface elevation at the wall relative to
the water column. In the following description of the flow field, the streamlines and
the velocity vectors are presented at different phases of the water column oscillation
during one oscillation period. The chosen phases are denoted by the solid symbols
on Figure 4.2(a). This figure also shows the internal and external water surface
elevations during this period.

The initial phase when the water column has just begun to move downwards at
time t = 1.04Tf is considered in Figure 4.2(b). This instant time corresponds to
Point (B) on Figure 4.2(a). It is evident from these figures that the external flow
and the external free-surface are upwardly displaced as a result of the downward
displacement of the water column. The upward displacement of the external water
surface continues until this free-surface is restored to the mean water level by the
gravitational force at t = 1.25Tf .

The reversal in the movement of the external free-surface at the wall radiates
waves that travel outwards from the water column. This phase can be observed from
the streamline direction of the external free-surface that has changed by t = 1.26Tf

(Figure 4.2(c)). Simultaneously, the internal free-surface subjected to the forced
excitation continues to move further downwards from the mean water level (Point (C)
on Figure 4.2(a)). This continued forced displacement of the water column results
in a further upward displacement of the external flow at the wall near the bottom
mouth. During this phase, the streamlines of the returning external free-surface
converge with the streamlines of the mass flux outgoing from the water column at
a vertical location above the draft (Figure 4.2(c)). With the increasing influence
from the external water surface in the near-field, this vertical position progressively
decreases and approaches the bottom edge (on Figure 4.2(d)). This arises when the
external surface elevation at the wall has already returned to the mean water level.
This happens (approximately) when the internal free-surface has gained a minimum
elevation at t = 1.5Tf (Point (D) on Figure 4.2(a)).
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Figure 4.2: Potential flow streamlines [ ] around the bottom edge of an OWC with a SE
mouth and the velocity vectors presented from different phases [•] in one period of internal [ ]
and external water surface oscillation [ ].

The forced oscillation of the water column continues to restore the internal free-
surface back to the mean water level in the subsequent phase. The external free-
surface and the external flow near the bottom edge follows the upward displacement
of the water column. As a result, the external free-surface moves downwardly, arriv-
ing at a minimum elevation at t = 1.75Tf . When this occurs, the restoring stage of
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the external free-surface begins. This is again indicated by the streamline direction
at the free surface shown in Figure 4.2(e). While the external free-surface is return-
ing to the mean water level, the external flow near the bottom mouth continues to
follow the upward displacement of the water column. As such, the streamlines of
the external free-surface diverge from the incoming external-flow streamlines near
the mouth (Figure 4.2(e)). Over the next quarter period of oscillation, the influ-
ence from the free surface becomes increasingly dominant. The vertical location
at which the streamlines diverge, gradually approaches the bottom edge, while the
water column continues its upward displacement. Finally, the internal free-surface
gains a maximum elevation at t = 2.0Tf . At this instant in time, all the external
and internal flows show an upward direction; this condition being similar yet having
a flow direction opposite to that shown earlier in Figure 4.2(d). The water column
at this instant time is momentarily still and will immediately repeat the sinusoidal
displacement. A plot showing that the water column has just moved from its maxi-
mum elevation is presented in Figure 4.2(f). This corresponds to point F on Figure
4.2(a).

In a potential flow, the absence of rotational flow conditions means that the
flow streamline pattern is periodic. Therefore, the flow streamlines that exist from
the subsequent displacements of the water column are identical to those from former
cycles. Furthermore, it is noticeable that the outgoing and incoming flow streamlines
near the edge have 90◦ curvatures. As expected in a potential flow, this suggests that
the flow is attached at the corner.

4.3.3 Further insights into wave radiation

Earlier studies concerning flows past a plate or square cylinder have shown that a
viscous flow will separate when encountering a corner edge, even when the flow has a
small KC number (Bearman et al., 1985, Smith & Stansby, 1991). In the present test
cases, the smallest KC number is 0.5, with the corresponding β in the order of 104.
This indicates that flow separation will occur in all the flow conditions involving
the OWCs with SE mouths defined in Table 4.1. Nevertheless, the present linear
potential flow solver has clearly demonstrated some success in qualitatively predicting
the oscillatory response of the external free-surface at the outer wall. Given this fact,
it may be arguable that the response of the near-field radiated wave substantially
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depends on the balance between the gravitationally restored wave motion at the wall
and the oscillatory flow in the water column. This is suggested from the streamline
direction of the external free-surface, and the fact that it clearly responds to the
external flow entering and exiting the bottom mouth.

However, comparisons between the numerically predicted wave elevation and the
linear analytical solution indicate discrepancies. Indeed, Figure 4.1 clearly shows
that the peak external water surface elevations in the viscous flow are over-estimated
by the linear potential solution. This is evident in all cases including the smallest
forcing amplitude case of ηi

o/B = 0.11. Furthermore, the phase difference between
the near-field wave elevation ηe and the internal surface elevation ηi is smaller than
the theoretical phase difference in all test cases. These discrepancies raise important
questions concerning the validity of linear radiation theory in the near-field.

To understand the physical cause of these discrepancies, the deviation trends
observed in Figure 4.1 are evaluated. Close-up views of the maximum and minimum
elevations calculated using the two very different solvers are shown in Figure 4.3.
Again, the normalised internal surface elevations are also presented in red. This figure
provides clear evidence of the nonlinear characteristics of the near-field radiated wave
elevation, ηe. Specifically, evidence of the nonlinearities is given by the progressive
reduction of the normalised peak elevation and the phase difference with changes in
the forcing amplitude.
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Figure 4.3: Close-up views of Figure 4.1(b) showing (A) the minimum amplitudes and (B) max-
imum amplitudes of the normalised near-field radiated wave elevations compared to the linear
potential solutions [ ], and the normalised internal surface elevations [ ], for varying
forcing amplitudes ηi

o/B : 0.11 [ ], 0.22 [ ], 0.44 [ ] and 0.71 [ ].

The level of discrepancy is also found to be dependent on the direction of travel of
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the water column. Both the normalised peak external elevation and the phase shift
at a given forcing amplitude vary depending on the motion of the water column. This
is based upon two considerations: (i) the amplitude reduction is more pronounced
when the water column has recently begun to move upwards from its minimum
elevation (Figure 4.3(a)), and (ii) the reduced phase difference is more evident from
the downward displacement of the water column (Figure 4.3(b)).

The reduced amplitude and the reduced phase difference necessitate a physical in-
vestigation. From an energy perspective, the former may imply the proportion of the
radiated wave energy is lost and unavailable to displace the near-field wave elevation.
However, a reduced phase difference may also indicate the faster development of the
near-field radiated waves when compared to the potential prediction. At first sight,
this appears at odds with a “loss” of energy. Importantly, the physical mechanisms
that cause this progressively reduced amplitude and progressively reduced phase dif-
ference are not well understood. Given the assumed flow irrotationality inherent to
the linear potential theory, it is likely that the physical cause of the deviations is
related to the presence of a rotational flow component. To seek confirmation of this,
the kinematics of the flow field will be quantitatively and qualitatively described.

4.4 Methods of quantifying and describing the vor-

tex motion

4.4.1 Downward and upward moving vortex rings

Figure 4.4 shows three different types of vortex rings that are formed and convected
during the first one and a half periods of oscillation. In this figure, the vorticity field
is viewed from the azimuthal component of vorticity ωθ, that is perpendicular to the
meridional section of a vortex ring. Figure 4.4(a) shows that the first downwardly
moving vortex ring is located outside the water column and will be shed before
the first stage of downward displacement completes. The next observation from
Figure 4.4(b) reveals an upwardly moving vortex ring, generated inside the mouth.
This develops when the water column is upwardly displaced. It is evident that
this upwardly moving vortex ring involves vorticity that is opposite in sign to the
vorticity field of the earlier vortex ring associated with the downward movement of

114



4.4 Methods of quantifying and describing the vortex motion

fluid (Figure 4.4(a)). Furthermore, the upward vortex ring is persistently attached
to the inside wall throughout the ascending phase of the water column. In other
words, no vortex shedding occurs in this second stage.

(a) (b) (c)

Figure 4.4: (A) A single downward vortex developing outside the wall during the first downward
displacement, (B) a single upward vortex developing inside the water column during the reversed
displacement and (C) a pair of shed vortices observed in a subsequent downward displacement.

Following on, a new downward vortex ring is generated when the water column is
downwardly displaced for the second time. Together with the former upward vortex
ring, it forms a pair of vortex rings. This pair of vortex rings has oppositely signed
vorticity fields and is detached before the second downward displacement completes.
A close-up view showing this pair of vortex rings is presented on Figure 4.4(c). For
an OWC driven by a harmonic forced excitation, the detachment of a pair of vortex
rings occurs in every subsequent downward displacement.

Given this observation, it is notable that the location of a vortex ring, referred
to as vortex hereafter, depends on the travel direction of the water column. This
may potentially signify the directional dependence of the vortex and its effect on the
near-field radiated waves. This speculation requires further detailed investigation
of the water particle kinematics defining the rotational flow field. In undertaking
this work, data from a repeatable flow field needs to be obtained. Without this,
any interpretation will be of limited value. Referring to Figure 4.4, it is evident
that a repeatable flow field does not exist during the first one and a half periods of
oscillation. In fact, it is challenging to determine the flow repeatability based solely
upon a qualitative description of the flow field. As a result, a rigorous quantification
of the flow field needs to be adopted. A description of the methods implemented to
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achieve this is provided in the section that follows.

4.4.2 Quantification of circulation

The properties of a vortex may be affected by any vortex interactions. Therefore, the
flow repeatability should be evaluated based upon its overall properties. Within the
present study, the circulation of a vortex was quantified to infer the flow repeatability.
The method previously described in Section 3.2.4, was implemented to evaluate time-
histories of the total circulation in the first few forcing cycles. As explained earlier
in this section, the shear layers on both the outer wall and the inner wall are both
accumulated into a growing downward vortex. As a result, two different sources of
vorticity fluxes affect the total circulation of a downward vortex. In contrast, for an
upward vortex, formed inside the water column, the accumulated vorticity flux only
originates from the shear layers that separate at the edge and are rolled into the
upward vortex. It therefore follows that the total circulation generated during an
upward displacement can be quantified based upon the vorticity fluxes that develop
in the shear layers near the inner wall.

At this stage, it should be noted that the total circulation only describes the
vorticity fluxes being ejected during the displacement of the water column. As a
result, this total circulation may not accurately reveal the actual strength of the
growing vortex. To overcome this difficulty, an evaluation of the vortex circulation
based upon the Stokes’ theorem, Γ =

∫∫
ωθ dx dz, was also undertaken using a

surface integration. This quantification reveals the actual vortex strength, and serves
to provide a useful comparison to the total circulation.

The integration to estimate a vortex circulation requires data describing the dom-
inant component of the vorticity field in an angular section of the vortex; the az-
imuthal component of the vorticity field ωθ again being evaluated. Initially, the
iso-vorticity contour levels were determined based upon the sign of the ωθ vorticity
field. The identification of the vorticity field based upon its sign was formerly imple-
mented to study the rotational flow fields generated by forced oscillating cylinders
(Jeon & Gharib, 2004) and vortex ring generators (Gharib et al., 1998, Krueger et al.,
2006). This was undertaken to separate the vorticity field of one vortex from its pair
and was also implemented within the present study. An example of the vorticity
field, ωθ, with different levels of vorticity contour is shown in Figure 4.5(a). These
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contour lines correspond to the vorticity field when a second downward displacement
takes place. The peak positive value of ωθ was estimated to be 79 1/s.

(a)
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Figure 4.5: (A) Iso-vorticity contours of the vorticity field ωθ generated during a second downward
displacement and (B) the corresponding vortical area inside the iso-vorticity contour based upon
ten percent of the peak azimuthal vorticity ωθ when ηi

o/B = 0.22.

In adopting the proposed approach, an area of integration based upon the domi-
nant vorticity component also needs to be defined. Following the approach proposed
in Gharib et al. (1998) and Krueger et al. (2006) to estimate a vortex circulation,
the area was determined using a minimum iso-vorticity contour level defining the
vortex. This minimum contour level was defined by a threshold value. By limiting
the vorticity field based upon this value and taking the vorticity sign into account,
the iso-vorticty contour associated only with the vortex and the area for integration
can be identified. However, it should be noted that this area might not only include
the rotational area (or vortical area), but also cover an adjacent shear-layer area.
This includes the trailing vorticity field behind a leading vorticity field; evidence of
the latter seen on Figure 4.5(a). In the studies cited above, the vortex circulation
was estimated after the vorticity field in the vortex was detached from the trailing
vorticity field. Within the present study, this approach cannot be implemented. The
explanation for this lies in the fact that the new vortices generated during subsequent
displacements may immediately influence the earlier vortices.

To isolate only the vortical area, the vortex identification method based upon the
Q-criterion (Hunt et al., 1988, Haller, 2005) was employed. This criterion defines a
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vortex by considering a second invariant of ∇u.

Q = 1
2
[
|Ω|2−|S|2

]
, (4.1)

Ω = 1
2
[
∇u − (∇u)T

]
, (4.2)

S = 1
2
[
∇u + (∇u)T

]
, (4.3)

where Ω is the vorticity tensor and S the rate-of-strain tensor. These equations
indicate that Q > 0 represents the existence of a vortex. This criterion defines
a vortex as an area where the vorticity tensor dominates the rate-of-strain tensor.
Adopting this criterion, the downward vortex corresponding to the vorticity field
shown in Figure 4.5(a), is indicated by the black region inside an iso-vorticity contour
on Figure 4.5(b). The benefits of adopting this criterion include: (i) the capability to
clearly identify the rotational flow corresponding to the vortex under observation in
a flow where multiple vortices exist, and (ii) the acurate estimation of the circulation
of a vortex located very close to a wall boundary, at which the vorticity magnitude
associated with a shear flow is also large.

Care should be exercised to ensure that the area with positive values of Q is
surrounded by a minimum iso-vorticity contour that corresponds to the downward
vortex. Figure 4.6 concerns the variations of the total and the vortex circulation,
Γ, with threshold value and forcing amplitude number ηi

o/B. Figures 4.6(a)-(c)
present the variations of the circulations computed from the flow field data describing
the first downward displacement, while Figures 4.6(d)-(f) present the corresponding
variations from a subsequent downward displacement. It is evident that the threshold
value should not be larger than 30% of the peak azimuthal vorticity component.
Otherwise, the vorticity field belonging to the downward vortex will not be fully
quantified. Referring back to Figure 4.5(b), the vorticity field with positive values
of Q is plotted within the 10% of the peak value of ωθ. Interestingly, the deviation
between the total and the vortex circulations shown in Figures 4.6(a)-(c), is most
evident under the largest forcing amplitude of ηi

o/B = 0.71. This clearly indicates
that large vorticity fields are not part of the downward vortex generated in this ηi

o/B

condition. These fields by the Q criterion are not a vortical area.
In a one-dimensional slug model (Krieg & Mohseni, 2013), the circulation rate

is computed as dΓ/dt = 1/2u2 (t), with u denoting the velocity of an internal free-
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(a) ηi
o/B = 0.11 (b) ηi

o/B = 0.22 (c) ηi
o/B = 0.71

(d) ηi
o/B = 0.11 (e) ηi

o/B = 0.22 (f) ηi
o/B = 0.71

Figure 4.6: Variations of the total and vortex circulation Γ with the threshold value were computed
from the flow field data describing (a)-(c) the first downward displacement and (d)-(f) a subsequent
downward displacement for varying forcing amplitude numbers ηi

o/B. The lines represent the
total circulations, the triangles denote the vortex circulations quantified using iso-vorticity contour
and the circles indicate the vortex circulations quantified using both iso-vorticity contour and Q-
criterion. Note: the scale of the vertical axis changes between the sub-plots.

surface. The circulation for a sinusoidal function of velocity is thus predicted by
Γ = π/4ωf (ηi

o)
2 and estimated to be 0.0018, 0.007 and 0.074 m2/s in the case of

ηi
o/B = 0.11, 0.22 and 0.71, respectively. These values and those shown in Figure

4.6 are in the same order of magnitude. The present calculations thus seem to be
reasonable. To further confirm these calculations, the dependence of the total and
the vortex circulation on the grid resolution was analysed. Figure 4.7 shows the
circulations produced by the vorticity fluxes at both sides of the wall, the total and
the vortex circulation computed using different grid resolutions for ηi

o/B = 0.71. In
this figure, Γ is normalised by UD; the value of U representing the velocity magnitude
of the internal free-surface defined by ηi

oωf and D the diameter. In undertaking this
analysis, the radial grid size Δr was varied while keeping the aspect ratio near the
edge being approximately one. All figures confirm that the circulations are near
convergent with increases in the grid resolution. Specifically, Figure 4.7(c) reveals
that the discrepancy between the values of Γ/ (UD) computed in a case of grid
resolution and in the finest resolution case, increases rapidly when b/Δr ≤ 16. This
insight is consistent with the requirement for achieving the converged solutions for a
pressure time-history (see Section 3.3.2) and the trajectory vortex motion during a
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formation phase (see Section 3.2.4). The requirement was thus implemented in the
numerical simulations undertaken for the present analysis.
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Figure 4.7: A convergence study of (A) the circulations produced by the vorticity fluxes at the
outer and the inner wall, (B) the total circulation and (C) the vortex circulation generated during
the first downward displacement of the forced oscillations with ηi

o/B = 0.71. Figures 4.7(a)-(b)
indicate the computed circulations by [ ], [ ] and [ ] for b/Δr = 12, 20 and 30,
respectively, while Figure 4.7(c) by [•].

4.4.3 Flow repeatability

Adopting the method of quantification noted above, Figure 4.8 shows the circulations
obtained from three different cases of forcing amplitude numbers, ηi

o/B, at a constant
cylinder aspect-ratio of D/B = 0.435. The value of the circulation, Γ, is again
normalised by UD. Within this figure, time-histories of the normalised values of the
circulation arising from the internal and external boundary layers, the total and the
vortex circulations are all presented over the first four forcing periods. The following
description will explain the important findings outlined in Figure 4.8 and the flow
repeatability for each case of ηi

o/B.
Figures 4.8(a) and (b) show that the vortex circulations generated from the

first downward displacement at ηi
o/B = 0.11 and 0.22, approximately match their

corresponding total circulations. This contrasts markedly with Figure 4.8(c), which
shows that the vortex circulation deviates from the total circulation at a large forcing
amplitude number of ηi

o/B = 0.71. The deviation as also inferred from Figures
4.6(a)-(c), is partly associated with the vorticity fields in the trailing shear-layer area
behind the leading downward vortex during its formation. This trailing shear-layer
area is more evident with a larger displacement of water column. Earlier studies have
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Figure 4.8: The circulations quantified from the vorticity fluxes at the outer wall [ ] and
inner wall [ ], the total [ ] and vortex circulations [•] during the first few cycles of forced
oscillations with a forcing amplitude number ηi

o/B: (A) 0.11, (B) 0.22, (C) 0.71. Note: the scale
of the vertical axis changes between the sub-plots.

also established a possible discrepancy between the total circulation and the vortex
circulation. For example, Gharib et al. (1998) and Zhao et al. (2000) conducted
experimental studies of the fluid ejected by a long and non-oscillatory stroke out of
a circular tube. Their flow visualisations confirmed the existence of a long trailing
jet behind the leading vortex.

Unlike the first downward vortex, an upward vortex is generated inside the mouth
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during an upward displacement of the water column (Figure 4.4(b)). Figure 4.9(a)
shows that the shear layers separated inside the water column are re-attached at
the wall above the upward vortex. Generally, these shear layers have large vorticity
magnitudes shown in Figure 4.9(b)). However, when based upon the definition of
the Q-criterion, they are not part of the vortical area (Figure 4.9(c)). This further
explains that the separated shear layers also eject vorticity flux into non-vortical
fields. The fact that the vortex circulation is smaller than the total circulation is
therefore entirely reasonable.
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Figure 4.9: (A) Re-attachment of the separated shear layers during an upward displacement, (B)
the vorticity field and (C) the vortical area corresponding to the upward vortex.

The fact that the vortex circulation of an upward vortex less accurately approx-
imates the corresponding total circulation is due, in part, to another reason. While
the upward vortex with its vorticity field is being formed, secondary vorticity fields
develop between this upward vortex and the wall boundary. These oppositely-signed
secondary vorticity fields may induce vorticity cancellation of the upward vortex.
This is inferred from the reduction of the upward vortex circulation before the dis-
placement ends, with the most marked reduction occuring under the largest am-
plitude condition (Figure 4.8(c)). The evidence from the flow field is presented in
Figure 4.10. This figure shows a sequence of contour plots describing the develop-
ment of multiple secondary vorticity fields that develop at the inner wall. Specifically,
Figures 4.10(b) and (c) confirm that the developed secondary vorticity fields have
sign opposite to the primary vorticity field, which is associated with the upward
vortex. This phenomenon of multiple vorticity fields is similar to the laboratory
observation reported in Walker et al. (1987), who also found the secondary vorticity
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fields induced by a vortex ring when it impacts on a wall boundary.
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Figure 4.10: Development of the primary and secondary vorticity fields during an upward dis-
placement at time t: (A) 2.63Tf , (B) 2.88Tf and (C) 2.97Tf .

At this stage, it should be noted that the quantification of a total circulation
based upon the flow field data describing the first downward and upward displace-
ment is only associated with the vortex being generated during that displacement.
This concept differs from all subsequent downward displacements. The total circu-
lation generated during a subsequent downward displacement is the net circulation
contributed from the growing downward vortex and the earlier upward vortex; es-
sentially, it arises from the combination of a pair of vortices. In contrast, the vortex
circulation is quantified only from the vorticity field of the growing downward vor-
tex. This point explains why the magnitude of the total circulation is smaller when
compared to the corresponding vortex circulation.

Figure 4.8 indicates that the value of vortex circulation generated during a sub-
sequent downstroke displacement is influenced by both vortex formation and vortex
interaction. Furthermore, these two processes are both dependent on the forcing
amplitude number. For example, the locations of vortices formed under the largest
excitation condition (ηi

o/B = 0.71) will be sufficiently distant from the mouth in-
let. This ensures little interaction between the generated vortices. As a result, the
vortex circulations generated during the second and subsequent downward displace-
ments appear to be relatively identical. In this case, the flow field repeatability,
which is evaluated from the repeatability of the circulation of each downward dis-
placement, is first exhibited at time t = 2Tf (Figure 4.8(c)). In contrast, the flows
with a smaller forcing amplitude requires a larger number of oscillations to achieve
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a repeatable flow condition. Evidence of this is given by the following description.
Figure 4.8(a) shows a sudden increase of the vortex circulation generated during
the third downward displacement at ηi

o/B = 0.11. This condition is due to the ear-
lier downward vortices that have inadequate strength to propagate away from the
mouth of the OWC. Consequently, the second downward vortex is retracted due to
the influence from the subsequent upward displacement. In the next displacement,
the new downward vortex pulls more closely to this second vortex. As a result, both
vortices coalesce into a larger single vortex with a stronger circulation. This merged
vortex has now become sufficiently strong to propagate far from the mouth and is
therefore less affected by the subsequent displacements. Overall, the flow begins to
show a relatively repeatable flow field after the first three periods of oscillation.

4.4.4 Quantification of impulse and kinetic energy

Essentially, the circulation of a vortex quantifies the strength of the vortex and
hence its abilitiy to propagate away from the location where it was initially formed.
However, it does not explicitly indicate the amount of kinetic energy transferred
from the ejected shear layers at the wall into the growing vortex. The amount of
kinetic energy in the vortex and its dependence on the forcing amplitude cannot
be inferred from the circulation. Conversely, the quantification of the kinetic energy
may be useful to relate the vortex effect to the amount of energy lost in the near-field
radiated wave elevation. As a result, quantification of the kinetic energy associated
with a vortex is an important step in understanding the flow and the importance of
its rotational components.

Krieg & Mohseni (2013) proposed the kinetic energy formula associated with a
jet flow. This method is directly applicable to an OWC since a water column that
experiences an outgoing displacement from a circular tube is considered analogous
to a jet flow. Based upon their note, the rate of transfer of kinetic energy associated
with the ejected volume of fluid from inside a bounding wall is given by:

dEkv

dt
= π

∫ ∞

0

(
ρu2

z + ρu2
x + 2p

)
uzxdx, (4.4)

with the velocities of uz and ux being calculated on the y-plane and at the mouth
(z = −B). The kinetic energy associated with this approach is referred to as the
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total kinetic energy. To estimate the amount of kinetic energy in a vortex, the slug
model proposed by Mohseni & Gharib (1998) was employed. This defines the kinetic
energy as Ekv = ΓI/2ηi

o, where Γ and I are the vortex circulation and vortex impulse,
respectively; the latter estimated using a surface integration defined by

I = ρπ
∫∫

ωθx
2 dx dz. (4.5)

This definition will be used in the analysis which follows.

4.5 Progressively reduced amplitude with forcing am-

plitude number

4.5.1 Radiated waves and vortex properties

An FFT analysis of the time-histories of the radiated wave elevations presented
in Figure 4.1 was performed. This reveals that the near-field radiated waves are
weakly nonlinear. This is argued on the basis that the evidence of their second-order
harmonic components are small; evidence of this being provided in Section 4.8. At
first, it is instructive to investigate the relationship between the vortex properties and
the first-order radiated wave amplitude. In this analysis, the cylinder aspect-ratio,
D/B, was kept constant, while the forcing amplitude, ηi

o, was varied; the relevant
data corresponding to the test cases FWCT 1 noted in Table 4.1.

Having numerically modelled these test cases, the first-order radiated wave am-
plitude, ηe(1)

o , is presented as a function of the forcing amplitude number, ηi
o/B in

Figure 4.11(a). Alongside this, Figure 4.11(b) presents the variations of the total
and vortex circulations Γ with the ηi

o/B number. In the latter figure, each sym-
bol indicates the vortex circulations that were produced during the first (black) and
fourth (gray) downward displacements under a specified ηi

o/B number. Similarly, the
lines presented on Figure 4.11(b) are the total circulations estimated from the data
describing the flow field associated with the two displacements. All these variables
were quantified at the condition when the internal free-surface was at its minimum
elevation. To infer the strength of the vortex relative to the water column oscillation,
the circulations Γ, as presented in Figure 4.11(b), are again normalised by a quantity
of UD.
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(a) (b) (c)

Figure 4.11: (A) Variations of the first-order component of the external surface amplitude
η

e(1)
o , (B) the total and vortex circulation Γ/(UD), and (C) the total and vortex kinetic energy

Ek/(ρπU3D2) with the forcing amplitude number ηi
o/B; all the variables in Figures 4.11(b)-(c)

were quantified either from the flow field data of the first [black] or fourth [gray] downward dis-
placement, where the lines represent the total circulation and total kinetic energy (in (b) and (c)),
and the symbols represent the vortex circulation and vortex kinetic energy (again in (b) and (c)).

The properties of a single vortex that is formed during the first downward dis-
placement are not affected by vortex interactions. As a result, the quantification of
the vortex circulation from the data describing the first downward displacement will
clearly show the relationship between the vortex formation and the forcing ampli-
tude. However, it was initially unclear whether vortex interactions were irrelevant to
the near-field radiated waves. Specifically, whether its effects on the progressive am-
plitude reduction, if any, could be safely ignored. With this in mind, it was decided
to quantify the properties using the data from two flow fields: the first downward
displacement when a single vortex is formed, and the fourth displacement when the
effects of any vortex interaction will have become established.

Variations in the vortex strength with the forcing amplitude are presented in
Figure 4.11(b). The relationship between the two variables calculated from the two
different flow fields is clearly not identical. This is most evident from the total
circulations, indicated by the lines. The total circulation is smaller when calculated
from the fourth downward displacement, compared to the first. Moreover, this is
true across the entire range of forcing amplitude numbers. The explanation for this
lies in Figure 4.4 and (particularly) Figure 4.8, indicating that the total circulation
generated from the second and any subsequent downward displacements is the net
circulation from the pair of vortices shed during the displacement. In these cases, the
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summation of the two oppositely-signed vorticity fluxes reduces the magnitude of the
total circulation. On the other hand, the circulation of the downward vortex formed
during its initial formation phase, may gain additional circulation from the former
downward vortices. This occurs if these vortices are located sufficiently close to the
mouth after their formation. A vortex coalescence may happen and, consequently,
increase the vortex circulation. Based upon these considerations, the deviations
between the vortex circulations quantified from the two different flow field data at
small forcing amplitudes are considered reasonable.

To help understand the rotational flow field from an energy perspective, Figure
4.11(c) shows the relationship between the total kinetic energy based upon Equation
(4.4) and the vortex kinetic energy Ekv based upon Γ and I (Equation (4.5)); both
considered as a function of increasing forcing amplitude. As in the quantification of
the circulation, these physical variables were also estimated from the two different
flow fields. In considering this variable, both kinetic energies are normalised by
ρπU2D3; the latter being related to the total kinetic energy relative to the kinetic
energy of the oscillating water column.

The total kinetic energy observed in Figure 4.11(c) shows that this variable quan-
tified from the fourth displacement field deviates from the corresponding vortex ki-
netic energy. The quantification of the total kinetic energy gives the summation of
the kinetic energy associated with a pair of shed vortices. In contrast, the vortex
kinetic energy is only associated with the downward vortex being formed during
the displacement. This explains the discrepancies between the values of the vortex
and the total kinetic energy obtained from the fourth displacement fields. It is also
evident that there are discrepancies between these two values estimated from the
first displacement fields. It has already been noted that the trailing shear layers
are not rolled into the leading vortex. As such, the vortex circulation consistently
under-estimates the total circulation, particularly at large forcing amplitude num-
bers. Given this insight, the under-estimation of the vortex kinetic energy can easily
be understood.

Given these observations, the following conclusions are highlighted.

(i) A nonlinear relationship between the vortex formation on the forcing amplitude
applies. This is based upon the variations in the normalised total and vortex
circulation, evaluated from the first displacement field and presented in Figure
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4.11(b).

(ii) A nonlinear relationship between these normalised values and the forcing am-
plitude is also proven from the repeatable flow-field data.

(iii) The vortex interaction plays a minor role in reducing the wave amplitude;
evidence of this being provided from point (ii) and the progressive reduction of
the radiated wave amplitudes earlier shown in Figure 4.1(b).

(iv) The first three points noted above are consistent with the variations in the
normalised total and vortex kinetic energy; these normalised values also showing
a nonlinear relationship with the forcing amplitude.

4.5.2 Vortex effects on wave radiation

Figure 4.12(a) concerns the total kinetic energy Ekv of the vortex motion relative
to the propagating wave energy; the latter based upon the first-order radiated wave
amplitude at r = 0.57D. The ratio of these two energy components is plotted
in terms of the forcing amplitude and reveals that the relative importance of the
total kinetic energy Ekv increases. Importantly, this happens while the near-field
radiated amplitude, ηe(1)

o /ηi
o, decreases; evidence of the latter given in Figure 4.1(b).

This suggests a relationship between the vortex strength and the near-field wave
radiation, an effect that clearly needs to be investigated.

Evidence of the vortex effect is further confirmed from Figure 4.12(b). This
presents the total kinetic energy, Ekv, relative to the excitation energy, Ekf ; the
latter defining the energy necessary to ensure the system oscillates under a specified
forcing amplitude ηi

o at a given forcing period Tf . This excitation energy, Ekf , can
be mathematically expressed as

Ekf =
∫ t+Tf

t
pAcudt, (4.6)

where p is the air pressure, A the water column cross-sectional area and u the in-
ternal free-surface velocity. Under a resonant condition, this energy includes the
components associated with an added mass force and the damping forces. Initially,
it was unknown yet whether the nonlinear damping in this system was primarily
governed by the vortex motion. This will be further considered in Section 6.3.1.
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4.5 Progressively reduced amplitude with forcing amplitude number
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Figure 4.12: Proportions of the total kinetic energy Ekv relative to (A) the propagating wave
energy [��] and (B) the excitation energy Ekf [��], as well as (C) the corresponding first-order
radiated wave amplitudes η

e(1)
o [•◦, •◦] relative to the theoretical values ηe

o,LP T ; all data presented as
a function of forcing amplitude number ηi

o/B for an OWC with a SE mouth [gray] and a BS mouth
[blue]. Note: the theoretical values were only computed for the SE mouth.

which confirms the importance of the vortex damping. Taking this insight forward
and evaluating the Ekv/Ekf value, it is shown that the vortex makes an increasingly
significant contribution to the excitation energy as the forcing amplitude increases.

In parallel, Figure 4.12(c) shows that the near-field radiated wave amplitude ap-
propriate to an OWC with a SE mouth progressively reduces from its theoretical value
as the increasing forcing amplitude increases. The reduced amplitude, ηe(1)

o /ηe
o,LP T , is

quantified as the ratio between the numerically predicted near-field radiated ampli-
tude, ηe(1)

o , and the theoretical value, ηe
o,LP T ; LPT being the abbreviation for Linear

Potential Theory. Importantly, this ratio is less than 1.0, consistently reducing with
an increasing forcing amplitude. Given this trend and the former results presented
in Figures 4.11(b), 4.11(c) and 4.12(b), it can be concluded that the reduction in
ηe(1)

o /ηe
o,LP T is closely linked to the increase in the normalised values of the total

circulation, Γ/(UD), and the total kinetic energy, Ek/(ρπU3D2). Given this under-
standing, the progressive reduction of the near-field radiated wave amplitude with
the increasing forcing amplitude can be explained in terms of the increasing impor-
tance of the vortex motion. Moreover, a comparison with the reduced amplitudes,
ηe(1)

o /ηe
o,LP T , for the cases of an OWC with a BS mouth (test cases FWCT 7 on Table

4.1), is also presented on Figure 4.12(c). This data supports this explanation; the
progressively reduced amplitude being markedly reduced by the absence of vortices.
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Figure 4.13: Reduced amplitudes, η
e(1)
o /ηe

o,LP T , as functions of (A) forcing amplitude number
ηi

o/B and (B) total kinetic energy relative to the water column, Ekv/(ρπU2D3), for varying cylinder
aspect-ratios: D/B = 1.25 [��, ��], 0.435 [��, ��] and 0.15 [•◦, •◦]. Note: the sub-script LPT refers to
Linear Potential Theory.

Following on, Figure 4.13(a) confirms the reduced near-field radiated amplitudes
for all other cylinder cases (Table 4.1). These results are consistent with the growing
importance of the vortex motion; the latter confirmed by the total kinetic energy
Ekv/(ρπU2D3) presented on Figure 4.13(b). Moreover, the percentage of the energy
loss computed as 1 − (ηe(1)

o /ηe
o,LP T )2, shows the maximum percentage being 40%

for the largest forcing amplitude (ηi
o/B = 0.71) and the largest cylinder diameter

(D/B = 1.25). This is clearly a very significant effect.

4.6 Reduced amplitudes with KC and D/B numbers

4.6.1 Variations in vortex circulation and reduced amplitude

The progressive amplitude reductions observed in Figure 4.1 are dependent on the
cylinder aspect-ratio. This is considered in Figure 4.14(a) which shows the reduced
amplitude when the water column is downwardly displaced. Within this figure, the
reduced amplitude is defined as the ratio of the maximum radiated wave amplitude,
ηe

max, to the theoretical value, ηe
o,LP T . This ratio is presented as a function of a dimen-

sionless number defined by the forcing amplitude relative to the cylinder diameter
2ηi

o/D; the latter being related to KC number definition as 2πηi
o/D.

In considering this data, the largest cylinder case, with a cylinder aspect-ratio
of D/B = 1.25, shows the steepest and the most pronounced range of amplitude
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Figure 4.14: (A) Reduced amplitudes, ηe
max/ηe

o,LP T , and (B) vortex circulations, Γ/(UD), plotted
in terms of the dimensionless number 2ηi

o/D for various cylinder aspect-ratios: D/B = 1.25 [��, ��],
0.435 [��, ��] and 0.15 [•◦, •◦], and the 2nd-order polynomial fits for the curves of ηe

max/ηe
o,LP T [ ]

and Γ/(UD) [ ].

reductions. In contrast, the smallest cylinder (D/B = 0.15) exhibits the smallest re-
ductions. This confirms that the reduced amplitudes at a constant forcing amplitude
number show marked variations depending on the cylinder diameter. In seeking a
physical explanation of this data, it is thus instructive to relate the vortex properties
to the KC number.

The normalised vortex circulation generated when the water column is at its
minimum elevation is provided in Figure 4.14(b). In all cases, the circulations were
quantified using the data from the fourth downward displacement of the water col-
umn. Overall, the trend of Γ/(UD) observed from the symbols and the fitted curve
appears to be (approximately) hyperbolic; the value of Γ/(UD) increasing with KC

number but appearing to be convergent at a certain KC number. At present, it
is necessary to recall that the increased value of Γ/(UD) at a large KC number
implies an increased vortex strength relative to the mass and velocity of the water
column. This vortex strength, as explained in Section 4.4.3, is interpreted from the
normalised circulation, Γ/(UD). With large circulation, Γ/(UD), the vortex may
be sufficiently strong to self-propagate away from the bottom mouth and will thus
be less affected by the upward and downward vortices generated during the subse-
quent displacements. This hints at the relationship between the value of Γ/(UD)
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4.6 Reduced amplitudes with KC and D/B numbers

and the location of the vortex in its formation phase. Indeed, the present numerical
results reveal that the vortices having smaller values of Γ/(UD) are typically located
nearer the mouth. This is also consistent with the Γ/(UD) curve shown in Figure
4.14(b); the vortices belonging to the largest cylinder have the smallest range of
normalised circulations and their locations are closer to the mouth when compared
to the other smaller cylinders. To expand upon this argument, the vortex locations
will be considered in the section that follows.

4.6.2 Physical explanation for the amplitude reduction

To investigate the vortex location, a vortex ring is viewed as a closed vortex line.
Following the Biot-Savart Law, the contributions of the velocities induced by a closed
vortex line in x- and z-directions, ux,ind and uz,ind, on the external free-surface and
at the angular section of θ = π, can be mathematically formulated as follows:

ux,ind = Γ
4π

∫ 2π

0

−Rv|Zv| cos θ

|Di|3 dθ, (4.7)

uz,ind = Γ
4π

∫ 2π

0

−(R2
v + 1

2RvD cos θ)
|Di|3 dθ, (4.8)

Di = −(D/2 + Rv cos θ)�i − Rv sin θ�j+|Zv|�k. (4.9)

Within these solutions, Zv is the central weighted position of the azimuthal vorticity
distribution ωθ in z-coordinate and Rv is the corresponding radial coordinate; the
latter being related to Xv as Rv =|Xv|. This follows the notation adopted in the
vortex trajectory described earlier in Section 3.2.4.

Given Equation (4.7), it is known that the velocity induced by a vorticity dis-
tribution at the core position of (−Rv, Zv), consistently has a sign opposite to the
x-component of the theoretical velocity at the external free-surface and in the angu-
lar direction of θ = π. This indicates the reduction in the theoretical velocity due to
the vortex. The positively directed horizontal velocity driven by the vortex during
a downward displacement at the location noted above, reduces the ‘background’ ve-
locity that is dictated by the balance between the gravitational force and the water
column oscillation. The direction of this ‘background’ velocity may be inferred from
the streamlines in the potential flow presented in Figure 4.2(c). It may be logical
to consider that the superposition of the background velocity, ULP T , predicted from
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4.6 Reduced amplitudes with KC and D/B numbers

the linear potential theory, and the vortex-induced velocity, ux,ind, approximates the
actual velocity.

Implementing Equation (4.7), the x-component of the induced velocity ux,ind can
be estimated. The values of ux,ind over varying KC and D/B numbers are shown in
Figure 4.15(a). In this figure, the induced velocities ux,ind are nondimensionalised
by ULP T . This figure shows that the normalised velocities due to the vortices in the
case of the largest D/B are pronounced. Given this evidence, the more significant
values of ηe

max/ηe
o,LP T provided on Figure 4.14(a) for the largest D/B are reasonable.
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Figure 4.15: (A) The velocity induced by a vortex, ux,ind, relative to the theoretical velocity,
ULP T , calculated at the outer wall, (B) the vortex radial location relative to the cylinder diameter,
Rv/D, and (C) relative to the vortex vertical location, Rv/|Zv|, are presented as a function of
2ηi

o/D at varying D/B: 1.25 [��], 0.435 [��] and 0.15 [•◦].

Having investigated Equation (4.7), the factors determining the induced velocity
in the x-direction can be identified as the radial location of the vortex relative to
both the cylinder diameter, Rv/D, and its vertical location, Rv/|Zv|. In addition, the
dimensional circulation Γ of the vortex also has impact on the induced velocity. That
these three factors are critical is suggested by the simplified form of the maximum
contribution from the velocity field, dux,ind. This is mathematically expressed by:

dux,ind ∝ Γ
4π

Rv|Zv|[√
(D/2 − Rv)2+|Zv|2

]3 , (4.10)

∝ Γ
4π

Rv/|Zv|2[√(
D/2−Rv

|Zv |
)2

+ 1
]3 . (4.11)
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4.6 Reduced amplitudes with KC and D/B numbers

Equation (4.11) implies that dux,ind increases if the value of Rv/|Zv|2 is large, and
the value of (D/2 − Rv) approaches zero. Given these effects, the curves of Rv/D

and Rv/|Zv| are presented as a function of 2ηi
o/D in Figures 4.15(b) and (c), respec-

tively. A value of Rv/D approaching 0.5 and a large value of Rv/|Zv| may indicate a
significant dux,ind. Indeed, the near-field radiated waves around the largest cylinder
of D/B = 1.25 within the range of small KC numbers, that experience the most
significant amplitude reductions, are characterised by the vortices with the radial
locations Rv/D being closest to the wall. It is also a fact that the relative values of
Rv/Zv in this cylinder case are the largest.

The explanation given above is further discussed as follows. The variation of
Γ/(UD) observed in Figure 4.14(b) actually indicates the importance of the first
factor, Rv/D, on the induced velocity, dux,ind. A vortex with a strong circulation
(Γ/(UD) �) at a large KC number tends to move itself more radially out (Rv/D �).
In contrast, a vortex generated under a small KC number and hence a small Γ/(UD)
value, tends to be weak relatively to the inertia force of the water column. As a result,
the location during the formation phase, after the ejection, is closer to the cylinder
wall (Rv/D �). This is evident from Figure 4.15(b).

The second factor, namely the radial location relative to the vertical location
Rv/|Zv|, can be explained as follows. A forcing amplitude condition applied to a
cylinder with a large diameter, generates a vortex with a large radius Rv and a
small Γ/UD. The latter indicates the location of Zv being close to the bottom edge.
Given these two considerations, the resulting Rv/|Zv| will always be larger for a large
diameter of vortex.

Under a low KC condition, however, it is likely that the former vortices of the
same sign will be retracted close to the bottom edge. This may cause a stretching
in the growing downward vortex. As such, the resulting vertical location Zv of this
vortex will be located further below the draft and thus reduces Rv/|Zv|. As shown
in Figure 4.15(c), the Rv/|Zv| values quantified from the fourth displacement field,
fluctuate and show a non-monotonic trend. Nevertheless, within the present range
of D/B conditions, the variations of Rv are considerably larger than the variations
of Zv. In other words, the vertical location Zv has an insignificant effect under a
constant draft B. On the other hand, the importance of Zv becomes more evident
under varying drafts. Additional simulations from FWCT 4, 5, and 6 outlined in
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4.7 Progressively reduced phase difference

Table 4.1 support this idea. These models have an identical diameter and varying
drafts, representing varying cylinder aspect-ratios with D/B = 0.25, 0.15 and 0.07.
With a constant forcing amplitude, the effect of the vortex on the amplitude reduction
becomes less important with the increasing Zv. The reduced amplitude, ηe

max/ηe
o,LP T ,

increases up to 0.92 from the earlier reduced amplitude of ηe
max/ηe

o,LP T = 0.86 at
D/B = 0.435.

(a) (b) (c)

Figure 4.16: Vortex circulations, Γ, over varying 2ηi
o/D numbers for different cylinder aspect-

ratios D/B: (A) 1.25 [��], (B) 0.435 [��] and (C) 0.15 [•◦].

The third factor, the (dimensional) vortex circulation Γ, is shown to be dependent
on the cylinder diameter. This is observed in Figure 4.16. At a constant focing ampli-
tude number, the water column with a larger inertia force induces an increased fluid
velocity near the edge where the flow separates. The circulation Γ is consequently
larger when compared to the water column with a smaller inertia force. Figure 4.16
provides the variation of the vortex circulation with KC number for each D/B num-
ber. The vortex circulations quantified from the case of D/B = 1.25 are estimated
to lie in the largest range of circulations (0.0058 ≤ Γ ≤ 0.0639 m2/s). This range
clearly exceeds the circulation range for the two cases of smaller cylinders.

4.7 Progressively reduced phase difference

4.7.1 Fluid velocities and water surface elevations

To understand the mechanism that drives the progressive reduction in the phase
difference (Figure 4.1), the velocity of the fluid at varying locations inside and outside
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4.7 Progressively reduced phase difference

the water column are investigated. This involves comparisons between the velocities
of the internal and external free-surface calculated from the linear potential and
viscous flow models. To obtain the required data, the fluid velocities in the potential
flow were analytically derived, whereas the fluid velocities in the viscous flow were
sampled from the numerical data. These variables are presented as their normalised
values relative to the velocity of the internal free-surface; the latter defined as ηi

oωf .
To begin, the normalised vertical velocities ui

z on the axisymmetric centre at
three different vertical elevations of z = 0, −B/2 and −B are presented in Figure
4.17. This figure shows that the fluid at the bottom mouth moves less rapidly when
compared to that located nearer the internal free-surface; evidence of this being
provided by both the potential and the viscous flow models. However, in the viscous
flow, the fluid at the centre of the mouth experiences a delay. Figure 4.17(b) shows
that the peak fluid velocities at this location occur at times t = 2.78Tf and t = 3.3Tf .
This happens after the velocity of the viscous fluid near the internal free-surface has
gained its extreme values.
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Figure 4.17: Comparisons of the time-varying fluid velocities, ui
z (t), on the axisymmetric centre

of the column at three vertical locations: z = 0 [ ], z = −B/2 [ ] and z = −B [ ]
predicted from (A) the linear potential solution and (B) the viscous flow solver.

The delay in the fluid velocities at the centre of the mouth is due to the flow
separation at the bottom edge. Evidence of this is provided in Figure 4.18. This
shows a sequence of vertical velocity profiles across the mouth during a water col-
umn displacement. Figure 4.18(a) concerns the velocity profiles during an upward
displacement of the water column, while Figure 4.18(b) presents the corresponding
sequence during a downward displacement. Both these figures confirm that the fluid
in the vicinity of the edge has to move rapidly so that it may pass by the edge at the
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4.7 Progressively reduced phase difference

early stage of a displacement. Simultaneously, the fluid at the centre has to move
less rapidly in order to satisfy mass conservation. As a result, the velocity has the
largest magnitude in the vicinity of the edge at an early phase of the water column
displacement. This is evident from the velocity profiles across the mouth being not
uniform up to the edge (Figure 4.18).

In addition, the fluid particles near the mouth are not in phase with those at (or
near) the internal free-surface. Specifically, the fluid near the inner side of the edge
experiences a deceleration phase earlier than that at the free surface; the decelera-
tion phase being defined as the period when the absolute magnitude of the velocity
reduces. Didden (1979) observed a similar process inside a circular jet. In this case, a
large fluid velocity near the edge was observed when the flow was impulsively started
from a still condition through a piston displacement. The fluid at the edge experi-
enced a deceleration phase, while the fluid was continuously displaced at a constant
piston velocity.

Within the present model, this earlier deceleration phase for the fluid near the
edge is most evident in the downward displacement stage shown in Figure 4.18(b).
The fluid velocity in the vicinity of the edge (x/D ≤ −0.48) in the starting flow,
starts to decelerate at time t = 3.10Tf . This occurs before the internal free-surface
begins to slow down at t = 3.25Tf . In Figure 4.18(b), the former is indicated by
( ) and the latter by ( ). As a result of this earlier deceleration phase and
mass conservation, the velocity at the centre of the mouth may continue to increase,
although the fluid at the edge and near the free-surface have already started to slow
down. This event is shown to occur at t = 3.3Tf as indicated by ( ) on Figure
4.18(b). This represents the delay observed in Figure 4.17(b). As the deceleration
phase continues, the velocity profile gradually becomes relatively uniform across the
mouth. An example of this profile occurs at time t = 3.35Tf and is noted by ( )
on Figure 4.18(b).

At first sight, the delay in the fluid velocities at the centre appears inconsistent
with the progressive reduction in the phase difference between the near-field radiated
wave elevation, ηe, and the internal surface elevation, ηi. However, the fact that the
fluid at the bottom edge decelerates earlier, may provide an explanation. In the
following description, the fluid velocities near the outer wall and at the bottom edge
(x = −0.57D, z = −B) computed from both the viscous and potential flow models
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Figure 4.18: Vertical velocity profiles, ui
z (z), across the mouth during (A) an upward and (B) a

downward water column displacement at sequential times.

are compared. For easier interpretation, comparisons of the normalised elevations,
ηe and ηi, are re-presented in Figure 4.19(a). Alongside this, the normalised vertical
velocities near the bottom edge (outside the water column), uB

z , in the two contrasting
flows are compared in Figure 4.19(b).

(a) Surface elevation η (b) Fluid velocity uB
z

Figure 4.19: Time-varying normalised values of (A) the internal surface elevation ηi (t) [ ]
and near-field wave elevation ηe (t), and (B) the velocity uB

z (t) near the outer wall of the edge; ηe

and uB
z being predicted by the viscous [ , ] and potential flow solution [ , ].

Figure 4.19 shows time-histories of the external and internal surface elevations and
the fluid velocity near the outer wall at z = −B. On the figure, six sequential times
are denoted by numbered symbols. The first symbol marks the onset of the upward
displacement of the water column. The normalised internal water surface elevation,
ηi, turns upwards at time t = 2.5Tf (Point (1), Figure 4.19(a)). Simultaneously,
the fluid near the outer wall of the bottom edge moves downwards in the potential
flow and continues to move in this direction during this displacement. This can be
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confirmed by the negative value of the corresponding fluid velocity, that begins at
t = 2.5Tf (Point (1) on Figure 4.19(b)) and ends at t = 3.0Tf (Point (2) on Figure
4.19(b)). Likewise, the fluid near the outer wall of the bottom edge in the viscous
flow consistently has a negative direction during the upward displacement.

With the onset of a downward displacement (Point (2) on Figure 4.19(a)), the
fluid near the outer wall of the bottom edge only turns upwards for a very short time
interval in the viscous flow. Point (3) on Figure 4.19(b) indicates that at t = 3.1Tf ,
the direction of the fluid at this location immediately reverses after the onset of the
downward displacement. In contrast, the corresponding fluid in the potential flow,
consistently turns upwards until the downward displacement completes. Evidence
of this can be seen from the positive value of the corresponding fluid velocity. This
begins at t = 3.0Tf (Point (2), Figure 4.19(b)) and ends at t = 3.5Tfb (Point
(5), Figure 4.19(b)). This description of the flow direction indicates an important
difference between the potential and the viscous flows. In the viscous flow, the stage
when the external free-surface returns from its maximum elevation, occurs at time
t = 3.2Tf (Point (4) on Figure 4.19(a)). Clearly, this happens after the fluid near
the outer wall at the bottom edge changes in direction (Point (3) on Figures 4.19(b))
and before a subsequent upward displacement begins (Point (5) on Figures 4.19(a)
and 4.19(b)). Conversely, in the potential flow, the returning stage occurs before the
direction of the fluid near the outer wall at the bottom edge changes as a result of
the subsequent upward displacement.

Figure 4.19(a) also shows that the value of φη,d is larger than its counterpart, φη,u,
where, φη,d and φη,u denote the phase shift between the extreme values of the near-
field radiated wave elevations in the potential and the viscous flows; the subscript
d denoting a downcoming and the subscript u an upcoming. A similar observation
is also seen from the phase shift between the extreme values of the velocities at the
bottom edge, φv,d > φv,u, on Figure 4.19(b). Given this similarity, the phase shift
in the near-field radiated wave elevation, is clearly related to the fluid motion at the
bottom edge.
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4.7.2 Relationship between reduced phase difference and vor-

tex formation

In seeking to explain the observations noted above, it should be noted that vortex
formation can profoundly change the surrounding velocity fields. To explore this, the
present section provides both flow visualisations and vertical velocity profiles over
the full draft of the water column. Taken together, these confirm that the change
of the flow direction at the outer side of the bottom edge is indeed due to vortex
development.

Figures 4.20 and 4.21 provide close-up views of the streamlines that exit or enter
the mouth of the OWC at sequential times during a water column displacement.
Within these figures, the velocity vectors and the contour plot of the velocity field
predicted by the viscous flow solver, at each instant in time, are superimposed; the
latter being presented by the absolute velocity magnitude,

−→|u|. The direction of
the water column displacement is defined by the black arrow plotted on the water
column area. Furthermore, the profiles of the vertical velocity calculated near the
outer wall, ue

z, over the full draft of the water column are presented at sequential
times; the overline of ue

z again indicating the normalisation by the velocity of the
internal free-surface. In addition, the analytically predicted velocity profiles (based
upon linear potential theory) are provided as a comparison to the velocity profiles
associated with the viscous flow.

To begin, the sequence of the streamlines and the velocity field generated by
downward displacement are presented in Figure 4.20. Figure 4.20(a) shows a close-
up view of the streamlines at an early stage of this displacement, at time t = 3.05Tf .
At this time, a small downward vortex has developed on the outside of the water
column. This originates from the fluid that was ejected through the area between
a former upward vortex and the inner wall. By observing closely Figure 4.20(a), it
is clear that the location of the small downward vortex is exactly below the bottom
edge, and that this vortex has not moved itself radially out from the outer wall.

The horizontal position of this downward vortex indicates that the radial flow
above this vortex, near the outer wall, has not been induced by the vortex. However,
given that the fluid located nearer the outer wall turns upwards, the fluid at this
location clearly has responded to this vortex and the downward displacement of the
water column. In fact, this is consistent with the vertical velocity profile of ue

z in the
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(a) t = 3.05Tf (b) t = 3.10Tf

(c) t = 3.20Tf (d) t = 3.25Tf

(e) (f)

Figure 4.20: (A)-(D) Close-up views of the streamlines around the mouth in a viscous flow
simulation, together with the vertical velocity profiles near the outer wall, ue

z , predicted by (E) the
viscous flow and (F) the potential flow solver for a downward displacement of the water column
at times: 3.0Tf [ ], 3.05Tf [ ], 3.10Tf [ ], 3.15Tf [ ], 3.20Tf [ ], 3.25Tf

[ ], and 3.50Tf [ ].
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viscous flow (Figure 4.20(e)). At time t = 3.0Tf , the vertical velocity profile over the
draft of the water column, as indicated by ( ), has a negative value at z = −B.
This arises from the previous upward displacement. At time t = 3.05Tf , this has
changed: the profile of ue

z, indicated by ( ), has a positive velocity over the draft.
Nevertheless, the influence of the downward vortex has not affected the external flow
located further from the outer wall. This can be observed in the external fluid at this
location that moves downwards at this instant in time (Figure 4.20(a)). Evidently,
the previous upward displacement of the water column continues to dominate this
external fluid.

Following on, Figure 4.20(b) shows the streamline and the velocity field at time
t = 3.1Tf ; this corresponds to the time indicated by Point (3) on Figure 4.19(b). At
this time, the vortex location has changed; the horizontal position of the downward
vortex having moved further away from the outer wall. It is also clear from Figure
4.20(b) that the rolling-up of this vortex has induced a radial velocity; the direction
of the flow on the outer side of the bottom edge having reversed. This is confirmed
by the vertical velocity profile at t = 3.1Tf , presented by ( ) on Figure 4.20(e).
The vertical velocity of ue

z now has a negative value over a greater depth located
above the bottom edge. However, at higher elevations above the bottom edge, this
velocity becomes positive. Based upon these results, it can be concluded that the
change in the flow direction is associated with the vortex rolling-up, the increasing
radial location of the vortex and its growing strength.

At subsequent times, the downward vortex continues to grow in size. For example,
Figure 4.20(c) indicates closed streamlines in the instantaneous flow field at t =
3.2Tf . At this point, the fluid above the vortex has been influenced such that the
flow is inwardly directed towards the vortex. Again, this is consistent with the
vertical velocity profile. Figure 4.20(e) confirms the negative velocity associated
with the profile given by ( ). This profile reduces exponentially, approaching
zero at the external free-surface. The zero velocity indicates a maximum near-field
radiated wave elevation. Evidently, this event occurs after the flow direction at the
bottom edge has changed, and the horizontal position of the downward vortex has
moved to the left side of the outer wall.

Figure 4.20(c) also shows that the fluid velocity near the outer wall incorporates
a stagnation point that moves progressively upwards. This reduces the momentum
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flux of the fluid above this location and hence limits the height of the external water
surface. At later times, t = 3.25Tf , on Figure 4.20(d), the vortex location has
shifted downwards and the fluid velocity at the outer wall becomes negative at all
elevations. At this stage of downward displacement, the near-field radiated wave
elevation is clearly dependent on the formation of the vortex.

In the absence of flow separation, the flow direction near the outer wall of the
bottom edge never changes. Indeed, the reversal of the flow direction on the outer
wall above the bottom edge does not occur until the external free-surface reverses;
evidence of this being seen from Figure 4.2(c). The analytical velocity profiles ob-
served in Figure 4.20(f) also confirm this. The vertical velocity of ue

z at the external
free-surface has a zero magnitude when t = 3.25Tf . This is clearly delayed relative
to the viscous flow prediction. Indeed, comparisons between the velocity profiles
predicted from the two contrasting flow models, together with the streamlines asso-
ciated with the viscous model, allow the reduction in the phase difference associated
with a downward displacement to be understood.

Following on, Figure 4.21(a) presents close-up views of the streamlines at the
beginning of an upward displacement. This shows that at t = 3.55Tf the flow has
separated at the bottom edge. The fluid velocity increases in the vicinity of the
inner side of the bottom edge, but the development of a new upward vortex is not
yet observed. In contrast, evidence of a growing upward vortex is evident when the
increased velocity field is located inside the water column. This is shown in Figure
4.21(b) corresponding to time t = 3.75Tf , when the upward displacement ends.
Importantly, this figure also reveals the near-parallel streamlines along the outer
wall. The streamlines suggest that the external flow only moves in one direction and
its flow direction is consistent with the upward displacement of the water column.
This is confirmed in both Figures 4.21(c) and (d). The smaller relative change in
the phase shift during an upward displacement, shown in Figure 4.19(a), can now
be explained by the absence of significant vortex effects at the bottom edge.

4.7.3 Relationship between reduced phase difference and cir-

culation

The progressively reduced phase difference observed in Figure 4.1 is driven by vortex
formation. This is based upon two arguments:
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(a) t = 3.55Tf (b) t = 3.75Tf

(c) (d)

Figure 4.21: (A)-(B) Close-up views of the streamlines around the mouth in a viscous flow
simulation together with the vertical velocity profiles near the outer wall, ue

z , predicted by (C)
the viscous flow and (D) the potential flow solver for an upward displacement of the water column
at times: 3.50Tf [ ], 3.55Tf [ ], 3.60Tf [ ], 3.65Tf [ ], 3.70Tf [ ], 3.75Tf

[ ], and 4.0Tf [ ].

(i) The reduced phase difference of a near-field radiated wave elevation relative to
the internal free-surface is related to vortex formation at the bottom edge, and

(ii) The properties of a vortex, including its circulation, are nonlinearly dependent
on the forcing amplitude.

Given this understanding, the rate of generation of circulation at the outer wall
should be evaluated. Following the formula of circulation, expressed in Equation
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4.7 Progressively reduced phase difference

(3.2), the circulation rate at the outer wall is determined by:

dΓe

dt
=
∫ Xv

bo

ωθuzdx, (4.12)

where ωθ again denotes the azimuthal component of the vorticity distribution, bo the
radius of the outer wall and Xv the horizontal position of the vortex core relative to
the axisymmetric centre.

At an early stage of a downward displacement, the flow with non-zero vorticity
exists for x >|Rv|. This is indicated by the streamlines provided on Figure 4.20(a).
Consequently, the upper boundary of the integration in Equation (3.2) is defined by
Xv in Equation (4.12), where Xv = Rv for x > 0. In considering this approach, only
the circulation rate generated at the outer wall is presented; the contribution from the
vorticity distributions over x > Xv was neglected. Furthermore, the quantification
was only undertaken if the location of the vortex, Xv, was outside the wall.

Figure 4.22(a) concerns the circulation rate produced at the outer wall, dΓe

dt
; the

data normalised by the velocity of the internal free-surface. The time when the
circulation rate becomes non-zero indicates the onset of vortex rolling-up, with the
radial location of the vortex Xv being outside the wall. Clearly, the vortex rolling-up
occurs earlier as the forcing amplitude increases. This is consistent with an earlier
study of vortex formation at a piston mouth. Hettel et al. (2007) considered the
influence of flow acceleration on the vortex formation. Their study involved both
sinusoidal and linear functions of piston velocity, concluding that the stronger the
acceleration of the piston, the earlier the formation process begins. Building upon
this work, it is reasonable to conclude that the fluid acceleration and deceleration
at the bottom edge of the OWC speeds up with the forcing amplitude. This in turn
caused the earlier vortex formation and the earlier beginning of circulatory flows
outside the wall.

To explore the relationship between the progressively reduced phase difference
and the strength of the vortex, the phase differences for varying forcing amplitudes
are plotted against the total kinetic energy of the vortex in Figure 4.22(b); the rate
of the transfer of the kinetic energy (as defined in Equation (4.4)) was estimated.
Within this figure, the phase difference is defined as the phase between the first-order
component of the near-field radiated wave elevation and the internal surface eleva-
tion within the OWC. The normalisation of this phase difference by the theoretical
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Figure 4.22: (A) Circulation rates generated by the external flow ∂Γe/∂t
U for a cylinder of D/B =

0.435 with varying forcing amplitudes ηi
o/B = 0.11 [ ], 0.22 [ ] and 0.71 [ ] and

(B) reduced phase differences of the near-field radiated waves φ
e(1)
o /φe

o,LP T as a function of the
total kinetic energy relative to the water column Ekv/(ρπU2D3) for varying cylinder aspect-ratios:
D/B = 1.25 [��], 0.435 [��] and 0.15 [•◦], with the 2nd-order polynomial fit [ ].

(linear, potential) value indicates the reduced phase difference, φe(1)
o /φe

o,LP T . Figure
4.22(b) shows the variations of the reduced phase differences with the relative value
of Ekv/(ρπU2D3) for three cases involving different cylinder aspect-ratios D/B. The
results show the progressive reduction in the phase difference with the increasing vor-
tex strength, Ekv/(ρπU2D3) value. The largest percentage reduction is estimated to
be 15%. This is comparable to the percentage reduction in the amplitude reduction
shown in Figure 4.13(a). This is perhaps to be expected; phenomena being closely
related as they are driven by the same underlying mechanism.

4.8 Second harmonics of near-field radiated waves

Bai & Eatock Taylor (2006) investigated the radiated waves generated by a truncated
solid cylinder undergoing forced heaving oscillations using a fully nonlinear potential
flow solver. Based upon their calculations, they found little evidence of strong free-
surface nonlinearity; the result based upon the fact that time-histories of the wave
run-up appear to be symmetric and show negligible high-frequency fluctuations. Fig-
ure 4.23(a) extends this work to consider the radiated waves around a cylindrical
OWC. Specifically, Figure 4.23(a) describes the magnitudes of the second-harmonic
relative to the first-harmonic radiated wave components, ηe(2)

o /ηe(1)
o , for varying ηi

o/B.
In all cases, the relative magnitudes of the second-order radiated wave components
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4.8 Second harmonics of near-field radiated waves

are small. Indeed, the largest ratio was estimated to be 10%; arising in the case of
the smallest D/B and the largest ηi

o/B number.
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Figure 4.23: (A) The second-order component, η
e(2)
o , relative to the first-order component, η

e(1)
o ,

of the near-field radiated wave, and (B) the vortex circulations arising from the downward and
upward displacements, Γd/UD [Black] and Γu/(UD) [Grey], for varying forcing amplitude numbers
ηi

o/B and cylinder aspect-ratios D/B: 1.25 [�], 0.435 [�], and 0.15 [◦].

To put these results into context, Figure 4.23(b) presents the normalised vor-
tex circulation, Γ/(UD), when the external wave elevation is both at a maximum
and minimum amplitude. In each case, the figure presents the variation in the nor-
malised vortex circulation with ηi

o/B, for three D/B ratios. Importantly, it shows
that the upward vortex circulation, Γu/(UD), is larger than or equal to the down-
ward vortex circulation, Γd/(UD) for all cases (ηi

o/B and D/B). Given that an
amplitude reduction becomes more significant with increasing Γ/(UD), it is logical
to conclude that the physical cause of the increased amplitude reduction during an
upward displacement results from the more significant vortex circulation. As a result,
the dependence of the vortex circulation on the direction of the travel of the water
column, contributes to the wave asymmetry in the time-varying near-field radiated
wave elevations, as shown in Figure 4.1.
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4.9 Observations of far-field wave radiations

The radiated wave in a far-field, generated by an OWC, predominantly contains
a progressive wave mode (see Section B.3 of Appendix B). This radiated elevation
may be accurately predicted from the corresponding radiation damping coefficient,
b1. Observations of the far-field radiated wave may therefore provide insights into
the influence of a vortex motion on this important hydrodynamic coefficient.

To begin, the far-field radiated wave elevation at a radial location far from the
outer wall of an OWC with D/B = 0.435 has been investigated. In presenting
this work, the location to be addressed must be sufficiently distant from the outer
wall such that the exponentially decaying wave modes are negligible. Based upon the
method of evaluation described in Appendix B, this location was chosen as x ≈ 0.56λ.
At this location, the exponentially decaying wave modes account for less than 0.5%
of the propagating wave modes.

Figure 4.24(a) describes the first-harmonic (fundamental) component of the far-
field radiated wave amplitudes, ηe(1)

o , as a function of the forcing amplitude number,
ηi

o/B. This data describes a linear relationship between the first-harmonic of the
radiated wave amplitude and the forcing amplitude in the far-field. Building on this,
Figure 4.24(b) reveals that the reduced amplitude in the far-field is relatively invari-
ant over a broad range of forcing amplitudes. In this case, the reduced amplitude,
ηe(1)

o /ηe
o,LP T , is the first-order component of the far-field radiated elevation, ηe(1)

o ,
normalised by the linear potential solution, ηe

o,LP T . The apparent dependence of the
reduced amplitude on the forcing amplitude in the far-field is in marked contrast to
its dependence in the near-field. This suggests that the progressive amplitude reduc-
tion (believed to be associated with vortex effects) does not apply in the far-field.
Further evidence of this is provided in Figure 4.24(c). This contrasts the phase angle
between the far-field radiated wave elevation and the internal surface elevation and
the corresponding data for the near field. While the former shows a progressive re-
duction with increasing ηi

o/B number, the latter is broadly invariant and very closely
predicted from the theoretical (linear, potential) solution.

The results presented in Figures 4.24(b) and (c) provoke an immediate question:
in progressively reducing the radiated wave amplitude, do the vortex effects consid-
ered earlier primarily act on the exponentially decaying terms? To address this, the
first-order radiated wave amplitude normalised by the respective forcing amplitude,
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Figure 4.24: First-order components of (A) the far-field radiated wave amplitudes η
e(1)
o [��], (B)

the reduced amplitudes η
e(1)
o /ηe

o,LP T [��] in the far-field and the near-field [��] and (C) the first-
order phase differences φ

e(1)
o relative to the internal water surface [��] and relative to the near-field

radiated wave [•◦]; the latter being compared to the linear potential solution [ ].

ηe
o/ηi

o, is investigated at varying radial locations. This extends from the outer wall to
the location where the contribution from the exponentially decaying modes is con-
sidered neglegible. Figure 4.25(a) presents these radial variations in the normalised
wave amplitude for three different forcing amplitudes. Clearly, the radial variations
show the most pronounced reductions at the wall and the smallest reductions where
x ≥ 0.5λ. This suggests that the progressive amplitude reductions only occur at
radial locations where the exponentially decaying wave modes remain significant.

Figure 4.25(b) provides further evidence of this. In this case, the radial vari-
ations in the normalised wave amplitude were quantified by considering only the
progressive wave modes arising from a viscous flow solution. To achieve this, the
radial profiles of the progressive wave mode amplitudes were re-calculated using the
quantified radiation damping b1 and Equation (B.7). The radial profile was also the-
oretically evaluated from the analytical radiation potential given in Equation (2.17);
the exponentially decaying terms in this equation being neglected. The resulting
comparisons, presented on Figure 4.25(b), show a negligible variation with the forc-
ing amplitude. All the corresponding profiles obtained from the viscous flow model
concide well with the theoretical profile, except at the outer wall. This deviation
is most likely due to the inclusion of the standing wave numbers when deriving the
outgoing radiated wave coefficient αR

o . At all other radial locations, the profiles are
in good agreement with the theoretical profile computed from the progressive wave
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Figure 4.25: Radial variations in (A) the radiated wave amplitude of the first-harmonic frequency,
η

e(1)
o /ηi

o, including the exponentially decaying wave modes and (B) without these modes, and
(C) the phase angle of the radiated wave elevation, φ

e(1)
o , relative to the internal water surface

elevation [Black] and the near-field radiated wave elevation [Grey] for three forcing amplitude cases:
ηi

o/B = 0.11 [ , ], 0.3 [ , ], and 0.71 [ , ]; comparisons to the
theoretical variations [ , ] being provided.

mode. Taken together, these results suggest that the vortex effect primarily reduces
the radiated wave energy associated with the exponentially decaying wave modes
and not the progressive wave modes.

In respect of the second vortex effect, the radial profiles of the phase difference
relative to the internal water surface elevation and relative to the near-field radiated
wave elevation are presented in Figure 4.25(c). The corresponding profiles analyt-
ically predicted are also presented in this figure. The radial profiles of the phase
difference relative to the near-field radiated wave show good agreement with the lin-
ear potential solution. Conversely, the progressive reduction in the phase difference
relative to the internal surface elevation is apparent along the radial location. These
comparisons confirm that the vortex effect associated with the progressively reduced
phase difference is evident in both the near- and far-fields.

Finally, Figure 4.26(a) presents the reduced amplitudes ηe(1)
o /ηe

o,LP T in the far-
field for each of the cylinder diameters. Again, the reduced amplitudes for each
cylinder were estimated at the radial location where the exponentially decaying wave
modes are negligible. These radial locations were chosen as x = 0.53λ, 0.56λ and
0.62λ, for the D/B ratios of 0.15, 0.435 and 1.25, respectively. In all cases, the
results are similar to those presented in Figure 4.24(b); the reduced amplitudes being
invariant to the increasing forcing amplitude. This suggests that a radiation damping
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Figure 4.26: (A) Reduced amplitudes η
e(1)
o /ηe

o,LP T and (B) reduced phase differences φ
e(1)
o /φe

o,LP T

in the far-field radiations for varying cylinder aspect-ratios D/B: 1.25 [��], 0.435 [��] and 0.15 [•◦].

coefficient, b1, would be appropriate to the far-field, albeit one that is reduced relative
to the linear predicted solution.

4.10 Effective draft

The reduction in the near-field radiated wave amplitude at the outer wall of an OWC
is indicative of an increase in the effective draft of the column in a viscous flow. One
possible explanation for this lies in formation of the vortex motion at the base of the
OWC. To investigate this, comparisons are made between the present viscous flow
calculation and a linear potential solution of variable draft; the latter being defined
to match the radiated wave field. Figure 4.27 describes the approach implemented
herein. This figure shows comparisons of the near-field radiated wave elevations
corresponding to the actual draft, B, and the effective draft, Be. Given the inherent
assumptions of the linear potential flow, the matched amplitudes can be defined in
terms of either the maximum or minimum radiated wave elevations. Figure 4.27(a))
concerns the former with Be = 1.19B, while Figure 4.27(b) addresses the latter with
Be = 1.31B.

To establish a potential linkage between the effective draft and the vortex motion,
Figure 4.28 concerns the variations of the effective draft, Be, and the vortex locations
with ηi

o/B and D/B. This figure only presents the vortices located nearest the mouth
of the OWC. In each case, the location of the vortex is identified by: (i) the vertical
locations of the lower and upper boundaries of the vortex, Zb, and (ii) the vertical
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(a) Effective draft Be = 1.19B

(b) Be = 1.31B

Figure 4.27: Time-histories of the internal surface elevations, ηi (t)[ ], and the near-field
wave elevations, ηe (t), generated by an OWC with an effective draft, Be [ ], are compared to
those with the actual draft B in the viscous flow [ ] and the potential flow model [ ]; the
cylinder aspect-ratio being D/B = 0.435.

location of the vortex centre, Zv. The relevant values are denoted by Zb, Zv and
Be on Figure 4.28; the overbar indicating values normalised by the actual draft,
B. In addition, the location of a stagnation point, Zs, identified during an upward
displacement of the column is also presented. This is discussed further below.

Following the methods discussed earlier, the Zv values were given by the central
weight of the azimuthal vorticity distribution, while the Zb values were determined
using the Q-criterion; the latter giving an estimation of the vortex boundary. In
adopting this latter approach, the lower boundary of the vortex is defined by the
vertical location where a vertical line passing through the vortex centre crosses the
boundary on the lower side. Conversely, the upper boundary is defined by where the
same vertical line crosses the boundary on the upper side. All these quantifications
were extracted from the flow field data describing a maximum ηe

max or minimum
elevation ηe

min of the near-field radiated wave.
Figure 4.28 confirms that the vortices having the most impact on the effective

draft are those located nearest the bottom mouth. The explanation for this is de-
scribed as follows. Figures 4.28(a), (c) and (e) present the locations of the downward
vortices being generated when the radiated wave elevations are a maximum. Evi-
dently, the vertical position of the lower boundary of a downward vortex, Zb, is closely
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Figure 4.28: Vertical locations of the vortex centre, Zv [∗], the upper and lower boundaries of the
vortex, Zb [◦, ♦], and the stagnation point, Zs [�] compared to the effective draft Be that either
matches the maximum ηe

max [ ] or the minimum amplitude ηe
min [ ] of the near-field

radiated wave; all data expressed as a function of ηi
o/B ratios, for varying D/B ratios.

related to the effective draft that matches the maximum elevation, ηe
max. Conversely,

Figures 4.28(b), (d) and (f) show that the vertical position of a stagnation point,
Zs, is closely related to the effective draft that matches the minimum elevation, ηe

min.
To further explore the linkage between the effective draft and the vortex motion,

Figure 4.29 shows two instantaneous flow fields corresponding to ηe
max and ηe

min. Fig-
ure 4.29(a) shows a plot describing the absolute velocity flow field,

−→|u|, superimposed
on the streamlines when the near-field radiated wave is at a maximum elevation; this
corresponding to Figure 4.28(c) with ηi

o/B = 0.71. The vortices formed during the
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first few periods of oscillation are numbered in ascending order; a downward vortex
denoted by an odd number and an upward vortex an even number. Figure 4.29(a)
shows that the flow from the water column is unaffected by the former downward
vortices (Points (1) and (3)), but passes between the lower edge of the currently
growing downward vortex (Point (5)) and the former upward vortex (Point (4)). Be-
yond this point, the flow continues to move towards the external free-surface; the
relevant streamlines being represented by the red line on Figure 4.29(a). While this
occurs, the downward vortex is developing and still attached to the inner wall. The
curve of the corresponding outer streamline of this flow resembles the streamline
curve of the flow that passes the bottom edge with a draft, Be, in a potential flow.
This can be confirmed by referring to Figure 4.2(c). The figure shows a streamline
curve that has a near-90◦ bend when passing the bottom edge. Setting Be equal to
the lower boundary of the downward vortex generated in a viscous flow therefore
appears reasonable. This explains the data given on Figures 4.28(a), (c) and (e).

(a) (b)

Figure 4.29: The absolute velocity,
−→|u|, superimposed on the streamlines at two different phases

showing: (A) ηe
max at t = 2.2Tf , and (B) ηe

min at t = 2.7Tf ; the locations of vortices being indicated
by the increasing numbers within ©, the stagnation point indicated by S and the streamline
showing the effective draft indicated in red.
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A related plot showing the velocity field and the streamlines when the near-field
radiated wave is a minimum is presented in Figure 4.29(b). At this phase, the water
column is being upwardly displaced. Consequently, the previously detached vortices
(Points (3) and (5)) are retracted back near the bottom mouth. Simultaneously, a
new upward vortex (Point (6)) is being formed inside the mouth. Again, the flow
outside the cylinder avoids the detached vortices, that are now located below the
bottom mouth. At this instant in time, the streamlines either enter the mouth or
circulate the recently detached vortex (Point (5)). A stagnation point (Point S)
exists between these diverging streamlines. Importantly, the diverging streamline
curves show a close resemblance to the streamlines that have a near-90◦ curvature at
the bottom edge in a potential flow (Figure 4.2(e)). As a result, the effective draft,
Be, is closely approximated by the elevation of this stagnation point and to a lower
extent the upper boundary of the previous downward vortex (Point (5)); the relevant
streamline again indicated in red.

4.11 Concluding remarks

This chapter has described new insights into the wave radiation generated by the
forced oscillation of a water column. The radiated wave characteristics in the near-
and far-fields and the vortex effects have been discussed in the context of the evolving
flow field.

The first-order wave amplitude is the dominant component; the slight wave asym-
metry being consistent with the small second-harmonic components. Based upon the
first-order components of the radiated wave elevations, two distinct characteristics of
the radiated waves in the near-field are identified. These are a progressively reduced
amplitude and progressively reduced phase difference; both found to be nonlinearly
dependent on the forcing amplitude. Given the quantifications of the normalised
vortex properties, it is found that the amplitude reduction is due to the vortex for-
mation at the bottom edge. The phase difference is also found to be directly related
to the vortex formation. The present calculations confirm that the onset of a vor-
tex rolling-up and the induced circulation at the outer wall occur earlier with an
increased forcing amplitude. The induced radial velocity at the outer wall acts to
speed up the time when the external free-surface is brought to rest.
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In the far-field, the radiated waves also experience a vortex effect; the radiated
wave elevations occuring earlier than theoretically predicted. This is a direct conse-
quence of the progressively reduced phase difference. However, the far-field radiated
wave amplitude shows no variation with the forcing amplitude. This suggests that
the vortex formation only reduces nonlinearly the wave energy associated with the
exponentially decaying or evanescent wave modes.

Given these insights, it is reasonable to conclude that linear radiation theory
is valid when seeking a radiation damping coefficient and this coefficient will be
satisfactorily predicted by a linear analytical solution. However, the linear theory
is not valid in the near-field. Specifically, the location of the vortex closest to the
bottom mouth of an OWC has a significant influence on the effective draft, Be.
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5
Nonlinear forcing and motions

5.1 Chapter overview

Chapter 4 confirmed that the vortex formation and its subsequent convection was
the dominant source of nonlinearity in the radiated wave fields produced by forced
oscillations. In considering the performance of an OWC at sea, the interaction of
the device with incident waves may provoke additional nonlinearities. Indeed, earlier
numerical and laboratory studies, reviewed in Chapter 2, have revealed the existence
of high-frequency effects in both the air pressure and the response of the water
column.

The importance of these additional nonlinearities relates to the fact that both
the air pressure and the response affect the hydrodynamic efficiency. In addition,
the response (or motion) of the water column is affected by the external excitation
forces. As a result, an evaluation of the physical origins of any nonlinearities in
the forces and motions is essential to understand how the high harmonics affect the
hydrodynamic efficiency and how best to undertake the time-domain modelling of an
OWC. With these points in mind, the present chapter provides an investigation of
the nonlinearities in the forces and motions of an OWC under both wave and forced
excitation mechanisms. The purpose of this chapter is to determine the nature of
these additional nonlinearities and their relative importance.
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5.2 Test cases

The purpose of the regular wave tests (RWTs) outlined in Table 5.1 is to explore the
nonlinearities associated with:

(i) The diameter to incident wave-length ratio, D/λ,

(ii) The cylinder aspect-ratio, D/B,

(iii) The incident wave steepness, Aok, and

(iv) The mouth shape.

In all of the test cases, the draft B is fixed at B = 0.16 m. The test cases included
in RWT 1 explore the variation of D/λ by keeping all other parameters constant
while varying the angular wave frequency, ω. Conversely, RWT 2-4 explore the D/λ

variation by fixing ω and changing the column diameter, D. In addition, these
cases also concern the variation with Aok. All the test cases included in RWT 1-4
correspond to OWCs with straight and sharp-edged (SE) mouths. When compared
to RWT 3, RWT 5-6 vary in respect of mouth shape; RWT 5 corresponding to a
straight and semicircular-ended (SC), and RWT 6 a bell-shaped (BS) mouth with a
lip radius of rl = 0.5D. The wall thickness, tw, for the SC end is two times larger
than those for others. A schematic showing cross-sectional views of these mouth
shapes was previously given in Figure 3.2.

Table 5.1: Regular wave test cases

Test cases D/B Aok D/λ Mouth
shape

RWT 1 0.435 0.10 0.03 - 0.09 SE
RWT 2 1.250 0.03 - 0.25 0.17 SE
RWT 3 0.435 0.03 - 0.30 0.06 SE
RWT 4 0.150 0.03 - 0.25 0.02 SE
RWT 5 0.435 0.10 - 0.27 0.06 SC
RWT 6 0.435 0.03 - 0.20 0.060 BS

The present study also considers Forced Air Pressure Tests (FAPTs). In contrast
to the Forced Water Column Tests (FWCTs) discussed in Chapter 4, the air pres-
sures acting above the internal free-surfaces were prescribed as sinusoidally varying
functions. In considering both the FWCTs and the FAPTs, it is important to note
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that neither represent the external wave excitation. However, the FAPTs are relevant
when exploring the nonlinearities associated with:

(i) The angular forcing frequency, ωf ,

(ii) The amplitude of the air pressure, Po, and

(iii) The mouth shape.

Within the FAPTs, the draft in all the test cases was again fixed at B = 0.16 m.
As indicated in Table 5.2, FAPT 1 considers the variations of ωf and Po, while
FAPT 2-4 explores the variations of Po and the mouth shape. To complement these
cases, additional FWCTs were undertaken: FWCT 1-3 in Table 5.2 considering the
variations of the prescribed amplitude of the internal surface elevation, ηi

o, and the
mouth shape.

Table 5.2: Forced oscillation test cases

Test cases D/B Po/ρg ω2
f B/g ηi

o/B Mouth
[m] shape

FAPT 1 0.435 0.0016 - 0.0170 0.71 - 1.11 - SE
FAPT 2 0.435 0.0050 - 0.0400 0.87 - SE
FAPT 3 0.435 0.0044 - 0.0356 0.87 - SC
FAPT 4 0.435 0.0030 - 0.0203 0.87 - BS
FWCT 1 0.435 - 0.87 0.11 - 0.71 SE
FWCT 2 0.435 - 0.87 0.11 - 0.71 SC
FWCT 3 0.435 - 0.87 0.11 - 0.71 BS

5.3 Numerical simulations

5.3.1 Computational domain

The computational domain for numerically simulating a FAPT case is closely related
to the FWCT cases studied in Chapter 3. In numerically simulating a RWT case, the
computational domain is defined by the dimensions of the OWC and the incident
wave conditions; both described in Section 5.2. In respect of the numerical wave
tank (NWT), the height, Lz, width, Ly, relaxation zone length, LR, and the total
length of the NWT, LNW T , are as outlined in Figure 5.1 and were set identical to the
validation study outlined in Section 3.5. Full details of these dimensions are given in
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5.3 Numerical simulations

Table 5.3. In each simulation, a symmetric boundary condition was again applied; a
half-cylinder located at x = y = 0 as noted on Figure 5.1.

Table 5.3: Dimensions of the NWT

Parameter name Dimensionless parameter Parameter value

Width Ly/D 9

Height Lz h + 4Ao

Length LNW T /λ 6.5

Relaxation zone LR/λ 1-1.5

Figure 5.1: Schematic of the computational domain showing an OWC within the numerical wave
tank.

The computational domain described above was discretised into a number of non-
orthogonal grids. Figure 5.2 shows the mesh viewed from (a) above, (b) a side view
and (c) a close up in the vicinity of the column. Figure 5.2(c) shows the increased
mesh resolution close to the OWC, particularly at the lower end of the column.
This grid resolution was set according to the grid independence studies presented in
Section 3.3; with identical resolutions applied in the FAPT cases. Likewise, the grid
resolution applied at the external free-surface, indicated by the blue line on Figure
5.2(b), was set in accordance with the requirement outlined in Section 3.4.1.

5.3.2 Initialisation method

In Chapter 3, the numerical simulation of a cylindrical OWC was initialised from a
still water condition. This has two drawbacks. First, the computational time required
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(a)

(b) (c)

Figure 5.2: Computational mesh seen from different perspectives: (A) a top view, (B) a side view
and (C) a close-up corresponding to the dashed box shown on (B).

to achieve a “steady-state” or developed response may be prohibitively long. Second,
the wave height computed at the location of the water column may deviate from the
theoretical input (see Figure 3.14).

To overcome these difficulties, an initial wave field was prescribed using an ana-
lytical wave theory. An example of a computational domain initialised in this way
is given in Figure 5.3. In adopting this approach, the starting phase of the wave
motion was defined such that an up-crossing elevation was located on the centre of
the OWC. This was chosen to minimise both the error in the boundary condition
on the wall of the OWC and the disturbance around the OWC at the beginning of
a simulation. Figure 5.3(a) shows the initial horizontal fluid velocity field, ux, on
y = 0 and Figure 5.3(b) a close-up view of the surface elevation, with the wave slope
located on the centre of the water column.

Direct comparisons between the ‘developed’ calculations based upon the two al-
ternative initialisation methods are presented on Figure 5.4. This provides alterna-
tive predictions of the external water surface elevation, ηe, at an upstream location
(x ≈ −D/2), and the internal surface elevation, ηi; the former being referred to as
the near-field scattered wave elevation and associated with the incident wave, the
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5.3 Numerical simulations

(a) (b)

Figure 5.3: Schematic of the computational domain with the initial condition showing: (A) the
horizontal fluid velocity, ux, on y = 0 and (B) a close-up isometric view of the water column.

oscillating water column and the disturbance due to the cylindrical structure. The
results presented on Figure 5.4 correspond to the wave cases investigated in RWT 1
on Table 5.1. Good agreement is observed in all cases. In particular, Figures 5.4(a),
(c) and (e) clearly reveal the high-frequency content within the external surface
elevations, irrespective of which method of initialisation is adopted.

Within Figure 5.4, the time base indicated in black (at the bottom of each sub-
plot) relates to initial still water conditions, whereas that indicated in blue (at the top
of each sub-plot) relates to pre-defined wave conditions. In each case, the difference
between these times indicates the computational saving associated with pre-defined
wave conditions. For example, Figure 5.4(c) reveals that the number of wave cycles
required for the internal surface elevation to achieve a developed state was three wave
periods when computed with pre-defined wave conditions. This contrasts with the
ten wave periods when calculations are initiated with a still water surface. Despite
the significant computational saving associated with pre-defined wave conditions,
the computational effort remain very substantial. With 96 processors handling 4.5
million cells, the calculation of nine wave cycles took approximately one week.

Time-histories of the vertical forces, Fv (t), acting on the bottom cross-sectional
area of the water column, are compared in Figure 5.5. Once again, good agreement
between the two different methods of initialisation is shown in all cases of D/λ.
Interestingly, for cases of D/λ = 0.063 and 0.06 on Figures 5.5(b) and (c), the
asymmetrical shapes and high-frequency content of the vertical forces are identified
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Figure 5.4: Comparisons of time-histories of the external water surface elevations ηe (t) at x ≈
−D/2, and the internal water surface elevations, ηi (t) with [ ] based upon an initial still water
condition compared to [ ] pre-defined wave conditions. All cases relate to a constant diameter
of D/B = 0.435 subjected to varying wave periods and a constant wave steepness of Aok = 0.1
(Test cases RWT1 on Table 5.1).

using both approaches. However, an initial still water condition seems to produce
less ‘stable’ results. This may be due to wave reflections which seem to affect Fv (t)
more critically than ηi or ηe. Given the comparisons provided on Figures 5.4 and
5.5, initiation based upon pre-defined wave conditions is clearly preferable.
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(a) D/λ = 0.03
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(b) D/λ = 0.06

(c) D/λ = 0.063 (d) D/λ = 0.087

Figure 5.5: Time-histories of the vertical forces, Fv (t), acting on the bottom cross-sectional area
of the water column with [ ] based upon an initial still water condition compared to [ ] pre-
defined wave conditions. All cases relate to D/B = 0.435 with D/λ varied but the wave steepness
fixed at Aok = 0.1. (Test cases RWT1 on Table 5.1)

5.4 Observations of scattered wave elevations

Figure 5.6 presents time-histories of the near-field scattered wave elevations, ηe (t),
normalised by the incident wave amplitude, Ao. These results relate to the test
cases RWT 2, 3 and 4 outlined in Table 5.1. In each case, incident waves of varying
steepness were considered; Aok = 0.03, 0.1 and 0.2 corresponding to linear, weakly-
nonlinear and nonlinear wave conditions. Across the three cases, the D/B ratios were
1.25, 0.435 and 0.15; the corresponding D/λ ratios being 0.17, 0.06 and 0.02. Each
sub-plot provides a comparison between the scattered wave elevations computed from
the viscous flow solver and the linear potential solution. In each case, the presented
data has been shifted in time such that at t = 0 an incident wave crest exists at the
centre of the water column.

In the largest relative diameter case (D/λ = 0.17 on Figure 5.6(a)), the near-field
scattered wave elevations computed from the viscous flow model deviate from the
linear potential solution. However, there is no evidence of high-frequency effects. In
contrast, these effects are clearly noted in the two smaller relative diameters (D/λ =
0.06 and 0.02 on Figures 5.6(b) and (c)). In both these cases, the magnitude of the
high-frequency scattered wave increases with the steepness of the incident wave, Aok.
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Figure 5.6: Time-histories of the normalised near-field scattered wave elevations, ηe (t) /Ao, due
to the wave excitations of varying steepness Aok: 0.03 [ ], 0.1 [ ] and 0.2 [ ] for various
aspect ratios (D/B) and relative diameters (D/λ) with comparisons to the linear potential solution
[ ].

Interestingly, with Aok held constant, the high-frequency scattered waves appear
larger for D/λ = 0.06. Moreover, the phasing of the high-frequency elevations occurs
earlier for D/λ = 0.02. These results confirm that the high-frequency scattered wave
elevations are dependent on both the relative diameter, D/λ, and the incident wave
steepness, Aok.

These fndings are consistent with the laboratory observations of Masterton (2007),
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5.5 Quantification of depth-varying inline pressures

and the numerical calculations of Swan & Sheikh (2015) and Kasiman (2017). These
studies concerned bottom-mounted columns and argued that the high-frequency scat-
tered wave elevation was associated with the motion of water around the circumfer-
ence of the column. Specifically, they referred to the evolution of a non-concentric
Type-2 scattered wave. Given that these effects appear identical to the present study,
it is concluded that the high-frequency scattered waves shown in Figures 5.6(b) and
(c), correspond to the arrival of the Type-2 scattered wave on the front face of the
OWC. Indeed, this arrival is confirmed from Figure 5.7(a), and the appearance of
the Type-2 wave is similar to that observed by Masterton (2007) (see Figure 5.7(b)).

(a) (b)

Figure 5.7: Plan view of the surface elevation field showing the arrival of Type-2 wave on the
front face of (A) the OWC and (B) the bottom-mounted column (Masterton, 2007).

5.5 Quantification of depth-varying inline pressures

The present objective is to investigate whether the high-frequency scattered wave
elevations provoke nonlinearities or high harmonics in the vertical forcing of the
OWC. The influence of the nonlinear scattered waves on the vertical excitation force
has been studied by both Rodriguez (2016) and Bruggemann (2017); the former
considering a heaving box and the latter a heaving truncated cylinder. In the case
of the heaving box, the second-harmonic pressure was near-constant with depth
and thus significantly influences the excitation force. In contrast, in the case of
the heaving truncated cylinder, the second-harmonic pressure was strongly depth-
dependent due to the curvature of the scattered wave field. As such, they had limited
influence on the heaving force. However, both of these studies concerned large relative
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5.5 Quantification of depth-varying inline pressures

diameters. In the case of small relative diameters, Masterton (2007) confirmed the
presence of high-frequency inline forces experienced by a bottom-mounted cylinder,
arguing that they were linked to structural ‘ringing’. Kasiman (2017) was the first to
show that the high-frequency scattered waves were the cause of the high harmonic
inline forcing. The high harmonics that arise from the scattered wave elevation
provoke the high harmonics in the inline force (Kasiman, 2017). Adopting these
earlier considerations, the depth dependence of the high harmonics of the inline (or
x-component) pressures acting on the OWCs will be evaluated.

At any depth location, the time-varying inline force, FH(z, t), acting on a pro-
jected area, Ap, of the cylindrical surface of an OWC was quantified as follows:

FH (z, t) =
∫ z+Δh

z

∫ 2π

π
p (bo, θ, z, t) bo cos θ dθ dz, (5.1)

where (r, θ, z) defines the usual cylindrical co-ordinates, r = bo the outer radius of the
OWC, and the limits of the integration reflect the half cylinder modelled within the
calculation. This inline force, FH , was normalised by the projected area, Ap = boΔh,
to compute the effective inline pressure. This computation was undertaken at varying
depth locations to evaluate the depth-varying profile of the inline pressure. Figure
5.8(a) depicts a projected area, Ap, on the horizontally projected surface of the
OWC; the surface being indicated by the grey rectangle on this figure. The sectional
height of the projected area is set to Δh = 0.035B. In addition, the magnitude of
the inline pressure, FH,o/Ap, was normalised by ρgAo to investigate its dependence
on the incident wave amplitude, Ao.

Figure 5.8(b) defines the first three harmonic components of the normalised mag-
nitude of the inline pressure, FH,o/ρgApAo, based upon the undisturbed wave field.
These cover the full draft of the water column. Clearly, with the increasing har-
monic order, the value of FH,o/ρgApAo reduces significantly. With the structure
present within the wave field, the value of FH,o/ρgApAo predicted by the linear po-
tential solution is shown in Figure 5.8(c). Within this figure, the pressure due to
the linear scattered wave is non-zero over the entire draft. Nevertheless, it shows a
marked reduction with depth. Furthermore, the contribution of the incident wave
on the pressure arising from the linear scattered wave is significant; the expectation
being that the contribution from the high-harmonics of the incident wave will be
small (Figure 5.8(b)).
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(a) (b) (c)

Figure 5.8: (A) Horizontally projected surface of an OWC and a projected area, Ap (B) depth-
varying inline-pressure magnitudes, FH,o/ρgApAo, arising from the first- [ ], second- [ ]
and the third-order [ ] incident wave pressures, and (C) FH,o/ρgApAo arising from the scattered
[ ] and the radiated waves [ ] computed from the linear potential solutions.

5.6 Effect of nonlinear scattered wave

In order to investigate the nonlinearities in the normalised inline pressure at a specific
location, the projected areas are now classified into three different zones. Figure
5.9(a) shows that zone A covers the crest-trough region and zones B and C those
areas where the column surface is continuously submerged. The sectional heights in
the last two zones are also set to Δh = 0.035B. Figure 5.9 presents the time-histories
of the normalised inline-pressures, FH (t) /ρgApAo, acting in zones A, B and C; the
data in this figure corresponding to the scattered wave elevations given in Figure
5.6(b). Figure 5.9(b) clearly exhibits a secondary loading cycle that can be accurately
reconstructed by summing the first three-harmonic components of the pressure in
zone A. Immediately below the wave trough (in area B-1), the high-frequency of
the secondary loading cycle is clearly apparent (Figure 5.9(c)). As expected, this
coincides with the phase of the high-frequencies identified in the scattered elevation
(Figures 5.6(b)); both being explained by the arrival of the Type-2 scattered wave
at the front face of the cylinder.

Importantly, Figure 5.9(c) also confirms that the existence of the secondary load-
ing cycle and other nonlinear features, rapidly diminish with depth. For example,
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Figure 5.9: (A) Projected areas and their average depth locations, and (B)-(D) time-varying
normalised inline-pressures, FH (t) /ρgApAo, on depth-varying areas: A [ ], B-1 [ ], B-2
[ ], B-3 [ ], and C-1 [ ], C-2 [ ], C-3 [ ]. The inline force applied to zone
A is compared with the force reconstructed from the summation of the 1st, 2nd and 3rd harmonic
components [ ].

at z/B = −0.8 (area B-3), the time-history of the normalised inline-pressure is sym-
metrical and exhibits no secondary loading cycle. This suggests that the Type-2
scattered waves have little or no effect on the pressure on the lowest areas, where
the vertical force Fv acts. This is in agreement with Kasiman (2017), who confirms
that the high harmonics originating from the Type-2 scattered wave contributes a
point load acting near the free-surface. However, the time-histories of the normalised
pressures acting on the deeper areas (z/B < −0.8 in zone C on Figure 5.9(c)), in-
dicate the occurence of different high-harmonic components. With the absence of a
clear secondary loading cycle, the suggestion is that these changes are caused by a
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different mechanism.
To further explore these effects, the depth-variation of the harmonic components

of the inline pressures are evaluated in Figure 5.10. In undertaking this analysis,
the magnitudes of the first three harmonic components of the inline force, F (1)

o ,
F (2)

o and F (3)
o , were estimated. The remaining higher-harmonics were all included in

the higher-harmonic force component, F (HO)
o ; the latter computed as the difference

between the inline force and the summation of the first three harmonics. Again, all
the harmonic components are normalised by Fs = ρgApAo.
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Figure 5.10: The depth-variation in the harmonic components of the normalised inline-pressures:
(A) F

(1)
o /Fs, (B) F

(2)
o /Fs, (C) F

(3)
o /Fs and (D)F (HO)

o /Fs under three different wave-steepness
conditions Aok : 0.1 [ • ], 0.2 [ � ] and 0.3 [ � ].

Figure 5.10 presents the depth-varying harmonic components of the normalised
inline-pressures associated with incident waves of steepness Aok = 0.1, 0.2 and 0.3.
In all Aok cases, the first-harmonic component, F (1)

o /Fs, dominates the normalised
inline-pressure. Interestingly, the values of F (2)

o /Fs, F (3)
o /Fs and F (HO)

o /Fs near the
external free-surface, do not converge with the increasing harmonic order when Aok ≥
0.2; evidence of this is given in Figures 5.10(b),(c) and (d). The earlier studies
undertaken by Masterton (2007) and Kasiman (2017) also reported ‘non-convergent’
conditions in their studies. Indeed, they attributed this condition to the presence
of the Type-2 scattered waves. Given that these waves were also observed in the
present study, and both the D/λ and Aok values under consideration are close to
those studied earlier, the results given in Figure 5.10 appear reasonable. Nevertheless,
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these high harmonics make no contribution to the pressure at the bottom edge. This
is confirmed by the profiles of F (2)

o /Fs, F (3)
o /Fs and F (HO)

o /Fs; each of which exhibits
an exponential decay with depth below the wave trough. At greater depths, close to
the mouth of the OWC, the presence of the higher harmonics again increases. It will
be shown in subsequent sections that this is due to an entirely different effect.

5.7 Observations of nonlinear responses

5.7.1 Nonlinear response characteristics

The internal water surface elevations, ηi, within the OWCs are presented in Figure
5.11; the data being normalised by the incident wave amplitude, ηi/Ao. Once again,
the time base has been shifted as described in Section 5.4. This data confirms that
the high-frequency effects observed in the near-field scattered wave elevations do
not appear in the internal surface elevations. This suggests that the responses of
the water columns, ηi, are not influenced by the high harmonics in the near-field
scattered wave elevations. This is consistent with the arguments outlined at the end
of Section 5.6.

Nevertheless, nonlinearities do play a role in the internal surface elevations. This
is supported by comparisons between the ηi elevations predicted by the linear poten-
tial theory and the viscous flow solver in Figure 5.11. To achieve these comparisons,
the linear potential solutions have been scaled to appear on the same axis with the
viscous flow solutions. Evidently, the linear potential solution over-estimates the
normalised amplitude of the internal surface elevation, ηi

o/Ao, for each case of D/B

and Aok; the largest discrepancy occuring in the case of D/B = 0.435. Further-
more, the characteristics of the internal surface elevations indicate the existence of
the nonlinearities. Three effects warrant particular attention:

(i) The ηi
o/Ao value, also referred to as the response amplitude operator or RAO,

progressively decreases with increasing Aok,

(ii) The progressively varying phase of ηi relative to the incident wave elevation at
the centre of the water column, and

(iii) The asymmetry of ηi.
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(a) D/B = 1.25, and D/λ = 0.17

(b) D/B = 0.435, and D/λ = 0.06

(c) D/B = 0.15, and D/λ = 0.02

Figure 5.11: Time-histories of the normalised internal water surface elevations, ηi (t) /Ao, for
varying diameters, D/B, due to the wave excitations of varying incident wave steepness Aok: 0.03
[ ], 0.1 [ ] and 0.2 [ ] compared with the linear potential solutions [ ] scaled to
appear on the same axis.

An example of point (i) is indicated by the red arrows on Figure 5.12(a). This shows
a close-up view of ηi for D/B = 1.25. The value of ηi

o/Ao predicted from the viscous
flow solution is approximately equal to one for linear incident waves (Aok = 0.03). As
Aok increases, the ηi

o/Ao value progressively decreases. This characteristic is evident
from all cases shown on Figure 5.11.

Point (ii) is indicated by the blue arrows on Figure 5.12(a). This characteristic
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Figure 5.12: Close-up views of the time-histories of ηi (t) /Ao that indicate: (A) the progressively
decreasing ηi

o/Ao (Red) and the progressively varying response phase shift (Blue) taken from the
case of D/B = 1.25, and (B) the response asymmetry (Orange) taken from the case of D/B = 0.15
due to the wave excitations of various Aok: 0.03 [ ], 0.1 [ ] and 0.2 [ ].

will subsequently be referred to as the progressively varying response phase differ-
ence. Figure 5.12(a) confirms that this progressively decreases as Aok increases.
Conversely, it remains almost constant for D/B = 0.435, and progressively increases
when D/B = 0.15 (Figures 5.11(b) and 5.11(c)).

Finally, point (iii) is demonstrated in Figure 5.12(b). The response asymmetry
observed in ηi can be identified from the zero-crossing periods. Clearly, the values
of ΔT1 and ΔT2 for the negative and positive ηi are not equal. The data presented
in Figure ?? suggests that varying degrees of asymmetry occur in all cases.

5.7.2 Excitation condition and response phase difference

Prior to discussing the three nonlinear characteristics of ηi, the relationship between
the excitation condition applied to an OWC and the response phase difference is
discussed. Previously, Figure 5.11 confirmed that the response phase differences in a
potential flow for D/B = 1.25 and 0.15 are approximately 180◦ and 0◦, respectively.
For D/B = 0.435, this variable is slightly larger than 0◦. An explanation for this
variation with the aspect ratio (D/B) is provided in Figure 5.13. This reveals the
dimensionless frequencies, ω2B/g, at which the theoretical peak values of ηi

o/Ao

arise for the three D/B values. The dimensionless frequency value for each case
corresponds to the so-called undamped natural frequency, ωnd, for that case. In
fact, this figure confirms the shift of ω2

ndB/g from the dimensionless piston natural
frequency; the latter computed as ω2

nB/g = 1. The shift relates to the average mass
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of the water column since the departure of ωnd from ωn increases with diameter.

Figure 5.13: Response amplitude operators, ηi
o/Ao, for three OWCs with D/B : 1.25 [ ],

0.435 [ ] and 0.15 [ ] as a function of incident wave frequency, ω, predicted by the linear
potential flow solver (for all cases) and computed by the viscous solver (for D/B = 0.435 [•◦]) under
the weakly-nonlinear incident wave conditions (Aok = 0.1); the incident wave frequency ω being
indicated by [ ].

Figure 5.13 also confirms the changes in the position of the undamped natural
frequency, ωnd, relative to the excitation frequency, ω; the latter being associated
with the incident wave frequency in a wave excitation problem. This, in turn, alters
the excitation condition and the response phase difference of the water column.
Within these examples, the excitation frequency is ω2B/g = 0.87, as indicated by
the red line on Figure 5.13. With ω2

ndB/g = 0.76, 0.89 and 0.96 for the three cylinder
sizes (D/B = 1.25, 0.435 and 0.15), the largest diameter is under a high-frequency
excitation, whereas the smallest cylinder (D/B = 0.15) is subject to a low-frequency
excitation. In contrast, the ωnd value for the middle-sized column lies close to, but is
still larger than, the excitation frequency. This column has the largest analytically
predicted responses as noted on Figure 5.11(b).

In a viscous flow, the damped natural frequency, ωd, deviates from the undamped
natural frequency, ωnd. This deviation is clear from the OWC with D/B = 0.435;
Figure 5.13 showing that the frequency at which the peak value of ηi

o/Ao is identified
from the viscous flow solution is very close to the excitation frequency. This implies
that this OWC is under a near-resonant condition in the viscous flow, and the re-
sponse phase difference is now 90◦; evidence for the latter seen from Figure 5.11(b).
Furthermore, the fact that ωd reduces from the ωnd is consistent with the earlier
laboratory and numerical studies by Morris-Thomas MT & Thiagarajan (2006) and
Zhang et al. (2012). Indeed, comparisons between the analytical and the actual
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5.8 Physical origins of nonlinearities in motions

hydrodynamic efficiencies confirm the reduced resonant frequency of an OWC in a
viscous flow. This reduction is due to the hydrodynamic damping which, in turn,
changes the excitation condition.

5.8 Physical origins of nonlinearities in motions

5.8.1 Progressively varying RAO and response phase difference

The phase difference in the response of an OWC driven by an oscillating air pressure
progressively varies with the amplitude of the air pressure. The cases of FAPT 1
outlined in Table 5.2 confirm this. In these tests, the air pressures were computed
as p = −Po sin ωf t, the cylinder diameter was fixed at D/B = 0.435, and the forcing
frequencies were set to three different values: ω2

fB/g = 1.11, 0.87 and 0.71. These
values correspond to a high-frequency, a resonant and a low-frequency excitation
respectively. Furthermore, the amplitude of the air pressure, Po, defined by ρgAP

o ,
varies for each frequency case; AP

o being analogous to a “static” displacement. A
normalisation of the internal surface amplitude by this static displacement, ηi

o/AP
o ,

estimates the response amplitude operator of the OWC.
Figure 5.14 provides the time-histories of the normalised air pressure, p (t) /AP

o ,
and normalised internal surface elevations, ηi (t) /AP

o . Within this figure, only the
“steady-state” or developed motion of the internal free-surface are presented. In
respect of the response amplitude, it is evident that the ηi

o/AP
o value progressively

reduces with the Po value in all excitation conditions. In addition, the response phase
difference relative to the sinusoidally fluctuating air pressure is notably different in
the three excitation cases. In the high-frequency excitation, the phase difference
progressively decreases with the air pressure amplitude (Figure 5.14(b)). Conversely,
the phase difference in the resonant case is relatively invariant (Figure 5.14(c)), while
in the low-frequency excitation it progressively increases (Figure 5.14(d)).

Comparisons between Figures 5.14 and 5.11 reveal identical trends in the response
under the forced air pressure oscillations and regular wave excitations. Irrespective
of the excitation mechanism, the response phase difference progressively varies, and
the RAO value progressively decreases. This behaviour is typically observed in the
harmonic response of a viscously damped system subjected to an excitation force.
This leads to two conclusions: (i) the changes in the response phase difference are
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5.8 Physical origins of nonlinearities in motions

(a) p

(b) ω2
f B/g = 1.11

(c) ω2
f B/g = 0.87

(d) ω2
f B/g = 0.71

Figure 5.14: Time-histories of the normalised air pressure, p (t) /ρgAP
o [ ], and normalised

internal surface elevations, ηi (t) /AP
o , undergoing forced oscillations at varying forcing frequencies,

ω2
f B/g, and air pressure amplitudes, Po/ρg = AP

o : 0.0016 m [ ], 0.005 m [ ] and 0.017 m
[ ] compared with the linear potential solutions [ ] scaled to appear on the same axis.

solely dependent on the excitation condition, and (ii) the response phase difference
and the response amplitude operator are dependent on the amplitude of the forcing,
either air pressure or incident wave. The physical cause of point (ii) is associated
with the increased damping in the OWC.
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5.8 Physical origins of nonlinearities in motions

5.8.2 Response asymmetry

The mass of the water column continuously varies with time, unlike the mass of
an oscillating solid body. This varying mass is represented by a nonlinearity in the
inertia force which may be the cause of the response asymmetry. To confirm this, the
validity of three different descriptions of the water column are evaluated as follows:

(i) A fully nonlinear system as represented by Equation (2.37),

(ii) A partially nonlinear system with linear inertia and nonlinear damping:

[ρAcB + Am] η̈i + b1Acη̇i + 1
2b2ρAcη̇i|η̇i| + ρgAcη

i = Ft. (5.2)

(iii) A partially nonlinear system with nonlinear inertia and linear damping:

[
ρAc(B + ηi) + Am

]
η̈i + b1Acη̇i + 1

2b2ρAcη̇i + ρgAcη
i + 1

2ρAcη̇i
2 = Ft, (5.3)

where Ft = pAc is the excitation force that acts on the water column in a forced
oscillation test.

As a first step, the curve-fitting solver within Matlab, lsqcurvefit, was applied to
the viscous solution to estimate the hydrodynamic coefficients: the added mass, Am,
and the nonlinear damping coefficient, b2. By implementing these hydrodynamic
coefficients and solving the equations noted above, the internal surface elevation was
re-simulated. In each case, an ODE 45 solver within Matlab was applied. The re-
simulated surface elevation is compared with the computation from the initial viscous
flow solver to investigate the validity of each system.

Figure 5.15 presents the comparisons of the internal surface elevations arising
from forced air pressure oscillations. The air pressure amplitudes were prescribed
such that the response amplitude numbers, ηi

o/B, were 0.25 and 0.5. Clearly, Figure
5.15 shows that the surface elevations re-simulated from the fully nonlinear system
(i) are in excellent agreement with the computed elevations. In contrast, the re-
simulation using the linear inertia system (ii) produces a small deviation from the
computed elevation for ηi

o/B = 0.25, and a marked discrepancy for ηi
o/B = 0.5. The

discrepancy is indicated by the equal zero-crossing periods (up-crossing and down-
crossing) of the re-simulated elevation. Interestingly, the linear damping and nonlin-
ear inertia system (iii) and the fully nonlinear system (i) predict identical elevations.
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5.8 Physical origins of nonlinearities in motions

Evidently, the nonlinear inertia force is responsible for the response asymmetry. A
linear inertia system is accurate only when ηi

o � B.
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o/B = 0.25
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o/B = 0.5

Figure 5.15: The internal surface elevations, ηi, computed by the viscous flow solver [ ] and
re-simulated using the mathematical formulations for: (i) a fully nonlinear system [ ], (ii) a
linear inertia and nonlinear damping system [ ], and (iii) a nonlinear inertia and linear damping
system [ ] due to the air pressure amplitudes of Po/ρg: (A) 0.005 m and (B) 0.017 m.

To further explore this response asymmetry, OWCs with different mouth shapes
undergoing forced air pressure oscillations and incident wave excitations were nu-
merically modelled. The numerical models correspond to the FAPT 2-4 and RWT
3, 5, 6 described in Tables 5.2 and 5.1, respectively. The various shapes under con-
sideration are the SE, SC and BS mouths. For each mouth shape, the air pressure
amplitudes, Po, and the incident wave steepness, Aok, were varied such that the
response amplitude numbers, ηi

o/B, of all the tests were comparable. Three values
of ηi

o/B = 0.25, 0.5 and 0.75 were considered. The only exception concerned the
regular wave tests in which the breaking limit (Mehaute, 1976) imposed a maximum
of ηi

o/B = 0.6.
Figure 5.16 presents the time-histories of the internal surface elevations computed

using all models. These elevations were shifted in time such that the maximum re-
sponse of ηi/B occurs at t = 0. Once again, only the “steady-state” or developed
elevations are presented. Comparing the individual sub-plots confirms that the re-
sponse asymmetry increases with the amplitude of the internal surface-elevation, ηi

o.
In addition, this suggests that the response asymmetry is independent of any vortex
shedding; the latter being markedly different when flow passes a sharp-edged (SE) or
a streamlined body (Troesch & Kim, 1991). Indeed, the absence of vortex generation
near a BS mouth was previously indicated by the absence of any reduction of the
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5.8 Physical origins of nonlinearities in motions

radiated wave amplitude for increasing forced oscillation (Section 4.5.2).

(a) ηi
o/B ≈ 0.25 (b) ηi

o/B ≈ 0.25

(c) ηi
o/B ≈ 0.5 (d) ηi

o/B ≈ 0.5

(e) ηi
o/B ≈ 0.75 (f) ηi

o/B ≈ 0.6

Figure 5.16: Time-varying internal surface elevations, ηi (t), within OWCs with SE [ ], SC
[ ] and BS mouths [ ] subjected to forced air pressure oscillations (the first column) and
incident wave excitations (the second column) with various response amplitude numbers, ηi

o/B.

Further evidence of these effects is given in Figure 5.17. This contrasts the
internal surface elevations, ηi, within three OWCs. These relate to SE mouths with
D/B = 0.435 and 1.25, and a BS mouth with D/B = 0.435. In each case, the
time-histories have been shifted so that ηi (t) = 0 at t = 0. Clearly, the response
amplitudes, ηi

o, due to an incident wave of Aok = 0.2 differ given the varying diameter
and mouth shape. However, the response asymmetry becomes most pronounced for
the largest ηi

o/B value. In these comparisons, this occurs in the BS mouth case.
Confirmation of this nonlinear characteristic is indicated by the zero-crossing periods,
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5.8 Physical origins of nonlinearities in motions

ΔT , in one oscillation. Taken together, Figures 5.16 and 5.17 confirm the importance
of ηi

o/B number in determining the response asymmetry.

Figure 5.17: Time-histories of the internal surface elevations, ηi (t), within OWCs with SE mouths
and D/B = 0.435 (red) and 1.25 (blue) and a BS mouth with D/B = 0.435 (black).

Building on these results, the importance of the zeroth, ηi(0)
o , and the second

harmonics, ηi(2)
o , on the response asymmetry is demonstrated by a harmonic recon-

struction of an internal surface elevation. This was undertaken by progressively
summing the first three harmonics of the elevation, as described on Figure 5.18.
Specifically, Figure 5.18(a) shows that the zeroth and first harmonics do not rep-
resent the response asymmetry. In contrast, Figure 5.18(b) shows that while the
second harmonic is critically important, the third harmonic is not. The arguments
outlined thus far prove that neither vortex nor the nonlinear wave interactions with
an OWC are responsible for the response asymmetry.
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Figure 5.18: Time-varying internal surface elevation, ηi (t) /B [ ], approximated by (A) the
1st [ ], the sum of the 0th and 1st harmonics [ ], (B) the sum of the 0th, 1st and 2nd

[ ], and the 0th, 1st, 2nd and 3rd harmonics [ ], for a FAPT with ηi
o/B ≈ 0.5
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5.9 Physical origins of nonlinearities in forces

5.9 Physical origins of nonlinearities in forces

The physical origins of the second- and higher-order harmonics in the forces acting
at the bottom edge suggest a different effect. In seeking a physical explanation, the
earlier variation of the mouth shape is re-considered. Figure 5.19 presents the depth-
variation in the harmonic components of the normalised inline-pressures for OWCs
with SE, SC and BS mouths. In each case, D/B = 0.435 and Aok = 0.1.

In respect of the first-harmonic component, Figure 5.19(a) shows that the depth-
varying profiles are independent of mouth shape, except at the bottom edge. The
latter indicates that the inline pressure at the draft of the BS mouth increases because
the lip radius effectively enlarges the diameter of the OWC. The explanation for this
lies in the fact that the value of F (1)

o /Fs predicted from the linear potential solver
increases with the diameter. For D/B ratios of 0.15, 0.435, and 1.25, these values
at z = −B are estimated to be 0.05, 0.15 and 0.48, respectively. The differences
highlighted on Figure 5.19(a) are thus unrelated to any possible vortex effects.
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Figure 5.19: The depth-variation in the harmonic components of the normalised inline-pressures:
(A) F

(1)
o /Fs, (B) F

(2)
o /Fs, (C) F

(3)
o /Fs and (D) F

(HO)
o /Fs for three different mouth shapes: SE

[ • ], SC [ • ] and BS [ • ].

A comparison of the second harmonic profiles shown in Figure 5.19(b), suggests
a clear vortex effect; the data relating to the BS case being markedly different.
The second harmonics of the normalised inline-pressures for the SE and SC mouth
exhibit increasing amplitudes near the bottom edge. In contrast, the second harmonic
amplitude associated with the BS mouth remains relatively invariant close to the
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5.10 Physical significance of force nonlinearities

bottom edge. This trend is consistent with the higher-harmonic profiles observed in
Figure 5.19(d), but is not replicated in the third harmonic profiles (Figure 5.19(c)).

In addition to the possible importance of the vortex motion, the water column
oscillation may itself generate second-harmonic components in the pressure field.
Previously, Figure 5.8(c) showed that the first harmonics of the normalised inline-
pressure at varying depth locations was very small in a pure radiation flow. The
pressure field generated by the water column oscillation may also contain second
harmonics, with an axisymmetric distribution over the full draft of the water column.
Indeed, the second harmonic of the normalised inline-pressure acting either on the
projected upstream or downstream surface of the bell-mouthed OWC, has a depth-
increasing profile near the bottom edge. This is observed in Figures 5.20(c) and
(d). Indeed, the magnitudes of the pressures acting on these two surfaces, near the
bottom edge, are approximately equal but opposite in sign. Evidence of this is given
in Figure 5.21(a) which shows the time-varying second harmonics of the normalised
inline-pressures, F

(2)
H (t) /Fs, on each surface (upstream and downstream) at z = −B.

This explains why the second harmonics of the normalised inline-pressures computed
for the whole surface, are relatively invariant near the bottom edge of the bell-
mouthed OWC (Figure 5.19(b)). Conversely, the second harmonic profiles (Figures
5.20(c) and (d)) for the upstream and downstream surfaces of the semicircular-
ended OWC, indicate a non-axisymmetric pressure distribution. Confirmation of
this is given in Figure 5.21(b)). Clearly, these contrasting observations confirm that
both the water column oscillation and vortex motion are responsible for generating
the second harmonic of the pressure at z = −B.

5.10 Physical significance of force nonlinearities

5.10.1 Vertical force in a linear potential flow

To investigate the significance of the different sources of nonlinearity, the physical
meaning of vertical force is sought from a linear potential flow computation. This is
motivated by the fact that a pure radiation flow is well described by a linear potential
solution; evidence for this having been provided in Sections 4.3.2 and 4.3.3.

In a forced oscillation test, the vertical force, acting perpendicular to the bottom
cross-sectional area of the water column, physically represents the hydrodynamic
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Figure 5.20: The depth-variation in the harmonic components of the normalised inline-pressures:
F

(1)
o /Fs and F

(2)
o /Fs for the SC [ • ] and BS case [ • ]. The integration was conducted

separately on the upstream (A)&(C) and downstream surfaces (B)&(D).
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Figure 5.21: Time-histories of the second-harmonic normalised inline-pressures, F
(2)
H (t) /Fs, at

z = −B acting on the upstream [ , ] and downstream surface [ , ], and the
summation of the two [ , ] for (A) the BS and (B) SC mouth.

force. In a linear potential flow, this can be estimated from the summation of the
forces associated with the added mass and radiation damping. Figure 5.22 shows
a good comparison between the vertical force, Fv, and the hydrodynamic force, Fr,
in this potential flow. The mathematical formula that defines these two forces are
given as follows:

Fv (t) = Re
[
ρω2 (Po/ρg) e−iωt

∫ b

0

∫ 2π

0
φR (r, θ, −B) rdrdθ

]
, (5.4)

Fr (t) = Re
[(

−Amω2 − iωb1Ac

)
(Po/ρg)

(
1 − ω2/gφR (0, 0, 0)

)
e−iωt

]
. (5.5)

Adopting these arguments, the vertical force under a forced oscillation test in a linear
potential flow is simply associated with the oscillation of the water column.
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Figure 5.22: A comparison between the time-varying vertical force, Fv (t) [ ], and the hy-
drodynamic force, Fr (t) [ ], acting on an OWC with D/B = 0.435 in a forced oscillation test;
both forces were predicted from the linear potential theory.

5.10.2 Vertical force in a viscous flow

The linkage between the nonlinear characteristics of the vertical force and the flow
field in a viscous flow is investigated to understand the relative importance of the
nonlinearity sources. The vertical forces and the vorticity fields were computed from
Forced Air Pressure Tests (FAPTs). The data presented herein corresponds to the
responses shown earlier in Figure 5.16. Figures 5.23, 5.24 and 5.25 concern the OWCs
with BS, SC and SE mouths, respectively. In each case, the first columns present
the axisymmetric vorticity fields of ωθ and their mirrored fields viewed on the y = 0
plane. Three different response amplitudes are considered (ηi

o/B = 0.25, 0.5 and
0.75); in each case the data relates to the condition when the internal free-surface
is at its minimum elevation. Alongside each of these plots, the vertical force, Fv,
experienced by the OWC is presented in its normalised form, Fv/ρgAcη

i
o.

The time-varying vertical forces experienced by the OWCs and the associated
vorticity fields reveal two points.

(i) The high-frequency forcing (or secondary loading cycle) only exists when vortex
shedding occurs, and

(ii) The force asymmetry, which could also be described as the response asymmetry,
is observed for all mouth shapes.

Point (i) is confirmed in Figure 5.23; the secondary loading cycle being absent in the
BS case. Indeed, these flows are considered irrotational, even at the largest response
amplitude number of ηi

o/B = 0.75. In respect of point (ii), the evidence is seen even
when vortices are shed near the SE and SC mouths (Figures 5.24 and 5.25). The
force asymmetry is indicated by the unequal zero-crossing periods for the positive
and negative Fv.
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Figure 5.23: The vorticity fields of ωθ located around a BS mouth undergoing forced oscillations
and the associated time-varying vertical forces, Fv (t) [ ], approximated by the first three
[ ] and six [ ] harmonic components.

To further investigate point (i), data relating to the SC and SE mouths is closely
observed. Their corresponding forces exhibit secondary loading cycles when ηi

o/B =
0.25 (Figures 5.24(a) and 5.25(a)). These are periodic and only apparent during
the downward displacement of the water column; the latter corresponding to the
occurence of vortex shedding. The linkage between the vortex shedding and those
cycles is confirmed using the pressure field computed at z = −B.
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Figure 5.24: The vorticity fields of ωθ located around a SC mouth undergoing forced oscillations
and the associated time-varying vertical forces, Fv (t) [ ], approximated by the first three
[ ] and six [ ] harmonic components.

A schematic showing an x − y plane of the SE mouth at z = −B and its unit
outward normal vector is illustrated in Figure 5.26(A). Plan views describing the
evolution of the pressure contours on this plane are provided on Figures 5.26(B)-(E).
When the water column begins to move from its maximum elevation at t = 0, the
vertical force is predominantly driven by the water column. Evidence of this is seen
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Figure 5.25: The vorticity fields of ωθ located around a SE mouth undergoing forced oscillations
and the associated time-varying vertical forces, Fv (t) [ ], approximated by the first three
[ ] and six [ ] harmonic components.

from the local minimum pressure field near the centre of the water column (Figure
5.26(B)). Interestingly, immediately after this, the maximum pressure field induced
by the vortex, indicated by the pink contour levels on Figure 5.26(C), develops locally
near the bottom edge.

This local maximum pressure field is responsible for the rapidly decreasing vertical
force shown in Figure 5.25(a), at the beginning of the downward displacement. The
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explanation for this relates to two issues: (i) the area corresponding to the local
maximum pressure field has decreased at t = 0.15Tf , while the area covering the
local minimum pressure field remains constant (Figure 5.26(D)), and (ii) the rapid
decrease in the vertical force has disappeared at t = 0.15Tf (Figure 5.25(a)).

Figure 5.26: (A) A schematic showing an x − y plane of the SE mouth at z = −B, and the
evolution of the pressure contours on this plane when ηi

o/B = 0.25 at times: (B) 0, (C) 0.05Tf ,
(D) 0.15Tf and (E) 0.25Tf ; the outer and inner wall being indicated by the black lines on Figures
5.26(B)-(E).

The decrease in the area covering the local maximum pressure field is associated
with vortex motion because the vortex generated during a downward displacement
always moves away from the mouth. During the remaining period of the displacement
(0.15Tf ≤ t ≤ 0.5Tf ), the magnitude of the local minimum pressure field continues
to increase, but then decreases at a later time; the latter observed in Figure 5.26(E).
Clearly, this evolution of the pressure field shapes the vertical force.

In Chapter 4, it was confirmed that vortex moves further from the SE mouth of
an OWC at an increased ηi

o/B number. This fact and the understanding that the
area of local maximum pressure field decreases due to vortex motion, indicate the
less important influence of vortex on the vertical force. Indeed, the data presented
on Figures 5.24 and 5.25 confirm this. As the response amplitude number, ηi

o/B,
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increases, the presence of the secondary loading cycles reduces. Nevertheless, both
the horizontal and vertical asymmetry1 of the pressure time-history remains; the
secondary loading cycle linked to the process of vortex shedding.

5.10.3 Relative importance of nonlinearity sources

The nonlinearity in the vertical force is also indicated by its high-harmonic compo-
nents. The importance of these components can be evaluated from the reconstruction
of the vertical force using varying harmonic components. In Figures 5.24(b), (c) and
5.25(c), the first three harmonics accurately represent the vertical forces with no sec-
ondary loading cycle. Otherwise, the first six harmonics are required to accurately
represent the force time-history. Clearly, this confirms that the harmonics higher
than the third are produced by the vortex motion. In respect of the force asym-
metry associated with unequal zero-crossing periods, this is primarily driven by the
second harmonic; the latter associated with both the oscillation of the water column
and the vortex motion (Section 5.9).

To understand the relative significance of these different sources of nonlinearity,
changes with the amplitude of the internal free-surface, ηi

o, are evaluated. In under-
taking this, the FWCTs outlined in Table 5.2, were numerically modelled to compute
the air forces, Ft. The reason for not using data describing the vertical force, Fv,
is because this force depends on the fluid velocity near the bottom mouth, and this
may deviate from the fluid velocity at the internal free-surface (Section 4.7).

An FFT analysis of the air-force time-histories for the OWCs with a variety of
mouth shapes and forcing amplitude numbers, ηi

o/B, was undertaken. Data describ-
ing the normalised air pressures, p/ρgηi

o, is provided on Figures 3.8(a) and (b); the
air pressure p defined by Ft/Ac. Figures 5.27(a)-5.27(d) concern the harmonic com-
ponents of the normalised air-force, F

(1)
t,o , F

(2)
t,o , F

(3)
t,o and F

(HO)
t,o , and their variations

with the mouth shape and ηi
o/B number; the overbars indicating the normalisation

defined by ρgAcη
i
o. Clearly, when compared to the other components, F

(HO)
t,o and

F
(3)
t,o are small for all mouth shapes. In contrast, the F

(2)
t,o is comparable to the F

(1)
t,o ,

and becomes the most important with the increasing ηi
o/B number.

Given Equation (2.37), the summation of the force terms, Ft,q, that contribute

1The term horizontal (or vertical) defining the plane about which the asymmetry is defined.
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Figure 5.27: Harmonic components of the normalised air-forces: (A) F
(1)
t,o , (B) F

(2)
t,o , (C) F

(3)
t,o ,

(D) F
(HO)
t,o , and (E) Time-histories of the zeroth and the second-harmonic air-forces relative to the

second-order excitation forces, F
(0)
t (t) /FSO [dashed lines] and F

(2)
t (t) /FSO [solid lines], for the BS

mouth when ηi
o/B numbers: 0.25 and 0.5, and (F) The variation in the relative second-harmonic

component, F
(2)
t,o /FSO, with the ηi

o/B number and mouth shape: SE [◦], SC [�] and BS [�].

to the time-histories of the zeroth and second harmonics of an air force is given by:

Ft,q = ρAcη
iη̈i + 1

2ρAcη̇i
2 + 1

2b2ρAcη̇i|η̇i|, (5.6)

where ηi only contains a first harmonic component, and the subscript q indicates
the quadratic product of this first harmonic. The first term corresponds to a non-
linear inertia force. In the absence of any nonlinear damping forces expressed as the
third term, the time-varying zeroth and second harmonic forces, F

(0)
t (t) and F

(2)
t (t),
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5.11 Concluding remarks

normalised by the amplitude of the second-order excitation force, FSO, are defined:

F
(0)
t (t) /FSO = −0.5, (5.7)

F
(2)
t (t) /FSO = −1.5cos2ωf t, (5.8)

where FSO is computed as 1/2ρAc (ηi
oωf )2.

Figure 5.27(e) confirms that for the BS mouth, these equations accurately rep-
resent the F

(0)
t (t) /FSO and F

(2)
t (t) /FSO predicted from the FFT analysis. The

accurate prediction proves that these two harmonics are driven by the water col-
umn oscillation when the flow is irrotational. Specifically, the variation in the rel-
ative value of the second-harmonic component, F

(2)
t,o /FSO, with the ηi

o/B number
and mouth shape is presented in Figure 5.27(f). Clearly, in the SE and SC cases,
the F

(2)
t,o /FSO values converge to those for the BS mouth at large ηi

o numbers. This
indicates that the contribution of the water column oscillation outweighs the nonlin-
ear damping force as the ηi

o/B number increases. It is also important to note that
this is consistent with the earlier arguments explaining why the secondary loading
cycle reduces at large ηi

o/B numbers. It is thus concluded that when the forcing or
response amplitude increases, the second harmonic force due to the water column
oscillation becomes increasingly more important than that arising from the vortices
generated near an SE or SC mouth.

5.11 Concluding remarks

This chapter has investigated the physical origins of the nonlinearities in the forces
and motions within OWCs, and demonstrated their relative importance. To under-
take this investigation, a variety of OWCs subject to incident wave excitations and
forced oscillations were numerically modelled.

The nonlinearities in the motion of the internal water surface elevation within
an OWC have been shown to be critically dependent on the amplitude of forcing,
either air pressure or incident wave. Two characteristics associated with this are the
progressively decreasing RAO and the progressively varying phase difference of the
elevation. Both effects are dependent on the nonlinear damping appropriate to an
OWC. In addition, the response asymmetry has been verified as a third nonlinear
characteristic. This asymmetry is clearly observed from the zero-crossing periods of
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5.11 Concluding remarks

the internal elevation. This effect has been directly linked to the instantaneously
varying mass of the water column which drives a nonlinearity in the inertia force.
This, in turn, causes the response asymmetry.

The nonlinearities in the forces have also been identified by investigating both
the vertical force and the inline pressure. This aspect of the work has confirmed that
the nonlinear characteristics incorporate both a force asymmetry and a secondary
loading cycle. While the former is persistently in both irrotational and separated
flow conditions, the latter is critically dependent on the vortex shedding of the mouth
of the OWC. Importantly, the depth-variation in the harmonic components of the
normalised inline-pressures underpins these two physical origins. Specifically, this
variation confirms that the free-surface nonlinearity arising from Type-2 scattered
waves has negligible effect on the vertical force and hence the motion of the OWC.
Interestingly, an investigation into the relative importance of the two dominant effects
proves that vortex shedding becomes less important as the amplitude of water column
motion increases. This is supported by the substantially reduced secondary loading
cycle at large response amplitudes.
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6
Added-mass and nonlinear damping

coefficients

6.1 Chapter overview

In linear superposition theory, the hydrodynamic force that acts on an OWC is
assumed to be independent of the mechanism that excites the water column. In a
viscous flow solution, the behaviour of vortices that arises from a wave excitation and
a forced oscillation test may not be identical. As such, the associated hydrodynamic
forces will not be comparable. The applicability of the hydrodynamic coefficients
computed from a forced oscillation test, and used to predict the response of a water
column in a wave-excitation problem, requires investigation.

In studies of oscillatory flows past fixed bodies, the applicability of the coefficients
evaluated from a forced oscillation test has been investigated previously. For example,
the force coefficients computed from the planar oscillatory flow in Sarpkaya (1977)
have been shown to be in good agreement with Chakrabarti (1980) and Stansby et al.
(1983); the latter running their experimental tests in shallow water-wave conditions.
However, the coefficients evaluated in deep water-wave conditions show significant
deviations from those recorded in planar oscillatory flows (see, for example, Stansby
et al. (1983)).

In the context of an oscillating body, Chakrabarti & Cotter (1984) confirmed that
the measured loads on a freely-oscillating tower subject to incident waves were reason-
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6.2 Method of quantifying hydrodynamic coefficients

ably well predicted using the hydrodynamic coefficients from forced tests. However,
for this to be true, the range of KC numbers appropriate to these two different
excitation mechanisms must be of a similar magnitude. Likewise, Koterayama &
Nakamura (1988) confirmed the applicability of forced surging vertical cylinder tests
to predict the hydrodynamic loads on the cylinder freely surging in regular waves.
This was only valid provided that the relative KC range, defined by the velocity of
the surging cylinder relative to the wave-induced velocity, was set equal to the KC

range in the forced test.
Taken togeher, these results indicate that setting a comparable KC or relative

KC condition in different excitations ensures the similarity in the flow kinematics
and thus the applicability of the coefficients. The present study will build upon these
results, investigating the applicability of a forced oscillation test and the validity of
linear superposition theory in the context of an OWC. Specifically, the investigations
that follow will consider:

1. The hydrodynamic coefficients for OWCs computed from forced oscillation
tests, and

2. The relevance of these coefficients to the flow fields and the nonlinear forcing
described in Chapters 4 and 5.

Having investigated both aspects, the applicability of the forced oscillation tests to
the prediction of the responses of the water columns undergoing wave excitations
will be evaluated. By investigating a broad range of flow conditions, the importance
of the vortex motion in damping the response of the water column will be clearly
established.

6.2 Method of quantifying hydrodynamic coefficients

In Section 5.8.2, the lsqcurvefit routine within Matlab was implemented to quantify
the hydrodynamic coefficients for an OWC. The present chapter also adopts this
approach. In undertaking this quantification, three important points are addressed:

(i) The inclusion of the nonlinear inertia and the second-order excitation term into
Equation (2.37),
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6.2 Method of quantifying hydrodynamic coefficients

(ii) The dependence of the hydrodynamic coefficients on the direction of travel of
the water column, and

(iii) An efficient test to evaluate the dependence of the resulting coefficients on key
parameters.

It has already been shown in Section 5.8.2 that point (i) is essential to capture the
response asymmetry of the internal surface elevation. Likewise, point (ii) is motivated
by the earlier evidence that the direction of travel of the water column influences
vortex motion (Section 4.8). To address this, the present study considers the so-called
directionally dependent coefficients. These are computed by fitting Equation (2.37),
using lsqcurvefit, over half-periods of oscillation. The results are then compared to
directionally invariant coefficients, quantified by fitting the equation over one full
period of oscillation.

In addressing point (ii), two OWCs with sharp-edged (SE) and bell-shaped (BS)
ends undergoing Forced Air Pressure Tests (FAPTs) were numerically modelled. The
directionally dependent coefficients were first quantified. The added-mass coefficient,
Am/ρAcB, and the nonlinear damping coefficient, b2, for both OWCs are given in
Table 6.1; the coefficients for both OWCs clearly shown to be directionally dependent.

Table 6.1: Hydrodynamic coefficients for OWCs with SE and BS mouths undergoing FAPTs

Mouth shape Displacement Am/ρAcB b2

Downward 0.17 1.39SE Upward 0.15 0.61
Downward 0.08 0.27BS Upward 0.06 0.05

To investigate the importance of these effects, the ηi elevation within each OWC
was re-simulated using both the directionally dependent and directionally invariant
coefficients. Figure 6.1 shows comparisons between the ηi elevations computed by the
viscous flow solver and the re-simulated ηi elevations. Once again, only the developed
(or “steady-state”) elevations are presented. In the SE case, Figure 6.1(a) shows a
small discrepancy between computed and re-simulated elevations. In the BS case
(Figure 6.1(b)), this discrepancy is even smaller. Importantly, in both the SE and
BS cases, the implementation of either the directionally dependent or directionally
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6.3 Hydrodynamic coefficients under forced oscillations

invariant coefficients provides a reasonably good prediction of the elevation computed
by the viscous flow solver.

(a) SE case (b) BS case

Figure 6.1: Comparisons between the internal surface elevation, ηi, computed by the viscous
flow solver [ ] and the ηi elevation re-simulated using directionally dependent [ ] and
directionally invariant coefficients [ ].

In considering point (iii) noted earlier, Forced Water Column Tests (FWCTs)
with a variety of key parameters were numerically simulated. The key parameters
are associated with the amplitude of internal water surface elevation, ηi

o, and the
angular frequency, ωf . To evaluate the appropriateness of data generated from a
FWCT, the internal surface elevation, ηi, generated from a FAPT, is compared with
the ηi elevation re-simulated using the directionally dependent coefficients computed
from the FWCT. Figure 6.2 presents this data for OWCs with various mouth shapes
and D/B ratios. Good agreement is observed across all the “steady-state” elevations
for all OWCs. Indeed, the only departures arise in the transient-state elevation
in the BS case. This indicates the dependence of the coefficient on the ηi

o value.
Nevertheless, the comparisons confirm that the coefficients computed from a FWCT
can be implemented to predict the nonlinear response arising from a FAPT.

6.3 Hydrodynamic coefficients under forced oscilla-

tions

6.3.1 Forcing amplitude number and cylinder aspect-ratio

This section concerns variations in the hydrodynamic coefficients with forcing am-
plitude number, ηi

o/B, and cylinder aspect-ratio, D/B. The key parameters and di-
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Figure 6.2: Comparisons between the internal surface elevations, ηi, predicted from FAPTs [ ]
and the ηi elevations re-simulated using the hydrodynamic coefficients from FWCTs [ ] for
OWCs with: (A) SE mouth, D/B = 0.435 and air pressure amplitude, Po/ρg = 0.017 m, (B) SE
mouth, D/B = 1.25, and Po/ρg = 0.023 m, and (C) BS mouth, rl = 0.5D, D/B = 0.435 and
Po/ρg = 0.009 m.

mensions outlined in Table 4.1 were adopted and the draft held constant at B = 0.16
m were adopted. In the paragraphs that follow, three important aspects of the mod-
elling procedure will be addressed.

(a) Added-mass coefficient and effective draft
Figure 6.3(a) concerns the variation of the added-mass coefficient, Am/ρAcB,
with the ηi

o/B number for an OWC with a SE mouth and D/B = 0.435. The
forcing frequency was set to ω2

fB/g = 0.87. Direct comparisons between the
viscous flow computation and the linear potential solution are shown; the former
considering both the directionally dependent and directionally invariant coeffi-
cients for the OWC. Three trends require particular attention:
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6.3 Hydrodynamic coefficients under forced oscillations

(i) The Am/ρAcB coefficients computed from the viscous flow solver are larger
than those generated using the linear potential solution,

(ii) The discrepancy between the two different solutions increases with the ηi
o/B

number, and

(iii) The Am/ρAcB values corresponding to the downward displacements are
larger than those estimated from the upward displacements.
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Figure 6.3: (A) Variations of the added-mass coefficient, Am/ρAcB, and (B) the nonlinear damp-
ing coefficient, b2, with the ηi

o/B number in the case of OWC with a SE mouth and D/B = 0.435.
The viscous flow solution is used to provide both directionally invariant [∗] and directionally de-
pendent coefficients; the latter corresponding to the upward [�] and downward displacements [◦].
Comparisons with the linear potential solution [ ] are also provided.

The added mass, Am, predicted from the viscous flow solver and the linear po-
tential solution, corresponds to the damped natural frequency, ωd, and the un-
damped natural frequency, ωnd, respectively. In each case, the relevant frequency,
ωd or ωnd, is defined by

√
g/B

1+(Am/ρAcB) , following Yeung & Jiang (2014). This re-
lationship, together with the earlier confirmation concerning the reduction of ωd

relative to ωnd given in Section 5.7.2, explains point (i).

The fact that a linear potential solution is independent of the amplitude of
excitation (imposed on a water column) is consistent with the independence of
the Am/ρAcB coefficient on ηi

o/B number. As a result, the linearly predicted
Am/ρAcB coefficient is presented by the line on Figure 6.3(a). The difference
between this and the viscous flow calculations can be explained by:
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6.3 Hydrodynamic coefficients under forced oscillations

(A) The increasing effective draft, Be, with ηi
o/B number in a viscous flow (Sec-

tion 4.10), and

(B) The relationship between ωd and Be expressed as ωd =
√

g/Be (Zhang et al.,
2012).

Clearly, both these considerations indicate the reducing trend of ωd as ηi
o/B

increases. Given the relationship between ωd and Am noted earlier, this explains
point (ii). Importantly, the progressive departure of Am/ρAcB from the linear
potential solution is caused by the vortex motion at the mouth of an OWC.

In Section 4.10, it was shown that the effective draft during a downward displace-
ment of the water column was larger than that during an upward displacement.
This seems to be at odds with point (iii). The explanation for this lies in the
vortex shedding. During a downward displacement, a pair of vortices is shed
outside the water column (see Figures 4.20(a)-(d)). As such, the external fluid
flow near the bottom mouth has an increased volume and hence fluid mass within
a rotational flow field. At the same time, the water column must be displaced
downwards due to the applied forcing. This, in turn, forces the rotational flow
field away from the bottom mouth. As a result, a larger additional inertial
force must be included in the applied forcing to accelerate the oscillating water
column.

(b) Nonlinear damping coefficient and nonlinear forcing
Figure 6.3(b) shows an exponential decay of the nonlinear damping coefficient,
b2, with ηi

o/B. This is consistent with the earlier comments concerning the
decreasing contribution of vortex motion to the second-harmonic component of
the air force, F

(2)
t,o (see Figure 5.27(f)). Figure 5.27(f) and Equation 5.6, that

expresses the force terms contributing to the time-varying second-harmonic air-
force, lead to two conclusions related to the SE mouth:

(i) The amplitude of the nonlinear damping force, FNL, relative to the ampli-
tude of the second-order excitation force, FSO, exponentially decays with
the increasing ηi

o/B number, and

(ii) The vortex motion, instead of surface friction, contributes the main source
of nonlinear damping.

199



6.3 Hydrodynamic coefficients under forced oscillations

With FNL equivalent to b2Ac (ηi
oωf )2, point (i) is consistent with the trend in

the b2 coefficient with the ηi
o/B number (Figure 6.3(b)). This decay signifies the

reduced importance of the vortex motion as ηi
o/B increases.

Point (ii) is supported by the fact that the wall surface area of the OWC with
the SE mouth is smaller than that with the BS mouth. In contrast, the data
presented on Figure 5.27(f), indicates that the FNL value is larger for the SE
mouth. This is entirely consistent with the importance of the vortex motion.

(c) OWCs with varying D/B ratios
Figure 6.3 confirms that the variation of Am/ρAcB and b2 with ηi

o/B are consis-
tent irrespective of the directional dependence. Indeed, the directionally invari-
ant values can be accurately estimated from the mean values of the corresponding
directionally dependent coefficients. Based upon this, the following investigation
concerns the directionally invariant coefficients for OWCs with SE mouths and
a variety of cylinder aspect-ratios, D/B.

The variations of the added-mass coefficient, Am/ρAcB, with KC number and
D/B ratio are presented in Figure 6.4(a). The average mass of the water column
clearly influences this coefficient. This is based upon the fact that the Am/ρAcB

coefficient predicted by the linear potential solver, increases from 0.05 to 0.32 in
the range of 0.15 ≤ D/B ≤ 1.25. However, the vortex motion also affects this
coefficient for all D/B ratios. The discrepancies between the linear potential
solution and the viscous flow computation confirm this. The deviation of ωd

from ωnd is thus evident for all D/B ratios.

Unlike Am/ρAcB, b2 has a smaller value at a constant KC number but an in-
creased D/B ratio (Figures 6.4(a) and (b)). Interestingly, Figure 6.4(c) confirms
that b2 is less affected by D/B than ηi

o/B. However, it is notable that there is an
appreciable variation under the smallest ηi

o/B condition; the b2 coefficient esti-
mated to lie between 2.0 and 2.5. Nevertheless, the variation of the b2 coefficient
with the ηi

o/B number for each D/B ratio is generally comparable. The curve
of an exponential decay computed as b2 = 1.45e−4.79ηi

o/B + 1.02e−0.05ηi
o/B can fit

all variations of this coefficient.

Figure 6.4(c) also confirms that the b2 coefficients for all D/B ratios converge to
1.0 for large ηi

o/B. This provokes a question concerning the validity of using a single
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Figure 6.4: Variations of (A) the added-mass coefficient, Am/ρAcB, with KC number and (B)
the nonlinear damping coefficient, b2, with KC and (C) ηi

o/B numbers predicted from the viscous
flow solver [symbols] and comparisons with the linear potential solution [lines] for the OWCs with
SE mouths and D/B = 0.15 [	, ], 0.435 [∗, ] and 1.25 [�, ]. An exponentially
decaying curve [ ] that fits the variations of the b2 coefficient is also provided.

b2 coefficient to predict the nonlinear responses of a water column subjected to any
force amplitude. Figure 6.5(a) presents the ratio of the actual response amplitude,
ηi

o, predicted from a FAPT, to the amplitude of the re-simulated elevation, ηi,∗
o , for

the three D/B ratios; the latter computed using the convergent b2 coefficient and
the corresponding Am/ρAcB coefficient. Specifically, Figure 6.5(a) proves that the
smallest ηi

o/ηi,∗
o ratio (or the largest deviation) appears for D/B = 0.15 and at the

smallest ηi
o/B number. This point is highlighted in blue. Furthermore, a comparison

between the time-histories of the actual internal surface elevation, ηi (t), and the re-
simulated elevation, ηi,∗ (t), for this case, is shown in Figure 6.5(b). Clearly, both the
actual amplitude and the phase of the ηi elevation cannot be accurately estimated.
This highlights the importance of applying coefficients according to the operational
condition of an OWC.

6.3.2 Mouth shape

This section concerns the influence of mouth shape on the hydrodynamic coefficients.
Two OWCs with different BS mouths involving lip radii of rl = 0.11D and 0.5D,
and an OWC with a SC mouth undergoing FWCTs were numerically modelled. In
all cases, the aspect ratio was fixed at D/B = 0.435, and the forcing frequency
again set to ω2

fB/g = 0.87. Within Figure 6.6, the hydrodynamic coefficients for
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Figure 6.5: (A) Ratios of the actual response amplitude to the amplitude re-simulated using the
convergent coefficient, ηi

o/ηi,∗
o , for the OWCs with D/B = 0.15 [	], 0.43 [∗], and 1.25 [�], and (B)

a comparison between the time-varying ηi (t) elevation [ ] and ηi,∗ (t) elevation [ ] for the
OWC with D/B = 0.15; this corresponding to the symbol (�) on Figure 6.5(a).

each OWC are presented as functions of the ηi
o/B number (indicated by the bottom

black horizontal axis) and the KC number (indicated by the top blue axis); both
the directionally dependent and directionally invariant coefficients being shown.

In the FAPTs considered earlier for Figures 5.16(a), 5.16(c) and (e), the response
amplitude, ηi

o, for each mouth shape, was set to a comparable value. Consequently, to
attain a desired response amplitude, the amplitudes of the air pressure, Po, applied to
the OWCs with different mouth shapes were adjusted. For example, for ηi

o/B ≈ 0.5,
the Po/ρg values were 0.012 m in the SC case, and a lower value of 0.009 m in the
BS case with rl = 0.5D. This comparison of the required Po value is consistent with
comparisons of the Am/ρAcB coefficient and the b2 coefficient in both cases (Figures
6.6(a) and (c)). Clearly, the directionally dependent and the directionally invariant
coefficients in the SC case are larger than those in the BS case with rl = 0.5D.

The larger values of Po/ρg, Am/ρAcB and b2 coefficients for a mouth shape
indicate stronger vortex generation near the mouth. Indeed, this can be confirmed
from the vorticity fields near the SC and BS mouths presented earlier in Section
5.10.2. Given this view, comparing the coefficients for the BS cases with rl = 0.11D

and rl = 0.5D shown in Figures 6.6(b)-(c), suggests the more pronounced vorticity
field in the former.

The influence of the vortex motion is also evident from the variation of the added-
mass coefficient with the key parameters. The Am/ρAcB coefficient in the BS case
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(a) SC case

(b) BS case with rl = 0.11D

(c) BS case with rl = 0.50D

Figure 6.6: Variations of the added-mass coefficient, Am/ρAcB, and the nonlinear damping
coefficient, b2, with the mouth shape, ηi

o/B and KC computed as directionally invariant [∗] and
directionally dependent coefficients for upstroke [�] and downstroke displacement [◦].
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6.3 Hydrodynamic coefficients under forced oscillations

with rl = 0.5D varies little with the ηi
o/B and KC numbers. The explanation for

this lies in two earlier points: (i) added mass relates to effective draft (Section 6.3.1),
and (ii) effective draft is associated with vortex motion and affects near-field radiated
wave elevation (Section 4.10). It is thus reasonable to conclude that the added mass
of an OWC also relates to the near-field radiated wave elevation. Given this view and
Figure 4.12(c) showing the invariant first-order radiated wave amplitude with ηi

o/B

number in the BS case with rl = 0.5, the small variation of the Am/ρAcB coefficient
in this case is reasonable.

One of the objectives when designing an OWC is to minimise the energy loss
associated with vortices. This may be achieved by delaying the flow separation near
the mouth. The delay is predicted by evaluating the minimum value of ηi

o at which
the energy loss arising from the nonlinear damping mechanism increases. In making
this evaluation, the averaged total energy loss, El, was estimated as follows:

El = 2
Tf

∫ t+Tf /2

t

[
pAc −

[
ρAc

(
B + ηi

)
+ Am

]
η̈i − ρgAcη

i − 1
2ρAcη̇i

2
]
η̇idt, (6.1)

where the excitation energy, Ekf , associated with the air pressure, p, was subtracted
from all energy components except those associated with the nonlinear and linear
damping forces. Again, the influence of the direction of the water column was con-
sidered. The El was thus estimated by averaging it over a half-period of oscillation.

Previously, Figure 4.11(c) confirmed that the vortex kinetic energy normalised
by square of the internal free-surface velocity, Ekv/ρπU2D3, increases with ηi

o/B.
Within Figure 6.7, the El for each mouth shape was also normalised similarly; the
velocity computed as U = ηi

oωf . Given the evidence from Figure 4.11(c), a non-zero
gradient of El/(ηi

oωf )2 shown in Figure 6.7, implies the increasing importance of the
vortex motion as the nonlinear damping.

Figures 6.7(a)-(b) do not exhibit a zero gradient in either the SE and SC cases.
This suggests that the vortex motion primarily dampens the water column, even
at the smallest ηi

o/B or KC value; the SC mouth having little effect on the flow
separation. In considering this, Bearman et al. (1985) confirmed that at a certain
KC number, the vortex shedding was insensitive to the local cross-sectional shape.
In fact, Morris-Thomas MT & Thiagarajan (2006) showed that the hydrodynamic
efficiency of a bottom-standing OWC was unaffected by the bottom shape of the
front plate. In considering these earlier results, it is relevant to note that they
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6.3 Hydrodynamic coefficients under forced oscillations

also considered SE and SC shapes. Given these results, the similarity in the data
presented on Figures 6.7(a) and 6.7(b) are expected.

(a) SE case (b) SC case

(c) BS case with rl = 0.11D (d) BS case with rl = 0.50D

Figure 6.7: The average energy loss normalised by the square of the internal free-surface velocity,
El/(ηi

oωf )2, varying with mouth shape, ηi
o/B and KC, computed by considering the directional

dependence: upstroke [�] and downstroke displacement [◦].

When compared to the SE and SC cases, the BS mouth has more apparent effect.
Figures 6.7(c) and (d) confirm that the nonlinear damping begins to contribute to
the total energy loss at KC ≈ 3 (ηi

o/B ≈ 0.21) and KC ≈ 5 (ηi
o/B ≈ 0.38) in the BS

cases with rl = 0.11D and 0.5D, respectively.
The more dissipative performance of the SC case when compared to the BS cases

relates to the radius of curvature. Increasing this in the former may reduce the
damping and hence the b2 coefficient. This is supported by Tanaka et al. (1983),
who confirmed that the nonlinear damping coefficient for a square body with a sharp
edge was reduced to half of its damping coefficient by rounding the edge with a
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6.4 Effect of frequency

curve of radius rl = 0.5D; D being the width of the body. Adopting this in the
context of an OWC with a SC mouth requires an increase in the wall thickness.
However, this may have two unintended consequences (disadvantages), particularly
when considering high-frequency excitations:

(i) Wave scattering will be strengthened. This is indicated by the reflection coef-
ficients for the plate models (see Figures 3.17 and 3.19).

(ii) The secondary effect of (i) is to reduce the response amplitude of the water
column; the latter effect indicated from the reduced hydrodynamic efficiency in
Morris-Thomas MT & Thiagarajan (2006).

Taking these points into consideration, a bell-shaped mouth is recommended to min-
imalize the vortex damping in an OWC.

6.4 Effect of frequency

6.4.1 Case I: Sharp-edged mouth

Given that an OWC can be excited at different frequencies, the present section seeks
to evaluate the variation of the hydrodynamic coefficients over a practical range of
frequencies. In addition, the influence of the Reynolds (Re) number determined by
varying both frequency and amplitude of the internal free-surface, will be investi-
gated.

In the first instant, an OWC with a SE mouth will be considered. To allow
the widest possible comparisons, the key parameters defined in Fung (1998) were
adopted. The forcing amplitude number, ηi

o/B, was set to three different values:
0.05, 0.075 and 0.125. In each case, the forcing frequency was varied over the range
of 0.2 ≤ ω2

fB/g ≤ 1.75. The directionally invariant added-mass and nonlinear
damping coefficients are presented in Figure 6.8. In each case, both coefficients
show a reduction with ω2

fB/g.
To further explore the frequency variation, the OWCs evaluated earlier in Sec-

tion 6.3.1 are also analysed. These examples include a broader range of forcing
amplitudes: 0.11 ≤ ηi

o/B ≤ 0.71. Figure 6.9(a) concerns the added-mass coefficient,
Am/ρAcB, highlighting two key points:
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Figure 6.8: (A) Added-mass coefficient, Am/ρAcB, and (B) nonlinear damping coefficient, b2,
for the OWC with a SE mouth, D/B = 0.52 and B = 0.2 m varying with the ω2

f B/g for ηi
o/B

numbers of 0.05 [��], 0.075 [��], 0.125 [•◦]. A comparison to the linear potential solution [ ] is
also provided.

(i) The Am/ρAcB coefficient computed by the linear potential solver under-estimates
the viscous flow solution at all frequencies.

(ii) The Am/ρAcB coefficient shows small variation with ω2
fB/g at all ηi

o/B num-
bers.

Points (i) and (ii) are also observed in the earlier computations (see Figure 6.8(a)).
Concerning point (ii), evidence of this is given by the maximum percentage of vari-
ation of the Am/ρAcB estimated to be 15%. For ω2

fB/g > 0.7, the variation is even
less evident.

Addressing the damping coefficient, b2, Figure 6.9(b) exhibits two trends:

(i) Its variation with the forcing frequency, ω2
fB/g, is small, and

(ii) It converges to 1.0 for all forcing frequencies at large ηi
o/B.

Evidence of point (i) is given by the maximum percentage of variation estimated
to be 15%. When compared to the variation with ηi

o/B, this percentage number is
clearly smaller. Given these results, it is concluded that the b2 coefficient for an OWC
with a SE mouth operating at an ηi

o/B number can be reliably computed across the
frequency range.

The influence of the Re number is also investigated by re-plotting the b2 coef-
ficients discussed in Figures 6.3(b) and 6.9(b). Figure 6.10 presents this data and
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Figure 6.9: (A) Added-mass coefficient, Am/ρAcB, and (B) nonlinear damping coefficient, b2, for
the OWC with a SE mouth, D/B = 0.435 and B = 0.16 m varying with ω2

f B/g for ηi
o/B = 0.11

[��], 0.4 [��], 0.71 [•◦]. A comparison to the linear potential solution [ ] is also provided.

suggests that the effect of the Re number is insignificant provided Re ≥ 30000.
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Figure 6.10: The variation of the b2 coefficient with Re number for an OWC with a SE mouth.
The data includes varying ω2

f B/g number with ηi
o/B = 0.11 [��], 0.4 [��], 0.71 [•◦], and varying ηi

o/B

with ω2B/g = 0.87 [∗].

6.4.2 Flow description for Case I

To further confirm the small variation of added mass with frequency, the locations
of the vortex motions developed under a low- and high-frequency excitation are
examined. This is motivated by the earlier explanation concerning the influence of
vortex motion on added mass (Section 6.3.1). The streamlines and velocity fields
associated with each of these two cases are presented on Figures 6.11 and 6.12. The

208



6.4 Effect of frequency

sequence of the fields generated by a downward displacement of the water column is
provided in each figure.

(a) (b)

(c) (d)

Figure 6.11: The streamline and vertical velocity fields, uz, for a SE OWC predicted at times:
(A) t = 4Tf , (B) t = 4.15Tf , (C) t = 4.25Tf and (D) t = 4.5Tf under a low-frequency excitation
when ω2

f B/g = 0.5 and ηi
o/B = 0.11.

Figure 6.11 concerns the flow field driven by a low-frequency excitation with
ω2

fB/g = 0.5 and at a small forcing amplitude number of ηi
o/B = 0.11. Figure 6.11(a)

shows a “former” downward vortex located near the bottom edge at the beginning
of a downward displacement of the water column (t = 4.0Tf ). At t = 4.15Tf ,
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6.4 Effect of frequency

the near-field radiated wave elevation returns from its maximum elevation. At the
beginning of this restoring stage of the ηe elevation, the size of the “former” vortex
has reduced, and a new downward vortex has begun to generate (Figure 6.11(b)).
The latter continues to develop in size until the internal water surface arrives at
its mean free-surface (Figure 6.11(c)); the size indicated by the closed streamlines,
denoted in black. As the downward displacement continues, the former vortex moves
towards the new vortex. This is indicated by the adjacent locations of both vortices
near the bottom edge, when the displacement completes (Figure 6.11(d)).

Comparing Figures 6.11 and 6.12, the differences between the low- and the high-
frequency excitations relate to two points:

(i) The onset of the restoring stage of the ηe elevation, and

(ii) The field of the vertical velocity, uz.

In the high-frequency excitation case, the restoring stage begins at t = 4.28Tf ,
immediately after the ηi elevation arrives at its mean position (t = 4.25Tf ). In
considering point (ii), the different velocity fields observed in Figures 6.11(c) and
6.12(b) arise due to the dependence of the velocity on the frequency. Despite these
two differences, the vortex locations arising in the low frequency and high frequency
excitations are very similar (see Figures 6.11(d) and 6.12(d)). Adopting the methods
described in Sections 4.4.2 and 4.6.2, the normalised radial and vertical locations of
the new vortex, Rv/D and Rv/|Zv|, and the normalised vortex circulation, Γ/(UD),
are very similar; full details given on Table 6.2. When compared to the variations
with the ηi

o/B number presented earlier in Figures 4.15(b) and (c), the variations
with ω2

fB/g appear very small. Moreover, given the very small changes in the vortex
strength (again detailed on Table 6.2), the small variation of the added mass with
frequency is further confirmed.

6.4.3 Case II: Bell-shaped mouth

The variations of the hydrodynamic coefficients with the forcing frequency for the
OWC with a BS mouth and rl = 0.5D are presented in Figure 6.13. In these cases, the
forcing amplitudes are again considered to lie within the range 0.11 ≤ ηi

o/B ≤ 0.71.
Comparison between the hydrodynamic coefficients in the BS case (Figure 6.13)

and the SE case (Figure 6.9) confirms that the former exhibit a larger variation with
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6.4 Effect of frequency

(a) (b)

(c) (d)

Figure 6.12: The streamline and vertical velocity fields, uz, predicted at different times: (A)
t = 4Tf , (B) t = 4.25Tf , (C) t = 4.28Tf and (D) t = 4.5Tf under a high-frequency excitation when
ω2

f B/g = 1.4 and ηi
o/B = 0.11.

frequency. Evidence of this is given in Table 6.3. In considering these results, the
values were predicted under the smallest ηi

o/B condition for which a convergent b2

coefficient was not established.
Following Section 6.4.1, the b2 coefficients are re-plotted to show the influence

of Re number. Figure 6.14 indicates that the BS case exhibits a more pronounced
variation of the b2 coefficient than the SE case shown earlier (Figure 6.10). This
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6.5 Relative importance of vortex formation

Table 6.2: Vortex locations and circulations for the low-frequency and the high-frequency excita-
tion cases

Excitation Vortex location Vortex circulation
case Rv/D Rv/Zv Γ/ (UD)
Low-frequency
excitation
(Figure 6.11)

0.62 0.25 0.31

High-frequency
excitation
(Figure 6.12)

0.64 0.25 0.33
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Figure 6.13: (A) Variations of the added-mass coefficient, Am/ρAcB, and (B) nonlinear damping
coefficient, b2, with ω2

f B/g for ηi
o/B = 0.11 [��], 0.4 [��], 0.71 [•◦] for an OWC with a BS mouth,

rl = 0.5D and D/B = 0.435.

suggests that an estimation of the hydrodynamic coefficients for an actual design of
a bell-shaped OWC with rl = 0.5D using a small-scaled model, will most likely result
in a conservative response prediction. In contrast, the coefficients predicted from a
small-scaled model of a sharp-edged OWC are more likely to be reliable. These
conclusions are based upon the assumption that Froude number scaling is applied
in both cases as explained by the fact that vortex motion will be developed in a SE
OWC irrespective of Re.

6.5 Relative importance of vortex formation

Figure 6.15(a) concerns the variations in the nonlinear energy loss, ElNL, and vortex
kinetic energy, Ekv, with forcing frequency for an OWC with a SE mouth. The data
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6.5 Relative importance of vortex formation

Table 6.3: Range of the hydrodynamic coefficients for the OWCs with BS and SE mouths when
0.2 ≤ ω2

f B/g ≤ 1.4

Mouth shape Am/ρAcB b2

BS 0.06 − 0.10 0.48 − 0.74
SE 0.15 − 0.16 1.86 − 2.10
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Figure 6.14: The variation of the b2 coefficient with Re number for an OWC with a BS mouth
and rl = 0.5D. The data includes varying ω2

f B/g number with ηi
o/B = 0.11 [��], 0.4 [��], 0.71 [•◦],

and varying ηi
o/B with ω2

f B/g = 0.87 [∗].

in this figure corresponds to the coefficients given in Figure 6.9 for ηi
o/B = 0.11.

While ElNL was computed as 2/3ρb2AC(ηi
o)3ω2

f , Ekv value was estimated using the
method described in Section 4.4.4. As expected, ElNL increases with the forcing
frequency. Furthermore, the comparison between ElNL and Ekv shown in Figure
6.15(a), proves that vortex formation is the primary source of the nonlinear damping
for the OWC at all forcing frequencies.

The variation of ElNL shown on Figure 6.15(a) together with the small changes
in b2 (Figures 6.8(b) and 6.9(b)) prompt an investigation of the importance of vortex
damping at varying frequencies. To address this, the ratio of the nonlinear energy
loss, ElNL, to the mechanical energy of the water column, Em, is evaluated; the latter
computed by summing the energy to restore the displaced water column and the ki-
netic energy associated with the water column and the external fluid. Figure 6.15(b)
presents the variation of ElNL/Em with the ω2

fB/g. Evidently, ElNL/Em increases
substantially under resonant or near-resonant conditions, when the frequency is at
the damped natural frequency (ω2

dB/g = 0.87 indicated by the blue line). Under
a non-resonant condition, for example with the frequency shifted about 10% of the

213



6.5 Relative importance of vortex formation

(a) (b)

Figure 6.15: Variations with ω2
f B/g: (A) the nonlinear energy loss, ElNL [��], and the vortex

kinetic energy, Ekv [•◦], and (B) the ratio of the nonlinear energy loss to the mechanical energy,
ElNL/Em, for ηi

o/B = 0.11 [ � ]. The damped natural frequency, ωd [ ], and frequencies
[ ] 10% lower and higher than ωd are also indicated.

resonant frequency, ElNL/Em is 0.4 for a low-frequency excitation (ω2
fB/g = 0.77)

and 0.55 for a high-frequency excitation (ω2
fB/g = 0.97); both frequencies indicated

by the black dashed lines on Figure 6.15(b)).
The variation in ElNL/Em suggests that the importance of vortex damping on the

response amplitude depends on the nature of the excitation condition; specifically
whether it is a low-frequency or high-frequency excitation. This is confirmed by the
accuracy of the linear potential solution, ηi

o/ηi
o,LP T , shown in Figure 6.16. Within the

figure, ηi
o denotes the response amplitude predicted from the viscous flow solution and

ηi
o,LP T the analytically predicted response amplitude using Linear Potential Theory

(LPT). This figure also describes the normalised response amplitude, ηi
o/AP

o , due
to various forcing frequencies; where AP

o = Po/ρg is fixed at 0.01 m in FAPTs.
Within these calculations, an OWC with SE mouth, D/B = 0.64 and B = 0.11 m
was considered. It is clear that at the damped natural frequency (ω2

dB/g ≈ 0.8),
ηi

o/ηi
o,LP T is 0.24, its smallest value. Interestingly, at lower frequencies, ηi

o/ηi
o,LP T

is typically higher, indicating linear potential theory provides a better description
of the response amplitudes than at the damped natural frequency. Conversely, at
higher frequencies, the linear potential solutions are less accurate. This implies that
the vortex more significantly dampens the response amplitudes in this range.

The significance of vortex damping is also clearly evident in wave excitation
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Figure 6.16: The response amplitude relative to the amplitude of air pressure, ηi
o/AP

o , for an OWC
with a SE mouth predicted from the linear potential solution [ ] and the viscous flow solver
[•◦]; the ratio between the two, ηi

o/ηi
o,LP T , indicated by the numerical values. In all calculations,

the air pressure amplitude, Po/ρg = AP
o , was fixed at 0.01 m.

problems. The RAO, or ηi
o/Ao, for an OWC with a constant D/B ratio subjected

to varying incident wave frequencies, ω, was shown earlier in Figure 5.13. Compar-
ing the associated cases for low- and high-frequency excitations confirms that the
discrepancies are more pronounced at higher frequencies. Likewise, the ηi

o/Ao values
for OWCs with varying D/B ratios at a fixed wave frequency of ω2B/g = 0.87 also
confirm this. For example, the OWC with the largest D/B ratio, that experiences
a high-frequency excitation, has larger discrepancies in ηi

o/Ao when compared to the
smallest D/B ratio under a low-frequency excitation. Once again, the discrepancies
are largest in the case of a medium D/B ratio under resonant excitations. Full details
of the ηi

o/ηi
o,LP T ratios for the three OWCs are provided in Figure 6.17.

Figure 6.17: Ratios of ηi
o/ηi

o,LP T for the OWCs with a variety of D/B ratios: 0.15 [�], 0.435 [◦]
and 1.25 [�] undergoing wave excitations.
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6.6 Applicability of forced oscillation coefficient

This finding may be generally applicable for any body heaving under a wave
excitation. For example, the earlier laboratory studies undertaken by Rodriguez
(2016) and Bruggemann (2017), who respectively investigated a box and a truncated
cylinder, both heaving in waves, suggest that this may be the case. Interestingly, the
present findings are at odds with the observations reported by Stiassnie et al. (1984),
who found that the effect of the vortex motion on the wave transmission past a
vertical plate was more pronounced in a low wave-frequency range. The explanation
for this is as follows. In the plate case, the role of the vortex motion is a direct
consequence of the path of the fluid particle that passes the plate edge. However,
in the present context (the response of an oscillating body), the importance of the
vortex motion is dependent upon the relative importance of the vortex damping force
in a force balance. This is clearly very different.

6.6 Applicability of forced oscillation coefficient

The hydrodynamic coefficients for OWCs under forced oscillations have been evalu-
ated. The present aim is to evaluate the applicability of these coefficients in wave-
excitation problems. In the context of an OWC, the linear superposition theory may
be valid if the following apply:

(i) The flow kinematics driven by different excitation mechanisms are similar, and

(ii) The hydrodynamic coefficients are assumed to be dependent on the amplitude
of a water column motion.

Point (i) was addressed by Stansby et al. (1983), who confirmed good agreement
between the force coefficients for planar oscillatory flow tests and those computed
from shallow water wave tests. In addressing the appropriate variable to ensure
similarity, the amplitudes of a water column, ηi

o, in both regular wave and forced
oscillation tests will be made comparable. The explanation for this lies in the fact
that the vertical velocity of a water column dictates the flow in a pure radiation
problem. In respect of point (ii), the importance of this has been confirmed in
Section 6.3.1. Any evaluation of the applicability of the hydrodynamic coefficients
computed from a forced oscillation test must consider this dependence.

To undertake this evaluation, data describing the vertical force that arises in a
FAPT and RWT is required. As described in Section 5.10, the force computed from
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6.6 Applicability of forced oscillation coefficient

a FAPT physically represents the hydrodynamic force. In a RWT, the vertical force,
Fv, acting in a potential flow physically represents the summation of the hydro-
dynamic force and the incident wave-excitation force; the latter commonly known
as the Froude-Krylov force, Ffk. The vertical force arises due to the contributions
from the pressure fields induced by the water column oscillation and the incident
wave (Ashlin et al., 2017). However, the earlier explanation in Section 5.9 confirmed
that in a viscous flow, nonlinearities associated with the vortex motion may affect
the pressure at the draft of an OWC. This indicates that the wave-excitation force
is effectively the total contributions from the incident wave and the nonlinearities
associated with the vortex motion.

Given this understanding, the procedure to evaluate the applicability of a forced
oscillation test is outlined as follows:

(a) The added mass, Am, and the nonlinear damping coefficient, b2, for an OWC are
predicted from a FWCT; these Am and b2 variables are hereafter referred to as
the forced oscillation coefficients.

(b) The radiation damping coefficient, b1, is predicted from the LPT.

(c) The wave-excitation force is estimated by subtracting the vertical force of the
RWT from that of the FAPT; both tests having a comparable ηi

o/B and KC

number to satisfy the requirement of point (i) noted above.

(d) The original ηi elevation (corresponding to the RWT and evaluated from the
viscous flow solver) is re-simulated by substituting the estimated wave-excitation
force, Fext, and the forced oscillation coefficients into Equation (2.40), and

(e) The values of Am and b2 coefficient are re-computed by implementing Equation
(2.40), and fitting the original ηi elevation and the Fext force over one period or
half-periods of oscillation.

Provided that comparisons between (A) the re-simulated and the original ηi elevation,
and (B) the re-computed coefficients and the forced oscillation coefficients are good,
the latter are considered applicable for a wave-excitation problem.
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6.6 Applicability of forced oscillation coefficient

6.6.1 Irrotational flow condition

At first, the applicability of the forced oscillation coefficients for an OWC with a
BS mouth, rl = 0.5D and D/B = 0.435 is investigated. Two representative cases
of ηi

o/B ≈ 0.25 and 0.5 are considered. These respectively correspond to a wave
steepness of Aok = 0.054 and 0.13.

Figure 6.18 shows time-histories of the internal surface elevations, ηi (t), driven
by the regular wave excitations. The original and the re-simulated elevations agree
well; both in terms of the amplitude and the phase of the elevation. Furthermore, the
forced oscillation coefficients are in good agreement with the re-computed coefficients.
Evidence of this is provided on Table 6.5.
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Figure 6.18: Time-histories of the internal surface elevations, ηi (t), within an OWC with a
BS mouth, D/B = 0.435 and rl = 0.5D; comparisons between the elevation re-simulated using
the forced oscillation coefficients [ ] and the original elevation [ ], that responds to the
incident waves with steepness of: (A) Aok = 0.054 and (B) Aok = 0.13.

Table 6.4: Directionally invariant coefficients computed from RWTs and FWCTs for the OWC
with a BS mouth for different Aok cases

Aok and ηi
o/B Test Am/ρAcB b2

FWCT 0.09 0.20
Aok = 0.054, ηi

o/B = 0.25 RWT 0.07 0.26
FWCT 0.09 0.14

Aok = 0.130, ηi
o/B = 0.50 RWT 0.07 0.13

This agreement confirms the applicability of the forced oscillation coefficients
when predicting the wave-induced response of the water column. However, it should
be noted that the vortex motion has no significance on the OWC for the present ηi

o/B
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6.6 Applicability of forced oscillation coefficient

cases. The explanation for this lies in the two earlier confirmations: (i) the increasing
importance of the nonlinear damping force begins at ηi

o/B = 0.38 (Figure 6.7(d)),
and (ii) the flow is considered irrotational even at ηi

o/B = 0.75 (Figure 5.23(c)).
On this basis, it is concluded that the forced oscillation coefficients are appropriate,
provided that vortex damping plays no significant role on the response of the water
column within a bell-mouthed OWC.

6.6.2 Separated flow condition

To extend these results, the hydrodynamic coefficients for OWCs with SE mouths
undergoing different excitation conditions will now be addressed. These concern
D/B = 1.25, 0.435 and 0.15, corresponding to a high-frequency, a resonant and
a low-frequency excitation condition, respectively. All the OWCs were subject to
RWTs with the wave frequencies held at ω2B/g = 0.87.

These test conditions were replicated in FAPTs; the air pressure amplitudes,
Po/ρg, prescribed such that the response amplitudes, ηi

o, in the FAPTs were again
comparable to those in the RWTs. This is confirmed in Figures 6.19(a)-(c).

(a) D/B = 0.15 (b) D/B = 0.435 (c) D/B = 1.25

Figure 6.19: Response Amplitude Operators, RAOs, for the three different OWCs in response to
FAPTs [•◦] and RWTs [��] in a viscous flow.

Resonant excitation condition
To begin, the applicability of the forced oscillation coefficients appropriate to a res-
onant condition is evaluated by undertaking the procedure (a)-(b) outlined earlier.
The directionally dependent coefficients of Am/ρACB and b2 were re-computed from
the RWTs. A comparison between these coefficients and the forced oscillation co-
efficients is presented in Figure 6.20. For ease of comparison, the forced oscillation
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6.6 Applicability of forced oscillation coefficient

coefficients shown earlier in Figure 6.3, have been replaced with the 2nd-order poly-
nomial fitted lines on Figure 6.20.

Figure 6.20(b) confirms that the b2 coefficient is in good agreement across all ηi
o/B

numbers for each travel direction of the water column. In contrast, Figure 6.20(a)
shows that the Am/ρACB coefficient is in poor agreement; the largest departure
being observed in the case of ηi

o/B ≈ 0.6 (Aok = 0.3).

0 0.2 0.4 0.6 0.8
0.05

0.1

0.15

0.2

0.25

0.3

(a)

0 0.2 0.4 0.6 0.8
0

1

2

3

(b)

Figure 6.20: Directionally dependent added-mass, Am/ρAcB, and nonlinear damping coefficients,
b2, for an OWC with a SE mouth and D/B = 0.435, under regular wave conditions computed using
the estimated wave-excitation force, Fext, and compared with the forced oscillation coefficients for
downward [◦, ] and upward displacements [�, ]; the 2nd-order polynomial fitted lines
corresponding to the forced oscillation coefficients.

To further investigate these results, the directionally invariant coefficients were
also quantified. In addition, the coefficients were re-computed by adopting the
Froude-Krylov force, Ffk, instead of the estimated wave-excitation force, Fext. In
adopting the Ffk force, nonlinearities associated with vortex motion were neglected.
As in previous analysis, the time-histories of the Ffk force and the ηi elevation were
substituted into the equation of motion. Figure 6.21(a) shows comparisons between
the re-computed Am/ρACB coefficient (presented by the symbols) and the forced
oscillation coefficient (indicated by the line). Once again, large discrepancies arise,
particularly at large ηi

o/B numbers. Conversely, Figure 6.21(b) confirms good agree-
ment in respect of the b2 coefficient at all ηi

o/B numbers, provided that nonlinearities
were included in the wave-excitation forces.

The significance of these discrepancies is evaluated by comparing time-histories
of the original and the re-simulated ηi elevations. Figure 6.22(a) shows that the
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Figure 6.21: Directionally invariant added-mass, Am/ρACB, and nonlinear damping coefficients,
b2, for an OWC with a SE mouth and D/B = 0.435 under the regular wave conditions computed
using either the estimated wave-excitation force, Fext [∗], or the Froude-Krylov force, Ffk [�],
and compared with the forced oscillation coefficients represented by the 2nd-order polynomial lines
[ ].

elevation driven by the linear wave with Aok = 0.03 (ηi
o/B = 0.1) was accurately re-

simulated using the forced oscillation coefficients and the Fext force. Conversely, the
re-simulated elevation corresponding to the steepest nonlinear wave with Aok = 0.3
(ηi

o/B = 0.6), deviates from the original elevation (Figure 6.22(b)). Nevertheless,
the extent of this difference is small, both in terms of the amplitude and phase.
Certainly, it is much less significant than the deviation in the added-mass coefficient.
The explanation for this lies in the fact that the nonlinear damping force is most
important in determining the response under a resonant condition (Figure 6.15(b)).

Figure 6.22 also shows that neglecting the nonlinearities in the wave-excitation
force causes discrepancies in the re-simulated elevations. This supports the earlier
comparison of the b2 coefficients on Figure 6.21(b). Taken as a whole, the forced os-
cillation coefficients may be applied to accurately predict the wave-induced response
of a water column in a resonant state only if: (i) the b2 coefficient is reliably pre-
dicted from the forced oscillation test and (ii) nonlinearities associated with vortices
are included in the wave-excitation force.

Non-resonant excitation condition
Figure 6.23(a) concerns the hydrodynamic coefficients arising in a low-frequency ex-
citation (D/B = 0.15). The re-computed Am/ρAcB coefficient is approximately half
the forced oscillation coefficient for all ηi

o/B numbers. Conversely, the b2 coefficient
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Figure 6.22: Time-histories of the internal surface elevations, ηi (t), within an OWC with a SE
mouth and D/B = 0.435 re-simulated by adopting the forced oscillation coefficients and using
either the estimated wave-excitation force, Fext [ ], or the Froude-Krylov force, Ffk [ ],
and comparisons with the original elevations [ ], for: (A) Aok = 0.03 and (B) Aok = 0.3.

is shown to be in good agreement. Interestingly, nonlinearities in the wave-excitation
force appear insignificant. Evidence of this is provided by the small difference be-
tween the coefficients re-computed using the estimated wave-excitation force, Fext,
and the Froude-Krylov force, Ffk.

Adopting these coefficients, the internal surface elevation was re-simulated us-
ing the Fext force. Comparisons between the re-simulated and the original elevation
presented in Figure 6.24(a) are in good agreement. This arises despite the poor de-
scription of the added mass, and the earlier evidence concerning the insignificance of
vortex damping force (Figure 6.15(b)). Taken together, it appears that the hydrody-
namic force under a low-frequency excitation is not that important. As a result, the
implementation of forced oscillation coefficients in a low-frequency wave excitation is
justified. Importantly, these comparisons also suggest that the nonlinearities in the
wave-excitation force have a small part to play; the pressure field due to the incident
wave being largely unaffected by the vortex motion at the bottom edge.

The description of the high-frequency excitation is very different. Figure 6.23(b)
(D/B = 1.25) confirms that both Am/ρAcB and b2 are poorly described at large ηi

o/B

numbers. The discrepancies become even more significant when the nonlinearities
in the wave-excitation forces are neglected. Furthermore, comparisons between the
predicted elevation ηi/B given in Figure 6.24(b) reflect the poor description of the
hdyrodynamic coefficients. Specifically, the elevation re-simulated using the Fext

force deviates more significantly as Aok increases. Moreover, the neglect of the force
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Figure 6.23: Directionally invariant added-mass, Am/ρAcB, and nonlinear damping coefficients,
b2, for the OWCs with D/B = 0.15 and 1.25, computed by adopting either the estimated wave-
excitation force, Fext [∗], or the Froude-Krylov force, Ffk [�], and comparisons with the forced
oscillation coefficients, indicated by the 2nd-order polynomial fitted lines [ ].

nonlinearities by adopting the Ffk force leads to a very poor description of the internal
surface elevation. These results suggest that when modelling a high-frequency wave
excitation, the forced oscillation coefficients are invalid and the nonlinearities in the
wave-excitation force are extremely important.

Following on, the applicability of forced oscillation coefficients for an OWC with
a fixed D/B ratio undergoing different wave-excitation conditions is investigated.
Two cases of ω2B/g = 0.45 and 1.25, with D/B = 0.435 are taken as representative
examples. All computations implemented the Fext force. The hydrodynamic coeffi-
cients, Am/ρAcB and b2, for the low-frequency (ω2B/g = 0.45) and high-frequency
(ω2B/g = 1.25) excitations are given on Table 6.5. Despite the difference in the
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Figure 6.24: Time-histories of the internal surface elevations, ηi (t), within an OWC with a SE
mouth and for D/B = 0.15 and 1.25. In both cases, ηi was re-simulated by adopting the forced
oscillation coefficients and using either the estimated wave-excitation force, Fext [ ], or the
Froude-Krylov force Ffk [ ]. Comparisons with the original surface elevations [ ] are
provided for two cases: Aok = 0.03 (the first column) and Aok = 0.25 (the second column).

low-frequency coefficients, good agreement between the re-simulated and the origi-
nal elevation is observed in Figure 6.25(a). In contrast, the water surface elevation
prediction for the high-frequency wave-excitation (ω2B/g = 1.25) exhibits a dis-
crepancy in the minimum elevation (Figure 6.25(b)). Clearly, these two contrasting
results are consistent with the earlier cases involving different column diameters.

Table 6.5: Directionally invariant coefficients computed from RWTs and FWCTs for SE mouth
at different frequencies

Frequency (ω2B/g or ω2
fB/g) Test Am/ρAcB b2

FWCT 0.17 1.700.45 RWT 0.13 1.18
FWCT 0.14 2.51.25 RWT 0.16 4.2
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Figure 6.25: Time-histories of the internal surface elevations, ηi (t), within an OWC with D/B =
0.435, re-simulated using the forced oscillation coefficients and the estimated wave-excitation force,
Fext [ ], with comparisons to the original elevations [ ]; two cases involving different wave
frequencies, ω2B/g.

Based upon these results, the applicability of forced oscillation coefficients to a
wave-excitation problem and the validity of the linear superposition theory, depend
on two issues:

(i) The theoretical RAO of the water column at a given wave frequency. When
the RAO value exceeds one, the flow is dominated by the water column. Con-
sequently, the similarity of the flow kinematics driven by the two different
mechanisms is maintained.

(ii) The importance of the vortex damping force in the force balance. When this
damping force is important under a wave excitation condition, but not com-
parable under a different (forced) excitation mechanism, the prediction of a
wave-induced response using the forced oscillation coefficients will most likely
be inaccurate.

6.7 Concluding remarks

This chapter has addressed the hydrodynamic coefficients for cylindrical OWCs. The
vortex motion at the lowermost end has been confirmed as the primary source of the
nonlinear damping coefficient, b2, for an OWC with a SE mouth. This applies over a
broad range of forcing amplitudes, ηi

o/B, and a practical range of forcing frequencies,
ωf . The present calculations have shown that the influence of cylinder aspect-ratio,
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D/B, on b2 is small; the coefficient converging to 1.0 at large ηi
o/B numbers and for

all D/B ratios. In contrast, the variation of b2 with mouth shape is evident. The
smallest b2 values for all cases arise in the absence of vortices.

The influence of the vortex motion also extends to the added-mass coefficient,
Am/ρAcB. For an OWC with a SE mouth, this coefficient is larger than the linear
potential solution as ηi

o/B increases. This is consistent with the variation of the
effective draft and the near-field radiated wave amplitude. Conversely, Am/ρAcB

for an OWC with a BS mouth and rl = 0.5D is independent of the ηi
o/B number.

Again, this is consistent with the constant radiated wave amplitude in the near-field.
Interestingly, the hydrodynamic coefficients for the SE mouth have small vari-

ations with the forcing frequency. This does not, however, indicate the relative
importance of vortex damping on the response. Indeed, by considering the rela-
tive importance of the vortex damping force in a force balance, it was shown that
irrespective of the excitation mechanism, the vortex induced damping is most im-
portant under a resonant or near-resonant condition, and is more important for a
high-frequency excitation.

The appropriateness of linear superposition to solve a wave-excitation problem
has also been evaluated. Under a high-frequency wave excitation, the theory is in-
valid; the prediction of the wave-induced response using forced oscillation coefficients
generating a substantial error. Conversely, these coefficients give reasonably accurate
predictions of the response in either a resonant state or under a low-frequency wave
excitation. The former is explained by the dominance of the flow driven by the water
column in comparison to the wave flow and the relative significance of the vortex
damping force in the force balance. In the latter case, the explanation lies in the
reduced importance of the hydrodynamic force in comparison to the incident wave
force.
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7
Conclusions

The principal aim of the present study was to advance our understanding of the
dynamic response of the water column within a cylindrical OWC. The physical origins
and the importance of the nonlinearities in both the forces and the response have been
investigated. Additionally, the hydrodynamic coefficients for the OWC subjected to
different excitation conditions have been evaluated. In undertaking these tasks,
guidance is provided as to the appropriate time-domain modelling of an OWC. Key
aspects of the study have included:

(A) The development of a viscous flow model of an OWC subject to varying excita-
tion mechanisms.

(B) The validation of this model with comparisons to available laboratory data.

(C) The establishment of a wide range of test cases covering a variety of dimensions
and mouth shapes operating in a range of flow conditions.

(D) The development of a linear analytical solver modelling a cylindrical OWC in
three dimensions following the work of Evans & Porter (1997).

(E) Comparisons between (A) and (D) for the broad range of cases noted in (C),
highlighting the origins and importance of the nonlinearities arising, both in the
applied forcing and the water column response.
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7.1 Principal findings

The principal findings of the present study are summarised as follows:

1. The LES classical Smagorinsky turbulence model was shown to be unsuitable
for modelling the wall-bounded flow within an OWC. In contrast, the LES
dynamic Smagorinsky turbulence model is preferable in all cases.

2. In the numerical modelling of a freely damped oscillation, good agreement was
observed between all available laboratory data and the numerically predicted
internal water surface elevation within an OWC. In achieving these results, it
was also confirmed that continuously resolving the periodic boundary layer up
to y+ = 1 was less important than resolving the vertical grid size near the
internal free-surface.

3. The numerical modelling of a forced water column oscillation was verified in
terms of the air pressure above the water surface. Once again, good agreement
was observed between existing laboratory data and the present numerical pre-
dictions. In these cases, resolving the vertical grid size is less important than
the boundary layer, and setting the latter to y+ ≤ 20 is sufficient to obtain an
accurate prediction of the air pressure.

4. Investigations of the rotational flow and the radiated wave fields generated in a
Forced Water Column Test (FWCT) have confirmed the following descriptions:

(a) Vortex circulation, Γ, and kinetic energy, Ekv, have a nonlinear relation-
ship with the forcing amplitude, ηi

o.

(b) The vortex motion at the bottom mouth of an OWC influences the ef-
fective draft, Be; both the vortex location and the effective draft increase
with the forcing amplitude number, ηi

o/B.

(c) The normalised circulation, Γ/UD, and the normalised locations, Rv/D

and Rv/|Zv|, of the vortex closest to the mouth, show small variations with
the forcing frequency in the range of 0.2 ≤ ω2

fB/g ≤ 1.4. In contrast, both
exhibit a dependence on the ηi

o/B number.
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(d) The near-field radiated wave elevation close to an OWC with a sharp-
edged (SE) mouth exhibits two distinct characteristics: both the ampli-
tude and phase difference are progressively reduced. This contrasts with
the far-field radiated wave elevation in which only its phase difference is
progressively reduced.

(e) The two nonlinear characteristics (noted above) are much reduced in the
near-field radiated wave elevation generated around an OWC with a bell-
shaped (BS) mouth and a lip radius of rl = 0.5D. Unlike the SE case,
no vortex motion is generated near the bottom edge of this OWC. This is
true for all ηi

o/B numbers considered.

5. The description noted above confirms that the two distinct characteristics of
the near-field radiated wave elevation in the SE case are associated with the
vortex formation and motion at the bottom edge. Furthermore, in respect
of the progressively reduced amplitude, the vortex effect only influences the
exponentially decaying (evanescent) modes of the radiated waves. As a result,
the linear radiation theory is valid in the far field.

6. The increasing effective draft, Be, with the ηi
o/B number is consistent with the

increasing trend of the added-mass coefficient, Am/ρAcB, for the SE mouth in
a viscous flow. The progressive discrepancy in this coefficient when computed
from the linear potential and the viscous flow solutions is caused by the vortex
motion at the bottom mouth. Clearly, this discrepancy is consistent with the
departures from linear potential theory when considering the near-field radiated
wave elevation. The implication of this lies in the reduction of the undamped
natural frequency. This may, in turn, change the excitation condition of the
OWC from a low-frequency to a resonant excitation condition.

7. The nonlinear damping coefficient, b2, for the SE case has an exponentially
decaying trend with ηi

o/B; the coefficient being convergent to 1.0 at large ηi
o/B

numbers. This convergence is valid in the cylinder aspect-ratio range of 0.15 ≤
D/B ≤ 1.25 and the frequency range of 0.2 ≤ ω2

fB/g ≤ 1.4.

8. The exponential decay of the b2 coefficient indicates that the vortex motion
becomes less important as the ηi

o/B number increases. This is confirmed by
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the relative values of the second-harmonic component, F
(2)
t,o /FSO, of the air

pressure in the SE case; the latter converging to those for the BS case at large
ηi

o/B numbers.

9. When compared to the variation with the ηi
o/B number, the variation in both

the Am/ρAcB and b2 for the SE case with the forcing frequency (ω2
fB/g) are

small. This is supported by the earlier finding confirming very small changes
in the normalised vortex properties. As a result, the hydrodynamic coefficients
for an OWC with a SE mouth operating at an ηi

o/B number can be reliably
computed across a broad frequency range.

10. The nonlinear characteristics of the forces experienced by an OWC incorpo-
rate both a force asymmetry associated with the zero-crossing period and a
secondary loading cycle. The former arises in both irrotational and separated
flow conditions, while the latter critically depends on the vortex shedding at
the bottom edge. Furthermore, the substantially reduced secondary loading
cycles in a force time-history at large response amplitudes support the earlier
finding concerning the reduced importance of vortex shedding as the amplitude
of the water column motion increases.

11. The depth-variation in the harmonic components of the normalised inline-
pressures also supports the physical origins noted above. This variation specif-
ically confirms that the free-surface nonlinearity arising from Type-2 scattered
waves has a negligible effect on the wave-excitation force. Moreover, vortex
shedding is the major source of the nonlinearities in this force, provided that
the relative diameter, D/λ, lies outside the linear diffraction regime. The ex-
planation for this rests upon the fact that the inline pressure associated with
the water column oscillation is near zero at all depth locations.

12. The effect of vortex shedding on a wave-excitation force is most pronounced un-
der resonant and high-frequency excitation conditions. As a result, the Froude-
Krylov force associated with an incident wave cannot accurately represent the
wave-excitation force under these two excitation conditions. The disagreement
between the internal water surface elevations re-simulated by considering or
neglecting the vortex shedding supports this conclusion.
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13. The high-frequency effects associated with the Type-2 scattered waves is not
apparent in the internal water surface elevation. This is consistent with the
earlier finding concerning the significance of the free-surface nonlinearity. In-
terestingly, response asymmetry is identified as a nonlinear characteristic of
the internal surface elevation. However, the instantaneously varying mass of
the water column is responsible for this characteristic. Moreover, this effect
becomes more evident as ηi

o/B increases.

14. Progressively decreasing RAO and progressively varying phase difference are
the other nonlinear characteristics of the internal water surface elevation. Com-
parisons between the internal water surface elevations driven by forced air pres-
sure oscillations and wave excitations have confirmed that these characteristics
are physically caused by the increased nonlinear damping acting on the OWC.
For the SE mouth, the vortex motion primarily drives this nonlinear damping.
Overall, the effects of the vortex motion on the response of the water column,
regardless of the excitation mechanism, are described as follows:

(a) In a high-frequency excitation, the phase difference progressively decreases
with the amplitude of forcing, either air pressure or incident wave. Con-
versely, the phase difference in a resonant case is relatively invariant, while
in a low-frequency excitation it progressively increases.

(b) The RAO of any excitation case gradually decreases as the amplitude of
forcing increases, and is shown to be convergent at large amplitudes of
forcing.

(c) The vortex damping of the response of a water column is most pronounced
under a resonant condition. Furthermore, this effect is more significant
in the case of high-frequency than low-frequency excitations. The rela-
tive importance of the vortex damping in the force balance at different
excitation frequencies supports this view.

15. In a separated flow condition, the linear superposition theory is valid for res-
onant and low-frequency wave-excitations. As a result, the associated forced
oscillation coefficients are applicable to the prediction of the wave-induced re-
sponses of a water column in these conditions. In the absence of vortices, the
theory is expected to be valid in all cases.
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16. The reduction of the energy loss in a semi-circular (SC) case at the smallest
amplitude of water column motion is estimated to be 20% of the energy loss
for a SE case. A BS mouth is more effective in reducing the energy loss. For
example, when rl = 0.11D, the energy loss is approximately 50% of that in the
SE case. With rl = 0.5D, the energy loss is further reduced. The effectiveness
of the SC mouth may be improved by increasing its curvature radius. However,
to achieve this, the wall must be thickened. This may, in turn, increase the wave
reflection and reduce the response amplitude of the water column, specifically
in a high-frequency excitation condition.

17. This study has confirmed the nonlinear characteristics of the response of a
water column and the excitation condition under which linear potential theory
and linear superposition theory are valid in predicting the response. Given
that the water column can be considered as a rigid body when D/λ ≤ 0.2,
these insights may be applied to any real wave energy converter that utilises a
floating rigid body. In choosing the appropriate hydrodynamic coefficients, the
dependence of these coefficients on the body motion instead of the amplitude
of an incident wave should be considered; the former dependence having a
physically grounded basis.

7.2 Recommendations for future work

1. The important role of the vortex motion in damping the response of an OWC
and the inappropriateness of linear superposition theory under a high-frequency
excitation has been described. However, there remains no clear definition of
the lower boundary of the wave frequency corresponding to a high-frequency
excitation for a given D/B ratio. An analysis that systematically quantifies the
validity of using forced oscillation coefficients would be of substantial practical
value.

2. The importance of nonlinearities in a wave-excitation force has been estab-
lished. A force model that is more accurate than the Froude-Krylov force
approximation is critically important if reliable time-domain modelling of an
OWC is to be achieved.
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3. The importance of vortex shedding and motion of the water column in pro-
ducing nonlinearities in the air pressure has been confirmed. To evaluate the
potential nonlinearities that may arise due to hydrodynamic-aerodynamic in-
teractions, a PTO system should be incorporated into the OWC. In a FWCT,
this system may be modelled as an orifice integrated into the moving piston
(wall) placed above the internal free-surface of the OWC. Alternatively, an ori-
fice may be integrated into the fixed upper wall of the OWC in a RWT. This
is based upon the understanding that free-surface nonlinearity does not affect
the motion and hence the air pressure.

4. The physical causes of any nonlinear response of a water column are vortex
shedding and nonlinear inertial forcing. To understand any nonlinearities that
may be provoked by a PTO system on the response, either a FAPT or a RWT
may be explored. A numerical model of the former may consider an additional
air chamber connected through an orifice to the air chamber located immedi-
ately above the internal free-surface. The prescribed air pressure is imposed in
the additional air chamber.

5. Air compressibility may also affect the air pressure in a full-scale OWC. This
has been suggested by Elhanafi et al. (2017c) who confirmed an insignificant
change in the internal surface elevation, but a marked reduction in the air
pressure and hence the hydrodynamic efficiency of a full-scale OWC. Given
this view, future viscous flow modelling should incorporate air compressibility
when investigating the nonlinear response and nonlinear air pressure at full
scale.

6. The present study has been limited to regular wave cases. To advance the
design of an actual OWC, realistic sea states must be incorporated. This must
be included in both experimental and numerical viscous flow modelling, and
should also address any scale effects.

7. Some of the findings reported in earlier studies of bottom-standing OWCs
have been confirmed and explored in this thesis. It would be interesting to
investigate whether the present findings are more generally applicable in a
broader wave energy context. This includes the nonlinear response behaviour,
the nonlinear wave-excitation and air forces, the variations of the hydrodynamic
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coefficients and their applicability to wave-excitation problems. Specifically,
the present effects should be considered in the context of an OWC integrated
into a breakwater, a U-shaped OWC and the full range of floating OWCs.
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A
Radiation potential flow

A.1 The integral equation

αR
0 , βR

0 , αR
n and βR

n are determined by satisfying the continuity condition for the
outward radial velocity at the outer radius, UR (z), over the gap length, Lg. This
radial velocity is defined by:

UR (z) = ∂φR

∂r

∣∣∣
r=b

,

= αR
0 kH

′
0 (kb) ψ0 (z) +

∞∑
n=1

αR
n knK

′
0 (knb) ψn (z) ,

= βR
0 kJ

′
0 (kb) ψ0 (z) +

∞∑
n=1

βR
n knI

′
0 (knb) ψn (z) =

∞∑
n=0

UR
n ψn (z) ,

(A.1)

where ψn (z) = N−1/2
n cos kn (h + z) and ψ0 (z) = N

−1/2
0 cosh k (h + z) are the depth-

dependent eigenfunctions, with Nn = 1
2

(
1 + sin 2knh

2knh

)
and N0 = 1

2

(
1 + sinh 2kh

2kh

)
. Hav-

ing implemented this condition and the orthogonality relation for the eigenfunctions,
αR

0 , βR
0 , αR

n and βR
n may be related to the integral forms of the radial velocity.

αR
0 kH

′
0 (kb) = βR

0 kJ
′
0 (kb) , (A.2)

= 1
h

∫
Lg

UR (z) ψ0 (z) dz = UR
0 , (A.3)
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αR
n knK

′
0 (knb) = βR

n knI
′
0 (knb) , (A.4)

= 1
h

∫
Lg

UR (z) ψn (z) dz = UR
n . (A.5)

Substituting Equations (A.2)-(A.5) into another continuity condition for the radiated
velocity potential, φR (r, z), on the same surface generates

αR
0

[
H0 (kb) − H

′
0 (kb)

J ′
o (kb) J0 (kb)

]
ψ0 (z) − K−1

+
∞∑

n=1
UR

n

[
K0 (knb)

knK
′
0 (knb) − I0 (knb)

knI ′
o (knb)

]
ψn (z) = 0.

(A.6)

By employing the Wronskian identities for Bessel functions (Abramowitz & Stegun,
1972) and the derivatives of Bessel functions to simplify Equation (A.6), an integral
equation with a kernel L0 (z, l) can be expressed as

∫
Lg

UR (l) L0 (z, l) dl = −K−1 + 2iαR
0

πkbJ1 (kb)ψ0 (z) , (A.7)

L0 (z, l) =
∞∑

n=1

ψn (z) ψn (l)
k2

nhbI1 (knb) K1 (knb) . (A.8)

To solve this integral equation, velocity function, ui (z), that relates to the radial
velocity UR and satisfies Equation (A.7), is introduced as follows:

UR (z) = −K−1u1 (z) + 2iαR
0

πkbJ1 (kb)u2 (z) , (A.9)∫
Lg

ui (z) L0 (z, l) dl = di (z) , z ∈ Lg, (A.10)

where d1 (z) = 1, and d2 (z) = ψ0 (z) . (A.11)

A.2 Galerkin approximation

In considering the solution of the integral equation, a 2x2 matrix S is defined by:

Sij =
∫

Lg

ui (z) dj (z) dz. (A.12)
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Equations (A.10) and (A.12) can be re-written in an operator notation as follows:

L0ui = di, for z ∈ Lg, i = 1, 2, with d1 = 1, d2 = ψ0, (A.13)

(ui, dj) = Sij. (A.14)

The notation of (., .) means an inner product over the gap. The ui (z) is approximated
by a series of products of a test function, v (z), with a coefficient, an.

ui (z) � ũi (z) =
N∑

n=0
a(i)

n vn (z) , i = 1, 2, (A.15)

where the test function, vn (z), is chosen to represent the flow singularity near the
sharp edge of an OWC. The velocity at a field point is assumed to be proportional to
the square root of the distance from the field point to the sharp edge. In this case,
a Chebychev polynomial, T2n, establishes the function.

vn (z) = 2 (−1)n

π{(h − B)2 − (h + z)2}1/2
T2n

(
h + z

h − B

)
for − h < z < −B. (A.16)

Substituting Equation (A.15) into Equation (A.13), multiplying the latter with
vm (z), and integrating the product over Lg produces the following matrix.

N∑
n=0

a(i)
n L(0)

mn = D(i)
m , m = 0, 1, ..., N, (A.17)

where L(0)
mn = (vm, L0vn) and D(i)

m = (vm, di). The matrix S is approximated by

S̃ij =
N∑

n=0
a(i)

n D(j)
n , (A.18)

and S̃ = DT L(0)−1
D, where D is an (N + 1) x2 matrix and L(0) is an (N + 1) x

(N + 1) matrix. The elements of each matrix are defined in terms of Bessel functions.

D(1)
m =

∫ 2 (−1)m

π{(h − B)2 − (h + z)2}1/2
T2m

(
h + z

h − B

)
dz, (A.19)

D(2)
m = (−1)m N

−1/2
0 I2m{k (h − B)}, (A.20)

L(0)
mn =

∞∑
s=1

J2m{ks (h − B)}J2n{ks (h − B)}
NskshksbI1 (ksb) K1 (ksb)

. (A.21)

250



Radiation potential flow

To define the matrices defined above, three variables, N , M1 and M2, are con-
sidered. N determines the size of the matrices, DN+1x2 and LN+1xN+1, while M1

defines the number of standing wave modes and the number of the first terms in the
infinite series of the matrix L and the radiated velocity potential φR. Furthermore,
M2 denotes the number of the remaining terms in the infinite series approximated
by the asymptotic forms of the Bessel functions for large arguments.

A.3 Approximations to the infinite series

The asymptotic forms of the following Bessel functions for a large real argument as
stated in Linton & McIver (2001) are given as follows:

Im (x) ∼
√

π

2x
ex, (A.22)

Km (x) ∼
√

π

2x
e−x, (A.23)

Jm (x) ∼
√

2
πx

cos (x − mπ/2 − π/4) , (A.24)

Hm (x) ∼
√

2
πx

e i(x−mπ/2−π/4), (A.25)

where a large ksh is approximated by sπ as s → ∞. The constanta Ns in a depth-
dependent eigenfunction is approximated by:

Ns = 1
2

(
1 + sin 2sπ

2sπ

)
≈ 1

2 . (A.26)

The higher-mode terms in the infinite series of the matrix L(0)
mn (Equation (A.21))

are approximated by the asymptotic values given in Equations (A.22)-(A.24) as:

M2∑
s=M1

J2m{ks (h − B)}J2n{ks (h − B)}
NskshksbI1 (ksb) K1 (ksb)

=
M2∑

s=M1

4 (−1)m+n [1 + sin (2πs (1 − c2))]
π4s2 (1 − c2)

,

(A.27)

where c2 is the ratio of the draft, B, of the water column to the water depth, h.
Likewise, the asymptotic forms of the Bessel functions are implemented to esti-

mate the contribution of the higher-mode terms in the infinite series of the radiated
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velocity potential (Equation (2.17)). These higher-mode terms are approximated by:

M2∑
n=M1

αR
n K0 (knr) ψn (z) =

M2∑
n=M1

(
−1n+1

)√√√√ 4c1h

(πn)2 r
enπ(c1−r/h)

∫
Lg

UR (z) cos nπ (1 − z/h) dz,

(A.28)

where c1 is the ratio of the cylinder radius, b, to the water depth, h, and r the radial
distance of a field point from the centre of the water column.

A.4 Quantification of the radiated velocity potential

The steps to quantify the radiated velocity potential are outlined as follows:

1. Determine the N , M1 and M2 variables.

2. Solve the dispersion equation to estimate the wave numbers of the progressive
mode, k, and the standing modes, ks, as many as M1 modes.

3. Quantify the coefficients for the depth-dependent eigenfunctions corresponding
to the progressive mode, N0, and each standing wave mode, Ns .

4. Construct matrices DN+1x2 and LN+1xN+1 using Equations (A.19)-(A.20) and
(A.21), respectively. The remaining higher-mode terms in the infinite series of
matrix L as approximated in Equation (A.27) are included.

5. Quantify matrices a(i)
n and S̃2x2 using Equations (A.17) and (A.18), respectively

6. Quantify αR
0 coefficient of the progressive wave mode for r ≥ b using the

elements of matrix S̃ as follows:

−αR
0 khH1 (kb) = −K−1S12 + 2iαR

0 S22

πkbJ1 (kb) , (A.29)

αR
0 = K−1πkbJ1 (kb) S12

γH1 (kb) + 2iS22
, (A.30)

where γ is defined as πkbkhJ1 (kb).

7. Compute the velocity functions, ui (z), from Equation (A.15) to evaluate the
radial velocity, UR (z), using Equation (A.9), and substitute this velocity into
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Equations (A.4) and (A.5) to evaluate the coefficients of each exponentially
decaying mode, αR

n , for r ≥ b as follows:

αR
n = −

∫
Lg

UR (z) ψn (z) dz

knhK1 (knb) . (A.31)

8. Evaluate the radiated velocity potential, φR, for r ≥ b, using Equation (2.17).
The remaining higher-mode terms in the infinite series of the radiated velocity
potential are approximated using Equation (A.28). Following on, check the
convergence of this potential. If the convergence has not been achieved, increase
the N value and repeat from step 1.

9. Determine the coefficients associated with the progressive and the exponentially
decaying modes, βR

0 and βR
n , for r ≤ b using Equations (A.2)-(A.5), respec-

tively. Following on, approximate the higher-mode terms in the infinite series
of the corresponding radiated potential velocity φR to compute this potential
from Equation (2.18).

A.5 Convergence study

An OWC with a relative radius of b/h = 0.035 and relative water draft of B/h = 0.11
in a water depth of h = 1.0m was considered for a convergence study. The fequency
was fixed at ω2B/g = 0.88. The N and M1 variables were varied, while the M2

variable was set constant to 10000. In this study, N was given the value of 1, 5, and
10, and M1 was varied in the range of 10 ≤ M1 ≤ 1000.

Figure A.1 shows the radiated velocity potential computed at the external free-
surface, φR

e , at various radial locations from the water column. When N = 1, the
solutions never converge. In the cases of N = 5 and 10, φR

e converges as the number
of standing wave modes, M1, increases. The important criteria is to choose M1 such
that M1 � N . Otherwise, the computation shows an instability or a sudden change
in the radiated velocity potential. In Figure A.1, this instability is observed in the
range of M1 ≤ 25 at all radial locations. Overall, with N = 5 and a minimum value
of M1 = 100, a convergent analytical solution is observed. Likewise, a convergence
study of the radiated velocity potential computed at the internal free-surface, φR

i ,
was undertaken. The result is consistent with the convergence study for the φR

e .
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Figure A.1: Radiated wave potentials computed at the external free-surface, φR
e , of an OWC with

b/h = 0.035, B/h = 0.11 and h = 1.0m when ω2B/g = 0.88. M2 was fixed at 10000, while N and
M1 were varied: N = 1 [ ], 5 [ ], 10 [ ].
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B
Computations of radiated waves

B.1 Computation using radiated velocity potential

For the radiation potential flow generated by a cylindrical OWC, the free-surface
elevation is expressed as η (r, z, t) = Re [η (r, z) e−iωt] and the velocity potential as
Φ (r, z, t) = Re [φ (r, z) e−iωt]. Given these expressions and the linearised dynamic
free-surface boundary condition (Equation (2.7)), the two variables may be related
in a time-independent function.

ηi (r) = −i
ω

g
φ (r, 0) + Po

ρg
, on Si, (B.1)

ηe (r) = −i
ω

g
φ (r, 0) , on Se, (B.2)

where ηi and ηe denote the internal and the external surface elevation, respectively.
Both elevations are computed at the mean free-surface, z = 0. By substituting
the velocity potential, defined as φ (r, z) = −iω Po

ρg
φR (r, z), into Equation (B.1), the

amplitude of the radiated wave elevation at a radial location, ηe
o (r), is given by:

ηe
o (r)
ηi

o

= | φR
e (r, 0) |

| φR
i (0, 0) − K−1 | , (B.3)

where φR
e (r, 0) and φR

i (0, 0) are the external and the internal radiated velocity po-
tential, respectively. The latter may be evaluated at any radial location of r ≤ b due
to the assumption of the uniform displacement of the water column.
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Computations of radiated waves

B.2 Computation using radiation damping coefficient

Based upon the linear wave theory, the energy flux of a propagating wave per unit
crest-width is given by:

P = 1
8ρgH2Cg, (B.4)

where H is the wave height and Cg the group velocity defined as Cg = nC = nL/T .
n is a constanta given by n = 1

2

(
1 + 2kh

sinh(2kh)

)
. For a wave that radiates due to

an oscillating cylindrical body, the crest width of the radiated wave is 2πr, and the
energy flux of the wave is defined as follows:

P (r) = 1
2ρg [ηe

o (r)]2 Cg2πr. (B.5)

Herein, the energy flux P (r) is expressed as a function of radial distance from the
oscillating body. By considering the radiated wave as a source of the damping force
that acts on the body, the associated energy flux Pb can be given by:

Pb = 1
2BmU2, (B.6)

where Bm is the radiation damping coefficient. Herein, U is the velocity of the
oscillating body and computed as the velocity of the internal surface elevation in the
context of oscillating water column. This velocity U is simply defined as ηi

oω.
Since the energy is conserved, Equations (B.5) and (B.6) have to be equal. The

normalised radiated wave amplitude, ηe
o (r) /ηi

o, is expressed as follows:

ηe
o (r)
ηi

o

=
√

2π

ρgn

Bm

λTr
. (B.7)

It should be noted that this computation of the radiated wave amplitude is only valid
at a radial location sufficiently distant from the water column.

B.3 Comparisons of the computations with WAMIT

To validate the present linear analytical solver, the hydrodynamic coefficients and
radiated wave profiles around a cylindrical OWC were evaluated and compared with
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Computations of radiated waves

the numerical results obtained from WAMIT. A comparison of the added mass, Am,
shows small discrepancies in Figure B.1(a); the discrepancies estimated to be less
than 3%. In respect of the radiation damping coefficient, Bm, good agreement is
observed in Figure B.1(b).
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Figure B.1: (A) Added-mass coefficient, Am/ρAcB, and (B) radiation damping coefficient, Bm,
computed from the linear analytical solver [ ] and WAMIT simulation [∗] for the OWC with
b/h = 0.035, B/h = 0.11 and h = 1.0m.

Following on, the radiated wave profiles are compared in Figure B.2. The radi-
ation damping coefficients computed from WAMIT were employed to estimate the
radiated wave profiles generated at four different frequencies. These estimated pro-
files compare very well with the analytically predicted wave profiles, provided that
the exponentially decaying modes of the radiated velocity potential are neglected in
the analytical solutions. The comparison with the analytical solutions that consider
the exponentially decaying modes, clearly shows that the largest deviations are ob-
served in the fields near the OWC. These deviations in the near-fields confirm that
the wave-radiation damping applied to an OWC is only associated with the progres-
sive mode of the radiated wave, while the added mass is related to the exponentially
decaying modes. Furthermore, Figure B.2 shows that the relative radial location,
r/λ, where the influence of the exponentially decaying mode is negligble, increases
with the frequency. The negligible influence is determined from the percentage of
deviation being less than 0.5%. This analysis is useful to evaluate the radiated wave
elevation in the field far from an OWC.
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Figure B.2: Comparisons between the normalised radiated wave amplitude, ηe
o/ηi

o, for the OWC
with b/h = 0.035, B/h = 0.11 and h = 1.0 m predicted using the radiation damping coefficient
given from WAMIT [ ] and computed from the linear analytical solution by considering [ ]
or neglecting [ ] the exponentially decaying modes.
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C
Scattering potential flow

C.1 The integral equation

αS
q,0, βS

q,0, αS
q,n and βS

q,n are determined by satisfying the continuity conditions for the
radial velocity and the scattered potential at r = b, US

q (z) and φS
q (z), over the gap

length, Lg, for each azimuthal mode, q. The radial velocity is given by:

US
q (z) =

∂φS
q

∂r

∣∣∣
r=b

,

=
(
kJ

′
q (kb) + αS

q,0kH
′
q (kb)

)
ψ0 (z) +

∞∑
n=1

αS
q,nknK

′
q (knb) ψn (z) ,

= βS
q,0kJ

′
q (kb) ψ0 (z) +

∞∑
n=1

βS
q,nknI

′
q (knb) ψn (z) =

∞∑
n=0

US
q,nψn (z) .

(C.1)

By implementing the orthogonality relationship, Equation (C.1) can be expressed as

kJ
′
q (kb) + αS

q,0kH
′
q (kb) = βS

q,0kJ
′
q (kb) , (C.2)

= 1
h

∫
Lg

US
q (z) ψ0 (z) dz = US

q,0, (C.3)

αS
q,nknK

′
q (knb) = βS

q,nknI
′
q (knb) , (C.4)

= 1
h

∫
Lg

US
q (z) ψn (z) dz = US

q,n. (C.5)

Equations (C.2)-(C.5) are combined with the continuity condition for the scattered
potential. Having employed the Wronskian identities for Bessel functions, an equa-
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tion that satisfies all the matching conditions can be expressed as follows:

(
Jq (kb) + αS

q,0Hq (kb) − βS
q,0Jq (kb)

)
ψ0 (z) +

∞∑
n=1

(
αS

q,nKq (knb) − βS
q,nIq (knb)

)
ψn (z)

=
−2iαS

q,0

πkbJ ′
q (kb)ψ0 (z) +

∞∑
n=1

US
q,n

k2
nbK ′

q (knb) I ′
q (knb)ψn (z) = 0

(C.6)

Substituting the definition of US
q,n into Equation (C.6) produces the integral equation

for the scattering potential flow given by:

∫
Lg

US
q (l) Lq (z, l) dl =

−2iαS
q,0

πkbJ ′
q (kb)ψ0 (z) , z ∈ Lg (C.7)

Lq (z, l) = −
∞∑

n=1

ψn (z) ψn (l)
k2

nhbI ′
q (knb) K ′

q (knb) . (C.8)

In solving this integral equation, a function uq (l) that satisfies Equations (C.7)-(C.8)
and has the following relationship is employed.

∫
Lg

uS
q (l) Lq (z, l) dl = ψ0 (z) , z ∈ Lg (C.9)

where US
q (l) =

−2iαS
q,0

πkbJ ′
q (kb)uS

q (l) . (C.10)

By substituting Equation (C.10) into (C.2), the αS
q,0 coefficient can be computed as:

αS
q,0 =

−γqJ
′
q (kb)

γqH
′
q (kb) + 2iAs

q

, where γq = πkbkhJ
′
q (kb) , (C.11)

and AS
q =

∫
Lg

uS
q (z) ψ0 (z) dz. (C.12)

C.2 Galerkin approximation

Equations (C.9) and (C.12) may be expressed in an operator notation as follows:

Lqu
S
q = ψ0, z ∈ Lg (C.13)(

uS
q , ψ0

)
= AS

q . (C.14)
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The function, uS
q (z), is approximated by a series of products of a test function,

vn (z), with a coefficient, bn. Again, the test function, vn (z), is expressed in terms
of Chebychev polynomial and given a square root singularity factor (see Equation
A.16).

uS
q (z) � ũS

q (z) =
N∑

n=0
b(q)

n vn (z) . (C.15)

AS
q defined in Equation (C.14), is approximated by ÃS

q that is computed as

ÃS
q (z) = F T L(q)−1

F, (C.16)

where Fm0 = (−1)m N
−1/2
0 I2m{k (h − B)}, (C.17)

and L(q)
mn = −

∞∑
s=1

J2m{ks (h − B)}J2n{ks (h − B)}
NskshksbI

′
q (ksb) K ′

q (ksb)
. (C.18)

F is an (N + 1) vector and L(q)
mn is an (N + 1) x (N + 1) matrix. The higher-mode

terms in the infinite series seen from Equation (C.18), may be approximated in a
similar way as for the radiation potential flow problem. The asymptotic forms of
the Bessel functions for large real arguments given in Equations (A.22)-(A.25) can
be employed.

C.3 Code verification

The response amplitude operator (RAO) for an OWC and the phase of this response
θS were computed from the present linear analytical solver and WAMIT simula-
tions. Direct comparisons of the RAO and θS are provided in Figure C.1 to verifiy
the present linear analytical solver. The dimensions of the OWC for this comparison
follows those described in Figure B.1, that shows the comparisons between the hydro-
dynamic coefficients computed from the WAMIT simulations and the present linear
analytical solver. Figure C.1 shows that the RAO and θS have very good agreement.
This proves that the present solver is capable of solving the boundary-value problem
arising from the wave interaction with a thin-walled OWC in a linear potential flow.

Following on, the solutions available from Evans & Porter (1997) were reproduced
using the present linear analytical solver. Direct comparisons are provided in Figure
C.2. These comparisons involve OWCs with varying radius, b, in a constant water
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Figure C.1: Comparisons of (A) RAO and (B) phase of the response θS computed from the
linear analytical solver [ ] and WAMIT simulations [∗] for an OWC with a relative radius of
b/h = 0.035, relative draft of B/h = 0.11 and water depth of h = 1.0m and at varying incident
wave frequencies ω.

depth, h, and varying incident wave frequencies, ω. The dimensions of these OWCs
are identical to those of which the hydrodynamic coefficients are presented earlier in
Figure 2.4. Good agreement of the RAO values and the phases confirm the accurate
implementation of the present linear analytical solution. Furthermore, Figure C.2
shows that the peak frequency at which the peak response occurs, shifts to a lower
frequency as the radius increases. This results from the increased water column
mass, that in turn reduces the undamped natural frequency from the piston natural
frequency; the latter having ω2B/g = 1.
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Figure C.2: (A) RAO and (B) phase of the response θS computed from the present linear analyt-
ical solver for OWCs with varying radius of b/h = 1

8 [ ], 1
4 [ ] and 1

2 [ ] and varying
incident wave frequencies ω are compared with Evans & Porter (1997)’s calculations: b/h = 1

8 [◦],
1
4 [�] and 1

2 [	].
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D
Finite volume method

D.1 Governing equations

Open Foam uses a Finite Volume Method (FVM) to numerically model a flow. In
this method, the computational domain of a numerical model is discretised into a
finite number of collocated-based control volumes (CVs). As such, the variable fields
are allocated at the central point of the CV. The mass and momentum conservation
equations are implemented by integrating these equations over each CV. To capture
rapid fluctuations and mixing process that occur in the flow, a large eddy simulation
or a Reynolds-averaged Navier-Stokes approach may be adopted in the numerical
model.

D.1.1 Large eddy simulation (LES) principle

In a LES, the flow field is spatially filtered and solved directly. For the velocity field,
the filtered velocity is expressed as follows:

u(x) =
∫

u(x′)G(x, x
′)dx

′
, (D.1)

where G(x, x
′) =

⎧⎪⎪⎨⎪⎪⎩
1
V

, if x
′ ∈ V

0 otherwise.
(D.2)
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Herein, G(x, x
′), the spatial filter kernel, is defined as a simple box-hat filter, and V

is the volume of the CV.
The filtered mass and momentum conservation equations can be expressed as

follows:

∇ · (u − ug) = 0, (D.3a)
∂

∂t
u + ∇ · (u − ug) u = − 1

ρ
∇p + ∇ · ν(∇u + ∇uT )

+ ∇ · τ s + g, (D.3b)

where ug denotes the velocity of grid for a dynamic mesh problem and has a zero
value in a static mesh. Furthermore, τ s represents the subgrid scale (SGS) stress
that has to be modelled to solve the closure problem arising from Equations (D.3a)
and (D.3b). Following the classical Smagorinsky model (Smagorinsky, 1963), an
eddy viscosity model has been adopted in the present study. This model assumes
that the SGS stress results in increased transport and dissipation in the flow and
thus this stress is related to the strain rate of the large (or resolved) scale field.

τ s = −νt(∇u + ∇uT ) = −2νtS, (D.4)

where K denotes the SGS kinetic energy. νt, the eddy viscosity, and S, the large-scale
strain rate, are repectively defined as:

νt = CsΔ2|S|, (D.5a)

S = 1
2(∇u + ∇uT ), (D.5b)

where |S| =
√

2S S. (D.5c)

Δ given in Equation (D.5a) is the filter length scale and defined by:

Δ = 3√
V . (D.6)

Furthermore, Cs in Equation (D.5a) is the Smagorinsky coefficient determined as an
a priori input in the classical Smagorinsky model.

In the dynamic Smagorinsky model proposed in Germano et al. (1991), Cs is
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estimated at every computational time step. This model assumes that the inter-
action between the SGS field and the smallest resolved scale field is similar to the
interaction between the latter and the larger resolved scale field. A second filtering
of the formerly filtered equations of motion is thus undertaken. The second filtered
equations can be expressed as follows:

∂

∂t
ũ + ∇ ·

(
ũ − ũg

)
ũ = − 1

ρ
∇p̃ + ∇ · ν(∇ũ + ∇ũ

T )

+ ∇ · T s + g, (D.7a)

where the SGS stress is now

T s = −2νtS̃ (D.8)

where νt = CsΔ̃2|S̃| (D.9)

and S̃ = 1
2(∇ũ + ∇ũ

T ) (D.10)

Δ̃ is the filter length scale defined as Δ̃ = 2Δ in the second filtering. The resolved
scale stress is given by

L = T s − τ̃ s (D.11)

= 2CsM (D.12)

where M = Δ2
(
˜|S|S − 4|S̃|S̃

)
. (D.13)

Lilly (1992) implemented the least-squares method to estimate Cs and derive the
following expression.

Cs = 1
2

LM

LM
. (D.14)

D.1.2 Reynolds-averaged Navier-Stokes (RANS) principle

In a RANS model, the variable fields are time averaged over a time interval larger
than the typical time scale of the fluctuations. This averaging also introduces an
additional term referred to as the Reynolds stress in the time-averaged momentum
conservation equations to approximate the nonlinear convective flux.

The present study considers the k-ω SST model proposed by F. R. Menter &
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Langtry (2003). The superiority of this RANS model over the k-ε and the k-ω
models lies in its capability to predict separated flows near a wall and free shear
flows at the locations far from the wall. By using blending functions, the k-ω SST
model switches to the k-ε model for the flow far from any wall, and adopts the k-ω
model inside a boundary layer at which the flow may separate.

The time-averaged mass and momentum conservation equations and the trans-
port equations of the turbulent kinetic energy k and the turbulence specific dissipa-
tion rate ω are expressed as follows:

∇ · (u − ug) =0, (D.15a)
∂

∂t
u + ∇ · (u − ug) u = − 1

ρ
∇p + ∇ · ν(∇u + ∇uT )

+ ∇ · τ R + g dV, (D.15b)
∂

∂t

∫
V

k + (∇ · u)k =∇ · (ν + σkνt)∇k + 1
ρ

P̃k − β∗kω, (D.15c)

∂

∂t
ω + (∇ · u)ω =∇ · (ν + σω1νt)∇ω + α∗|S|2

− βω2 + 2 (1 − F1) σω2
1
ω

∇k∇ω. (D.15d)

τ R of Equation (D.15b) is the Reynolds stress and defined as

τ R = −νt(∇u + ∇uT ) = −2νtS, (D.16a)

where νt = a1k

max
(
a1ω, |S|F2

) . (D.16b)

νt denotes the eddy viscosity with the coefficient of a1 = 0.31 and the modulus of
the mean strain rate given by |S| =

√
2S S. Furthermore, the term P̃k is a limiting

function given by:

P̃k = min (Pk, 10β∗kω) , (D.17a)

where Pk = −2νt∇uS. (D.17b)

It should be noted that the notations of k and ω used in this appendix have different
definitions from those described in the chapters of this thesis.

α∗ of Equation (D.15d) is computed as α∗ = α1F1 + α2 (1 − F1), and the closure
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coefficients are given by σk1 = 0.85, σk2 = 1.0, σω1 = 0.5, σω2 = 0.856, α1 = 5/9,
α2 = 0.44, β1 = 0.075, β2 = 0.0828 and β∗ = 0.09. Furthermore, F1 and F2 are the
blending functions, which are respectively defined by:

F1 = tanh
⎡⎣[min

(
max

( √
k

β∗ωnw

,
500ν

n2
wω

)
,

4ρσω2k

CDkwn2
w

)]4
⎤⎦, (D.18a)

F2 = tanh
⎡⎣[max

(
2
√

k

β∗ωnw

,
500ν

n2
wω

)]2
⎤⎦, (D.18b)

where CDkw = max
(

2ρσω2
1
ω

∇k∇ω, 10−10
)

, (D.18c)

and nw is the distance to the nearest wall.

D.1.3 Additional equations

For capturing the free surface in a computational domain, a Volume of Fluid (VOF)
method is applied. A scalar quantity α is introduced to represent the amount of
fluid contained in a CV. For a two phase problem considering air and water, α = 1 if
the CV is fully filled with water and 0 if empty. The free surface is identified when
0 < α < 1. The scalar quantity is computed in the numerical model by satisfying
the transport equation of α given by:

∂α

∂t
+ ∇ · (u − ug) α + ∇ · urα (1 − α) = 0, (D.19)

where ur is the compression velocity used to limit the smearing of the interface and
maintain this interface sharp.

For a dynamic mesh, the space conservation law (SCL) must be satisfied (Demirdžić
& Perić, 1988, Jasak, 2009). The SCL defines the relationship between the velocity
of the moving surface of a CV and the rate of change of the volume V . In a volume
integral, this SCL can be expressed as follows:

∂

∂t

∫
V

dV −
∫

V
∇ · ug dV = 0 (D.20)
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D.2 Discretisation practises

The generic transport equation for a scalar quantity ϕ is expressed as follows:

∂

∂t

∫
V

ϕ dV +
∫

V
∇ · (u − ug) ϕ dV −

∫
V

∇ · (Γϕ∇ϕ) dV =
∫

V
Sϕϕ dV. (D.21)

The first term of Equation (D.21) is referred to as temporal flux, the second term
convective flux, the third term diffusive flux and the last is referred to as source flux.
The discretisation of each term will be described in the sections that follow.

D.2.1 Temporal discretisation

For the temporal discretisation, various time-advancing schemes have been imple-
mented within the present study. An investigation of the accuracy of these schemes
is provided in Section 3.4.1. In the scheme of the first-order implicit Euler, the
temporal flux in a discretised form is given from:

∂

∂t

∫
V

ϕ dV = ϕt+Δt − ϕt

Δt
V. (D.22)

The volume integral in this flux has been aproximated using the mid-point rule.
Furthermore, the terms in the convective and diffusive fluxes are treated implicitly
and thus expressed in terms of the scalar quantity at the current time step, ϕt+Δt.

D.2.2 Spatial Discretisation

For the convective flux, the volume integral is transformed into a surface integral
using the Gauss divergence theorem. The approximation to this surface integral
again uses the mid-point rule. The spatial discretisation is given as follows:

∫
V

∇ · (u − ug) ϕ dV =
∫

∂A
(u − ug) ϕ · dA =

∑
f

[
Af · (u − ug)m−1

]
ϕm

f .

(D.23)

Since the convective flux is a nonlinear term, a blending scheme that maintains both
numerical accuracy and stability is adopted to interpolate the scalar quantity at
every surface of a CV, ϕf , with Af being the normal surface vector. To linearise this
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term, the mass flux in Equation (D.23) is predicted using the velocity field computed
from the previous iteration, um−1.

Likewise, the volume integral corresponding to the diffusive flux in Equation
(D.21) is transformed into a surface integral. The discretisation is thus expressed as:

∫
V

∇ · (Γϕ∇ϕ) =
∑

f

Γϕ(Af · ∇ϕf ), (D.24)

where Af · ∇ϕf =|Af |ϕ
m
N − ϕm

P

|d| + [|Af |∇ϕf · (n − id)]m−1 . (D.25)

The first term in Equation (D.25) is the approximation to the surface integration
applied to a purely orthogonal CV, while the second term is a corrector associated
with non-orthogonality of the CV. |d| of the first term denotes the distance between
the centres of two adjacent CVs. In the second term, ∇ϕf indicates the gradient of
the scalar quantity interpolated at the surface and n − id the difference between the
vector normal to this surface and the vector parallel to the line connecting the two
centres. Furthermore, this second term requires data computed from the previous
iteration and is thus merged into the source flux of Equation (D.21).

To approximate ∇ϕf , the Gauss’ theorem is implemented and the value of ϕf at
each surface of the CV is averaged as follows:

∇ϕ =
∫

V ∇ϕ

V
=

∑
f Af · ϕ

V
. (D.26)

This approximation is also applied to quantify the pressure gradient, which is com-
puted using data of previous iteration. The pressure gradient, together with the
volume integral corresponding to the body force term, contribute the source flux in
Equation (D.21).

D.3 Pressure-velocity coupling: PISO algorithm

The implementation of the discretisation practises for all CVs in a computational
domain generates a set of equations that can be expressed in a matrix form:

aP uP +
∑
N

aNuN = Q, (D.27)
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where ap is the matrix coefficient for the velocity at the centre of a CV, aN the matrix
coefficient derived from the neighbouring CVs and Q is the vector corresponding to
the source term noted earlier. In the present study, an iterative solver appropriate
to an asymmetric system is adopted to solve this matrix equation.

By solving Equation (D.27) using the iterative solver, the provisional values of the
velocity field can be computed. To satisfy the continuity equation, these provisional
velocities have to be corrected by coupling the pressure and velocity variables. A
segregated approach based upon PISO (Issa, 1986) is adopted to solve the governing
equations within the present study. This approach substitutes pressure correction p

′

and velocity correction u
′ into the momentum conservation equation and the conti-

nuity equation. A pressure correction equation for each CV can thus be expressed
as follows:

1
aP

∇2p
′
P = ∇uP + ∇û

′
P , (D.28)

where û
′
P = −

∑
N aNu

′
N

aP

. (D.29)

The pressure correction p
′ can be computed using Equation (D.28) with u denoting

the provisonal velocity. For this first correction, û
′
P is neglected as it is unknown.

The first velocity correction u
′ is then predicted using the following relationship:

u
′
P = − 1

aP

∇p
′
P (D.30)

A second pressure and velocity correction may be computed as:

1
aP

∇2p
′′
P = ∇û

′
P , (D.31)

u
′′
P = û

′
P − 1

aP

∇p
′′
P . (D.32)

Further corrector steps can be undertaken in the same way. In the present study, the
number of correctors is generally set to three. Having solved the pressure correction
equation, the momentum conservation equation is again solved as described earlier
and iteratively until a pre-determined tolerance is reached.
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