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Abstract—Despite significant advances in methods for process-
ing large volumes of structured and unstructured data, surpris-
ingly little attention has been devoted to developing practical
methodologies that leverage state-of-the-art technologies to build
domain-specific semantic search engines tailored to use cases
where they could provide substantial benefits.

This paper presents a methodology for developing these kinds
of systems in a lightweight, modular, and flexible way with a
particular focus on providing powerful search tools in domains
where non-expert users encounter challenges in exploring the
data repository at hand.

Using an academic expertise finder tool as a case study, we
demonstrate how this methodology allows us to leverage powerful
off-the-shelf technology to enable the rapid, low-cost development
of semantic search engines, while also affording developers with
the necessary flexibility to embed user-centric design in their
development in order to maximise uptake and application value.

Index Terms—Semantic search, natural language technologies,
knowledge graphs, neural information retrieval

I. INTRODUCTION

Advances in semantic technologies [1], [2], natural language
processing (NLP) [3], and machine learning (ML) [4] have
given rise to widely available tools that can be used to create
software applications that can help individuals and organi-
sations navigate large volumes of both structured and un-
structured information. However, surprisingly little prior work
focuses on developing practical methodologies to guide the
lightweight, flexible integration of off-the-shelf technologies
when developing custom search engines for specific use cases
from scratch; and which afford developers with the freedom to
choose and adapt the algorithms used to train search models,
their preferred approach to data and privacy management, and
the user interaction and collaboration modalities they want to
embed in the resulting application.

In this paper, we present a methodology for building search
engines in domains where users need to find information in
large volumes of typically unstructured datasets (text, images,
audio, or video). In these domains, the raw data itself cannot
be navigated purposefully (users do not “speak the language”
of the raw data), but structured metadata is available that lends
itself to human interpretation and navigation, at least at a level
that allows for implementing key functionality that matters to
the user. To link unstructured to structured data, such search
engines need to provide a semantic connection between raw
data, metadata, and user queries, which can nowadays be

achieved by extracting semantic information from unstructured
data using state-of-the-art NLP and ML techniques [5].

Crucially, we cannot expect that source datasets have always
been enriched with expressive metadata, so we have to care-
fully think about how users can interact with the data. Even
in cases where a search may return little more than a link to
the original data item (e.g. a document, image, audio or video
file) that has to be explored manually, search engines of this
kind must be able to narrow down large search spaces using
only relatively uninformed queries (in terms of how closely
they describe the kind of content the user is looking for) to
provide tangible value to end users.

Use cases where such technology can provide significant
application value abound, and include: (a) Tools that enable
non-expert users to identify experts in a given profession, dis-
cipline, or area of business, e.g. for purposes of recruitment, to
source expertise for collaborations or suppliers of commercial
services; (b) enterprise information systems that pull together
documents from a range of corporate databases in ways that
can be searched by all employees to retrieve relevant business
information, or find the right colleague to speak to about a
certain matter; and (c) systems where the target data cannot
be queried directly using textual queries, e.g. when a user
wants to describe what kind of musical piece they are looking
for in a database of audio files [6], a clinician tries to retrieve
medical images of scans that have similar characteristics to the
case they are trying to evaluate [7], or when a video content
editor is sourcing sequences of archive footage to put together
a feature on a specific topic [8].

In many of these scenarios, information is effectively only
available in one or more “language(s)” the user is not conver-
sant in, or may not have been made available for the purpose
the user ultimately wants to use it for.

Our work aims to support the development of this class of
applications by providing a meta-model of their general struc-
ture that underpins a simple, yet flexible design methodology
that allows developers to build them rapidly using off-the-shelf
components. We demonstrate the benefits of this methodology
with the case study of a system designed to help lay users find
academic experts that has been implemented and deployed for
use at a large research university.

The remainder of this paper is structured as follows: Sec-
tion II outlines key desiderata for the class of systems we are
interested in, both regarding their functionality and in terms



of their development and deployment. We present out method-
ology, which has been designed to satisfy these requirements
and is driven by a high-level meta-model of their structure
in Section III. Section IV provides a detailed account of a
prototypical system developed using this methodology. Related
work is covered in Section V, and Section VI concludes with a
summary of our main contributions and a discussion of future
avenues for further research.

II. DESIDERATA

The common foundation of most, if not all, search-based
applications is that they aim to assist users in navigating
large amounts of data, including in situations where users
might not know exactly what information they are looking
for, or whether it even exists. Unlike general-purpose web
search engines (e.g. Google Search, Bing, Baidu), many more
specific use cases focus on searching specific datasets, for
example document, image, audio or video repositories, product
or service catalogues, or people profiles.

Several commercial products such as Apache Solr1, Elastic-
Search2, or Algolia3 provide semantic search technology that
can be readily used by developers, while other vendors such as
Starmind4 offer complete entreprise knowledgement solutions
that use similar kinds of technology to enable smart search
and knowledge sharing within client organisations.

Also, with recent immense advances in large language
models (LLMs) [9] and generative AI, many new ways of
using systems like ChatGPT [10] and search technology built
on top of it (e.g. Moveworks5 or Microsoft Prometheus6)
provide conversational interfaces that enable users to explore
information in more intuitive ways and offer AI-assisted
functionality that offers huge benefits in terms of productivity.

As these technologies have advanced, we observe that many
of their underpinning components are now available in free and
often open-source stacks (e.g. LangChain7), which suggests
that similar applications tailored to specific use cases could
be developed from scratch with little effort in more cost-
effective ways, avoiding vendor lock-in, and giving developers
and users full control over how data and algorithms are used
in the resulting software application.

This would not only support the democratisation of semantic
search technology, but also allow for a more user-centric
development of practical solutions through rapid prototyping
and testing with target users, even in cases where commercial
solutions might be ultimately adopted.

Realising this vision requires focusing on a number of
requirements that underpin our methodology:

1solr.apache.org
2elastic.co
3algolia.com
4www.starmind.ai
5www.moveworks.com
6gpt3demo.com/apps/microsoft-prometheus
7python.langchain.com/

a) Focus on a minimal, lightweight architecture: We seek
to identify only the components that provide the functionality
that is strictly needed to deliver what users need, and to
integrate these in in a “bare-bones” architecture that provides
a simple, generic, and reusable design pattern. While feature-
rich applications and platforms may well be built on top of
our core framework, they are beyond the scope of this work.

b) Modular, flexible design: We aim to use readily avail-
able, off-the-shelf software components and to integrate them
in a modular way so they can be individually configured,
modified or swapped out for alternatives, and easily migrated
to different computing platforms for deployment and scale-up.
The objective of our framework is not to advance the perfor-
mance of any single component or its underpinning algorithms,
but to be able to experiment with existing technologies for the
purpose of rapid prototyping and testing.

c) “Out of the box” search engine functionality: Our
target developer and user audiences will often work in domains
or organisations with relatively small numbers of users. There-
fore, our systems need to avoid the “cold start” problems of
recommender systems that rely on extensive user engagement.

This implies that we are limited to using algorithms that
do not rely on user feedback or profiling to inform the search
models used by the system. This does not mean we discourage
developers from adding features that take user input into
account; rather, we want to be able to be able to demonstrate
the core functionality of the system as soon as it is deployed
in order to be able to iterate its design with users.

d) Full control over data and algorithms: Many com-
mercially available tools supply algorithmic components that
have been (understandably) packaged up in ways that do not
allow developers to modify and adapt those freely. Some of
them may also have been pre-trained on datasets in ways that
cannot be controlled (or verified) ex post, as is the case, for
example, in some LLM-based technologies (users may also
not know whether the data they supply to these tools is used
for further training).

By contrast, our approach is aimed at domains where
the data supplied to the search engine may be sensitive in
terms of privacy or commercial confidentiality and needs to
remain safely under the control of the locally deployed system.
Additionally, we need to ensure search results are confined to
controlled data sets and can be linked to specific source data
items in terms of provenance.

e) User-centric design: The design of the application
should be driven by user requirements. This means that,
when selecting individual components and designing specific
data and algorithmic processing pipelines, we must take into
account what capabilities users have in terms of navigating
information, how they might articulate their queries, and what
the most common user workflows look like.

To design for a diverse range of potential types of users, it
is also important to separate the user interaction layer clearly
from data and algorithmic processing layers, so that different
interfaces could be provided while reusing algorithmic compo-

https://solr.apache.org/
https://www.elastic.co/
https://www.algolia.com/
https://www.starmind.ai/
https://www.moveworks.com/
https://gpt3demo.com/apps/microsoft-prometheus
https://python.langchain.com/
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Fig. 1. Semantic search engine structure and information flows between data components (green), user activities (grey), algorithmic components (blue/orange)

nents across different use cases, or, e.g., making them available
as SaaS components to other developers.

III. METHODOLOGY

Guided by these desiderata, we develop our methodology
by decomposing semantic search engine design into a number
of key steps as per the high-level meta-model shown in Fig. 1:

1) The source data that is to be searched and linked
to metadata that contains descriptions of source data items.
As described above, we are mainly interested in domains
where the source data is unstructured and can either not be
searched effectively using descriptions provided by users in
their queries (as, e.g., in the case of non-textual data); or, it
may be accessible in principle but not easy to describe for the
target user audience (e.g. because it uses specialised technical
language). We do not make any assumptions regarding the
nature of the available metadate. In many cases, it will merely
contain a resolvable identifier to access the original data object
in a database or a URL. Ideally, however, it would contain
key information relevant to the use case (e.g. the names of
document authors if users typically look for relevant authors).

2) Knowledge filters that structure metadata in ways that
allow users to constrain their queries at run-time. Such filters
may operate directly on the original metadata (e.g. specific
data facets that the search can be narrowed down to) or on
entities derived using information extraction algorithms (e.g.
attributes extracted from documents or images using infor-
mation retrieval or image recognition algorithms). Depending
on the richness of the metadata structure, knowledge filters
might offer anything from simple attribute-value constraints
to a fully-fledged knowledge graph query language [1], [2].

3) The core semantic model construction algorithm that
that enables relevance-based search by providing a facility to
compare the user’s search query against source data items.
The model construction step will typically involve using an
intermediate representation (bag of words, vector embedding
etc) that both source data and user query can be translated to,
and which the unstructured source data has been augmented
with in a pre-processing step. Model construction will often

require extensive training of a model on the source data, with
inference against the search query conducted at run-time. It
is essential that the representations used allow for returning
search results within an acceptable amount of time, as this will
directly affect search execution times experienced by users.

4) The search algorithm itself maps the user query to the
intermediate representation used by the semantic model and
matches it against the source data items, taking any knowledge
filtering choices into account the user has made when running
their search. Typically, this will involve an algorithmic process
of exploring the (semantic model part of the) source database
to identify most relevant “matches” to the query, and ranking
them for presentation to the user in the search results.

The key challenge we are faced with in the design of this
component is ensuring that the search algorithm can scale to
the dimensions of the dataset at hand. This may require, for
example, generating search results dynamically in order of
decreasing relevance to reduce query execution times while
allowing users to explore further results incrementally.

5) User exploration, finally, refers to the modalities users are
afforded to search any results returned by the search engine.
These will at least include providing interfaces that allow
for navigating and processing the metadata corresponding
to search results (including, frequently, the application of
additional filters on the results) and/or the actual unstructured
data items (e.g. reading a document, playing a media file).

In more fully developed search engine applications, many
other features can be added that enable, e.g., archival of
previous searches, the elicitation of user feedback on search
results to improve the semantic models, or further processing
steps related to using and managing source data items (e.g.
data download and export functionalities).

This meta-model highlights key design decisions that need
to be taken in the development of semantic search engines
of this kind such as: What data sources are to be used, what
metadata is available for (or could be reliably extracted from)
them? What semantic representation can be used for searching
unstructured data, and what off-the-shelf tools are available



to develop the algorithmic components that will (a) use it to
augment the unstructured data and (b) provide efficient search
functionality that exploits this representation?

While answers to these questions will allow developers to
assess whether implementation of the system is feasible (with
the resources available), the starting point of the design process
should always be a clear understanding of the functionality
that the search engine can provide for target users, and which
depends on their specific needs and capabilities.

This is because such systems aim to close a “gap” between
very large volumes of data that is typically hard to navigate
for users due to the unmanageable human effort that would
required, or because their skills and knowledge require them
to access information in ways that require “translating” the
source data to user-appropriate content.

In the following, we describe how we have approached this
in the development of a prototypical system that was designed
using this methodology.

IV. CASE STUDY: OPPORTUNITYMATCH

OpportunityMatch (OM) is an academic expertise finder tool
which we have developed for the University of Edinburgh, a
large research university with over 11,000 research-active staff
and PhD students. Despite the fact that the University provides
a publicly available research database8 that contains (near-)up-
to-date information on all of its research outputs (publications,
projects, research datasets, etc), it is hard to identify the right
experts for specific opportunities for several reasons:

Firstly, such opportunities are often expressed using very
different language from that used in scholarly repositories.
Examples for this include calls issued by funding agencies,
enquiries from non-academic organisations interested in col-
laborating with researchers, or from media outlets trying to
identify experts who can provide commentary on a news
topic. Non-expert users may struggle to express what they
are looking for in the language used in highly specialised
academic outputs, and it is also hard for them to describe
exactly what experise they are looking for (as an example,
there are probably over 1,000 people at the University who
use AI, but only a handful are experts in self-driving cars).

Secondly, official research databases only contain informa-
tion on past or ongoing research that has already attracted
funding or produced publications. They do not capture any
new initiatives, directions, or areas of interest that scientists
may currently be working on or thinking about. Even though
such databases offer facilities for researchers to update their
profiles, there is little incentive to update information man-
ually, especially if researchers do not know who might be
interested in it. To our knowledge, no widely used corporate
tools enablthose searching for academic expertise to access
this “hidden” information, or for those providing expertise to
monitor what others might be looking for systematically.

To address these issues, the development of OM sought to
capitalise on advances in recent NLP technologies, which no

8www.research.ed.ac.uk

longer restrict document search to simple keyword matching,
but instead allow for entire documents to be compared in
terms of semantic similarity. This can be achieved by using
document embeddings [11], i.e. high-dimensional numerical
vector representations of longer pieces of text that can be
derived using deep neural network models trained on a specific
corpus of documents to encode its latent semantic space.

Similarity search on documents enables users to specify
their query using longer pieces of text, for example key para-
graphs of a funding call, e-mail enquiry, or newspaper article.
They can also write their own query text, circumscribing the
opportunity in different ways, or using words and phrases they
have encountered in previous search results.

While traditional “hard” keyword search can be used to
specify terms that must appear in results, supplying longer
pieces for “soft” open-ended similarity matching is much more
likely to yield an approximate description of the content the
user is looking for.

The other issue OM aims to address is that traditional
scholarly repositories do not support user-side content curation
and collaboration between users. Based on input from target
user communities (researchers, students, support officers, tech
transfer and commercialisation staff), we identified the follow-
ing functionalities as key to filling this gap:

1) The ability for researchers to modify and adapt their
own profiles, i.e. the items associated with them on the
research database;

2) the ability to maintain an up-to-date portfolio of experts
in specific thematic areas without having to repeat
searches on an ongoing basis;

3) facilities to visually explore researcher outputs and, in
particular, researcher networks that are not obvious from
tabular results presented as a list of items;

4) receiving updates on who is searching for what kind of
information (while being able to keep search activity
private where appropriate); and

5) being able to limit searches to specific parts of the
organisation (e.g. to understand how active a department
is in a certain area) or outputs (e.g. considering only
funded projects to track investment in certain fields).

Several of these features cut across concerns normally associ-
ated with front-end and back-end functionality, and therefore
necessitate careful consideration of how data, semantic mod-
els, and user input are managed in the system.

A. Features

The design of OM is guided by the considerations above,
which can be summarised as two core requirements: (a)
Supporting long-form text queries that return results based on
semantic similarity matching and (b) treating the database of
expertise as a “live” resource that can be augmented by users
and drives collaboration between them.

To satisfy (a), we train a model that uses high-dimensional
document embeddings when running search queries in a pre-
processing step performed in the background periodically
(typically overnight). At query time, vectors representing all

https://www.research.ed.ac.uk


items in the document database (including additional items
created by researchers, which we call research interests) are
ranked by similarity against the vector the search query is
mapped to using the same model, with the top n results
returned depending on a configuration parameter setting.

Additionally, the system provides simple keyword search,
which is performed using the standard TF-IDF method [12].
Users can choose to perform similarity search, keyword search,
or both. When used in conjunction, keyword matching will act
as a hard filter on results returned by similarity matching.

In terms of source data, we build on an internal project
that already pulls together various corporate and external
data sources in a Neo4j9 graph database called ROAG. Data
ingestion involves querying ROAG to create a local copy of
all metadata (document authors, research ouput types, organ-
isational units, narrative summaries), which contains links to
online resources such as publication URLs, official records of
project grants, or research dataset repositories.

The summaries used for training our semantic model typ-
ically consist of relatively short abstracts, though (subject to
licensing clearance) we could process full-text documents to
create a more expressive and detailed semantic model. Note
that, while that might substantially increase ingestion and
training times, it would make no difference to the responsive-
ness of the search engine at run-time as the time it takes to
compute a full relevance ranking only depends on the number
of (constant-size) vector comparisons.

Fig. 2 shows the OM search page, which provides options
to use similarity- and/or keyword-based search, to save the
current search under a name specified by the user, and to opt
into sharing the search with other users of the system. These
features address user demands for retaining and adapting
their searches over time, being notified about changes to the
results of previous searches, and to receive updates on others’
searches whose results included their own research outputs (if
those searches were shared). Users can set daily, weekly, or
monthly automated e-mail alerts for this purpose.

After a search is performed, OM displays results in the
format shown in Fig. 3. To enable visual result exploration, a
clickable graph is shown at the top of the page, which provides
a specific view of the ROAG sub-graph corresponding to the
results returned for the search. This graph and the filters users
can apply to results together make up the knowledge filters of
the application, and provide the user exploration functionality
of OM that combines different modalities for exploring results.

Apart from enabling access to all source documents and
web resources hyperlinks for all metadata items (researchers,
outputs, interests), OM encourages engagement with results
by providing the option to upvote/downvote results, so that
crowdsourced feedback about the quality of specific matches
can be used to fine-tune the semantic model.

The researcher profile view (see Fig. 4), which is available
to all system users whose credentials are linked to a unique
researcher ID in the database, is similar to a results page in

9neo4j.com

Fig. 2. Search page: The free-text field can be used for longer descriptions
of the expertise the user is looking for (here, text from a funding call) in
alongside (optional) keyword search. Searches can be stored under a user-
defined name and become available under the Searches tab so they can be
re-run, modified, or deleted. The Opportunities tab lists others’ searches that
returned the present user in their results (if the user who ran the search ticked
the “Share this search” box when performing it).

structure. It displays a list of all the researcher’s outputs and
knowledge graph that corresponds to these, but provides a
number of additional features: A (clickable) list of their official
institutional affiliations, a wordcloud of keywords extracted
from their outputs, and a facility for them to extend their
profile with additional “research interests” items. Affiliations
and wordcloud effectively act as additional semi-structured
representations of key information that allows users to explore
the researcher’s academic expertise and orgnisational role.

Research interests, on the other hand, allow researchers to
add arbitrary new items of text to describe current or future
interests and ongoing activities, especially where these are not
reflected by outputs recorded in the official research database.

These new items are treated just like any other document in
the system and added to the training set of the semantic model
before it is (periodically) re-trained. Note that, while only the
researcher has access to their profile page from the navigation
bar and can edit information on it, all users can view a static
researcher profile page if they click on the person’s name
anywhere in the system (this page only contains content tagged
as “shared” by the researcher).

Finally, OM provides researchers with an Opportunities tab,
which shows users (shared) content items associated with them
(searches, profile items) that have appeared in others’ searches.
Based on privacy concerns expressed by our test users, we
opted not to include references to the actual search on this

https://neo4j.com/


Fig. 3. Search results: The knowledge graph corresponding to the search
(=blue node) results is shown at the top (with people, projects, outputs, and
research interests shown as nodes in different colours that are clickable and
link directly to OM and other web resources. The same items are listed below
the graph with summaries. Upvote/downvote buttons are provided against each
result, which can be used to indicate whether a search result is a good match
to the query or not. Results can be filtered by organisation (department) and
type (project/output) using dropdown menus.

page, so it currently only provides information of how often
one’s items have matched searches. However, it would be
easy to provide this functionality through links to resources
previously created by the software (all pages created by the
system are stored automatically using unique REST URIs).

Overall, by following the methodology outlined in Sec-
tion III, the design of OpportunityMatch satisfies the require-
ments outlined Section II: By leveraging publicly available
data and a combination of semantic similarity matching and
knowledge graph exploration, it avoids the cold start problem
and can provide high-quality search results “out of the box”
before any users start using the system.

While all University researchers are “pre-registered” and
would be able to access the additional features available
to them as soon as they register, the system is open to
non-researchers and people outside the University, and it is

Fig. 4. Researcher profile page: The Profile tab shows users registered as
researchers their affiliations, a wordcloud of interests extracted from their
research outputs, and a graph and list of items that represent all outputs in
their public profiles. An additional Research Interests section allows them to
add further items on additional specific interests they may have.

deliberately designed to rely on users communicating directly
outside the application, as we do not wish to add yet another
tool users have to use to be able to connect with each other.

This avoids the problems caused by other similar knowl-
edge portals (e.g. Academia.edu, ResearchGate) that create
a semblance of researchers having engaged with the tool
and “hassle” them to contribute. Apart from never “cold
contacting” researchers, OM takes a conservative approach



to respecting users’ privacy throughout its structure, e.g. by
providing “opt-in” functionality to sharing any search activity
or user-created content.

It is worth highlighting that the ranking of results is purely
based on similarity and keyword matching, and does not take
any citation metrics, journal rankings, or cumulative researcher
visibility into account. This was a key requirement highlighted
in focus group workshops we conducted, as it was seen to
disadvantage less established researchers on common scholarly
repositories available on the Web.

Finally, to strike a balance between using publicly available
data to pre-seed the system that is necessary for its function-
ality while also allowing researchers to opt out of the system,
we provide users with an option to have all their data removed
from the system. The internal architecture of the system,
further outlined below, utilises only freely available software
(gensim10, MariaDB11, ElasticSearch12), nginx13, Django14,
Gunicorn15) and does not require the implementation of novel
algorithms or backend tools.

This enables developers and organisations deploying the
system to control, modify, and swap any internal components
in a lightweight, modular way. For example, they can choose
what parts of a research database should be used for training
and during search, or how often models are updated in
accordance with the compute resources available to them.

Importantly, this also makes it easy to augment the system
with additional functionality. As an example, [13] explored
how fairness and diversity considerations can be addressed
when deploying such AI-based tools given that the deep neural
networks they use are intrinsically opaque. Using information
extraction techniques, this project predicted author gender,
ethnicity, and seniority to test whether search results would
be unduly biased against underrepresented groups, and found
this to be the case in some situations.

Based on such insights, it would be straightforward to adjust
the relevance ranking function to give those groups more
exposure or to provide users with configuration options that
control such features. It is worth noting that we are not aware
of any open or commercial people search tools that provide
this level of flexibility, or, in fact, provide any fairness or bias
metrics for their models.

B. Implementation

The overall architecture of the implemented and deployed
OpportunityMatch system is shown in Figure 5.

In terms of data storage, we use ElasticSearch for the
Expertise Database, which stores research project/output in-
formation imported via Neo4j queries from the aforementioned
institutional ROAG graph database provided by the university,

10pypi.org/project/gensim
11mariadb.org
12www.elastic.co
13nginx.org
14www.djangoproject.com
15gunicorn.org

and also any user-generated content added to researcher pro-
files (where only content marked as shared will be used for
semantic model construction).

The choice of ElasticSearch is motivated by its built-in
“More Like This” query feature that implements a variant of
TF-IDF [12], and which is used for keyword-based search
in the system. Apart from the user requirement to provide
keyword-based search in addition to long-form queries, ex-
tensive testing revealed that TF-IDF performed better for
keyword-based searches than the document embedding models
used for similarity search.

Since this functionality is not needed for managing data
that relates to run-time user activity (storing searches, result
ratings produced by upvoting/downvoting individual results,
and general REST API resources produced by the web appli-
cation), we use MariaDB for a separate Opportunity Database.
In terms of search and semantic model training, this database
is treated exactly like the Expertise Database, with previous
searches being stored as text documents used to train a
different vector embedding model (where these were shared
by the user when they ran their query).

In terms of algorithms, semantic model construction relies
on using the doc2vec algorithm [11], and OM uses the its
implementation from the gensim Python library, employing
the distributed memory algorithm (PV-DM) for training.

PV-DM was chosen for its ability to capture semantic
meaning and contextual relationships in variable-length text,
which makes it suitable for our task.

To construct models that capture the data contained in either
of our Expertise or Opportunity Databases, we retrieve the
core text components from them and perform additional pre-
processing steps, which include text conversion, stop word re-
moval, and character cleaning before constructing vocabularies
for the two models and training them for 100 epochs using the
pre-processed documents.

Training requires making several hyper-parameter choices,
such as selecting the right dimensionality for the vector-
space embeddings that will be constructed (set to 300, in our
case) and the window size, which determines the amount of
contextual information captured during training (set to 5 in
our case). A learning rate of 0.025, gradually decreased after
each epoch, is applied to enable controlled gradient updates
and convergence.

These hyper-parameters were chosen based on empirical
evidence from our own testing and common best practice,
and they proved appropriate to achieve effective representation
learning and information retrieval capabilities of the models.

When a OM user performs a search query, the system
automatically infers a new vector to represent the query text,
utilising the trained document embedding models described
above. An important detail to highlight is that, even if the long-
form text query field is used, the system will use TF-IDF rather
than the document embedding models if the query is less than
30 words. This ensures the better of the two techniques is used
without requiring the user to be aware of their differences.
For longer queries, the system employ the doc2vec models

https://pypi.org/project/gensim/
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https://gunicorn.org/
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Fig. 5. Architecture overview of our OpportunityMatch implementation, shown using the colour codings of our meta-model for data, algorithm, and user
interaction components (see also Fig. 1): Via the Web-based frontend, researchers can directly update their profiles in the Expertise Database; a separate
Opportunity Database records previous searches, users’ ratings (upvotes/downvotes of search results), and generates opportunity alerts when new matches
are found between research outputs and previous searches. The core similarity ranking algorithm is applied to both expertise and opportunity items using
models trained on each of the two databases. For readability, we have not included simple service and profile management functions such as user settings
management, registration and authentication or admin backend management service functions.

to generate a vector representation that captures the semantic
meaning of the input.

Once we have inferred the vector representation of the
user input, the system compares it to the vectors of all
existing documents in the database using cosine similarity.
Based on these similarity scores, the system ranks the results
in descending order, where documents with higher similarity
scores are considered more similar to the user’s input. This
ranking allows us to retrieve the most similar information from
the database, and we limit results to at most 100 items to avoid
returning irrelevant items. We then use this list to create the
knowledge graph and result lists shown in Figure 3 (with any
additional filters applied by the user viewing the results after
results are computed).

While this exhaustive similarity-based relevance ranking
is performed at query time on the Expertise Database and
its corresponding doc2vec embedding model, it is triggered
periodically by the backend on the Opportunity Database on
the basis of users’ alert settings, and will become available
under the Opportunities tab in the user interface (see Fig. 2).

For this purpose, previous searches are periodically (daily,
weekly, or monthly) re-run based on the user’s notifications
setting to update either (1) researchers of search results in
which one of their outputs or research interests appeared or
(2) any users who previously ran a search that it matches
another users’ search. As the system currently generates at
most 100 search results for any query, summary notifications
are generated that list all matches, but this could be easily
be replaced by a more focused approach that only creates
notifications for matches over a certain threshold value.

In terms of the design of the frontend and overall OM Web
application, we used a standard Django/Gunicorn/nginx stack
that allows for secure, fast, and agile RESTful implementation,
and also comes with extensive browser-based administration
functionality. This was important

C. Development and Deployment

Development of the first prototype required only two
person-months of effort, after which the system was released
for internal university use. The second release, which allows
the system to be opened up to external users and makes it
easy to deploy installations for other organisations, required an
additional three person-months of work. Installations for other
organisations can be deployed by simply providing a JSON file
that contains a list (links to) documents tagged with unique IDs
for their author(s) alongside a CSV with the names and e-mail
addresses of authors associated with these IDs. Using the CSV
file, the OM administrator can pre-register these “experts” in
bulk on the system via its web interface, so that they can
be associated with and curate their (automatically generated)
profile once they register using their official e-mail address.

OpportunityMatch ships as a fully dockerized application
that can be installed within half an hour by following a set of
simple steps within a few hours including model training time.
If pre-trained models are used (e.g. after reboot or updates
that do not involve changes to the expertise and opportunity
databases), deployment time is reduced to around 30 minutes.

In terms of performance, on a 96GB RAM 8-core CentOS
Linux VM responses to typical search queries over 22,000
documents return results within around 1s, but the system can
also be installed on standard personal computing equipment
for local use (training the vector embedding model from
scratch takes on the Edinburgh database around four hours on
a standard Apple 4-core 16GB laptop). This could also open
up interesting additional use cases in terms of using OM as a
personal semantic search and document management tool.

Following the system’s internal release, we have received re-
soundingly positive feedback from users, who find the system
to be much more powerful in terms of its capability to return
relevant results when querying it with longer pieces of text (30



words or more). OM has also already attracted commercial
interest from private and governmental organisations.

V. RELATED WORK

The history of interactive search is as old as the Web
itself [14], and is closely intertwined with research into in-
formation retrieval and NLP research for extracting structured
information from unstructured data [15]. Within this wider
field, semantic search technology research [1] has developed
many methods that exploit structured data and knowledge [2].
Meanwhile, neural information retrieval methods [5] have re-
ceived a great deal of attention over the last ten years with the
emergence of neural language models since the development
of BERT [16], which led to massive-scale modern-day models
like ChatGPT [10].

As highlighted in [17], we are now seeing a confluence
between these two approaches, methods from which are com-
bined in so-called “neuro-symbolic approaches”. Our approach
fits squarely into this category, as it covers keyword-based
and natural language-based semantic services in the typology
of [14]. Surprisingly, as far as we can see from recent
surveys, no approaches seem to exist that exploit longer free
text queries for information retrieval purposes. At the level
of our application domain, the same seems to be true of
scholarly recommendation systems [18] (none of the over 200
papers analysed by this survey seems to suggest that similar
approaches exist).

In terms of overall approach, the most similar project to ours
is Open Semantic Search16, which provides a wide range of
open source tools for building semantic search engines includ-
ing data crawling, indexing, enrichment, mining, analytics and
visualisation. However, while the project does include a num-
ber of NLP tools for disambiguation, entity recognition, and
classification, it focuses on keyword (rather than long-form)
search, includes no neural information retrieval components,
and does not come with a specific design methodology or
development guidance. The latter gap is also visible in many
other services and platforms that can be used, inter alia, for
the development of semantic search engines17.

A similar approach is taken by a paper that presents a
semantic search engine called GAIA [19]. The authors focus
more on integrating common NLP platforms with information
retrieval data sets to support the training of new NLP methods
using web corpora. The GAIA search engine is presented as
an example for how the combination of both areas allows
for building new search engines with ease, but does not
constitute a worked example of how to systematically design
such systems with a specific use case in mind.

WebGPT [20] is a search engine that enables conversational
(question answering with full paragraph answers) Web search
by exploiting the full capabilities of ChatGPT. The system
has been fine-tuned using human feedback on responses, and
(unlike ChatGPT) provides links to source web documents that

16opensemanticsearch.org
17E.g. kdb.ai and www.deepset.ai

can be inspected by users to verify responses. The fundamental
difference to our approach is that the methodology applied for
the development of WebGPT is likely only viable for general-
purpose Web search rather than a specific corpus of documents
as in our case. Even if search was restricted to a specific
dataset, the chatbot itself is trained on additional data.

Undoubtedly, existing research has developed much more
advanced methods than those used in our work, and many
novel tools are emerging that provide exciting opportunities for
re-thinking the design of interactive search technologies (e.g.
ResearchGPT 18, which enables users to “have a conversation
with” research papers). Our methodology complements these
efforts by supporting the process of building such systems.

VI. CONCLUSION

We have presented a methodology for the development of
lightweight semantic search engines that use modern-day tech-
niques to support users in navigating large volumes of data. We
exemplified the benefits of applying this methodology through
an extensive case study that highlights how a simple yet
flexible processing pipeline that uses off-the-shelf technologies
allows developers to build semantic search engines with ease.

With new AI and NLP research appearing every week, there
is much scope for experimenting with more advanced methods
that may yield more accurate or focused search results. We
have, in a sense, deliberately avoided a focus on this to
demonstrate how viable and usable systems can be developed
even with fairly generic, tried and tested tools.

Another dimension we did not focus on is scalability
and using advanced techniques to speed up search at scale,
such as those provided by state-of-the-art vector databases
(e.g. Pinecone19 or Weaviate20 that provide efficient indexing
and query optimisation techniques. Replacing our current
exhaustive vector comparison with these would bring massive
improvements in terms of scalability, but we have seen that
basic approach already produces satisfactory results on non-
trivial problem sizes. A more scalable version of OM could
open up exciting opportunities to expand its use to global
research databases such as OpenAlex21.

There are also interesting areas for future research that focus
more on the architectural and algorithmic level. One of these
is to extend our methodology to federated semantic search
engines, which could allow us to integrate the functionalities
of individual implementations seamlessly while safeguarding
the integrity of each contributing system and ensuring data is
only presented in ways that comply with the constraints of
each individual sub-system.

Another avenue worth exploring is combining several items
when responding to a query. Vector-space embeddings enable
more advanced semantic operations, e.g. x+ y computed for
two vectors x an y can capture the combined meaning of x
and y. This could enable compositional search, e.g. in order

18github.com/mukulpatnaik/researchgpt
19www.pinecone.io
20weaviate.io
21openalex.org

https://opensemanticsearch.org/
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to identify the right team for a project or to put together
a collection of documents which, taken together, satisfy the
user’s information needs.

We hope that the initial work we have presented here
will encourage further research into these and other areas by
supporting researchers with lightweight techniques they can
apply in developing their approaches.
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