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Abstract. This paper presents a novel simplification calculus for propo-
sitional logic derived from Peirce’s Existential Graphs’ rules of inference
and implication graphs. Our rules can be applied to arbitrary propo-
sitional logic formulae (not only in CNF), are equivalence-preserving,
guarantee a monotonically decreasing number of clauses and literals, and
maximise the preservation of structural problem information. Our tech-
niques can also be seen as higher-level SAT preprocessing, and we show
how one of our rules (TWSR) generalises and streamlines most of the
known equivalence-preserving SAT preprocessing methods. We further
show how this rule can be extended with a novel n-ary implication graph
to capture all known equivalence-preserving preprocessing procedures.
Finally, we discuss the complexity and implementation of our framework
as a solver-agnostic algorithm to simplify Boolean satisfiability problems
and arbitrary propositional formula.
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1 Introduction

Propositional logic simplification is closely related to the reduction of complex
Boolean algebraic expressions, logic circuits’ minimisation, and Boolean satis-
fiability (SAT) preprocessing techniques. Simplification is crucial to reduce the
complexity of a problem, which makes it easier to understand, reason about,
and work with. Minimising the size of a problem also reduces memory usage and
speeds up solving times [30], as fewer steps are required to reach a solution or
proof. Unfortunately, existing minimisation algorithms for Boolean expressions
such as Karnaugh maps [18] or the Quine–McCluskey algorithm [22] become
increasingly inefficient as the number of variables grows, making them unusable
for large formulas. To minimise larger Boolean problems, we can only resort
to suboptimal heuristic methods, such as the ESPRESSO logic minimiser [27].
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Intuitively, all equivalence-preserving simplifications can also be achieved by ap-
plying the axioms of Boolean algebra or rules of inference in nontrivial ways, or
by utilising proof systems such as sequent calculus or natural deduction; however,
there are currently no known generic or systematic methods of doing so.

Many simplification techniques in the field of SAT use heuristics too, but a
greater emphasis is placed on efficiency so that they can be used on very large
problems. Preprocessing has actually become an essential part of SAT solving,
with some of the most powerful SAT solvers interleaving preprocessing with solv-
ing steps, a technique referred to as inprocessing [17,12]. Despite the already vast
body of literature on preprocessing (see Chapter 9 in the latest Handbook of Sat-
isfiability [7]), there is still much ongoing research into finding efficient rewriting
and simplification techniques to expedite or better inform the solving phase (see,
e.g., [1,20,6,21]), which evidences the importance and complexity of this topic.
However, SAT problems commonly need to be translated into a standard form
(usually conjunctive normal form (CNF)) before solving, and most procedures
apply to this form only. Consequently, most preprocessing techniques in the lit-
erature only study or work on CNF formulae. Moreover, this encoding process
can be non-equivalence-preserving, result in bigger problems, or lead to the loss
of important structural properties of the original problem, such as symmetries,
which can detrimentally impact the preprocessing and solving phases [11,1].

In this paper, we present novel simplification techniques for zeroth-order
logic derived from Peirce’s existential graphs’ rules of inference and implica-
tion graphs. Our rules can be seen as SAT equivalence-preserving preprocessing
techniques applicable to arbitrary propositional-logic formulae (not only in CNF)
that guarantee a monotonically decreasing number of variables, clauses and liter-
als and maximise the preservation of structural problem information. Existential
graphs offer a fresh view of preprocessing never explored before that allowed us to
independently rediscover many simplification techniques known in the world of
SAT preprocessing, understand the underlying connections between apparently
distinct methods, and generalise many of them. We compare our rules with the
state-of-the-art and discuss their advantages and limitations. In particular, our
last rule (TWSR) can efficiently emulate complex combinations of preprocessing
techniques, and we propose even more powerful extensions to it.

The remainder of our paper is structured as follows. Section 2 introduces
basic concepts and notation on existential graphs, propositional logic and impli-
cation graphs that will be used in the rest of the paper. In Section 3, we present
our simplification rules and explain their properties. In Section 4, we discuss
the implementation of our approach and point to future work, including a gen-
eralisation of our TWSR rule. Section 5 ends the paper with some concluding
remarks.

2 Background and notation

Modern formal logics, including formulations of SAT problems, are usually pre-
sented in a symbolic and linear fashion. Existential graphs (EGs) [31,29], by
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contrast, are a non-symbolic and non-linear system for logical expressions, where
propositions are drawn on a two-dimensional sheet, negation is represented by
oval lines (aka cuts), and all elements contained in the same area (delimited by
negation lines) are in implicit conjunction. We say that an area is evenly (resp.
oddly) nested if it is enclosed by an even (resp. odd) number of cuts. Note that a
blank sheet of assertion denotes true (⊤), has nesting level 0 and therefore it is
assumed to be evenly enclosed. In Fig. 1, we present a few introductory examples
illustrating that the combination of these simple primitives suffices to express
any propositional-logic formula. Extensions of EGs allow for the representation
of first-order-logic and higher-order-logic formulas, but these are beyond the
scope of this paper (for more details, see e.g. [9,26]).

Figure 1 a

P Q

(a) EG of P ∧ ¬Q or, equivalently,
¬Q ∧ P . This EG is also the canon-
ical form of infinitely many equiva-
lent formulas, such as ¬(P → Q) or
¬(¬(¬(¬P ∨Q))) ∧ (R ∨ ¬R).

Figure 1 b

P Q

(b) EG of ¬(P ∧ ¬Q) or, equivalently,
¬P ∨Q, or P → Q.Figure 1 c

Q

P
R

P Q R

(c) EG of ¬(¬R) ∧ ¬(¬Q ∧ ¬P ) or,
equivalently, (P ∨Q)∧R, or R∧(¬P →
Q), or R ∧ (¬Q → P ).

Figure 1 d

R SP Q

(d) EG of ¬(P ∧¬Q∧¬R∧¬S), which
can be linearly represented by many
equivalent formulations, such as P →
(Q∨R∨S), or (P ∧¬Q) → (R∨S), or
(P ∧¬Q∧¬R) → S, or ¬P ∨Q∨R∨S.

Fig. 1: Examples of existential graphs of propositional-logic formulae.

EGs cannot only represent propositional-logic formulae, but they are, in fact,
equivalent to sentential languages [25,33,26]. Even if this diagrammatic notation
is less commonly used, it offers a simple, elegant, and easy-to-learn alternative
that comes with a sound and complete deductive system, which has many ad-
vantages over the traditional Gentzen’s rules of natural deduction and sequent
calculus and, thus, over all other rewriting methods based on the latter. Most
significantly, EGs’ inference rules are symmetric, and no bookkeeping of previous
steps is required in the process of inferring a graph from another. Furthermore,
as illustrated in Fig. 1, EGs’ graphical non-ordered nature provides a canoni-
cal representation of a logical formula that, in linear notation, can take many
equivalent forms. Another key and perhaps underexplored advantage is that the
visual representation allows for the recognition of patterns that would otherwise
be obscured in nested clausal form. Finally, since EGs are easily transferred to
any notation, they can help clarify the relationships between diverse reasoning
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methods, such as resolution and natural deduction and, ultimately, help under-
stand the foundations of proof theory.

We assume the reader is familiar with basic notions of propositional logic
and the Boolean satisfiability problem (SAT). In what follows, we will use a
subscript to indicate the size of a clause (e.g. C8 refers to a clause of size 8)
and, given a clause Cn = (l1 ∨ l2 ∨ · · · ∨ ln), we refer to the set of its literals as
lit(Cn) = {l1, l2, · · · , ln}.

As shown in Fig. 1, nested cuts can be interpreted as implication, so it is
easy to see that every binary clause, e.g. C2 = (x∨ y), admits the following two
interpretations: (¬x → y) and its logically equivalent contrapositive (¬y → x).
Thus, binary clauses provide the information needed to build what is known as
the binary implication graph (BIG) [2] of the formula, which is a directed
graph where edges represent implication, and nodes are all the literals occurring
in binary clauses and their negations (see Fig. 2).

BIG

X Y Z U V

X VUZY

Fig. 2: BIG of φ = (X ∨ Y ) ∧ (Y ∨ Z) ∧ (Z ∨ U) ∧ (U ∨ V ) ∧ (U ∨ Y ).

If there exists a directed path from vertex x to vertex y, we say that y is a
descendant of (or reachable from) x, and we say that x is an ancestor of y.
We will denote the set of all descendants (resp. ancestors) of a vertex z by des(z)
(resp. anc(z)). We say that two vertices u and v in a directed graphG are strongly
connected iff there are directed paths from u to v and from v to u. A subgraph
S ⊆ G is a strongly connected component if all its vertices are strongly
connected and they are not strongly connected with any other vertex of G \ S
(i.e. every vertex in S is reachable from every other vertex in S and S is maximal
with this property wrt G). Every strongly connected component corresponds to
an equivalence class. Two elements belong to the same equivalence class iff
they are equivalent. We can choose one of the elements in the class as a class
representative to refer to the whole equivalence class.

3 Preprocessing framework

3.1 Simplification rules

Charles S. Peirce (1839-1914) provided the following sound and complete set of
inference rules for EGs (for more details, see e.g. [24,31,29,9]), where an EG-
element is any arbitrary clause1 expressed as an EG:

1 We refer here to the generic notion of ‘clause’, understood as a propositional formula
consisting of a finite collection of literals and logical connectives.
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1. (i) Insertion: in an odd area (nesting level 2k + 1, k ∈ N), we can draw
any EG-element.

(e) Erasure: any EG-element in an even area (nesting level 2k, k ∈ N) can
be deleted.

2. (i) Iteration: any EG-element in an area a can be duplicated in a or in
any nested areas within a.

(e) Deiteration: any EG-element whose occurrence could be the result of
iteration may be erased.

3. (i) Double Cut Insertion: a double negation may be drawn around any
collection of zero or more EG-elements in any area.

(e) Double Cut Erasure: any double negations can be erased.

We investigate the reversibility properties of Peirce’s EGs inference rules and
their combinations in order to determine which sequences of rule applications
and underlying restrictions ensure non-increasing model equivalence. Note that
rules 2i & 2e and 3i & 3e are mutually reversible and, thus, preserve equivalence,
whilst the first two rules are not.

To the best of our knowledge, the EG calculus has only been studied as a proof
system and used to prove logical assertions by inference [9,31], but it has never
been used as a simplification method nor restricted to equivalence-preserving
rules.

In what follows, we present the definitions of each of our rules alongside a
visual exemplification and compare them to existing preprocessing techniques.
Throughout, let φ be an arbitrary propositional formula and BIG(φ) denote its
binary implication graph.

Singleton wipe This rule is equivalent to a combination of Shin’s rules 1 and
2 [29], and to Peirce’s EGs deiteration rule (2e above) restricted to single EG-
elements (unit clauses) and extended to account for the generation of empty
cuts. Most importantly, it can be seen as a generalisation of unit propagation
applicable over arbitrary formulae, not only in CNF.

Definition 1 (Singleton wipe rule (SWR)). Let x be a singleton (i.e. a
literal or clause of size 1) in any clause or subclause of φ. Any other instances
of x in the same clause or its subclauses can be deleted, and any generated empty
subclause (i.e. ¬()) results in the deletion of its parent clause.
From an EG point of view, any copy of a single EG-element in the same or any
nested (inner) areas can be erased, and every area containing an empty cut (i.e.
a negation oval) shall be deleted.

Note that, in linear notation, clausal levels can be distinguished by parenthesis
(either explicit or implicit in accordance with the precedence of logical opera-
tors). Moreover, note that empty cuts are generated when the negation of the
propagated singleton is encountered.

Example 1. Let φ = P ∧ ((A ∧ D ∧ P ∧ (A → B) ∧ (¬C ∨ D)) ∨ (P ∧ Q ∧
R) ∨ T ∨ (S ∧ T ) ∨ ¬(X → (X ∧ Y ∧ Z))) ∧ ¬T . Several singletons can be
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propagated at the same or inner levels, namely A,D,P,¬T, and X. This is not
easy for a human reader to detect if the formula is expressed in linear form,
but it becomes apparent when expressed as an EG (see Fig. 3). If we apply
SWR to φ, we obtain the following simplified equivalent form: φ′ = SWR(φ) =
P ∧ ¬T ∧ ((A ∧B ∧D) ∨ (Q ∧R) ∨ (X ∧ (¬Y ∨ ¬Z))). Note that transforming
φ to CNF would result in a formula of 14 clauses of sizes 1 to 7 with a total of
66 literals, where traditional unit propagation could only be applied to the unit
clauses P and ¬T , and the resulting (partially) simplified formula would have
14 clauses of sizes 1 to 6 with a total of 54 literals. Instead, if we transform φ′

to CNF, we obtain a formula with 14 clauses of sizes 1 to 4 and a total of 44
literals. SWR LOPSTR
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Table 106: AMS Negated Arrows

: \nLeftarrow < \nLeftrightarrow ; \nRightarrow
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R
Q

A
D

B

X
Y
Z

Fig. 3: EG of φ (left), where the EG-elements coloured in orange can be simplified
by propagating their outermost instances, marked in blue, to obtain φ′ (right).

Remark 1. SWR effectively tells us that each EG-element (literal, clause, or
subclause) contributes to the truth value of the whole EG (i.e. the whole formula)
at its outermost occurrence, and the presence or absence of more deeply nested
instances is irrelevant.

Equivalence projection This rule can be achieved by nontrivial applications
of the iteration, deiteration and cut rules (2i, 2e, 3i and 3e from Section 3.1) and
noticing that two propositional variables x and y are equivalent (resp. opposites)
whenever we have the following two clauses: (x∨y)∧(x∨y) (resp. (x∨y)∧(x∨y)).
This is obvious from the implication interpretation of these clauses as EGs that
we saw in Section 2.

Trying all possible (de)iterations of binary clauses within each other is clearly
impractical, and requires a nontrivial search for candidate EG-elements and
backtracking. However, if we use the BIG of the formula to inform our procedure,
it becomes straightforward and efficient.

Definition 2 (Equivalence projection rule (EPR)). Every strongly con-
nected component of BIG(φ) corresponds to an equivalence class, and all same-
level or inner-level literals in the equivalence class can be substituted by their
class representative. If a same-level or inner-level subclause contains multiple
elements of the equivalence class, they can all be substituted by a single instance
of the representative literal. If a subclause contains both an element of the equiv-
alence class and the negation of an element in the equivalence class, it can be
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deleted. The BIG(EPR(φ)) of the remaining binary clauses is guaranteed to be
acyclic and corresponds to the condensation of BIG(φ).

The deletion of literals and clauses in EPR can be seen as a nested application of
the SWR rule (see Definition 1) performed immediately after a substitution step.
The replacement part of EPR is in fact equivalent to a well-known preprocessing
technique called equivalent-literal substitution [14,19], but ours does not require
a formula to be in CNF form. Moreover, our rule is equivalence-preserving since
we keep the information of any equivalence classes, and both substitution and
simplification are applied in one step. Additionally, the BIG built and updated
in this preprocessing phase will inform other preprocessing techniques, so the
effort of building the graph will be reused and further exploited.

Nested equivalence projection Equivalence projection can be applied not only
at the formula level but also within nested cuts, which enhances its reduction
powers and makes EPR applicable to formulae in forms other than CNF too
(see Example 2). To do so, we maintain local implication graphs corresponding
to the binary clauses present at each nesting level.

Example 2. Let φ = (X ∨ Y ∨ A) ∧ ¬((A → B) ∧ (B → A) ∧ (X ∨ Y ∨ B)).
We generate the BIG of any area with binary clauses, which in this case is only
the big level-1 area. The nested BIG contains a strongly connected component
[A] = {A,B}, so the innermost B can be substituted by the representative A.
The resulting ternary clause can then be wiped by the deiteration rule (and our
rules to come), leading to the negation of the equivalence found (see Fig. 4).
Hence φ can be simplified to φ′ = EPR(φ) = (X ∨ Y ∨A) with [A] = {A,B}.Nest EQ
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[A] = {A,   }B

Fig. 4: EGs of φ = (X ∨ Y ∨A)∧¬((A → B)∧ (B → A)∧ (X ∨ Y ∨B)) and its
reduction to φ′ = (X ∨ Y ∨ A) with [A] = {A,B} after nestedly applying EPR
and then deiteration.

Even higher reductions can be achieved if we consider equivalence —and, as
we will see, implication chains— in the union of nested implication graphs (see
Example 3).

Example 3. Let φ = (X∨Y ∨A)∧(A → B)∧(B → A)∧¬((C → B)∧(B → C)∧
(X∨Y ∨C)). We generate the BIG of any area with binary clauses, which in this
case are the outermost area and the biggest level-1 area. The outer BIG contains
a strongly connected component [A] = {A,B}, and the nested BIG contains a
strongly connected component [B] = {B,C}. The union of both BIG results in
the strongly connected component [A] = {A,B,C}, so the inner ternary clause
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can be wiped by a combination of the EPR and the deiteration rule. Thus, φ can
be simplified to φ′ = EPR(φ) = (X ∨ Y ∨A) with [A] = {A,B,C} (see Fig. 5).
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Fig. 5: EGs of φ = (X ∨ Y ∨ A) ∧ (A → B) ∧ (B → A) ∧ ¬((C → B) ∧ (B →
C) ∧ (X ∨ Y ∨ C)) and its reduction to φ′ = (X ∨ Y ∨A) with [A] = {A,B,C}
after nestedly applying EPR to the union of nested BIGs and then deiteration.

Transitive reduction After applying EPR until completion, the BIG is guar-
anteed to be acyclic since all equivalences (and so strongly connected compo-
nents) have been condensed into a representative literal (or node). However, the
formula can still contain redundant binary clauses. In order to remove those, we
compute the transitive reduction of the BIG (TRR), which in this case coincides
with the minimum equivalent graph. As in the EPR, the same results can be
achieved by nontrivial applications of the iteration, deiteration and cut rules,
but these are only efficient if guided by the BIG. Moreover, the EGs viewpoint
allows us to apply this rule in a nested form and so we can detect transitive
redundancies in arbitrary formulas (see Example 4).

Example 4. Let φ = (A∨B)∧(B∨C)∧¬((C∨A)∧X∧Y ). Then the level-0 BIG
contains the implication chain A =⇒ B =⇒ C, and the level-1 binary clause is
equivalent to A → C. Computing the TR of the union of both BIGs shows that
the inner binary clause is redundant and can be deleted. As illustrated in Fig. 6,
we obtain the equivalent simplified formula φ′ = (A ∨B) ∧ (B ∨C) ∧ (X ∨ Y ).
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Fig. 6: EGs of φ = (A∨B)∧(B∨C)∧¬((C∨A)∧X∧Y ) (left), and its equivalent
reduction φ′ = TRR(φ) = (A ∨B) ∧ (B ∨ C) ∧ (X ∨ Y ) (right).

Opposite singletons implication

Definition 3 (Opposite singletons implication rule (OSIR)). If a directed
path in BIG(φ) contains a literal l and later its negation l, then all the literals
including and after the consequent (l) evaluate to true, and all the literals in the
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implication path before and including the antecedent (l) evaluate to false. The
Boolean variables “collapsing” in opposite chains will be equal by construction, so
only one side of the implication path needs to be evaluated. All evaluated literals
can be added as singletons and propagated accordingly by the SWR rule.

Note that this preprocessing step can also be seen as a backtrack-free (i.e. non-
look-ahead) exhaustive version of failed-literal probing (FLP) [4] over all (implicit
and explicit) binary clauses, where we do not need to test candidate literals that
might not lead to any new knowledge after a whole round of unit propagation.
A strategy to make all possible unit-clause inferences from the BIG was pro-
posed in [13], but their approach may add redundant, unnecessary clauses to the
formula. As the previous rules, OSIR can also be applied to arbitrary nesting
levels, so it does not require a formula to be in CNF (see Example 5).

Example 5. Let φ = (X∨Z)∧((B∧C)∨(X∧Y ∧A)∨(A∧B)∨(P∧A∧Q)∨(C∧A)).
The BIG of the 1-nested biggest subformula contains the following implication
chain: A =⇒ B =⇒ C =⇒ A, so we can apply the OSIR to it and derive A,
which can be added as a nested singleton and later propagated using the SWR
rule (see Fig. 7 below) to obtain the much simpler formula φ′ = OSIR(φ) =
(X ∨ Z) ∧ ((B ∧ C) ∨ (X ∧ Y ) ∨A).
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Fig. 7: EGs showing the application of OSIR to φ = (X∨Z)∧((B∧C)∨(X∧Y ∧
A)∨(A∧B)∨(P ∧A∧Q)∨(C∧A)) and the subsequent SWR application where
the new singleton A is propagated to obtain the equivalent reduced formula
φ′ = (X ∨ Z) ∧ ((B ∧ C) ∨ (X ∧ Y ) ∨A).

Tuple wipe and subflip After understanding the basics of Peirce’s EGs rules
and binary implication graphs, we can now introduce a rule which, in fact,
generalises all the previous rules (except the non-reductive part of EPR).

Definition 4 (Tuple wipe and subflip rule (TWSR)). Let Cn, Dm ∈ φ
be two (sub)clauses of size n ≤ m. Let c be the nesting level of Cn, and Dm

be either in the same area as Cn or in a nested area within c. Let des(l) be
the set of descendants of a literal l in BIG(φ). Let lit(Cn) = {p1, . . . , pn} and
lit(Dm) = {q1, . . . , qm}. If for each i ∈ {1, ..., n−1} either pi = qi or qi ∈ des(pi),
and: (1) pn = qn or qn ∈ des(pn), then Dm can be deleted from φ; or (2) pn = qn
or qn ∈ des(pn), then qn can be deleted from Dm.
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Note that we need to specify the cases pn = qn and pn = qn since it is always
the case that x → x and x → x, but these tautologies are not added to the BIG
in order to keep it redundancy- and tautology-free.

As before, our rule can be applied to arbitrary nesting levels, and so it does
not require a formula to be in CNF (see Example 6).

Example 6. Let φ = (A → E) ∧ (B → F ) ∧ (C → G) ∧ ¬((A ∨ B ∨ G ∨ H) ∧
(A ∨ B ∨ C ∨ D) ∧ (E ∨ F ∨ G)). Note that the BIG of the outermost area
applies to the biggest 1-nested subformula. As illustrated in Fig. 8, we can apply
TWSR to the clauses of sizes 3 and 4 inside the biggest 1-nested area and
obtain the simplified equivalent formula φ′ = (A → E) ∧ (B → F ) ∧ (C →
G) ∧ ((A ∧B ∧H) ∨ (E ∧ F ∧G)). In particular, the clauses P3 = (E ∨ F ∨G)
and Q4 = (A ∨ B ∨ C ∨D) satisfy condition (1) in TWSR’s definition, and P3

together with R4 = (A ∨B ∨G ∨H) satisfy condition (2).
TWSR LOPSTR
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Fig. 8: EG of φ = (A → E) ∧ (B → F ) ∧ (C → G) ∧ ¬((A ∨B ∨G ∨H) ∧ (A ∨
B ∨C ∨D)∧ (E ∨F ∨G)) (left), where the literals satisfying TWSR’s definition
conditions are highlighted in matching colours. The equivalent reduced formula
resulting from applying TWSR is shown on the right-hand side.

It is easy to see that TWSR with n = 1 is equivalent to SWR. TWSR
restricted to binary clauses only (i.e. with n = m = 2) is equivalent to the
clause deletion part of EPR and computing the TR of BIG(φ) when condition
(1) is satisfied; and to the literal deletion part of EPR together with OSIR
when condition (2) applies. However, TWSR cannot fully emulate EPR since
it cannot perform the non-reductive substitution step (i.e. substitute a literal
by its class representative) nor keep equivalence classes information. Thus, we
recommend applying EPR before applying any form of TWSR (including SWR)
in order to maximise the preservation of structural problem information. Note
that preserving the structural information of the problem is of key importance
not only in preprocessing but also for symmetry detection and general solving [1].
Fig. 9 shows two examples of TWSR applications for n = m = 3 satisfying,
respectively, conditions (1) and (2).

Our TWSR is a generalisation of subsumption and self-subsuming resolution
since it removes in one pass not only all the explicitly (self)subsumed redundant
clauses but also all the implicitly (self)subsumed ones. It also generalises unit
propagation, transitive reduction and, since it can be applied to clauses of ar-
bitrary sizes, it is strictly more powerful than binary resolution combined with
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(i) Let φ = (P → R)∧ (X → Y )∧ (X∨
Q ∨ P ) ∧ (R ∨ Y ∨ Q). Let C3 = (X ∨
Q ∨ P ) be the penultimate clause and
D3 = (R∨Y ∨Q) be the last clause in φ.
These satisfy condition (1) in TWSR’s
definition, so D3 can be deleted.
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(ii) Let φ = (T → S)∧ (A → B)∧ (S ∨
B∨Q)∧(A∨Q∨T ). Let C3 = (A∨Q∨T )
and D3 = (S ∨ B ∨ Q). They satisfy
condition (2) in TWSR’s definition, so
the literal B can be deleted from D3.

Fig. 9: EGs of two applications of the TWSR, where colours highlight related
literals (equal –in green– or in the same implication chain –in orange or blue).

transitive reduction and unit propagation, while guaranteeing a non-increasing
number of variables, literals and clauses (i.e. redundant variables, literals or
clauses are never added). TWSR can also be seen as a backtrack-free (non-look-
ahead, i.e., with no arbitrary assignments) more efficient version of FLP over all
literals in the BIG of the formula.

Moreover, TWSR strictly generalises the combination of hidden subsumption
elimination (HSE) [15], hidden tautology elimination (HTE) [15] and hidden lit-
eral elimination (HLE) [16] in a manner that is guaranteed to never increase
the size of the formula. Note that this is not necessarily the case for the afore-
mentioned rules. For example, in order to deduce that clauses are redundant,
HTE adds literals instead of removing them and tests if this leads to a tautology.
Note in particular that neither of these rules nor their combination could achieve
the reduction shown in Example 6, even if all clauses were at the same nesting
level. For formulas in CNF, HTE combined with HSE, computing the transitive
closure of BIG(φ) and adding all new binary clauses to φ can achieve the same
reduction as TWSR with condition (1) only, but clearly at a much higher cost
and space complexity.

3.2 Rules properties

Visual proofs using the EG calculus are much easier to follow than symbolic
ones, and EGs inference rules have been used to establish the results for the two
theorems presented below. However, because of space constraints, we only pro-
vide symbolic and ‘verbal’-EGs skeleton proofs here. Moreover, since the TWSR
rule generalises all the others except the substitution part of EPR, we need only
provide proofs for these two rules.

Theorem 1. SWR, EPR, TRR, OSIR, and TWSR are all reversible and so
equivalence-preserving.
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Proof (TWSR). Let Cn, Dm ∈ φ be two (sub)clauses of size n ≤ m as in TWSR’s
definition, with lit(Cn) = {p1, ..., pn} and lit(Dm) = {q1, ..., qm}. (1) Let pi = qi
or qi ∈ des(pi) for each i ∈ {1, ..., n}. We can iterate Cn inside Dm, and all
literals in the inner copy satisfying pi = qi can be deleted by deiterating their
copies in Dm. All literals in the inner copy of Cn satisfying qi ∈ des(pi) can
also be deleted as follows: since qi ∈ des(pi), it means that we have the binary
clauses (pi∨x1)∧· · ·∧(xj∨qi), which we can iterate inside Dm, and successively
deiterate all the consequents until we obtain Dm ∨ pi ∨ x1 ∨ · · · ∨ xj ∨Cn. Thus,
Dm can be expanded with all pi’s, which can then be deleted from the inner copy
of Cn, leaving an empty cut which is either in an even or in an odd area. If the
empty cut is in an even area, then we have ⊥ in a conjunction, which evaluates
to False. This conjunction is contained in an odd area, and so it can be deleted
from the disjunction. If the empty cut is in an odd area, then we have ⊤ in a
disjunction, and the whole clause evaluates to True, which can be safely deleted
from its implicit surrounding conjunction. (2) Let pi = qi or qi ∈ des(pi) for
each i ∈ {1, ..., n−1} and pn = qn or qn ∈ des(pn). We can iterate Cn inside the
nesting area of qn in Dm (with the insertion of a double cut around it if required).
If pn = qn, then qn inside the cut can be deiterated from the inner copy of Cn,
and all the remaining n− 1 literals can be deleted as in (1). If qn ∈ des(pn), we
can deiterate the n − 1 literals from the inner copy as in (1) and are left with
(pn ∨ qn). Since we know that qn ∈ des(pn), we can derive (pn ∨ qn) from the
implication chain as in (1), iterate it inside qn’s cut and deiterate its inner qn
and its inner pn to obtain an empty cut, which results in deleting qn from Dm,
but we then have a p in its place. This extra p can be deleted by inserting a double
cut around it, iterating the n−1 implications qi ∈ des(pi) inside and deiteraiting
their q1, . . . , qn−1. This results in Dm ∨ Cn from which we can deiterate Cn to
obtain Dm \ {qn}. Since we have only used Peirce’s iteration (2i), deiteration
(2e) and double cut (3i and 3e) rules, which are all reversible and equivalence-
preserving, we know that our rule is too.

Proof (EPR). Trivial, since we retain the information on equivalence classes.
But, in more detail, the equivalence preservation of the reductive part of EPR
follows from TWSR’s proof above, and the equivalence of the substitution part can
be proved as follows: Let x and y be in the same strongly connected component of
a BIG. Then, we have or can easily deduce the following two clauses: x ∨ y and
y∨x. For any clause C containing y we can iterate x∨y within C, and deiterate
y from it to obtain C ∨ x. We can then iterate y ∨ x within the nested area of y
(potentially adding a double cut), and deiterate y from it to obtain y ∧ x, which
can be deleted by an iteration of the copy of x in expanded C, to obtain C with
y replaced by x.

Given that all of our rules can never add any variables, literals or clauses, it is
also straightforward to prove the following theorem.

Theorem 2. The applications of SWR, EPR, TRR, OSIR, and TWSR are
guaranteed to be monotonically non-increasing in the number of variables, in
the number of clauses and in the number of literals of a propositional formula.
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Proof (EPR). Trivial, since either (i) the BIG has no strongly connected com-
ponents and so the formula stays the same, or (ii) at least a strongly connected
component is found, and for each component, at least the binary clauses corre-
sponding to all the edges in the component can be deleted.

Proof (TWSR). Trivial, since either (i) TWSR does not apply so the formula
stays the same, (ii) condition (1) is satisfied and so the number of clauses is
reduced by one, or (iii) condition (2) applies and the number of literals is reduced
by one.

4 Discussion and future work

Our systematic reduction procedure applies EPR whenever new binary clauses
are present, and then prioritises the propagation (by TWSR) of the smallest
unprocessed clauses, since these have greater reduction potential than bigger
clauses. Our approach might appear to be quadratic in nature, but this is eas-
ily avoidable by using existing efficient graph algorithms. For example, finding
strongly connected components for the EPR step can be linear [28,32,10] in the
number of edges and nodes of the BIG (which is less than 2e+ 2n with e being
the number of binary clauses and n the number of variables present in binary
clauses). Additional applications of EPR only need to search for strongly con-
nected components containing any new BIG edges, which is even faster. The
substitution step can be done efficiently using occurrence lists [5], or if we con-
dense the hypergraph of the formula instead of searching for equivalent literals
to be replaced in every clause. The reachability queries performed in TWSR can
be answered in as low as O(1) time with the right data structure and a prepro-
cessing step of O((2n)3) time in the worst case [8], where n is again the number
of variables present in binary clauses. In order to avoid a quadratic number of
comparisons in TWSR, we can sort clauses and literals, or use known tactics
such as the one-watched [35] or two-watched [34,23] literal schemes. Traditional
literal occurrence lists would not be as helpful in this case since they do not
capture the ‘hidden’ occurrences. However, other kinds of lists would be help-
ful, such as lists of clauses containing a given number of BIG nodes (since a
clause Cn can only potentially reduce another clause Dm if Dm has at least as
many nodes in the BIG as Cn). TWSR could also be guided by the hypergraph
of the formula, which can give a first approximation to the (undirected) con-
nectedness of literals and significantly reduce the search for redundant clauses.
Finally, processing independent components of the BIG and the hypergraph of
the formula would obviously speed up our simplification approach, but paralleli-
sation of preprocessing is still in its infancy [7]. Nonetheless, using any of these
known techniques can certainly improve the performance of our method as well
as increase its scalability.

Another key advantage of our unified approach is that it eliminates the need
to choose between different techniques or their order of application, which can
have a major impact on the final level of reduction (e.g. some preprocessing tech-
niques add redundant clauses by resolution, whilst others delete them, which
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could lead to an infinite loop). It can also be the case that some rules are
not applicable at first, but they can provide further reduction if applied af-
ter other techniques. This is a nontrivial problem usually resolved by heuristics
(e.g. restarts) or by limiting the application and behaviour of the rules accord-
ing to arbitrary parameters (e.g. apply preprocessing to learned or bigger clauses
only). Example 7 illustrates these problems and how our solution addresses them
instead. Moreover, note that our approach is guaranteed to terminate since it
never increases the size of the problem.

Example 7. Let φ = (A ∨B ∨ C) ∧ (A ∨B ∨D) ∧ (B ∨ C) ∧ (A ∨B ∨ C). If we
apply TWSR to it, our approach first propagates the smallest clause (B ∨ C)
and reduces the formula to TWSR(φ) = φ′ = (A∨B)∧ (A∨B ∨D)∧ (B ∨C).
TWSR next propagates the smallest unprocessed clause (A ∨ B), and returns
the equivalent formula φ′′ = (A ∨ B) ∧ (B ∨ C). This same result could also be
obtained by using other existing techniques combined in many different ways. For
example, applying a round of subsumption, then a round of self-subsumption,
and then another round of subsumption would achieve the same reduction in this
case. We can also obtain φ′′ by applying HTE, HSE and self-subsumption in any
order. Adding all the possible redundant clauses obtained by resolution and then
applying two rounds of subsumption would also lead to φ′′. Note, however, that
the choice of techniques or their application orders would of course be problem-
dependent and not obvious beforehand, so many techniques would probably be
unsuccessfully applied before reaching (or not) the desired result.

Some of the existing computationally most expensive preprocessing tech-
niques (namely FLP, hyper binary resolution (HBR) [3], asymmetric subsump-
tion elimination [15], asymmetric literal elimination [7] and asymmetric tautol-
ogy elimination (ATE) [15]) can achieve reductions on CNF formula that TWSR
is not able to attain. However, TWSR can reach the same level of reduction if
applied to the original nested formula (see Example 8).

Example 8. Let φ = (C ∨ ¬(A ∨ B ∨D)) ∧ (A ∨ B ∨D). Let CNF (φ) = (C ∨
A)∧ (C ∨B)∧ (C ∨D)∧ (A∨B∨D) be φ expressed in conjunctive normal form.
Both FLP and HBR can reduce CNF (φ) to φ′ = C ∧ (A ∨B ∨D), but TWSR
would not be able to do so unless we apply first a nontrivial EG factorisation
step to recover its nested form. However, if we apply TWSR directly to φ, we
can obtain φ′ much more efficiently (see Fig. 10). Note that none of the existing
preprocessing methods can be applied directly to φ since it is not in CNF.

In fact, by using EGs and BIGs, we have realised that TWSR and these
advanced SAT preprocessing techniques can actually be seen as n-ary versions
of TRR and OSIR , where the nodes of the implication graph can be clauses
instead of singletons. That is, instead of finding a redundant edge between two
singletons, we remove redundant edges between implied clauses (see Example 9),
and instead of finding a singleton implying its negation, we uncover an n-ary
clause implying its negation (see Example 10). Thus, we are currently working
on an extension of TWSR guided by the n-ary implication hypergraph of the
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C A

C B

C D

Table 102: Arrows

+ \Downarrow  � \longleftarrow - \nwarrow

# \downarrow (= \Longleftarrow ) \Rightarrow

 - \hookleftarrow  ! \longleftrightarrow ! \rightarrow

,! \hookrightarrow () \Longleftrightarrow & \searrow

{ \leadsto⇤ 7�! \longmapsto . \swarrow

 \leftarrow =) \Longrightarrow " \uparrow

( \Leftarrow �! \longrightarrow * \Uparrow

, \Leftrightarrow 7! \mapsto l \updownarrow

$ \leftrightarrow % \nearrow† m \Updownarrow

⇤ Not predefined in LATEX2". Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym.

† See the note beneath Table 169 for information about how to put a diagonal arrow
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0

r · ~B ”) .

Table 103: Harpoons
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( \leftharpoonup * \rightharpoonup

Table 104: textcomp Text-mode Arrows

↓ \textdownarrow → \textrightarrow
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� \leftarrowtail ⇢ \rightarrowtail
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Fig. 10: EGs of CNF(φ) = (C ∨A) ∧ (C ∨B) ∧ (C ∨D) ∧ (A ∨B ∨D) (left), its
equivalent factorised form φ = (C ∨¬(A∨B ∨D))∧ (A∨B ∨D) (middle), and
its equivalent reduced form TWSR(φ) = φ′ = C ∧ (A ∨B ∨D) (right).

formula, which we claim will be able to generalise all the aforementioned rules
while still guaranteeing a never-increasing problem size.

Example 9. Let φ = (A∨B∨C)∧ (A∨B∨C)∧ (A∨B∨D)∧ (A∨B∨D)∧ (A∨
C∨D)∧(A∨ C∨D). These clauses define the following three implication chains
(amongst many others): B ∧C =⇒ A =⇒ B ∨C, B ∧D =⇒ A =⇒ B ∨D,
and C ∧D =⇒ A =⇒ C ∨D. These can be combined to form the following
equivalent implication chain: (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) =⇒ A =⇒ (B ∨
C)∧ (B ∨D)∧ (C ∨D), which easily reduces to: (B ∧C)∨ (B ∧D) =⇒ A =⇒
(B ∨ C) ∧ (B ∨D), meaning that (A ∨ C ∨D) and (A ∨ C ∨D) are redundant
clauses in φ. Our current version of TWSR cannot find these redundancies, nor
can FLP or HBR. From the rules we have mentioned in this paper, only ATE
would be able to detect this redundancy.

Example 10. Let φ = (X ∨Y )∧ (Y ∨Z)∧ (X ∨P ∨Q)∧ (Y ∨P ∨Q). Remember
that we can read (X ∨ Y ) as (X → Y ) or, equivalently, (Y → X). The clause
(X ∨ P ∨ Q) can be interpreted as (P ∧ Q → X) or (X → (P ∧Q)), amongst
many other equivalent readings. Notice that the reduction obtained from the
application of TWSR, φ′ = (X ∨Y )∧ (Y ∨Z)∧ (P ∨Q), can be seen as applying
an n-ary version of OSIR to the following implication path: P ∧Q =⇒ Y =⇒
X =⇒ (P ∧Q).

5 Conclusion

Reasoning with EGs allowed us to independently rediscover many existing equiv-
alence preserving SAT preprocessing techniques, gain a better understanding of
their underlying relationships, and more easily prove and establish many of their
properties. EGs also offer a fresh viewpoint which led to a novel approach that
generalises many of these techniques with added advantages: it is more efficient,
avoids look-ahead backtracking, guarantees a monotonically decreasing number
of variables, literals and clauses (and so termination), it is structure-preserving,
can be applied to nested formulae, and does not require CNF.
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With our approach, it becomes clear why some simplification techniques
based on adding redundant clauses or literals sometimes help reduce the prob-
lem but other times do not, leading to wasted preprocessing effort and the need
for bespoke or contrived heuristics. Since our proposed method generalises a sig-
nificant set of previously-thought independent techniques, the high complexity
and effort associated with finding a suitable application order are drastically
reduced. Our rules can also decrease the space complexity of the problem since
they may be applied at a higher level before formulas are flattened (e.g. con-
verted to CNF). This can greatly minimise the search space and even prevent
potential explosions of the formula size during translation. Our reductions also
allow for further problem insight and understanding, which can lead to better
modelling, better solving strategies, search heuristics and translations, further
symmetry breaking, provide model counting bounds and aid #SAT. Moreover,
our techniques are solver-, problem-, and form-agnostic, and apply to proposi-
tional logic formula in general, so they can be of use in other fields such as SMT,
automated reasoning and theorem proving.

Future work includes extensions of the TWSR rule informed by a novel n-
ary implication hypergraph, refining our current implementation and a formal
complexity analysis of our working algorithm.
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