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Abstract: Human error remains a major cause of several accidents in the oil and gas (O&G) industry.
While human error has been analysed in several industries and has been at the centre of many debates
and commentaries, a detailed, systematic and comprehensive analysis of human error in the O&G
industry has not yet been conducted. Hence, this report aims to use the Technique for Retrospective
and Predictive Analysis of Cognitive Errors (TRACEr) to analyse historical accidents in the O&G
industry. The study has reviewed 163 major and/or fatal O&G industry accidents that occurred
between 2000 and 2014. The results obtained have shown that the predominant context for errors
was internal communication, mostly influenced by factors of perception. Major accident events were
crane accidents and falling objects, relating to the most dominant accident type: ‘Struck by’. The
main actors in these events were drillers and operators. Generally, TRACEr proved very useful in
identifying major task errors. However, the taxonomy was less useful in identifying both equipment
errors and errors due to failures in safety critical control barriers and recovery measures. Therefore,
a modified version of the tool named Technique for the Retrospective and Predictive Analysis of
Cognitive Errors for the Oil and Gas Industry (TRACEr-OGI) was proposed and used. This modified
analytical tool was consequently found to be more effective for accident analysis in the O&G industry.
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1. Introduction

In the recent past, human error has been blamed for most of the serious disasters in the oil and gas
(O&G) industry. Alexander L. Kielland (1980) with 123 fatalities, Ocean Ranger (1982) with 84 fatalities,
Glomar Java Sea (1983) with 81 fatalities, Piper Alpha (1988) with 167 fatalities and Sea Crest (1989)
with 91 fatalities all show that poor decisions and human error were at fault. Most of these errors were
traced to the structure, culture and procedures of the organisation [1]. Gordon [2] asserts that accidents
similar to the examples above demonstrate that the interaction of human, technical, organisational,
social and environmental factors all affect the output of a very complex system.

Lord Cullen’s recommendations following the Piper Alpha explosion and fire in 1988 were the
origin of the Offshore Installations (Safety Case) Regulation 1992 which is implemented to reduce
the risk of hazards emerging from major accidents on offshore installations [3,4]. The Safety Case
regulation required offshore industries in the UK to perform risk assessments for new and existing
platforms. In the context of this requirement, the duty holder is responsible for identifying hazards,
evaluating risk and carrying out accident analysis with the aim of demonstrating that measures are
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implemented to reduce any risk as low as is reasonably practical (ALARP) [4]. A trend of offshore
accidents and their fatalities before and after the Safety Case regulation is shown in Figure 1 below [5].
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It could be argued that following the recommendations of Lord Cullen’s (1990) report after the
Piper Alpha ordeal, there has been a wave of legislative change and improved commitments by
oil companies worldwide [6,7]. For example, the Royal Commission recommended the enactment
of the Australian safety case regulation for major hazard facilities (similar to the UK Safety Case)
following the investigation into the Esso Longford Gas Plant explosion and fire in September 1998
which killed two workers, caused colossal damage to the plant and left a major area of the State of
Victoria without gas for 10 days [8]. Moreover, although Norwegian offshore regulations date back
to the 1960s, following the UK Safety Case regulation and the creation of UK HSE, the Norwegian
Petroleum Safety Authority (similar to UK HSE) began in 2004 to regulate petroleum activities in the
Norwegian Continental Shelf (NCS).

Human Error and Performance Influencing Factors

Arguably, legislation like the UK Safety Case regulation seems to drive improvements in health
and safety management in some parts of the world [9]. For example, following the regulation, conscious
attempts have been made to reduce human error in offshore oil and gas facilities [4]. Therefore, many
human error identification (HEI) tools have been developed for the process industry worldwide to
aid accident investigators and to learn from incidents. Notable examples of these tools include the
Generic-Error Modelling System (GEMS) [10–12], the Human Factors Investigation Tool (HFIT) for
Accident Analysis [13], the Cognitive Reliability Error Analysis Method (CREAM) [14], the Technique
for Human Error Rate Prediction (THERP) [15], the Human factors analysis and classification system
for the oil and gas industry (HFACS-OGI) [16], the railway accidents (HFACS-RAs) [17]. the Predictive
Analysis of Cognitive Errors (TRACEr) [18–20] and System Action Management (SAM) [21]. Over time
there has been steady progress in the development of these tools that has aided accident investigators
and helped extract vital information from process accident reports. Despite this however, substantial
barriers remain in the development and application of human error identification and accident analysis
tools in the O&G industry.
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2. TRACEr Taxonomy

Unlike other human error identification, TRACEr is a human error identification tool that
considers the human machine interface, the cognitive framework of the end user coupled with
external factors that may affect the user’s performance. It takes into account the physical (e.g.,
intoxication, fatigue), the psychological (e.g., state of mind, stress, decision-making) and the external
(e.g., organisational factors, weather). This combination of characteristics presents an open image
of the event [20,22]. TRACEr was developed in line with two models, namely the Model of
Human Information Processing (M-HIP) and the Simple Model of Cognition (SMOC). The first
model, the M-HIP developed by Wickens [23], was based on investigating how physical parameters
affect the cognitive process. In this model, human information processing is the basis of human
performance as this determines how an individual perceives and processes information before making
decisions [24]. The second model, the SMOC [14], contains elements of cognition and their interactions,
including planning/choice, observation/identification and action/execution [14]. Although a detailed
explanation of the TRACEr taxonomy is beyond the scope of this paper, a brief explanation is offered.
TRACEr has seven taxonomies divided into three major divisions (Table 1): (1) Context of the Accident;
(2) Operator’s Context and (3) Error Recovery [20,22]. These are further divided into subdivisions for
a more effective coding process as shown in Table 1 below.

Table 1. Levels and subdivisions of TRACEr taxonomy [20,22].

Major Divisions Categories

Context of the incident
1. Task Error
2. Error Information
3. Casualty Level

Operator Context

4. External Error Mode (EEM)
5. Cognitive Domain

I. Internal Error Mode (IEM)
II. Psychological Error Mechanism (PEM)

6. Performance Shaping Factors (PSF)

Error Recovery 7. Error Recovery

Although TRACEr was initially developed for retrospective, predictive and real-time accident
analyses in air traffic control [20], other high risk industries such as maritime and railways have used
successfully modified versions of TRACEr [19,24–27]. However, there are scarcely any published
accounts where TRACEr has either been modified for the O&G industry or used in its original form
for accident analysis. A TRACEr taxonomy for the O&G industry therefore would be both useful
and obtainable, as in other high risk industrial sectors. Consequently, the aim of the present study is
twofold: (1) to analyse retrospective accident cases using TRACEr to determine specific adaptations
necessary to make it more effective for the O&G industry (Section I); (2) to propose a TRACEr taxonomy
for the O&G industry: TRACEr-OGI (Section II).

3. Analysis of Retrospective Offshore Accident Cases Using TRACEr (Section I)

3.1. Data Collation and Analysis

3.1.1. Data Collation

To analyse retrospective accident cases using TRACEr, 167 accident reports with at least one
fatality or extensive damage to the facility were retrieved from the International Association of
Oil & Gas Producers (IOGP) database. IOGP is the single association representing companies involved
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in the exploration and production of oil and gas at a global level to establish reliable data. IOGP data is
collected and analysed through known international practises, so there should be a high probability that
the content and structure of the data provides reliable information about these accidents. Furthermore,
only accidents with full details or those in which the investigation was completed were used in
this analysis.

3.1.2. Data Coding Process and Analysis

Publically available IOGP offshore accident reports were coded based on TRACEr’s seven
subdivisions (Table 2). The coding involved identifying the subdivisions associated with TRACEr
that contributed to these accidents. Each report was read thoroughly before the coding process.
The presence of any given ‘taxon’ was coded 1 to indicate the presence of a category or 0 to indicate the
absence of a category, as illustrated in Table 2 below. The coded data was cross-tabulated for statistical
analysis and categories that were not present in any of the accidents were excluded.

Table 2. Illustration of the sequence of TRACEr categories/taxa identified from the accident reports.

Year No of
Accidents

Supervision

Drilling Production
Operations

(Flaring,
Completions)

Well
Logging/TESTING

Crane
Operations

Electrical/Mechanical
Operations

LEVEL
TOTAL

2000 1 1 0 1 0 0 1 3
2000 1 1 0 0 0 0 0 1
2000 1 1 0 1 0 1 0 3
2000 1 0 0 0 0 0 0 0
2000 1 0 0 0 0 0 0 0

4. Result and Discussion of Analysis Using TRACEr

4.1. Context of the Incident

A total number of 2615 errors were coded from 163 accident reports between the years 2000 and
2014 in Offshore Platforms. Following a thorough evaluation of the accident reports in three categories,
the first level of the TRACEr taxonomy analysis was as follows: Task Error (56%), Error Information
(24%) and Casualty Level (20%).

The percentages of main actors in the reviewed accident’s chain of events are shown in Figure 2
below, while accident classifications are shown in Figure 3.
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4.1.1. Task Errors

This paper has considered only offshore accidents. However, these accidents are also related to
mobile drilling units (MODUs), mobile production units (MOPUs), Monohulls and all fixed offshore
units. Monohulls include floating production storage and offloading (FPSOs), floating storage vessels
(FSOs), Floating Offshore Production Units (FPUs) and Floating Storage Units (FSUs). The fixed
offshore units considered were bottom-fixed installations (manned or unmanned) designated for
accommodation, drilling, production, compression, injection/riser, pumping or a combination of
these [28].

The Task Error Categories were as follows: supervision, standard operation procedure, external
communication, internal communication and handover/takeover (Figure 4). Internal communication
was found to be present in 55% of the 587 task errors coded. Supervision and external communication
were present in 29% and 12% respectively, making them the second and third most significant trends.
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4.1.2. Error Information

It is important to identify the equipment used in any activity that has led to an accident [22].
Much could be learned from technical equipment in the lead up to accidents, including improving the
system of work, job procedures, industry standards and guidance and equipment design (ergonomics)
among others. Results have shown that the main error information represents 24% of the accidents
coded. However, details of the Technical Equipment shown in Figure 5 below shows that equipment
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involved in 58% of accidents are drilling tools, drilling pipes, risers and drill collars. Most of these
form part of the drilling string. Another example of technical equipment is the Control System at 34%.
Attention was also given to alarm systems monitoring gas releases and other surveillance systems.
These were involved in 4% of the total accidents coded. However, the coding of most equipment errors
was challenging.
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4.1.3. Casualty Level

The final and coincidentally the lowest level within the Context of the Incident is the Casualty
Level (Figure 6). This is because it occupies 20% of the Context of the Incident and the total number of
accidents analysed.
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The Primary High Casualty which characterised accidents that have led to fatalities or permanent
disabilities was 10%. The Primary Low Level of Casualty involved accidents with significant but
not necessarily permanent injuries. The Secondary High Level involved accidents that caused minor
injuries but led to severe damage to equipment while the Secondary Low Level involved accidents
with minor or no injuries and minor or no damage to equipment.

4.2. Operator Context

The first category of TRACEr taxonomy (Context of the Incident) focused more on identifying the
errors, the location in which they took place and the people involved. The second category (Operator’s
Context) is the largest level of the TRACEr taxonomy. As noted earlier, this category focuses on the
factors that may or may not have influenced the performance of the operator. From Table 1 above,
the operator context was analysed under three headings: External Error Mode (EEM), Cognitive
Domain divided into Internal Error Mode (IEM) and Psychological Error Mechanism (PEM) and
Performance Shaping Factors (PSF). A total of 1326 errors were coded for the Operator’s Context
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which accounts for 50.71% of all errors coded. The Operator’s Context was further analysed based
on categories of observable outcomes presented in Figure 7 below: External Error mode (EEM) (18%),
Cognitive Domain (IEM) (52%), Cognitive Domain (PEM) (25%) and Performance Shaping factors
(PSF) (5%). Analyses of the Cognitive Domains (IEM, EEM and PEM) are shown in Figures 8–10 below.
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4.2.1. Cognitive Domain-External Error Mode

The External Error Mode evaluates the observable outcomes of the external errors shown in
Figure 8: Communication, Selection/Quality and Timing/Sequence. The analysis showed poor
selection/quality at (57%) of the EEM category, Poor communication at (26%) followed by inappropriate
timing/sequence at (17%).
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4.2.2. Cognitive Domain (Internal Error Mode)

A total of 692 errors were coded under the cognitive domain internal error mode representing
52% of the Operator’s Context (Figure 7 above). Further analyses of observable outcomes are shown
in Figure 9 below. They cover action, decision-making, memory, perception and violation. The IEM
considered in the first category, Action, are Selection error (32%), Timing error (31%) and Information
transmission error (29%). Selection errors typically involve mistakes in the selection or choice of
procedure, method or equipment for a particular task. The timing errors were due to time lapses.
This could include actions that were not performed in time or errors performed coincidentally at a
time when equipment failed, or an operator was found to be handling another task. Other errors in
this category include information transmission error, errors due to actions not performed, data entry
errors and the recording of unclear information.

The second category of the IEM is Decision-making, including Poor decisions and planning (41%)
and Late decision/planning (36%), followed by No decision/planning (15%). Incorrect or reflex decisions
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are made instantaneously or in an attempt to save a situation, thereby jeopardizing safety. For example,
an operator tries to stop a falling object but is crushed by it.

The next category, Memory, involves the failure to monitor a process that should be under scrutiny
thereby resulting in an accident. This includes Forgetting to monitor (46%) and Forgetting to request for or
give information (35%). The perception error which relates to the main internal error mode category has
a high relationship with the Not detected category (40%). This involves errors from failures that were
not detected, for example failures in the system or equipment. The last category of the IEM is violation
and relates to routine violations. These occur due to complacency in job routines or an underestimation
of the dangers involved.
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4.2.3. Cognitive Domain (Psychological Error Mode)

Although there are two major branches of psychology that have a bearing on errors in safety
and reliability, namely social and cognitive psychology, this paper is majorly on the cognitive aspects.
The psychological error mode in the Cognitive Domain had 332 coded errors out of an overall 1326 for
the Operator’s Context. The PEM is 25% of the Operator’s Context and is related to the perception
category similar to the case of the IEM as seen in Figure 10 below.

The first category of the PEM, Action, is further broken down into Confused state (50%), Distraction
(21%) and Fatigue (29%) as illustrated in Figure 10 below. The relationship between Action and
Confused state is clearly illustrated. The Confused state is a state of mind in which fatigue and stress
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are likely to be contributory factors. The second category of the PEM is Decision-Making, which relates
to the mindset category at 51%. Most decisions, especially in the context of incidents are strongly
linked to the mindset of the personnel involved. The third category of the psychological error mode
is Memory at 11%, in relation to the sub-level miscommunication at 50% which involves errors in
communication during the various interactions between workers. The fourth and largest category
of the PEM is Perception. Perception is linked with vigilance as evident in Figure 10 below at 78%.
The category of vigilance evaluates the state of alertness and observance of the personnel on duty.
Vigilance can also be influenced by a state of confusion or expectation which is evident when the
employee expects the error to be averted by any other factor. The final category of the PEM is Violation
which relates to complacency (58%). Complacency is strongly influenced by states of overconfidence,
pressure and stress while on duty.
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4.3. Further Discussion

The analysis covered all areas including the context of the incident, operator context and error
recovery. It was found that poor communication remains a major precursor to offshore accidents.
This involved internal communication between the officers in charge and the personnel on duty,
communication between the crane operators, drillers, floor men, roustabouts and other operators
working hand in hand to ensure productivity on offshore platforms. However, major communication
issues also involved drillers and assistant drillers. In most of the drilling operations on the platform,
several injuries arose from tasks carried out by more than one operator simultaneously with no
adequate communication as to when each person’s task should be implemented. As noted by
Graziano et al. [19] in the classification of human errors in grounding and collision accidents,
it is difficult to use TRACEr to classify mechanical errors in the O&G industry caused by sudden
facility failure without direct human participation.
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The Operator’s Context revealed incorrect perception and therefore poor decision-making as its
major contributor. The Performance Shaping Factors also formed part of the Operator’s Context but
it was revealed that its contribution to the whole was not significant. However, in this capacity,
the major contributors to human error were the organisational factor Training and the personal
factor Competence which has had an effect on major events. TRACEr moreover appeared to neglect
some organisational factors contributing to error occurrence in the O&G industry. Baysari et al. [18]
recommended modifications to include the following categories: environmental factors, infrastructure
design/condition and safety. It may also be useful to consider these additional human factors as seen
in the process industry: (1) personal/team factors (2) key job factors and (3) organisational factors.

The major contributors to Error Recovery were failures in the functional barrier system Primary
Low Casualty level, in the context of the incident. It is recommended that the taxonomy be specifically
adapted to make it more effective for the O&G industry.

5. Development of TRACEr for the Oil and Gas Industry (TRACEr-OGI) (Section II)

The results of Section I showed that the three major divisions and seven categories of TRACEr are
flexible and adaptable to the O&G industry. However, the tool could benefit from the addition of more
tasks and sub-tasks specific to this industry. For example during the coding process, the following
common factors were difficult to code: failures due to inadequate facility (equipment error), national
and international regulatory framework/standards, administrative duties such as inspections and
enforcement of regulations and resources. Since the tool was designed to identify human factors which
feed into human errors, the alignment of its taxonomy to the following major human factor contexts,
namely job context, organisational/facility context and operator context would particularly enhance
its usability in the O&G industry.

To ensure that the core theoretical underpinnings and framework of TRACEr are not lost in
the development of the oil and gas version, existing versions (Table 3 below) and applications were
reviewed to identify the taxonomy that would benefit the sector. The proposed modification also took
into consideration oil and gas technical reports such as the 2014 Society of Petroleum Engineers (SPE)
technical report The Human Factor: Process Safety and Culture. It was produced after a two-day summit
held in July 2012 on human factors affecting the O&G industry and the best way forward [29]. As an
example, the concept of offshore managed pressure drilling (MPD) or the MPD system and its effect
on human performance was reviewed, focusing on human error. The communication structure during
MPD offshore drilling operation is shown if Figure 11 below.
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Table 3. List of TRACEr modifications and field of study reviewed in the development of TRACEr for the Oil and Gas Industry (TRACEr-OGI).

Studies Title/Reference Technique (s)
(TRACEr Version) Field of Study Predictive or

Retrospective Key Modifications, Recommendations and Use

Development and application of a human error
identification tool for air traffic control [20] TRACEr (Original) Aviation (ATC) Both Comprehensive taxonomies describing context error,

operation error and error recovery.

Error Classification for Safety Management: Finding the
Right Approach [31] TRACEr-lite (Derivative) Rail Retrospective Simplification of TRACEr (IEM) and (PEM) to create

TRACEr-lite’s internal (modes and mechanism).

Development, use and usability of
TRACER-RAV(technique for the retrospective analysis
of cognitive errors—for Rail, Australian version) [26]

TRACEr-RAV (Derivative) Rail Retrospective

Modified to be more user-friendly and comprehensive than
The original Rail. Addition of Psychological Error Mode.

Addition of classification (other rail personnel). Removal of
error correction performance factors.

A reliability and usability study of TRACEr-RAV: The
technique for the retrospective analysis of cognitive

errors e for rail, retrospective [25]

TRACEr-RAV Australian
version (Derivative) Rail Retrospective

Changed and simplified the original taxonomy categories to
be shorter. Two violations types were removed. Addition to

the information error category.

The classification and analysis of railway incident
reports [27]

TRACEr Nottingham
University version Rail Retrospective

Application of TRACEr in the railway context. Modification
of performance shaping factors category to capture wider
issues such as procedure and documentation, training and

experience and communication.

Human error in European air traffic management: the
HERA project [24]

TRACER- (the HERA
project) Derivate Original

Air traffic
management (ATM) Both TRACER is used for ‘HERA’—Human Error in Air Traffic

Management (ATM) project.

Classification of errors contributing to rail incidents and
accidents: A comparison of two human error

identification techniques [18]

A comparison of HFACS
and TRACEr-rail version Rail Retrospective

• TRACEr is unable to capture factors associated with
error occurrence.

• TRACEr-rail appeared to neglect some organisational
factors contributing to error occurrence. Baysari et al.
[18] recommended modification to include categories
for environmental factors, infrastructure
design/condition and safety culture (norms,
organisational customs, etc.).

Predictive Analysis of Controllers’ Cognitive Errors
Using the TRACEr Technique: A Case Study in an

Airport Control Tower [32]
TRACEr (Original) Aviation (Airport

control tower) Predictive • Application of TRACEr in airport control tower.

Structure of human errors in tasks of operators working
in the control room of an oil refinery unit [24] TRACEr (Original) Oil and Gas

(Refinery Unit) Retrospective • Application of TRACEr in the refinery unit context.

TRACEr-MAR—applying TRACEr in a maritime
context [33] TRACEr-MAR Maritime Context Retrospective • Application of TRACEr in a maritime context.
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Furthermore, other techniques and taxonomies have been used in the O&G industry, for example
HFACS-OGI, a modification by Theophilus et al. [16]. Investigation tools for the petroleum industry,
human factors investigation tool (HFIT) developed by Gordon [13], were also reviewed. Following
team discussions with 10 oil and gas professionals and 40 oil and gas scholars, it was determined
that TRACEr for the O&G industry should retain three major divisions. These are: (1) Context of the
Accident; (2) Operator’s Context and (3) Error Recovery which also take into account the physical,
psychological and external factors. Following these reviews, the following TRACEr for the O&G
industry (TRACEr-OGI) (Table 4 and Figure 12 below) has been proposed:

Table 4. Levels and subdivisions of TRACEr-OGI taxonomy.

Major Divisions Category Subdivisions Example (Not Exhaustive)

Context of the
incident

1. Task Error

Task error relate to

I. WHAT is the task performed unsatisfactorily by (e.g., the drilling
supervisor, drilling engineer, mud engineer, driller, . . .
(Supervision, Standard Operation, Handover/Takeover, well
testing, crane operations, electrical/mechanical operations, job
hazard analysis and material and equipment)? selection).

II. WHERE was the task performed (e.g., fixed platform, floating
production storage and offloading, FPSO, helidecks, etc.)?

III. WHO performed the task (e.g., the drilling supervisor, drilling
engineer, etc)?

2. Error Information

Error Information relates to:

I. Equipment involved (e.g., drilling string, blow out preventer BOP,
alarm system, control system, surveillance system, etc)

II. Information not taken into account (size, dimension, etc).

3. Equipment Error

Equipment Error relates to:

I. Mechanical integrity (e.g., design error, installation error,
operational error, corrosion, poor maintenance, inadequate
inspection, etc.)

4. Casualty Level

This defines the level of casual contribution.

I. Minor
II. Major
III. Catastrophic

Operator Context
5. External Error Mode

(EEM)

This is potential external error. This is majorly:

I. Error of omission
II. Error of commission
III. Extraneous error

6. Cognitive Domain

I. Internal Error Mode
(IEM)

II. Psychological Error
Mechanism (PEM)

The subdivision relates to the five cognitive domains originally
proposed by Shorrock and Kirwan [20] and the addition of the sixth
called sabotage. It focuses on the cognitive framework that potentially
applies to the error coded. The cognitive domains are:

I. Perception;
II. Memory;
III. Decision-Making;
IV. Action;
V. Violation and
VI. Sabotage

In the first four categories the error is non-intentional while in the last
two categories “Violation and sabotage” the error is considered as an
intended violation of rules.
These two (IEM and PEM) represent the cognitive function that failed.
For example:

I. risk recognition failure
II. poor decision-making
III. no decision
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Table 4. Cont.

Major Divisions Category Subdivisions Example (Not Exhaustive)

7. Performance Shaping
Factors
(PSF)/Human Factors

Relates to factors that influence the performance of the crew. The PSF
categories for TRACEr-OGI are based three key areas involved in the oil
and gas industry as follows IOGP [34]:

I. Personal/Team factors
II. Job factors
III. Organisational factors

Control Barriers
and Recovery

Measure

8. Hardware Barriers

Relates to ‘primary containment, process equipment and engineered
systems designed and managed to prevent loss of primary containment
(LOPC) and other types of asset integrity or process safety events and
mitigate any potential consequences of such events. These are checked
and maintained by people (in critical activity/tasks) [35]’. Categories of
hardware barriers implemented by the oil and gas industry are [35]:

I. Structural Integrity
II. Process Containment
III. Ignition Control
IV. Detection Systems
V. Protection Systems—including deluge and firewater systems
VI. Shutdown Systems—including operational well isolation and

drilling well control equipment.
VII. Emergency Response
VIII. Life-saving Equipment—including evacuation systems

9. Human Barriers

Relates to ‘barriers that rely on the actions of people capable of carrying
out activities designed to prevent LOPC and other types of asset
integrity or process safety events and mitigate any potential
consequences of such events [35]’. Categories of human barriers
implemented by the oil and gas industry are [35]:

I. Operating in accordance with procedures, e.g., Isolation of
equipment overrides and inhibits of safety systems, shift handover.

II. Surveillance, operator rounds and routine inspection
III. Authorization of temporary and mobile equipment
IV. Acceptance of handover or restart of facilities or equipment
V. Response to process alarm and upset conditions
VI. Response to emergencies
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5.1. Analysis of the Proposed Taxonomy for the Oil and Gas Industry (TRACEr-OGI)

5.1.1. Context of the Incident

As noted in Table 1 above, Task Error deals with particular tasks, their locations and who performed
them. In this paper, all information that helped to uncover any task error was taken into consideration.
Categories based on the rig, the floating production storage and offloading (FPSO) and the decks
were considered, among others. The user tasks classified for these locations are Supervision, Standard
Operation Procedure, External Communication, Internal Communication, Hand-Over, and Take-Over.

The O&G industry is characterised by the rapid and steady technological development of essential
safety critical equipment [36]. Examples are alarm systems, control systems and surveillance systems,
etc. The second context of the incident Error Information was used to classify information not taken into
account (size, dimension, etc.) [4,21,22]. This information is usually connected to the exact location
where the error occurred, for example deck dimension, vessel size, etc. [22].

The third context of the incident and a major modification is the addition of Equipment Error
used to classify mechanical errors. Although TRACEr considers both equipment and information not
taken into account, Graziano et al. [22] noted that TRACEr could not code mechanical errors caused
by sudden facility failure without direct human participation. In the O&G industry, there is a very
strong relationship between the contributory elements of asset integrity, namely personnel integrity,
operational integrity and mechanical integrity [37]. Studies have shown that these three elements
are ‘interrelated and the performance of one element has a great influence on the others’. [37] Typical
examples of equipment error in the O&G industry include corrosion, Struvite related pipe explosion,
cavitation, hydrogen shock, thermal fracture and pressure burst, among many others [37,38].

The last context of the incident is the Casualty Level, which for TRACEr-OGI was divided into
minor, major and catastrophic levels. The catastrophic level involves accidents that led to fatalities and
extensive facility damage, the major level involves incidents that resulted in major facility damages or
severe/permanent injuries, while the minor levels involve accidents with minor damage to equipment
and slight injuries to personnel requiring first aid attention.

5.1.2. The Operator’s Context

As in the original TRACEr, this section of the taxonomy focused more on the internal and
external factors that affect the performance of the operator. The Operator’s Context includes
(1) the External Error Mode (EEM—Table 5) and (2) the Cognitive Domains encompassing Internal
Error Mode (IEM—Table 6) Psychological Error Modes (PEMs—Table 7) and Performance Shaping Factors
(PSFs—Table 8) [22,39].

Table 5. External Error Mode Taxonomy of observable outcomes.

External Error Mode

Communication Selection/Quality Timing/Sequence

Transmitted Incomplete information Too little Action Prolonged Action
Recorded Incorrect Information Omission Late Action
Failure to transmit information Too much action Early Action
Recording unclear information Wrongly Directed Action

Transmitting unclear Information Right on Wrong Object Action
Failure to Record Information Wrong on Right Object Action

Failure to sort information or sorting wrongly Wrong on Wrong Object Action
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Table 6. Internal Error Mode Taxonomy observable outcomes.

Cognitive Domain: Example

Perception Not detected, Late Detection, Read Amiss, Hear Amiss, See Amiss

Memory Late/Omitted Action, Forgetting to Monitor, Forgetting to request
for or give information, Forgetting temporal information.

Judgement, Planning and
Decision-Making

Wrong decision/Planning, No decision/Planning, Late
Decision/Planning, Read Amiss, Hear Amiss, See Amiss, etc.

Action Execution information transmitted error, timing error, selection error, action
not performed, data entry error, recording wrong unclear info

Violation

Routine Violation
Intended Violation
(In routine and intended violation, there is no intention to cause
deliberate harm)

Sabotage In this form of violation, all layers of protection are deliberately
removed with the intention to cause harm.

Table 7. Psychological Error Mode taxonomy.

Cognitive Domain: Psychological Error Mode Observable Outcomes
Action Decision-Making Memory Perception Violation

Confused State Mind-set Over Confidence Confused State Over Confidence

Intrusion of Habit Failure to consider
side or long effect

Memory
Overloaded Vigilance Complacency

Table 8. Performance shaping factor/human factor [16,40].

Human Factor
Categories

Performance Influencing
Factor Categories Performance Influencing Sub-Categories

Personal/Team Factors

Individual factors Health, Emotional tension, Age, Gender, etc.

Dependent factors

Skill level, Contractor adaptability, Knowledge and
Experience, Motivation, Safety awareness,
Personal/team factors/competence, Supervision,
Tiredness, Stress, and Fatigue, Illness, Discomfort,
Workload, Crew resource management, Personal
readiness, etc.

Job Factors

Anthropometry Basic layout of the working environment

Environment and Factors
(e.g., working conditions)

Weather, Timing, Physical environment
(e.g., physical conditions like temperature, humidity,
light, noise, etc.), Contractor Environment,
Technological Environment, etc.

Design of Human-Machine
Interface (HMI)

Positioning and layout of HMI, Usability, Quality of
feedback, etc.

Organisational Factors

Employee related factor

Organisational Policies, Process Safety Culture,
Safety Climate, Resource management,
Organisational process, Management of change,
Inattention, Staffing (clearness in responsibilities),
Level of training and instruction on work/task,
Inadequate supervision, Supervisory violations
Planned inappropriate operations, Failed to correct
known problem, etc.

Standard factor
Company standards, rules, and guidance,
Task design
Permit to work, Safe system of work procedure, etc.

External influences
International industry standards
National regulatory framework, Approved Code of
Practice (ACoP)
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Performance Shaping Factors (PSFs) represent a key modification of the Operator’s Context in the
TRACEr-OGI proposition. The PSFs classify those factors which influence or are capable of influencing
the performance of the operator or team, thereby aggravating the error occurrence or also assisting
in the error recovery [25]. Baysari et al. [18] observed that TRACEr-rail appeared to neglect some
organisational factors contributing to error occurrence and has recommended modifications to include
environmental factors, infrastructure design/condition and safety culture (norms, organisational
customs, etc.). However, TRACEr-OGI also proposes the inclusion of Performance Shaping Factors
(PSF) and Human Factors categories to better capture all latent factors. Examples which could affect
performance in the O&G industry (e.g., on offshore platforms) considered for this study are illustrated
in Table 8 and Figure 13 below.
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5.1.3. Control Barriers and Recovery Measures

Control Barriers and Recovery Measures are the final categories of the TRACEr-OGI taxonomy,
divided into Hardware Barriers and Human Barriers [35]. They assist in observing and understanding
whether or not barriers to prevent threats and causes of accidents and measures to recover from the
consequences of events have worked successfully. Where the barriers have worked, the incident entry
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is classified as a near miss and where they did not work, it becomes an accident. That said, near misses
were not considered in the context of this study. Figure 14 below illustrates a generic arrangement of
control barriers and recovery measures in the O&G industry.Safety 2017, 3, 23  17 of 21 
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6. Reliability and Usability of the Proposed TRACEr-OGI

Following the modifications to TRACEr, it was anticipated that TRACEr-OGI would be less
difficult to use, more suitable and more comprehensive in identifying errors and moreover, could
be applied more consistently (i.e., show greater inter-rater reliability). The inter-rater reliability is
the most critical criterion on which to judge a taxonomy [25]. Inter-rater is a measure of the extent
to which different raters give the same coding for the same observed performance [13,41]. Another
critical criterion when adopting a tool in a new context is its usability (is it ambiguous or easy
to use?) [20,25,26,42]. Improved usability will mean less errors and improved consistency [25,42].
Therefore, the inter-rater reliability and usability of the two human error identification tools were
compared: TRACEr and the proposed TRACEr-OGI. To achieve this, eighteen participants were
required to use TRACEr and TRACEr-OGI to code a notable offshore accident following the procedure
outlined in Section 3.1 above. The participants were nine Oil and Gas Engineering MSc students and
nine Petroleum and Environmental Technology MSc students. All participants had oil and gas related
undergraduate degree with some previous work experience in oil and gas industry. Before the coding
process, participants took an 11 week long process safety module with specific topics on human factors
(HF) and human error identification (HEI). They had also used TRACEr for a coursework exercise.
IBM Statistical Package for the Social Sciences (SPSS) 24 was used to determine the inter-rater reliability
for each of the rater pairs within a group. In line with the method outlined by Baysari et al. [25],
the participants were given a usability questionnaire at the end of the coding process for both TRACEr
and TRACEr-OGI. IBM SPSS 24 was also used to derive the proportion (%) in each group that agreed
with the usability questionnaire statements.

Results

The most common error categories chosen by the raters were the Causality level (where 96% and
97% of raters chose this category); the Cognitive Domain (93% and 92%) and Error Information (93%
and 92%) for TRACEr and TRACEr-OGI respectively (Table 9 below). It should be noted that the new
categories of Equipment Error and Control Barriers and Recovery Measures were consequently nil
for TRACEr, but scored 72% for TRACEr-OGI in Table 9 below. It could be argued that subcategories
of Control Barriers and Recovery Measures, which are divided into easily identifiable oil and gas
barriers, simplified error identification at 90% (Table 9). Significantly, mechanical errors caused by
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sudden facility failure without direct human participation which had been difficult to capture using
TRACEr [22], could now be captured with TRACEr-OGI. Raters noted that it was now easier to code
errors due to failures in process equipment.

Table 9. Average percentage agreement from all participants using TRACEr and TRACEr-OGI.

Categories % of Raters Who Found this Category to Be a Cause of the Accident

TRACEr TRACEr-OGI

Task error 94 78
Error information 93 92
Equipment Error - 72

External error modes 65 75
Cognitive domain 91 93

Internal error modes 77 83
Psychological error mechanisms 65 79

Performance shaping errors 89 80
Causality level 96 97

Control Barriers and Recovery Measure - 90
Mean 67 84

A key statistic for the measurement of inter-rater reliability was Cohen’s kappa, developed by
Jacob Cohen [43]. Values of Cohen’s kappa can vary from 0 to 1, where a value of 0 denotes no
agreement between raters, while a value of 1 reflects perfect reliability between raters. The essence of
this reliability test was to ascertain whether TRACEr-OGI would obtain a percentage agreement of at
least 70%. The results for the raters with Kappa values ≥ 0.6 (named R1 to R4) are displayed in Table 10
below. Columns 3 and 6 show the rater pairs with a substantial level of agreement, having a Cohen’s
kappa value above 0.6. In instances where Cohen’s kappa values of 0.644 and 0.669 (TRACEr-OGI) and
0.679 and 0.664 (TRACEr) were observed, for consistency these values are said to be at the threshold of
acceptability. The Kappa value was found to be satisfactorily consistent as there was at least 83.9%
agreement between the rater pair under consideration and all the values were significant at a level
p < 0.05. However, TRACEr-OGI had a better overall percentage agreement.

Table 10. The percentage agreement among raters for TRACEr-OGI.

Raters * (R) Percentage
Agreement

Kappa
(k) * p-Value Percentage

Agreement
Kappa

(k) * p-Value

TRACEr-OGI TRACEr

R1 vs. R2 91.6% 0.746 0.00 86.7% 0.725 0.00
R1 vs. R3 92.7% 0.764 0.00 84.6% 0.679 0.00
R1 vs. R4 88.5% 0.644 0.00 83.9% 0.664 0.00
R2 vs. R3 91.6% 0.724 0.00 86.7% 0.723 0.00
R2 vs. R4 89.5% 0.669 0.00 87.4% 0.738 0.00
R3 vs. R4 92.7% 0.753 0.00 89.5% 0.779 0.00

* Only inter-raters with Kappa values ≥ 0.6 were rename R1 to R4 and shown. Cohen suggested the Kappa result
be interpreted as follows: values ≤ 0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–0.40 as fair,
0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement [44].

The majority of the raters as shown in Table 11 found the steps of both TRACEr (78%) and
TRACEr-OGI (83%) easy. However, more raters found TRACEr recording form easier to use than that
of TRACER-OGI.
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Table 11. Participants rating of ease of use.

Questions TRACEr TRACEr-OGI

How easy did you find it while completing the steps? 78 83
Where the instructions/directions easy to follow? 78 89

Did you find the category descriptions easy to use? 78 83
Did the tool cover all of your errors/factors? 78 83

Were the categories independent? 56 61
Were the examples included helpful? 94 89

Was the recording form easy to use/follow? 100 94

7. Discussion and Conclusions

Learning lessons from the analysis of a large set of offshore accident data could help to improve
safety performance. Hence, the present study aimed to apply TRACEr in the O&G industry to
determine changes required to make the tool more useful and effective and to propose TRACEr-OGI,
a version specific to the industry. This tool was used for a systematic and retrospective analysis
of 163 offshore accident reports. It was shown that the tool was useful in identifying task errors,
predominant contexts in which these errors occurred and any contributory factors. Results found
that poor communication remains a major precursor to offshore accidents, including internal
communication between officers in charge and personnel on duty, communication between crane
operators, drillers, floor men, roustabouts, and other operators working on offshore platforms. Major
communication issues were also found to involve drillers and assistant drillers. Several injuries arose
from a lack of communication between operators working simultaneously on drilling operations tasks.
The Operator’s Context revealed errors in perception and subsequent poor decision-making as its
major contributors. The Performance Shaping Factors formed part of the Operator’s Context but
its overall contribution was insignificant. Overall, the major contributors to human error were the
organisational factor Training and the personal factor Competence. The major contributors to Error
Recovery were failures in the functional barrier system Primary Low Casualty level, in the context of the
incident. It is recommended that the taxonomy be specifically adapted to makes it more effective for
the O&G industry or used with another human factor analytical tool.

This study was limited by a number of factors. Some of the reports were not sufficiently exhaustive
to reveal the true state of the accident. Hence, error detection was a challenge in these situations.
Accident codes under violations, both routine and intended, were challenging as it was difficult to
assess whether the employee acted deliberately or out of ignorance or reflex. Again, it was challenging
to ascertain the state of mind of an individual before the violation leading to an accident had occurred.
For example, it was difficult to identify when stress, pressure, confused state or overconfidence under
the psychological error mode was involved. Moreover, the classification of errors using the TRACER
and TRACEr-OGI may sometimes be subject to interpretation with respect to accident reports. In such
cases, the experience and knowledge of the analyst are as important as the systematic coding of
the events.

In conclusion, the results showed that the specific adaptation of the taxonomy for the O&G
industry would be useful, or that it could be used with another human factor analysis tool. For example,
although it proved difficult to use TRACEr to code equipment failures, TRACEr-OGI was not only
able to identify human errors aligned to job context, organisational/facility context and operator
context, it was also able to capture equipment error. It was shown therefore that TRACEr is
sufficiently flexible and adaptable for the O&G industry. Although as expected the results of the
modification made marginal difference in usability and reliability, TRACEr-OGI enhanced percentage
rater agreement. It also made the coding of key aspects of oil and gas facility failures possible.
The results of the modification therefore could inform potential decisions that will aid offshore process
safety development.
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