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Abstract
Among	other	approaches,	camera	trap	distance	sampling	(CTDS)	is	used	to	estimate	
animal	abundance	from	unmarked	populations.	It	was	formulated	for	videos	and	ob-
servation	distances	are	measured	at	predetermined	‘snapshot	moments’.	Surveys	re-
cording	still	images	with	passive	infrared	motion	sensors	suffer	from	frequent	periods	
where	animals	are	not	photographed,	either	because	of	technical	delays	before	the	
camera	can	be	triggered	again	 (i.e.	 ‘camera	recovery	time’)	or	because	they	remain	
stationary	and	do	not	 immediately	retrigger	the	camera	following	camera	recovery	
time	 (i.e.	 ‘retrigger	 delays’).	 These	 effects	 need	 to	 be	 considered	when	 calculating	
temporal	survey	effort	to	avoid	downwardly	biased	abundance	estimates.	Here,	we	
extend	the	CTDS	model	for	passive	infrared	motion	sensor	recording	of	single	images	
or	short	photo	series.	We	propose	estimating	‘mean	time	intervals	between	triggers’	
as	combined	mean	camera	 recovery	 time	and	mean	 retrigger	delays	 from	the	 time	
interval	distribution	of	pairs	of	consecutive	pictures,	using	a	Gamma	and	Exponential	
function,	respectively.	We	apply	the	approach	to	survey	data	on	red	deer,	roe	deer	
and	wild	 boar.	Mean	 time	 intervals	 between	 triggers	were	 very	 similar	when	 esti-
mated	empirically	and	when	derived	from	the	model-based	approach.	Depending	on	
truncation	times	(i.e.	the	time	interval	between	consecutive	pictures	beyond	which	
data	are	discarded)	and	species,	we	estimated	mean	time	 intervals	between	retrig-
gers	between	8.28	and	15.05 s.	Using	a	predefined	snapshot	interval,	not	accounting	
for	these	intervals,	would	lead	to	underestimated	density	by	up	to	96%	due	to	over-
estimated	temporal	survey	effort.	The	proposed	approach	is	applicable	to	any	taxa	
surveyed	with	camera	traps.	As	programming	of	cameras	to	record	still	images	is	often	
preferred	over	video	recording	due	to	reduced	consumption	of	energy	and	memory,	
we	expect	this	approach	to	find	broad	application,	also	for	other	camera	trap	methods	
than	CTDS.
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1  |  INTRODUC TION

With	 ongoing	 loss	 of	 biodiversity	 and	 decline	 of	 wildlife	 popula-
tions,	 species	 monitoring	 has	 become	 a	 major	 activity	 in	 applied	
conservation	 and	 research	 (e.g.	 Moussy	 et	 al.,	 2022;	 Nichols	 &	
Williams,	2006).	Animal	abundance	in	particular	is	a	key	parameter	
in	ecological	processes	and	essential	for	the	assessment	of	species	
conservation	status	 (Burton	et	al.,	2015).	Remote	camera	trapping	
has	become	a	widely	practised	approach	 for	assessing	species	oc-
currence,	 community	 composition,	 density	 and	 abundance	 (e.g.	
Bessone et al., 2020; Corlatti et al., 2020;	Nichols	&	Karanth,	2011; 
Rowcliffe	 et	 al.,	 2008).	 Camera	 traps	 can	 be	 left	 in	 the	 field	 for	
several	months	and	are	activated	either	at	 regular	 intervals	 (time-
lapse	photography)	or	by	temperature	differences	and	motion	(e.g.	
a	mammal	or	bird	with	a	surface	temperature	higher	than	ambient	
temperature)	via	a	passive	infrared	(PIR)	motion	sensor	(Welbourne	
et al., 2016).	A	photograph,	photo	series	or	video	is	recorded	follow-
ing activation.

The	 first	 studies	 to	 estimate	 animal	 abundance	 from	 camera	
trapping	data	used	capture–recapture	methods	(e.g.	Karanth,	1995; 
Noss	et	al.,	2012)	which	require	that	individual	animals	can	be	iden-
tified	 (commonly	 referred	 to	 as	 ‘marked	 population’	 approaches).	
With	 camera	 traps,	 however,	 marked	 population	 approaches	 are	
only	 applicable	 to	 species	 with	 unique	 and	 recognisable	 physical	
characteristics,	such	as	pelage	patterns.	For	estimating	abundance	
of	 ‘unmarked	populations’,	 that	 is	when	 individuals	 cannot	be	dis-
tinguished	 easily,	 several	methods	have	been	developed	 in	 recent	
years	(Campos-Candela	et	al.,	2018;	Chandler	&	Royle,	2013;	Howe	
et al., 2017; Moeller et al., 2018;	Nakashima	et	al.,	2018;	Rowcliffe	
et al., 2008).	 Spatially	 explicit	models	 for	 unmarked	 animals	 (‘spa-
tial	count’	models)	require	spatially	intensive	sampling	to	detect	the	
same	 animals	 at	more	 than	 one	 location	 and	 yield	 imprecise	 esti-
mates	in	the	absence	of	additional	data	to	inform	the	scale	of	individ-
uals'	movements,	but	do	not	require	that	cameras	are	programmed	
to	 record	 videos	 or	 on	 time-lapse	 (Chandler	 &	 Royle,	 2013).	 The	
random	 encounter	 model	 (REM,	 Jourdain	 et	 al.,	 2020;	 Rowcliffe	
et al., 2008)	 and	 time-to-event	model	 (TTE)	 (Moeller	 et	 al.,	2018)	
can	 also	 work	 with	 single	 sensor-triggered	 photographs	 as	 long	
as	 an	 independent,	 reliable	 estimate	 of	 animal	 movement	 speed	
is	 available;	 it	 is	 often	necessary	 to	estimate	movement	 speed	di-
rectly	from	the	camera	trap	data	to	avoid	bias	(Palencia	et	al.,	2022; 
Rowcliffe	et	al.,	2016).	Other	methods	such	as	Moeller	et	al.'s	(2018)	
space-to-event	(STE)	and	instantaneous	sampling	(IS)	estimators	use	
time-lapse	photography	to	circumvent	the	requirement	to	account	
for	animal	movement.	Nakashima	et	al.'s	(2018)	Random	Encounter	
and	Staying	Time	(REST)	model	and	Campos-Candela	et	al.'s	(2018)	
home-range	 based	 estimator	 also	 requires	 video	 surveys.	 Camera	
trap	distance	sampling	(CTDS)	avoids	the	need	to	estimate	speed	of	

movement	or	staying	time	by	discretizing	the	survey	duration	 into	
instantaneous	‘snapshot	moments’	t	units	of	time	apart	and	calculat-
ing	temporal	survey	effort	as	the	survey	duration	divided	by	t	(Howe	
et al., 2017).	Howe	et	al.	 (2017)	 recommended	programming	cam-
eras	 to	 record	video	when	 triggered	 to	ensure	distances	 could	be	
measured	at	these	predefined	moments,	and	this	formulation	is	also	
well-suited	 for	 high-frequency	 time-lapse	 photography.	 However,	
CTDS	has	since	also	been	applied	in	camera	trap	surveys	with	single	
images	(e.g.	Corlatti	et	al.,	2020;	Harris	et	al.,	2020).

The	performance	of	 both	REM	and	CTDS	have	been	 assessed	
in	 a	 number	 of	 field	 studies	 (e.g.	 Bessone	 et	 al.,	 2020; Cappelle 
et al., 2021;	 Cusack	 et	 al.,	 2015;	 Kavčić	 et	 al.,	 2021; Mason 
et al., 2022;	 Pal	 et	 al.,	2021;	 Palencia	 et	 al.,	2021)	 and	have	been	
validated	with	populations	of	known	size	(e.g.	Cappelle	et	al.,	2019; 
Harris	 et	 al.,	 2020;	 Rowcliffe	 et	 al.,	 2008).	 Other	 methods	 have	
received	 little	 testing	with	 real	data	 (but	 see	Garland	et	al.,	2020; 
Nakashima	et	 al.,	2020;	 Palencia	et	 al.,	2021	 for	 the	REST	model,	
and	Loonam	et	al.,	2021	for	TTE	and	STE).	Several	studies	have	com-
pared	subsets	of	these	methods	 in	terms	of	their	assumptions,	ro-
bustness	to	violations	of	assumptions,	ease	of	implementation	and	
their	 ability	 to	 produce	 accurate	 and	 precise	 results	 for	 different	
species	 and	 under	 different	 sampling	 scenarios;	 these	 studies	 did	
not	recommend	a	particular	model	for	use	 in	all	situations	 (Gilbert	
et al., 2021;	Palencia	et	al.,	2021;	Santini	et	al.,	2022).

Unfortunately,	 recording	 video	 or	 high-frequency	 time-lapse	
requires	more	energy	and	memory	and	thus	more	visits	to	camera	
locations	during	a	survey.	Time-lapse	surveys	with	long	intervals	be-
tween	pictures	may	yield	sparse	data	and	fail	to	detect	rare	species.	
Given	constraints	on	power	supply	and	memory	most	camera	trap	
surveys	rely	on	PIR	motion	sensors	and	record	single	images	or	short	
bursts	(≤1 s)	of	images	rather	than	recording	long	bursts	(over	several	
seconds)	or	videos	which	require	more	memory	and	consume	more	
power.	Such	surveys	may	not	always	yield	data	that	conform	to	the	
assumptions	of	the	statistical	method	underlying	CTDS,	which	may	
result	 in	biased	estimates	of	density,	but	see,	 for	example	Corlatti	
et	al.	(2020)	and	Harris	et	al.	(2020)	for	estimating	animal	abundance	
using	CTDS	and	image-based	recording.

If	technological	limitations	or	animal	behaviour	prevent	us	from	
detecting	animals	at	predefined	snapshot	moments,	that	we	expect	
to	be	detected	with	a	high	probability	based	on	their	location	rela-
tive	to	the	camera,	estimates	of	abundance	will	be	negatively	biased.	
For	example,	it	has	already	been	established	that	estimators	should	
be	corrected	 to	account	 for	periods	of	 time	when	animals	are	not	
available	for	detection	by	camera	traps	because	they	are	immobile	
(during	long	periods	of	sleep	or	rest)	or	because	they	are	outside	the	
vertical	range	of	camera	traps	(Cappelle	et	al.,	2019; Corlatti et al., 
2020;	Howe	et	al.,	2017;	Palencia	et	al.,	2022).	It	has	also	been	ac-
knowledged	that	slow	trigger	speeds	can	cause	missed	detections	
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of	animals	that	pass	quickly	through	the	narrow	part	of	the	sector	
monitored	 at	 short	 distances	 from	 cameras	 (Corlatti	 et	 al.,	 2020; 
Howe	 et	 al.,	 2017).	 However,	 PIR	 motion	 sensor-based	 recording	
of	 pictures	 requires	 consideration	 of	 another	 yet	 neglected	 issue:	
short	(<20 s	on	average)	intervals	between	consecutive	pictures	that	
prevent	animals	which	 remain	 for	 several	 seconds	within	 the	 field	
of	view	(FOV)	of	the	camera	from	being	redetected.	There	are	two	
causes	of	such	delays:	(1)	Camera	traps	frequently	have	technologi-
cal	recovery	times	of	several	seconds	after	a	picture	has	been	taken	
even	 though	 manufacturers	 may	 specify	 shorter	 (<2 s)	 recovery	
times	 (Corlatti	et	al.,	2020),	and	 (2)	animals	 that	 remain	stationary	
in	the	FOV	may	not	retrigger	cameras	continuously.	Recovery	times	
likely	vary	among	models,	and	may	also	vary	with,	for	example	ambi-
ent	temperature,	humidity,	image	resolution,	writing	speed	and	state	
of	memory	cards	and	batteries.	The	second	reason	for	the	time	dif-
ference	between	consecutive	images,	which	we	refer	to	as	‘retrigger	
delays’	 is	at	 least	partly	a	function	of	animal	movement	behaviour,	
and	 therefore	 likely	 to	 be	 species-,	 population-	 or	 group-specific.	
In	 principle,	 bias	 induced	 by	 longer-than-expected	 recovery	 times	
and	retrigger	delays	applies	to	PIR	motion	sensor-based	recording	of	
both	pictures	and	video.	However,	where	videos	or	bursts	are	long	
relative	 to	 the	 time	between	 records	of	 the	 same	 animal	within	 a	
passage	through	the	FOV,	the	effect	should	become	small	or	even	
negligible;	 this	 is	 not	 the	 case	 where	 only	 single	 images	 or	 short	
bursts	are	recorded	each	time	the	sensor	is	triggered.

Both	camera	recovery	time	and	retrigger	delay	influence	effective	
survey	effort.	When	using	CTDS,	 cameras	will	not	 record	during	all	
predefined	snapshot	moments	when	animals	are	present	in	the	FOV	
due	to	these	two	effects.	If	not	taken	into	account,	temporal	survey	
effort	will	be	overestimated.	Consequently,	the	temporal	effort	term	
(T/t)	that	expresses	the	number	of	snapshot	moments	during	a	survey	
as	defined	by	Howe	et	al.,	2017	requires	adaption.	t	can	no	longer	be	
defined	as	the	time	interval	between	predefined	snapshot	moments	
but	needs	to	be	redefined	as	the	‘mean	time	interval	between	triggers’	
to	take	the	extended	time	between	consecutive	camera	trap	images	
into	account.	Previous	studies	have	suggested	to	derive	t	from	exper-
imentally	tested	camera	recovery	time,	that	is	by	human	movement	in	
front	of	a	set	of	cameras	and	defining	t	as	the	minimum	time	interval	
between	triggers	(e.g.	Corlatti	et	al.,	2020;	Harris	et	al.,	2020).

Here,	we	propose	a	different	approach	to	avoid	negative	bias	 in	
CTDS	estimates	of	animal	abundance	when	cameras	are	programmed	
to	record	single	images	or	short	bursts	following	the	triggering	of	a	PIR	
motion	sensor,	as	opposed	to	 long	bursts	or	videos	when	triggered,	
or	on	time-lapse	mode.	Rather	than	simply	selecting	the	time	interval	
between	 predetermined	 snapshot	moments	when	 distances	 to	 ani-
mals	are	determined	(parameter	t	in	the	CTDS	formula	for	estimating	
density;	Equations 2–4	below),	as	recommended	by	Howe	et	al.	(2017)	
when	recording	video,	we	estimate	(t)	as	a	function	of	mean	camera	
recovery	time	and	mean	retrigger	delay.	We	apply	the	approach	to	sur-
vey	data	on	wild	boar	 (Sus scrofa),	 red	 (Cervus elaphus)	 and	 roe	deer	
(Capreolus capreolus)	and	show	that	careful	truncation	of	interval	data	
is	 critical	 to	 avoid	 contamination	of	 the	 time	 interval	distribution	of	
the	same	animals	by	detections	of	different	animals	or	animal	groups	

arriving	in	a	camera's	FOV	that	are	not	relevant.	We	show	that	negative	
bias	in	estimated	abundance	can	be	large,	if	camera	recovery	times	and	
retrigger	delays	are	not	accounted	for.

2  |  MATERIAL S AND METHODS

2.1  |  The point transect model

In	conventional	point	transect	distance	sampling,	a	human	observer	
makes	observations	in	all	directions	from	the	centre	of	the	transect.	
Radial	distances	to	observed	animals	are	recorded	and	used	to	es-
timate	detection	probability	(p).	The	estimator	of	animal	density	is

where K	is	the	number	of	point	transects,	nk	is	the	number	of	observa-
tions on point transect k, w	is	the	truncation	distance	beyond	which	an-
imal	observation	distances	are	discarded,	p̂	is	the	estimated	detection	
probability	within	w	 (Buckland	et	 al.,	2001).	 This	 conventional	point	
transect	model	has	been	extended	to	accommodate	to	the	use	of	cam-
era traps.

2.2  |  The CTDS model

The	CTDS	model	is	simply	a	modified	point	transect	distance	sam-
pling	model:

where K	is	the	number	of	camera	trap	locations,	nk	is	the	number	of	
animal	 observations	 at	 camera	 location	k, w	 is	 the	 truncation	 dis-
tance	beyond	which	animal	observation	distances	are	discarded,	P̂k 
is	the	estimated	detection	probability	within	w	at	location	k, and ek 
is	sampling	effort	at	 location	k	 (for	conventional	distance	sampling	
with	human	observers	ek	is	simply	the	number	of	visits	to	the	point;	
Buckland	et	al.,	2001, 2004).	The	estimate	of	the	proportion	of	time	
spent	active	per	day	 Â	is	required	to	account	for	periods	when	an-
imals	 are	 not	 available	 for	 detection.	 For	CTDS	 the	 effort	 term	 is	
redefined	to	include	two	major	differences.	First,	a	camera	trap	does	
not	cover	a	full	circle,	as	 is	the	case	with	human	observers	in	con-
ventional	point	 transect	distance	sampling.	 Instead,	a	camera	 trap	
covers	only	 a	 fraction,	 frequently	with	 an	opening	 angle	between	
30	and	50°.	Second,	the	number	of	visits	by	a	human	in	conventional	
point	transect	distance	sampling	is	replaced	by	‘snapshot	moments’.	
Snapshot	 moments	 are	 the	 times	 when	 animal	 observations	 and	
their	distances	 from	the	camera	are	 recorded.	More	specifically,	a	
1-min	video	clip	recorded	by	a	camera	trap	with	20–30	frames	per	
second	has	about	1200–1800	frames.	Not	all	of	these	are	taken	for	
analyses,	as	 this	would	be	 too	 time-consuming	and	would	provide	
no	 additional	 information	 compared	 to	 a	 reduced	 data	 set	 of,	 for	
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example	one	observation	every	2–3 s.	Howe	et	al.	(2017)	formulated	
the	CTDS	model	to	accommodate	data	from	camera	traps	by	rede-
fining	the	effort	term	as:

where θ	is	the	horizontal	angle	of	view	of	the	camera	in	radians	(such	
that �

2�
	describes	the	fraction	of	a	circle	monitored),	Tk	is	the	duration	

a	 camera	 trap	 is	 deployed	 at	 location	k, and t	 is	 the	 time	 interval	
between	predefined	snapshot	moments	when	camera-to-animal	dis-
tances	are	measured,	such	that	Tk

t
	quantifies	the	number	of	opportu-

nities	in	time	to	detect	animals	in	the	FOVs	of	cameras.	Substituting	
this	formula	for	ek	into	the	above	equation	yields:

For	 PIR	 motion	 sensor-based	 video	 recording	 and	 time-lapse	
photography,	t	is	known	and	at	the	discretion	of	researchers;	Howe	
et	al.	(2017)	suggested	setting	t	to	0.25–3 s	when	recording	video	to	
avoid	positive	bias	in	observed	distances	for	large	values	of	t and to 
balance	sample	size	and	precision	versus	data	processing	effort.	In	
order	to	represent	animal	movement	well,	t	needs	to	be	small	enough	
to	record	representative	positions	of	the	animal	path	throughout	a	
passage	through	the	FOV	(Howe	et	al.,	2017).	It	is	important	to	note	
that t	defines	the	 interval	between	predefined	snapshot	moments	
independent	of	animal	observations.	More	specifically,	the	onset	of	
snapshot	moments	 is	 not	 defined	 based	 on,	 for	 example	 the	 first	
observation,	 but	 as	 specific	 times	of	 day.	When	 cameras	 are	 pro-
grammed	to	record	single	images	or	short	bursts	when	triggered,	t 
cannot	be	defined	as	proposed	by	Howe	et	al.	(2017).	One	reason	is	
that	many	observations	would	not	predefined	snapshot	moments,	
but	 in-between.	A	second	complication	with	 trigger-based	 record-
ing	of	still	images	is	that	intervals	are	highly	variable	when	cameras	
record	animals,	 depending	on	camera	hardware	and	movement	of	
animals,	due	 to	unknown	and	variable	 camera	 recovery	 times	and	
retrigger	delays.	To	address	these	issues	previous	studies	have	used,	
for	example	the	minimum	interval	between	retriggers	tested	in	ex-
perimental	setups	to	derive	a	value	for	t	 (e.g.	Corlatti	et	al.,	2020; 
Harris	et	al.,	2020).	Here,	we	propose	to	estimate	this	parameter	and	
thus	the	realised	temporal	effort	of	the	CTDS	survey,	from	combined	
estimates	of	mean	camera	recovery	time	and	mean	retrigger	delays	
derived	from	time	interval	distributions	of	consecutive	pictures.

2.3  |  Estimating t

A	direct	approach	 to	estimating	 t	would	be	 to	examine	consecutive	
images,	 determine	 whether	 successive	 detections	 are	 of	 the	 same	
individual	and	simply	take	the	sample	mean	of	the	intervals	between	
successive	detections.	However,	this	requires	a	lot	of	time	and	effort	
to	track	an	individual	within	one	passage	through	the	field	of	view	and	
to	record	the	 intervals	within	such	a	series.	By	contrast,	a	statistical	

approach	to	derive	non-observation	times	(hereby	referred	to	as	‘mean	
time	intervals	between	triggers’)	from	time	interval	distribution	data	
gives	results	very	quickly.	As	time	interval	data	are	a	mixture	of	times	
between	 consecutive	 pictures	 of	 the	 passage	 of	 the	 same	 animal	
through	the	FOV	(mostly	short	intervals)	and	detections	of	other	indi-
viduals	(includes	longer	intervals),	we	first	need	to	truncate	our	data.	
This	 is	meant	 to	 remove	 the	 longer	 time	 intervals	 that	mainly	 stem	
from	images	of	different	animals	entering	the	FOV	at	different	times	
and	gaps	that	can	be	explained	by	an	animal	not	being	visible,	for	ex-
ample	behind	vegetation,	which	do	not	need	to	be	considered	here.

We	truncate	times	between	successive	triggers	of	the	camera	at	T 
so	that	we	only	analyse	time	intervals	t	for	which	t ≤ T.	We	can	write

where r	is	the	camera	recovery	time	after	triggering,	v	is	the	time	until	
the	animal	retriggers	the	camera	after	recovery,	and	T	denotes	trunca-
tion	time	and	is	not	related	to	Tk	above.	We	do	not	observe	values	of	
r > T	or	values	of	v > T − r.

We	 assume	 that	 the	 camera	 recovery	 time	 r	 has	 a	 truncated	
gamma	distribution

where λ > 0	is	the	rate	and	α > 0	is	the	shape	parameter.	The	gamma	
distribution	is	suitable	for	modelling	camera	recovery	times,	as	times	
are	 constrained	 to	 be	 positive,	with	most	 times	 clustering	 around	
the	mean	of	the	distribution,	but	with	some	shorter	and	some	longer	
times.	While	the	normal	distribution	also	has	this	latter	property,	it	
does	not	constrain	times	to	be	positive,	and	unlike	the	gamma	dis-
tribution,	it	does	not	have	a	shape	parameter,	and	therefore	it	is	less	
flexible.

For	retrigger	delay	v,	we	assume	an	exponential	distribution

where μ > 0	is	the	rate	parameter.	The	rate	�	might	be	modelled	as	a	
function	of	distance	from	the	camera	and,	where	relevant,	group	size.

If	the	observed	times	truncated	at	T are ti , i = 1, … , n, then the 
likelihood	function	is:

where ft(t)	is	the	probability	density	function	of	t = r + v.
We	can	then	estimate	the	mean	time	intervals	between	retrig-

gers	as	the	sum	of	camera	recovery	time	r	and	retriggering	time	v as:

The	full	formulation	is	available	in	Appendix	S1.

2.4  |  Implementation with real data

In	 our	 field	 study,	 we	 used	 the	 Cuddebback	 C2	 (Green	 Bay,	WI,	
United	 States).	 The	 camera	manual	 suggested	 a	 recovery	 time	 of	

(3)ek =
�Tk
2�t

,

(4)D̂ =
2t

∑K

k=1
nk

��2
∑K

k=1
TkP̂k

1

Â

(5)t = r + v

(6)fr(r) ∼ Gamma(r, 𝛼, 𝜆), 0 < r ≤ T

(7)fv(v) ∼ Exponential (v,𝜇), 0 < v ≤ T − r

(8)L(�, �,�) =

n
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(
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    |  5 of 14KÜHL et al.

ca.	1 s.	To	assess	the	manufacturer-specified	time	interval,	we	con-
ducted	an	experiment,	in	which	we	tested	10	cameras	for	2 min	each	
by	moving	a	hand	up	down	directly	 in	front	of	the	PIR	sensor	and	
then	calculated	mean	camera	recovery	 time	across	and	within	 the	
individual	cameras.

One	 hundred	 eight	 of	 these	 camera	 traps	were	 deployed	 in	 a	
year-round	survey	(May	2018–August	2019)	in	the	Bavarian	Forest	
National	 Park	 and	 in	 a	 part	 of	 the	 neighbouring	 Šumava	National	
Park	 (see	Henrich	 et	 al.,	2022	 for	 details).	 The	 duration	 between	
triggers	was	set	to	the	minimum	(‘FAP’:	fast	as	possible),	and	a	series	
of	 five	photographs	was	 recorded	each	 time	 the	 camera	 trap	was	
triggered,	which	all	get	the	same	time	stamp.

We	used	data	on	red	deer	(Cervus elaphus),	roe	deer	(Capreolus 
capreolus)	 and	 wild	 boar	 (Sus scrofa)	 to	 estimate	 mean	 time	 in-
tervals	 between	 triggers	 from	 pairs	 of	 consecutive	 images.	
Preliminary	 exploration	 of	 the	 data	 suggested	 that	 all	 species	
showed	behavioural	responses	to	camera	traps,	although	to	a	dif-
ferent	degree.

Three	 different	 (sub-)sets	 of	 the	 data	 set	 were	 used:	 (1)	 the	
whole	data	 set	 for	which	we	assumed	 that	all	photographs	with	a	
time	difference	of	less	than	5 min	to	each	other	could	be	ascribed	to	
the	same	group	of	animals,	creating	an	‘independent	event’	(Henrich	
et al., 2022)	 (referred	to	as	 ‘full	dataset’).	We	tested	the	 influence	
of	 different	 time	 interval	 thresholds	 for	 the	definition	of	 an	 inde-
pendent	event	on	the	resulting	number	of	events	and	found	stable	
results	for	thresholds	between	5	and	60 min	 (Henrich	et	al.,	2022, 
Figure S1).	(2)	Additionally,	we	randomly	sampled	120	events	with	at	
least	two	photo	series	per	species	from	the	data	set	and	randomly	
selected	two	consecutive	photo	series	from	within	these	events	(re-
ferred	to	as	‘events	checked	dataset’).	The	first	100	sampled	pairs	of	
photo	series	of	each	species	were	manually	checked	to	make	sure	
that	they	showed	the	same	 individuals	that	did	not	 leave	the	FOV	
between	photo	series	with	a	high	probability	(based	on	body	char-
acteristics	and	the	movement	path	of	the	animals	across	the	FOV).	
For	both	red	deer	and	roe	deer,	15	events	were	excluded	because	
these	criteria	were	not	met,	while	this	was	the	case	for	35	events	in	
wild	boar.	These	events	were	replaced	by	consecutive	pairs	of	photo	
series	from	the	remaining	20	events	of	each	random	sample.	(3)	The	
data	set	was	 further	 reduced	 to	observations	within	a	distance	of	
7.5 m,	for	which	a	sample	size	of	50	events	was	randomly	selected	
from	the	appropriate	subset	of	events	for	each	species.	A	post	was	
placed	at	a	distance	of	7.5 m	from	the	camera	trap	at	each	camera	
trap	 location,	allowing	an	easy	assignment	of	animals	 to	distances	
below	or	above	that	threshold	(referred	to	as	‘within	7.5 m	dataset’).	
The	proposed	statistical	approach	to	derive	the	mean	time	interval	
between	triggers	was	only	applied	 to	 the	 full	data	set.	Empirically	
derived	estimates	of	the	mean	time	interval	between	triggers	were	
calculated	for	all	three	datasets.

We	tested	the	 influence	of	different	truncation	times	T on the 
estimated	mean	time	interval	between	triggers	in	the	range	of	15.5–
40.5 s.	To	explore	potentially	more	objective	choices	for	selecting	T, 
we	also	assessed	two	other	truncation	times	when	calculating	T	em-
pirically.	First,	we	selected	T	as	the	value	corresponding	to	the	third	

quartile	of	the	data.	Second,	we	set	T	to	the	value	corresponding	to	
50%	of	the	area	under	the	curve	of	the	histogram	of	time	intervals	
between	pairs	of	 consecutive	 images.	For	doing	 this,	we	used	 the	
function	 ‘smooth.	spline’	 in	R	and	set	 the	smoothing	parameter	 to	
0.1.	We	then	used	the	function	 ‘integrate’	to	derive	the	value	that	
corresponded	to	50%	of	the	area	under	the	curve.

Last,	we	calculated	the	extent	to	which	density	D	would	be	un-
derestimated,	 when	 not	 accounting	 for	 reduced	 temporal	 survey	
effort	 due	 to	 longer-than-expected	 mean	 time	 intervals	 between	
triggers.	 Reference	 estimates	 for	 summer	 (June–August	 2018),	
autumn	 (September–November	 2018),	 winter	 (December	 2018–
February	2019)	and	spring	(March–May	2019)	were	derived	from	a	
CTDS	analysis	applied	to	the	full	data	set,	using	the	first	photograph	
of	each	photo	series	as	a	snapshot	moment.	For	 red	deer	and	roe	
deer,	they	are	equivalent	to	those	presented	in	Henrich	et	al.	(2022).	
For	wild	 boar,	 the	 parameters	were	 derived	 in	 the	 same	way.	We	
repeated	the	same	analyses,	but	set	 t̂ 	to	2,	6	and	9 s	to	represent	the	
manufacturer	specified	recovery	time,	as	well	as	the	minimum	time	
interval	and	the	mean	time	interval	between	triggers	as	derived	in	
the	experimental	setting.	In	addition,	we	filtered	the	data	set	to	pre-
defined	snapshot	intervals	t = 2 s,	t = 6 s	and	t = 9 s,	decreasing	nk and 
affecting	the	estimate	of	the	time	spent	active	per	day	before	recal-
culating	 the	 population	 density	with	CTDS	 to	 assess	 biases	when	
using	the	snapshot	approach.

We	assumed	a	common	camera	recovery	time	model,	and	spe-
cies-specific	retrigger	delay	models	due	to	different	movement	be-
haviours	among	species.	Assumed	prior	distributions	are	presented	
in Table 1.	A	Metropolis-Hastings	algorithm	was	used	with	10,000	
iterations,	including	a	burn-in	period	of	4000	iterations.

3  |  RESULTS

When	 the	 time	 interval	 between	 photo	 series	was	 tested	 experi-
mentally,	the	mean	was	8.82 s	across	10	camera	traps	with	a	range	
between	6.3	and	43.6 s	across	cameras	(Table S1).

The	sample	sizes	of	time	intervals	between	consecutive	pictures	
were	2024,	5872	and	815	for	wild	boar,	red	deer	and	roe	deer,	re-
spectively.	The	 time	 interval	distributions	 for	 all	 three	 species	are	
similar	with	a	peak	around	10 s	and	a	long	tail	(Figure 1).	Subsets	of	
the	data	(n = 100)	including	only	intervals	between	pictures	with	the	

TA B L E  1 Prior	distributions	for	the	shape	parameter	α and rate 
λ	of	the	truncated	Gamma	distribution,	and	the	species-specific	
rates μ1, μ2, μ3	(corresponding	to	red	deer,	roe	deer	and	wild	boar,	
respectively)	for	the	exponential	distribution.

Parameter Prior distribution

α lognormal(log(40),	1.0)

λ lognormal(log(4.5),	1.0)

�1 lognormal(log(0.4),	1.0)

�2 lognormal(log(0.4),	1.0)

�3 lognormal(log(0.4),	1.0)
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6 of 14  |     KÜHL et al.

same	animals	(data	set	2)	show	the	same	distribution	pattern	as	the	
full	data	set	(data	set	1),	but	with	a	considerably	reduced	tail.	When	
filtering	 for	 intervals	between	consecutive	pictures	with	 the	same	
animals	(n = 50)	that	are	within	7.5 m	to	the	camera	(data	set	3),	the	
time	interval	distribution	does	not	change.

Mean	 time	 intervals	 between	 triggers	 were	 similar	 regard-
less	of	whether	they	were	estimated	from	the	full	or	the	reduced	
data	sets,	but	differed	with	truncation	time	T	 (Table 2, Figure 2).	

Exemplified	 by	 setting	T	 to	 the	 3rd	 quartile	 of	 the	 time	 interval	
data,	 estimates	 for	 the	 different	 data	 sets	were	within	 less	 than	
1.5 s	for	each	species	and	data	set,	with	the	exception	of	the	full	
data	set	for	wild	boar	which	differed	by	a	maximum	of	1.96 s	rela-
tive	to	the	other	two	data	sets.	Setting	T	to	the	value	representing	
50%	of	the	area	under	the	histogram	curve	(Figure S1)	results	were	
very	similar	with	13.21,	12.55	and	12.6 s	for	red	deer,	roe	deer	and	
wild	boar,	respectively.

F I G U R E  1 Time	interval	distributions	between	retriggers	for	the	three	species	(red	deer,	roe	deer,	wild	boar)	for	the	full	data	sets	(above),	
subsets	(n = 100),	including	only	intervals	between	pictures	with	the	same	animals	(middle,	n = 100)	and	subsets	including	additionally	only	
those	intervals	for	which	animals	were	at	short	observation	distances	(bottom,		n = 50).	The	vertical	red	line	indicates	the	3rd	quartile	of	the	
time	interval	distribution	data.
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    |  7 of 14KÜHL et al.

When	comparing	the	empirically	derived	mean	time	intervals	be-
tween	triggers	with	estimates	based	on	the	above	formulated	model	
for	a	range	of	truncation	times	T	(15.5,	20.5,	25.5,	30.5	and	40.5 s)	
results	were	very	similar	between	both	approaches	(Tables 2 and 3, 
Figure 3, trace plots in Figures S2–S7).

However,	estimation	of	t	is	sensitive	to	the	choice	of	truncation	
time	 T.	 Estimates	 of	 mean	 camera	 recovery	 time	 r decrease as T 
increases	 (Table 3).	 Estimation	of	mean	 retrigger	delay	v once the 
camera	has	recovered	is	even	more	sensitive	to	the	choice	of	T and 
increases as T	increases.	Overall,	estimated	t	seems	to	be	less	sensi-
tive to T	than	either	estimated	r	or	estimated	v.	Sensitivity	is	greatest	
for	smaller	choices	of	T.

The	retrigger	delay	v	differs	among	species	and	is	estimated	to	
be	longest	for	red	deer,	followed	by	wild	boar	and	roe	deer	(Table 3).	
This	is	similar,	when	comparing	time	intervals	between	consecutive	
pictures	between	red	and	roe	deer	within	camera	 locations.	Here,	
time	intervals	were	longer	for	red	deer	in	65%	of	all	cases,	suggest-
ing	behavioural	differences	between	the	species	(Figure S8).

Estimates	of	t	seem	to	asymptote	already	at	values	of	T	below	
50 s	 (Figure 3),	 reflecting	 the	 increasing	gaps	of	 time	 interval	data	
between	consecutive	pictures	with	increasing	values	of	T	(Figure 1).	
However,	 with	 single,	 large	 values	 of	 time	 intervals	 between	

consecutive	pictures,	estimates	of	t	then	continue	to	increase	with	
increasing	values	of	T	and	only	show	clear	asymptotic	values	of	t at 
very	large	T	(Figure 1, Figure S8).

As	density	scales	directly	with	the	mean	time	interval	between	
triggers,	the	correct	representation	of	t	has	a	major	influence	on	the	
potential	bias	of	estimates	(Figure 4, Table S2).	Using	the	experimen-
tally	derived	mean	across	camera	traps	(rounded	to	9 s)	and	lowest	
camera	specific	mean	(6 s),	population	densities	are	underestimated	
by	18%–30%	and	45%–53%,	respectively.

This	negative	bias	gets	even	stronger	when	analysing	data	with	
a	snapshot	approach,	as	a	large	proportion	of	data	does	not	overlap	
with	the	predefined	snapshot	moments	(Figure S9),	leading	to	an	un-
derestimation	of	87%–96%	irrespective	of	the	choice	of	t	(Table S2).

4  |  DISCUSSION

Camera	trap	surveys	with	PIR	motion	sensor-based	recording	of	sin-
gle	pictures	or	short	bursts	require	the	correct	estimation	of	mean	
time	intervals	between	triggers.	When	animals	are	present	in	the	de-
tection	zone,	but	are	not	recorded,	effective	survey	duration	is	over-
estimated	and	estimation	of	density	and	abundance	is	downwardly	

TA B L E  2 Mean	time	intervals	between	consecutive	triggers	for	red	deer,	roe	deer	and	wild	boar	for	the	three	different	data	sets.

Species Truncation time T [s]

Mean time intervals between triggers [s]

(1) Full data set
(2) Manually checked, same 
animals

(3) Manually checked, same 
animals and within 7.5 m

Red deer 3rd	quartile 12.45	(4.36)	[25 s] 12.96	(4.15)	[23.5 s] 13.29	(5.12)	[25 s]

15.5 10.5	(2.07) 11.04	(2.51) 10.79	(2.69)

20.5 11.56	(3.23) 12.17	(3.3) 11.76	(3.41)

25.5 12.45	(4.36) 13.27	(4.53) 13.29	(5.12)

30.5 13.32	(5.53) 14.5	(5.97) 14.67	(6.5)

40.5 14.65	(7.5) 15.41	(7.21) 15.05	(6.89)

None 26.74	(37.02) 24.87	(31.13) 24.36	(25.19)

Roe deer 3rd	quartile 11.33	(4.74)	[23 s] 11.6	(4.78)	[23 s] 11.61	(4.02)	[23 s]

15.5 9.58	(2.93) 9.88	(2.7) 10.24	(1.87)

20.5 10.47	(3.81) 10.39	(3.35) 10.97	(3.05)

25.5 11.54	(4.99) 11.92	(5.14) 11.92	(4.44)

30.5 12.15	(5.8) 12.55	(5.99) 12.38	(5.23)

40.5 13.22	(7.47) 13.82	(7.79) 14.36	(8.1)

None 27.32	(40.5) 25.48	(35.77) 25.2	(36.2)

Wild	boar 3rd	quartile 12.14	(4.81)	[27 s] 10.72	(2.42)	[17.25 s] 10.03	(1.62)	[14 s]

15.5 10.07	(2.18) 10.33	(1.99) 10.28	(1.92)

20.5 11.05	(3.29) 10.82	(2.55) 10.55	(2.24)

25.5 11.78	(4.29) 11.09	(3.04) 10.79	(2.73)

30.5 12.64	(5.55) 11.54	(4.11) 11.6	(4.64)

40.5 13.87	(7.45) 12.34	(5.81) 12.15	(5.92)

None 30.13	(44.2) 25.68	(36.32) 19.06	(31.96)

Note:	Standard	deviations	are	shown	in	parentheses.	The	truncation	time	T	of	the	respective	data	set,	corresponding	to	the	3rd	quartile	of	the	raw	
time	difference	between	consecutive	photographs	within	the	same	event	is	shown	in	square	brackets.
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8 of 14  |     KÜHL et al.

F I G U R E  2 Comparison	of	mean	time	intervals	between	triggers	for	the	three	data	sets	and	species	with	truncation	time	set	to	the	3rd	
quartile	of	the	full	data	set	(above:	no	truncation	of	datapoints;	below:	truncation	of	datapoints	for	better	visibility	of	differences	in	mean	
time	intervals	between	triggers).
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    |  9 of 14KÜHL et al.

biased.	Clearly,	this	effect	depends	on	the	species	studied,	habitat,	
camera	models	and	deployment	method.	Previous	studies	have	sug-
gested	to	derive	the	mean	time	interval	between	triggers	from	ex-
perimental	testing	of	cameras,	for	example	using	minimum	retrigger	

time.	Our	statistical	approach	offers	a	possibility	to	estimate	mean	
time	 intervals	between	triggers	from	the	time	 interval	distribution	
of	 consecutive	 camera	 trap	pictures.	As	observed	 in	 the	 field,	 es-
timated	mean	time	intervals	between	triggers	exceed	the	recovery	

Ê(r) Species Ê(v) Ê(t) 95% CI

T = 15.5

9.56	(0.08) Red deer 1.17	(0.10) 10.74	(0.06) 10.63, 10.85

Roe deer 0.30	(0.08) 9.86	(0.09) 9.69,	10.04

Wild	boar 0.64	(0.08) 10.20	(0.07) 10.06,	10.34

T = 20.5

8.26	(0.09) Red deer 4.12	(0.18) 12.38	(0.13) 12.15, 12.65

Roe deer 2.73	(0.20) 10.99	(0.18) 10.65, 11.35

Wild	boar 3.08	(0.16) 11.33	(0.13) 11.09, 11.60

T = 25.5

7.94	(0.06) Red deer 5.37	(0.16) 13.31	(0.14) 13.05, 13.58

Roe deer 3.64	(0.22) 11.58	(0.21) 11.19, 12.00

Wild	boar 4.10	(0.15) 12.04	(0.14) 11.78, 12.32

T = 30.5

7.69	(0.06) Red deer 6.50	(0.17) 14.19	(0.15) 13.91,	14.52

Roe deer 4.43	(0.23) 12.12	(0.22) 11.70, 12.57

Wild	boar 5.31	(0.19) 13.00	(0.18) 12.67, 13.37

T = 40.5

7.46	(0.06) Red deer 7.85	(0.17) 15.31	(0.15) 13.91,	14.52

Roe deer 5.47	(0.27) 12.93	(0.26) 11.70, 12.57

Wild	boar 6.72	(0.19) 14.18	(0.19) 12.67, 13.37

TA B L E  3 Estimates	of	mean	camera	
recovery	time	Ê(r),	mean	retrigger	delay	
Ê(v)	and	mean	interval	Ê(t)	(standard	
errors	in	parentheses)	for	truncation	
values	of	T = 15.5,	20.5,	25.5,	30.5	and	
40.5 s.	Also	shown	are	95%	credible	
intervals	for	mean	interval.

F I G U R E  3 Mean	time	intervals	between	triggers	as	a	function	of	truncation	time	for	the	three	data	sets	(a—full,	b—events	checked,	c—
only	distances	up	to	7.5 m)	and	the	model-based	estimates	(d).	The	vertical	lines	indicate	the	3rd	quartile	of	the	time	interval	data	for	the	
three species.
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time	 specified	 by	 the	 manufacturer	 and	 are	 also	 longer	 than	 ex-
perimentally	derived	intervals,	since	animals	available	for	detection	
within	the	FOV	do	not	constantly	move	and	thus	do	not	immediately	
retrigger	the	camera.

The	 proposed	 approach	 is	 more	 time-effective,	 once	 pro-
grammed,	 compared	with	manual	processing	of	data	 that	 requires	
filtering	for	a	‘clean’	subset	containing	only	intervals	between	con-
secutive	pictures	with	the	same	animal	for	deriving	the	mean	time	
intervals	between	triggers.	This	is	particularly	the	case	in	multi-spe-
cies	surveys,	when	different	species	show	different	behaviours	that	
cause	 the	mean	 time	 interval	 between	 triggers	 to	 be	 longer	 than	
camera	recovery	time.	The	tracking	of	individuals	across	photo	se-
ries	and	data	processing	would	be	very	demanding.	As	density	scales	
directly	with	t	(Equations 2 and 4)	in	the	CTDS	model	formulation,	
it	is	essential	to	derive	effective	survey	duration	with	sufficient	ac-
curacy	 to	 avoid	 downwardly	 biased	 estimates	 of	 density.	 Thus,	 in	
CTDS	surveys	that	use	PIR	motion	sensor-based	recording	of	single	
pictures	or	short	bursts,	the	parameter	t	originally	defined	as	a	pre-
determined	snapshot	interval,	needs	to	be	replaced	by	the	estimated	
mean	time	interval	between	triggers.

4.1  |  Trade-offs in defining truncation times

Estimation	 of	 the	 mean	 time	 interval	 between	 triggers	 is	 clearly	
sensitive	to	the	choice	of	truncation	time	T.	This	 is	partly	because	
observations	of	the	same	animal	are	increasingly	mixed	with	obser-
vations	of	different	animals	when	T	gets	larger.	It	is	also	possible	that	
the	same	individual	leaves	and	returns	to	a	site,	causing	longer	time	
intervals	between	subsequent	 triggers.	 In	addition,	 an	animal	may	
be	 in	 the	 field	of	view,	but	shortly	not	visible,	 for	example	due	 to	
vegetation	cover.	This	is	indistinguishable	from	situations	where	ani-
mals	remain	stationary	in	the	FOV	and	do	not	trigger	the	camera	for	
a	while.	Whereas	the	latter	contributes	to	the	mean	time	intervals	
between	triggers,	the	former	does	not.

For	our	 cleaned	data	 set	 (events	 checked	data	 set),	we	had	 to	
remove	15	events	for	red	and	roe	deer	and	35	for	wild	boar,	as	they	

contained	 different	 individuals	 in	 consecutive	 picture	 series.	 This	
result	 suggests	 that	 truncation	 time	T cannot extend over several 
minutes	to	avoid	contamination	of	the	time	interval	distribution	be-
tween	consecutive	pictures.	This	will,	however,	certainly	differ	be-
tween	 species,	 their	 densities	 and	habitats.	 If	 the	 chosen	T is too 
large	and	includes	a	high	proportion	of	time	intervals	between	con-
secutive	pictures	with	different	individuals,	the	mean	time	interval	
between	triggers	will	be	biased	upwards.

Although	 it	 would	 require	 additional	 cameras	 at	 a	 location	 to	
prove	with	certainty	that	an	animal	has	left	a	spot	and	returned	to	it	
some	time	later,	we	found	that	leaving	and	returning	likely	contrib-
utes	to	longer	estimated	mean	time	intervals	between	triggers.	By	
comparing	 pairs	 of	 consecutive	 images,	we	 could	 not	 exclude	 the	
possibility	that	in	4%,	7%	and	11%	of	image	pairs	red	deer,	roe	deer	
and	wild	boar	left	and	returned	to	the	FOV	within	short	time	peri-
ods.	 Filtering	 those	 image	pairs	would	 lead	 to	 a	 reduction	 in	 esti-
mated	mean	time	intervals	between	triggers	with	the	exception	of	
wild	boar	(red	deer:	12.02/12.96,	roe	deer:	10.42/11.06,	wild	boar:	
11.6/10.42).

In	our	study,	a	T	around	15	s	seems	to	be	insufficient	to	estimate	
the	rate	of	the	exponential	distribution	separately	from	fitting	the	
gamma	distribution,	 even	 though	 the	 precision	 of	 the	model	 esti-
mates	 is	high.	The	trace	plots	 improve	as	T	 increases,	perhaps	be-
cause	of	strong	correlations	between	parameters	when	truncation	
is	too	severe	(and	λ	are	highly	correlated,	but	no	other	correlations	
are	close	 to	one).	To	give	more	 information	 for	estimating	 the	ex-
ponential	 rate,	we	 need	 to	 take	 a	 larger	 value	 of	T.	However,	 the	
larger	the	value	we	choose,	the	greater	the	risk	of	contaminating	the	
time	 interval	 distribution	 by	 including	 new	 animals	 or	 leaving	 and	
returning	animals.	This	has	the	effect	of	widening	the	tail	of	the	ex-
ponential	distribution,	which	increases	the	estimated	mean	retrigger	
delay.	The	choice	of	T	is	therefore	a	compromise	and	requires	careful	
consideration.

In	principle,	estimates	of	the	mean	time	intervals	between	trig-
gers	must	show	asymptotic	values	with	increasing	T. This is also what 
we	found	 in	our	study.	However,	as	we	 likely	did	not	have	a	 ‘fully	
clean’	data	set	with	only	pairs	of	the	 individuals	that	did	not	 leave	

F I G U R E  4 Population	density	estimates	with	CTDS	for	data	sets	of	PIR	sensor-triggered	photographs	of	red	deer,	roe	deer	and	wild	boar.	
The snapshot intervals t	was	calculated	for	the	reference	estimates	by	truncating	the	intervals	between	detections	within	independent	
events	(consisting	of	photographs	with	a	time	difference	in	<5 min	to	each	other)	at	the	third	quartile	and	computing	the	mean	between	
successive	triggers.	In	the	other	scenarios,	the	workflow	was	the	same,	but	t	was	set	to	a	different	value	(indicated	in	legend	as	t*),	or	the	
whole	data	set	was	subsampled	to	a	predefined	snapshot	interval	t.	Error	bars	indicate	the	95%	confidence	interval.
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the	FOV,	we	consider	the	asymptotic	values	of	t	in	this	study	as	too	
large,	and	we	offer	suggestions	for	choosing	T	below.

4.2  |  Species-specific behavioural differences

Some	 animal	 species	 may	 in	 general	 exhibit	 fewer	 micro-move-
ments	 that	 can	 potentially	 trigger	 a	 PIR	 sensor	 than	 others,	 for	
example	 short	 moments	 where	 an	 animal	 barely	 moves	 during	
foraging.

In	 some	 cases,	 animals	may,	 however,	 also	 freeze	 in	 response	
to	camera	 traps.	 In	our	data	 set,	19%	of	 the	 roe	deer	and	34%	of	
the	red	deer	events	included	some	form	of	behavioural	reaction	to	
the	camera	trap	(Henrich	et	al.,	2022),	as	well	as	16%	of	wild	boar	
events.	Failure	to	account	for	behavioural	responses	to	camera	traps	
can	strongly	bias	estimates	of	animal	density,	when	they	affect	the	
staying	time	or	position	of	animals	in	the	FOV	(Bessone	et	al.,	2020; 
Houa	et	 al.,	2022).	While	behavioural	 responses	 can	be	corrected	
for	when	they	can	be	classified	as	such	(Delisle	et	al.,	2023,	submit-
ted	for	publication),	their	effect	on	the	retrigger	delay	v in data sets 
of	 PIR	 sensor-triggered	 photographs	 cannot	 be	 directly	 observed.	
With	our	proposed	approach	to	estimate	t,	the	effect	of	species-spe-
cific	 reactions	 to	 camera	 traps	on	 this	parameter	 can	however	be	
considered.

4.3  |  Practical considerations and 
implementation effort

Before	 a	 survey	 is	 started,	 a	 series	 of	 experiments	 can	 be	 con-
ducted	with	 the	 camera	 traps	 for	 evaluating	 the	potential	 range	
of	camera	recovery	times.	Camera	recovery	times	likely	not	only	
differ	among	camera	models	(often	specified	between	1	and	10 s,	
e.g.	Palencia	et	al.,	2022)	but	differ	also	considerably	among	cam-
eras	of	the	same	type	and	even	within	the	same	camera	over	time.	
Using	all	or,	if	the	number	of	cameras	to	be	used	is	large,	a	subset	
of	 the	cameras	 for	assessing	variation	 in	 recovery	 time	before	a	
survey	can	deliver	 important	 information.	However,	 factors	 that	
potentially	 influence	 camera	 recovery	 time	 can	 be	manifold,	 in-
cluding	 ambient	 temperature,	 humidity,	 state	 of	 memory,	 writ-
ing	speed	on	memory	cards	and	energy	supply.	As	these	factors	
will	change	during	the	course	of	a	survey,	any	exploration	of	and	
testing	before	a	survey	can	not	replace	the	correct	estimation	of	
survey	 specific	mean	 time	 intervals	 between	 triggers	 across	 the	
used	set	of	cameras	and	under	the	prevailing	field	conditions	upon	
completion	of	the	survey.	Similarly,	these	experiments	should	in-
clude	 the	 testing	of	different	 sensitivity	 settings	of	 the	cameras	
and	 resulting	 impact	 on	 retrigger	 delays.	 Experimental	 testing	
can	 help	 finding	 a	 useful	 setting	 that	 avoids	 both	 excessive	 re-
triggering	of	 cameras	due	 to	overly	 sensitive	 settings	 and	 insuf-
ficient	retriggering	due	to	sensitivity	settings	that	 lead	to	 longer	
delays.	 In	pilot	 studies	prior	 to	 the	start	of	a	 survey,	 it	may	also	
be	 tested,	 whether	 animal	 reactions	 towards	 camera	 traps	 may	

require	 including	 retrigger	delay	v	 in	 the	calculation.	 Ideally,	 this	
is	 tested	 under	 field	 conditions,	where	 some	occlusion	 at	 larger	
distances	may	 occur	 due	 to	 vegetation.	Distance-dependent	 re-
trigger	times	would	require	 limiting	estimation	of	 the	mean	time	
intervals	between	triggers	of	the	camera	traps	to	short	distances	
to	avoid	 interference	with	reduced	detection	probability	at	 large	
distances	when	estimating	animal	abundance	 (i.e.	 the	estimation	
of	detection	probability	as	a	function	of	distance).	If	it	is	clear,	for	
example	 from	 prior	 surveys	 that	 there	 are	 no	 behavioural	 reac-
tions	of	animals	to	cameras,	retrigger	delays	from	natural	behav-
iour	 are	 negligible	 and	 experimentally	 derived	 camera	 recovery	
time	shows	little	variation	under	different	conditions,	it	should	be	
sufficient	to	just	use	the	experimentally	derived	value	for	t.

While	we	consider	it	as	appropriate	to	model	the	mean	time	in-
terval	between	triggers	with	a	common	camera	recovery	time	when	
estimating	overall	density	and	abundance	for	a	survey,	this	may	re-
quire	a	different	approach	when	making	local	scale	predictions	for	
spatial	models.	If	differences	in	camera	recovery	time	are	large,	lo-
cation-specific	estimates	for	camera	recovery	time	may	be	needed	
to	avoid	biases	in	predictions.

After	a	survey	has	been	completed,	the	time	interval	data	should	
be	manually	 inspected	for	each	species.	This	 is	needed	to	select	a	
suitable	 truncation	 time	T,	which	may	differ	between	species.	For	
comparison	 with	 the	 statistical	 estimator	 of	 mean	 time	 intervals	
between	 triggers	 Ê(t),	 a	 subset	 of	 the	 time	 interval	 data	 between	
consecutive	recordings	should	be	filtered	for	only	those	pictures	be-
longing	to	the	same	animal	to	get	a	‘clean’	time	interval	distribution	
that	 is	not	contaminated	with	time	 intervals	between	pictures	be-
longing	to	different	animals.	This	subset	can	be	further	filtered	to	a	
subset	with	only	short	camera–animal	observation	distances,	as	we	
did	in	our	study.

This	data	 filtering	will	help	 to	 identify	a	meaningful	 truncation	
time	T	that	largely	excludes	time	intervals	between	consecutive	pic-
tures	 showing	different	 animals	but	 keeps	 time	 intervals	between	
consecutive	pictures	of	the	same	individuals	that	stay	in	the	detec-
tion	zone.	Even	for	wild	boar,	where	consecutive	photographs	were	
most	 frequently	 from	different	 individuals	 because	 of	 their	 larger	
group	sizes,	the	differences	between	the	data	sets	were	small	in	our	
case	 study.	 The	 careful	 exploration	 of	 the	 frequency	 distribution	
will	 further	 aid	 in	 the	 identification	 of	 a	 useful	 truncation	 time	T. 
Furthermore,	 the	 repeated	 estimation	 of	mean	 time	 intervals	 be-
tween triggers ̂E(t)	using	different	values	for	T will also help to assess 
whether and when Ê(t)	starts	to	asymptote.

The	use	of	the	3rd	quartile	of	the	time	interval	distribution	be-
tween	consecutive	pictures	or	the	value	at	50%	of	the	area	under	
the	curve,	as	done	in	our	study,	requires	further	investigation.	Our	
justification	for	use	was	solely	based	on	inspection	of	the	frequency	
distribution	 of	 interval	 data	 between	 consecutive	 pictures	 (see	
Section	4.5).

The	effort	to	implement	the	proposed	method	and	to	calculate	
the	 mean	 time	 interval	 between	 retriggers	 is	 minimal.	 Extracting	
the	dates	and	times	from	camera	trap	still	images	can	be	done	auto-
matically.	Running	the	code	provided	with	this	study	will	take	a	few	

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10599 by T

est, W
iley O

nline L
ibrary on [10/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 14  |     KÜHL et al.

minutes	to	hours	per	species,	including	calculation	of	variances,	de-
pending	on	sample	sizes	and	computational	resources.	The	required	
manual	effort	is	only	a	small	fraction	compared	to	other	elements	of	
the	workflow	to	estimate	population	density	of	unmarked	species	
from	camera	trapping	data.

4.4  |  Validation of population density estimates

In	 our	 field	 study,	 true	population	density	 is	 unknown	as	 free-liv-
ing	deer	cannot	be	counted	directly	and	the	rates	of	births,	deaths,	
immigration	 and	emigration	 cannot	be	quantified	 easily.	However,	
estimates	of	the	summer	densities	of	red	deer	could	be	directly	com-
pared	with	 an	 independent	 estimate	 obtained	 by	 spatially	 explicit	
capture–recapture	(SECR)	analyses,	based	on	the	genotyping	of	fae-
ces	sampled	in	the	same	area.	Using	a	mean	time	interval	between	
triggers	 based	on	 setting	T	 to	 the	 third	 quartile	 resulted	 in	CTDS	
estimates	that	were	very	similar	to	the	SECR	estimates,	with	a	high	
overlap	of	the	95%	confidence	intervals	 (Tourani	et	al.,	2023).	The	
same	was	true	for	REM	estimates	obtained	with	the	same	data	set	
and	 GPS	 telemetry-derived	 movement	 speed	 estimates	 (Henrich	
et al., 2022).

4.5  |  Recommendations for future research

The	formal	approach	we	presented	here	is	one	way	towards	including	
non-observation	times	routinely	into	estimating	animal	abundance.	
We	recommend	that	users	of	CTDS	with	trigger-based	recording	of	
images	include	the	proposed	approach	into	their	estimation	of	ani-
mal	abundance,	if	it	cannot	be	excluded	that	animal	behaviour	leads	
to	retrigger	delays.	It	should	be	tested	how	much	animal	abundance	
estimates	change	by	including	our	approach	for	deriving	values	for	t. 
It	would	be	very	useful	to	validate	CTDS	with	trigger-based	record-
ing	of	images	in	populations	of	known	sizes	using	the	proposed	ap-
proach.	This	would	help	to	better	understand	the	magnitude	of	the	
effect	of	non-observation	times	and	the	usefulness	of	the	suggested	
approach	compared	to,	for	example	experimental	testing	of	camera	
recovery	time.

The	absence	of	an	objective	criterion	for	selecting	T leaves also 
potential	for	future	research.	It	would	be	important	to	better	under-
stand	how	longer	time	intervals	between	triggers	are	generated.	It	
is	possible	that	time	intervals,	say	longer	than	40–50 s,	are	primarily	
not	caused	by	non-moving	animals,	but	by	the	same	animals	leaving	
and	returning	to	the	camera	site.	Consequently,	these	time	intervals	
are	not	relevant	for	calculating	mean	time	intervals	between	triggers	
and	 finding	 a	 solution	 to	 discriminate	 between	 the	 two	would	 be	
very	useful.	This	could	be	studied	by	installing	more	than	one	cam-
era	at	a	 location	to	observe	animal	behaviour	and	movement	from	
different	angles.	This	may	also	help	to	understand	when	estimated	
mean	time	intervals	between	triggers	asymptote	as	a	function	of	T. 
Furthermore,	 the	use	of	AI	approaches	 to	 remove	pairs	of	 images	
with	different	individuals	would	help	to	pre-filter	or	classify	data	and	

to	make	more	informed	selections	of	T	and	thus	obtain	more	accu-
rate	estimates	of	t.

It	could	also	be	assessed	whether	 fixing	camera	recovery	 time	
to	the	value	derived	from	an	experimental	setup	and	only	estimat-
ing v	would	help	 in	deriving	mean	time	intervals	between	triggers.	
Similarly,	it	would	be	interesting	to	assess	whetherv is distance de-
pendent	 and	 animals	 at	 larger	 distances	 are	more	 likely	 to	 go	 un-
detected	 because	 stronger	movements	 are	 needed	 to	 trigger	 the	
camera	traps.	Even	if	technological	advancements	of	camera	traps	
potentially	reduce	the	camera	recovery	time	r	to	a	negligible	dura-
tion,	the	issue	of	retrigger	delay	v,	affected	by	non-moving	animals	
within	the	FOV,	will	remain	and	will	need	to	be	considered.

5  |  CONCLUSION

Camera	trap	surveys	relying	on	PIR	motion	sensor-based	record-
ing	 of	 pictures	 have	 to	 deal	with	 non-observation	 times	 caused	
by	camera	 recovery	 times	and	possibly	also	 retrigger	delays	due	
to	non-moving	animals.	The	estimation	of	effective	survey	dura-
tion	is	critical	to	avoid	underestimation	of	animal	density.	The	sug-
gested	 approach	 helps	 estimating	 mean	 time	 intervals	 between	
triggers	without	 time-consuming	manual	 processing	 of	 pictures.	
Our	 findings	 show	 that	 estimated	mean	 time	 intervals	 between	
triggers	are	very	similar	to	empirically	derived	estimates	based	on	
manually	filtered	data	sets.	Nevertheless,	the	suggested	approach	
still	 has	 limitations,	 as	 the	 estimation	 of	 the	mean	 time	 interval	
between	triggers	is	sensitive	to	the	choice	of	the	truncation	time	
of	interval	data.	However,	the	advantages	of	accounting	for	non-
observation	 times	will	 likely	 offset	 potential	 inaccuracies	 in	 the	
estimator	for	reducing	underestimation	of	animal	abundance,	and	
future	development	 should	 lead	 to	 an	 improved	performance	of	
the	estimator.
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