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Abstract. 

 

Additive manufacturing (AM) of electronic materials using digital inkjet printing 

(DIJP) is of research interests nowadays because of its potential benefits in the 

semiconductor industry. Current trends in manufacturing electronics feature DIJP as a 

key technology to enable the production of customised and microscale functional 

devices. However, the fabrication of microelectronic components at large scale 

demands fast printing of tight features with high dimensional accuracy on substrates 

with varied surface topography which push inkjet printing process to its limits. To 

understand the DIJP droplet deposition on such substrates, generally requires 

computational fluid dynamics modelling which is limited in its physics approximation 

of surface interactions. Otherwise, a kind of “trial and error” approach to determining 

how the ink spreads, coalesce and solidifies over the substrate is used, often a very 

time-consuming process. Consequently, this thesis aims to develop new modelling 

techniques to predict fast and accurately the surface morphology of inkjet-printed 

features, enabling the optimisation of DIJP control parameters and the compensation 

of images for better dimensional accuracy of printed electronics devices.  

This investigation explored three categories of modelling techniques to predict the 

surface morphology of inkjet-printed features: physics-based, data-driven and hybrid 

physics-based and data-driven. Two physics-based numerical models were developed 

to reproduce the inkjet printing droplet deposition and solidification processes using a 

lattice Boltzmann (LB) multiphase flow model and a finite element (FE) chemo-

mechanical model, respectively. The LB model was limited to the simulation of single 

tracks and small square films and the FE model was mainly employed for the distortion 

prediction of multilayer objects. Alternatively, two data-driven models were 

implemented to reconstruct the surface morphology of single tracks and free-form 

films using images from experiments: image analysis (IA) and shape from shading 

(SFS). IA assumed volume conservation and minimal energy drop shape to reconstruct 

the surface while SFS resolved the height of the image using a reflection model. 

Finally, a hybrid physics-based and data-driven approach was generated which 

incorporates the uncertainty of droplet landing position and footprint, hydrostatic 

analytical models, empirical correlations derived from experiments, and relationships 

derived from physics-based models to predict fast and accurately any free-form layer 
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pattern as a function of physical properties, printing parameters and wetting 

characteristics. 

Depending on the selection of the modelling technique to predict the deformed 

geometry, further considerations were required. For the purely physics-based and data-

driven models, a surrogate model using response surface equations was employed to 

create a transfer function between printing parameters, substrate wetting 

characteristics and the resulting surface morphology. The development of a transfer 

function significantly decreased the computational time required by purely physics-

based models and enabled the parameter optimisation using a multi-objective genetic 

algorithm approach to attain the best film dimensional accuracy. Additionally, for 

multilayer printing applications, a layer compensation approach was achieved utilizing 

a convolutional neural network trained by the predicted (deformed) geometry to reduce 

the out of plane error to target shape. The optimal combination of printing parameters 

and input image compensation helped with the generation of fine features that are 

traditionally difficult for inkjet, improved resolution of edges and corners by reducing 

the amount of overflow from material, accounted for varied topography and capillary 

effects thereof on the substrate surface and considered the effect of multiple layers 

built up on each other.  

This study revealed for the first time to the best of our knowledge the role of the droplet 

location and footprint diameter uncertainty in the stability and uniformity of printed 

features. Using a droplet overlap map which was proposed as a universal technique to 

assess the effect of printing parameters on pattern geometry, it was shown that reliable 

limits for break-up and bulging of printed features were obtained. Considering droplet 

position and diameter size uncertainties, predicted optimal printing parameters 

improved the quality of printed films on substrates with different wettability. Finally, 

a stability diagram illustrating the onset of bulging and separation for lines and films 

as well as the optimal drop spacing, printing frequency and stand-off distance was 

generated to inform visually the results. 

This investigation has developed a predictive physics-based model of the surface 

morphology of DIJP features on heterogeneous substrates and a methodology to find 

the printing parameters and compensate the layer geometry required for optimum part 

dimensional accuracy. The simplicity of the proposed technique makes it a promising 
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tool for model driven inkjet printing process optimization, including real time process 

control and paves the way for better quality devices in the printed electronics industry. 
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CHAPTER ONE 

 

1 Introduction. 

1.1 Background. 

Current technology trends indicate a growing interest in the development of highly 

integrated printed electronics to a broad range of industries. From healthcare to 

aerospace applications, the demand of thinner electronics and light-weight devices is 

in continuous expansion. Due to the increased development of smart and connected 

devices, the printed electronics worldwide market is projected to grow from 7.8 billion 

in 2020 to 20.7 billion (USD) by 2025 (Markets & Markets, 2020). Among different 

devices, OLEDs, conductive inks in photovoltaic applications and printed organic 

sensors are taking the lead in the market, while smart devices such as RFID tags and 

indicators are expected to spread with the entrance of 5G wireless band. As a result, 

printed electronics is considered one of the fastest growing technologies today. 

As such, AM technologies are steadily evolving to fulfil the printed electronics 

demand by reducing costs and incorporating agile production of overly complex 

products. In particular, inkjet printing has proven to be a flexible and reliable 

manufacturing process for the printed electronics business (Saleh et al., 2017). Inkjet 

printing is an additive manufacturing technology associated with the material jetting 

family, featuring digital design integration, contactless deposition, and minimal 

material waste. The application of this process has made possible the miniaturization 

of various kinds of electronic systems such as multilayer RF capacitors (Cook et al., 

2013), Lab-on-a-Chip microfluidic devices (Su et al., 2016), mm-wave wireless 

systems packaging (Tehrani et al., 2017), OLED displays (Amruth et al., 2019), and 

antennas (Tehrani et al., 2018) in a cost-effective way.  

However, despite of all benefits brought by inkjet printing to the printed electronics 

business, there are still challenges worthy of discussion. Current electronic packaging 

applications demand uniform thickness to ensure adequate protection of critical 

components as well as high resolution of fine features from printed patterns such as 

corners or edges to prevent short circuits and increase printed quality. To achieve 

uniformity and stability of printed films requires fine-tuned inkjet printing parameters 

coupled with adequate physical properties of the ink and compatible substrate 
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wettability characteristics. This demands a trial-and-error approach with validation 

tests, that are often very time-consuming process. Therefore, this work concentrates 

on developing fast and accurate modelling methods to improve the accuracy of printed 

features considering inhomogeneous morphology, substrate capillary effects and 

multiple layers build-up interaction for printed electronics applications. 

 

1.2 Aim and objectives. 

The aim of this thesis is to develop new modelling techniques to predict fast and 

accurately the surface morphology of inkjet-printed features, enabling the optimisation 

of DIJP control parameters and the compensation of images for better dimensional 

accuracy of printed electronics devices. To achieve this, the following objectives are 

required: 

1. Construct a high-fidelity model of the inkjet deposition process. 

• Develop a fundamental understanding of inkjet drop dynamics: impact, 

merging and wetting stages. 

• Predict droplet deposition during inkjet printing of functional dielectric 

materials based on literature survey. 

• Investigate the role of printing parameters and wetting characteristics 

on the feature stability. 

• Assess the capability of the model to simulate any size and pattern 

shape on a timely manner. 

2. Validate high fidelity model. 

• Show model work for different inks and patterns (lines, corners, films) 

on non-porous substrates. 

• Extend validation to account for the morphology of the printed 

structure. 

• Show the effect of multiple layers built up on each other. 

3. Develop and validate a predictive model. 
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• Find the optimal printing parameters that produce a stable film. 

• Create methodology to compensate digital image to print fine features. 

• Validate compensation methodology using complex 2D patterns and 

3D artifacts. 

• Incorporate an active control for the model to adapt towards dynamic 

behaviour of surface chemistry effects. 

 

1.3 Significance and novelty of the research. 

Although inkjet printing has proven to be a reliable and cost-effective method to 

fabricate certain electronics components, the effort to find the optimal parameters to 

obtain a uniform and stable film is still remarkably high. Computational fluid 

dynamics simulations have been extensively employed to build high-fidelity models 

of the inkjet printing processes using both classical and particle-based methods with 

good correlation to experimental data; however, the simulation time to determine drop 

impact and spreading dynamics is significantly high to be used within an optimization 

algorithm, rendering this method impractical. Surrogate models capable of fast 

execution without losing accuracy in the flow field prediction have not been 

thoroughly investigated to the best of our knowledge. Furthermore, evidence from the 

literature review shows that little analytic attention has been paid to the influence of 

substrate morphology on final deposition pattern for 3D inkjet printing applications. 

Finally, studies about error compensation techniques used in additive manufacturing 

technologies are still scarce. There are few articles providing insight of error 

compensation methods for VAT photopolymerisation and material extrusion 

technologies, but no scientific evidence was found for inkjet printing technologies.  

Therefore, the novelty of this research lies in the development of a hybrid physics-

based and data-driven modelling framework to predict and optimise the surface 

morphology of 3D inkjet-printed parts as a function of printing parameters, material 

physical properties and wetting characteristics. After reviewing the literature, this 

framework introduces for the first time to the best of our knowledge the following 

features in a single process: 
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Image Generation App. Produces ready-to-print bitmaps of patterns used in 

electronic packaging applications for any given size and position. Capable of reading 

and slicing STL files providing the desired resolution and layer thickness. 

Prediction App. Simulates the inkjet printing deposition process of the target layer 

pattern given material properties, printing parameters, wetting characteristics, UV 

curing shrinkage and droplet landing location and size uncertainties using an analytical 

model. Based on the initial inputs, creates a printability diagram illustrating if the 

system meets droplet formation and impact requirements and produces a stability 

diagram depicting thresholds for bulging and break-up and optimal values for drop 

spacing, printing frequency and stand-off distance depending on the type of feature 

desired to print such as lines or films. 

Optimisation App. Builds matrix parametric study based on a response surface design 

of experiments to create a surrogate model from the results of high-fidelity 

simulations, shape from shading volume reconstructions or actual measurements of 

printed features. Creates an input file to run the simulations in our lattice Boltzmann 

multiphase flow solver or our finite element chemo-mechanical solver (for lines or 

small square films only) or our PDE shape from shading solver (for any shape but 

constrained to high contrast images). 

Compensation App. Trains a convolutional neural network (CNN) using the x, y and 

z coordinates of the 3D deformed geometry, which results from either our prediction 

models or from actual measurements. By providing the target shape coordinates, the 

CNN calculates the compensation required by the geometry to minimise the error to 

target shape. New geometry is sliced and bitmaps with compensated layer geometry 

are produced. 

Validation App. Provides a set of post-processing tools to compare the results from 

the model predictions or actual measurements against target 2D patterns and 3D 

shapes. For example, allows the calculation of the mean square error (MSE) and mean 

absolute deviation between two surfaces, generates cross-section images at any given 

location of a geometry, overlaps and measures footprints to evaluate dimensional 

accuracy. 
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This investigation is significant since it has contributed to the advancement of the 

understanding of the complex fluid dynamics observed in inkjet printing: Some key 

contributions derived from this research are: 

• An analytical model to predict the material overflow at edges of films 

employing the ratio of momentum diffusivity and capillary diffusion, which 

provides an insightful connection between physical properties, printing 

parameters and wetting behaviour. 

• An analytical model to predict the centroid of the layer thickness utilising the 

ratio of the total volume of ink deposited and the square of the drop spacing, 

which offers a fast and accurate way to estimate the layer thickness assuming 

a spherical cap minimal energy shape. 

• An analytical and experimental methodology to determine the droplet landing 

position and diameter uncertainty inherent to the printer motion system 

accuracy and precision which are critical to predict edge waviness and 

therefore, the optimal values of printing parameters. 

• An analytical and experimental methodology to identify the size and location 

of partial curing in printed films, which provides a way to account for its effects 

in the predicted deformed geometry of layers and 3D printed artifacts. 

• An analytical model to calculate the optimal traverse velocity as a function of 

the ratio between the ejection velocity and the capillary velocity and the contact 

line velocity, which is critical to determine the printing frequency and stand-

off distance required for printing stable tracks and films. 

• A droplet overlap map which provides a fast way to quantify statistically the 

number of defects such as bulges and break ups in tracks and films and helps 

determining a more realistic footprint edge than traditional simulation 

methods. 

• A film stability diagram which illustrates the onset of bulging and separation 

for lines and films as well as the optimal drop spacing, printing frequency and 

stand-off distance considering the uncertainty of the equipment. 
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1.4 Research methodology. 

Based on the objectives outlined, a research framework was proposed to foster the 

integration of predictive physics-based and data driven models with parameter 

optimisation and layer compensation techniques required to improve the dimensional 

accuracy of inkjet-printed parts. As illustrated in Figure 1-1, the framework consists 

of five modules: target shape creation, deformed shape prediction, parameter 

optimisation, shape compensation and model validation. 

The research framework is initiated with the target shape creation module which 

investigates tools to produce bitmap files defining the desired pattern to print. Since 

the intention is to mimic how an actual inkjet printer works, this module enables the 

generation of simple bitmap patterns with desired resolution, size and location and 

ensures that any 3D target shape defined in STL, GBR or TXT format is sliced and 

converted to bitmap files suitable for the printer and prediction models. In addition, 

printing parameters, droplet characteristics, physical properties and wetting behaviour 

are defined and communicated to the prediction module in a “recipe” format. Then, to 

investigate the accuracy and suitability of the selected physics-based and data-driven 

models, a variety of simulation studies are performed to understand the effect of 

printing parameters, wetting characteristics and physical properties on the surface 

morphology of tracks and films during the inkjet printing process. Physics-based 

models are simplified using a surrogate model based on response surface equations to 

significantly reduce the simulation time. Alternatively, data driven models are 

developed to enable the surface morphology reconstruction of free-form shapes. 

Simulation results from physics-based models and surface reconstruction from data-

driven models are employed to build a transfer function relating printing parameters 

and the predicted surface morphology. Subsequently, in the parameter optimisation 

module, a multi-objective genetic algorithm is used to find the printing parameters that 

minimise the error between the predicted surface morphology and the target pattern of 

single layers. For multi-layered parts, the shape compensation module follows, a 

convolutional neural network is utilized to compensate the 3D deformed geometry 

such that the error to target shape is reduced. Bitmaps of layers with optimised 

resolution and geometry are generated and validated by experiments and 

measurements from CSI or microCT scan are post-processed in the validation module. 
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1.5 Thesis structure. 

A description of the contents for each chapter is presented below. 

Chapter 1 provides a brief overview of the inkjet printing process, the advantages that 

this additive manufacturing technology brings for the fabrication of microelectronic 

devices and the current challenges it faces to be fully adopted in the semiconductor 

industry. Within this context, the aim and objectives of this investigation are laid out 

pointing out the novelty of the research. The chapter closes with a summary of the 

research framework and thesis layout setting a clear scope and direction for the 

investigation. 

Chapter 2 presents a literature survey of the state of the art in modelling and 

optimisation of inkjet printing in the context of printed electronics applications. The 

chapter starts with an extensive review of the physics behind the inkjet printing 

technology, followed by a summary of previous research done using the materials, 

inks and substrates, under investigation. Then, the most relevant numerical and 

optimisation methods in inkjet printing are introduced in greater detail, along with non-

traditional methods that have not yet been explored in this context. Finally, the 

knowledge gaps in the current state of research are identified. 

Figure 1-1 Research framework 
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Chapter 3 describes the experimental methods and materials used in this investigation. 

First, details on the material formulation, substrate characteristics and cleaning process 

are pinned down, followed by an explanation of the procedure to setup the printer 

before every experiment. Then, a design of experiments methodology is selected to 

establish the relationship of the parameters under investigation and benchmark 

artifacts for validation purposes are illustrated. Finally, the measurement techniques 

used to characterise the surface morphology of the printed features are examined. 

Chapter 4 focuses on the computational and analytical methods implemented in this 

research. The chapter is divided in five sections: physics-based models, data-driven 

models, surrogate methods, optimisation techniques and hybrid approach. The lattice 

Boltzmann multiphase flow model and the finite element chemo-thermo-mechanical 

model formulation, problem definition and numerical validation are documented in the 

physics-based section. Shape from shading inverse problem and image analysis based 

on spherical cap assumptions methodologies to reconstruct the surface morphology of 

a printed feature are reported thoroughly in the data-driven section. Then, the proposed 

surrogate methods, one based on a response surface methodology and the other based 

on derived analytical models, are scrutinized to enable the optimisation of parameters 

under investigation. Finally, a hybrid methodology to perform the prediction of single 

and multilayer parts in a holistic manner is postulated.  

Chapter 5 covers the results achieved from a study on the prediction and optimisation 

of single tracks created by inkjet printing. A set of in silico experiments using the 

lattice Boltzmann multiphase flow model to study the effect of drop spacing and 

contact angle hysteresis on the surface morphology of single tracks are documented. 

Then, investigations conducted using the finite element chemo-mechanical model to 

examine the effect of UV exposure time on the final geometry of printed tracks are 

reported. Finally, surrogate model results based on simulations and experiments are 

utilized to build a transfer function and find the optimal printing parameters to attain a 

stable track.  

Chapter 6 documents the results achieved from a study of the prediction and 

optimisation of freeform films with fine features created by inkjet printing. Using the 

data driven approaches, a comprehensive parametric study to determine the influence 

of drop spacing, printing frequency and stand-off distance on the surface morphology 
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of freeform films is examined. Finally, recommendations on minimum achievable 

features and values of optimal parameters to fabricate stable films are outlined. 

Chapter 7 reports the results achieved from a study of the prediction and optimisation 

of 3D inkjet-printed parts. First, the definition of the 3D artifact is illustrated, followed 

by the slicing procedure to generate the set of layers required to print component. Then, 

a series of studies, both experimental and computational, are performed to assess the 

effect of printing parameters on each layer, along with their corresponding optimal 

values. Subsequently, a layer compensation strategy based on a convolutional neural 

network is applied to reduce the error between the target shape and deformed 

geometry. Validation of the optimised printing parameters and layer compensation 

strategy is performed by quantifying the maximum absolute deviation between target 

and deformed geometry. Finally, recommendations on minimum achievable features 

and values of optimal parameters to fabricate 3D parts are outlined. 

Chapter 8 presents the results of the multiphysics, stochastic, analytical model 

developed in this investigation to predict fast and accurately the surface morphology 

of inkjet-printed parts for any size and shape considering droplet size and position 

uncertainty, multi-nozzle printing, UV exposure time and chemical shrinkage. The 

analytical model represents the most significant contribution of the present work, since 

it leverages learnings from the physics-based and data-driven models and integrates 

creative algorithms and heuristics rules to drive AM part quality optimisation within a 

computational inkjet printing environment, which is considered the cornerstone of an 

inkjet printing digital twin. 

Chapter 9 explains the implications and limitations of the key findings obtained from 

this research work. It shows how gaps from literature review are covered and 

highlights the research contribution to knowledge in the academic and industrial 

contexts. 

Chapter 10 outlines the conclusions of this investigation and provides a summary of 

recommendations for future work. 

 



10 

 

 

 

 

 

  

Figure 1-2 Thesis layout. 
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CHAPTER TWO 

 

2 Literature Review. 

The purpose of this chapter is to scrutinise current literature regarding modelling and 

optimisation techniques used in inkjet printing of electronic materials and to identify 

gaps in the knowledge that this research aims to fulfil. First, a detailed review of the 

drop on demand inkjet printing process is presented, including the most relevant 

dimensionless numbers, key printing parameters and limiting conditions on each phase 

of the process. Next, a survey in the areas of electronic materials compatible with 

Additive Manufacturing and inkjet equipment capability for industrial applications is 

examined. Then, an extensive survey of the numerical methods utilized to model inkjet 

is performed, along with related theory. Finally, research regarding optimisation 

algorithms and error compensation schemes employed to improve the dimensional 

accuracy of additive manufactured parts is studied. The gaps in the literature related to 

the modelling and optimisation of inkjet printing applied to printed electronics devices 

are pointed out at the end of the chapter. 

 

2.1 Material jetting. 

2.1.1 Introduction. 

The concept of additive manufacturing dates to the early 80s in Japan. The idea behind 

the concept is simple, a flexible fabrication process of complex structures in which 

material is gradually layered until the desired form is reached. AM has become 

relevant due to the increased digitalization of manufacturing processes, bringing 

flexibility and efficiency into a broad range of industries. AM allows the fabrication 

of complex shapes providing a larger design space that ultimately impacts the product 

development cycle (Hague et al., 2003). Furthermore, additive systems can integrate 

additional features to customize products in a cost-effective way (Tuck et al., 2008) 

and fabricate components simultaneously for greater operation flexibility (Ruffo & 

Hague, 2007). Also, whether AM is used for production or prototyping, design lead 

times are frequently reduced. For example, lead times for jet engines parts have been 

reduced by a year or more (Han, 2017).  
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Material jetting is one of the seven types of AM technologies (ASTM, 2012). In 

material jetting, droplets of material are selectively jetted and cured using either 

ultraviolet light or heat to form a 3D object. The material can be jetted continuously 

or on-demand to create the parts. As with most AM technology machines, the 

deposition of the material is controlled by X, Y and Z movement to create the object 

in 3D space. 

A comprehensive overview of AM technologies is given by Gibson et al. (2010). One 

contribution of this work is the description of eight key steps present in every AM 

technique, namely: 

• Design conceptualization using CAD or 3D scanning and “point cloud” 

treatment (Tuck et al., 2008) 

• Conversion to Stereolithography (STL) file format 

• STL file manipulation and transfer to AM system 

• Machine setup 

• Object building 

• Part clean-up and removal 

• Post-processing 

• Application 

 

Although, AM technologies present multiple advantages in the fabrication of complex 

products, there are still limitations that have prevented their full industry adoption. 

Some of the biggest AM technological challenges are related to build speed, materials 

formulation and consistency, printing geometry data preparation, surface finish and 

dimensional accuracy (Abdulhameed et al., 2019). The issue of ensuring dimensional 

accuracy in printed parts, along with the bottleneck imposed by the printing files, 

which is assessed in the present work through the development of state-of-the-art 

prediction models coupled with error compensation schemes applied to digital objects 

in inkjet printing for AM applications.  
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2.1.2 The inkjet printing process. 

Inkjet printing is a technology where multiple droplets are deposited onto a substrate 

in a certain pattern defined by a digital object. Based on the printhead configuration, 

as shown in Figure 2-1, there are two types of operation: continuous inkjet (CIJ) and 

drop-on-demand (DOD). CIJ technology was first introduced in the early 70s to 

commercial applications that demand high speed at the cost of less resolution. But the 

increasing need of precise prints evolved the technology into DOD which enables a 

better control of the ejected ink and thus, higher printing resolution and less waste. 

Nowadays, DOD is the most widely used printhead mode in commercial applications 

(Hoath, 2016). In this investigation, DOD inkjet printing technology and its 

applications to the printed electronics business is examined. 

 

According to Derby (2010), the inkjet printing process encompasses 3 physical 

operations which define and constrain the accurate positional placement of microscale 

drops on arbitrary substrates: drop formation, drop/substrate interaction and drop 

solidification. In this study, we build upon this research and proposed a fourth process 

called layer interaction which considers 3D printing phenomena. Furthermore, a 

printability criterion is associated to each physical process output that are considered 

“fit and form” factors critical to the quality, namely CTQs, of the printing pattern. For 

printed electronics applications, the shape and uniformity of the printed pattern are 

paramount for the adequate product operation (Beedasy & Smith, 2020). Therefore, 

the high-level process map shown in Figure 2-2 includes a “function” criterion based 

on electrical and mechanical characterization of patterns. 

a) CIJ b) DoD

Figure 2-1 CIJ and DOD Inkjet printing schematic (Derby, 2010) 
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2.1.3 Drop ejection and formation stage. 

In piezoelectric DOD, droplets are generated by a pressure wave that travels along the 

printhead ink channel, which is driven by the deformation of a piezoelectric actuator. 

The energy transfer process happens at the nozzle where the acoustic energy is 

transformed into kinetic and surface energy, shaping and driving the fluid droplets. 

Drop ejection speed and volume are controlled by the interaction of the electrical pulse 

shape and printhead geometry and structural stiffness (Wijshoff, 2004). The physical 

properties driving the drop formation process are ink density (), surface tension () 

and dynamic viscosity (). The latter is a key constraint to the inkjet printing process 

since typical commercial printheads can only handle viscosities less than 20 centipoise. 

Important developments in equipment design have enabled a higher ink viscosity range 

in 3D inkjet printing applications (Ledesma, 2018), although this is still an area under 

research. 

To study the relationships between drop ejection velocity, drop volume and the 

physical properties of the ink, a series of dimensionless numbers have been historically 

defined. The purpose of the dimensionless numbers is to describe the interaction 

between inertia, surface and viscous forces which help to understand the stability of 

the inkjet printing process. First, the relationship between inertial and viscous forces 

is given by the Reynolds number (Re) which compares the density (), drop ejection 

velocity (Ue) and in-flight droplet diameter (d0) with the dynamic viscosity (), 

Figure 2-2 DoD inkjet printing process map and critical to quality factors for each process stage. 
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𝑅𝑒 =  

𝜌𝑈𝑒𝑑0

𝜇
 

(1) 

 

Similarly, the relationship between inertial and capillary forces is provided by the 

Weber number (We) which compares the density (), drop ejection velocity (Ue) and 

in-flight droplet diameter (d0) with the surface tension (), 

 
𝑊𝑒 = 

𝜌𝑈𝑒
2𝑑0

𝛾
 

(2) 

 

Since both the Reynolds and Weber numbers depend on the velocity of the drop and 

in some circumstances a control parameter independent of inertial forces is desired, 

the Ohnesorge number (Oh) is defined as, 

 
𝑂ℎ =

√𝑊𝑒

𝑅𝑒
=

𝜇

√𝛾𝜌𝑑0

 
(3) 

 

Additionally, to assess the effect of gravity in the inkjet printing process, the Bond 

number (Bo) is calculated by comparing gravitational to capillary forces, where g is 

the gravitational constant: 

 
𝐵𝑜 =

𝜌𝑔𝑑0
2

𝛾
 

(4) 

 

In general, due to the microscale drop sizes observed in inkjet printing, the Bo is much 

less than 1 and hence, the effect of gravity is neglected (Derby, 2010). 

Several authors have used these parameters in the form of a printability diagram to 

assess the stability of the drop formation process, showing bounds to prevent 

splashing, satellite formation or no drop ejection (Reis & Derby, 2000). The 

recommended range over which inks can be printed is 1<Z<10, where Z is defined as 

the inverse of the Ohnesorge number. Although, other authors have suggested more 

appropriate ranges such as 2<Z<20 (Liu & Derby, 2019), 1<Z<14 (Kim & Baek, 

2012), 4<Z<14 (Jang et al., 2009). Drop filament break-up and satellite formation were 

thoroughly studied by Castrejón-Pita et al. (2012). Jetting of non-Newtonian fluids 

have been studied by Hoath et al. (2012), Planchette et al. (2019) and Yang et al. 

(2014). Other authors have suggested the inclusion of aerodynamic effects (Rodriguez-

Rivero et al., 2015), nozzle defects (Castrejón-Pita et al., 2011), viscoelastic properties 
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(Morrison & Harlen, 2010) impact on jetting necking, stretching and break-up 

phenomena. Table 2-1 summarizes the drop formation process critical to quality 

factors found in the literature (Jang et al., 2009)(Lohse, 2021). In this work, we used 

the recommended range to achieve stable drops from the jet formation process 

developed by Derby (2010).  

 

Table 2-1 Drop formation input-output diagram and critical to quality factors. 

 

2.1.4 Drop deposition and coalescence stage. 

The second physical operation in the inkjet printing process is the positioning and 

interaction of droplets on arbitrary substrates. The aim is that a spherical drop with no 

satellites is ejected with the right amount of energy to avoid splashing and minimal 

volume for better resolution. Key process parameters in this operation with direct 

impact on pattern accuracy are substrate placement, speed, temperature, and vibration 

(Jang et al., 2009). Since the subject of study is understanding the interaction between 

ink and substrate, the physical properties of both become relevant. Surface tension, 

viscosity and density of the ink and surface roughness, porosity, morphology and 

chemically treatments of the substrate define the wetting dynamics interaction. 

Reynolds, Weber, and Ohnesorge dimensionless parameters are used to discriminate 

between impact driven or capillary driven deposition and between almost inviscid to 

highly viscous flow drop behaviour. DoD inkjet printing applications are quoted as 

almost inviscid and impact driven (Derby, 2010). Experimental and numerical studies 

of the impact and spreading of viscoelastic fluids have been reported by Hoath (2016), 
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Jung et al. (2013) and Vega & Castrejón-Pita (2017). From this research, it has been 

found that three drop characteristics have a direct impact in the printed pattern 

resolution: contact angle, drop contact line footprint diameter and drop height. The 

contact angle (e) is the angle between the surface tension tangent on the liquid–vapor 

interface (lv) and the surface tension tangent on the solid–liquid interface at their 

intersection (sv - sl). It quantifies the wettability of a solid surface by a liquid via the 

Young equation given by, 

 cos𝜃𝑒 =
𝛾𝑠𝑣 − 𝛾𝑠𝑙

𝛾𝑙𝑣
 (5) 

 

The transient behaviour of these characteristics is driven by the surface forces 

developed between ink and substrate interaction and therefore, understanding wetting 

dynamics theory is the natural next step. 

Wetting dynamics theory has been widely researched by several authors (Starov & 

Velarde, 2007)(de Gennes et al., 2004). Their contributions provide the fundamental 

equations used to study spreading and wetting phenomena on dry/wet surfaces, curved 

interfaces, porous substrates, surfactants solutions and non-Newtonian fluids 

(Arjmandi-Tash et al., 2017). Computational based methods have made it possible to 

deepen our understanding of the drop pinning-depinning mechanisms (Zhang et al., 

2019), and explain contact line dynamics under the influence of evaporation (Shanahan 

& Sefiane, 2010), dynamic contact line fluctuations (Fernández-Toledano et al., 2019) 

and fluid adhesion at an atomic scale (Fernandez-Toledano et al., 2017). Although, 

spreading and wetting dynamics has been developed largely in the last decade, it is 

still an active area of research. In particular, the development of accurate dynamic 

contact angle models is crucial to predict the final deposition pattern before 

solidification occurs. 

To better describe the wetting phenomena, the interaction between drop and substrate 

is divided in five key phases: impact, spreading, relaxation, wetting and equilibrium. 

Yarin (2006) observed in experiments that at the impact stage, the drop spreading is 

dominated by the kinetic energy with a time span of less than 1 s. Fluid deformation 

dissipates the kinetic energy until reaching a maximum spreading at approximately 4 

s where viscous and surface tension forces start coming into play. Viscous forces are 

responsible to damp drop oscillation at the relaxation phase which lasts to 
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approximately 50 s, while capillary spreading picks up when surface tension 

dominates the flow in the wetting phase up to 5 s. Equilibrium phase is reached beyond 

5 s of the experiment. Figure 2-3 summarizes the drop deposition process critical to 

quality factors found in the literature (Derby, 2010)(Lohse, 2021). 

 

 

The study of individual drops interacting with arbitrary substrates provide detail 

insight to the final footprint prediction, however, the aim of this project is to 

understand the behaviour of drops coalescing to form stable patterns. Previous 

theoretical studies have focused on understanding the physics behind the periodic 

instabilities observed when lines of fluid are formed (Davis, 1980). Periodic scallops, 

coins, bulges, and uniform lines were observed experimentally by Schiaffino & Sonin 

(1997) and confirmed Davis’s stability theory. Several later works furthered our 

understanding of line morphologies and stability mechanisms (Duineveld, 2003) using 

conductive silver inks (Perelaer et al., 2006), polyurethane colloidal suspensions (van 

den Berg et al., 2007) and conductive polymer solvent based inks (Soltman & 

Subramanian, 2008).  

In the work by Duineveld (2003), the spacing between deposited drops was identified 

as the main factor influencing line stability. Soltman & Subramanian (2008) build 

upon this premise by developing an analytical model based on volume conservation 

assumptions, which yielded four theoretical regimes depending on the amount of 

Figure 2-3 Drop deposition process input-output diagram and critical to quality factors (Derby, 2010). 
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overlap between deposited drops. They observed that bulges are formed when drop 

spacing is shorter than a certain length, due to the larger Laplace pressure of newly 

deposited droplet driving flow into bead main body. As the drop spacing increases, a 

scalloped shaped contact line emerges from the uniform pattern that eventually 

separates in pairs or isolated drops. As a result, a stability diagram relating non 

dimensional radius versus drop spacing was introduced with regime threshold 

transitions. Later, Stringer & Derby (2010) proposed a region for line stability defined 

by two limits emerging from the interaction of substrate transversal speed, drop 

spacing and advancing contact angle. Further studies demonstrated that a variable line 

spacing has a positive influence on film stability (Soltman et al., 2010)(Mu et al., 2017) 

and contact angle hysteresis plays a key role in final pattern accuracy (Soltman et al., 

2013). Unfortunately, both models have the limitation of not including inertia effects 

nor considering bead morphology, which results in underpredicting the printed line 

width (Hsiao et al., 2014). Other studies have shown through numerical simulation and 

experimental data, the presence of a bulging instability regardless of drop spacing 

(Thompson et al., 2014). Although several studies have been reported in the literature 

to understand the role of critical printing parameters in the stability of inkjet-printed 

lines and films, little attention has been paid to fast and accurate prediction and 

parameter optimisation methods to improve the quality of printed features. Therefore, 

this study builds upon the work of Stringer & Derby (2010) to develop more accurate 

approach to identify the stability regime for single tracks and films. 

 

2.1.5 Drop solidification stage. 

The last physical operation in the inkjet printing process is drop solidification and 

attainment of the final deposition shape. Once the drops have coalesced, the 

mechanisms in which the liquid transforms to solid play a critical role in the final 

pattern morphology. Usually, this transition comes with an overall volume shrinkage, 

which could be acute depending on ink formulation. A key parameter of these process 

is the solidification time which has a direct influence on the deposited drop diameter, 

i.e., for faster solidification times the drop diameter is reduced, compromising drop 

spacing and ergo, pattern stability. There are three potential solidification mechanisms 
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based on the physical phenomenon driving the liquid-to-solid transition: evaporation, 

chemical reaction, and sintering.  

Due to the low viscosity limits observed in inkjet printheads, common ink formulations 

must reduce solid particle content and tune viscosity by using solvents or other 

additives. Most solvents are volatile substances (present a high vapor pressure at room 

temperature), enhancing evaporation rates with increasing temperature and after full 

drying, leaving a thin layer of solid content material to adhere to the substrate. For 

details about droplet solidification via evaporation, theoretical models, experimental 

studies and influence of critical parameters on inkjet-printed feature’s stability, the 

reader can consult (Deegan et al., 2000) (Popov, 2005) (Fukai et al., 2006) (Kim et al., 

2006) (Yunker et al., 2011)(Dugyala & Basavaraj, 2014) (Eral et al., 2011) (Mampallil 

et al., 2015) (Seo et al., 2017) (Nguyen et al., 2017) for further reference. 

In the case of reaction-based inks, which is the focus of this study, the solidification is 

triggered by an energy source which could be heat or UV radiation depending on the 

ink formulation. Typical UV curable inks are composed of monomers or oligomers, 

photoinitiator, diluents and other additives (He, 2016). The UV photo-polymerisation 

process consists of three stages: initiation, propagation, and termination. In free radical 

polymerization, a photoinitiator absorbs the energy from the UV light to generate free 

radicals, then chain propagation is initiated by the groups formed reacting with 

unreacted monomers/oligomers and finally the reaction reaches termination when no 

more unreacted groups are available (Pappas, 1980). Examples of successful printing 

of UV curable inks have been reported in microfluidic devices (Hamad et al., 2016), 

functional electromagnetic applications (Saleh et al., 2017), multi-material circuits 

(Ledesma, 2018). 

Finally, the inkjet printing process involves a wide range of length and time scales, as 

shown in Figure 2-4 (Wijshoff, 2018). This impose a challenging situation when 

optimization of the overall process is required. Understanding each physical operation 

associated with these scales is key to define ink formulations, substrate wetting 

characteristics, solidification types and even what modelling techniques and 

assumptions are suitable to improve the printed pattern accuracy. Furthermore, an 

insight into the physics driving the fluid behaviour and potential coupling between 

operations is deducted from a multiscale analysis. Therefore, the next section 
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investigates inks and substrates used in printed electronics applications to in order 

select a simple, but relevant system to use as a model system for the numerical 

simulations in this work. 

 

2.2 Dielectric materials compatible with AM 

This section presents a brief overview of the state-of-the-art of dielectric materials, 

substrates characteristics and AM equipment for the printed electronics business using 

inkjet printing technology. Its intention is to provide the reader with current trends, 

standards and applications of dielectric materials used in inkjet printing technology. 

The scope of this investigation is limited to UV-curable dielectric inks deposited on 

non-porous flat substrates as this was determined to be the most relevant type of system 

for the intended applications of this work.  

 

2.2.1 Inks. 

A dielectric material is an electrical insulator that can be polarized by an electrical 

field, which controls the energy storage capacity of the material. An extensive list of 

more than 2000 dielectric materials has been reported by Sebastian (2008) along with 

their key properties and references. However, only a narrow subset of dielectric 

materials is used in inkjet printing applications. In general, most additively 

manufacturable materials are polymeric, with a dielectric constant that falls within the 

range of 2 to 6 (Booth et al., 2017). Nevertheless, some composite materials 

incorporating metals and ceramics provide enhanced dielectric constants that are 

Figure 2-4 Drop spreading factor versus time (Wijshoff, 2018) 
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useful in microelectronic devices. For dielectrics, relative permittivity and loss tangent 

are critical for implementing microwave systems (Sebastian, 2008). Over the years, 

dielectric materials have been classified by their state of matter (solid, liquid or gas), 

chemistry composition (organic, inorganic, synthetic polymers), dipole moment 

activity (active or passive) and dielectric constant (low, high)(Poplavko, 2019). The 

latter classification is useful to identify suitable materials for applications in 

microelectronics as shown in Table 2-2 (Singh & Ulrich, 1999). 

 

Table 2-2 Classification of dielectric materials (Singh & Ulrich, 1999) 

 

Several authors have presented examples of 3D inkjet-printed electronic components 

using dielectric inks. For example, Zhang et al. (2016) proposed a continuous method 

to fabricate stable polyimide insulator layers using inkjet printing technology. By 

increasing substrate temperature and setting line overlap to 30%, stable films were 

obtained, yielding uniform thickness and adequate dielectric properties for 

microelectronic devices. Tehrani et al. (2016) investigated the mechanical and 

electrical behaviour of thick layers of SU-8 polymer and thin layers of poly(4-

vinylphenol)-based solutions and demonstrated a high-performance on-silicon RF 

capacitor. McCoul et al. (2017) proposed a high throughput method to print dielectric 

silicone elastomer actuators using DoD technology, showing better mechanical and 

Dielectric Constant Application

PbMgNbO3+PbTiO3 22,600 Capacitor dielectrics

PbLaZrTiO3 1000 Capacitor dielectrics

BaSrTiO3 300 Capacitor dielectrics

TiO2 50 Gate dielectrics, Photoelectrochemical cells

Ta2O5 25 Gate dielectrics, Capacitor dielectrics

CeO2 20 Gate dielectrics

BaZrTiO3 17.3 Gate dielectrics for organic transistors on plastic

Al2O3 9 Capacitor dielectrics

(Bz,Ca,Sr)F2 7.3 Epitaxial dielectrics

SiOx Fy 3.5 Capacitor, internal supports

Hydrogen silsesquioxane 3 Photonic integrated circuits

Polysiloxane 2.89 Intermetal dielectrics

Fluropolyimide 2.8 Optoelectronics

Benzo-cyclo-butane 2.7 Integrated circuits 

Black diamond 2.7 Field effect transistors, Epitaxial dielectrics

Polyethylene 2.4 Intermetal dielectrics

Polypropylene 2.3 Intermetal dielectrics

Fluoropolymer 2.24 Intermetal dielectrics

Perylene 2.2 Thin film transistors

Dupont PTFE-based copolymer AF 2400 2.06 Intermetal dielectrics, internal supports

Xerogels 1.2 Flexible electronics
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actuation properties in layers of 2 m or less, resulting in lower driving voltages. 

Graddage et al. (2016) inkjet-printed capacitors using PVP based dielectric ink on PET 

substrate and transistors using DPP-Thieno[3,2-b] thiophene copolymer (PDBT-co-

TT) showing thin and uniform layers by maximizing a coffee ring effect strategy. He 

et al. (2017) proposed a methodology to print simultaneously structure and support 

materials by inkjet printing Tripropylene Glycol Diacrylate (TPGDA) which allows 

the efficient fabrication of overhanging structures. Cho et al. (2018) inkjet-printed a 

metal-insulator-metal capacitor of SU-8 polymer layers as dielectric insulator on 

Liquid Crystal Polymer as substrate, proposing a soft-bake strategy at 60°C for 20 

minutes to eliminate bubbles and ripples in the films. Furthermore, Mikolajek et al. 

(2019) developed a ceramic/polymer composite ink made from Ba0.6Sr0.4tio3 (BSt) 

and poly(methyl methacrylate) (PMMA) to print insulator layers for capacitors 

demonstrating homogeneous films and increased permittivity with larger ceramic 

particle sizes. In conclusion, there are many studies found in the literature probing 

dielectric materials can be selectively deposited to form complex patterns and even 

create electronic components in a voxel by voxel approach. The interest of this work 

is to select the most stable dielectric ink suitable for electronic packaging applications 

using AM inkjet printing technology. 

 

2.2.2 Substrates. 

As with the formulation of inks, the most suitable substrate selection depends on the 

specific application requirements. Rigid substrates such as glass or silicon wafers are 

typically used in inkjet printing applications, but flexible substrates based on polymers 

are becoming more common due to the growing demand of stretchable electronics and 

thin film sensors. Two critical phenomena in the inkjet printing process are determined 

by the substrate surface characteristics: wetting and adhesion. Wetting affinity is 

measured by the contact angle formed between the drop fluid and substrate surface 

which depends on the substrate surface energy and its fluid surface tension. Adhesion 

force depends on the substrate roughness and the electro/chemical interaction at the 

contact surface of the solid/liquid interface. Hence, the accuracy and reliability of the 

printing process greatly depends on the observed ink-substrate system interactions. It 

is common practice to manipulate substrate surfaces using coatings, chemical 
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treatments, or geometry modifications (masking) for high-fidelity positional accuracy. 

Table 2-3 & Table 2-4 provides some key performance features and main applications 

for polymer-based substrates and silicon-based substrates, respectively. 

 

Table 2-3 Applications of polymer-based substrates (Hoffman, 2017). 

 

Table 2-4 Applications of glass-based substrates (Parthier et al., 2017). 

 

Substrate materials are regulated by several industry wide standards such as 

IPC/JPCA-4921 which provides guidance on mechanical capability and compatibility 

of flexible and rigid base dielectric materials, ET-4101 that focuses on glass and 

polymer substrate materials (JEITA, 2020) and IPC-2292 which concentrates on 

design standards of printed electronics on flexible substrates (IPC, 2020). In addition, 

organizations such as ASTM and ISO provide standard tests methods to measure the 

Outstanding 

Properties
Typical Application

HDPE/polyolefins Low cost, food-safe Packaging, imaging

PVC
Outdoor resistance, low 

cost Architectural, signage

Plasticized PVC
Extrudable, low cost, 

outdoor resistant Imaging, signage

PA-Nylon-6 Mechanical strength Textiles, electrical

Polycarbonate
Scratch resistance, 

puncture strength
Solar, packaging

PET
Dimensional stability, 

tensile strength
Electronics, packaging

PUR/PUR   

copolymer Elastan
Stretchable Rubber, textiles

PEEK Chemical resistance
Automotive, electronic, 

medical

PI, kapton
High-temperature 

resistance
Optoelectronics
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Polymer Substrate Type

Type Composition Key Properties Typical Application Commercial

70-75% SiO2 Good flatness, low production cost Most common glass type

12-16% Na2O available for large thickness ranges Windows and containers

10-15% lime unlimited availability

70-80% SiO2 High Chemical resistivity, Glassware AF 32® eco

7-13% B2O3 high thermal shock and Laboratory glasses D 263® T eco

4-8% Na2O/K2O high temperature resistance MEMpax® 

2-7% Al2O3

54-65% SiO2 High-grade glass with high density Radiation shielding Zerodur® 

18-38% PbO higher refractive index, and glasses, accessories Foturan® II

13-15% Na2O/K2O high brightness (crystal glass)

others

Lead           

glass

Borosilicate 

glass

Soda-lime 

glass
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physical properties for both silicon and polymer-based substrates. Although, most 

manufactures and suppliers provide average properties of substrate materials, it is of 

utmost importance to have access to other references for comparison purposes. For 

further reference, a comprehensive summary of chemical, mechanical, thermal and 

optical properties for polymer-based substrates was given by Hofmann (2017) and for 

glass-based substrates by Parthier et al. (2017). The interest of this work is to use flat, 

non-porous substrates such as silicon wafers, to facilitate the modelling and simulation 

of the inkjet printing process and to cover a wide range of applications in the printed 

electronics industry. 

 

2.2.3 Printers. 

The purpose of this section is to report recent advances in inkjet printing technology, 

considering the hardware and associated software necessary to translate a digital object 

into a 3D structure. It is of the utmost importance to investigate what new commercial 

printers are offering to the market and how they are tackling current industrial 

challenges. Considering this perspective, new commercially available technology 

could be leveraged and enhanced by this PhD research project. 

The increasing demand of higher production speeds and the best quality products at 

the lowest cost has pushed printed electronics’ traditional manufacturing processes to 

their limits. Inkjet printing technology has helped seen increasing application in this 

filed due to its ability to build multi-material complex structures with minimal waste.  

An interesting recent development is the integration of Artificial Intelligence (AI) 

techniques with inkjet printing. For example, Inkbit Corporation® integrated a 

machine vision system that scans the morphology of each layer, corrects any deviation 

from geometry of subsequent layers in real time and uses this data to train a predictive 

model for each ink-substrate system used in the printer (Inkbit, 2020). No data could 

be found to validate the 100% accuracy claimed by the company; however, the method 

does demonstrate how AI enables 3D part reconstruction and quality tracking per part 

automatically. The printer system has an in-plane resolution of 50 m, an out-plane 

resolution of 10-25 m, deposits 2.75 L of material per hour, handles up to 8 different 



26 

 

epoxy resins or elastomer materials and could print up to 22 vertical millimetres per 

hour.  

Another example was developed by Nano-Dimension Corporation® with its 

DragonFly LDM precision inkjet printing system for electronics. The DragonFly™ is 

a high precision R&D printer whose target is to reduce printed electronics design lead 

times and provide freedom to create multi-material complex structures. Nano-

Dimension® partnered with SolidWorks® to develop an optimization algorithm for 

non-planar, multi-material electronics which enables a seamless connection between 

the SolidWorks design environment and DragonFly™ printer (Nano-Dimension, 

2020). The algorithm takes as input a free-form object with embedded 3D electronics 

and prepares all files and scripts required to print automatically, cutting time, and 

eliminating error-prone tasks. 

Printhead technology principles, configurations and capabilities have been reported 

for commercial brands such as Fujifilm Dimatix (Rosario, 2017), Minolta Konica 

(Corrall, 2017), Xaar (Brünahl et al., 2017), Hewlett-Packard (Simske, 2017) and Océ 

Technologies (Piatt et al., 2017). The printhead determines printing materials, 

processing speed and product resolution and it is one of the most important 

components in inkjet printing technology. Printheads are usually designed in 

conjunction with other printer hardware for efficient operation and therefore, 

migration to a different printer platform is not straightforward. The interest of this 

work is to evaluate two Fujifilm Dimatix printhead models which mainly differ on the 

droplet volume generation, 10 and 1 pL. 

 

2.3 Physics-based numerical methods. 

After reviewing the fundamental theory behind the inkjet printing process and the 

complex ink formulations, substrates, and equipment suitable for printed electronics, 

we can appreciate the challenges of studying the physics of drop formation, spreading 

and solidification using experiments alone. For instance, advanced visualization 

techniques are needed to accurately observer phenomena at length scales in the order 

of tens of microns at frequencies over a megahertz. Furthermore, repeatability, 

reproducibility and stability quality measures must be assessed to validate the 
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measurement system, adding time and resources to the experimental process. For these 

and other reasons, numerical simulations have been utilized to describe the flow 

dynamics of the inkjet printing process, usually hand-in-hand with laboratory 

investigations. Therefore, this section reviews the state-of-the-art in numerical 

methods for fluid dynamics applications, with an emphasis on inkjet printing 

simulations. 

 

2.3.1 Classical methods. 

Classical numerical methods solve partial differential equations (PDE) by discretizing 

the domain of interest using three main approaches: finite difference, finite volume, or 

finite element. From the conservation of mass and momentum laws applied to an 

infinitesimal control volume, a set of partial differential equations are obtained to 

describe in a continuous manner the behaviour of fluids, commonly called the 

continuity and Navier-Stokes (NS) equations, respectively. Other equations such as an 

energy equation, an equation of state and an interface tracking equation may be added 

depending on the physics of the problem. Analytical solution of the continuity and NS 

equations is extremely difficult for most cases due to the NS nonlinear nature and the 

complex geometry and complex boundary conditions usually present in fluid flow 

applications. This is where numerical methods become essential to determine the flow 

field, either by approximating the equations directly using regular grids (finite 

difference approach) or volumes (finite volume method) or approximating the solution 

of the equations (finite element approach). Regardless of the method used, a set of 

linear equations relating the solution variables, boundary conditions and source terms 

is generated, turning the problem to a linear algebra form for efficient computational 

solution. Some characteristics, advantages and limitations of the discretization 

methods are given in Table 2-5. The reader is referred to the finite difference 

approximation (Patankar, 1980), the finite volume method (Versteeg et al., 1995) and 

the finite element approach (Zienkiewicz et al., 2013) theory and applications to fluid 

problems for further explanation. 
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Table 2-5 Advantages and limitations of discretization schemes for CFD applications. 

 

In general, there is no single method that solves every type of physics-based problem. 

It is paramount, therefore, to clearly understand the phenomena and object of the study 

before launching a computational investigation. In our case, the inkjet printing process 

stages described in Section 2.1.2 belong to the free surface flow class of problems, 

which means that the shape and size of the deformable fluid is part of the flow field 

solution (Liggett, 1994). In this type of problems, special treatments to track the 

interface change in location and deformation are required. 

Under the continuum assumption employed in classical methods, the surface of a drop, 

i.e. the liquid and air interface, is considered a “sharp” interface or surface with zero 

thickness (Gibou et al., 2019). Depending on the discretization approach, a “sharp” 

interface could be attained by applying specific models. For instance, using the finite 

element approach to simulate a drop spreading on a substrate, the mesh conforms to 

the free surface shape and evolves with it, but it requires the prescription of the contact 

angle as boundary condition (Zienkiewicz et al., 2013). An alternative approach known 

as “the interface formation model”  was developed by Shikhmurzaev (2007) which 

allows the simulation of moving contact lines without imposing the contact angle as 

boundary condition. Shikhmurzaev’s model assumes Young’s equation holds for the 

computation of the dynamic contact angle using interfacial tensions arising when 

contact line is moving. The model requires an equation of state for the interface and 

an equation to balance the flow between fluid bulk and interface. Results from a drop 

impacting and spreading on a substrate with different wettabilities was reported by 

Approach Characteristics Advantages Limitations

Finite difference

 (FD)

Regular grid

Differential approach
Simple in principle                                        

Mass & momentum may not 

be conserved

Induce false diffusion

Troublesome for complex 

geometries

Finite volume

 (FV)

Irregular grid

Integral approach

Handles complex geometries

Mass and momentum always 

conserved

Higher order methods 

difficult to implement

Finite element 

(FE)

Unstructured grid

Integral approach

Higher order functions for 

better accuracy

Handles complex geometries

Grid adapts dynamically

Mass & momentum may not 

be conserved

Increased complexity for 

implementation



29 

 

Sprittles & Shikhmurzaev (2012) showing good correlation with previous numerical 

studies. 

On the other hand, the finite volume approach utilizes two widely investigated 

methods to track and capture the interface: the volume of fluid (VOF) and the level set 

(LS) methods. The VOF method assumes a stationary mesh through which a free 

surface travels depending on the advection of a volume fraction function defined at 

each volume cell. The algorithm has proven to be a numerically efficient method of 

solving the NS equations, but at the cost of an accurate free surface shape, which is 

reconstructed using a piece-wise linear function. Several developments have improved 

the free surface reconstruction schemes needed in VOF and for this reason, it is one of 

the most popular methods used in both industry and academy. In contrast, the LS 

method more accurately represents the free surface shape using a level set or zero 

contour represented by a higher dimensional function. The evolution of the contour is 

then modelled by an advection equation, as with the volume fraction in VOF. This 

allows an accurate representation of the free surface shape, but with the downside that 

volume is not explicitly conserved (Katopodes, 2018). In an attempt to address this 

deficiencies, a coupled level set and volume of fluid (CLSVOF) approach was created 

by Sussman & Puckett (2000) to exploit the best of both methods, with numerous 

studies in the literature. For example, Xia & Kamlah (2022) developed an improved 

CLSVOF framework without explicit interface reconstruction for modelling micro-

sized droplets with and without evaporation with good agreement between the 

numerical and corresponding analytical solutions. Meng et al. (2022) created an 

enhanced CLSVOF with an algebraic second-reconstruction step for simulating 

incompressible two-phase flows for the accurate representation of air-water interface 

validating simulations with experiments data. 

For years, the classical methods have been the workhorses in the computational fluid 

dynamics arena. Several studies have been documented using the VOF and LS 

methods to model inkjet printing processes. For example, Kim et al. (2009) created a 

piezoelectric printhead CFD model based on the VOF approach to investigate the 

influence of nozzle geometry, pulse amplitude, and ink viscosity on droplet size, speed, 

and break-up characteristics. The VOF model was validated using a fabricated 

prototype of the printhead. Results showed a more stable nozzle meniscus when a 

buffer is included prior the nozzle; drop ejection speed is significantly influenced by 
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the waveform amplitude, whereas ink viscosity showed a negligible effect on drop 

size. Later, Guo et al. (2014) employed the CLSVOF approach to study the behaviour 

of a droplet impact on a liquid film. Crown formation, splashing and air entrainment 

were captured accurately and compared to previous experimental and numerical 

studies for validation purposes. Results showed good qualitative agreement with 

previous investigations. Then, Fu et al. (2019) studied in detail the competing 

behaviours observed in a drop spreading on a porous surface. Using the VOF approach 

the effects of the Darcy number, Bond number, equilibrium contact angle and 

spreading factor were determined to characterize the problem. Although, the results 

correlated well with previous numerical studies, the authors recommended to include 

a dynamic contact angle model for situations when drop impact is present. 

Furthermore, Amani et al. (2020) proposed a finite volume scheme based on the 

conservative level set method to assess the effect of rheological properties in drop 

impact deformation. Shear thinning, shear thickening and viscoelastic materials were 

modelled using unstructured grids to avoid classical numerical instabilities due to the 

small time-steps required. Results showed that mass is conserved using the 

conservative level set formulation and compared well with available data found in the 

literature. Finally, Florio (2018) used the finite volume method to model ejection, 

impact, and solidification of molten copper drops on steel. He employed the VOF 

approach to track the interactions between the steel, copper, and air, showing the 

method can capture drop deformation under the influence of viscous and surface 

tension forces. However, results showed a loss of mass in the copper material when 

the drop size was of the same order of the mesh size. In addition, it was noted that the 

model could not simulate the solidified drops sticking to the flow path surfaces, 

suggesting a particle agglomeration approach may be more suitable for this kind of 

phenomenon. This last recommendations from Florio, provides an excellent lead to 

our next section, where we will discuss how particle-based methods can be used to 

solve computational fluid dynamics problems, characteristics, advantages, and 

limitations. 

Several investigations have used finite element simulations to model the solidification 

process of UV curable inks. For example, to better understand the photo-

polymerisation process that TPGDA undergoes when exposed to UV light, several 

studies have been reported concerning the simulation of the curing process of 
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polymers. Goodner & Bowman (2002) developed a comprehensive free radical photo-

polymerisation model incorporating heat and mass transfer effects in thick films and 

Ruiz et al. (2006) optimized the injection moulding of a resin by simulating a curing 

kinetics model. Bowman & Kloxin (2008) modelled and experimentally validated the 

complex spatially dependent polymerization kinetics and network heterogeneity 

applied to SLA microdevice fabrication. More specific studies to understand the role 

of oxygen inhibition, viscosity, and dynamic light intensity in the free radical photo-

polymerisation were performed by Lin et al. (2019) and a detailed methodology to 

model and simulate epoxy resins using finite element analysis was proposed by 

Leistner et al. (2020). An alternative approach was presented by Sarkar & Lin‐Gibson 

(2018) where instead of solving classically the curing kinetics system of equations, 

developed a stochastic simulation of polymerization to accelerate the design of 

polymeric materials with targeted physical properties for specific applications. Finally, 

Zhao et al. (2021) created a predictive model to simulate inkjet based 3D printing 

process considering the influence of UV curing strategies to optimize the process. 

These references provide a solid baseline to understand the physics behind UV curing 

processes with the aim to couple this with a material constitutive model for shrinkage 

prediction.  

  

2.3.2 Particle-based methods. 

Particle-based methods have become more common recently due to the increased 

availability of computer power for research and industry applications. In lieu of 

discretizing the domain of interest to solve the NS and continuity equations, particle-

based methods assume the fluid to act as small particles colliding with each other. By 

means of the theory of kinetics, physical properties, fluid phases and complex 

geometries can be modelled without special treatments or complex boundary 

conditions. However, tracking the location and velocity of the particles is required, 

together with interparticle forces calculation to solve Newton’s momentum 

conservation at every time step. Depending on the method and application, a particle 

may represent atoms, molecules, or systems of molecules, providing a microscopic 

(mesoscopic) view of the fluid domain.  
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Particle-based methods have been studied extensively, including molecular dynamics, 

dissipative particle dynamics, multi-particle collisions and smoothed particle 

hydrodynamics. A detailed overview of the theory and fundamentals of the particle-

based methods for the interested reader can be found in (Oñate & Owen, 2011). 

Several examples of the simulation of inkjet process operations have been reported 

using various particle-based methods. For example, Fernandez-Toledano et al. (2017) 

employed large molecular dynamics simulations to study mechanical force 

equilibrium at the three-phase contact line of a fluid bridge between two flat plates. 

This study was the first of its kind to validate Young’s equation at a nanoscale level, 

proving that the tangential force at the liquid and solid interface is significantly larger 

than the work of adhesion equations when strong layering of liquid molecules is 

present at the liquid-solid interface. Later, Aphinyan et al. (2018) used particle 

dynamics simulations to understand polymer ink agglomeration in nozzles in 3D nano-

inkjet printing processes and the role of surfactants in controlling it. Then, Zhang et 

al. (2019) modelled the evaporation phenomena occurring simultaneously with 

wetting drop dynamics using a molecular dynamics approach. They explained the 

pinning-depinning mechanism of the contact line in nanodroplets when the substrate 

is heated heterogeneously. Results showed that at certain conditions, the contact line 

speed is no longer relevant to the evaporation rate in some contact line stick-slip stages. 

Also, Fernández-Toledano et al. (2019) expanded the atomistic approach of Young’s 

equation from 2017 to simulate via molecular dynamics a capillary bridge between 

two flat plates, including the friction coefficient per unit length at the contact lines. 

This value was compared with the dynamic contact angle as a function of contact line 

speed using wetting kinetics theory and an excellent agreement was found. As a result, 

a method to measure dynamic contact angle from the fluctuations of the contact line 

of a capillary system at equilibrium was proposed. Further studies from Fernández-

Toledano et al. (2020) demonstrated the significant influence of the receding contact 

angle in the pinning time dependent on the wetting conditions of the ink-substrate 

system. They showed that separation distance between plates has a significant effect 

on the pinning time along with the effect of the receding contact angle. 

Although microscopic simulations using particle-based methods have observed a 

growing trend over the last 10 years, to model a macroscopic domain size demands a 

large amount of computer storage capacity as well as powerful chips to handle the 
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input-output operations. Fortunately, the development of particle-based methods has 

continued and, in an effort, to bridge the gap between the macroscale and microscale, 

an approach that does not track individual particle position and velocities, but particle 

collection distribution function emerged: the lattice Boltzmann method. In the next 

section we introduced this mesoscopic method that has revolutionized the 

computational fluid dynamics world in the last decade. 

 

2.3.3 The lattice Boltzmann method. 

The theory behind the lattice Boltzmann method has been widely documented by 

several authors. A detailed explanation of the Boltzmann equation, lattice 

arrangements, equilibrium distribution functions and sourcing terms has been 

presented by Mohamad (2019). Multiphase flow lattice Boltzmann principles, 

methods, equations of state for phase separation, and forcing schemes are thoroughly 

explored by Huang et al. (2015). Figure 2-5 illustrates a summary of the LBM 

applications found in the literature. A guide for parallel computing implementation of 

the LBM on a variety of platforms is provided by Kruger et al. (2017). A 

comprehensive list of source codes can be found in Github (2020) for various different 

types of simulation, programming language and physics problem. The recent 

implementations of open source frameworks to develop LBM simulations such as 

OpenLB (Krause et al., 2020), Palabos (FlowKit, 2020), waLBerla (FAU, 2020), and 

commercial software including SIMULIA PowerFlow (3DS, 2020) , OMNIS/LB 

(NUMECA, 2020), are a clear indication of the high academic and industrial potential 

of the method. A performance and accuracy comparison between the classical 

Volume-of-Fluid (VOF) method and the LBM Pseudopotential scheme was carried 

out by Mukherjee et al. (2018). They found that LBM produces 1 to 3 orders of 

magnitude less spurious velocities than VOF and is roughly 10 times faster.  
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Previous research has demonstrated the successful application of Lattice Boltzmann 

methods in modelling the different stages of the inkjet printing process. For example, 

Zhang et al. (2018) investigated the impact of nozzle wetting in the formation of stable 

drops in a piezoelectric printhead using a 3D MRT pseudopotential scheme with large 

density ratios. Using the dimensions of an actual printhead geometry, the drop ejection 

process was simulated and validated by experiments from literature. He concluded that 

controlling the non-ideal nozzle advancing contact angle at 90 degrees, the printability 

range could be extended from Z=10 to Z=14 in high Reynolds applications. Later, 

Liang et al. (2019) showed excellent agreement with analytical solutions and available 

experimental data of the breakup of a liquid thread using an axisymmetric phase-field 

scheme for large density ratios. Also, Berghout & Van den Akker (2019) modelled the 

drop formation process for a multicomponent ink using a 2D pseudopotential scheme. 

They increased the density ratio of the system by applying gravity to only one 

component, such that it behaves as a liquid, whereas the other behaves as a gas. As a 

result, the dynamics of the necking and the shape and motion of the apex after pinch-

off agreed qualitatively with literature results. Wei et al. (2018) showed the ability of 

a pseudopotential scheme to handle three phase separation at meniscus induced motion 

of bubbles or droplets. Wu et al. (2015) studied drop impact behaviour using a 2D 

phase field incompressible lattice Boltzmann simulation with the Cahn-Hilliard 

equation to capture the interface between air and fluid media. Good correlation was 

found with numerical data available in literature. Then, Raman et al. (2016) 

investigated the interaction effects of drop impact on a solid substrate with different 

Figure 2-5 Lattice Boltzmann methods map. 
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wettabilities using the phase field LBM scheme. They found that the receding contact 

angle has a significant effect on the final shape of the drop impact process. 

Furthermore, Ammar et al. (2017) proposed a 3D pseudopotential lattice Boltzmann 

model with a multi-relaxation scheme to study drop impact dynamics on a dry and wet 

substrate. The model results show good qualitative correlation to numerical data 

available in the literature. In addition, Jansen et al. (2013) researched the influence of 

substrate wettability gradients in the drop spreading process using a 3D 

pseudopotential multi-component approach. The model was validated qualitatively 

using experimental data, providing good correlation results. Further studies 

incorporated a chemically striped substrate showing the potential of the method to 

simulate a controlled spreading based on the stripes aspect ratio (Jansen et al., 2016). 

Also. the study from Frank & Perré (2012) provides a detailed understanding of the 

drop spreading competition with capillarity absorption on a porous substrate by using 

a lattice Boltzmann phase field type based on the He et al. (1999) model. Fakhari & 

Bolster (2017) proposed a curved boundary treatment model to simulate drop 

spreading on substrates with different wettabilities using a 2D phase field lattice 

Boltzmann scheme. Their model proved to be more accurate than curved surfaces 

modelled with typical staircase approach (Stahl et al., 2010). Pravinraj & Patrikar 

(2017) studied partial wetting and its influence on droplet movement at micro and 

nanoscales using a multiphase lattice Boltzmann pseudopotential method. Results 

showed that droplet spreading on chemically heterogeneous surfaces can be controlled 

not only by the parameters of the Weber number but also by tuning the strip width 

ratio. Kang et al. (2018) proposed a model to predict the behaviour of droplet 

interaction with granular surfaces with variable advancing contact angles (from 

wettable to superhydrophobic). The model proved to be suitable for soils and other 

granular materials utilized in industrial applications. 

Figure 2-6 provides a summary of the various different types of forcing schemes, 

boundary conditions and collision operators employed in LBM applications found in 

the literature. 
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Several recent works have attempted to improve simulation accuracy and stability of 

the complex dynamics observed when droplets spread and coalesce, including the 

implementation of Robin boundary conditions (Linder et al., 2015), the reduction of 

spurious currents (Shan, 2006) and a thermal lattice Boltzmann approach 

(Kupershtokh et al., 2018). Furthermore, the influence of substrate geometry and 

characteristics on droplet’s spreading was assessed by Tsai et al. (2009) on 

superhydrophobic surfaces, Li & Thoroddsen (2015) on air bubble formation, and 

Tang et al. (2017) on surface roughness impact. Finally, state-of-the-art multiscale 

methods (Fish et al., 2021) have been explored trying to reduce simulation time 

without sacrificing accuracy. A good example of the simulation of inkjet-printed 

electronics using finite element analysis was introduced by Tilford et al. (2021) where 

he proposed a layer by layer approach to better capture printed object deformation. 

This last study uncovered a new research topic that would greatly affect the 

dimensional accuracy of the printed features which is the solidification mechanism, 

specifically for this research: UV curing of polymeric inks. 

 

2.4 Optimisation methods. 

Optimisation is the act of obtaining the best result within the available means 

(Ashcroft, 2020). The optimization process involves the selection of a set of design 

variables which we wish to study; the selection of an objective or criterion which we 

seek to maximize or minimize; the determination of a set of constraints based on design 

Figure 2-6 LBM pseudopotential process map 



37 

 

requirements and the identification of a set of values for the design variables which 

satisfy all constraints while minimizing (or maximizing) the objective. Selection of the 

most appropriate optimization method depends on the characteristics of the design 

variables, objective function, and constraints. For example, design variables could take 

discrete or continuous values and have a deterministic or stochastic nature; design 

problem may involve only one or multiple objectives and be constrained or 

unconstrained; the objective function could behave in a linear or non-linear way and 

have a parametric or non-parametric structure, etc. Careful consideration of these 

characteristics coupled with a good understanding of the physics behind the design 

problem are required in every optimization endeavour. 

From an algorithmic perspective, an optimization process needs an efficient strategy 

to vary design variables, evaluate the objective function and determine when a 

minimum value has been reached, commonly called the convergence criteria. Several 

approaches have been extensively studied to automate the design optimization process 

such as gradient based methods (Papalambros & Wilde, 2017), design of experiments 

(Antoy, 2014), genetic algorithms (Goldberg, 1989), calculus of variations (Rindler, 

2018)  and machine/deep learning techniques (James et al., 2013). Figure 2-7 shows a 

summary of some of the optimization approaches potentially relevant to this work, 

with some advantages and limitations. 

 

 

Figure 2-7 Advantages and limitations of optimisation methods. 
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With the increasing availability of data, the state-of-the-art in optimization methods 

has been driven by developments in the Artificial Intelligence (AI) arena in recent 

years. Machine learning, deep learning, and reinforcement learning techniques to 

develop predictive models have risen exponentially over the last decade. These 

techniques are focused on the study of computer algorithms that allow computer 

programs to automatically improve through experience. The ability to learn “on the 

go” and adapt to new process data, gives these methods a clear advantage over the 

classical algorithms. Although a comprehensive overview of the theory and principles 

behind machine learning (Murphy, 2012) and deep learning (Goodfellow et al., 2016) 

has been released, it still remains an active area of research with several industrial 

applications. For example, Hernandez et al. (2013) utilized a genetic algorithm method 

to find the optimal Cowper–Symonds material model parameters for steel 

characterization from a single Taylor test experiment. Hernandez derived the 

normalized central geometric moments from the deformed shape obtained via finite 

element simulations and demonstrated efficient solution of first-class inverse problem. 

Later, Chen et al. (2015) proposed an inverse finite-element analysis method coupled 

with a gradient-based non-linear least squares optimization approach to find the 

optimal viscoelastic-viscoplastic constitutive model parameters for a polymeric 

material based on nanoindentation experiments. Results from the method showed an 

accurate prediction of the material viscoelastic-viscoplastic material properties. Also, 

Viquerat & Hachem (2020) developed a computational fluid dynamics method using 

a finite volume approach coupled with a convolutional neural network to predict the 

drag coefficients of low Reynolds flows over 2D irregular shapes. The CFD simulation 

was first validated against NACA airfoils drag coefficients and neural network trained 

and optimized by the simulation results. Results showed accurate predictions and the 

model could potentially be extended to 3D shapes. Gongora et al. (2020) demonstrated 

the potential of Bayesian networks to optimize the number of experiments required to 

determine the toughest complex structures built from an additive manufacturing 

process. Gongora et al observed an almost 60-fold reduction in the number of 

experiments needed to identify high-performing structures relative to a grid-based 

search such as Latin Hypercube or Direct Montecarlo simulation. Kim et al. (2020) 

implemented a generative adversarial neural network (ANN) coupled with a molecular 

dynamics simulation to develop new crystalline porous materials. Training of the 

neural network was performed using as inputs the energy and molecular topologies of 
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approximately 30000 zeolites. Inverse design of materials can be achieved with the 

ANN by biasing the energy dimension, which correlates with material properties. 

Finally, Grieves & Vickers (2017) defined the concept of the Digital Twin as “a set of 

virtual information constructs that fully describes a potential or actual physical 

manufactured product from the micro atomic level to the macro geometrical level”. 

This represents the current pinnacle of physics-based/data-driven models predictive 

and prognostic capabilities for optimized product/process performance. Using this 

concept, the optimal printing strategy for fine features could be targeted for a given 

ink-substrate system. 

The selection of optimised process parameters and material properties to improve the 

quality of AM parts has been the subject of several research studies by industry and 

academia. To accomplish an efficient exploration of the parameter design space, 

optimisation techniques ranging from traditional gradient based methods to more 

sophisticated probabilistic, evolutionary and machine learning techniques have been 

employed. For example, Lanzotti et al. (2015) determined the impact of layer 

thickness, deposition speed and flow rate on the dimensional accuracy of a RepRap 

3D printer by means of a full factorial Design of Experiments (DOE) approach. Useful 

guidelines were formulated for the best accuracy of 3D printed parts. Mohamed et al. 

(2015) provided a review of research work on optimisation techniques used in AM 

material extrusion technology to find the optimal parameters influencing surface 

roughness, dimensional accuracy, build up time and material properties of 3D printed 

parts. Successful industrial applications of the Taguchi method, response surface 

methodology (RSM), genetic algorithms (GA) and artificial neural networks (ANN) 

were identified. More recent studies utilized Taguchi optimization and ANOVA 

techniques on inkjet printing process to determine optimal parameters for the 

fabrication of thick ceramic coatings (Rahul et al., 2017) and silver nanoparticle 

electrodes to create high-resolution patterns with low resistance (Nguyen et al., 2017). 

With the evolution of computational capabilities, more sophisticated optimisation 

techniques coupled with high-fidelity simulations to explore large design spaces have 

been exploited. Using a multi-objective optimization (MOO) design method for drop-

on-demand printing parameters coupled with fully connected neural networks 

(FCNNs), Shi et al. (2019) found the optimal parameters for bioprinting precision and 

stability of cell arrays. Zhao et al. (2020) determined the optimal laser sintering process 
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parameters for a printed microstrip antenna using a high-fidelity simulation and 

experimental work. However, the application of optimisation techniques has not been 

limited to finding optimal process parameters. Several studies have been reported in 

the literature where material properties were determined by means of minimizing 

shape or morphology deviations from a target experiment. Chen et al. (2015) proposed 

an inverse finite-element analysis method coupled with a gradient-based non-linear 

least squares optimization approach to find the optimal viscoelastic-viscoplastic 

constitutive model parameters for a polymeric material based on nanoindentation 

experiments. Hernandez et al. (2013) utilized a genetic algorithm method to find the 

optimal Cowper–Symonds material model parameters from a single Taylor test 

experiment. Hernandez derived the normalized central geometric moments from the 

deformed shape obtained via finite element simulations and demonstrated the efficient 

solution of a first-class inverse problem.  

 

2.5 Data-driven compensation methods. 

Despite the inkjet printing process advances observed in the last decade, several 

challenges remain in the generation of dimensional accurate 3D objects. The 

differences between the digital object and the final printed product can lead to part 

tolerances not being satisfied and therefore a potential waste of time and material.  

Several strategies have been reported in the literature to improve geometric quality in 

AM. For example, by controlling inkjet printing process variables based on the 

observed variation of those variables or by controlling inkjet printing process variables 

based on the observed product deviation, or by controlling input digital product 

geometry based on the observed product deviation (Huang et al., 2014). Another 

classification to address the approaches used to eliminate or reduce the errors between 

intended and actual geometry includes physics-based modelling, parameter process 

calibration and prescriptive product design adjustment (Decker & Huang, 2019). Each 

strategy has proven to work adequately under certain conditions but there is no one 

model that fits all applications. Studies on this subject are dominated by the team of 

Huang from the University of Southern California, with some industry leading reports 

as follows: 
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Tong et al. (2008) proposed a compensation method to slice file format approach for 

3D object accuracy improvement based on compensation of slice files used in SLA 

and material extrusion processes by minimizing the sum of square of all the residual 

non-repeatable errors using conventional gradient-based methods. Later, Navangul et 

al. (2013) developed a new approach to locally reduce the CAD to STL translation 

error which reduces the form and profile error of critical features to satisfy part 

tolerances. Then, Huang et al. (2014) proposed a novel statistical method based on 

Bayesian networks to predict and compensate digital objects to improve the quality of 

both cylindrical and prismatic parts made using stereolithography technology. Next, 

Huang et al. (2016) developed a methodology to quantify pattern transfer completeness 

for multiple inkjet-printed shapes. Huang’s methodology was seen to be suitable for 

sub-micrometre manufacturing inspection systems based on pattern images 

acquisition. Also, Jin et al. (2016) proposed a predictive model to control the accuracy 

of out-of-plane deformations in a printed part using stereolithography technology. Wu 

et al. (2018) generated a data driven predictive approach to estimate surface roughness 

from material extrusion technology using random forests approach. They also 

demonstrated a real-time monitoring system to monitor the health condition of a 3D 

printer and material extrusion processes using multiple sensors, which represents the 

first attempt to build a digital twin for AM applications. Furthermore, Chowdhury et 

al. (2018) created a compensation algorithm for a STL file for 3D applications in which 

instead of using gradient based optimization, uses an artificial neural network to learn 

and predict dimensional error due to thermal gradients, then used the results to 

compensate for errors in the STL file. In addition, Decker & Huang (2019) designed a 

prescriptive product design adjustment model for 3D objects in which instead of using 

gradient based optimization, uses an ensemble of random forests to learn and predict 

dimensional error. Future work using this approach is to generate a compensation 

policy for inputs required by the FDM process. Finally, Huang et al. (2020) devised a 

strategy using machine learning for additive manufacturing (ML4AM) for enhancing 

3D printing performance. This work established a shape deviation generator as a novel 

data analytical framework through a convolution formulation to model the 3-D shape 

formation in stereolithography processes. 

In additive manufacturing technologies, one topic that is still under deep investigation 

is how to actively control the dimensional accuracy of printed objects in a timely 
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manner. The references cited in the next lines lie under two categories: efficient image 

processing techniques and data-driven inverse problems approaches. In the first 

category, Veltkamp (2001) introduced the concept of similarity measures for shape 

recognition and proposed a methodology to develop shape matching algorithms for 

shape quality evaluation; Flusser et al. (2016) proposed several algorithms to compute 

image moments for 2D and 3D image analysis and pattern recognition; Wang et al. 

(2020) developed a unified Shape-From-Shading approach for 3D surface 

reconstruction using fast eikonal solvers (Jeong & Whitaker, 2008), successfully 

quantifying 3D volume from a single image and Durou et al. (2020) used diffusive and 

specular reflection models to find shape dimensions from single and multiple images 

using photometric 3D reconstruction techniques. In the second category, Cui et al. 

(2015) proposed a data-driven projection-based model reduction technique to reduce 

the computational cost of repeatedly evaluating numerical PDE models which could 

help achieve faster compensation of 3D digital objects and Li et al. (2020) developed 

a Fourier neural operator that is up to three orders of magnitude faster than traditional 

PDE solvers and achieves superior accuracy compared to previous learning-based 

solvers under fixed resolution. Finally, Kapteyn & Willcox (2020) developed a 

methodology for creating a data-driven digital twin from a library of physics-based 

models representing various asset states using machine learning approach. 

Although significant progress has been made to model and predict the shape of planar 

objects either driven by controlling printing parameters or compensating digital 

objects to cancel shape deviations from target, most of the effort to date is in VAT 

photo-polymerisation and material extrusion technologies. In the next section we 

discuss the gaps in the knowledge found from the literature reviewed. 

 

2.6 Summary of literature and identified gaps in the knowledge. 

After performing a thorough review of the current literature regarding the physics 

behind the inkjet printing process, electronic materials compatible with the additive 

manufacturing technology, current equipment capability used in industry, physics-

based numerical methods suitable for inkjet printing, optimisation techniques and data 

driven compensation methods utilized to mitigate the distortion of 3D printed parts, 

the author has reached to the following conclusions: 
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Inkjet printing has successfully been used to fabricate microelectronic devices such as 

capacitors, transistors, and solar cells as discussed in Section 2.1. Several authors 

recognize that features such as digital design integration, contactless deposition, and 

minimal material waste are notable advantages offered by inkjet printing, but its low 

production throughput and time-consuming process to achieve accurate parts limit 

technology adoption in the printed electronics industry. The literature survey reveals 

that there is still a vast amount of research needed to develop dielectric inks with 

compatible substrates suitable for inkjet in a reliable and timely manner. The 

significant trial-and-error testing to achieve adequate, accurate and consistent printed 

electronics is currently impending realization of the potential of inkjet printing. 

Therefore, it is critical to acknowledge the reliability of functional and printable inks 

with compatible substrates; to seek a better understanding of the physics behind the 

jetting process and to develop fast and accurate modelling and optimisation methods 

to enable the full potential of inkjet technology. 

Since the scope of this investigation is limited to UV-curable dielectric inks deposited 

in non-porous flat substrates, several dielectric materials and substrates have been 

identified as potentially suitable for inkjet printing as discussed in Section 2.2. 

Regarding the dielectric materials, Poly (4–vinyl phenol) (PVP) is the most widely 

used dielectric from the literature, demonstrating the ability to produce acceptable 

tracks using inkjet printing, but unfortunately it is not stable at ambient conditions 

adding complexity to its formulation. Another dielectric material widely used in inkjet 

printing is Tri (propylene glycol) diacrylate (TPGDA) offering a good balance of 

dielectric and structural properties, reliable jetting performance, minimal volume loss 

and good thermal stability. Therefore, TPGDA is selected as the test dielectric material 

for this work. Regarding substrate selection, a clear consensus exists that the quality 

of printed parts greatly depends on the observed ink-substrate system compatibility, 

considering both wetting and adhesion behaviour. Although there is increasing 

application of flexible substrates in printed electronics such as paper, polyethylene 

naphthalate (PEN), polyethylene terephthalate (PET) and polyimide (PI), the scope of 

this investigation is limited to flat, rigid, and non-porous substrates. For this work, 

glass and nitride coated silicon wafer are the selected substrates because both have a 

non-porous, non-reactive and relatively smooth adhesive surface. 
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AM material jetting processes such as inkjet printing inherently manifest a variety of 

complex physicochemical hydrodynamic phenomena taking place in different time 

and length scales, as discussed in Section 2.1.2. Starting in the printhead side, the 

stability of the drop formation process greatly depends on the build-up energy driven 

by pressure and frequency inside the chamber, the viscosity and surface tension of the 

ink and the geometry and wetting properties of the nozzle. Then, after droplets impact 

the substrate, the complex interaction between merging drops, the surface free energy 

of the substrate and the irradiation of UV energy, which triggers the ink solidification, 

play a crucial role in defining the dimensional accuracy of the print. Within this 

context, a quantitative understanding of the competition process occurring between the 

drop coalescence timescale and the curing timescale of the photo-polymerisation is 

still to be developed. Furthermore, the highly nonlinear and transient behaviour 

governing the drop coalescence and solidification and its interaction with 

inhomogeneous substrates facilitate the generation of instabilities in the prints such as 

bulges, scallops, pores, and break-ups. Therefore, understanding and modelling the 

complex dynamics phenomena behind the jetting, deposition and solidification of 

droplets remains very challenging both experimentally and numerically.  

In addition to the inherent multiphysics and multiscale nature of inkjet printing, a 

plethora of printing process parameters must be tuned to achieve an accurate print. 

Several research studies conclude that the main parameter influencing the stability of 

single tracks and films is the drop spacing. However, the effect of printing frequency, 

standoff distance, ejection speed, surface tension, viscosity, advancing and receding 

contact angle and its combined interaction on the generation of stable printed features 

is still largely unknown. Furthermore, from the author’s point of view, there might be 

an underestimation of the role of the uncertainty in drop landing location and footprint 

size have on the surface morphology stability of printed features. Finally, there is no 

clear consensus on the limits that define whether an ink is printable or not from a 

droplet formation perspective. Therefore, a more rigorous methodology is required to 

standardize these limits and fully exploit the inkjet process potential. 

With respect to current research on theoretical models, Stringer and Derby’s theory 

(Stringer & Derby, 2010) is the most used for the validation of numerical methods 

simulating the inkjet process. Based on hydrostatic and volume conservation 

assumptions, the analytical model provides an accurate estimate of the footprint 
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diameter of single drops and the average width of single tracks as a function of droplet 

volume, static contact angle and drop spacing. However, a theoretical model useful for 

the numerical validation of films and multi-layered parts is still to be developed. In 

addition, a stability diagram for single tracks sheds some light on the limits of bulging, 

scalloping and separation, but unfortunately does not always agree with experiments 

as other factors may come into play, impacting the accuracy of the model. Thus, a 

more accurate approach to identify the stability regime for single tracks and films 

remains an area under current research. 

It is clear that in order to advance the science behind inkjet, very high resolution and 

dynamic measurements would be necessary. Despite the progress observed in ultra-

high speed digital imaging in recent years, it is still extremely challenging to visualize 

the jetting, impact, merging and spreading of inkjet-printed droplets as they are in the 

order of tens of microns interacting at frequencies over a megahertz. For this reason, 

numerical simulations have been utilized to model the jetting process, make 

predictions for control parameters, and guide experimental work. From the literature 

review, the lattice Boltzmann (LB) method is the most widely used to model droplet 

impact, spreading and coalescing phenomena in the last decade. Due to its ability to 

model free surface flows without an interface tracking scheme and its ability to run 

efficiently on massively parallel architectures, the LBM is selected to perform high 

fidelity simulations of the inkjet deposition process for this investigation. Although 

several studies report good agreement to experimental data, information about the 

solution time and computational resources employed is not provided. It is expected 

that a LB model would capture accurately the print morphology, but not in a timely 

manner. After further investigation of the application of reduced order modelling 

techniques, it is concluded that surrogate models capable to execute quickly without 

losing accuracy from the high-fidelity predictions have not been thoroughly 

investigated. 

The survey of the literature reveals a great interest in studying how to improve the 

dimensional accuracy of additive manufactured parts. Several optimisation studies 

have been reported for VAT photopolymerisation and material extrusion technologies, 

but there is little scientific evidence for the case of inkjet printing. Furthermore, most 

of the research focuses on reducing the error between the target and printed shapes by 

process parameter optimisation or geometry compensation, but there have not been 
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investigations of methods to avoid and compensate this error simultaneously. In 

addition, inverse design methods such as “Shape from Shading” have not been 

explored in the context of inkjet printing and its potential to reconstruct the 

morphology of a printed feature in real time is largely unknown. Finally, the 

development of optimization frameworks which consider not only the printing 

parameters, but the shape of the pattern to print, material properties, wetting 

characteristics and printing scan strategies to mitigate the distortion of 3D inkjet-

printed parts as a whole process requires attention to unlock the adoption of the 

technology by industry. 

Although inkjet printing has proven to be a reliable and cost-effective method to 

fabricate electronics components, the effort to find the optimal parameters to obtain a 

uniform and stable film is still remarkably high. Computational fluid dynamics 

simulations have been extensively employed to build high-fidelity models of the inkjet 

printing processes using both classical and particle-based methods with good 

correlation to experimental data; however, the simulation time to determine drop 

impact and spreading dynamics is significantly high to be used within an optimisation 

algorithm, rendering this method impractical. Surrogate models capable of fast 

execution without losing accuracy in the flow field prediction have not been 

thoroughly investigated to the best of the author’s knowledge. Furthermore, evidence 

from the literature review shows that little analytic attention has been paid to the 

influence of printing parameters and surface morphology on the final deposition 

pattern for 3D inkjet printing applications. Finally, studies about error compensation 

techniques used in additive manufacturing technologies are still scarce. There are a 

few articles providing insights of error compensation methods for VAT photo-

polymerisation and material extrusion technologies, but little scientific evidence was 

found for inkjet printing technologies.  

In summary, through the review of literature, two main gaps in the knowledge were 

identified that form the foundation of the work presented in this thesis: 

A fast and accurate methodology to predict the surface morphology of inkjet-printed 

features based on hybrid physics-based and data-driven models has not been 

developed. 
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A multi-objective optimisation approach to minimise the distortion of 3D inkjet-

printed parts with fine features considering the uncertainty of droplet size and landing 

position has not been devised. 
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CHAPTER THREE 

 

3 Materials and Experimental Methods. 

This chapter provides detailed information about the selected materials, experimental 

methods including testing artifacts design and measurement methodologies to 

characterise the surface morphology of printed features used in this research. Section 

3.1 describes materials details such as the ink formulation, physical properties and type 

of substrates and cleaning processes. The benchmark artifacts designed for validation 

purposes with overall dimensions for 2D and 3D applications; the printing setup and 

operational parameters to obtain a stable drop ejection process; the procedures to 

characterise the surface morphology of printed features using coherence scanning 

interferometry (CSI) and micro-CT scanning; and the design of experiments to assess 

the influence of printing parameters are explained in Section 3.2. 

 

3.1 Materials. 

3.1.1 Ink formulation. 

In this study, the ink formulation comprised of tripropylene glycol diacrylate 

(TPGDA) which is one of the most common acrylate monomers used for photo-

polymerisation. This UV curable low viscosity ink is utilized as structural base 

material in printed electronics applications due to its demonstrated printability, 

transparency and good mechanical and dielectric properties (He et al., 2017).  

TPGDA (a mixture of isomers containing Monomethyl Ether of Hydroquinone 

(MEHQ) and Hydroquinone (HQ) as inhibitors, technical grade) was purchased from 

Sigma Aldrich and used as received. 2,4-diethylthioxanthone (DETX) and Ethyl 4-

dimethylamino benzoate (EDB) were used as photoinitiator and accelerator, 

respectively. TPGDA was mixed with 3 wt% of DETX and 3 wt% of EDB at room 

temperature in an amber vial and then stirred at 800 rpm for 30 minutes to fully 

dissolved the initiators. The prepared ink was then sparged using nitrogen for 15 

minutes to help minimize inhibitions brought by pre-dissolved oxygen. The material 

was prepared in house by Yinfeng He. 
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3.1.2 Ink physical properties. 

TPGDA physical properties reported in literature are shown in Table 3-1. Physical 

properties were measured at a temperature of 25°C (He et al., 2017). Reference values 

from literature were employed for initial modelling assumptions, but measured values 

for density, surface tension and viscosity were derived for the analytical model. 

 

Table 3-1 TPGDA physical properties 

Physical Property Value 

Density (g/mL) 1.03 

Surface Tension (mN/m) 30.78 

Viscosity (mPa s) 10.03 

 

3.1.3 Substrates. 

In this research, two substrates were selected to carry out the experiments: glass 

microscope slides and silicon nitride coated wafers.  

Glass microscope slides with ground edges were procured from Biosigma (Venice, 

Italy). The slides have an area of 26 x 76 mm, a thickness of 1-1.2 mm and a 45 ° angle 

at corners. Before printing, glass slides were washed with detergent and wiped with 

normal paper to remove residues. Then, rinsed with ultra-purified water and 

watermarks removed with cloth. Finally, glass was rinsed with acetone, dried for 2 

minutes, and wiped with soft cloth. 

Silicon nitride coated wafers were purchased from Inseto (Andover, UK). The wafers 

have a diameter of 100 mm, a thickness of 525±25 m, P type, <100> orientation, 

Boron(B) doped, CZ grown, PRIME grade with resistivity of 1-20 ohm.cm and are 

single side polished with SEMI standard flat. Silicon nitride coating applied by low 

pressure chemical vapor deposition of thickness 200 nm on both sides. Before printing, 

wafers were rinsed with acetone, then dried using a nitrogen gun and residues removed 

by wiping with soft cloth. 

The cleaning process enabled the substrates to observe a reliable droplet spreading and 

coalescence during preliminary printing tests. 
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3.2 Experimental methods. 

3.2.1 Density. 

The density was calculated by depositing 0.5 mL of the ink with a syringe in an 

analytical balance (ABT 100-5M, KERN & SOHN GmbH, Germany) at room 

temperature, which at the time was 22°C. Five replicates of the measurement were 

performed. The ratio between the average mass and volume determined the density of 

the ink. 

3.2.2 Surface tension. 

The surface tension was measured by slowly generating a 1 mL pendant drop at the tip 

of a needle loaded in a Drop Shape Analyser (DSA100, KRÜSS GmbH, Germany) at 

a temperature of 22 °C. Five replicates of the measurement were performed. DSA 

software calculates the surface tension by fitting the theoretical curvature of the drop 

profile to the actual recorded pendant drop shape. The needle outer diameter used as 

reference size was 0.51 mm. The values used for air density and gravitational 

acceleration were 0.0012 g/mL and 9.8 m/s2, respectively. 

The static contact angle was measured by depositing a 1 mL droplet on substrates 

loaded in a Drop Shape Analyser (DSA100, KRÜSS GmbH, Germany) at a 

temperature of 22 °C. To mitigate the effect of impact, substrates were lifted to reach 

the drop from the syringe. The static contact angle was measured as soon as the droplet 

detached from the needle tip. Contact angle measurements were taken using the sessile 

drop method from DSA native software. Substrates were previously cleaned following 

the procedure described in Section 3.1.3. Ten replicates of the measurement were 

performed for each substrate. 

The advancing and receding contact angles were calculated by slowly tilting a 1 mL 

sessile drop sample until it begins to move in the downhill direction. A Drop Shape 

Analyser (DSA100, KRÜSS GmbH, Germany) with a tilting table accessory (PA3220) 

was used to perform the measurements at a temperature of 22 °C. Contact angles were 

measured immediately before actual motion of the drop takes place using DSA native 

software. A tilting rate of approximately 1 °/s was employed. Substrates were 

previously cleaned following the procedure described in Section 3.1.3. Ten replicates 

of the measurement were performed for each substrate. 
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3.2.3 Viscosity. 

The viscosity of the ink was measured with a rotational rheometer (Kinexus Pro, 

Malvern Instruments Ltd., UK) equipped with a 40 mm parallel plate geometry and 

programmed with a shear rate table between 10 s-1 and 1000 s-1 at a room temperature 

of 25°C. The plate gap was set to 150 m and each measurement was repeated three 

times. Although the shear rates during the jetting process are 2 to 4 orders of magnitude 

larger than the maximum shear rate from the rotational rheometer, the viscosity 

measurement at 100 s-1 was used in this investigation which is an accepted assumption 

considering the ink behaves as a Newtonian fluid. 

3.2.4 Artifacts design. 

3.2.4.1 2D 

Digital images of 2D artifacts were generated using a MATLAB script which takes as 

input the required pattern type, dimensions, printing origin, resolution, and image size 

in pixels. The output of the script was a bitmap (BMP) file ready to be used for the 

printer. The geometry of the artifacts was chosen to assess the capability of the printer 

to generate fine features such as corners and thin lines in a stable and consistent 

manner. Table 3-2 shows a list of the 2D artifacts used in this research, including 

schematic description and dimensions. A single pixel track artifact was selected to 

assess the effect of printing parameters on the width and thickness of the feature and 

compare results with Derby’s theoretical values. The 3-pixel track artifact was chosen 

to investigate the influence of multiple nozzles printing simultaneously on the 

dimensions of printed tracks. The solid square and circle patterns’ purpose is to 

investigate the effect of printing parameters on film dimensions and determine 

differences between in-scan and cross-scan printing directions in straight and curved 

edges. The hollowed square and circle patterns’ purpose is to evaluate the capability 

of inkjet printing to generate fine features such as internal and external corners and 

assess the minimum stable thickness of hollowed patterns. Finally, the bowtie and 

Archimedean spiral patterns, which are common structures in the printed electronics 

field, were included to determine if a large change of section will impact the material 

distribution of the film pattern and assess the minimum achievable separation between 

spirals to prevent potential short circuits, respectively. All patterns were identified to 

validate the optimal printing parameters to be derived in the investigation. 
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Table 3-2 2D testing artifacts dimensions. 

2D Artifact Schematic Dimensions 

1-pixel track 

(1 nozzle used to print) 

 

L = 1.5 mm 

Note: Artifact used for DOE 

3-pixel track 

(3 nozzles used to print) 

 

L = 1.5 mm 

Solid square film 

 

L = W = 1 mm 

Note: Artifact used for DOE 

Hollowed squared film 

 

L = W = 1.5 mm 

T = 0.2 mm 

Solid circular film 

 

D = 1.5 mm 

Ring film 

 

D = 1.5 mm 

T = 0.2 mm 

Bowtie film 

 

L = 3 mm 

W = S = 1 mm 

Spiral film 

 

D = 5 mm 

N = 12 

(Number of spiral loops) 

 

3.2.4.2 3D 

3D models were created using Autodesk Fusion 360 computer aided design (CAD) 

software. The geometry was saved in STL format and sliced using a MATLAB script 

which automatically generates a bitmap file per layer. 3D artifacts were chosen to 

evaluate the deformed geometry of layer-by-layer build-ups and understand the limits 

of DIJP to construct accurate fine features in 3D structures. Table 3-3 shows a list of 

the 3D artifacts used in this research, including schematic description and dimensions. 

A cuboid artifact was chosen to investigate the effect of multilayer printing on squared 

corners and determine the chemical shrinkage influence on regular patterns. The 

cylinder artifact was selected to assess the effect of printing parameters and multilayer 
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printing on curved edges and investigate shrinkage behaviour in fully symmetric 

patterns. The cage artifact was identified to determine the capability of DIJP to print 

thin walls and internal corners. The I-structure was selected to investigate the material 

redistribution during DIJP when change of sections happen as well as the impact on 

the dimensions of features with small angles. The last artifact is a sensor package 

designed by TI which incorporates actual manufacturing dimensions and tolerances 

and evaluates the capability of DIJP to print fine features such as channels, vertical 

slots, and cone holes. All artifacts were identified to validate the optimal printing 

parameters and the geometry compensation approach to be derived in the investigation. 

 

Table 3-3 3D artifacts dimensions 

3D Artifacts Schematic Dimensions 

Cuboid 

 

L = W = 2 mm 

H = 0.75 mm 

Cylinder 

 

D = 1 mm 

H = 0.9 mm 

Cage 

 

L = 2 mm 

H = W = 1 mm 

T = 0.2 mm 

I-structure 

 

L = W = H = 1 mm 

Hb = 0.2 mm 

Lp = 0.4 mm 

 = 15 ° 

H-structure 

 

L = 1 mm; W = 0.5 mm 

H = 1.5 mm 

Lp = 0.2 mm 

Hp = 0.4 mm; Hf = 0.5 mm 

HH = 0.2 mm;  = 15 ° 

TI Temperature 

Sensor 

Packaging 

 

L = W = 2.5 mm 

H = 0.8 mm; La = 0.5 mm 

Lc = 0.4 mm; Lb = 0.3 mm 

Do = 1 mm; Di = 0.7 mm 

Hc = 0.5 mm 
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3.2.5 Printing. 

The formulation based on TPGDA was printed with a Dimatix DMP-2830 material 

printer at ambient pressure and temperature (1 atm, 20 °C). The ink was injected into 

a print cartridge (DMC-11610) which was then fixed to a printhead consisting of 16 

nozzles of 21 m in diameter. To keep nozzles clear and functioning properly, every 

start of printing, nozzles were jetted for 500 ms at 1.5 kHz, then purged for 1 s at 5 psi 

and jetted again for 500 ms at 1.5 kHz followed by nozzle plate contact with cleaning 

pad to remove fluid residue. Stable droplets were obtained through adjustment of the 

pressure-generating waveform shown in Figure 3-1a with a peak printing voltage of 

25 V yielding droplets of 10 pL in volume. The droplet velocity was set at 6 m/s and 

aligned for selected series of working nozzles, which was measured using real time 

observations of the jetted drops obtained directly from the printer drop watcher 

software as illustrated in Figure 3-1b.  

 

 

The substrate was fixed to the printer base platform at the top left corner using masking 

tape. Substrate temperature was kept at room temperature (20°C) with vacuum 

functionality turned off and substrate thickness set at 1.20 mm and 0.55 mm for the 

glass microslide and silicon wafer, respectively. The pattern to print was loaded as a 

bitmap file created with required resolution, setting the printing reference point 

location at upper left corner. Before jetting the pattern, the cartridge mounting angle 

(sabre angle) was adjusted to the corresponding drop spacing resolution and a drop 

offset calibration procedure was performed following the printer manual. Finally, a 

Figure 3-1 a) Jetting waveform and b) Jetted drops velocity measurement 
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physical reference point in the substrate was defined using the fiducial camera tools so 

that the reference point of the bitmap pattern is aligned and printed at this location on 

the substrate.  

When launching the job, the printing unit was located at the platform origin (top left 

corner) and the printing direction fixed from left to right (X direction) and then from 

top to bottom (Y direction) as depicted in Figure 3-2. The printing unit consists of a 

printhead and a UV LED unit, which moves together in the printing direction. 

Photocurable ink droplets were deposited onto the substrate and the UV unit scanned 

across the printed area following the printhead. The UV energy triggered the photo-

polymerisation process to transform the liquid monomer ink to a solid. The fixed 

distance between the UV unit and printhead was 45 mm. The UV unit had a 

wavelength of 365 nm with eleven UV levels that control the light intensity. All 

printing jobs were carried out using the maximum UV level which corresponds to a 

light intensity of 1245 W/m2. 

 

 

Once the printed job was completed, images of the feature were taken using the 

fiducial camera which had a resolution of 2.54 m per pixel and a field of view width 

of 1.62 mm and height of 1.22 mm. The camera was set on dark field mode with the 

light intensity slider almost all the way to the left to optimize the contrast of the image. 

For this investigation, the cartridge print height, nozzles to use, jetting frequency and 

drop spacing resolution were varied to understand its effect on the surface morphology 

of printed artifacts. 

Figure 3-2 Printing mechanism of a DIMATIX DMP-2830 Inkjet printer 
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3.2.6 Optical microscopy. 

A Nikon Eclipse LV100ND Optical Microscope was used to measure single drops 

footprint diameter and height. To estimate the droplet height multiple images at 

different focus points were taken and a 3D model was built up from the data utilizing 

Z-series option in manual mode. MATLAB script was used to visualize and measure 

the droplet morphology and to extract boundary edges and cross-sections for further 

analysis. 

3.2.7 Coherence scanning interferometry. 

Droplet size and surface morphology of the printed samples were obtained using a 

ZYGO NewView™ 8300 Coherence Scanning Interferometry (CSI) system. 

Measurements were taken at a controlled temperature of 20°C, isolated from noise and 

dust, and using an objective lens with magnification of 20x. Surface morphology of 

printed features was provided in text file format containing x, y, and z coordinates for 

further analysis.  

Printed specimens were measured by Mr. Nathan Roberts (University of Nottingham) 

3.2.8 Micro-CT scanning. 

Micro CT scanning of the testing artifacts was carried out on a Nikon microCT scanner 

(Derby, UK) with typical X-ray beam settings of 51 kV and a 92 mA current, 1000 ms 

exposure time, two frames, and 3142 projections. Samples were mounted on a foam 

sample holder. No filtering was implemented, and the calculated scan resolution was 

6.2 μm. The Nikon CT-Pro software was used to reconstruct the samples. MATLAB 

script was used to remove the support structure, visualize, and measure the printed 3D 

objects. 

3.2.9 Droplet volume. 

Using the Dimatix Drop Manager software, the volume of an individual drop was 

calculated by jetting a specific number of drops into a preweighed vial. The net weight 

of the jetted drops was found by reweighing the vial in an analytical balance (ABT 

100-5M, KERN & SOHN GmbH, Germany) and subtracting the empty vial weight at 

room temperature, which at the time was 23 °C. The ratio between the net weight and 

the number of jetted drops determined the average weight of each drop. The volume 
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of an individual drop was calculated using the ink’s density. To accurately measure 

the weight of jetted drops, the jetting time was set at 50 s for 11610 cartridge and at 

210 s for samba cartridge. Four nozzles jetting at 5 kHz were selected to perform the 

calculation in both cartridges.  

3.2.10 Determining droplet footprint diameter, position accuracy and precision. 

To determine the jetting process capability, basic statistics regarding the droplet 

landing position and size were measured using an image of an array of drops taken by 

the Dimatix fiducial camera and MATLAB software to extract feature dimensions 

using image analysis. 

A 10 x 10 array of drops was printed on a cleaned substrate by setting a large enough 

drop spacing to avoid drop coalescence, selecting the minimum printing frequency and 

standoff distance required for a stable drop formation and using a single nozzle. Before 

capturing the grid image, tuning the position, focus, and brightness of the fiducial 

camera was required to achieve the highest contrast image possible. The resulting 

image was analysed using an app programmed in MATLAB to measure footprint 

diameter (average, range, and standard deviation) and the distance between drop 

centres along in-scan and cross-scan directions (average and standard deviation). The 

drop position bias (accuracy) was calculated by subtracting the average drop spacing 

from the actual value defined in the target pattern. The drop landing position precisions 

along the in-scan and cross-scan direction were calculated by averaging the drop 

spacing standard deviation in the corresponding direction. An Anderson-Darling 

normality test was carried out to validate that measured data follows a normal 

distribution. Three replicates of the measurement were performed and values for 

footprint diameter and landing position accuracy and precision were averaged. 

This procedure is critical for model calibration purposes. 

3.2.11 Determining theoretical static contact angle and layer thickness 

assuming a spherical cap shape and volume conservation. 

With the measured values of the droplet volume and footprint diameter, the droplet 

height and static contact angle were calculated assuming the deposited droplet has a 

spherical cap shape, and that volume is conserved. First, the droplet height was 

determined by solving iteratively Equation (6). Then, the radius of the sphere defining 



58 

 

the cap was computed using Equation (7) and the spherical cap contact angle was 

determined by Equation (8) 

 
𝑉𝑑𝑟𝑜𝑝 = 

𝜋ℎ

6
(3𝑟2 + ℎ2) 

(6) 

 

 
𝑅 =

𝑟2 + ℎ2

2ℎ
 

(7) 

 

 sin 𝜃𝑡ℎ = 
𝑟

𝑅
 

(8) 

 

With the measured values of droplet volume and feature footprint area, together with 

the total number of drops and drop spacing defined by the target pattern, the theoretical 

layer thickness was calculated assuming that volume is conserved, and the final shape 

has a spherical cap cross section. First the total volume of ink was determined by the 

product between the measured droplet volume and the total number of drops in the 

selected pattern to print. Then, the total area was estimated by the product of the 

measured footprint area and the square of the drop spacing. Finally, the layer 

theoretical centroid along the z direction was determined using Equation (9) and the 

theoretical layer thickness ℎ𝑡 was calculated by solving iteratively Equation (10). 

 
𝑧̅ =

𝑁 ∗ 𝑉𝑑𝑟𝑜𝑝

𝑑𝑠2 ∗ 𝐴𝑓𝑝
 

(9) 

 

 
𝑧̅ =

 3(2𝑅 − ℎ𝑡)
2

4(3𝑅 − ℎ𝑡)
 

(10) 

 

3.2.12 Determining printing parameters effect on the stability of single tracks 

and square films. 

A Central Composite Design (CCD) was employed to investigate the effect of critical 

parameters of the inkjet printing process including drop spacing, printing frequency 

and standoff distance. The surface morphology stability of single tracks and square 

films characterised by the average and maximum width, length and thickness were 

selected as the response variables. The experimental design built a second order 

(quadratic) model for each response variable that enabled the effect quantification of 
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the parameters and its interactions among them using statistical techniques. Printing 

parameters bounds were chosen based on the region of inkjet printing operability of 

interest. The matrix of experiments performed for the study of single tracks and square 

films are shown in Table 3-4 and Table 3-5, respectively. Experiments were carried 

out in a random order. Details about the dimensions of the single track and square film 

used in the parametric study can be found in Section 3.2.4.1. Using Dimatix fiducial 

camera, an image was captured for each feature for further post processing of the 

surface morphology using MATLAB app. 

 

Table 3-4 Matrix of experiments for single tracks 

Run 

# 

Drop spacing 

(m) 

Printing frequency 

(kHz) 

Standoff Distance 

(mm) 

1 40 2.5 1 

2 40 2.5 1.5 

3 40 4 1 

4 10 1 0.5 

5 40 2.5 1 

6 40 2.5 1 

7 40 2.5 1 

8 70 2.5 1 

9 10 1 1.5 

10 40 2.5 1 

11 70 4 1.5 

12 70 1 0.5 

13 40 2.5 1 

14 10 4 1.5 

15 40 2.5 0.5 

16 10 4 0.5 

17 40 1 1 

18 10 2.5 1 

19 70 1 1.5 

20 70 4 0.5 
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Table 3-5 Matrix of experiments for square films 

Run 

# 

Drop spacing 

(m) 

Printing frequency 

(kHz) 

Standoff Distance 

(mm) 

1 30 2 1 

2 30 2 1.5 

3 30 3 1 

4 10 1 0.5 

5 30 2 1 

6 30 2 1 

7 30 2 1 

8 50 2 1 

9 10 1 1.5 

10 30 2 1 

11 50 3 1.5 

12 50 1 0.5 

13 30 2 1 

14 10 3 1.5 

15 30 2 0.5 

16 10 3 0.5 

17 30 1 1 

18 10 2 1 

19 50 1 1.5 

20 50 3 0.5 

 

After performing the experiments, all features were measured using coherence 

scanning interferometry as discussed in Section 3.2.7 and the results fed to the CCD 

matrix; then, least-squares regression analysis was performed to obtain the coefficients 

of the quadratic transfer function that relates each response variable to the drop 

spacing, printing frequency and standoff distance. Finally, the statistical validity of the 

transfer function was assessed using adjusted R2 and mean square error as performance 

indicators, and significant effects were determined. 
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CHAPTER FOUR 

 

4 Computational Methods. 

In this chapter, the computational and analytical methods implemented in this research 

are presented to the reader. The chapter is divided into six sections: physics-based 

models, data-driven models, surrogate methods, optimisation techniques, analytical 

models, and hybrid approach. The lattice Boltzmann multiphase flow model and the 

finite element chemo-thermo-mechanical model implementation are documented in 

the physics-based section. The 'shape from shading’ inverse problem and the image 

analysis-based methods used to reconstruct the surface morphology of a printed feature 

are described in the data-driven section. The surrogate model, based on a response 

surface methodology, is described next. There follows, a description of a series of 

analytical models that were used to incorporate the effects of droplet location and size 

uncertainty, flow dynamics behaviour and UV exposure time into the overall 

modelling framework. Finally, a hybrid methodology to perform the prediction of 

single and multilayer parts in a holistic manner is proposed. 

4.1 Physics-based prediction models. 

Modelling the deposition and solidification of droplets involves the solution of 

complex equations describing multiphase flow and photo-polymerisation phenomena, 

as discussed in Section 2.1. In this work, the deposition process which includes the 

impact, spreading, and merging of droplets was simulated using the lattice Boltzmann 

method. The solidification process which includes the cross-linking of monomers 

triggered by UV light was simulated using a semi-coupled chemo-thermo-mechanical 

finite element approach. Details about the implementation of both models are 

described below. For details about LB and FE theory, the reader is referred to the work 

of Huang et al. (2015) and Zienkiewicz et al. (2013), respectively. 
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4.1.1 Modelling droplet impact, spreading and coalescing in inkjet printing. 

4.1.1.1 Governing equation. 

The deposition of droplets in inkjet printing was simulated using the discretized lattice 

Boltzmann transport equation, given by, 

 𝑓𝑖(�⃗� + 𝑒𝑖𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝑓𝑖(�⃗�, 𝑡) =  Ω𝑖(�⃗�, 𝑡)𝛿𝑡 + 𝑆𝑖(�⃗�, 𝑡)𝛿𝑡 (11)  

 

where 𝑓𝑖 is the particle distribution function representing the fluid density, �⃗� is the 

particle position vector, 𝑒𝑖 is the particle microscopic velocity vector in the ith 

direction, t is the time step, Ω𝑖 is the collision operator and 𝑆𝑖 is the forcing term in 

velocity space. Equation (11) describes the motion of particle distributions under the 

influence of external forces and particle collisions. In this study, the Boltzmann 

transport equation was employed to simulate the impact, spreading and coalescing of 

droplets on flat, non-porous substrates. 

 

4.1.1.2 Model implementation. 

The algorithm used to implement the lattice Boltzmann model in this investigation is 

depicted in Figure 4-1. Material properties, LB configuration parameters, simulation 

parameters and boundary conditions are required to set-up the model. The propagation 

of initial particle distributions to neighbouring nodes is first performed, followed by 

the macroscopic density and velocity fields calculation and the boundary bounce-back 

execution. Then, the maxwell equilibrium distribution function is obtained assuming 

2nd order Taylor expansion and the interaction forces are determined. Finally, the 

collision of particle distributions is carried out and the results are recorded in an output 

file. The cycle is repeated until the last time step or convergence has been reached. 

The LB method was programmed in MATLAB to benefit from efficient matrix 

manipulation and results post-processing. 
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A single component, multiphase pseudopotential scheme was selected following a 

discrete velocity stencil D3Q19. The pseudopotential scheme assumes a microscopic 

interparticle force calculated only from nearest neighbours’ interaction which leads to 

the macroscopic separation of phases. To enable the simulation of fluid systems with 

large density ratios, the Carnahan-Starling equation of state (Kupershtokh et al., 2009) 

was selected. Furthermore, a multiple relaxation time (MRT) collision operator was 

implemented to improve the accuracy and numerical stability of the simulation at large 

density ratio, together with an improved forcing scheme (Li et al., 2013) extended to 

moment space (Zhang et al., 2014) to control model thermodynamic consistency. Also, 

an additional source term to adjust surface tension independently of density ratio was 

included in the model (Ammar et al., 2017). All equations used to develop the code 

are included in Appendix 11.1.1. 

 

4.1.1.3 Numerical validation. 

Since the lattice Boltzmann method approximates the solution of the Navier Stokes 

equations using kinetic theory, several benchmark tests were performed to validate the 

numerical model with analytical results such as thermodynamic consistency and 

mechanical stability at large density ratios, surface tension agreement with Laplace’s 

law, 2nd order spatial accuracy model response and static contact angle and contact 

angle hysteresis evaluation. Benchmark tests used Carnahan-Starling equation of state 

with parameters fixed at a=0.25, b=4, R=1 and strength parameter G=-0.333 to ensure 

positivity of the square root of the pseudopotential function. For the MRT model, the 

relaxation parameters s1, s4, s6 and s8 and the free parameters s11, s13, s17, s18 and 

Figure 4-1 Lattice Boltzmann implementation flowchart. 
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s19 were set to 1.0. The relaxation parameters s2, s3, s5, s7, s9 were set to 1.1. These 

parameters influence the diffuse interface width and careful selection is critical for 

numerical stability and accuracy. As shown in Figure 4-2, results from benchmark tests 

agree with analytical solutions which confirm the validity of the numerical solution. 

Benchmark tests details are included in Appendix 11.1.2 for reference. 

 

 

4.1.1.4 Simulation of printing single tracks. 

Single tracks were simulated using four sequential and equally spaced impacting 

droplets on a solid, dry, flat, and non-porous substrate, as illustrated in Figure 4-3. All 

droplets were initialised with the same impact speed and volume. The height of the 

first drop (H0) was set at 20 m. Drop spacing (ds) along the printing direction, drop 

Figure 4-2 Lattice Boltzmann benchmark tests. a. Analytical vs numerical coexisting densities. b. Validation of 

the capability to model density ratio up to 870 when parameter  = 0.319. c. Laplace’s law validation, model is 

capable to modify surface tension independently of density ratio by tuning parameter . d. Validation that model 

is second order accurate in space. e. Static contact angle varies linearly to the artificial wall density enabling the 

model to handle different wetting conditions. f. Analytical vs numerical static contact angle shows excellent 

agreement. g. Drop simulations for different wetting conditions. I. Lyophobic surface. II. Neutral surface. III. 

Lyophilic surface. IV. Two sequential drops with contact angle hysteresis included. V. Two sequential drops 

without contact angle hysteresis. 
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spacing (dh) along the vertical direction, advancing (a) and receding (r) contact 

angles were selected as simulation variables to study their effects on the stability of 

single tracks.  

 

 

A summary of the fluid properties, droplet characteristics and relevant dimensionless 

numbers employed in the simulation is shown in Table 4-1. 

 

Table 4-1 Fluid properties, simulation parameters and relevant dimensionless numbers 

Description Value 

Density () 1030 kg/m3 

Viscosity () 10.0 mPa s 

Surface Tension () 30.8 mN/m 

Density ratio 870 

Dynamic viscosity ratio 542 

Droplet impact velocity (U0) 6 m/s 

Droplet in-flight volume (Vdrop) 10 pL 

Droplet in-flight diameter (d0) 26.7 m 

Reynolds (Re) 16.5 

Weber (We) 32.2 

Printability Parameter (Z) 2.91 

Bond (Bo) 5.86e-05 

 

Material properties and simulation parameters were input in SI units. Time and space 

discretization were determined using the droplet in-flight diameter, Re and We 

numbers. Lattice Boltzmann parameters were fixed at R=1, a=0.25, b=4 and 

T/Tc=0.4898 to achieve a density ratio of 870. To ensure mechanical stability and 

achieve the required surface tension, the parameters  = 0.319 and  = 0.89 were 

chosen. The relaxation parameters s1, s4, s6 and s8 and the free parameters s11, s13, 

s17, s18 and s19 were set to 1.0. The relaxation parameters s2, s3, s5, s7, s9 were set 

 

 

 

H0

  

ds

    

Figure 4-3 Single tracks modelling assumptions. 
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to 1.1 to match the kinematic viscosity and drop speed accordingly. The maximum 

physical size simulated was 235 m x 100 m x 120 m considering four equally 

spaced spherical droplets with high phase density in a surrounding domain with low 

phase density. In addition, equilibrium particle distributions and velocity fields were 

set to zero, except the droplet domains which are falling with an impact velocity of 6 

m/s. A half-way bounce-back rule was applied at bottom boundary to simulate no-slip 

condition and periodic boundary conditions were implemented in the rest of the 

boundaries. To control the surface wettability, the desired contact angle was imposed 

at different surface lattice sites of the solid boundary as depicted in Figure 4-4. Contact 

angle hysteresis was modelled using two wall boundary conditions triggered by a 

threshold parameter on density while the contact line expands or contracts during the 

simulation.  

 

 

The convergence criterion used in this study was determined by Equation (12) where 

the summation was taken over the whole computational domain.  

 ∑|𝑢𝑥(𝑡) − 𝑢𝑥(𝑡 − 500∆𝑡)| + |𝑢𝑦(𝑡) − 𝑢𝑦(𝑡 − 500∆𝑡)| + |𝑢𝑧(𝑡) − 𝑢𝑧(𝑡 − 500∆𝑡)|

∑|𝑢𝑥(𝑡)| + |𝑢𝑦(𝑡)| + |𝑢𝑧(𝑡)|

≤ 10−6 

(12) 

 

A text file was generated containing the simulation results which includes x, y and z 

coordinates, density, velocity field, pressure, and interaction forces for every 1000 

timesteps and when convergence criteria was reached. From the last results file (i.e., 

Figure 4-4 Boundary conditions schematic for single track simulation. 
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at convergence), the surface morphology of the single track was segmented and 

measured using a MATLAB in-house script. 

 

4.1.1.5 Simulation of printing square films. 

Square films were simulated using a 4x4 array of sequential and equally spaced 

impacting droplets on a solid, dry, flat, and non-porous substrate, as illustrated in 

Figure 4-5a. All droplets were initialised with the same impact speed and volume. The 

height of the first column of drops (H0) was set at 20 m. This droplet configuration 

mimics the inkjet process using multiple nozzles simultaneously. Drop spacing (ds) 

along the printing direction, line spacing (ls) perpendicular to printing direction, drop 

spacing (dh) along the vertical direction, advancing (a) and receding (r) contact 

angles were selected as simulation variables to study their effects on the stability of 

square films. The maximum physical size simulated was 300 m x 300 m x 150 m 

with boundary conditions illustrated in Figure 4-5b. The rest of the modelling 

assumptions followed the same process described to simulate single tracks. 

 

 

4.1.2 Modelling the deformation of UV curable materials in inkjet printing. 

4.1.2.1 Governing equations. 

The deformation of inkjet-printed parts made from photocurable polymers is a 

complex multiphysics and multiscale process involving irradiation, photo-

polymerisation, and thermo-mechanical behaviour of materials. Conservation of mass, 

Figure 4-5 Square film. a. Modelling assumptions, b. Boundary conditions 
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momentum and energy coupled with photo-polymerisation reaction kinetics relations 

and material constitutive laws must be solved simultaneously to fully simulate the 

process. In addition, other computational challenges arise due to different length and 

time scales observed in the physical process. Therefore, in this investigation an 

alternative modelling strategy is proposed to facilitate the prediction of the 

deformation observed in 3D inkjet-printed parts using a semi-coupled photo-

polymerisation and structural finite element approach. 

The photo-polymerisation process was modelled using a semi-empirical approach 

developed by Zhao et al. (2021) based on experimental work performed on TPGDA 

films. The model predicts the degree of monomer consumption as a function of UV 

dosage, which is expressed as follows,  

 𝜒 = 𝜒𝑚𝑎𝑥,𝑝(1 − 𝑒𝑘𝑟,𝑝𝜆) +
𝜒𝑚𝑎𝑥,𝑎

(1 + 𝑒𝑘𝑟,𝑎(𝜆−𝜆𝑐)
 (13) 

 

where  is the degree of monomer consumption,  is the UV dosage and 

𝜒𝑚𝑎𝑥,𝑝, 𝜒𝑚𝑎𝑥,𝑎, 𝑘𝑟,𝑝, 𝑘𝑟,𝑎 𝑎𝑛𝑑 𝜆𝑐 are fitting parameters obtained using experimental 

results. The first term of Equation (13) considers the classical theory of free radical 

polymerization and the second term, the auto-acceleration (Trommsdorff-Norrish) 

effect. Furthermore, to consider the light attenuation effect influencing the UV dosage 

in multilayer printing, the total UV radiation dose 𝜆𝑛 of any printed point at layer n 

can be estimated as, 

 

𝜆𝑛 = 𝜆𝑈 + ∑ 𝜆𝐴,𝑛−1

1

𝑛−1

 

(14) 

 

where 𝜆𝑈 is the unattenuated UV radiation dose of the full X-Y pattern and 𝜆𝐴 is the 

attenuated UV radiation dose. In this investigation, the kinetic model described by 

Equation (13) was used to determine the degree of curing of printed layers employing 

the cumulative UV radiation dose with light attenuation described by Equation (14). 

The reader is referred to the work of Zhao et al. (2021) for full details on the photo-

polymerisation mechanism, assumptions and full set of relevant equations. For a 

comprehensive review of the free radical photo-polymerisation process incorporating 
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heat and mass transfer effects, the reader is referred to the work of Leistner et al. 

(2020). 

The structural model considers two aspects of the evolution of the mechanical 

properties: shrinkage due to the photo-polymerisation and the evolution of material 

properties during solidification. The model is assumed isothermal under an elastic 

constitutive behaviour. The governing equations that describe the mechanical 

behaviour of materials solved in this investigation are the quasi-static linear 

momentum balance (Equation (15)) and Hooke’s law (Equation (16)). 

 ∇ ∙ �⃗� + 𝑓 = 0 (15) 

 

 �⃗� = 𝐶: 𝜀𝑒 (16) 

 

where �⃗� is the stress tensor, 𝑓 is the body force, 𝐶 is the elastic stiffness tensor and 𝜀𝑒 

is the elastic strain tensor. The chemically induced cure shrinkage strain tensor 𝜀𝑐ℎ, the 

total strain tensor 𝜀𝑡𝑜𝑡 and Young’s modulus 𝐸(�⃗�) were modelled respectively as: 

 
𝜀𝑐ℎ =

1

𝜒𝑚𝑎𝑥
𝜒𝜀𝑐ℎ,𝑚𝑎𝑥𝐼 

(17) 

 

 𝜀𝑡𝑜𝑡 = 𝜀𝑒 + 𝜀𝑐ℎ (18) 

 

 

𝐸(𝜒) = {

𝑒0𝐸𝑝𝑜𝑙 , 𝜒 < 𝜒𝑔𝑒𝑙

((
1 − 𝑒0

𝜒𝑚𝑎𝑥 − 𝜒𝑔𝑒𝑙
) (𝜒 − 𝜒𝑔𝑒𝑙) + 𝑒0)𝐸𝑝𝑜𝑙 , 𝜒 ≥ 𝜒𝑔𝑒𝑙

 

(19) 

 

where 𝜀𝑐ℎ,𝑚𝑎𝑥 is the strain at maximum degree of curing 𝜒𝑚𝑎𝑥, 𝐼 is the unity tensor to 

account for the volumetric shrinkage, 𝑒0 ≪ 1 is a factor used to reduce the 

polymerized Young’s modulus 𝐸𝑝𝑜𝑙 for the case when the degree of curing is less than 

the gel point 𝜒𝑔𝑒𝑙. The resulting stiffness matrix was isotropic, and the Poisson’s ratio 

was assumed constant. The structural mechanics model described above was employed 

by Westbeek et al. (2021) to model the evolution of the mechanical properties in a vat 

photo-polymerisation application. 
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4.1.2.2 Model implementation. 

To simulate the deformation of 3D inkjet-printed components made from photocurable 

materials, a semi-coupled chemo-mechanical finite element model was implemented 

in ABAQUS (Simulia, Providence, RI) following the process shown in Figure 4-6. 

 

 

The modelling starts with the definition of the geometry which could be created using 

ABAQUS part module or importing a CAD model. Then, the geometry is sliced 

considering an estimated layer thickness representative of the actual value obtained 

from the inkjet printing process. Next, a structured mesh of 8-noded hexahedral shaped 

elements is created with a uniform size of 0.002 mm. In the bottom surface a fixed 

displacement boundary condition is applied. To simulate the sequential layer 

deposition observed in the inkjet printing process, multiple simulation restarts 

corresponding to the number of layers in the part were created. At each restart, the 

mesh elements from the deposited layer are activated and combined with the mesh 

Figure 4-6 Finite element implementation flowchart. 
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elements of layers beneath using the inactive element method (Denlinger & Irwin, 

2014). Before launching the simulation, all elements are deactivated except for the 

elements in the domain of the first layer. Then, a user material subroutine (UMAT) is 

called to calculate the degree of curing, chemical strains and Young’s modulus 

required to determine the deformation and stress of the structure. After the first layer 

is cured, the elements in the second layer are activated and material properties updated 

accordingly. This process is repeated until the last layer is processed. Finally, nodal 

and element displacements and stresses are saved for further post-postprocessing. 

An alternative implementation to the semi-coupled finite element approach described 

above was devised to accelerate the numerical process. The approach is based on the 

solution of the thermal expansion phenomenon. First, instead of solving the degree of 

curing and the evolution of mechanical properties in a transient manner within the 

elemental domain, the degree of curing is calculated analytically using MATLAB and 

input as a body load distribution to the FE domain. To account for the photo-

polymerisation shrinkage, an effective coefficient of expansion (in this case 

contraction) is calculated as the ratio of the total chemical strains (Equation (17)) and 

the difference between an artificial temperature load and reference temperature. To 

account for the material property evolution, the Young’s modulus is updated at every 

simulation restart employing the analytically determined distribution of degree of 

curing as input for Equation (19). The simulation of the layer-by-layer inkjet printing 

process using the inactive element method remains unchanged.  

 

4.1.2.3 Mesh size determination. 

Due to the computationally intensive process observed in finite element analysis, a 

balance between accuracy and solution time is required through the adequate selection 

of the mesh size. To determine an element size that would not compromise the 

accuracy of the results, a mesh convergence study was performed assuming static and 

linear elasticity conditions. A TPGDA plate (0.5 x 0.5 x 0.01 mm) discretized with 8-

noded hexahedral elements and fixed displacements on bottom surface was subjected 

to a uniform pressure load of 1 MPa on top surface as shown in Figure 4-7a. The 

following mesh sizes were evaluated in the study: 0.020, 0.015, 0.010, 0.005. To assess 

the convergence of the mesh, displacements and stresses were extracted from the linear 



72 

 

region defined in Figure 4-7a. Results showed that displacements and stresses at region 

of interest converged as the mesh density increased while reaction forces at bottom 

surface are balanced as illustrated in Figure 4-7c-d. For this investigation, the domain 

was discretized using an element size of 0.005 mm for further FE simulations. 

 

 

4.1.2.4 Simulation of printing rectangular cage. 

The cage artifact described in Section 3.2.4.2 was chosen to benchmark the accuracy 

of the finite element simulation. The geometry was sliced in 50 layers along the width 

direction, assuming a layer thickness of 0.01 mm. The domain was discretized with a 

static mesh of uniform 0.005 mm 8-noded hexahedral elements. Fixed displacements 

on the bottom surface were applied. Relative displacement and residual force 

convergence tolerances were both set at 1e-4, large displacement, non-linear geometry 

effects and line search were included. For the UV dosage calculation, a unidirectional 

printing direction starting at the top left corner and moving from left to right and then 

from top to bottom was assumed, as shown in Figure 4-8.  

 

Figure 4-7 Mesh convergence study: a. Boundary conditions; b. Displacements magnitude distribution; c. 

Displacements at region of interest for multiple element sizes; d. Von Mises stress at region of interest varying 

mesh size. 
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Fitted parameters for Equation (13) to calculate the degree of curing are shown in 

Table 4-2.  

Table 4-2 Fitted parameters for degree of curing estimation. 

Parameters Value 

𝜒𝑚𝑎𝑥,𝑝 0.2079 

𝜒𝑚𝑎𝑥,𝑎 0.5729 

𝑘𝑟,𝑝 -0.0083 

𝑘𝑟,𝑎 -0.1258 

𝜆𝑐 14.0719 

 

For the material property evolution, the volumetric shrinkage of TPGDA was assumed 

to be 9.5% based on the average values found in the literature (Schmidt & Scherzer, 

2015)(Chen et al., 2018). Young’s modulus of the fully polymerized material was set 

to 575 MPa from experimental compression tests performed by He et al. (2017) and 

the reduced Young’s modulus was estimated setting 𝑒0 = 0.05, the Poisson’s ratio was 

assumed constant with a value of 0.38, the gel point was assumed to occur at a degree 

of curing of 0.4 and the maximum degree of curing achievable based on experimental 

results from Zhao et al. (2021) was set to 0.8. Mesh and boundary conditions are 

illustrated in Figure 4-9. 

 

Figure 4-8 Printing strategy. 
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4.2 Data-driven prediction models. 

In section 4.1, theoretical models resulting from deriving partial differential equations 

based on conservation laws and physical principles were developed to simulate the 

inkjet printing deposition and solidification processes. These models attempt to mimic 

reality using a feedforward approach, ergo, without relying on physical measurements 

of the process. In this section, data driven models to predict the deformed geometry of 

inkjet-printed films are described that use two photometric 3D reconstruction 

techniques: shape-from-shading and shape-from-minimum-energy. Shape-from-

shading infers the geometry of a scene from a single image by inverting a reflection 

model describing the image formation. Shape-from-minimum-energy builds the 

geometry of a scene by image analysis assuming a spherical cap cross section. For a 

comprehensive review of photometric reconstruction techniques, the reader is referred 

to the work of Durou et al. (2020). 

4.2.1 Shape from Shading surface reconstruction. 

4.2.1.1 Governing equations. 

The shape-from-shading problem was modelled assuming an orthographic camera 

projection and frontal lighting, motivated by the work of Wang et al. (2020). The 

system of equations to infer the 3D surface (𝑧(𝑥, 𝑦)) of a given image implemented in 

this investigation is, 

 𝐼(𝑥, 𝑦) =  𝜔𝑑(𝐴 cos 𝜃𝑖 + 𝐵 sin2 𝜃𝑖) + 𝜔𝑠 cos𝑛 𝜃𝑖 (20) 

Figure 4-9 Mesh and boundary conditions of rectangular cage. 
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cos 𝜃𝑖 = 

1

√1 + ‖∇𝑧(𝑥, 𝑦)‖2
        sin2 𝜃𝑖 =

‖∇𝑧(𝑥, 𝑦)‖2

1 + ‖∇𝑧(𝑥, 𝑦)‖2
 

(21) 

 

 
𝐴 =  1 −

0.5𝑠2

𝑠2 + 0.33
                  𝐵 =  

0.45𝑠2

𝑠2 + 0.09
 

(22) 

 

 

‖∇𝑧(𝑥, 𝑦)‖ = √
1

𝐼(𝑥, 𝑦)2 − 1
 

(23) 

 

 𝑧(𝑥, 𝑦) =  Γ(𝑥, 𝑦) (24) 

 

The image irradiance model represented by Equation (20) was derived as the linear 

combination of the Oren-Nayar and Blinn-Phong reflectance models, where 𝜔𝑑 and 

𝜔𝑠 are weighting factors for the diffuse and specular reflections, respectively; A and B 

are coefficients to account for the effect of surface roughness; and n is a factor 

controlling the surface shininess. These parameters were employed to characterise the 

reflectance map of the image. The 3D reconstruction of the surface was achieved by 

the solution of the eikonal PDE type described by Equation (23) subjected to a 

Dirichlet boundary condition based on a shape prior (Γ(𝑥, 𝑦)) expressed in Equation 

(24) to avoid convex/concave ambiguity. Two efficient numerical approaches were 

employed to solve the eikonal PDE: Lax-Friedrichs finite difference scheme (Durou 

et al., 2020) and first-order Godunov scheme (Wang et al., 2020) both accelerated by 

the fast sweeping method. 

4.2.1.2 Model implementation. 

The shape-from-shading problem flow chart used in this investigation is illustrated in 

Figure 4-10. The algorithm was implemented in MATLAB. 
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The process starts with the definition of the ground truth surface, the selection of the 

finite difference scheme and the optimisation method. The ground truth surface is only 

required once for calibration purposes. Then, initial values for the reflectance map 

parameters are set to create a synthetic grayscale image representative of the ground 

truth. To limit the domain to where the surface reconstruction is required, a mask for 

the grayscale image is generated by turning pixels outside of the region of interest to 

black. The mask is employed as a boundary condition for the eikonal PDE and the 

numerical approximation of the surface is launched by solving the irradiance model 

and eikonal equation. The reconstructed surface is then compared to the ground truth 

using two performance metrics: root mean square error (RMSE) and maximum 

absolute deviation (MAD). If RMSE is greater than 0.1, then an optimisation method 

to search the reflectance map parameters space that would minimise RMSE is 

triggered. The optimisation routine stops when the value of RMSE is less than 0.1. 

Finally, results are saved for further processing. The optimised reflectance map 

Figure 4-10 Shape-from-shading implementation flow chart. 
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parameters are then employed to reconstruct the surface of printed films from different 

images. 

 

4.2.1.3 Surface reconstruction of half sphere using synthetic image. 

The model was validated using a half sphere ground truth surface with a radius of 

75 m under four different reflection scenarios, as shown in Figure 4-11a-b. Synthetic 

grayscale images of 512x512 pixels were generated by varying the reflectance map 

parameters listed on Table 4-3. The Lax Friedrichs scheme was chosen to infer the 

geometry of the images which resulted in the reconstructed surface shown in Figure 

4-11c. Results showed excellent agreement between ground truth and reconstructed 

shape, with MAD, RMSE < 3.5 m and are consistent with experiments reported by 

Wang et al. (2020). 

 

Table 4-3 Reflectance map parameters for synthetic images. 

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 

𝜔𝑑 0.8 1 0.5 0.5 

𝜔𝑠 0.2 0 0.5 0.5 

𝜎𝑠𝑟 0 0.3 0 0.3 

𝑛 5 0 10 10 

 

 

4.2.2 Minimum-energy-shape method for surface reconstruction. 

The minimum-energy-shape method reconstructs the surface morphology of inkjet-

printed features using image analysis to extract the footprint edge and assuming the 

Figure 4-11 Model validation using synthetic half sphere images. a. Ground truth surface: b. Synthetic images 

generated using the reflectance map parameters from Table 4-3; c. Reconstructed surface using Lax-Friedrichs 

scheme: MAD = 3.18 m, RMSE = 3.24 m, CPU time = 122 s 
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feature’s cross-section tends towards a spherical cap shape. The core of the method 

lies in the fitting of a second-degree polynomial using two opposite points from the 

footprint and the maximum estimated height to build the spherical cap shape as 

illustrated in Figure 4-12. The method was implemented in MATLAB following the 

process steps depicted in Figure 4-13. 

 

 

 

The process starts with image analysis of the printed feature. In this investigation, all 

images were taken using the Dimatix fiducial camera which generates images with a 

resolution of 2.54 m/pixel. The image is converted to grayscale to segment the 

feature’s footprint and compute region properties such as centroid, area and edge 

Figure 4-12 Spherical cap volume reconstruction 

schematic. 

Figure 4-13 Minimum-energy-shape implementation flow chart. 
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boundary. Then, the volume of ink required to print the feature is calculated by 

multiplying the number of drops defined in the target pattern bitmap times the droplet 

volume corrected by shrinkage factor. The ratio between the volume of ink and the 

footprint area determines the average centroid in z direction and the maximum height 

of the spherical cap was computed following the procedure discussed in Section 

3.2.11. Finally, a pair of opposite points from the edge boundary was identified every 

five micrometres along the feature’s length and a second-degree polynomial was fitted 

for every pair. The method is limited to single tracks and symmetric solid and hollowed 

patterns for single and multi-layered artifacts. The approach is not able to reconstruct 

the surface with the roughness from the real image. 

 

4.3 Stochastic prediction model. 

The high-fidelity models used in this investigation to simulate the deposition and 

solidification of droplets provide an accurate representation of the physics behind 

inkjet printing for small and simple shapes. However, large, freeform shapes, as 

required in real-life printing applications, increase the simulation time from hours to 

days, or weeks. Although, a significant reduction in the solution time, without losing 

much accuracy, was achieved by implementing a surrogate model from a sample of 

high-fidelity simulations, the prediction of freeform shapes is still computationally not 

feasible. Furthermore, previous models do not consider the effect of droplet position 

and size uncertainty or the simultaneous use of nozzles, which may play a key role in 

the quality of inkjet-printed parts. Therefore, in this section an analytical model is 

introduced to predict fast and accurately the surface morphology of inkjet-printed parts 

for any size and shape considering droplet size and position uncertainty, multi-nozzle 

printing, UV exposure time and chemical shrinkage. From the author’s point of view 

this analytical model represents the most significant contribution of the present work 

and the novelty of the research. 

4.3.1 Model derivation. 

In this section, details of the predictive model derivation are described. The analytical 

model is a semi-empirical, semi-coupled multi-physics approach, which incorporates 

the following physical situations in the prediction of the surface morphology of inkjet-
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printed parts: droplet position and footprint size uncertainty models to estimate 

realistic shapes and statistical thresholds for feature stability; fluid quasi-static models 

to account for material flow redistribution in the final deposited shape; a semi-

empirical photo-polymerisation model to determine the spatial distribution of the 

curing level and estimate the localised shape shrinkage; a theoretical model to find the 

optimal  printing parameters and a film stability diagram based on the equations of 

motion. The multi-physics analytical model derived, enables the fast prediction of 

inkjet-printed parts geometry as a function of printing parameters, wetting 

characteristics and physical properties for any printing pattern; thus, delivering a novel 

methodology for real-time part quality control. 

4.3.1.1 Determination of droplet position and footprint size uncertainty and overlap 

map metric for film defect prediction. 

This study commenced by deriving a relationship for the droplet position uncertainty 

as a function of printing parameters including printing frequency, drop spacing, 

standoff distance, drop ejection velocity and jet straightness (Rosario, 2017). 

 𝐷𝑃𝐸𝑎 = 𝑠𝑑 ∗ tan𝜃𝑗𝑠  (25) 

 

 
𝐷𝑃𝐸𝑏 =

𝑠𝑑 ∗ 𝑝𝑓 ∗ 𝑑𝑠

𝑈𝑒
 

(26) 

 

 
𝐷𝑃𝐸𝑡𝑜𝑡 = √𝐷𝑃𝐸𝑎

2 + 𝐷𝑃𝐸𝑏
2 

(27) 

 

where 𝑠𝑑 is standoff distance, 𝜃𝑗𝑠 is the jet straightness, 𝑝𝑓 is the printing frequency, 

𝑑𝑠 is the drop spacing and 𝑈𝑒 is the droplet ejection velocity. The total drop position 

error 𝐷𝑃𝐸𝑡𝑜𝑡 is given by Equation (27). Assuming a normal distribution of the error, 

the droplet position uncertainty 𝐷𝑃𝑈 can be calculated as follows, 

 
𝐷𝑃𝑈𝑡ℎ𝑒 = 

𝐷𝑃𝐸𝑡𝑜𝑡

6
 

(28) 

 

Alternatively, an experimental methodology to measure the droplet position precision 

and accuracy was proposed in Section 3.2.10. Using the measured standard deviation 
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of the drop centre position along in-scan and cross-scan directions, the total droplet 

position uncertainty was calculated as follows, 

 
𝐷𝑃𝑈𝑒𝑥𝑝 = √𝜎𝑥

2 + 𝜎𝑦
2 

(29) 

 

Using the measured footprint diameter range and assuming footprint diameters follow 

a normal distribution, the droplet footprint size uncertainty was given by, 

 
𝐷𝑆𝑈𝑒𝑥𝑝 = 

𝑑𝑓𝑝,𝑚𝑎𝑥 − 𝑑𝑓𝑝,𝑚𝑖𝑛

6
 

(30) 

 

A graphical representation of the inkjet-printed drops without and with droplet position 

and footprint size uncertainty is illustrated in Figure 4-14. 

 

 

Introducing the uncertainty due to droplet position and footprint size creates a more 

realistic map of the overlap between droplets which has been found a critical factor in 

determining the stability of printed tracks and films. Depending on the overlap level, 

unstable line regimes such as bulges, scallops and break-ups are observed, affecting 

the quality of the print. To statistically detect if bulges and break-ups would be present 

in the feature, an overlap map of the droplets was generated. The map identifies 

locations where droplets do not overlap at all and where droplets fully overlap which 

indicate potential film break-ups and bulge initiation, respectively. Due to the random 

Figure 4-14 Droplet deposition representation: a. Without droplet position and size uncertainty; b. 

With droplet and position uncertainty 
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nature of the methodology, the overlap map does not predict the exact location of the 

defects, but the number of defects due to the introduced uncertainty in the position and 

size of the droplets. A Monte Carlo simulation with a sample size of 1000 was run to 

determine the average number of defects expected in the film given the measured 

uncertainty. Two types of defect were observed in this study, namely bulges and break-

ups, which are related to material overflow and discontinuity, respectively. An overlap 

map showing high probability areas of film separation is presented in Figure 4-15 for 

illustration. 

 

 

The skeleton of the printed features was defined by the droplet deposition considering 

the bitmap resolution, and the droplet position and footprint size uncertainty. However, 

the model did not account at this point for  material redistribution due to fluid dynamics 

effects when droplets spread and merge on a solid substrate. Therefore, a quasi-static 

fluid model was introduced next to incorporate transient flow effects in the predictive 

model, as described in the next section. 

Figure 4-15 Example of overlap map metric to detect film defects. 



83 

 

4.3.1.2 Determination of material overflow in single tracks and films. 

An analytical model to predict the surface morphology of printed features was derived 

assuming the shape of deposited droplets tends to a spherical cap and volume is 

conserved. The surface morphology of single tracks was characterised using the four 

parameters: ABW, MBW, ABH and MBH shown in Figure 4-16, alongside the 

footprint edge. 

 

The model developed here builds upon the work of Stringer & Derby (2010) in which 

the average width (𝐴𝐵𝑊) of a single track can be estimated as, 

 
𝐴𝐵𝑊 =  𝜅 ∗ 𝜑 ∗

1

√𝑑𝑠
 

(31) 

 

 

𝜅 = √
8𝑠𝑖𝑛2 𝜃𝑎

2𝜃𝑎 − 𝑠𝑖𝑛 2𝜃𝑎
 

(32) 

 

 𝜑 =  √𝑉𝑑𝑟𝑜𝑝 (33) 

 

where 𝑑𝑠 is drop spacing, 𝜅 is a shape function depending on the advancing contact 

angle and 𝜑 is a factor accounting for the volume effect.  

To calculate the maximum width of an edge, the average width was employed as 

baseline and a correction factor was proposed. The core idea behind the definition of 

the correction factor is that the local material flow is dominated by the competing 

viscous and surface tension forces which influence the spreading and coalescing of 

Figure 4-16 Surface morphology characterisation of single track: a. 3D view showing maximum height of printed 

feature; b. Top view defining average (ABW) and maximum (MBW) width; c. Front view defining average and 

maximum height. 
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droplets and consequently the final shape of inkjet-printed features. Therefore, the 

maximum bead width was estimated by multiplying Equation (31) by a factor 𝜓 that 

results from the ratio between the momentum diffusivity and capillary diffusivity, 

expressed as, 

 
𝑀𝐵𝑊 = 𝜓 ∗ 𝜅 ∗ 𝜑 ∗

1

√𝑑𝑠
 

(34) 

 

 
𝜓 = (1 + 2𝜋 ∗

𝜇2

𝜌𝛾𝑑𝑓𝑝 𝑐𝑜𝑠 𝜃𝑎
) 

(35) 

 

where 𝜌, 𝜎, 𝜇 are physical properties of the ink corresponding to density, surface 

tension and dynamic viscosity, respectively; 𝑑𝑓𝑝 is the footprint diameter and 𝜃𝑎 is the 

advancing contact angle.   

The average bead height which corresponds to the centroid of the printed feature along 

the z direction was calculated by dividing the droplet in-flight volume by the area 

defined by the shape function and drop spacing given by, 

 
𝐴𝐵𝐻 = 

𝑉𝑑𝑟𝑜𝑝

𝜅 ∗ 𝜑
∗

1

√𝑑𝑠
  

(36) 

 

The maximum bead height was found by solving Equation (37) iteratively for 𝑀𝐵𝐻 

which determines the location of the centroid in the z-direction for a spherical cap 

shape, 

 
𝐴𝐵𝐻 =

3(2𝑅 − 𝑀𝐵𝐻)2

4(3𝑅 − 𝑀𝐵𝐻)
 

 

(37) 

 

 
𝑅 = 

(𝑀𝐵𝑊2 + 𝑀𝐵𝐻2)

2𝑀𝐵𝐻
 

(38) 

 

Further considerations to the above were required to accurately represent the observed 

droplet dynamic effects in printed features. Bulges, scallops, and isolated drops 

(islands) are common defects observed in inkjet-printed films that can be attributed to 

the complex transient behaviour between droplets and substrate. To model single track 

bulging, an equation to calculate the minimum number of drops required to avoid the 
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presence of bulges is proposed. The appearance and size of primary bulges was 

determined by the number of drops at which the capillary timescale regulated by the 

surface tension becomes dominant over the drop frequency, together with the influence 

of drop spacing considerations, which is expressed as, 

 
𝑝𝑏𝑛𝑑 =

𝑡𝑓

𝑡𝑐
=

1 𝑝𝑓⁄

√𝜌𝑑𝑚𝑎𝑥 𝛾⁄
 

(39) 

 

Using the viscous timescale and the frequency at which each drop is deposited, the 

number of drops at which the viscous timescale becomes dominant dictates the 

appearance of secondary bulges in line patterns, given by, 

 
𝑠𝑏𝑛𝑑 =

𝑡𝑓

𝑡𝑐
−

𝑡𝑓

𝑡𝑣
=

1 𝑝𝑓⁄

√𝜌𝑑𝑚𝑎𝑥 𝛾⁄
−

1 𝑝𝑓⁄

𝜇𝑑𝑎 𝛾⁄ 𝜃𝑎
3 

(40) 

 

And the frequency of secondary bulges was estimated as follows, 

 

𝑠𝑏𝑓𝑞 = √
𝑡𝑓𝑑𝑎

2

𝑡𝑣𝑑𝑠2

3

 

(41) 

 

The lengths of the primary (𝐿𝑝) and secondary (𝐿𝑠) bulges were calculated by 

multiplying the average drop spacing by the number of drops determined in Equations 

(39) and (40), respectively. The widths of the primary (𝑊𝑝) and secondary (𝑊𝑠) bulges 

were calculated by finding the total volume of the number of drops determined in 

Equations (39) and (40), respectively and solving iteratively for the spherical cap 

diameter that would match the required advancing contact angle. This diameter was 

then compared to Equation (34) and the minimum value was chosen. The length 

reduction (𝐿𝑟) was estimated by compensating the extra material required to satisfy 

the bulge height with material from the length, assuming mass was preserved. 

Figure 4-17 shows the prediction of a single track incorporating the material 

redistribution due to transient flow effects using the derived quasi-static flow model. 
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The proposed model is capable of predicting material overflow in single tracks and 

films. However, the effect of the photo-polymerisation process on the final printed 

shape has not been considered so far. Therefore, a semi-empirical model to account 

for shrinkage due to solidification was the next feature to be added to the overall 

modelling strategy, as presented in the next section. 

4.3.1.3 Determination of curing strain using photo-polymerisation model. 

Shrinkage strain due to curing was determined using a semi-empirical photo-

polymerisation model derived by Zhao et al. (2021) using the equations described in 

Section 4.1.2.1. First, UV dosage for each droplet was calculated based on the speed, 

and trajectory of the printer’s UV light unit and the intensity of the UV light. Then, 

the polymerisation level for each element of the printing pattern was determined using 

Equation (13) with fitted parameters from Table 4-2. The distribution of the degree of 

polymerisation was calculated assuming unidirectional swaths, starting at the top left 

corner with printing direction from left to right, top to bottom, as illustrated in Figure 

4-8. Finally, the curing strain distribution across the pattern was calculated using 

Equation (17) with parameters 𝜀𝑐ℎ,𝑚𝑎𝑥 and 𝜒𝑚𝑎𝑥 set to 0.967 and 0.8, respectively. 

The model assumed that shrinkage predominantly affects the thickness of the printed 

structure, which is consistent to the work of Tilford et al. (2021). 

4.3.1.4 Determination of optimal resolution, printing frequency and standoff 

distance for stable thin and thick film printing. 

An analytical model based on wetting dynamics theory was proposed to determine the 

optimal spacing, printing frequency and standoff distance required to print thin or thick 

Figure 4-17 Single track prediction with transient flow effects. 
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films in a stable manner. The core of the model assumes that a sufficient condition to 

achieve film stability is when the ratio of the traverse speed and the contact line speed 

is equal to the ratio of the ejection speed and the capillary speed, which is expressed 

as,  

 𝑈𝑇

𝑈𝐶𝐿
= 

𝑈𝑒

𝑈𝑐
 

(42) 

 

where 𝑈𝑇 is the printer traverse speed, 𝑈𝑒 is the droplet ejection speed, 𝑈𝑐 is the 

capillary speed and 𝑈𝐶𝐿 is the contact line speed. This relationship provides a 

connection between macroscopic quantities such as traverse speed and ejection speed 

which are functions of printing parameters and microscopic quantities, such as the 

contact line speed and capillary speed, which in turn are functions of the surface 

tension and dynamic viscosity. 

The contact line speed was estimated using the lattice Boltzmann simulation described 

in Section 4.1.1. The value of 𝑈𝐶𝐿 used throughout this investigation was 0.047 m/s. 

Contact line speed values estimated using Cox-Voinov spreading law from literature 

are within 0.1-0.3 m/s for pure substances spreading on flat, rigid surfaces (Snoeijer & 

Andreotti, 2013) and contact line speed measured values of an ink with similar 

properties to TPGDA were reported by Thompson et al. (2014) to be 0.01 m/s. 

Therefore, a good agreement between reported values from the literature and our 

simulation results was observed. 

The capillary speed was calculated by the ratio between the surface tension and 

dynamic viscosity of the ink, 

 𝑈𝑐 = 
𝜎

𝜇
 (43) 

 

The traverse speed is a function of the printing frequency and drop spacing and printing 

frequency is related to stand off distance and droplet speed at impact, as follows, 

 𝑈𝑇 = 𝑝𝑓 ∗ 𝑑𝑠 (44) 

 

 
𝑝𝑓 =

𝑈𝑒

𝑠𝑑
 

(45) 
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The optimal printing parameters to achieve stable lines were calculated by solving 

Equations (42), (43), (44) and (45). To print stable thin lines, the optimal drop spacing 

was set to the maximum drop spacing which occurs when the average bead width 

(Equation (31)) is equal to advancing footprint diameter. To print thick lines, the 

optimal drop spacing was set to the minimum achievable drop spacing of the printer. 

Optimal values were checked against printing parameter bounds defined in Table 4-4. 

In a case that the optimised printing parameters were out of bounds, the procedure was 

repeated until bound constraints were satisfied.  

 

Table 4-4 Critical printing parameters bounds. 

Parameter Min Max 

Drop spacing (m) 5 254 

Printing frequency (Hz) 700 15000 

Standoff distance (mm) 0.25 1.5 

 

The analytical model provided a fast way to estimate the critical printing parameters 

required to achieve stable thin and thick single tracks and films. However, the stability 

region defined by the onset of instability thresholds was not considered. Therefore, a 

stability diagram for single tracks and films considering the drop location and size 

uncertainty is introduced in the next section. 

4.3.1.5 Determination of stability diagram for films using stochastic thresholds. 

A graphical tool to show the stability region for freeform films was constructed using 

the predicted material overflow at edges as a function of the drop overlap. The diagram 

reports the minimum achievable width based on the volume and wettability 

characteristics defined as inputs as well as the overlap limits required to print a stable 

single track or film. Instability thresholds for the onset of bulges and break-ups were 

determined using the multiphase flow physics-based prediction model for single tracks 

and films described in Section 4.1.1. Each threshold was defined as an overlap value 

at which instabilities start to appear during the inkjet printing simulation. Since the 

simulation was run with constant parameters, thresholds were corrected to incorporate 

the effects of droplet position and footprint size uncertainties to obtain a more 

conservative definition of the region of stability for single tracks and films. Finally, 
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the stability diagram was complemented with the optimal printing parameters derived 

using the procedure from Section 4.3.1.4.  

To find the most conservative thresholds defining the onset of instabilities, droplet 

position and footprint size uncertainties were incorporated as depicted in Figure 4-18.  

 

 

Assuming the error distributes normally, the corrected threshold was determined by 

adding half of the uncertainty error to the break-up threshold and subtracting half of 

the uncertainty error to the bulging threshold determined from simulation. The 

recommended threshold provides a more conservative estimate of the stability region, 

reducing the size of the stability region due to the introduced uncertainty. An example 

of a stability diagram derived using proposed methodology is shown in Figure 4-19. 

 

 

Figure 4-18 Methodology to introduce uncertainty to instabilities thresholds. 

Figure 4-19 Example of film stability diagram. 



90 

 

4.3.2 Model implementation. 

The analytical model was implemented in MATLAB following the process steps 

illustrated in Figure 4-20. 

 

 

The model is capable of handling single and multiple nozzles to simulate the printing 

of desired patterns. It is assumed that the printing start location is at the top left corner 

of the defined build area and the printing direction is from top to bottom and left to 

right, as illustrated in Figure 4-8. No temperature effects are considered and droplet 

volume is conserved throughout the prediction. The model allows the variation of X 

and Y resolution by manipulating the drop spacing and the wetting characteristics by 

adjusting the advancing and receding contact angles. The prediction model requires a 

bitmap image with the desired pattern, the physical properties of the ink, the selection 

of printing parameters such as printing frequency and standoff distance, and the drop 

characteristics such as in-flight volume and impact velocity.  

If the printability range is satisfied then the model continues execution, otherwise it 

prompts the user that there exists a high probability of drop ejection failure or drop 

splashing on the substrate. Using Reynolds and Weber numbers, a printability diagram 

depicts the feasibility area for given inputs. 

Figure 4-20 Analytical model flow chart. 
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If the image type has RGB data, it is converted to an 8-bit grayscale and then to a 

binary image to identify boundary edges accurately. Domain size is then calculated by 

extracting extreme boundary locations in X and Y directions. At this step, the model 

identifies if single edges are present and classifies internal and external edges from 

shapes within image. 

Once domain size is defined an integer number of swaths is computed and the cross-

scan resolution is corrected by constraining the line spacing value. Centre locations 

along the cross-scan direction can be derived by setting the printing start location at 

the top left corner. This feature enables the user to use any image regardless of its 

resolution as long as it provides a pixel to microns conversion factor. Nevertheless, the 

intention of the predictive model is to mimic the inkjet printer system which requires 

an image format in the desired printing resolution. 

By intersecting a horizontal line which simulates each swath trajectory with the print 

shape boundary edges, the model computes the length and number of drops required 

to create each printed segment per swath. The number of drops per segment is a 

function of drop spacing and footprint diameter, which are known values, but since the 

system requires a discrete number of drops, the resulting value is rounded up. To 

ensure accuracy of the model, the length is recalculated using the corrected value of 

number of drops. Then drop centre locations in the in-scan direction are determined. 

This information is saved to a file which can be used to generate a pattern since it 

contains all drop locations needed by the printer. 

If the image presents edges that are not part of a closed shape, the model places a single 

drop on each pixel. In the case of shape boundary edges, the model takes as inputs the 

number of swaths, number of segments and number of drops and generates the segment 

footprint by interpolating the results obtained from the high-fidelity model at drop 

overlap locations. The model takes advantage of the periodic nature of the instabilities 

observed in line patterns and replicates the behaviour regardless of the number of drops 

used in the segment. This procedure captures the transient behaviour from physics-

based model and footprint edge waviness can be estimated in a fast and reliable 

manner. For the cases of line bulging and break up, an equation to determine the 

minimum number of drops required to avoid the presence of bulges is proposed. Using 

the viscous timescale and the frequency at which each drop is deposited, the number 
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of drops at which the viscous timescale becomes dominant dictates the appearance of 

secondary bulges in line patterns. The appearance and size of primary bulges is 

determined by the number of drops at which the capillary timescale regulated by the 

surface tension becomes dominant over the drop frequency together with the influence 

of drop spacing considerations. Line pattern break-up has been associated with the 

effect of a receding contact angle presence. As the receding contact angle increases, 

the probability of break-up increases in a non-linear way. The model uses the contact 

line speed predicted by the high-fidelity model together with drop spacing and 

receding contact angle to calculate when break-up occurs. 

With the footprint defined the next step is to determine the thickness across the pattern. 

The model allows the direct interpolation of the thickness from the lattice Boltzmann 

results or to incorporate a mathematical model of the expected cross-section for a 

particular ink-substrate system. For example, a UV curable ink would tend to show a 

spherical cap cross-section while a solvent-based ink would show accumulation of 

material at the extremes with very shallow thickness at the centre of the pattern due to 

the “coffee ring effect”. In this study, a UV curable dielectric ink is simulated thus a 

second-degree polynomial fits the expected spherical cap cross-section. Two points 

are available from the footprint prediction and the remaining one is obtained via LBM 

thickness interpolation at the centre of the path for multiple locations across the length 

of the pattern. The number of locations where the cross-section is calculated drives the 

final 3D pattern point cloud density. In this way, free-form shapes can be simulated as 

a function of the desired resolution and ink to substrate contact angle hysteresis. 

The model can create 3D objects by the superposition of layers with different shapes 

and materials. It assumes a constant layer thickness which is added layer after layer, 

mimicking the way a traditional inkjet printer works. The predicted final shape of the 

product has the typical surface finish observed in actual printed components, following 

the waviness of the edges layer by layer. Furthermore, the top surface shows a non-

uniform pattern that is product of the cumulative deformations from previous layers. 

The output of the process is a dense point cloud defining the surface morphology of 

the 3D printed object. An example of the outputs generated by the proposed analytical 

model are illustrated in Figure 4-21. 
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4.4 Surrogate modelling approach. 

4.4.1 Model implementation. 

A surrogate modelling strategy was introduced as a cornerstone of this investigation 

to develop faster prediction models employing the results of high-fidelity physics-

based simulations. The central idea is to generate a set of response surface equations 

for multiple locations (x, y, z coordinates) along the surface of simulated artifacts from 

physics-based in silico experiments. Each response surface requires a goodness of fit 

evaluation to ensure the statistical validity of the method which is achieved using 

conventional measures of fit such as R2 statistic and residuals plots. Statistically valid 

Figure 4-21 Analytical model outputs for the prediction of a square film: a. Printing parameters inputs. b. 

Printability diagram showing material is printable. c. Pattern bitmap illustrating start location and direction of 

printing. d. Overlap map of droplets including position and size uncertainty. Map shows no indication of film 

break-ups. e. Curing degree map based on UV accumulated dosage used to estimate film shrinkage. f. Film 

footprint edges capturing non-uniform surface morphology due to the use of multiple swaths, the width of the 

swath determined by the number of nozzles used while printing. g. Point cloud of the predicted film surface 

morphology. h. Stability diagram showing optimal printing parameters and thresholds for the onset of bulges and 

break-ups. 
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equations define the feature’s surface morphology such as the bead width and 

thickness as a function of the design variables subject of study for each location. Then, 

spline interpolation is employed to build the surface ensuring feature continuity. 

Transient effects from the high-fidelity model are captured by a simpler transfer 

function, enabling fast exploration of the design space with minimal loss of accuracy. 

The surrogate modelling strategy was implemented in MATLAB following the 

process steps illustrated in Figure 4-22. 

 

 

The strategy to create a surrogate model from high fidelity physics-based simulation 

requires the definition of the physics-based model type, the design variables (i.e., 

parameters of study) together with their levels (i.e., parameter bounds) and the 

response variable(s) (i.e., characteristics desired to predict). With this information, a 

matrix of experiments is generated assuming a central composite design of 

Figure 4-22 Surrogate modelling strategy implementation flow chart. 
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experiments to account for non-linear behaviour of the design variables. Then, the 

experiments are conducted using the selected high-fidelity physics-based model 

following the simulation setup details described in Sections 4.1.1.4 and 4.1.2.4. 

Simulation results require further processing before the response surface equations are 

constructed. First, the region of interest (ROI) is segmented to avoid the potential 

selection of undesired artifacts in the analysis. Then, the overall dimensions of the 

segmented ROI such as length, width and thickness are measured at selected critical 

locations. The number of critical locations defines the number of response surfaces to 

be generated, which is an important factor determining the surrogate model efficiency. 

Response surface equations are built at each critical location and a visual tool utilising 

“traffic-light” colours, illustrates the level of each measure of goodness of fit. If the fit 

is not acceptable, the model is improved using variable transformation, adding more 

points to the regression, or reducing the design space being explored before the 

physics-based model is changed. The discrete surface morphology predicted by the 

surrogate model is enhanced using a spline interpolation scheme to ensure continuity 

and connectivity within the surface. Finally, the root mean square error (RMSE) 

between the high-fidelity and surrogate model surface morphology is calculated to 

assess the accuracy of the surrogate model prediction. If the prediction is acceptably 

accurate, then the coordinates of the surface are saved as a point cloud object for 

further processing. 

 

4.4.2 Definition of surrogate model for multiphase flow simulation. 

A Central Composite Design (CCD) approach was employed to investigate the effect 

of critical parameters of the inkjet printing process, including drop spacing along 

horizontal and vertical directions and advancing contact angle. CCD builds upon the 

full factorial design and contains additional points for capturing curvature effects in 

the design space. The application of the response surface methodology allows us to 

identify not only the impact and sensitivity of factors, but also to determine if any 

interactions exist between them or if nonlinear effects are present. In addition, it helps 

us to understand how both the mean and variation of a response change with different 

factor settings, facilitating probabilistic analysis when a factor’s uncertainty comes 

into play. 
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Before constructing the matrix of experiments associated with a 3-factor central 

composite design, realistic factor bounds were selected to cover the region of inkjet 

printing operability of interest. Since inkjet printing resolution varies inversely to drop 

spacing along the printing direction; bounds were calculated based on typical 

resolution values used for printed electronics applications by the following equation, 

 

 
𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  

25400

𝑑𝑠
 

(46) 

 

where resolution is given in dots per inch (dpi) and drop spacing (ds) in microns. The 

maximum and minimum resolutions used were 1200 dpi and 400 dpi, respectively. For 

the drop spacing in the vertical direction, the limits are bounded to domain size 

constraints in high fidelity simulations. The maximum and minimum limits used were 

26.7 m and zero, respectively. The wetting behaviour is characterised by the 

advancing and receding contact angles which are bounded by lyophilic substrate 

assumptions. The receding contact angle was fixed at 5 °. Table 4-5 summarises the 

design variable bounds used in the study. 

 

Table 4-5 Design variables bounds. 

Design variables min centre max 

Horizontal drop spacing (ds) 20 m 40 m 60 m 

Vertical drop spacing (dh) 0 m 13.4 m 26.7 m 

Advancing contact angle (a) 45° 67.5° 90° 

Receding contact angle (r) 5° 5° 5° 

 

The number of runs required by a three factor face centred CCD is 15, considering the 

DOE does not require replicates and only needs a single centre point since experiments 

are performed in silico. Table 4-6 shows the matrix of combination of factors following 

the standard order, 
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Table 4-6 Central composite design of experiments. 

Run ds (m) dh (m) a (°) r (°) 

1 20 0 30 5 

2 20 0 90 5 

3 20 26.7 30 5 

4 20 26.7 90 5 

5 60 0 30 5 

6 60 0 90 5 

7 60 26.7 30 5 

8 60 26.7 90 5 

9 20 13.4 60 5 

10 60 13.4 60 5 

11 40 0 60 5 

12 40 26.7 60 5 

13 40 13.4 30 5 

14 40 13.4 90 5 

15 40 13.4 60 5 

 

After completing the design of experiments runs using the high-fidelity multiphase 

flow simulation, the results files were processed to take width and thickness 

measurements at identified locations along the printed track length. These 

measurements were fed as responses to the CCD matrix and a least-squares regression 

analysis was performed to obtain the coefficients of the following general full 

quadratic transfer function form, 

 𝑌 = 𝐶0 + 𝐶1𝑋1 + 𝐶2𝑋2 + 𝐶3𝑋3 + 𝐶4𝑋1𝑋2 + 𝐶5𝑋1𝑋3 + 𝐶6𝑋2𝑋3 + 𝐶7𝑋1
2

+ 𝐶8𝑋2
2 + 𝐶9𝑋3

2 

(47) 

 

Before proceeding with validation runs using the high-fidelity model, a statistical 

assessment to evaluate the goodness of fit of each response surface equation is 

required. Using traditional measures of fit such as the R2 statistic, adjusted and 

predicted R2 values, a plot of residuals and mean square error, the statistical validity 

of the equations was assessed, and significant effects were found. Calculating multiple 

measures of fit for several response surface equations is a high time-consuming task. 

Therefore, a visual tool illustrating with “traffic-light” colours the level of each 

measure of fit was implemented. Finally, the response surface equations goodness of 

fit was evaluated using random space points within factor design bounds and 

acceptable error limits were determined. The final validation run was performed with 

random parameter settings within bounds to ensure the high-fidelity model and 
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surrogate model were acceptably consistent. Figure 4-23 illustrates the methodology 

used to derive the surrogate model required for an efficient process optimisation. 

 

 

4.5 Optimisation models. 

4.5.1 Parameter optimisation using multi-objective genetic algorithm 

approach. 

4.5.1.1 Model implementation. 

A genetic algorithm (GA) technique was selected to perform the optimisation of 

critical parameters of the inkjet printing process. GAs are stochastic, population-based 

algorithms that search randomly by mutation and crossover operators among 

population members. Several studies have proven that GAs work efficiently when 

objective functions are noisy, discontinuous and have multiple local minima. In 

addition, GAs do not depend on the initial search point to find the global optimum, as 

is the case with traditional gradient based optimisation techniques. 

Essentially, the optimisation process is performed as follows: the GA’s initial 

population of candidate solutions is generated by a random combination of genes. 

Then, each member of the population is measured using a fitness function which 

quantifies the aptitude of the individual against the defined objective function. The 

Figure 4-23 Surrogate model development for high fidelity multiphase flow simulation. 



99 

 

individuals with the highest fitness value have the highest probability of being selected 

as parents for the next generation population. Finally, a new population is generated 

by either combining two of the selected candidates (crossover) or by random 

modification of a member’s genes (mutation). This process is repeated until a 

convergence criterion is satisfied. The technique was implemented in MATLAB which 

minimizes the fitness function given as input. Default values for number of 

generations, crossover, and mutation probabilities were utilized. 

To determine the fitness function, the geometric moments concept proposed by 

Hernandez et al. (2013) was employed. The main idea is to represent an image of the 

footprint shape obtained by the surrogate model using its two-dimensional geometric 

moments invariant to translation and scale. The concept is suitable for our problem 

since the shape of the footprint is a piecewise continuous bounded function which 

ensures geometric moments are unique and exist. The central geometric moments 

(CGM) are defined mathematically by the following equation, 

 
𝜇𝑝𝑞 = ∫ ∫ (𝑥 − �̅�)𝑝(𝑦 − �̅�)𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞

 
(48) 

 

where the sum of p and q define the central geometric moments order, �̅� and �̅� 

represent the image centroid and 𝑓(𝑥, 𝑦) represents the image as a density function. 

Then, to make CGM invariant under translation and scale, the normalized central 

geometric moments (NCGM) are given by, 

 𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
(𝑝+𝑞+2)/2

 
(49) 

 

Utilizing the geometric moments methodology proposed by Hernandez et al. (2013), 

the fitness function is defined as the Euclidean norm of the normalized central 

geometric moments vector difference between predicted footprint by surrogate model 

and target shape.  

 
𝜙 = ‖𝑁𝐶𝐺𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑁𝐶𝐺𝑀𝑡𝑎𝑟𝑔𝑒𝑡‖ 

(50) 
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The optimal values of the parameters under investigation are found when the fitness 

function, stated as a least-squares minimization problem, proposed in Equation (50), 

is minimum. The problem could be solved unconstrained only with design variables 

bounds defined; however, a set of non-linear equations are optionally implemented to 

provide constraints to the maximum standard deviation allowed for footprint width 

and thickness features. 

 

4.5.1.2 Optimisation approach used in multiphase flow simulation of single tracks. 

A multi-objective genetic algorithm was employed to find the optimal values of the 

horizontal drop spacing, vertical drop spacing, and advancing contact angle to produce 

the most stable and uniform single track as described in Section 4.1.1.4. Nonlinear 

constraints to the maximum standard deviation allowed for footprint width and 

thickness features, were set at 5 m and 2 m, respectively. 

Figure 4-24 illustrates the optimisation process map consisting of 4 main steps: 1) an 

image of the target line footprint formed by the deposition of four sequential 

microdroplets is created. Target line dimensions such as length and width are 

determined using volume conservation assumptions. 2) a printed line footprint image 

is predicted using the validated surrogate model with random set of printing parameters 

and wetting characteristics. 3) normalized central geometric moments up to fourth 

order, are calculated for both target and predicted footprints. 4) a genetic algorithm 

minimizes the difference between the normalized moments to determine the optimal 

set of process parameters. 
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4.5.2 Geometry compensation using convolutional neural network approach. 

Geometry compensation of inkjet-printed parts using a convolutional neural network 

was implemented in this investigation motivated by the work of Chowdhury et al. 

(2018). The methodology was originally developed to make appropriate geometric 

modifications to counteract the thermal effects resulting from a finite element 

simulation of an AM process. The core of the approach lies in a convolutional neural 

network that approximates the geometric deformation data for a part as a function of 

the coordinates of its surface points. In this investigation, the methodology was 

extended to account for dissimilar target and deformed point clouds which enable the 

use of prediction models with unstructured discretisation or scanned data defining part 

geometry. An overview of the geometry compensation methodology proposed is given 

in Figure 4-25.  

 

Figure 4-24 Optimisation methodology 
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The geometry compensation methodology was implemented in MATLAB using the 

neural network toolbox. The architecture of the convolutional neural network 

consisted of 3 input nodes, 15 nodes in a hidden layer and 3 output nodes. The error 

backpropagation was calculated using the Bayesian regularization method and the 

error minimization was performed using the steepest descent method. The selected 

network architecture and solution algorithms kept the mean square error within an 

acceptable range (i.e., MSE < 1e-3) at a relatively low computational time (i.e., 

solution time in the order of seconds). 

The methodology starts with the definition of the target geometry using a CAD model 

in STL format. If no data exists regarding the deformed shape of the printed artifact, a 

chemo-mechanical simulation is run following the procedure described in Section 

4.1.2. The simulation outputs the deformation data of the part geometry and the surface 

node’s locations are filtered for the deformed and undeformed states. If data exists 

Figure 4-25 Overview of geometry compensation methodology. 
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regarding the deformed shape of the printed artifact either coming from simulation or 

experiments, a common discretization of the part geometry must be employed to apply 

the compensation correctly. First, the deformed data is filtered to generate only 

external faces of the part geometry, followed by discretization of the target geometry. 

The target geometry must have a coarser discretization than the deformed geometry. 

Then, target and deformed point clouds are aligned (registered) using the iterative 

closest point algorithm assuming both parts rest on a reference x-y plane. Once the 

point clouds are properly aligned, the nearest neighbour algorithm is applied to find 

the closest point in the vertical direction. This procedure ensures a one-to-one mapping 

for deformed and undeformed states enabling correct training of the neural network. 

The network is trained using the x, y, and z coordinates of the deformed geometry as 

inputs and the undeformed coordinates are set as target, as shown in Figure 4-26a. 

Then, the error is defined by the difference of the actual output of the neural network 

and the desired geometry coordinates. This error is back-propagated to determine 

weights on hidden layers, which represent the learning behaviour of the network. After 

the network is trained, the original STL vertices are used as input to the network such 

that the output are the compensated vertices required to build a printed 3D structure 

that is optimised to the target geometry, as illustrated in Figure 4-26b. Finally, a 

compensated STL file of the part is generated and sliced to define the layers required 

for 3D inkjet printing systems. 

 

 

4.6 Prediction and optimisation framework for inkjet-printed 

parts. 

The prediction and optimisation of inkjet-printed parts was performed following a two-

step approach as illustrated in Figure 4-27. The first step determines the optimal 

Figure 4-26 Convolutional neural network for geometry compensation: a. CNN training schematic; b. CNN 

compensation schematic. 
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printing parameters for every layer to achieve the most accurate, uniform, and 

continuous film by running a prediction model as described in Sections 4.1, 4.2 or 4.3 

followed by the generation of a surrogate model as discussed in Section 4.4 and the 

parameter optimisation with a multi-objective genetic algorithm introduced in Section 

4.5.1. The second step compensates the geometry of each layer to account for the 

deviations found between target geometry and measured data from either computer or 

lab experiments by employing the CNN compensation methodology explained in 

Section 4.5.2. A MATLAB GUI was programmed to guide the process in a structured 

manner. All functions are included in Appendix 11.3. 

 

 

The hybrid framework was implemented as follows. First, the target geometry was 

input in STL format and bitmap layers were generated based on the expected layer 

thickness of the chosen material. Printing parameters, droplet and wetting 

characteristics alongside material physical properties were defined to initialize the 

prediction model. Each layer was run through the selected prediction model and the 

error defined by the difference between target and predicted shapes was computed. 

Design variables (i.e., printing parameters) were changed until the minimum error was 

achieved which involved updating the target bitmap layer every iteration. When the 

minimal error was found, the optimal values of the design variables are saved, and a 

3D point cloud is created. The process was repeated for every bitmap layer sliced from 

the STL file and each consecutive layer point cloud was superimposed on top of each 

Figure 4-27 Hybrid physics-based and data-driven framework. 
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other, building a 3D object with optimised layers. The quality of the part was assessed 

by calculating the geometry deviations from target explained in Section 4.7.3. The root 

mean square was computed and if it was less than the accuracy threshold (default value 

was 10 m), then the program terminates, and the bitmap layers were created for actual 

printing of 3D object. In the case that the root mean square error was greater than the 

accuracy threshold, then the surface point cloud predicted by the physics-based model 

was used to train a neural network which employs the x, y, z coordinates of the STL 

file vertices as target. Before training the neural network, both point clouds should be 

aligned and a one-to-one mapping between vertices is required for efficient training 

purposes. Once the ANN is trained, the target geometry coordinates are input to the 

network and the compensated geometry is created as output. Then a STL file can be 

written and sliced for 3D printing purposes.  

 

4.7 Post-processing methods. 

4.7.1 Automatic extraction of surface morphology from CSI measurements. 

Single tracks and films printed for the validation of the prediction models were 

measured using coherence scanning interferometry, as discussed in Section 3.2.7. 

Although some images and cross sections of the features were obtained using the 

native software of the equipment, an additional text file containing the raw 

measurement data and scanning settings was requested to enable comparison of 

experiments against predictions. A clean point cloud, measurements of length, width, 

thickness, footprint area and volume as well as plots of cross sections at critical 

locations were obtained from the CSI raw data file using an in-house MATLAB script. 

The script required the ZIGO raw data file, the type and number of features to measure 

(i.e., grids, single tracks, solid and hollowed films), the target layer bitmap and the 

control parameters for the segmentation accuracy (i.e., default settings used). Details 

on the script implementation are discussed in Section 4.7.1.1. An example of the script 

output is given in Figure 4-28 
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4.7.1.1 MATLAB script implementation. 

Post-processing the CSI raw data was a very time-consuming and error prone task. 

First, datasets must be cleaned and aligned before feature identification, segmentation 

and measurement takes place. Furthermore, a reasonable density of points must be 

chosen to facilitate data manipulation and graph generation. Finally, measurements of 

overall dimensions and the generation of feature’s mask, mesh and cross-sections for 

every printed feature required a long processing time. Therefore, a semi-automatic 

workflow was programmed in MATLAB as illustrated in Figure 4-29. All functions 

are included in Appendix 11.3 for reference. 

 

Figure 4-28 Square film measurements report 
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A dataset is first converted from pixels to micrometres and the bottom left corner 

defined as the origin of a cartesian coordinate system. Missing data is identified and 

depending on the location, size and criticality is either eliminated or generated using 

an interpolation scheme. Outliers are removed if a statistical threshold defined in the 

control parameters is exceeded. The dataset size is then reduced by down-sampling 

using a box grid filter technique with a grid step size defined in the control parameters. 

Correct alignment of the bottom plane to reference x-y plane at z=0 is checked, and 

dataset translation and rotation is performed if needed. Selection of the region of 

interest is done interactively to narrow down the domain and facilitate further 

processing. The domain is split into ground and feature datasets through a 

segmentation algorithm based on surface normals. The feature dataset is further 

segmented to identify printed features using a k-tree clustering algorithm with an 

accuracy defined in the control parameters. A point cloud containing the feature’s 

morphology is generated to facilitate comparison against target geometry. Further 

operations to obtain footprint boundary, area, volume, mask, finite element mesh, and 

plot of cross-sections of measured artifacts are then performed. Finally, a summary of 

the results is generated containing the plots and overall feature’s dimensions. 

Optionally, an overlay between target bitmap layer and actual footprint is provided. 

 

Figure 4-29 Semi-automatic workflow for post-processing CSI measurements. 
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4.7.2 Automatic extraction of footprint dimensions from Dimatix images. 

Images of single tracks and films printed for the validation of the prediction models 

were obtained using the fiducial camera of the Dimatix printer, as described in Section 

3.2.5. Footprint boundary, region properties and overall dimensions were extracted 

from the images using an in-house MATLAB GUI based on image analysis 

techniques. The methodology was developed for the cases when CSI measurements 

were not available. The GUI interactively required the path location of the image file, 

image resolution, binarization threshold and feature type (i.e., grids, single tracks, solid 

or hollowed films). Overlay plots of the extracted footprint and original image were 

provided for validation purposes. Details on the script implementation are discussed 

in Section 4.7.2.1. An example of the GUI output is given in Figure 4-30.  

 

 

Figure 4-30 Square film image analysis report 
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4.7.2.1 MATLAB script implementation. 

A GUI to accelerate the measurement process of printed features using digital images 

was built in MATLAB using App Designer. The selected image is first converted from 

RGB to grayscale to enable image segmentation techniques. The original image is 

displayed in GUI and its resolution is requested interactively. A binary image is then 

created employing a default threshold value, but to obtain the most accurate 

representation of the object of interest, the threshold must be adjusted using a slider 

control located below the binary image. Boundary edges and region properties are 

calculated from the binary image and the feature footprint is plotted to show overall 

dimensions. Depending on the selected feature type, a summary of measurements is 

displayed including average length and width, footprint area and theoretical volume 

and layer thickness, which are calculated as discussed in Section 3.2.11. In the special 

case of a grid of droplets image, measurements displayed include average footprint 

diameter, theoretical drop height, average distance between drops and standard 

deviation of the centroid location per line of drops in the vertical and horizontal 

directions. Finally, all results are stored in a structure array and saved in a MATLAB 

workspace file (*.mat) for further post-processing. Overlay plots of extracted edge and 

original image are saved in separate files (*.png) for validation purposes. All functions 

are included in Appendix 11.3 for reference. 

 

4.7.3 Determining geometrical deviation of inkjet-printed parts. 

The geometrical deviation measurement of inkjet-printed parts was implemented in 

MATLAB following the procedure shown in Figure 4-31. The target geometry, 

defined by an STL file, and the point cloud of the deformed geometry were inputs to 

the program. First, the Euclidean distance between each point of the deformed 

geometry and all triangles from the STL file was determined. Then, the nearest triangle 

for each deformed point data was identified by finding the minimum distance from the 

list of distances determined in the first step for every point. Finally, the sign of the 

deviation was calculated by comparing triangle normal and vector projection of the 

deformed point along the triangle normal directions. Positive deviation was obtained 

if both vectors point to the same direction, negative deviation if opposite. A graphical 
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representation of the part deviations and root mean square error performance indicator 

were provided. All functions are included in Appendix 11.3 for reference. 

 

 

 

  

Figure 4-31 Geometry deviation measurement methodology. 
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CHAPTER FIVE 

 

5 Surrogate model-based optimisation of printing 

parameters for the stability of single tracks. 

5.1 Introduction. 

The primary building blocks of the inkjet printing process are the single tracks. Their 

formation is influenced by the printing parameters, the physical properties of the ink 

and the substrate wettability. Drop spacing, printing frequency and stand-off distance 

are considered key control parameters in the formation of uniform tracks. Also, the 

advancing and receding contact angles as a dynamic measurement of the substrate 

wettability play a critical role in the generation of defect free tracks. To understand the 

relationship between such factors and the surface morphology of single tracks and find 

the optimum combination of printing parameters, a surrogate modelling framework to 

improve the quality of inkjet-printed tracks in a fast and accurate manner was 

proposed. This chapter presents the results of the surrogate model-based optimisation 

(Reyes-Luna et al., 2023a) of critical inkjet printing parameters to achieve stable single 

tracks using high-fidelity simulations and lab experiments for framework validation. 

 

5.2 Methodology. 

The formation of single tracks was simulated by the sequential deposition of four 

microdroplets on a flat, rigid, and non-porous substrate using the lattice Boltzmann 

method discussed in Section 4.1.1.2. LB model parameters, material properties, 

droplet characteristics and boundary conditions used in the simulations were described 

in Section 4.1.1.4. The matrix of experiments defined to investigate the effect of 

critical printing parameters and wettability together with details about the surrogate 

model strategy including how to calculate the response surface equations, analyse the 

statistical validity of the model and build the surface morphology were explained in 

Section 4.4.2. Optimal printing parameters were found employing a multi-objective 

genetic algorithm approach with a non-traditional fitness function as discussed in 

Section 4.5.1.2. Finally, the surrogate model approach was validated running single 
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track experiments defined in Section 3.2.12 and testing that optimal printing 

parameters produce a stable single track. 

 

5.3 Results and discussion. 

The results obtained from the surrogate model-based optimisation of inkjet-printed 

single tracks are presented in this section. First, the analysis of the results from building 

the surrogate model using high-fidelity multiphase flow simulations are discussed in 

Section 5.3.1. Followed by the analysis of the results obtained when the surrogate 

model was built using actual measurements of single tracks created in the Dimatix 

printer, included in Section 5.3.2. Finally, optimal printing parameters were compared 

to validate the surrogate model-based optimisation approach in Section 5.3.3.  

5.3.1 Surrogate model-based optimisation using lattice Boltzmann multiphase 

flow simulations. 

5.3.1.1 Lattice Boltzmann multiphase flow simulation results. 

All results are presented using dimensionless time, bead width and bead thickness 

calculated by the following expressions, 

 
𝑡∗ =

𝑢0

𝐷0
𝑡,        𝐵𝑊∗ =

𝐵𝑊

𝐷0
,       𝐵𝑇∗ =

𝐵𝑇

𝐷0
 (51) 

 

Furthermore, the extent of overlap ratio () is calculated using (Stringer & Derby, 

2010) droplet equilibrium diameter 𝐷𝑒𝑞𝑚 as follows, 
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(52) 

 
𝑂 = 1 −

𝑑𝑠

𝐷𝑒𝑞𝑚
 (53) 

  

The overlap ratio is included in all results along with drop spacing and resolution for 

the completeness of the study and future reference. 
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High fidelity model results of the evolution of four droplets deposited on a flat 

substrate are presented in Figure 5-1. Three model simulations were run with 

horizontal droplet spacing at ds=30,50,70 corresponding to 20 m, 33 m and 47 m, 

respectively with fixed vertical droplet spacing and advancing contact angle at 20 and 

60°, respectively. At ds=30 and 50, there was clearly an overlap between successive 

drops, which creates an immediate bridge between droplets. Then, a rapid increase in 

bead width and thickness at the connecting neck occurs due to the Laplace pressure of 

newly deposited droplet driving flow into the bead main body of fluid. The overflow 

effect results in a contact line expansion at neck, the drop surface above the initial 

contact point changes from concave to convex. A single bulge is formed when ds=30 

and multiple bulges are formed when ds =50 due to the exceedance of the prescribed 

advancing contact angle. For the larger horizontal drop spacing of ds=70, the droplets 

impact separately on the substrate and the edges then spread until contacting the 

surface of the previously deposited drops. As droplets do not collide immediately after 

impact, a smaller width and thickness at the neck location is observed due to the lower 

inertial forces. Surface tension forces cannot overcome the surface energy imposed by 

contact angle hysteresis and consequently a scalloped shape emerged. Equilibrium is 

reached after t*=5.51 with a convergence towards a spherical cap with pinning of the 

contact line far away from neck locations defining the final footprint of the printed 

line. 

 



114 

 

 

The dynamics of the impact, spreading and coalescence process of four successive 

droplets deposited for line formation at different horizontal drop spacings are 

quantified in Figure 5-2. Dimensionless bead width (BW*) and thickness (BT*) are 

plotted against dimensionless time (t*). For comparison purposes, results from a single 

drop impingement are included. It is observed in the kinematic phase that the 

dimensionless bead width increases following Tanner’s power law and in agreement 

with previous experimental and numerical studies (Jung et al., 2013). When horizontal 

drop spacing is set to ds=30 corresponding to 20 m, the contact line spreads beyond 

the equilibrium value, which confirms bulge formation due to the overflow effect 

discussed earlier. Temporal evolution of bead width and thickness behave in a similar 

manner to that seen with a single droplet of larger volume, showing one maximum 

spreading point without connecting ridges. When horizontal drop spacing is set to 

ds=70, corresponding to 47 m, the bead width at neck locations is smaller than the 

equilibrium value, due to slower neck expansion, which yields a scalloped 

morphology. At both drop spacings, the behaviour of BT* shows almost no oscillation, 

Figure 5-1 Four sequential drops deposited at different drop spacings (Re=16.52, We= 32.2, dh=20 and 

a=60°): a) 2D Footprints, b) 3D Time evolution at ds=70 
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which can be attributed to a damping effect created by the interaction with 

neighbouring droplets. 

 

 

Finally, the results of the high-fidelity simulation were compared against the analytical 

model described by Equation (31). The analytical model based on volume conservation 

and a spherical cap shape of the single track, predicted the average width as function 

of the drop spacing, droplet volume and advancing contact angle. As shown in Figure 

5-3, good agreement between the predicted average width of the multiphase flow 

simulation and the analytical model was observed, demonstrating the strong influence 

of drop spacing and advancing contact angle in the morphology of single tracks. The 

simulation overpredicted the average width from theoretical model due to transient 

effects caused by the different drop spacing in the vertical direction (equivalent to the 

printing frequency) used in the study. The effect of droplet volume size was not 

considered in high-fidelity simulations and additional experiments are required to 

quantitatively assess its impact. 

 

Figure 5-2 Evolution of printed line dimensionless bead width and dimensionless thickness. 
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5.3.1.2 Surrogate modelling results. 

One of the key advantages of using the response surface methodology is the ability to 

quantify a factor’s main effects, combined effects, and non-linear behaviour. Figure 

5-4 shows the effect of individual factors on the bead width measured at droplet 

centres. Pareto charts shows statistically significant effects (p-value less than 0.05) in 

orange bars and non-significant effects in blue. Contour plots based on the response 

surface illustrate the combined effect of the drop spacing and advancing contact angle 

on bead width and consistent results are obtained at measured locations with the 

vertical drop spacing fixed. It was found that horizontal drop spacing is the most 

significant factor driving bead width stability and size. The overall trend indicates that 

as drop spacing increases, bead width size decreases, but not in a linear relationship 

since curvature effects are statistically significant. Interestingly, the second most 

significant effect results from the interaction between horizontal drop spacing and 

vertical drop spacing, which confirms that transversal speed as derived from droplet 

frequency of impact and the distance between droplets has a direct impact on bead 

width size and stability. The third most significant effect comes from the advancing 

contact angle, which has an inversely proportional relationship with respect to bead 

Figure 5-3 Average width prediction: lattice Boltzmann model vs theoretical model (Stringer & Derby, 2010) 
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width in a quasi-linear fashion since the quadratic term is not significant. As advancing 

contact angle increases, printed line width decreases. Furthermore, the effect of 

vertical drop spacing on bead width is not constant for all drop measurement locations. 

For the first two droplets, as vertical drop spacing increases, bead width decreases and 

for the last droplets the relationship inverts suggesting different coalescing modes are 

present due to transient effects between droplets. From the response surface plots, it is 

found that as drop spacing decreases and advancing contact angle decreases, the 

observed bead width reaches its maximum value at all locations. Since the maximum 

and minimum measured bead width is different at all locations, we confirm that the 

printed line shows a non-uniform pattern.  

 

 

After eliminating the statistically non-significant effects from the bead width transfer 

function, a more detailed study of the predictive capability of the model was 

performed. An Anderson-Darling test was run at each measured location to verify the 

residuals are normally distributed. Results show residuals are normally distributed 

with p-values of 0.146, 0.833, 0.6, 0.453, respectively, hence the selected function 

terms are adequate for error prediction. The percentage error of the predictive model 

versus the predicted bead width is illustrated in Figure 5-5. It is observed that % error 

is randomly distributed and therefore the prediction error values are not a function of 

the fitted bead width. To complement the model goodness of fit evaluation, Table 5-1 

lists the correlation coefficients (predicted and adjusted), mean square error, maximum 

error percentage, and bead width transfer functions. Prediction models have a 

correlation coefficient greater than 99% with adjusted values within 5% providing 

Figure 5-4 Bead width measured at first droplet centre: a. Main effects; b. Statistically significant effects. 
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good confidence that functions are modelled with the right terms. Consequently, the 

root mean square error is at least one order of magnitude less than the bead width 

mean, proving the variation unexplained by factor inputs is negligible. Most 

importantly, the maximum % error of the prediction is less than 5%, proving model 

has a good predictive accuracy. 

 

 

Table 5-1 Bead width transfer functions and measures of fit 

Location W1 W2 W3 W4 

R2 99.1% 99.5% 99.7% 99.2% 

Adj-R2 97.6% 98.5% 99.2% 97.7% 

RMSE 1.7 1.8 1.5 1.6 

Max Error % 5% 4% 3% 3% 

Transfer Functions 
W1 = 107.7+0.946*a+4.982*dh-2.589*ds-0.0411*dh*dh+0.02636*ds*ds-0.02185*a*dh-0.05379*dh*ds 
W2 = 159.9+1.241*a+5.872*dh-4.917*ds-0.0345*dh*dh+0.04781*ds*ds-0.01896*a*dh-0.06810*dh*ds 
W3 = 164.0+1.037*a+7.393*dh-5.828*ds-0.0646*dh*dh+0.05647*ds*ds-0.01551*a*dh-0.06254*dh*ds 
W4 = 115.6+0.976*a+6.137*dh-4.001*ds-0.0640*dh*dh+0.03650*ds*ds-0.01329*a*dh-0.03388*dh*ds 

 

The same statistical approach used to derive the predictive model for the bead width 

was also applied to estimate the bead thickness. Measurements of the bead thickness 

were taken at droplet centre locations. For the bead thickness prediction, curvature 

does not play a statistically significant role for any factor. The main effect impacting 

bead thickness is the vertical drop spacing which is related to the physical printing 

frequency. As the vertical drop spacing is increased, the bead thickness decreases in 

agreement with experimental work observed within non-solvent inks. As more time 

Figure 5-5 Bead width measured at first droplet centre: a) Residuals Normality, b) Percentage of error vs fit. 
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for spreading of the droplets is allowed with lower printing frequencies, droplet 

thickness is reduced accordingly. It is also found that interactions of horizontal drop 

spacing and advancing contact angle with vertical drop spacing are statistically more 

significant than main effects. This is an important contribution of the analysis that 

could build upon the volume conservation assumptions from theoretical models used 

to compute bead thickness. Transfer functions predicting bead thickness are built using 

statistically significant terms and main effects. Prediction residuals are normally 

distributed for all measured locations indicating the absence of special cause variation 

induced by the prediction model. Furthermore, a plot of the predicted error against the 

fitted bead thickness, shows a random pattern which indicates the residual values do 

not depend on whether the regression model is predicting low, medium, or high values. 

Additional fitness measures are included in Table 5-2 along with the bead thickness 

transfer functions. Correlation coefficients for droplet locations 2 and 3 show poorer 

correlation than locations 1 and 4 due to the presence of one outlier. If outliers are 

excluded from the transfer function calculation, correlation coefficients increase to 

89% and 94%, respectively. It was decided to leave all points for transfer function 

calculation to capture all potential transient effects coming from the physics based high 

fidelity simulation. Since adjusted correlation coefficients are within 5% of predicted, 

enough degrees of freedom are available to compute with confidence transfer function 

coefficients. Root mean square errors are approximately 10% the value of the resulting 

average bead thickness (12.8 m) and the maximum residual is 1.5 m, proving 

sufficient accuracy to compute bead thickness for this specific application. 

 

Table 5-2 Bead thickness transfer functions and measures of fit. 

Location W1 W2 W3 W4 

R2 94.9% 85.0% 90.3% 99.8% 

Adj-R2 90.1% 81.8% 85.6% 99.4% 

RMSE 1.6 1.5 1.4 0.5 

Max Residual 1.1 m 1.5 m 1.5 m 0.4 m 

Transfer Functions 
H1 = 49.90-1.321*a-1.73*dh+0.429*ds+0.00805*a*dh+0.01174*dh*ds 

H2 = 56.30-0.497*a-1.427*dh-0.874*ds+0.00922*a*dh+0.01153*dh*ds 

H3 = 39.50+0.0770*a-1.9170*dh-0.5180*ds+0.03020*dh*dh 

H4 = 26.72+0.0621*a-1.7568*dh-0.0276*ds+0.03347*dh*dh 

 

Measures of fit evaluated for the prediction of bead width and thickness only describe 

transfer function quality at the regressed data points. To determine the accuracy of the 
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prediction model, additional validation runs were performed using five random points 

within the design space.  The maximum percent error fit stayed within 5% for bead 

width prediction and the maximum residual observed within 1.5 m for the bead 

thickness estimation. These results confirmed that the statistical predictive model 

provides adequate, reliable, and consistent estimations of line morphology features 

within the proposed design space bounds.  

Using statistical analysis to derive transfer functions for bead width and thickness at 

drop centre locations, the proposed method is to replicate this approach to a set of 

points along and across the printed track. A cloud of points defining the line 

morphology was generated along with its corresponding transfer function to predict 

bead width and thickness based on design factors. After completing simulation tests, 

the results were cleaned and filtered to measure widths and heights at 19 different 

locations along the printed line length and 7 locations across the width. Then, a set of 

regression equations were created at each location to predict the printed track surface. 

To evaluate the goodness of fit of the overall surrogate model, the process was 

automated using MATLAB to show descriptive statistics, correlation factors, residuals 

patterns and main effects at each location. The graphical interface shown in Figure 5-6 

allows the user to see all locations together using a “traffic-light” grade (green, yellow, 

red nomenclature) based on the regression statistical results. Based on the goodness of 

fit results, the user can identify locations on the printed shape that may indicate a high 

risk of error compared to the high-fidelity LBM simulation prediction. For the pilot 

run, corresponding to a printed line shape, 90% of the equations used to predict the 3D 

shape had correlation coefficients larger than 95%, with prediction errors less than 7%; 

equations graded as yellow were 8% which means correlation coefficients were 

between 85%-95% with prediction errors less than 15% and only 2% of the equations 

showed a poor correlation coefficient (less than 80%) with predicted errors greater 

than 20% (only 3 equations out of 152). 
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Statistical measures of fit for the overall model satisfied quality requirements defined 

in Figure 5-6 and the model is thus deemed acceptable. Finally, a validation test was 

simulated with our high-fidelity lattice Boltzmann model using a set of parameters 

within the predefined design variable bounds. The purpose of the test was to ensure 

the predictive model captures accurately the transient behaviour observed when 

depositing four drops sequentially to form a printed track on a flat substrate. Figure 

5-7 shows a comparison of the results obtained from the response surface model and 

the LBM simulation, confirming good prediction accuracy and reliability. 

 

Figure 5-6 Printed track prediction model goodness of fit results. 
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5.3.1.3 Optimisation results. 

A multi-objective genetic algorithm was employed in MATLAB to search for optimal 

settings of horizontal and vertical drop spacing and advancing contact angle. The 

objective function was calculated from the normalized central geometric moments of 

the predicted and target footprints. Figure 5-8 shows the objective function value for 

15 simulation runs defined by the central composite design of experiments as a 

Figure 5-7 Results comparison between a. High-fidelity lattice Boltzmann; b. Surrogate 

model. 
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function of overlap ratio. The figure also incorporates the line morphology observed 

in each case. It was found that using the error norm of the normalized central geometric 

moments as a fitness measure for optimisation yields adequate and consistent results. 

Furthermore, clusters of points clearly identified the line morphology regimes as a 

function of overlap ratio and a trend towards a uniform and stable line is observed as 

the objective function is minimized. Careful analysis of the objective function based 

on geometric moments is needed, since the accuracy of the method is predicated on 

the order of moments used in the calculation. In this case, up to 4th order moments 

were included. Additional objective functions were implemented for Pareto front 

construction based on the least squares error of predicted bead thickness against target, 

least squares error of predicted width against target and a weighted objective function 

combining any of the three objectives previously defined. Nonlinear constraints were 

defined based on the mean and standard deviation of the line width and thickness to 

be less than 5 and 2 microns, respectively. Design variable bounds were also 

incorporated in the optimisation setup to explore space within the region of interest 

and physical parameters feasibility was ensured. 

 

 

Figure 5-8 Simulation results mapped onto line formation regimes and the normalized central geometric 

moments error function. 
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The multi-objective genetic algorithm was setup using a population size of 100 

individuals, with a maximum number of generations fixed at 600, and convergence 

criteria for objective function and constraints set as 1e-6 and 1e-4, respectively. No 

scaling was required on genes since values were of the same order of magnitude. The 

crossover fraction was fixed at 80% and the mutation rate set to adapt with respect to 

the last successful or unsuccessful generation. The Pareto front was constructed 

keeping 35% of individuals from the first front and then selecting fitted individuals 

from higher fronts.  

Results from the optimisation are presented on Figure 5-9a. The Pareto front was 

constructed using in the x-axis the objective values based on normalized central 

geometric moments which corresponds to width dimensional accuracy and in the y-

axis the objective values based on least squares error of bead thickness which 

corresponds to thickness dimensional accuracy. Each pink dot represents a set of 

parameters evaluated by the search algorithm. The Pareto front is built in less than 3 

minutes evaluating more than 5000 combinations seeking the global minimum.  

Based on Pareto front results, the set of parameters that provide the best trade-off 

between line thickness and width stability for our dielectric line are horizontal drop 

spacing = 56, vertical drop spacing = 12 and advancing contact angle = 46, 

corresponding to 37.4 m (equivalent to an overlap ratio of 25.2%), 8.0 m (equivalent 

to an application with high printing frequency) and 46°, respectively. The set of design 

parameters which provide the minimum edge waviness for our dielectric line are 

horizontal drop spacing = 67, vertical drop spacing = 12.2 and advancing contact angle 

= 45.8, corresponding to 44.8 m (equivalent to an overlap ratio of 30.2%), 8.1 m 

(equivalent to an application with high printing frequency) and 45.8°, respectively. 

Although, the observed waviness along the edge matches the target pattern better than 

the best trade-off parameters, the printed track shows larger differences in the 

thickness at several locations which could impact electrical performance and accuracy 

of next printed layers. The set of design parameters which provide the most uniform 

thickness for the dielectric track are horizontal drop spacing = 36.1, vertical drop 

spacing = 10.2 and advancing contact angle = 45, corresponding to 24.2 m 

(equivalent to an overlap ratio of 51.6%), 7 m (equivalent to an application with high 

printing frequency) and 45°, respectively. Unfortunately, this set of parameters yield 

a printed track converging to a bulging instability regime due to the large overlap 
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between droplets. A validation run was performed using the lattice Boltzmann high 

fidelity model to assess both thickness and width dimensional accuracy of the printed 

track, confirming that the optimal set of parameters yields a stable line morphology, 

illustrated in Figure 5-9b. 

 

 

 

Figure 5-9 a) Pareto front and b) Validation run with optimal factor settings. 
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5.3.2 Surrogate model-based optimisation using experiments performed in 

Dimatix printer. 

5.3.2.1 Experiments results. 

A single pixel line of 1 mm in length was printed on glass following the procedure 

described in Section 3.2.5. A total of 20 experiments were performed using the matrix 

of parameters defined in Table 3-4. Printed lines images following the experimental 

run order from left to right, top to bottom are shown in Figure 5-10. 

 

 

Lines were measured using coherence scanning interferometry (CSI) to accurately 

define its surface morphology as discussed in Section 3.2.7. CSI data was employed 

to build a transfer function between critical printing parameters and the morphology 

of single tracks following the same surrogate modelling strategy used for the high-

fidelity simulation results. Measurements were delivered as a point cloud file for each 

feature as illustrated in Figure 5-11 and were post-processed using the method 

described in Section 4.7.1. Mean, standard deviation and maximum values of width 

and thickness were then calculated as shown in Figure 5-12 using a discretization 

scheme with grid size N = Nx = 50 and Ny = 9. Table 5-3 lists the normalised central 

geometric moments (NCGM), waviness, and roughness factors calculated from the 

single-track dimensions to be used as fitness functions for optimisation purposes. 

Figure 5-10 Images of printed lines L = 1 mm following response surface methodology. 
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Table 5-3 Calculated fitness functions based on experimental results. 

Run 

# 

Drop 

spacing 

(m) 

Printing 

frequency 

(kHz) 

Standoff 

Distance 

(mm) 

Overlap 

(%) 

NCGM 

fitness 

function 

Waviness 

fitness 

function 

Roughness 

fitness 

function 

1 40 2.5 1 37.3 0.4184 0.1438 0.5512 

2 40 2.5 1.5 37.3 0.1290 0.1760 0.5681 

3 40 4 1 37.3 1.2913 0.3333 0.5955 

4 10 1 0.5 84.3 2.1014 0.3095 0.7640 

5 40 2.5 1 37.3 0.5214 0.2506 0.6169 

6 40 2.5 1 37.3 0.5123 0.2060 0.5811 

7 40 2.5 1 37.3 0.1216 0.1667 0.5633 

8 70 2.5 1 -9.7 4.3665 0.4156 0.6712 

9 10 1 1.5 84.3 2.2138 0.2614 0.7085 

10 40 2.5 1 37.3 0.4614 0.1529 0.5514 

11 70 4 1.5 -9.7 5.4151 0.7431 0.6685 

12 70 1 0.5 -9.7 2.2088 0.2841 0.6268 

13 40 2.5 1 37.3 0.4090 0.1967 0.5799 

14 10 4 1.5 84.3 2.1193 0.2032 0.6181 

15 40 2.5 0.5 37.3 0.3542 0.2070 0.5877 

16 10 4 0.5 84.3 2.1002 0.1768 0.5882 

17 40 1 1 37.3 0.9454 0.2707 0.6302 

18 10 2.5 1 84.3 1.8330 0.1915 0.6029 

19 70 1 1.5 -9.7 9.2372 0.5827 0.6771 

20 70 4 0.5 -9.7 6.7176 0.5339 0.6593 

Figure 5-12 Average width and thickness calculation. 

Figure 5-11 CSI measurements used to generate surrogate model 
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5.3.2.2 Surrogate modelling results. 

This section details the surrogate model adequacy and the analysis of the effect of 

printing parameters and its interactions in the surface morphology of single tracks. 

Figure 5-13a shows measured data of a single track generated with a drop spacing of 

10 m, printing frequency of 1 kHz and standoff distance of 0.5 mm. Figure 5-13b 

illustrates the morphology predicted by the surrogate model using the same printing 

parameters with a coarse discretisation scheme. It was found that the predicted 

morphology matches the real footprint to within 2 m and both the location and 

magnitude of the maximum width and thickness were accurate to 1 m. Real and 

predicted morphologies were unstable showing the formation of large bulges along the 

feature’s surface and a shorter track length compared to target by 30 m was found in 

both cases. Overall, excellent agreement between the measured and predicted features 

was achieved over the whole surface morphology with maximum absolute deviation 

less than 2 m. To validate the surrogate model prediction throughout the design space, 

a comparison of all the measured data was plotted against its corresponding prediction 

values. Figure 5-13c-f illustrate the models for average width, maximum width, 

average thickness, and maximum thickness predictions versus measured values, 

respectively. For the average and maximum width models, there is an excellent 

agreement between the predictions and the experiments, with about 95% of data points 

within 5% error, with a single point out of the 10% error threshold (around 12% error 

at 100 m). For the average and maximum thickness models, there is a good agreement 

between predictions and experiments, with about 90% of data points within the 10% 

error, observing the lowest for one point at the lower value of thickness (25% error at 

a thickness of 4 m). Particularly, the model to predict the maximum thickness shows 

30% of data points out of the 10% error threshold, which is likely to be caused by the 

material redistribution influenced by the interaction of viscous and capillary forces and 

non-uniform UV light exposure, which were not considered in the prediction model. 

Nevertheless, using the prediction models to build the surface morphology of single 

tracks as function of printing parameters provided an accurate method to determine 

instabilities such as material overflow (bulges) or disjointed (break-ups) tracks as well 
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as precise predictions to within 2 m and therefore, were considered adequate for this 

investigation. 

 

 

Figure 5-13 Validation of the surface morphology prediction model for single tracks by comparing samples printed 

with printing parameters defined in matrix of experiments. a) Measured surface morphology of single track; b) 

predicted surface morphology built using surrogate model. c)-f) deviation assessment of the predictive models for 

the average width, maximum width, average thickness, and maximum thickness, respectively. 
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The relationships among the width and thickness as function of the printing parameters 

studied are depicted in Figure 5-14a-b and Figure 5-15a-b, respectively. The 

coefficient of determination for the average and maximum width, average and 

maximum thickness are 0.97, 0.95, 0.92 and 0.92, respectively. The analysis of 

variance confirmed that prediction models are statistically significant using a 

significance level of 5%. A residual analysis was done to test for defects such as non-

normality, non-independent and non-constant variance. The models were found to be 

free of all these defects. For the average width prediction, the drop spacing and the 

square of the drop spacing were found to be the only factors statistically significant, 

which is consistent to the models derived by other researchers (Stringer & Derby, 

2010)(Kang et al., 2010). Eliminating non-significant factors from the model improves 

the correlation coefficient of determination but increased the error between predicted 

and measured values. Therefore, no term was eliminated from regression model. For 

the maximum width prediction, it was found that drop spacing, drop spacing squared 

and the interaction between drop spacing and printing frequency is statistically 

significant which indicates the critical role of the printing traverse velocity in the 

control of the material overflow on single tracks.  

 

 

Figure 5-14 Statistical analysis of predictive model. a) Average width; b) Maximum 

width. 
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For the average and maximum thickness prediction models, it was found that drop 

spacing is the most important factor driving the regression behaviour. Interestingly, 

for the case of the maximum thickness, the interaction effect between drop spacing 

and printing frequency and the printing frequency main effect turned out to be 

statistically significant which indicates that printing frequency plays a critical role 

defining uniform tracks. Although, regression models could be simplified to only 

consider significant factors, eliminating factors showed a detrimental effect on the 

prediction model accuracy. Therefore, no term was eliminated from the thickness 

regression models. Finally, the assumption to develop the experiment using a central 

composite design to capture parameter curvature effects was key to find accurate 

relationships between printing parameters and surface morphology characteristics. 

 

 

Summarizing, the prediction models provide a fast and accurate way to characterise 

the surface morphology of single tracks. The most important factor driving printed 

feature’s stability is the drop spacing. As drop spacing increases, the width and 

thickness decrease in a non-linear manner. Although, printed frequency and standoff 

distance and its interactions have a minor non-linear effect on average track 

Figure 5-15 Statistical analysis of predictive model. a) Average thickness; b) Maximum 

thickness. 
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dimensions, they play a key role characterising accurately the tracks’ material 

overflow. Setting the lowest frequency with the lowest drop spacing and the highest 

standoff distance forms unstable tracks due to the presence of bulges. Given the 

complex non-linear behaviour of the morphology prediction models, a parameter 

optimisation was performed to find the combination of printing parameters that 

produce the most stable track and results are presented in next section. 

 

5.3.2.3 Optimisation results. 

In this section the results of the parameter optimisation using the surrogate model 

constructed from experiments are presented. Figure 5-16 illustrates the fitness 

functions used to find the most stable track as function of the printing parameters and 

a comparison between measured and predicted values. Three fitness functions were 

calculated in this investigation: the error norm of the normalized central geometric 

moments between the predicted and target footprints, the waviness factor defined as 

the ratio of the standard deviation of the footprint width and the average width, and 

the roughness factor defined as the ratio of the standard deviation of the feature’s 

thickness and the average thickness. The first two are used to minimise edge waviness 

and the third to minimise thickness roughness. There is an excellent agreement 

between the means of predicted values and experiments, showing a quadratic 

relationship between fitness functions and printing parameters. An independent 

evaluation of the effect of each printing parameter on the NCGM fitness function 

indicates that a drop spacing of approximately 34 m (approximate droplet overlap of 

48%) with a printing frequency of 2.5 kHz and a standoff distance of 1 mm would 

minimise the error between the predicted and target footprints. Furthermore, the 

morphology edge waviness is minimised when the drop spacing, printing frequency 

and standoff distance are set to 31 m (equivalent to 52% droplet overlap), 2.4 kHz 

and 0.85 mm, respectively. The morphology surface roughness is minimised when the 

drop spacing, printing frequency and standoff distance are set to 40 m, 2.8 kHz and 

1 mm, respectively.  
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Measured data was analysed using MINITAB to build the prediction models for each 

fitness function. A gradient-based optimisation was performed to minimise predicted 

fitness functions and find optimal printing parameters. Starting point for the local 

optimiser was set to 40 m, 2.5 kHz and 1 mm with a confidence level for all intervals 

Figure 5-16 Measured vs predicted values of the fitness functions used to produce the most stable single track as 

function of the printing parameters. a)-c) effect of drop spacing; d)-f) effect of printing frequency; g)-i) effect of 

standoff distance and j)-l) effect of drop overlap on NCGM, waviness and roughness functions, respectively. 
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of 95% in all analyses. Table 5-4 lists the results obtained from the single objective 

optimisation. It was found that the optimal values for the printing parameters depend 

on the fitness function focus. NCGM error and waviness are equivalent since both are 

based on the feature’s footprint shape whereas roughness is focused on the thickness 

uniformity. Drop spacing, printing frequency and its interaction are the most 

significant factors driving the minimum fitness functions values. 

 

Table 5-4 Single objective optimisation using gradient based (local) approach. 

Printing Parameters NCGM error Waviness Roughness 

Drop spacing (m) 34.8 29.4 36.6 

Printing frequency (kHz) 1.5 2.5 3.3 

Standoff distance (mm) 0.5 0.5 0.5 

Overlap (%) 45% 53% 42% 

 

Results indicate that there is a trade-off between the morphology characteristics which 

define a stable track: width waviness and thickness roughness. Therefore, a multi-

objective optimisation using a genetic algorithm (global optimisation approach) was 

performed to find the set of printing parameters that simultaneously minimise the 

waviness and roughness. Details about the optimisation procedure were described in 

Section 4.5.1. Figure 5-17a shows the pareto front obtained when simultaneous 

waviness and roughness objectives are minimised. The printing parameters that 

produce the most stable track representing the best trade-off point of the pareto front 

are drop spacing, printing frequency and standoff distance equal to 31.4 m, 2.8 kHz 

and 0.5 mm, respectively. The predicted single-track morphology using the optimal 

printing parameters is illustrated in Figure 5-17b. The model predicts a footprint with 

minimal variation against width target and a very uniform thickness across the 

feature’s length. The proposed surrogate model-based optimisation using experiments 

achieved fast and accurate results enabling the search of optimal printing parameters. 
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A validation run was performed on the Dimatix printer to assess both thickness and 

width dimensional accuracy of the printed track, confirming that the optimal set of 

parameters yields a stable line morphology, illustrated in Figure 5-18 

 

 

5.3.3 Differences of the surrogate model-based optimisation results using high-

fidelity simulations against experiments. 

The surrogate modelling methodology proposed in section 4.4.1 has successfully 

constructed a transfer function relating surface morphology characteristics of single 

tracks with critical printing parameters using a sample of high-fidelity simulations and 

lab experiments. In both cases, fast and accurate predictions allowed the exploration 

of the printing parameters design space to find the set of optimal values that produce 

the most stable track. In this section, the differences in the morphology characteristics 

and optimal printing parameters between both assumptions are explained. Figure 

5-19a-b shows the effect of droplet overlap (function of drop spacing, advancing 

contact angle and in-flight droplet volume) on the NCGM fitness function obtained 

from high-fidelity simulations and lab experiments. It was found that in both cases the 

droplet overlap is related to the fitness functions in a quadratic fashion. However, the 

Figure 5-17 Surrogate model-based multi-objective optimisation results: a) Pareto front; b) Morphology 

prediction using optimal printing parameters. 

Figure 5-18 Validation run on Dimatix printer using optimal printing parameters. 
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optimal value is significantly different between simulations and experiments, 

approximately 33% and 48%, respectively. This difference may be explained since 

high-fidelity simulation does not consider the variation in the droplet location and 

footprint size introduced by equipment tolerances and chemically inhomogeneous 

substrates. In addition, the simulations assume a very high printing frequency 

modelled by the variation in vertical drop spacing, which only provides a qualitative 

assessment of the influence of this factor on tracks stability.  

 

 

In contrast, Figure 5-20a-d shows the effect of droplet overlap and printing frequency 

on the roughness fitness function from high-fidelity simulations and lab experiments. 

It was found that the droplet overlap value which minimises the roughness fitness 

function is approximately 37% and a quadratic relationship prevails for both cases. 

This result indicates the thickness uniformity is less sensitive to the uncertainty 

introduced by equipment tolerances. Furthermore, it was observed that printing 

frequency plays a more significant role determining track uniformity, with an optimal 

value of approximately 2.9 kHz from the model based on experiments and following 

a quadratic trend confirmed by qualitative results from model based on high-fidelity 

simulations. 

 

Figure 5-19 Effect of droplet overlap on NCGM error fitness function obtained from a) simulations and b) 

experiments. 
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Overall, high fidelity simulations provided an accurate way to understand the 

relationships between printing parameters and surface morphology characteristics, 

showing similar trends as experiments. Average width of single tracks matched 

analytical model results derived from volume conservation assumptions, validating 

physics-based model predictions. However, finding the optimal printing parameters to 

generate the most stable single track required the use of experiments which incorporate 

deformation due to UV curing shrinkage, the drop position and size error due to the 

equipment tolerances and substrate chemical inhomogeneities. These factors have a 

significant effect on the final droplet overlap which was identified as the main factor 

influencing the final shape of the track. 

Figure 5-20 Effect of critical printing parameters on roughness fitness function. Droplet overlap effect on surrogate 

model based on a) simulations, b) experiments. Printing frequency effect on surrogate model based on c) 

simulations and d) experiments. 
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5.4 Conclusions and summary. 

A surrogate modelling strategy capable of predicting the surface morphology of single 

tracks has been established enabling the optimal selection of inkjet printing parameters 

in a reasonable time while capturing the transient effects from either high-fidelity 

simulations or lab experiments. The effects of drop spacing, printing frequency, 

standoff distance, and advancing contact angle on the dimensional accuracy of printed 

line morphology were determined. Line morphologies including isolated droplets, 

scalloped line, uniform line, and bulging formation were quantitatively identified as a 

function of printing parameters. Specific conclusions draw from the results that have 

been confirmed with observations and findings in the current literature are: 

• Drop spacing is the most critical parameter influencing the surface morphology 

stability of single tracks. 

• Advancing contact angle plays a significant role determining the track width. 

• Printing frequency and its interaction with drop spacing drives the track 

thickness uniformity. 

• Standoff distance has a minor effect on the footprint waviness, but its 

interaction with printing frequency has a significant influence on the thickness 

uniformity. 

• Droplet overlap which is a function of drop spacing, contact angle and droplet 

volume is a key predictor of the stability of printed single tracks. 

This investigation constructed for the first time to the best of the author’s knowledge 

a set of full quadratic transfer functions relating surface morphology characteristics 

such as average and maximum width and thickness to the critical printing parameters 

only requiring a limited number of experiments. Models were statistically validated 

through analysis of variance and verified via experimental work. Excellent agreement 

was found between predicted and measured values, with about 95% of data points 

within 10% error. Maximum absolute deviation of footprint width and feature 

thickness was within 10 m and 2 m, respectively. The fast execution of the 

predictive models allowed the global exploration of the design space to find the 
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optimum printing parameters by minimising the footprint width waviness and feature 

thickness roughness simultaneously. The printing parameters that produce the most 

stable track representing the best trade-off point of the pareto front are drop spacing, 

printing frequency and standoff distance equal to 31 m, 2.8 kHz and 0.5 mm, 

respectively. The optimum parameters were validated in the Dimatix printer achieving 

a stable track. 

Finally, this investigation revealed that a significant difference exists in the optimal 

printing parameters derived from simulations and experiments. The difference is 

attributed to the deformation due to UV curing shrinkage, the droplet location and 

footprint size variation introduced by equipment tolerances and chemically 

inhomogeneous substrates which are not considered in the high-fidelity simulations. 

Therefore, for the accurate calculation of the droplet overlap which drives the stability 

of single tracks, a way to quantify the uncertainty due to drop location and footprint 

size is required. 

Current methodology was applied to the prediction and optimisation of single tracks; 

however, the use high fidelity simulations to model features comprised by more than 

25 drops was proven to be unfeasible due to the large computational solution time. 

Therefore, to extend this investigation for the prediction of films, a different approach 

must be explored. In the next chapter, the solution of an inverse design problem to 

reconstruct the volume of free form printed films using a shape from shading approach 

is proposed. 
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CHAPTER SIX 

 

6 Surrogate model-based optimisation of printing 

parameters for the stability of free form films. 

6.1 Introduction. 

After studying the formation of single tracks with our surrogate modelling framework 

in Chapter 5, the prediction and optimisation of free-form films was investigated. 

Similar to the single tracks, the formation of stable inkjet-printed films is influenced 

by the process parameters, the physical properties of the ink and the substrate 

wettability. Drop spacing, printing frequency and stand-off distance were considered 

key control parameters in the formation of uniform films. To understand the 

relationship between such factors and the surface morphology of films and find the 

optimum combination of printing parameters, our surrogate modelling framework was 

implemented using a hybrid physics-based and data-driven prediction model. This 

chapter documents the prediction model results including lattice Boltzmann 

simulations of square films and the 3D surface reconstruction of inkjet-printed films 

using a Shape-from-Shading approach (Reyes-Luna et al., 2023b) and illustrates the 

versatility of our surrogate modelling framework to determine the optimal printing 

parameters to achieve stable free-form films regardless of the simulation method 

employed.  

6.2 Methodology. 

In order to investigate the effect of critical printing parameters in the film formation, 

two prediction models were explored: lattice Boltzmann (LB) multiphase flow model 

and Shape-from-Shading reflection model. Using the LB model, the formation of 

square films was simulated by the sequential deposition of four lines of four 

microdroplets on a flat, rigid, and non-porous substrate as described in Section 4.1.1.5. 

Using the SFS approach, the surface morphology of inkjet-printed films was 

reconstructed from experimental images following the procedure explained in Section 

4.2.1.2. The matrix of experiments defined to investigate the effect of critical printing 

parameters together with details about the surrogate model strategy including how to 

calculate the response surface equations, analyse the statistical validity of the model 
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and build the surface morphology were explained in Section 4.4.2. Then, the predicted 

deformed geometries obtained using the simulations were compared against film 

measurements and geometrical deviations were determined following the procedure 

from Section 4.7.3. Optimal printing parameters were found employing a multi-

objective genetic algorithm approach with a non-traditional fitness function as 

discussed in Section 4.5.1.2. Finally, the experimental validation of the optimal 

printing parameters to achieve a stable free-form film was demonstrated using several 

shapes. 

6.3 Results and discussion. 

6.3.1 Surrogate model-based optimisation using LB multiphase flow method. 

Before launching the parametric study to understand the role of drop spacing 

(horizontal and vertical) and advancing contact angle, three tests were performed 

varying only the horizontal drop spacing to assess the capability of the lattice 

Boltzmann simulation to model larger patterns and capture film bulging and break up 

phenomena. Assuming all droplets have a volume of 10 pL, an impact speed of 6 m/s 

and TPGDA ink physical properties, three simulations were run with resolutions of 

1270, 762, and 540 dpi which correspond to a drop spacing of 20 m, 33 m and 47 

m, respectively. Vertical droplet spacing, advancing, and receding contact angles 

were fixed at 13.3 m, 30 ° and 5 °, respectively. Each simulation was terminated after 

film equilibrium was reached at approximate 20000 timesteps, equivalent to 150 s. 

High fidelity model results of the film evolution for the three cases are presented in 

Figure 6-1. It was found that film bulging occurs when the drop spacing was set at 20 

m (equivalent to an overlap of 62%) showing significant material overflow on the 

left, top and bottom edges of the footprint. When droplets land almost on top of each 

other redistribute the material towards the contact line exceeding the advancing contact 

angle and causing droplet to expand beyond target footprint as illustrated in Figure 

6-1a. In addition, for the case when the drop spacing was set to at 47 m (equivalent 

to an overlap of 8%), film separation was observed on the right edge of the square 

since the final line did not coalesce with the film due to material redistribution towards 

the first printed lines, increasing the drop spacing for the final printed line and 

preventing drop overlap as shown in Figure 6-1c. Finally, as illustrated in Figure 6-1b, 

when the drop spacing is set to 33 m (equivalent to an overlap of 35%) a more stable 



142 

 

film was observed with minimal waviness at the edges and a square-shaped footprint 

closer to target pattern. The LB model was able to simulate small square films 

capturing the complex flow dynamics of multiple droplets spreading and coalescing 

simultaneously as well as bulging and break up phenomena.  

 

 

Numerical results are qualitatively consistent with experiments performed by Kang et 

al. (2010) where both bulging and break-up phenomena is present on printed films 

depending on drop spacing and advancing contact angle values. Furthermore, two 

experiments were performed in house to validate our high-fidelity model by printing a 

5x5 droplet square film on silicon wafer using a drop spacing of 20 m and 60 m, 

respectively. Material properties used for the simulation correspond to TPGDA at 20 

°C and assumed drop volume of 10 pL with impact speed of 6 m/s, static contact angle 

of 10.3 ° and footprint diameter of 82.6 m (averaged measured data from 10x10 grid 

Figure 6-1 Simulation of square films using the lattice Boltzmann method varying the drop spacing only: a. Film 

evolution using a drop spacing of 20 m depicting film bulging; b. Film evolution using a drop spacing of 33 m 

yielding a stable film and c. Film evolution using a drop spacing of 47 m showing film break-up and significant 

edge waviness. All schematics show the target square footprint as a dotted line.  
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obtained following the procedure described in Section 3.2.10) for all drops. The edge 

was extracted from both numerical and experimental results and overlayed to observe 

the differences as illustrated in Figure 6-2. Overall, good agreement was observed 

between high fidelity model and experimental results. Small differences in profile 

geometry could be explained since the LB model does not consider UV curing process 

which cause the printed patterns to shrink. 

 

 

Although our high-fidelity model based on the LB model yields accurate morphology 

predictions for small tracks and square films, it is not practical for the exploration of 

the printing parameters’ space for optimisation purposes. The limitation to small 

square patterns with maximum 5 drops per side coupled with the large computational 

solution time per experiment (e.g., approximately 4.5 days) hinders the model 

applicability in our context. Therefore, to enable the prediction of free-form films of 

any size, the solution of an inverse design problem to reconstruct the volume of inkjet-

printed films from experimental images using a shape from shading approach is 

explored. 

6.3.2 Surrogate model-based optimisation using Shape-from-Shading inverse 

problem approach. 

Using the shape from shading approach coupled with a multi-objective genetic 

algorithm, the optimal printing parameters to achieve a stable film were determined. 

First, experiments were performed to obtain the images for surface reconstruction. 

Next, the prediction model was built by estimating the optimal reflectance map 

Figure 6-2 Comparison of LB model results and in-house experiments for 

validation purposes: a. Drop spacing = 20 m and b. Drop spacing = 60 m 
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parameters per image. Then, the predicted surface morphology was compared against 

CSI measurements to validate the model and the results were used to construct the 

surrogate model. Finally, optimal printing parameters were determined and validated 

via experiment. 

6.3.2.1 Experiments results. 

A 1 mm square film was printed on glass following the procedure described in Section 

3.2.5. A total of 20 experiments were performed using the matrix of parameters defined 

in Table 3-5. Printed films images following the experimental run order from left to 

right, top to bottom are shown in Figure 6-3. For reference, the average droplet 

footprint diameter measured in these experiments was 63.8±4.2 m.  

 

 

Results showed that the selected printing parameters produce a diverse range of film 

morphologies, capturing film bulging and break-up phenomena as well as uniform 

films. Films generated with the same printing parameters (6 replicates of central point) 

represented by images 1, 5, 6, 7, 10 and 13 exhibit excellent agreement except for film 

7 which presents a pore potentially due to substrate contamination. Films 4, 9, 14, 16 

Figure 6-3 Images of printed films following the matrix of experiments described in Table 3-5. 
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and 18 manifest excessive material overflow on the pattern edges and different 

reflection properties compared to the rest of experiments. These films were run with a 

drop spacing set at 10 m. Films 8, 11, 12, 19 and 20 were run with a drop spacing set 

at 50 m and all present islands and break ups in multiple locations due to the small 

overlap between droplets. The rest of the films seems to have a uniform thickness, but 

with larger edge waviness deviating from target pattern due to the variation of printing 

frequency and standoff distance. Overall, it is concluded that printed films obtained 

from our matrix of experiments represent an adequate sample from which to build our 

prediction model using the SFS approach.  

6.3.2.2 Prediction results. 

Images from experiments were employed to reconstruct the surface morphology of the 

square films using the SFS approach following the procedure described in Section 

4.2.1.2. Three sets of optimal reflectance parameters were derived to address the 

different light reflection behaviour observed at different drop spacing levels. Films 3, 

4 and 8 were measured using CSI to determine the ground truth film morphology 

which represent films created at drop spacings set at 30, 50 and 10 m, respectively. 

The relationship between an image without reflection obtained from the CSI 

measurements and the real image grey levels was established and reflectance 

parameters optimised by minimising the root mean square error (RMSE) between 

images. Table 6-1 lists the optimal reflectance parameters determined for each drop 

spacing level. 

Table 6-1 Optimal reflectance map parameters. 

Reflection parameters Ds = 10 m Ds = 30 m Ds = 50 m 

Surface roughness 0.3431 0 0.1512 

Diffusive factor 0.7758 0.6011 0.8816 

Specular factor 0.2242 0.3989 0.1184 

Surface shininess 30.55 2.8494 23.9988 

 

The reconstructed morphologies based on the images from our matrix of experiments 

are illustrated in Figure 6-4. The results are displayed following the same order of the 

experiments for consistency purposes. Film morphologies were reconstructed using 

the Lax-Friedrichs sweeping scheme implemented in MATLAB on a PC with intel 

core i7+ 8th Gen processor and 16Gb of DDR4 memory. 
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As can be seen from Figure 6-4, the SFS approach can achieve satisfactory 

reconstructed morphologies from real images using the optimal sets of reflectance 

parameters determined from ground truth measurements. The results showed excellent 

agreement on the footprint boundaries prediction since the method uses a mask derived 

from highly accurate image segmentation procedures (e.g., maximum error less than 3 

m). In addition, it was found the SFS approach can reconstruct the surface of multiple 

segments with free-form shapes simultaneously in a timely manner which validates 

the hypothesis supporting the usage of this approach for fast prediction purposes. It is 

important to note that details on the surface roughness caused by printer swaths were 

lost in the SFS prediction and only smooth surfaces could be reconstructed. Also, it 

was found that the predicted film morphology is highly influenced by localized 

specular reflection from the image such as in films 7 and 15 which show a white band 

next to pore and mid centre, respectively. Overall, it is concluded that the SFS 

approach provides a fast way to estimate the film morphologies of printed features 

given three sets of CSI film measurements representing the drop spacing levels used 

in our experiments.  

Figure 6-4 Surface morphology prediction of square films using the Shape from Shading approach. 
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Figure 6-5 shows the predicted morphology (reconstructed film using SFS approach), 

the measured morphology, and the predicted shape deviations from target to assess the 

accuracy of the SFS approach. 

 

 

Overall, the reconstructed shape of the film using the SFS approach shows good 

agreement with film measurements. The results are presented per level of drop spacing 

employed in the experiments. Figure 6-5a depicts a bulging film generated using a 

Figure 6-5 Validation of prediction model using CSI measurements: a. Bulging film (ds=10 m, pf=1 kHz and 

sd=0.5 mm); b. Stable film (ds=30 m, pf=3 kHz and sd=1 mm) and c. Break-up film (ds=50 m, pf=2 kHz, sd=1 

mm). 
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drop spacing, printing frequency and standoff distance of 10 m, 1 kHz and 0.5 mm, 

respectively. The largest deviation from target was located on the footprint profile with 

a value of approximately 20 m which may be due to an error introduced while finding 

the base plane for the CSI measurements data. The peak location is consistent in both 

geometries showing a difference of 3.2 m at a maximum thickness of 78.3 m, which 

represents an error of 4%. It was observed that the surface reconstruction is more 

sensitive to the specular reflection since shape was underpredicted where light was 

reflected the most and overpredicted in the opposite case. Figure 6-5b illustrates a 

uniform film generated using a drop spacing, printing frequency and standoff distance 

of 30 m, 3 kHz and 1 mm, respectively. Overall, predicted film morphology 

overestimated the real film morphology by an average of 2.5 m and the ridges caused 

by printing swaths captured in CSI measurements were lost in the SFS prediction. The 

peak location is consistent in both geometries at upper right corner showing a 

difference of 0.7 m at a maximum thickness of 11.9 m which represents an error of 

5.8%. Finally, the shape deviations observed in the prediction of the segmented film 

are displayed in Figure 6-5c. Overall, the predicted film morphology underestimated 

the real film by an average of 2.5 m. The largest deviation from target was located 

on a concentrated zone in the footprint profile with a value of approximately 20 m 

due to the manual generation of the mask employed in the SFS prediction. The peak 

location matches the actual film measurements at a maximum value of 8.0 m showing 

a difference of 0.6 m (real vs predicted), which represents an error of 7.5%. Based 

on these results, it is concluded that the surface reconstruction from real images of 

printed features is achievable in a fast way without losing much accuracy. 

Table 6-2 lists the three indicators used to assess quantitatively the accuracy and speed 

of the SFS prediction: mean absolute (MA) error, root mean square (RMS) error, and 

CPU running time. Based on the performance metrics, the less accurate prediction and 

slower solution time was obtained for the bulging film which may be due to the lower 

grey level discretisation of the film image which is related to the capability of the 

material to reflect (absorb) the light. The accuracy of the prediction for the films 

generated using a drop spacing greater than 30 m was on average less than 3 m and 

the solution time was less than 4.5 minutes. The results confirm that a good trade-off 

between faster and accurate solutions is achievable by implementing the SFS 

approach. 
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Table 6-2 Quantitative comparisons of predicted vs measured film morphology. 

Images Mean Absolute Error (MA) Root Mean Square Error (RMS) Time (s) 

Figure 74a 6.4651 7.1835 689 

Figure 74b 2.4745 2.7494 272 

Figure 74c 2.6849 2.9833 187 

 

Table 6-3 lists the normalised central geometric moments (NCGM) and roughness 

factors used as fitness functions for optimisation purposes. 

 

Table 6-3 Calculated fitness functions based on SFS prediction results. 

Run 

# 

Drop 

spacing 

(m) 

Printing 

frequency 

(kHz) 

Standoff 

Distance 

(mm) 

Overlap 

(%) 

NCGM 

fitness 

function 

Roughness 

fitness 

function 

1 30 2 1 53 0.0147 0.3869 

2 30 2 1.5 53 0.0146 0.3872 

3 30 3 1 53 0.0086 0.3076 

4 10 1 0.5 84.3 0.0625 0.5680 

5 30 2 1 53 0.0115 0.3860 

6 30 2 1 53 0.0093 0.3335 

7 30 2 1 53 0.0086 0.3847 

8 50 2 1 21.6 0.0558 0.5906 

9 10 1 1.5 84.3 0.0786 0.5874 

10 30 2 1 53 0.0117 0.3847 

11 50 3 1.5 21.6 0.0252 0.4856 

12 50 1 0.5 21.6 0.0401 0.4899 

13 30 2 1 53 0.0098 0.3875 

14 10 3 1.5 84.3 0.0503 0.5468 

15 30 2 0.5 53 0.0070 0.3810 

16 10 3 0.5 84.3 0.0644 0.5492 

17 30 1 1 53 0.0136 0.3855 

18 10 2 1 84.3 0.0823 0.5519 

19 50 1 1.5 21.6 0.0218 0.4845 

20 50 3 0.5 21.6 0.0166 0.4807 

 

6.3.2.3 Surrogate model results. 

This section details the surrogate model adequacy and the analysis of the effect of 

printing parameters and its interactions in the surface morphology of solid square 

films. Figure 6-6a-c shows the measured film morphology of a square pattern printed 

with a drop spacing of 30 m, printing frequency of 3 kHz and standoff distance of 

1.0 mm, the reconstructed surface from the corresponding experiment image 
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employing the SFS approach and the predicted morphology from our surrogate model 

using the same printing parameters with a fine discretisation scheme (40000 

equations), respectively. Comparing the main dimensions of the predicted vs real film, 

our surrogate model prediction underestimated the average length, width, and 

thickness by 22.6 m, 13.4 m and 0.1 m, respectively. The locations of the 

maximum length, width and thickness show good agreement, but the magnitudes were 

overestimated by 19.9 m, 24.4 m and 0.2 m, respectively. For this specific case, 

the error of the prediction model relative to the main dimensions is less than 2.5%. It 

is important to note that the 3D predicted morphology presents a non-smooth surface 

since every point was built using an equation as function of the printing parameters 

and the error level is not the same for all equations. However, the overall shape of the 

printed feature was successfully achieved in tenths of seconds.  

To validate the surrogate model prediction throughout the design space, a comparison 

of the measured dimensions was plotted against its corresponding prediction values. 

Figure 6-6d-i illustrates the models for average length, width, and thickness, and 

maximum length, width, and thickness predictions versus measured values, 

respectively. For the average and maximum length and width models, there is an 

excellent agreement between the predictions and the experiments, with about 66% of 

data points within 2.5% error, with a single point out of the 5% error threshold which 

corresponds to the prediction of the average length of a disjointed film. For the average 

and maximum thickness models, there is a good agreement between predictions and 

experiments, with about 80% of data points within the 10% error, observing the lowest 

for one point at the lower value of thickness (35% error at a thickness of 4 m). 

Particularly, the model to predict the maximum thickness shows 20% of data points 

out of the 10% error threshold, which is likely to be caused by the underprediction of 

the SFS approach in the films presenting break-ups due to the sensitivity of the model 

to the specular reflection that dominates the images of disjointed films. Nevertheless, 

using the prediction models to build the surface morphology of square films as 

function of printing parameters provided a fast and accurate method to determine 

instabilities such as material overflow (bulges) or disjointed (break-ups) films as well 

as precise predictions of the footprint and thickness with errors lower than 3% and 

therefore, were considered adequate for this investigation. 
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The response surface equations describing the average and maximum length, width, 

and thickness of the square films as function of drop spacing, printing frequency and 

standoff distance are depicted in Figure 6-7a-c and Figure 6-8a-c, respectively. The 

analysis of variance confirmed that prediction models are statistically significant using 

a significance level of 5%. A residual analysis was done to test for defects such as non-

normality, non-independent and non-constant variance. The models were found to be 

free of all these defects. For the average length prediction, the drop spacing and the 

square of the drop spacing were found to be the only factors statistically significant, 

printing frequency, standoff distance and its interactions have minor effects. 

Eliminating non-significant factors from the model improves the correlation 

Figure 6-6 Validation of the surface morphology prediction model for square films by comparing samples printed 

with printing parameters defined in matrix of experiments. a) Measured surface morphology of square film; b) 

reconstructed surface morphology using shape from shading approach. d)-i) deviation assessment of the predictive 

models for the average length, average width, average thickness, maximum length, maximum width, and maximum 

thickness, respectively. 
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coefficient of determination but increased the error between predicted and measured 

values. Therefore, no term was eliminated from regression model. For the average 

width prediction, it was found that drop spacing, drop spacing squared, printing 

frequency and the interaction between drop spacing and printing frequency are 

statistically significant which confirms the critical role of parameter interactions in the 

accuracy of the model. For the average thickness prediction, only drop spacing, drop 

spacing squared and the interaction between drop spacing and standoff distance are 

statistically significant, which is consistent to the results obtained from Zhang et al. 

(2017) where two thickness modes were identified depending on the standoff distance. 

 

 

Figure 6-7 Statistical analysis of prediction models: a. Average length, b. Average width and c. 

Average thickness. 
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For the maximum length and width prediction, it was found that drop spacing, drop 

spacing squared and the interaction between drop spacing and printing frequency are 

statistically significant which indicates the critical role of the printing traverse velocity 

in the control of the material overflow on the edges of square films. For the maximum 

thickness prediction, it was observed that the interaction between printing frequency 

and standoff distance is statistically significant which is consistent to the results 

obtained for the prediction of the average thickness. 

 

 

Table 6-4 lists three indicators used to assess quantitatively the accuracy of the 

surrogate model for each dimension: coefficient of determination (R-SQR), mean 

Figure 6-8 Statistical analysis of prediction models: a. Maximum length, b. Maximum width and c. 

Maximum thickness. 
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absolute (MA) error, root mean square (RMS) error. From a statistical standpoint, the 

prediction models show excellent correlation with the selected printing parameters, 

given the coefficients of determination very close to one. From a practical significance, 

the less accurate model is the one derived for the average length which shows a root 

mean square error of 25 m, but still good enough considering the overall dimension 

is 1000 m which means an average error of 2.5%. 

 

Table 6-4 Surrogate model accuracy indicators. 

Dimension 

Coefficient of 

determination 

Mean absolute 

error (MA) 

Root mean square 

error (RMS) 

R-SQR (m) (m) 

Average Length 0.9591 18.3 24.8 

Average Width 0.9870 9.0 11.8 

Average Thickness 0.9993 0.4 0.6 

Maximum Length 0.9919 10.7 12.8 

Maximum Width 0.9939 8.3 10.4 

Maximum Thickness 0.9985 1.2 1.7 

 

Summarizing, the prediction models provide a fast and accurate way to characterise 

the surface morphology of square films. The most important factor driving printed 

feature’s stability is the drop spacing. As drop spacing increases, the length, width, 

and thickness decrease in a non-linear manner. Although, printed frequency and 

standoff distance and its interactions have a minor non-linear effect on film 

dimensions, they play a key role characterising accurately the films’ material overflow, 

similar to the results obtained for single tracks in Chapter 5. Setting the lowest 

frequency with the lowest drop spacing and the highest standoff distance forms 

unstable films due to the presence of bulges. Setting the highest frequency with the 

highest drop spacing and the lowest standoff distance generates segmented films. 

Given the complex non-linear behaviour of the morphology prediction models, a 

parameter optimisation was performed to find the combination of printing parameters 

that produce the most stable film and results are presented in next section. 
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6.3.2.4 Optimisation and validation results. 

In this section the results of the parameter optimisation using the surrogate model 

constructed from the SFS approach results are presented. Figure 6-9 illustrates the 

fitness functions used to find the most stable track as function of the printing 

parameters and a comparison between measured and predicted values. Two fitness 

functions were calculated in this investigation: the error norm of the normalized central 

geometric moments between the predicted and target footprints and the roughness 

factor defined as the ratio of the standard deviation of the feature’s thickness and the 

average thickness. The first one is used to minimise edge waviness and the second one 

to minimise thickness roughness. Results show good agreement between the means of 

predicted values and SFS predictions, showing a quadratic relationship between fitness 

functions and printing parameters, similar to the results obtained for single tracks. An 

independent evaluation of the effect of each printing parameter on the NCGM fitness 

function indicates that a drop spacing of 34.6 m (approximate droplet overlap of 

46%) with a printing frequency of 2.2 kHz and a standoff distance of 1 mm would 

minimise the error between the predicted and target footprints. Furthermore, 

performing an independent evaluation of the effect of each printing parameter on the 

roughness factor fitness function, the morphology surface roughness is minimised 

when the drop spacing, printing frequency and standoff distance are set to 31.9 m 

(approximate droplet overlap of 50%), 2.1 kHz and 1 mm, respectively. 
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Figure 6-9 Effect of printing parameters on NCGM and roughness fitness functions. a)-b) effect of 

drop spacing; c)-d) effect of printing frequency; e)-f) effect of standoff distance. Predicted vs 

measured values of NCGM and roughness fitness functions included in g) and h), respectively. 
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Measured data from the predicted morphologies using the SFS approach was analysed 

using MINITAB to build the response surface equation for each fitness function. A 

gradient-based optimisation was performed to minimise predicted fitness functions 

and find optimal printing parameters. Starting point for the local optimiser was set to 

20 m, 1 kHz and 1 mm with a confidence level for all intervals of 95% in all analyses. 

Table 6-5 lists the results obtained from the single objective optimisation. It was found 

that the optimal values for the printing parameters depend on the fitness function focus. 

NCGM error measures footprint waviness whereas roughness factor is focused on the 

thickness uniformity. Drop spacing, printing frequency and its quadratic terms are the 

most significant factors driving the minimum fitness functions values. 

 

Table 6-5 Single objective optimisation using gradient based (local) approach. 

Printing Parameters NCGM error Roughness 

Drop spacing (m) 33.8 31.0 

Printing frequency (kHz) 3 3 

Standoff distance (mm) 1.5 0.5 

Overlap (%) 47% 51% 

 

Results indicate that there is a trade-off between the morphology characteristics that 

define a stable film depending on the fitness function used. Therefore, a multi-

objective optimisation using a genetic algorithm (global optimisation approach) was 

performed to find the set of printing parameters that simultaneously minimise the 

waviness and roughness. Details about the optimisation procedure were described in 

Section 4.5.1. Figure 6-10a shows the composite desirability fitness results obtained 

when simultaneous waviness and roughness objectives are minimised. The printing 

parameters that produce the most stable track representing the best trade-off point of 

the composite desirability are drop spacing, printing frequency and standoff distance 

equal to 31 m, 3.0 kHz and 0.5 mm, respectively. The predicted film morphology 

using the optimal printing parameters is illustrated in Figure 6-10b. The model predicts 

a footprint with minimal variation against target pattern and a very uniform thickness 

along the feature’s pattern. The proposed surrogate model-based optimisation using 

the SFS surface reconstructions achieved fast and accurate results enabling the search 

of optimal printing parameters. 
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To validate our surrogate-based model optimisation, three patterns were printed setting 

the optimal printing parameters determined from the multi-objective genetic algorithm 

approach. Figure 6-11a-c shows images of the printed features corresponding to a solid 

square, a ring, and a hollowed square, respectively. As can be seen, the optimal set of 

printing parameters produce a stable film morphology regardless of the target pattern. 

Below each image, an overlay of the target pattern and real footprint is included 

confirming the effectiveness of our proposed optimisation methodology. In the three 

cases the major difference is observed at bottom and top edges which may be explained 

by the lower printer accuracy in the cross-scan direction (Y axis). 

Figure 6-10 Multi-objective optimisation results. a. Optimal printing parameters and b. Film 

prediction using optimal printing parameters. 
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6.4 Conclusions and summary. 

A surrogate modelling strategy capable of predicting the surface morphology of free-

form films has been established enabling the optimal selection of inkjet printing 

parameters in a reasonable time while capturing the transient effects from either high-

fidelity simulations or lab experiments. Although our high-fidelity model based on the 

LB method produced accurate morphology predictions for small square films (4x4 

drops), it was not practical for the exploration of the printing parameters’ space for 

optimisation purposes. The limitation to small square patterns with maximum 5 drops 

per side coupled with the large computational solution time per experiment (e.g., 

approximately 4.5 days) hindered the model applicability for our objectives. 

Therefore, for fast prediction of the surface morphology of any given pattern, a 

photometric technique called Shape-from-Shading (SFS) was investigated. SFS 

approach reconstructed the volume of a printed feature using a single image by 

matching the surface slope created by the reflection of frontal lighting to the image 

grey level and solving the reflection PDE to find the feature thickness. Diffuse and 

specular components of reflection were considered to improve the accuracy of the 

Figure 6-11 Printed free-form films using optimal parameters: a. Solid square film of side 1 mm; b. Ring film (outer 

diameter=1 mm, thickness=270 m) and c. Hollowed square film of outer side=1 mm and thickness=250 m. 

Target vs real Footprint overlay is included for each feature to illustrate the accuracy of the print. 
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prediction. It was shown that using film images with a resolution of 2.54 m, high 

contrast and single layered, the predicted thickness error is less than 20% which 

represents less than 3 m. The time to reconstruct the volume was in the order of 

minutes, reducing 1000x the CPU solution time from our LB high-fidelity simulations.  

The effects of drop spacing, printing frequency, and standoff distance on the 

dimensional accuracy of the film morphology were determined. Bulging and 

separation defects traditionally found in inkjet-printed films were quantitatively 

identified as a function of printing parameters. Specific conclusions draw from the 

results that have been confirmed with observations and findings in the current literature 

are: 

• Drop spacing is the most critical parameter influencing the surface morphology 

stability of freeform films. 

• Printing frequency and its interaction with drop spacing significantly influence 

the film thickness uniformity and are critical to achieve adequate and accurate 

predictions of film dimensions.  

• Standoff distance has a minor effect on the footprint waviness, but its 

interaction with printing frequency has a significant influence on the thickness 

uniformity. 

This investigation constructed for the first time to the best of the author’s knowledge 

a set of full quadratic transfer functions relating surface morphology characteristics 

such as average and maximum length, width and thickness to the critical printing 

parameters only requiring a limited number of experiments. Models were statistically 

validated through analysis of variance and verified via experimental work. Excellent 

agreement was found between predicted and measured values, with about 60% of data 

points within 2.5% error. Mean absolute error of the maximum film length/width and 

thickness was lower than 10 m and 2 m, respectively. The fast execution of the 

predictive models allowed the global exploration of the design space to find the 

optimum printing parameters by minimising the footprint waviness and feature 

thickness roughness simultaneously. The printing parameters that produce the most 

stable track representing the best trade-off point of the pareto front are drop spacing, 

printing frequency and standoff distance equal to 31 m, 3 kHz and 0.5 mm, 
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respectively. It is important to note that same set of optimal printing parameters were 

obtained in the analysis of single tracks which represents an important discovery from 

this investigation. The optimum parameters were validated by printing three freeform 

patterns in the Dimatix printer achieving stable films. 

Although the solution of the shape from shading inverse problem enabled the 

reconstruction of free form patterns, the approach is limited by the material reflection 

properties and high contrast images to accurately reconstruct the volume of printed 

features. Furthermore, based on the results presented in this chapter, the prediction 

model captured adequately the general shape of the film, but small surface artifacts 

generated by UV curing effects were lost. Therefore, next chapter explores a semi-

coupled finite element model to predict the photo-polymerisation effect on 3D printed 

parts. 
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CHAPTER SEVEN 

 

7 Geometry prediction and compensation for the 

stability of 3D printed parts using machine learning 

approach. 

7.1 Introduction. 

Chapters 5 and 6 described the results from applying the proposed surrogate modelling 

framework to determine the optimal inkjet printing parameters required to print stable 

single tracks and freeform films, respectively. These chapters focused on reducing the 

in-plane error between target and real footprints constrained to minimal surface 

roughness by optimising critical printing parameters and wettability characteristics. In 

this chapter, the focus is on improving the dimensional accuracy of 3D inkjet-printed 

parts considering the optimal printing parameters from single tracks and films and a 

proposed geometry compensation framework based on machine learning techniques. 

However, it is important to note that when a layer-by-layer approach is employed using 

a photocurable polymer, the partially cured material resulting from the polymerisation 

process plays a critical role in the final shape of the printed object. The film curing 

characteristics affect macroscopic material properties such as Young’s Modulus, 

volume shrinkage, and deformation which impacts the accuracy of the printed 

structure. Therefore, a finite element model capable of simulating the layer-by-layer 

process and material properties as function of the degree of curing (e.g., degree of 

monomer conversion) is also explored. The results of FE simulations and experiments 

are used as inputs to train the machine learning method that was developed to 

compensate the target geometry to achieve a stable 3D printed part. 

7.2 Overall Methodology. 

Section 7.3.1 documents the experimental work carried out to assess the effectiveness 

of optimal printing parameters to produce stable 3D objects. Six 3D artifacts were 

inkjet-printed using the optimal parameters derived for freeform films in Section 

6.3.2.4. The dimensions of the artifacts and number of layers can be found in Section 

3.2.4.2. The artifacts were measured using a microCT scan following the procedure 

described in Section 3.2.8. A comparison of the measured geometry against target 
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structure was performed, along with a quantitative analysis of the results. The mean 

square error (MSE) metric was employed to quantify the error in the printed part. 

Section 7.3.2 presents an investigation of the effect of degree of cure on the 

deformation of 3D inkjet-printed parts using a semi-empirical, semi-coupled photo-

polymerisation and structural finite element approach. Details of the modelling 

assumptions, formulation, boundary conditions and mesh convergence can be found 

in section 4.1.2. The material properties as function of degree of curing are included 

in the chapter for reference. Then, six artifacts were simulated layer by layer using the 

calculated degree of cure. Target geometry, mesh size, surface morphology point 

cloud, displacements and stresses were included in the FE analysis results. Finally, 

differences between target and deformed geometry were identified and any differences 

quantified using the mean square error (MSE) metric.  

Finally, an error compensation approach using a neural network trained using the 

deformed geometry from FE simulations and experiments is reported in Sections 7.3.3 

and 7.3.4, respectively. The statistical analysis of the neural network predictions was 

performed for each artifact which includes coefficient of determination, error 

convergence plot and histogram. An overlay of target and compensated geometry 

illustrates the overall shape differences and binary layers were generated by slicing 

compensated STL file at optimal resolution for inkjet printing validation purposes. For 

the case of the FE simulations, the compensated geometry was FE simulated to find 

the deformed geometry and compared versus target to validate the compensation 

approach. For the case of experiments, compensated binary slices were printed for the 

cuboid case to show the effectiveness of the proposed approach. A summary of the 

main findings and conclusions close the chapter.  

7.3 Results and discussion. 

The aim of this section is to present the results of the experimental work, finite element 

simulations and the geometry compensation approach developed to improve the 

accuracy of 3D inkjet-printed parts. 

7.3.1 3D printed artifacts using optimal printing settings derived for films. 

A total of six differently sized and shaped artifacts were printed and analysed to 

evaluate part dimensional accuracy using the optimal printing parameters determined 
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in section 6.3.2.4. Each artifact brings specific fine features to test the capability of the 

inkjet printing process such as sharp corners, curved edges, holes, and squared cavities 

with sizes ranging from 0.2 to 3 mm. The number of layers used to build the artifacts 

were 75, 90, 75, 50, 75 and 81 at 0.01 mm slice thickness. The results of the printed 

samples are depicted in Figure 7-1 to Figure 7-6. Each figure includes the CAD 

geometry, top image of printed artifact, overlay of target vs real footprint and a 

comparison between the measured (magenta) and CAD surface (green) point clouds. 

Table 7-1 presents the deviations from the main target dimensions for each artifact. 

 

Table 7-1 Comparison of real and target dimensions of printed artifacts. 

Artifact 
Average deviation from target dimensions 

Width (m) Depth (m) Height (m) Diameter (m) 

Cuboid 30 168 -150 -- 

Cylinder -- -- -85 109 

Cage 43 234 -286 -- 

H-structure 35 181 -101 -- 

I-structure 78 195 -144 -- 

Sensor package 35 149 -127 -- 

 

The results show that most dominant deviation in all artifacts was present in the height 

of the specimen, which was in all cases shorter than target. Material flow beyond target 

footprint boundaries was observed in all specimens exceeding required dimensions. It 

is important to note that for the cage artifact, the wall thickness is not uniform, showing 

a larger deviation in top and bottom walls compared to left and right. Furthermore, for 

the H-structure, the internal cavity could not be fabricated accurately, missing 

completely the intended polygon shape. In addition, for the I-shape structure, the 

difference of the target geometry with the printed sample is much more pronounced in 

the top section of the structure where a reduction of the section is present. Finally, for 

the sensor package, the maximum material overflow was observed at the vertical 

squared slots on the top section, failing to achieve the target internal corners at from 

channels and slots. 
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Figure 7-1 3D inkjet-printed cuboid results including. CAD structure, Dimatix image, 

target vs real footprint and point cloud. 

Figure 7-2 3D inkjet-printed cylinder results including CAD structure, Dimatix image, 

target vs real footprint and point cloud. 
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Figure 7-3 3D inkjet-printed cage results including CAD structure, Dimatix image, target 

vs real footprint and point cloud. 

Figure 7-4 3D inkjet-printed H-structure results including CAD structure, Dimatix 

image, target vs real footprint and point cloud. 
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In summary, it is clearly demonstrated that using the set of optimal printing parameters 

derived for stable freeform films is not enough to accurately print 3D structures. All 

Figure 7-5 3D inkjet-printed I-structure results including CAD structure, Dimatix image, 

target vs real footprint and point cloud. 

Figure 7-6 3D inkjet-printed TI sensor package results including CAD structure, 

Dimatix image, target vs real footprint and point cloud. 
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the specimens present a height shorter than target and exceed the footprint dimensions, 

particularly in the cross-scan direction (Y-axis) which show deviations larger than the 

in-scan direction (X-axis). This behaviour is likely to be caused by the different printer 

tolerances in the scanning directions (i.e., tolerances are larger in the cross-scan 

direction). Furthermore, it was found that fine features such as corners, slots, holes, 

and channels do not match the intended shape owing to excessive material overflow at 

the pattern boundaries, particularly in the cage specimen as the hollowed pattern is 

deposited in the steepest section of the base layer. A potential cause of this 

phenomenon is the partial curing of the polymer film enabling the flow of the ink 

beyond the edge due to its liquid state. In addition, all specimens do not reach the target 

height, with the largest deviation in this dimension, which may be attributed to uneven 

volumetric shrinkage due to inhomogeneous curing of each layer. It is important to 

note that the first printed layer in all artifacts matches the target footprint quite 

accurately, validating the effectiveness of optimal printing parameters for single films 

regardless of the shape. Therefore, to fabricate accurate 3D printed parts additional 

process considerations need to be explored such as drop location uncertainty and 

partial curing of films. In the next section, an investigation into the effect of partial 

curing on the deformed geometry of 3D inkjet-printed artifacts is performed using a 

finite element approach. 

 

7.3.2 Deformed geometry prediction model using a semi-empirical, semi-

coupled photo-polymerisation and structural finite element approach. 

A cuboid of size 1 mm x 1 mm x 0.5 mm is simulated using the finite element approach 

described in section 4.1.2. The degree of monomer conversion, Young’s modulus and 

effective coefficient of thermal expansion are depicted in Figure 7-7a-c, respectively. 

The parameters employed to generate the material properties are shown at the top of 

each graph. The model assumes the bottom layer is fixed and the degree of monomer 

consumption per film is calculated using the optimal printing parameters derived in 

section 6.3.2. A comparison of the degree of monomer consumption distribution on a 

squared film with a printed sample is shown in Figure 7-8. Good agreement between 

film model and experiment is achieved, showing the bottom portion of the print 

partially cured. 
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Since the interest of the current investigation lies in the geometrical prediction of the 

artifact, the analysis of the results is focused on displacements only. Residual stresses 

provided by the model are on the conservative side due to the linear elastic assumption 

from the constitutive model. The maximum stress is located at the bottom layer which 

is consistent with the fixed boundary conditions used to simulate pinning of the contact 

area. Stresses away from the constrained edge are 2 orders of magnitude below the 

Young’s modulus. The results of the simulated cuboid are depicted in Figure 7-9. 

Printing origin is located at the upper left corner and swaths are generated from left to 

right in a unidirectional way, as shown in Figure 7-9a, mimicking the Dimatix printer 

settings. This is important since calculation of the UV dosage is location dependent. 

Figure 7-9b shows that the maximum shrinkage is at the top section of the printed 

artifact where the maximum degree of monomer consumption occurs. As the printing 

progresses to the bottom of the artifact, shrinkage linearly decreases due to the partial 

Figure 7-7 TPGDA material properties employed in FE simulation: a. Semi-empirical model of the degree of 

monomer consumption as function of UV dosage; b. Young’s modulus as function of degree of monomer 

consumption assuming gel point at 0.42 and polymer Young modulus of 0.6 GPa; and c. Effective coefficient of 

thermal expansion (chemical contraction) assuming maximum chemical strain at 0.12. 

Figure 7-8 Comparison of the degree of monomer consumption distribution for a square film 

with the printed sample for the optimal printing parameters. 
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curing of the last swaths, and higher mobility of the material is hence expected in this 

region. This difference in height between top and bottom sections, may explain the 

propensity of the material to flow towards the top section due to gravity, increasing 

the thickness of the film, as observed in the experiments performed in Chapter 6. 

Figure 7-9b illustrates the deformed shape of the cuboid with a magnification factor 2. 

The blue lines define the original target profile consisting of 50 layers, with each layer 

thickness set at 0.01 mm. As can be seen, the model requires 9 more layers to match 

the target height and compensate for the maximum predicted accumulated shrinkage 

of 83 m. This number of layers is an upper limit, since material redistribution from 

bottom to top is not accounted for due to the restricted fluid behaviour of the model. 

Displacements in the Z-direction at the centre of the cuboid are plotted from top to 

bottom, presenting the overall shrinkage behaviour, as shown in Figure 7-9c. It was 

found that shrinkage mainly impacts the thickness of the printed structure. 

Furthermore, the model predicts a lateral offset towards the centre of the pattern due 

to cure shrinkage which although smaller than the shrinkage affecting the thickness of 

the printed structure does not reflect the actual material flow over the previously 

deposited layer boundary. This is a critical limitation of the current model to accurately 

predict the deformed geometry of 3D inkjet-printed parts. Figure 7-9d depicts an 

overlay of the predicted and target point clouds for comparison purposes. Therefore, 

it is concluded that under the current model assumptions, prediction of the deformed 

geometry does not adequately capture the material overflow observed in experiments. 

Note that the predicted geometry in this work is mainly used to demonstrate our 

proposed geometry compensation framework. 
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A total of six differently sized and shaped artifacts were simulated and analysed to 

obtain the deformed geometry to test the proposed geometry compensation framework. 

The number of layers used to build the artifacts were 75, 90, 75, 50, 75 and 81 at 0.01 

mm slice thickness. The results of the simulated specimens are depicted in Figure 7-10. 

The figure includes the target geometry, the deformed geometry, a comparison 

between the predicted (magenta) and target (green) point clouds and the absolute 

deviation between both geometries ordered by columns. Overall, the model is capable 

of predicting the magnitude of the maximum thickness shrinkage fairly accurately, 

which validates the simplifying methodology of using static restarts instead of 

transient model, which reduces the FE solution time from days to minutes. However, 

the model does not capture the material spreading over the substrate, which is typically 

present in experiments, due to the perfect adhesion assumption used for the bottom 

layer. A potential improvement to the FE model is to incorporate the substrate 

geometry and model the interface assuming a friction coefficient to capture bottom 

layer displacements. Nevertheless, the number of layers to reach the required height 

Figure 7-9 FE Results for the cuboid artifact: a. Schematic showing part orientation, printing origin and 

direction; b. Z-displacements contour plot with 50 layers overlayed (magnification factor = 2); c. Shrinkage 

behaviour of cuboid surface from top to bottom section; and d. CAD vs predicted point cloud overlay. 
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of the artifacts can be calculated just by dividing the maximum shrinkage by the 

assumed slice thickness, providing a simple way to compensate errors in the Z-

direction. However, a more accurate compensation scheme is presented in the next 

section which corrects geometry in X, Y and Z directions and builds the binary slices 

to print the part automatically.  

 

 

Figure 7-10 FE simulation results. Target geometry, predicted geometry, overlay of target vs predicted point 

clouds and absolute deviations ordered by columns, respectively. 
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Table 7-2 lists FE parameters such as number of elements and element size as well as 

the maximum deviation and mean square error between target and deformed 

geometries. 

 

Table 7-2 FE parameters, simulation results and solution time. 

Artifact Mesh size Number of 

elements 

Max absolute 

deviation 

Maximum 

shrinkage 

MSE CPU 

time 

 (m) (#) (m) (m) (m2) (s) 

Cuboid 35 571939 170.5 -140.1 15.1 71 

Cylinder 25 373639 48.2 -10.6 1.7 60 

Cage 30 324398 221.3 -158 12.5 48 

H-struct 20 538930 150 -104.7 4.6 66 

I-struct 20 544560 183.6 -139.5 10 75 

TI sensor 40 544510 231.1 -150.9 12.3 57 

 

In the next section, the results of the geometry compensation framework using a 

machine learning approach are presented. FE predictions of the deformed geometry in 

the form of x, y and z coordinates are used to train a neural network and build a transfer 

function in order to obtain the compensated geometry required to minimise the mean 

square error (MSE) between target and predicted geometry. 

 

7.3.3 Geometry compensation and validation using a neural network trained 

with results from FE simulations. 

This section presents results from applying the geometry compensation framework 

explained in Section 4.5.2 using the predicted geometry from the chemo-mechanical 

FE simulation. Nodal coordinates from the FE simulation model before and after the 

deformation are employed to train the neural network iteratively until the mean 

squared error determined from geometry deviations is minimised. Before the network 

training is carried out, the deformed and target point clouds are aligned using the 

iterative closest point registration method. Figure 7-11 depicts the prediction error 

histogram and MSE minimisation plot of the neural network training process for the 

six artifacts tested in the investigation. The coefficient of determination for the six 

regression models is 0.9999. The residuals resulting from the network training are 

normally distributed with maximum value at ±2.5 standard deviations within 5 m. 

The network training stopped when the predefined maximum number of iterations was 
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reached, but clearly the mean squared error has converged to minimum value. 

Therefore, our neural network model is statistically valid and is able to approximate 

the part deformed geometry as a function of the coordinates of its surface points. 

 

 

The compensated geometry is predicted by the trained neural network using the 

coordinates of the vertices from the target shape as input. The output of the network 

are the new 3D coordinates of the vertices from which the compensated shape is built. 

A total of six differently sized and shaped artifacts were compensated to evaluate the 

effectiveness of the machine learning framework. Figure 7-12 depicts the compensated 

Figure 7-11 Neural network training process statistical analysis results including histogram of residuals and 

mean squared error convergence plots. 
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shape in STL format, the target vs compensated geometry overlay and the point cloud 

overlay before and after compensation for validation purposes.  

 

 

Overall, the geometry compensation framework is able to construct the shape in STL 

format which is vital to obtain binary layers for 3D inkjet printing application. For the 

cuboid and cylinder artifacts, a negative taper on the external faces of the compensated 

geometry is present (e.g., inverted truncated pyramid shape), since in both cases the 

Figure 7-12 Geometry compensation framework results using FE simulation for neural network training process. 
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deformed geometry predicted by the FE simulation is fully contained in the target 

geometry and its cross-section area gradually reduces along the part height. For the 

rest of the artifacts, a positive taper on the external faces of the compensated geometry 

is present (e.g., truncated pyramid shape), since the deformed geometry predicted by 

FE simulation exceeds the lateral boundaries of the target geometry and grows almost 

linearly with part height. In addition, as can be seen in the geometry overlay in Figure 

7-12, there is a clear increase in the height of the compensated geometry to account 

for the shrinkage observed in the predicted deformed geometry. It is important to note 

that fine internal features such as cavities, slots or channels and external patterns with 

pronounced changes in cross-sectional area (e.g., I-shape artifact) present a negative 

taper shape to account for the material excess noticeable in the FE predicted geometry. 

For validation purposes, the compensated geometry is FE simulated under the same 

assumptions as target geometry and a comparison of the shapes before and after 

compensation are illustrated in Figure 7-12. The results visibly show a closer match 

between the deformed and target shapes after the compensation process is applied for 

all tested artifacts. It was found that the maximum absolute deviation in micrometres 

after compensation was 63, 34, 182, 94, 105 and 66, respectively, which represents a 

net reduction in the maximum deviation from target of 44%. Deviations larger than 

the dot size (65 m) are observed in the cage, h-structure and I-structure which could 

be attributed to inaccurate compensation when large bending of sections is present. To 

quantitatively evaluate the effectiveness of the compensation approach, the mean 

squared errors (MSE) before and after compensation are reported in Table 7-3. 

Considering all artifacts, the average MSE reduction between target and predicted 

geometries is 89%, validating our proposed machine learning geometry compensation 

framework.  

 

Table 7-3 Comparison of the mean squared error before and after compensation. 

Artifact MSE before 

compensation 

MSE after 

compensation 

MSE 

Reduction 

 (m2) (m2) (%) 

Cuboid 15.1 1.50 90.1% 

Cylinder 1.7 0.44 74.1% 

Cage 12.5 1.54 87.7% 

H-struct 4.6 0.44 90.4% 

I-struct 10 0.61 93.9% 

TI sensor 12.3 0.45 96.3% 
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Although the compensation framework has proven to be valid for in silico experiments 

where the target and deformed geometries have the same number of nodes, it is critical 

to investigate if the same approach can be used when the deformed geometry definition 

comes from measurements of lab experiments (e.g., target and deformed geometries 

have different number of nodes). Therefore, in the next section, microCT scan 

measurements of the deformed geometry in the form of x, y and z coordinates are used 

to train a neural network, build a transfer function, and determine the compensated 

geometry required to minimise the mean square error (MSE) between target and 

measured geometry. 

 

7.3.4 Geometry compensation and validation using a neural network trained 

with experimental measurements. 

This section documents the results of the geometry compensation framework 

explained in Section 4.5.2 using measured data from the 3D printed artifacts. Nodal 

coordinates from microCT scan measurements together with their corresponding 

locations in the target geometry were employed to train the neural network iteratively 

until the mean squared error determined from geometry deviations was minimised. 

Before the network training was carried out, the measured and target point clouds were 

aligned using the iterative closest point registration method. Since the point cloud of 

measured data was extremely dense, a one-to-one correspondence between target 

nodes and measured data was determined employing an in-house mapping algorithm. 

Figure 7-13 depicts the prediction error histogram and MSE minimisation plot of the 

neural network training process for the six artifacts tested in the investigation. The 

coefficients of determination of the regression models were 0.999, 0.998, 0.995, 0.998, 

0.995 and 0.999. The residuals resulting from the network training were normally 

distributed with the following maximum values at ±2.5 standard deviations: 78 m, 51 

m, 111 m, 61 m, 80 m, and 84 m, respectively. The network training process 

stopped for all cases when the mean squared error converged to a minimum value 

without reaching the maximum number of iterations limit. Although, the coefficients 

of determination indicate an excellent correlation between predicted and target values, 

the magnitude of the residuals is in the order of 100 m which is not adequate for our 

purpose. Therefore, our regression models are statistically valid but not accurate 
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enough to approximate the part deformed geometry as a function of the coordinates of 

its surface points. The most likely cause of the large error in the prediction model is 

the presence of outliers in the measurement data point clouds. It was found that the 

mapping algorithm picked points inside the deformed geometry surface which 

introduced a large variation in the regression model. It is, therefore, recommended that 

in future work measurement data point clouds are filtered so that only points defining 

the deformed surface are kept for training the neural network. Nevertheless, from the 

application of the compensation framework using experimental data documented in 

this section, it can be seen that this is an effective method of ensuring 3D printed parts 

correspond to geometry specifications. 
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The target geometry of six differently sized and shaped artifacts was compensated 

using the neural networks trained with experimental measurements. Figure 7-14 

depicts a comparison of the target shape and measured data point clouds as well as the 

compensated STL overlayed on target STL geometry. 

 

Figure 7-13 Neural network training process statistical analysis results including histogram of residuals and 

mean squared error convergence plots. 
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As can be seen from the point cloud overlays, the measured geometry of the artifacts 

does not match the intended geometry. All printed artifacts present material overflow 

beyond the boundary faces of the target and, consequently, the required height of the 

artifact is not reached. It is found that the printed artifacts with the minimum and 

maximum deviation to target are the cylinder and cage shapes, respectively. A detailed 

explanation of the experimental results can be found in Section 7.3.1. Analysing the 

geometry overlays illustrated in Figure 7-14, it is clearly seen that our machine 

learning model trained with measured data can compensate the original shape and 

build a STL file, which is vital to obtain binary layers for 3D inkjet printing 

Figure 7-14 Compensated geometry using experimental data for neural network training process. 
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application. The compensated geometry of all artifacts presents a negative taper on the 

external faces (e.g., inverted truncated pyramid shape), since the cross-sectional area 

of the measured artifacts gradually reduces along the part height and away from target. 

The reduction of the area at bottom section of the compensated geometry is particularly 

pronounced to control material spreading beyond the target footprint. In addition, there 

is a clear increase of the height in the compensated geometry to meet the height 

dimension of the target shape. It is important to note that fine internal features such as 

cavities, slots or channels and external patterns with large changes in cross-sectional 

area (e.g., I-shape artifact) present a positive taper shape to account for the material 

excess detected in measured data. Although the compensation framework works with 

experimental data, the variation introduced by the measurements affects the accuracy 

of the prediction. Some of the vertices located at the bottom of the compensated shapes 

(e.g., cage artifact) are predicted below the base plane, which is not correct. 

Furthermore, the compensated height for the I-structure is almost twice the target 

height which seems inaccurate and could be explained due to the large residuals 

observed in the regression model.  

Validation of the geometry compensation framework is conducted by a direct 

comparison to printed samples. Binary layers are generated from the compensated STL 

geometry of the cuboid artifact and printed with the optimal parameters determined in 

Section 6.3.2.4. Figure 7-15 illustrates DIMATIX images of the first eight layers of 

the cuboid using the compensated geometry. The first layer is printed employing the 

uncompensated pattern since film morphology matches fairly well with the target 

footprint. Compensated binary patterns are printed starting from second layer. As can 

be seen, the excess of material flow beyond the target footprint is no longer present in 

the printed artifact. The deformed shape still shows rounded corners, but it is 

qualitatively closer to target. The difference in height between the target and printed 

samples is greatly reduced from 140 m to 27 m due to the addition of 12 layers 

resulting from the height compensation. To quantitatively evaluate the effectiveness 

of the compensation approach, the mean squared error (MSE) between target and 

measured geometries, before and after compensation is determined. The percentage of 

reduction in the error due to the compensation strategy for the cuboid artifact is 72%, 

validating our proposed machine learning geometry compensation scheme with 

experimental data.  
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7.4 Conclusions and summary. 

In this chapter, a chemo-mechanical FE model to predict the deformed geometry of 

3D inkjet-printed parts and a geometry compensation framework using a machine 

learning approach are implemented to improve the dimensional accuracy of 3D 

structures.  

Printed artifacts using optimal printing parameters derived in Chapter 6 present very 

large deviations to the intended geometry, predominantly in the height dimension, 

suggesting additional physical considerations need to be investigated to achieve stable 

parts. Experimental observations of printed samples indicate that film partial curing 

plays a critical role determining final part deformation, due to its influence on the 

evolution of material properties. Therefore, to predict the deformed geometry 

considering curing characteristics in addition to printing parameters, a semi-empirical, 

semi-coupled photo-polymerisation and structural finite element approach is 

introduced. In this FE model, the degree of monomer consumption of TPGDA 

determined from experiments is used as an internal variable to characterize the 

Figure 7-15 Validation of geometry compensation framework by direct comparison to printed samples. Layer 

Schematic and Dimatix images included. 
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Young’s modulus and volumetric shrinkage. A layer-by-layer FE simulation is setup 

using multiple restarts and predicted part deformations are determined. The 

comparison between the experiments and simulations indicate that the semi-empirical, 

semi-coupled model can capture adequately the maximum deformation of the printed 

structure due to chemical shrinkage in a timely manner. However, the model predicts 

a lateral offset towards the centre of the pattern due to cure shrinkage which although 

smaller than the shrinkage affecting the height of the printed structure does not reflect 

the actual material flow over the previously deposited layer boundary. This is a critical 

limitation of the current model to predict accurately the deformed geometry of 3D 

inkjet-printed parts. Therefore, the predicted geometry is not developed further to 

increase accuracy, but is instead used to demonstrate our proposed geometry 

compensation framework. 

Since large deviations are observed between target, predicted and measured artifacts, 

a machine learning-based geometry compensation framework is employed to 

counteract the deformations resulting from the inkjet printing process. A neural 

network is trained using the nodal deviations resulting from the difference between 

target and deformed geometry. Two data sources defining deformed geometry are used 

to train the network: FE simulation results and experimental measurements. The 

compensated geometry is predicted by the trained neural network using the coordinates 

of the vertices from the target shape as input. For both sources, the results show 

significant improvements in the part’s geometric accuracy after the compensation 

process is applied, validating the effectiveness of the proposed approach. However, 

when the deformed geometry is obtained from measured data, the neural network 

model shows larger residuals, and it is recommended that to further enhance the 

accuracy of the model, a thorough cleaning process of the measurements data is 

undertaken to reduce variability. Finally, validation of the geometry compensation 

framework was conducted by a direct comparison to printed samples, showing good 

agreement between target part design and printed artifact. Overall, it is concluded that 

our proposed framework successfully counteracts the deformations resulting from the 

inkjet printing process, improving the dimensional accuracy (quality) of 3D printing 

parts. 

Although incorporating the effect of UV curing in the prediction model of 3D 

components helped understand the deformation mechanisms observed experimentally, 
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other material and process mechanisms occurred in practice that limited the accuracy 

of predictions.  Therefore, the need to explore other sources of variation such as the 

uncertainty in droplet location and size introduced by equipment tolerances is explored 

in next chapter together with a multiphysics analytical framework for the fast 

prediction and optimisation of inkjet-printed components. 
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CHAPTER EIGHT 

 

8 Analytical model-based prediction and optimisation 

of the morphology of inkjet-printed parts. 

8.1 Introduction. 

The physics-based and data-driven models described in previous chapters to simulate 

the deposition and solidification of droplets as well as the overall part deformation 

provide an effective solution of the governing physics equations behind inkjet printing 

for small and simple shapes. However, considering larger and freeform shapes, as 

required in real-life printing applications, increases the simulation time from hours to 

days. Although, a significant reduction in the solution time without losing much 

accuracy was achieved by implementing a surrogate model from a sample of high-

fidelity simulations, the prediction of large, freeform shapes is still computationally 

intensive. Furthermore, the previous models do not consider the effects of droplet 

position and size uncertainty or the simultaneous use of nozzles, which play a key role 

in the quality of inkjet-printed parts. Therefore, in this section an analytical model is 

introduced for the fast and accurate prediction of the surface morphology of inkjet-

printed parts for any size and shape, considering droplet size and position uncertainty, 

multi-nozzle printing, UV exposure time and chemical shrinkage. From the author’s 

point of view this analytical model represents the most significant contribution of the 

present work, since it leverages learnings from the physics-based and data-driven 

models and integrates creative algorithms and heuristics rules to drive AM part quality 

optimisation within a computational inkjet printing environment.  

 

8.2 Methodology. 

The aim of this chapter is to present the results of the stochastic prediction model 

derived in Section 4.3. Details about the proposed framework to predict the surface 

morphology of selected features, to find the optimal printing parameters and 

compensate the printed geometry based on predictions are described in Section 4.6. 

First, a summary of the physical properties characterisation and measured droplet 

characteristics employed in the analytical model is presented in Section 8.3.1. Details 
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about the procedures employed to perform the physical properties and droplets 

characterisation can be found in Section 3.2. Then, the analytical model validation is 

presented, via experiments of printed single tracks employing different substrates and 

droplet sizes, in Section 8.3.4. Next, the effect of multi-layer printing with different 

wettabilities on footprint and thickness dimensions is investigated via experiments. 

Furthermore, predictions of single tracks, freeform films and 3D structures with 

varying printing parameters, droplet characteristics, droplet location and size 

uncertainty, number of nozzles and wettability are included in Sections 8.3.5, 8.3.6 

and 8.3.7, respectively. Finally, a graphical user interface developed for the digital 

image generation, surface morphology prediction and geometry compensation is 

introduced. 

 

8.3 Results and discussion. 

8.3.1 Experimental results for analytical model calibration. 

The results from the experiments performed to characterise TPGDA density, viscosity, 

and surface tension are listed in Table 8-1. Viscosity and surface tension are consistent 

with values obtained by He et al. (2017), but density is 10% lower than that reported 

value in this reference. The difference in density results could be explained by 

experiment variability when measuring small volumes. These physical properties are 

inputs to the analytical prediction model and remain fixed in this investigation. 

 

Table 8-1 TPGDA measured physical properties. 

Property Units Temperature Sample size Average Std deviation 

Density g/ml 22°C 5 0.930 0.039 

Viscosity mPa s 22°C 3 9.780 0.231 

Surface tension mN/m 25°C 5 30.960 0.224 

 

The printability diagram illustrated in Figure 8-1, confirms that our ink is printable 

considering a droplet with ejection velocity of 6 m/s and measured in-flight volume of 

9.55±0.19 pL, which remain fixed for the predictions. 
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For droplet characterisation, three replicates of a 10x10 grid of TPGDA droplets 

deposited on a glass substrate with 10-pL native volume printhead were analysed. 

Drop spacing, printing frequency and standoff distance were set to 150 m, 1 kHz and 

0.5 mm, respectively. The results from the experiments performed to obtain basic 

statistics of footprint diameter size and droplet location and size uncertainty are listed 

in Table 8-2. Two sets of measurements of the printed grid were determined by image 

analysis and coherence scanning interferometry (CSI), respectively. CSI 

measurements were used to validate the results of the image analysis technique, which 

is a faster method to extract data from images taken with the DIMATIX fiducial 

camera. The results show excellent agreement between both techniques with 

deviations within 2.5 m. Therefore, image analysis is employed from this point 

forward in this investigation to measure footprints of experiments. Details about the 

validation of the image analysis process with single tracks and freeform films can be 

found in Appendix 11.2. 

 

 

 

Figure 8-1 TPGDA printability diagram. 
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Table 8-2 Droplet footprint size and location statistics. 

Dimension Units Image Analysis CSI 

Maximum grid diameter m 68.1 66.4 

Minimum grid diameter m 60.0 60.4 

Average grid diameter m 63.7 63.8 

Std. Deviation grid diameter m 1.4 1.0 

Average drop spacing (X-direction) m 147.5 148.7 

Average drop spacing (Y-direction) m 147.7 148.8 

Std. deviation drop spacing (X-direction) m 3.5 3.8 

Std. deviation drop spacing (Y-direction) m 3.6 3.8 

Drop position variation (X-direction) m 0.58 0.63 

Drop position variation (Y-direction) m 0.60 0.63 

Abs. drop position error (X-direction) m 2.5 1.3 

Abs. drop position error (Y-direction) m 2.3 1.2 

 

Estimated values for droplet height and contact angle assuming droplets follow a 

spherical cap shape are compared to CSI grid measurements on Table 8-3. To estimate 

the post cured droplet volume, a volumetric shrinkage of 12% is assumed from 

experiments reported by Schmidt & Scherzer (2015). Results show excellent 

agreement with very small differences in height and volume. Therefore, the spherical 

cap equations and the assumed shrinkage value provide accurate estimates of the out-

of-plane droplet dimensions and from this point forward are used in conjunction with 

image analysis for droplet morphology characterisation. 

 

Table 8-3 Estimated values for droplet height and volume. 

Dimension Units Spherical Cap 

Equations 

CSI 

Maximum droplet height m 5.3 5.4 

Minimum droplet height m 4.1 4.2 

Average droplet height m 4.7 4.7 

Std. deviation droplet height m 0.2 0.2 

Average contact angle (post-curing) ° 16.8 15.7 

Std. deviation contact angle (post-curing) ° 0.8 0.8 

Average droplet volume (post-curing) pL 7.5 7.6 

Std. deviation droplet volume (post-curing) pL 0.2 0.2 

 

Knowing the average and standard deviation values of the measured droplet volume 

(in-flight), post-curing contact angle and volumetric shrinkage factor, the footprint 

diameter’s distribution is calculated using Equation (52) and compared to the 

measured distribution in Figure 8-2. Results show good agreement between the 

analytical model based on volume conservation assumptions and the actual measured 
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footprint diameter’s distribution, validating the model from an accuracy and precision 

standpoint. 

 

 

In the same manner, knowing the average and standard deviation of the droplets 

position error in both X and Y directions, the drop position error normal distribution 

was calculated using image analysis measured values and illustrated in Figure 8-3. The 

original position of the droplets considering a constant drop spacing is corrected by 

this error distribution and new locations of the droplet’s centre are determined. This 

model assumes the error distribution does not degrade with time. 

 

 

Considering the footprint diameter and droplet position as random variables, enables 

the incorporation of a variable drop spacing in the footprint prediction through an 

Figure 8-2 Comparison of footprint diameter normal distribution: a) analytical model and b) measured data. 

Figure 8-3 Position error distributions: a) X-direction and b) Y-direction. 
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overlap map defined using the desired pattern to print. For example, a comparison of 

the overlap map for a circular pattern of 1 mm in diameter considering constant and 

variable drop spacing is illustrated in Figure 8-4. As can be clearly seen, the overlap 

map with variable drop spacing better captures the typical variation observed 

experimentally at the edges of printed samples.  

 

 

Since drop spacing is the most critical factor influencing the stability of printed 

features, capturing its variation gives this model a clear advantage identifying film 

defects such as break-ups and voids. In the next section, the results of the proposed 

film break-up prediction model and its validation are presented. 

 

8.3.2 Break-up and bulging prediction and validation using overlap map. 

Using the experimental results defined in the previous section to calibrate the 

analytical model and assuming a drop spacing, printing frequency and standoff 

distance of 50 m, 1 kHz and 0.5 mm, respectively, a graphical representation of the 

inkjet-printed drops (called the overlap map) with identified high probability break-up 

locations is shown in Figure 8-5. The artifacts tested include a single pixel line, a 

square and a solid circle shape, which dimensions can be found in Section 3.2.4.1. The 

average number of defects is calculated via Monte Carlo simulation; hence, the actual 

Figure 8-4 Graphical representation of inkjet-printed droplets on a circular pattern considering a) constant and 

b) variable drop spacing. 
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defect location is not accurate due to the stochastic nature of the overlap distribution. 

Experimental results are also included for validation purposes. 

 

 

Overall, the results of the overlap map analysis show excellent agreement between the 

statistical prediction and experiments. Figure 8-5a depicts the overlap map of a single 

pixel line with the locations where the overlap between droplets is close to zero 

indicating a high probability of break-up of the feature. The average number of break-

up locations is 4 which is calculated using Monte Carlo simulation (10,000 runs). A 

line printed with same parameters presents multiple break-up locations, validating our 

prediction model for single tracks. Figure 8-5b shows a solid square pattern with an 

Figure 8-5 Prediction of high probability break-up locations using Overlap Map and Monte Carlo simulation. a) 

Single pixel line (L=1 mm, ds=50 m, pf=1 kHz, sd=0.5 mm), b) Solid square pattern (side=1 mm, ds=50 m, 

pf=1 kHz, sd=0.5 mm), and c) Solid circle pattern (D=1.5 mm, ds=40 m, pf=1 kHz, sd=0.5 mm). 
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average number of break-up locations of 30 along the x direction and another 30 along 

the y direction. The number of locations is the same in both directions since the model 

used the same position uncertainty for both directions. Experimental results of this 

pattern presents multiple islands due to lack of droplet overlap, validating our 

prediction model for regular films. Finally, a solid circular pattern is simulated with a 

drop spacing, printing frequency and standoff distance of 40 m, 1 kHz and 0.5 mm, 

respectively, as presented in Figure 8-5c. It is found that the average number of break 

up locations reduces as overlap increases. For this pattern, the average number of break 

up locations is 4 in the x direction and 4 in the y direction, which is consistent with the 

results obtained when experimentally printing the pattern with the same parameters. It 

is important to note that without the inclusion of droplet diameter and location 

uncertainty, it would have been impossible to determine locations of no overlap, since 

a constant drop spacing of 50 m and 40 m produces a constant overlap of 0.22 and 

0.37, respectively. Although the model does not predict the actual location of the 

break-ups, it does provide a statistical way to identify films with a high probability of 

breaking up. 

In the same manner, an approximate number of film bumps, commonly known as 

bulges, could be predicted by identifying the locations where the droplet overlap is 

close to one. Figure 8-6 shows a square film overlap map estimated with a drop spacing 

of 10 m and 30 m while keeping fixed printing frequency and standoff distance at 

1 kHz and 0.5 mm, respectively. The results of the Monte Carlo simulation (1000 runs) 

determined an average number of bulging locations of 2861, which represents 30% of 

the total deposited drops used to form the film. It is found that as drop spacing 

decreases, the number of bulges increases drastically, resulting in the formation of a 

large blob, which is confirmed by direct comparison to the printed sample. For the 

pattern simulated with a drop spacing of 30 m, which is close to the optimal value 

found in Chapter 6, the overlap map does not show the presence of bulges or break-

ups, confirming the capability of the statistical model to predict defect free films. 

Printed sample with the same parameters show a stable morphology (i.e., no bulges), 

validating the prediction. It is important to mention that the overlap map does not 

provide information about the size and location of the bulges that influence the 

material overflow beyond the edges of target patterns and consequently, the deformed 
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morphology of the features. Therefore, additional considerations need to be 

investigated to improve the analytical model capability to predict this behaviour. 

 

 

Based on observations made from experiments, it is normal to find primary and 

secondary bulges on every printing swath, which location and size depend on the 

complex relationship between physical properties, wetting characteristics and printing 

parameters. In the next section, the results of our proposed model to determine the 

frequency and size of bulges is introduced.  

 

8.3.3 Bulging frequency and volume prediction using viscous and capillary 

timescales. 

A bulge in the inkjet printing context is a bump that distorts the surface of a printed 

feature, resulting from localised material accumulation. It is a common defect 

encountered in tracks and films whose formation depends on complex relationships 

between physical properties, substrate wettability and printing parameters. In this 

investigation, we propose an analytical model based on the dominant capillary, viscous 

Figure 8-6 Prediction of high probability bulging locations for a solid square pattern using Overlap Map and 

Monte Carlo simulation. a) Drop spacing set to 10 m and b) Drop spacing set to 30 m. 
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or inertial timescales to determine the size and frequency of primary and secondary 

bulges of single tracks. The effects of printing parameters, physical properties and 

wettability characteristics on the size and frequency of primary and secondary bulges 

are illustrated in Figure 8-7a-e. Each row shows the prediction of the number of drops 

forming the primary bulge, the number of drops in secondary bulges and the frequency 

of secondary bulges in a line of length 1 mm as a function of the droplet overlap. As 

can be seen in Figure 8-7a, the number of drops in the primary and secondary bulges 

is directly proportional to the advancing contact angle, showing a drastic change in 

slope at an overlap value at which bulges become more evident. For the contact angle 

of the ink/substrate system used in this work (CA=18.4°), the proposed bulging 

threshold is approximately 67%. Furthermore, it is observed that the frequency of 

secondary bulges is inversely proportional to the contact angle and as droplet overlap 

increases the number of secondary bulges tends to one for a 1 mm single track. These 

results are consistent with other research studies from the literature (Kang et al., 

2010)(Thompson et al., 2014). The effect of printing frequency for 1, 3 and 5 kHz is 

plotted in Figure 8-7b. It is found that the size and frequency of bulges is drastically 

reduced as printing frequency increases. This behaviour indicates that stable lines are 

achievable at droplet overlaps beyond 60% if the printing frequency is increased, 

which means that stability does not depend purely on drop spacing but also on the rate 

at which drops are deposited. The effect of standoff distance for 0.5 mm, 1 mm and 

1.5 mm is plotted in Figure 8-7c. It is observed that varying the standoff distance has 

no significant effect on the size of primary and secondary bulges. However, the 

frequency of secondary bulges is directly proportional to the standoff distance, 

suggesting that setting this parameter to 0.5 mm can minimise the presence of bulges, 

which is also consistent with experiments. Figure 8-7d depicts the prediction results of 

three levels of surface tension: 15, 31 and 45 mN/m. It is observed that as surface 

tension increases, the size of bulges increases since larger surface tension forces 

dominate the flow redistribution, pulling drops towards a bulge. The frequency of 

secondary bulges is inversely proportional to surface tension and droplet overlap, 

which suggests worse stability at lower surface tension. Finally, the prediction results 

setting the viscosity level at 4, 11 and 20 centipoise are illustrated in Figure 8-7e and 

show no significant effect on the size of bulges. However, as viscosity increases the 

frequency of bulges decreases since flow mobility is lower, preventing bulge 

formation. 
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Figure 8-7 Effect of printing parameters, physical properties and wetting on the size and frequency of bulges. a) 

Contact angle, b) printing frequency, c) standoff distance, d) surface tension and e) dynamic viscosity. 
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A total of six single pixel lines of different lengths were printed and analysed using 

the derived relationships for the number of drops and frequency of bulges as functions 

of printing parameters, physical properties, and wetting characteristics. Figure 8-8 

depicts a comparison of the prediction results with a drop spacing of 10 and 20 m 

while printing frequency and standoff distance are fixed at 1 kHz and 0.5 mm, 

respectively. Physical properties and wetting characteristics are the same for both 

cases. It can be seen that the analytical model captures the formation of primary and 

secondary bulges depending on the length of printed feature. For the first 2 lines, which 

consist of 4 and 8 drops, respectively, the model predicts a single bulge as expected 

owing to the dominance of surface tension forces driving the shape towards a spherical 

cap. The third line shows a remanent of the deposited droplets breaking the spherical 

cap shape and tending to form a thinner line driven by larger inertia forces from 

droplets impacting the substrate. The rest of the lines which consist of 21, 35 and 50 

drops, respectively, show secondary bulges whose frequency is proportional to the 

ratio of viscous and capillary timescales. It is evident that as drop spacing increases, 

the size of the primary bulge decreases, secondary bulges emerge, and the material 

tends to be uniformly redistributed along the printed track. 

 

 

Figure 8-8 Primary and secondary bulges prediction with different drop spacing. 
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The analytical model derived in this section is capable of predicting the size and 

frequency of bulges in single tracks as well as detect the presence of defects (bulges 

and break-ups) using a stochastic approach. Although, the predicted effects of critical 

printing parameters, physical properties and wettability show consistent results with 

experiments from the literature, the effect on overall dimensions defining the surface 

morphology of single tracks must be validated. Therefore, printed samples using 

various different droplet volumes and substrates were generated and the surface 

morphology of single tracks measured to validate the analytical prediction model, as 

reported in the next section. 

 

8.3.4 Experimental validation of the analytical prediction model for single 

tracks. 

A total of six sets of single tracks were inkjet-printed to validate the prediction of the 

stochastic model implemented in previous sections. TPGDA was printed on silicon 

wafer and glass to test the model with different substrate wettabilities. Two different 

printheads were also used, DMC-11610 and samba®, with droplet volume sizes of 10 

and 2.4 pL, respectively. Two batches of silicon wafer procured at different times from 

the same supplier were also used for repeatability purposes. The procedure to 

determine droplet footprint size and position uncertainty is described in Section 3.2.10 

and was performed for each set of experiments for model calibration purposes. Figure 

8-9 shows an example of the grid pattern used to calibrate the model and printed 

samples of single pixel lines with varying drop spacing. 
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Table 8-4 lists the results from the grid analysis used to calibrate the analytical model. 

 

Table 8-4 Grid analysis results for analytical model calibration. 

TPGDA 

Units 

Nitride-coated Si-wafer Glass microslide 

Droplet statistics 

description 

11610 Samba® 11610 Samba® 

Batch1 Batch2 Batch1 Batch2 Batch1 Batch1 

In-flight droplet volume pL 9.55 9.55 2.3 2.3 9.55 2.3 

Maximum grid diameter m 96.7 82.5 58.8 54.4 68.1 48.9 

Minimum grid diameter m 89.3 78.4 49.6 49.2 60.0 44.9 

Average grid diameter m 91.9 80.3 54.3 51.5 63.7 46.6 

Grid diameter uncertainty m 1.2 0.7 1.5 0.9 1.4 0.7 

Avg. drop spacing (X-dir.) m 148.5 150.2 149.7 149.6 150.7 149.5 

Avg. drop spacing (Y-dir.) m 154.7 152.2 151.5 152.3 153.1 152.4 

Position uncertainty (X-dir.) m 1.8 1.4 1.2 1.1 2.0 1.0 

Position uncertainty (Y-dir.) m 2.9 2.3 3.1 2.4 2.1 1.4 

Avg. drop volume (cured) pL 8.3 8.3 2.1 2.1 8.3 2.1 

Drop volume variation pL 0.2 0.2 0.1 0.1 0.2 0.1 

Maximum drop height m 2.7 3.4 2.1 2.2 5.8 2.7 

Minimum drop height m 2.3 3.1 1.6 1.8 4.5 2.2 

Avg. drop height m 2.5 3.3 1.8 2.0 5.1 2.5 

Avg. contact angle (cured) ° 6.2 9.3 7.6 9.0 16.8 12.1 

Contact angle variation ° 0.8 0.4 0.8 0.4 0.8 0.4 

Advancing contact angle ° 8.4 12.6 10.3 12.2 20.8 16.3 

 

Using the droplet characteristics presented in Table 8-4 and the physical properties 

determined in Section 8.3.1, the proposed equations derived in Section 4.3.1.2 can now 

be used to predict the surface morphology of single tracks. For simplification purposes, 

these equations are re-arranged such that all dimensions are proportional to the inverse 

square root of the drop spacing and a coefficient “A” which is a function of the contact 

Figure 8-9 Example of model calibration grid and printed single track examples. 
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angle, droplet volume, footprint diameter and ink physical properties. Table 8-5 

documents the magnitude of coefficient “A” defining the analytical prediction model 

for each dimension. 

 

Table 8-5 Coefficient “A” determined using droplet characteristics from grid analysis and physical properties. 

𝑫𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏 =  
𝑨

√𝒅𝒔
 

Units 

Nitride-coated Si-wafer Glass microslide 

11610 Samba® 11610 Samba® 

Batch1 Batch2 Batch1 Batch2 Batch1 Batch1 

Average width m1.5 625.4 509.7 277.0 254.3 359.0 218.8 

Maximum width m1.5 810.3 684.6 416.4 390.2 525.9 350.4 

Average thickness m1.5 15.3 18.7 8.3 9.0 26.6 10.5 

Maximum thickness m1.5 22.9 28.1 12.5 13.6 39.9 15.8 

 

A comparison of the analytical model predictions and actual measurements for average 

and maximum widths of printed samples is presented in Figure 8-10. The predictions 

match well the experiments, with a maximum error within 20 m, thus validating the 

analytical model for width dimensions. 
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A comparison of the analytical model predictions and actual measurements for average 

and maximum heights of printed samples is presented in Figure 8-11. These 

predictions also match well the experiments, with maximum error within 3 m, again, 

validating the analytical model for height dimensions. 

 

Figure 8-10 Comparison of analytical model predictions and measured data for average and maximum width 

dimensions of single tracks. Printed tracks on Si-wafer with native droplet volume of 10 pL displayed in a. and b. 

Printed tracks on Si-wafer with native droplet volume of 2.4 pL displayed in c. and d. 
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In order to construct the surface morphology of printed features, the validated 

analytical model was implemented in MATLAB following the procedure described in 

Section 4.3.2. The predicted surface morphology of single tracks is presented in the 

next section along with our proposed stability diagram and optimal printing parameters 

to achieve stable thin and thick lines.  

Figure 8-11 Comparison of analytical model predictions and measured data for average and maximum height 

dimensions of single tracks. Printed tracks on Si-wafer with native droplet volume of 10 pL displayed in a. and b. 

Printed tracks on Si-wafer with native droplet volume of 2.4 pL displayed in c. and d. 
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8.3.5 Prediction, optimisation, and validation of the surface morphology of 

single tracks. 

The surface morphology of eight single tracks consisting of 9 drops was simulated 

with the analytical model and compared to printed samples in Figure 8-12. Drop 

spacing was varied from 10 to 70 m while keeping fixed printed frequency and 

standoff distance at 1 kHz and 0.5 mm, respectively. Samples were printed on glass 

with cartridge model 11610 (native droplet volume = 10 pL). The analytical model 

was calibrated with the grid analysis results from Section 8.3.1. It can be seen in Figure 

8-12 that there is good agreement between the predicted and measure surface 

morphology dimensions. Importantly, it can be seen that the analytical model 

accurately predicts the transition from bulging to separation of single tracks. As drop 

spacing increases the length of the line increases, as expected, and the prediction error 

is less than 5%. For drop spacings below 20 m (bulging onset equivalent to 67% 

overlap), the morphology of the samples has the shape of a large blob of material, 

consistent in both simulated and printed results. The material overflow beyond top and 

bottom of target boundaries matches well the prediction, with an error within 5%. The 

maximum thickness of the printed samples was determined using optical microscopy 

and the prediction error for this is less than 2.5 m. For drop spacings above 50 m 

(break-up onset equivalent to 21% overlap), the morphology of the samples is not 

continuous, consistent in both simulated and printed results. As drop spacing increases 

the number of break-ups in the line increases, matching the stochastic overlap map 

prediction of the average number of separations. Finally, for drop spacings between 

20 and 50 m, the morphology of the samples present primary and secondary bulges 

varying in frequency, consistent in both simulated and printed results. Therefore, the 

analytical model simulation of single tracks is validated with maximum prediction 

errors listed in Table 8-6. 

Table 8-6 Prediction error observed in dimensions of single tracks. 

Dimension Units Maximum Prediction Error 

Length m 25 

Width m 10 

Thickness m 2.5 
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In order to test the model with line patterns of different size, the surface morphology 

of three single tracks of 1 mm in length was simulated and compared to printed 

samples, with the results presented in Figure 8-13. Printing and simulation parameters 

all remained the same except for drop spacing, which was set to 10, 40 and 60 m. It 

can be seen in the figure that the simulation results capture the transition from bulging 

to separation of single tracks for longer lines and show more frequent secondary 

bulges, as expected. 

 

 

Figure 8-12 Comparison of analytical model simulation and printed samples of single tracks varying drop 

spacing. a. 10 m, b. 20 m, c. 30 m, d. 40 m, e. 45 m, f. 50 m, g. 60 m and h. 70 m. 

Figure 8-13 Simulated lines L=1 mm vs printed samples varying drop spacing. a.10 m, b. 40 m and c. 

60 m 
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Figure 8-14 illustrates the effect of printing frequency on the surface morphology of 

single tracks of 1 mm in length with fixed drop spacing and standoff distance of 10 

m and 0.5 mm, respectively. It can be seen that the simulated and printed samples 

show good agreement, validating the capability of the model to capture the influence 

of printing frequency on the feature morphology and more importantly, demonstrating 

that thicker lines can be achieved in a stable manner. At the lower frequency (1 kHz), 

primary and secondary bulges are evident in the line morphology due to the high 

resolution employed (equivalent to 84% overlap). However, by increasing the printing 

frequency, the traverse speed calculated from Equation (44) is increased, enabling 

better ink redistribution along the target line. At the highest frequency (4 kHz), bulges 

are eliminated and only a slight overflow of material is observed in the middle of the 

printed sample.  

 

 

Finally, the optimal printing parameters were determined following the procedure 

explained in Section 4.3.1.4 and a stability diagram depicting the onset of bulging and 

separation and the optimum overlap point is shown in Figure 8-15. It was found that 

to achieve the thinnest stable line, drop spacing, printing frequency and standoff 

distance should be set to 29.6 m, 3.1 kHz and 1 mm, respectively. In comparison, the 

thickest stable line was achieved setting drop spacing, printing frequency and standoff 

distance to 10 m, 9.2 kHz and 0.5 mm, respectively. Given the droplet size and 

location uncertainty when TPGDA is printed on glass with a native droplet volume of 

10 pL (cartridge 11610), the onset of bulging is predicted to be at 69% overlap 

(equivalent to a drop spacing of 21 m) and the onset of breakup is predicted to be at 

25% overlap (equivalent to a drop spacing of 49 m). The threshold of isolated 

droplets is predicted to be at 11% overlap (equivalent to a drop spacing of 59 m). 

Figure 8-14 Effect of printing frequency on lines printed using high resolution (drop spacing = 10 m). a. 1 kHz 

and b. 4 kHz 



205 

 

Bulging and separation thresholds were determined assuming the lowest printing 

frequency (1 kHz) and standoff distance (0.5 mm), since uncertainties were measured 

from the grid analysis performed with these settings.  

 

 

Table 8-7 lists the predicted dimensions at optimal printing parameters for thin and 

thick lines. 

 

Table 8-7 Predicted morphology at optimal printing settings for thin and thick lines. 

Dimension Units Thin lines Thick lines 

Average width m 76.6 131.7 

Maximum material overflow m 14.1 24.2 

Predicted line thickness m 6.3 10.9 

 

In the next section, the analytical model simulation of free form films and experiments 

performed using a variety of film patterns to demonstrate the validity of the optimal 

printing parameters derived for single tracks are presented.  

 

Figure 8-15 Stability Diagram for TPGDA printed on glass with cartridge model 

11610. Optimal printing parameters shown are to achieve stable thinnest tracks. 
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8.3.6 Prediction and validation of the surface morphology of freeform films. 

One of the advantages of the analytical model simulation is that it mimics the actual 

printing process, which creates films by multiple unidirectional swaths using single or 

multiple nozzles simultaneously. This characteristic enables the simulation to capture 

more accurately the morphology of real films, since it considers the interaction 

between swaths. Also, the width of the swaths can be varied through the selection of 

multiple nozzles which brings the simulation closer to reality. 

Examples of both solid and hollow films were simulated and printed to demonstrate 

the capabilities of the analytical model to predict the surface morphology of freeform 

films. Figure 8-16 depicts the simulated film footprint, an image of the printed sample 

and the predicted morphology of the film for four different film geometries. Samples 

were printed on glass with cartridge model 11610 (native droplet volume = 10 pL). 

The analytical model was calibrated from the corresponding grid analysis results from 

Section 8.3.1. Drop spacing, printing frequency and standoff distance were set to 30 

m, 3 kHz and 1 mm, respectively. The results show good agreement between the 

morphology predictions and experiments. The analytical model captures the observed 

curvy distortion of the edge caused by the variation of droplet size and position, which 

is inherent to the printer mechanical tolerances. Furthermore, the overlap between 

swaths match perfectly with the horizontal bands seen in the printed samples. The main 

difference is observed at the bottom of the pattern, where insufficient UV exposure 

cause the last couple of swaths to distort irregularly due to partial curing. The degree 

of curing, measured by degree of monomer consumption as function of UV dosage, 

was considered in the analytical model to correct only the thickness of the films, 

following the procedure described in Section 4.3.1.3. For the solid and hollowed 

square patterns, simulated fine features such as corners match well with the printed 

samples for both interior and exterior boundaries. For the ring pattern, the simulation 

results capture the increase of thickness at the top of the ring, as in the printed sample, 

due to the use of multiple nozzles that determine the width of the swath and, 

consequently, its distribution along the pattern. Finally, for the spiral (antenna-type) 

pattern, the predicted separation between spiral swings matches the printed sample, 

demonstrating fine features such as channels (size equal to 200 m) can be simulated 

accurately with the adequate selection of printing parameters. The non-smooth circular 
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boundary edge is also predicted fairly well due to the inclusion of droplet size and 

position variation and swaths distribution along the pattern.  

 

 

Figure 8-17 illustrates two hollowed patterns simulated using single and multiple 

nozzles to demonstrate the capability of the analytical model to handle different swath 

widths and understand its effect on the film morphology. The results show a smoother 

Figure 8-16 Analytical model simulation results compared to printed samples for freeform patterns. a. Solid 

square, b. Hollowed square, c. Ring, and d. Archimedean spiral. 
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film surface and footprint edge for the prediction using multiple nozzles since larger 

variation is introduced with increasing number of swaths. In particular, it is found that 

the number of ridges increases in the film printed with a single nozzle due to the pining 

and curing of single tracks. It is important to note that both cases match the overall 

dimensions of target pattern for internal and external features, regardless of the number 

of nozzles used. The main difference is noted in the surface finish and footprint 

boundary waviness, which is better in the simulated sample with multiple nozzles. 

 

 

The analytical model simulation can also be used to correct the edges of printed swaths 

to account for the material overflow caused by non-optimal printing parameters. Figure 

8-18 depicts a solid square film simulated and printed using drop spacing, printing 

frequency and standoff distance set to 10 m, 3.0 kHz and 1.0 mm, respectively. 

Simulation results show excellent agreement to the CSI measurements of printed 

sample. A large bulge is predicted at the centre of the film with a thickness of 78.1 m 

vs 76.6 m predicted. The square film sides exceed the target of 1 mm in both 

simulation and experiments by an average of 350 m (experiments) vs 320 m 

(simulation). X-Z and Y-Z cross sections located at the film centroid show excellent 

agreement between real and predicted shape, validating our modelling assumptions. 

The main difference is observed in the surface finish at the centre of the square, which 

Figure 8-17 Comparison of simulated patterns using a. single and b. multiple nozzles. 
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presents non-smooth ridges due to swaths in the printed sample. Overall, the analytical 

model simulation predicts the maximum dimensions within 5%, which is consistent 

with the predictions obtained for single tracks. 

 

 

Unfortunately, the analytical model simulation cannot build the morphology of films 

with large drop spacings which typically present discontinuous swaths, voids, and 

islands. The simulation can only build the morphology of swaths for the single nozzle 

case which does not reflect the actual location of the break-ups due to the stochastic 

nature of the droplets size and position. However, the number of film break-ups is 

statistically determined through Monte Carlo simulations and in this way the printing 

parameters to avoid discontinuous films can be found. Since the analytical model 

simulation’s purpose is to construct the morphology of continuous films to compare 

against CSI measurements of printed samples, it is concluded that the model is good 

enough to fulfil this purpose. 

Figure 8-18 Comparison of analytical model simulation of a square film with excessive overflow 

on pattern boundaries with experiments. a. Simulated morphology, b. Printed sample, c. 

Footprint overlay plot and d. Y-Z cross-section overlay plot at centroid of film. 
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After confirming the capability of the analytical model simulation to build the 

morphology of a variety of freeform films with single and multiple nozzles and a range 

of printing parameters, a comparison of the simulated point cloud of a solid square 

pattern against measurements of printed sample is presented in Figure 8-19. Drop 

spacing, printing frequency and standoff distance were set to 30 m, 3 kHz and 1 mm, 

respectively. The results show a maximum absolute deviation of 75 m near the 

bottom left corner of the pattern and a total mean square error of 113 m. The average 

error in the thickness direction is in the order of 2.5 m. A major advantage of the 

proposed analytical modelling method is that builds the film in tenths of a second, thus 

providing an extremely fast tool to evaluate the design space for optimisation and 

multilayer simulation purposes. 

 

 

Finally, the optimal printing parameters and stability diagrams derived for printing 

TPGDA on glass and silicon wafer using different printheads (different native droplet 

volumes) were generated and validated using experiments, as illustrated in Figure 

8-20. Stability diagrams provide threshold overlaps for the onset of film break-up and 

bulging based on the variation introduced by the printer mechanical tolerances. The 

plot also informs the amount of expected material overflow beyond boundary edges as 

a function of droplet overlap and the optimal printing parameters to achieve the thinner 

film. The printed samples were created using the optimal printing parameters for 

thinner films, except for Figure 8-20d, which employed the optimal printing 

parameters derived for thicker films (ds=10 m, pf=9.2 kHz and sd=0.7 mm). Overall, 

Figure 8-19 Simulated vs real surface morphology overlay and absolute deviation for a solid square film. 



211 

 

the results demonstrated stable freeform films printed on different substrates, thus 

validating the proposed stochastic model-based optimisation framework. 
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Figure 8-20 Experimental validation of optimal printing parameters using the proposed stability 

diagrams for: a. TPGDA on Si-wafer, V=2.4 pL, batch 1; b. TPGDA on Si-wafer, V=10 pL, batch 

2; c. TPGDA on Si-wafer, V=2.4 pL, batch 2 and d. TPGDA on glass, V=10 pL with optimised 

parameters for thicker films. 
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A comparison between target pattern dimensions and the printed sample using optimal 

printing parameters can be seen in Figure 8-21. A pattern with internal features is 

chosen to demonstrate the accuracy of the printing process. The pattern was printed on 

a silicon wafer (a) and on a film of TPGDA (b) to demonstrate the effect of optimal 

printing parameters on surfaces with different wettability. The maximum absolute 

deviation observed in the sample printed on the silicon wafer and TPGDA were 83 m 

(+3.3% error) and 52 m (-2% error), respectively. In both samples, all other 

dimensions showed deviations less than 30 m. Internal corners have a round shape 

with an approximate radius of the dot size (64 m) and internal features follow 

accurately the intended shape. Overall, printed samples meet target requirements 

regardless of the different substrate conditions, thus validating the optimal printing 

parameters derived from our analytical modelling-based optimisation approach. 

 

 

Figure 8-21 Comparison of printed samples with different substrate wettabilities against target 

dimensions: a. TPGDA printed on Si-wafer and b. TPGDA printed on a film of TPGDA. 
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In the next section, the analytical model simulation is extended to multilayer printing 

for the generation of the deformed geometry for inkjet-printed parts and a geometry 

compensation scheme is introduced to further minimise the error between target and 

predicted geometries. 

 

8.3.7 Prediction and compensation of the deformed geometry of 3D printed 

parts. 

The results of two methodologies to obtain the deformed geometry of 3D inkjet-printed 

components are presented in this section. First, the analytical model simulation of the 

layer-by-layer inkjet process is employed to predict the deformed geometry of the 

artifacts described in section 3.2.4. Then, an investigation of the effect of inkjet 

printing on the general dimensions of 3D parts against the target geometry is 

performed through a series of experiments. Then, the deformed geometry of regular, 

symmetric patterns such as squares and circles, solid and hollowed, is predicted using 

the semi-empirical procedure described in section 4.2.2. Simulated and printed 

samples are generated employing the optimal printing parameters for each layer to 

isolate the out-of-plane error introduced by the multilayer process. Finally, a geometry 

compensation scheme is applied if the absolute deviation between prediction and target 

geometries exceeds 50 m. This is an optional additional step that can be used to 

minimise the out-of-plane error and improve the overall quality of the printed part if 

required. 

8.3.7.1 Deformed geometry prediction using stochastic model. 

A total of six differently sized and shaped artifacts were simulated and analysed to 

evaluate the analytical model 3D prediction capabilities. The number of layers used to 

build the artifacts were 89, 106, 89, 59, 89 and 96 at 8.5 m layer thickness. The 

analytical model was calibrated with the corresponding grid analysis results from 

Section 8.3.1. Drop spacing, printing frequency and standoff distance were set to 30 

m, 3 kHz and 1 mm, respectively. Figure 8-22 shows a comparison of simulation 

results against the target geometry and footprint of printed samples. The results show 

good agreement between prediction and target geometry with a maximum absolute 

deviation of less than 50 m. For the cage and sensor, the maximum deviation at the 
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boundaries is approximate 60 m. The walls of the artifacts show a non-uniform 

distribution of deviations due to the stochastic nature of film formation. The layer 

thickness prediction from the analytical model enables fabrication of a 3D object closer 

to the target height compared to the FE prediction derived in Chapter 7. Although the 

predicted geometry matches the target well, the 3D printed samples present a larger 

deviation of external and internal dimensions with respect to target. When the ink is 

deposited near the edges of previous films, the surface is not flat causing the ink to 

flow downwards, spreading beyond the target dimensions. Therefore, additional 

considerations must be investigated to improve the analytical model capabilities to 

predict 3D parts closer to reality.  
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8.3.7.2 Deformed geometry prediction using semi-empirical model. 

To understand the effect of multi-layered printing on the dimensions of 3D artifacts 

and improve current model prediction accuracy, a series of experiments printing 

simple geometries with optimal parameters were performed. Three patterns, a solid 

square, a hollowed square and a ring were printed on glass using 10 pL cartridge with 

five layers each, as illustrated in Figure 8-23. The results confirm that using optimal 

printing parameters, stable features are achieved at every stage of the layer-by-layer 

process. However, it is noticed that the footprint gradually grows (shrinks for internal 

patterns) away from the target as layers are deposited on top of each other.  

Figure 8-22 Analytical simulation results and comparison to target and printed samples. 
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To visualize how much each footprint deviates from target, an overlay plot of the layer 

edges is presented in Figure 8-24. The first three plots corresponding to (a) solid 

square, (b) hollowed square (c) ring, demonstrate that the first layers match the target 

footprint well for both external and internal features. However, plots (d-f) depict how 

gradually the footprint moves away from the target as layers are overlayed to build the 

3D part. The amount of deviation after printing 5 layers is approximately 140 m and 

is consistent throughout features. It is also noted that each layer contributes to the total 

deviation in different proportions and the most significant edge variation is present at 

the top section of all features. 

 

Figure 8-23 Experiments performed to understand the effect of multiple layers on features' dimensions. Three 

simple patterns are printed with 5 layers each as follows: a. solid square side 1 mm, b. hollowed square side=1 

mm, width=0.25 mm and c. ring diameter=1 mm, width = 0.27 mm.  
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A regression analysis was performed to determine the relationship between the 

multilayer process and the final dimensions of the printed sample. Figure 8-25 shows 

how the width, length, and thickness of the solid square change as layers are deposited. 

First, the definition of the measured dimensions is shown in (a). Then, average length 

and width are plotted as functions of layer number and % of error contribution per 

layer is included in the secondary axis. It is found that footprint aspect ratio (L/W) is 

approximate 0.95 and is constant for all footprints; the second layer is the largest 

contributor to the total error (~45%) and the %contribution to total error per layer 

gradually reduces with number of layers. It is clearly seen that after 5 layers, length 

and width exceed target by 103 and 144 m, respectively. The thickness is modelled 

using a linear regression in (c) with coefficient of determination of 0.9977 and a layer 

thickness of 8.25 m, which validates the prediction of the analytical model (8.5 m). 

Finally, width and length deviations from target are plotted as functions of layer 

number and a logarithmic regression is generated with coefficient of determination 

0.9762 and 0.9917, respectively. The same analysis is performed for the hollowed 

square, where external length and width exceed target by 111 and 145 m, respectively 

and layer thickness is calculated as 8.25 m. Inner width on the hollowed square also 

exceeds target, by 141 m, due to the material overflow beyond the inner square 

boundary. It is important to note that the second layer is the largest contributor to total 

Figure 8-24 Overlay plot of layer footprints to assess the impact of multilayer printing in overall features' 

dimensions. 
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error (~43%). Also, an analysis of the internal and external corners of the square start 

at a radius of the dot size and increase logarithmically with number of layers as 

illustrated in Figure 8-26. The results of the ring analysis show maximum equivalent 

diameter deviation from target of 140 m and layer thickness resulting from linear 

regression of 7.9 m. Ring width also exceeds target by 151 m due to the spreading 

of material radially inwards. Two main conclusions are draw from the analysis of these 

features: compensating the geometry of the second layer automatically cuts the error 

by almost half and the maximum amount of deviation from target dimensions after 

depositing 5 layers is consistent regardless of the pattern shape. 

 

 

Figure 8-25 Quantitative analysis results for the solid square part. a. Schematic of measured dimensions. b. 

Effect of multiple layers on length and width. c. Effect of multiple layers on thickness. d. Regression equations to 

model error on average dimensions. 
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With regard to the evolution of corner radii as function of the number of layers, it is 

observed that the minimum radius is 66.8 m at the bottom left corner, 1) in Figure 

8-26a with the first layer. A tighter distribution of corner radii is also achieved with 

the first layer, then radii variation keeps roughly constant at subsequent layers. Bottom 

corners (1 & 4) showed much less variation than the top corners (2 & 3) which may 

be due to less distortion in the previously deposited films. Using optimal printing 

settings with a 1 mm film size, the minimum achievable corner radius is 75 +/- 7.5 m 

on a single layer feature. For multilayer printing, the minimum achievable corner 

radius is 150 +/- 30 m considering only 5 layers. For internal feature with a size of 

0.5 mm, the recommended minimum achievable corner radius is 65 +/- 15 m for a 

single layer and 95 +/- 15 m for multilayer printing. These results shed some light on 

the maximum resolution that can be achieved in fine features using inkjet printing. 

Based on the relationships derived for the error on basic dimensions, a semi-empirical 

prediction model for simple shapes was developed following the procedure described 

in Section 4.2.2. A comparison of the feature’s morphology between measured data 

using coherence scanning interferometry and results from the semi-empirical 

prediction model are illustrated in Figure 8-27. Overall, the prediction results show 

excellent agreement with printed samples. The spherical cap assumption embedded in 

the analytical model does an excellent job of predicting the final rounded shape of 

multi-layered objects. The maximum deviation in all features is kept within 15 m and 

the mean square errors (MSE) for the solid square, hollowed square and ring are 5.6 

Figure 8-26 Effect of multiple layers on the evolution of corner radii. a. Schematic with corner IDs. b. Regression 

analysis plot. 
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m, 15.1 m and 20.3 m, respectively. Larger MSE is observed in the hollowed 

square and ring parts, due to the lack of measured data obtained from CSI. The 

maximum thickness of the features is overpredicted by 2 m. Using the effect of 

multiple layers on the general dimensions, an offset of the binary pattern is calculated 

to predict the final footprint based on the number of layers. This same deviation to 

target relationship as a function of the number of layers helps in compensating the 

geometry of binary patterns by offsetting the pattern radially inwards. Therefore, the 

strategy to compensate the geometry using our machine learning based approach is not 

needed for this case. 

 

 

Figure 8-27 Semi-empirical prediction model results comparison with printed samples. 
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Finally, the graphical user interface that was developed in MATLAB to automate the 

multiphysics, analytical framework proposed in this chapter is introduced in the next 

section. 

 

8.3.8 Computational inkjet printing implementation in MATLAB. 

To demonstrate how the proposed MPSA framework would be useful for industry or 

academic environments, a computational inkjet printing process proof of concept 

(EZInkjet) is implemented in MATLAB, paving the way for real-time process control 

to improve the quality of inkjet-printed parts. The main code of the graphical user 

interfaces can be found in Appendix 11.3. 

8.3.8.1 Digital image generation module. 

The objective of this module is to produce ready-to-print bitmaps of patterns used in 

electronic packaging applications for any given size and position. The module is 

capable of reading predefined bitmaps by user and slicing STL files providing the 

desired resolution and layer thickness. Figure 8-28 illustrates the graphical user 

interface to create bitmaps of simple shapes (a) and bitmaps from slices of CAD files 

(b). Predefined patterns are parameterized as functions of the printing location origin 

and the size and can be selected by the user from three dropdown boxes which 

categorise patterns in lines, films and special shapes. The lines category includes single 

pixel horizontal and vertical lines generated by length or number of drops. The films 

category includes simple shapes used traditionally in electronics packaging 

applications such as solid and hollowed polygons, circles, corners, junctions, bowtie 

and Archimedean spiral. The special category includes variable drop spacing films and 

multiple line patterns. Once the size and location are defined, the pattern is created and 

displayed for verification purposes. If the pattern is correct, bitmaps are created in a 

default folder called EZInkjet in the C drive. To slice a CAD geometry in STL format, 

the GUI enables the user to search and open the file and generate films based on the 

desired resolution and layer thickness. Slices can be displayed by selecting the slice 

number from a slider for validation purposes. If slices are correct, bitmaps are created 

in the default EZInkjet folder. Outputs of the module are saved in a MATLAB 
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structure and provided as inputs for the prediction module, ensuring efficient 

communication between modules. 

 

 

8.3.8.2 Analytical model prediction module. 

The objective of this module is to control the simulation of the inkjet printing process 

of a selected target layer(s) pattern with given material properties, printing parameters, 

wetting characteristics, UV curing shrinkage and droplet landing location and size 

uncertainties using the proposed analytical model. Figure 8-29 depicts the GUI 

designed to input the simulation parameters, control visualisation of predicted 

morphology and regulate the contents of results. The interface is divided into three 

Figure 8-28 Pattern generation module interface. a. Single layer of simple shapes. b. 

Multiple layers from CAD files. 
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panels based on the type of parameters to input namely; printing parameters, physical 

properties and wetting characteristics. The printing parameters panel displays the 

binary filename and drop spacing of the selected pattern to print and calculates the 

sabre angle for the Dimatix printer to print in the desired resolution. Printing 

frequency, standoff distance, number of nozzles, number of layers and position 

uncertainty are inputs from the user and traverse speed, resolution and estimated layer 

thickness are calculated automatically. Print mode enables the user to display the 

overlap map with and without drop position and size uncertainty or build the 3D 

surface morphology for lines or films. Plot mode enables the user to select between 

displaying only the results or to visualize the inkjet printing simulation. If the layer 

count is greater than one, ink to ink wetting characteristics are displayed for user input. 

The droplet wetting characteristics panel asks for the droplet volume, impact speed, 

diameter size uncertainty and contact angles. Based on these inputs, in-flight diameter, 

spot size, droplet height and overlap are calculated. Finally, the physical properties 

panel is designed to support inks that solidify either by UV curing or evaporation. 

Currently, only the UV curing mechanism is active and the required physical 

properties include, density, viscosity, surface tension and shrinkage factor. 

Dimensionless numbers significant to the inkjet printing process are calculated and the 

droplet profile is plotted based on the given inputs. Printability and stability diagrams 

are generated to show if the inputs would achieve printable and stable features. 
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It is important to note that the printability diagram limits come from Derby’s theory 

(Derby, 2010) and stability diagram thresholds for bulging and break-up and optimal 

values for drop spacing, printing frequency and stand-off distance are determined 

considering droplet location and size uncertainty. Outputs from this module are saved 

in a MATLAB structure and provided as inputs for the compensation module, ensuring 

efficient communication between modules. 

 

8.3.8.3 Surrogate model prediction module. 

The objective of this module is to build a matrix parametric study based on a response 

surface design of experiments to create a surrogate model from the results of high-

fidelity simulations, shape from shading volume reconstructions or actual 

measurements of printed features. The module can create an input file to run the 

simulations in our lattice Boltzmann multiphase flow solver or our finite element 

chemo-mechanical solver (for lines or small square films only) or a PDE shape from 

the shading solver (for any shape but constrained to high contrast images). Figure 8-30 

illustrates the GUI designed to build an analytical model of the surface morphology of 

single tracks or films based on selected critical factors of the inkjet printing process. 

Figure 8-29 Prediction module interface. 
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The interface requests the user to input the number of factors to study, factors 

maximum and minimum limits and domain discretisation size (e.g., number of 

equations generated to define the morphology of desired feature). Based on the inputs, 

width and height cross section plots of the feature are displayed pointing out the 

locations where response surfaces are to be calculated. The number of experiments is 

determined based on a central composite design of experiments with 6 centre points 

for the case of lab experiments and 1 centre point for in silico experiments. Response 

surfaces are generated automatically and statistical results for each function are 

available for verification purposes. The module provides detailed descriptive statistics, 

correlation factors, residuals patterns and main effects for each predicted location, 

allowing the user to see all locations overlayed on predicted feature morphology using 

a colour grade (green, yellow, red nomenclature) based on the regression statistical 

results. Coefficients of determination or residuals can be displayed on the predicted 

morphology to identify points of poor statistical and practical significance. Outputs 

from this module are saved in a MATLAB structure and can be provided to the 

compensation module. 
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8.3.8.4 Digital image compensation module. 

The objective of this module is to optimise printing parameters and compensate the 

geometry of binary files to improve the quality of inkjet-printed parts. For the 

parameter optimisation, the module solves a multi-objective genetic algorithm to 

simultaneously minimise edge waviness and surface roughness of the desired pattern. 

The morphology is constructed using the transfer function generated in previous 

module and parameter space is explored to find the optimal printing parameters. For 

Figure 8-30 Surrogate model prediction module interface. a. Statistical analysis results. b. 

Predicted surface morphology as function of selected factors. 
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the geometry compensation, the module trains a convolutional neural network (CNN) 

using the x, y and z coordinates of the 3D deformed geometry, which results from 

either our prediction models or from actual measurements. By providing the target 

shape coordinates, the CNN calculates the compensation required by the geometry to 

minimise the error to target shape. The new geometry is sliced and bitmaps for the 

compensated layer geometry are produced. Figure 8-31 shows the GUI designed to 

solve in real time the optimisation problem and display the results. The tool allows the 

user to select if single or multiple objectives are used in the optimisation algorithm. 

Also, the user has the option to select if the problem is constrained or unconstrained. 

The constraints are on the feature’s edge waviness or surface roughness. The real time 

genetic algorithm performance plot is displayed to visualize objective function 

convergence or Pareto front development. Front, side, top and 3D plots of the optimal 

surface morphology are displayed along with the values of the optimal printing 

parameters, overlap and dpi resolution. In addition, the overall dimensions of the 

predicted features are reported, including length, average and maximum width, and 

thickness. All results are saved in a MATLAB structure and passed to the shape 

validation module automatically. 

 

 

Figure 8-31 Digital image compensation module. 
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8.3.8.5 Shape validation module. 

The objective of this module is to provide a set of post-processing tools to compare 

the results from the model predictions or actual measurements against target 2D 

patterns and 3D shapes. The tools include the calculation of the mean square error 

(MSE) and mean absolute deviation between two surfaces, the generation of cross-

section images at any given location of a geometry, the overlap and measurement of 

footprints to evaluate dimensional accuracy, etc. Figure 8-32 illustrates the output from 

the postprocess tools implemented for this investigation. The volume cross sections 

viewer (a) generates plots from cross-sections at any location of a printed feature 

volume defined by its x, y, and z coordinates. It requires as input a text file with 3 

columns (x, y, and z) separated by space or CSV file or Excel file with no header, only 

data located in the first 3 columns. The tool can be used without MATLAB as a 

standalone program, and it provides the following benefits: easy control of the plotting 

location using slide bars; fast creation of images at any critical location; accurate 

plotting of  surface morphology dimensions works on any dataset of point coordinates; 

saves datapoints of edge cross section within a structure in a MATLAB workspace or 

in a text file if used as a standalone program. The edge overlay tool (b) reads the edges 

from the target binary file, real Dimatix image file and predictive model results and 

overlays them for comparison purposes. The tool is extremely useful in the 

optimisation module to evaluate visually the impact of different printing parameters 

on printed features and to generate the normalised central geometric moments of 

aligned images. The surface deviations viewer (c) takes two datasets or geometries, 

aligns them and calculates the deviations between them. The tool plots the deviations 

in geometry, pointing out mismatch between geometries. This tool helps to assess the 

accuracy of the predicted morphology from the methods explored (e.g., surrogate 

model, volume prediction based on volume conservation assumptions, shape from 

shading shape reconstruction, analytical model) by comparing datasets against CAD 

target or CSI measurements. These tools together with the post-processing methods 

described in Section 4.7 allow the user to reduce the shape validation time from hours 

to minutes following a standard process. 
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8.4 Conclusions and summary. 

In this chapter, a multiphysics analytical model is employed to predict fast and 

accurately the morphology of inkjet-printed parts for any size and shape considering 

droplet size and position uncertainty, multi-nozzle printing, UV exposure and 

chemical shrinkage. Before performing any prediction, the analytical models for 

material overflow, bulging and break-up size, location and overlap thresholds are 

analysed and validated through experimental tests. Then, the prediction and 

optimisation of single tracks using the proposed stability diagram for different 

substrates and native droplet volumes is performed, confirming the model capability 

to capture transient effects. Later, simulation of the analytical model to predict film 

morphology is documented along with experiments to evaluate the accuracy and 

solution time of the prediction, verifying the appropriateness of the model for 

parameter optimisation purposes regardless of pattern size and shape. Finally, a 

multilayer process is simulated to obtain the deformed geometry of complex 

components and the optimal geometry to counteract the deformation error is 

determined using a machine learning compensation approach. This work demonstrates 

three important points: the principle of superposition used to uncouple multiphysics 

phenomena is able to capture transient effects in a timely manner influencing the 

Figure 8-32 Shape validation module interface post processing tools. a. Volume cross-sections viewer, b. Overlay 

plot and c. Deviations map with maximum deviations and mean square error. 
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morphology of inkjet-printed features; semi-coupling parameter optimisation with 

geometry compensation improves the dimensional accuracy and thus the quality of 3D 

components and computational inkjet printing is feasible through the implementation 

of a digital twin proof of concept. 

Through the implementation of the stochastic, multiphysics analytical model 

simulation, the interactions between physical properties, printing parameters, droplet 

characteristics and substrate wettability have been identified. Specific conclusions 

drawn from the results that have been confirmed with observations from experiments 

are the following: 

• Droplet size and position variation have a significant effect on the threshold 

values for bulging and break-up defects as well as in the optimal overlap to 

achieve stable features. 

• Overlap map quantification with uncertainty is critical to determine the average 

number of defects such as bulges and break-ups through Monte Carlo 

simulation. 

• The size of primary and secondary bulges is directly proportional to the 

advancing contact angle, and the overlap value at which a drastic change in 

volume happens predicts the onset of bulging in printed features. 

• The size and frequency of bulges is drastically reduced as printing frequency 

increases, which means that stability does not depend purely on drop spacing 

but also on the rate at which drops are deposited. 

• The standoff distance has no significant effect on the size of primary and 

secondary bulges. However, the frequency of secondary bulges is directly 

proportional to the standoff distance, suggesting minimal setting of this 

parameter would improve stability. 

• As surface tension increases the size of bulges increases since larger surface 

tension forces dominate the flow redistribution pulling drops towards bulge. 

Also, as viscosity increases the frequency of bulges decreases since flow 

mobility is lower, constraining bulge formation. 
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• Overall, the stochastic framework provides adequate, consistent and accurate 

predictions of the average length, width and thickness defining the morphology 

of printed features, keeping the prediction error less than 10%. Furthermore, 

the model is capable of building the morphology of any freeform film in tenths 

of seconds which is critical for multilayer simulation and parameter 

optimisation. 

 

This investigation revealed new findings that help to understand the role of viscous 

and capillary forces and timescales and their interaction with printing parameters in 

the formation of stable, uniform features. The specific conclusions are the following: 

• The ratio of momentum diffusivity and capillary diffusivity provides an 

adequate estimate of the material overflow observed at the boundaries of single 

tracks and films. 

• The ratio of inertia and capillary timescales provides a good estimate of the 

size of primary bulge and the ratio of capillary and viscous timescales has a 

significant influence on the frequency of secondary bulges.  

• The substrate traverse speed that results from the multiplication of the drop 

spacing and printing frequency drives the stability of printed features 

regardless of shape, size, droplet volume and substrate type. For the case of 

TPGDA deposited on silicon wafer and glass, the optimal velocity is 91.6 

mm/s.  
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CHAPTER NINE 

 

9 Discussion. 

Recent trends in manufacturing electronics feature digital inkjet printing as a key 

technology to enable the production of customised and microscale functional devices. 

However, the mechanical and electrical device performance depends on the accuracy 

and uniformity of the printed components morphology, which presents significant 

quality challenges in current applications. Several studies to predict the morphology 

of printed features have been developed using computationally expensive physics-

based simulations or very time-consuming “trial and error” experiments, but little 

attention has been paid to prediction models suitable for fast production conditions. 

For this reason, the aim of this thesis is to develop new modelling techniques to predict 

fast and accurately the surface morphology of inkjet-printed features, enabling the 

optimisation of process parameters and the compensation of target patterns for better 

dimensional accuracy of printed electronics devices. To achieve this aim, a series of 

physics-based, data-driven and hybrid models coupled with machine learning 

techniques were implemented to predict and optimise the morphology of single tracks 

(Chapter 5), freeform films (Chapter 6) and 3D components (Chapter 7). Also, an 

analytical model leveraging learnings from Chapters 5-7 was developed to drive 

feature’s morphology prediction and optimisation within a computational inkjet 

printing environment (Chapter 8). The purpose of this chapter is to delve into the 

meaning, importance and relevance of the results reported in chapters 5-8 and clearly 

state the contributions of this work to advancing the science behind inkjet printing 

modelling and optimisation for better quality of printed electronics applications. First, 

a comparison of the accuracy and speed of prediction models as well as the optimal 

printing parameters and compensated geometries determined using different predicted 

morphologies is analysed. Significant contributions and limitations of the proposed 

frameworks are pointed out along with recommendations of potential improvements. 

Finally, the benefits of this research to academia and industry are outlined and the 

novelty of this work is summarised. 
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9.1 Results discussion summary. 

9.1.1 Surface morphology prediction results. 

A comparison of the surface morphology prediction of single tracks with the methods 

developed in this investigation is presented in Figure 9-1. First, a high-fidelity model 

based on the lattice Boltzmann method was implemented to simulate tracks consisting 

of four drops as function of drop spacing and contact angle hysteresis. The model was 

able to predict bulging, uniform and break-up tracks resulting from the variation of the 

selected parameters. The predicted average width from in silico experiments matched 

fairly well the theory based on volume conservation assumptions (Stringer & Derby, 

2010)(Kang et al., 2010) as well as experiments found in literature (Ledesma, 2018). 

An example of a line simulated with LBM is illustrated in Figure 9-1a. However, two 

important limitations of the LBM were identified: the size of the features and the 

solution time. The maximum number of drops tested was 25 distributed in a 5x5 grid 

which took 4.5 days to complete simulation. On average, the simulation of single 

tracks with 4 drops was 6 hours hindering the exploration of parameter space for 

optimisation purposes. At this point, the first important contribution of this 

investigation was introduced: a surrogate modelling framework. The framework 

used a sample of LB simulation results to construct transfer functions that define the 

morphology of the printed feature. The surrogate model built the morphology as 

function of selected parameters in tenths of seconds, reducing the prediction time 

10000x. Good agreement was found between predicted and measured values, with 

about 95% of data points within 10% error, showing consistent results with Stringer’s 

theoretical model. The predicted morphology using the surrogate model is shown in 

Figure 9-1b. Furthermore, the proposed framework is not limited to flow dynamics 

simulations but can be utilized in conjunction with complex multi-physics models or 

experimental results. For example, a single track printed and measured using 

coherence scanning interferometry and its corresponding prediction using the 

surrogate model are shown in Figure 9-1c-d, respectively. As can be seen, the predicted 

morphology captures the location and size of bulges fairly well from a qualitative 

standpoint. The absolute deviation of footprint width and feature thickness was within 

10 m and 2 m, respectively. Again, the time to predict the morphology was in the 

order of tenths of seconds. The accuracy and speed of the surrogate framework enable 

the optimal selection of inkjet printing parameters in a reasonable time while capturing 
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the transient effects from either high-fidelity simulations or lab experiments. However, 

additional prediction methods were devised with a two-fold objective: first to minimise 

the high-fidelity model simulation time and second to expand the model capability to 

include films of any size and shape and different substrate topography. At this point, 

the second significant contribution of this work was introduced to accomplish this task: 

a data-driven Shape from Shading (SFS) approach. Instead of predicting the 

morphology of the feature with LBM, the morphology was reconstructed from a single 

image using the shape from shading inverse problem approach. This approach has been 

used successfully in the computer vision field to reconstruct the volume of synthetic 

images by several researchers (Wang et al., 2020)(Durou et al., 2020). However, it is 

the first time, to the best of author’s knowledge, that this is applied to real images 

coming from inkjet printing cases. To demonstrate the capability of the approach, the 

reconstructed morphology of a printed track is illustrated in Figure 9-1e. Maximum 

footprint deviation against experiments was less than 5 m. The accuracy of the 

reconstruction (feature thickness) depends on the reflective properties of the material, 

which for the case of TPGDA printed on glass or silicon wafer, resulted in a prediction 

error less than 1.5 m. Overall, the morphology predicted by the shape from shading 

approach shows very good agreement with printed samples of single tracks. The 

average time to predict the morphology of single tracks using the Lax-Friedrichs 

scheme is 3 min. The accuracy and speed of the shape from shading approach is 

remarkable, especially in terms of the accuracy of the feature’s footprint, which is 

slightly better than surrogate model since the latter employs a low sample of results to 

fit the morphology. In terms of speed, the surrogate model is two orders of magnitude 

faster than shape from shading approach, which still hinders the parameter 

optimisation process in real time using the latter approach. The main limitation of 

shape from shading lies on the reflective properties of the material used in printed 

samples, since the morphology is reconstructed based on the grayscale levels defined 

in the image which ultimately depend on how well frontal light is reflected in a 

diffusive and specular manner. A potential improvement in the solution speed may be 

the implementation of fast eikonal solvers (Jeong & Whitaker, 2008) such as higher 

order Godunov scheme, which does not depend on the adequate selection of the 

artificial viscosity as in the Lax-Friedrichs scheme. In addition, the use of a Dirichlet 

boundary condition with a spherical cap shape to guide the solution and avoid 

convex/concave ambiguity may be beneficial. Overall, the shape from shading 
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approach enables the accurate morphology reconstruction of printed tracks, avoiding 

the use of microCT scanning or coherence scanning interferometry and reducing the 

post-processing time required to clean measured datasets. However, the search of the 

optimal printing parameters to achieve stable tracks in real time is still not feasible 

with direct predictions of high-fidelity simulations or surface morphology 

reconstructions. At this point, the third significant contribution of this investigation 

was introduced to accomplish this task: an analytical, multiphysics and stochastic 

framework (MPSA). The framework was based on the theoretical estimation of the 

average width of single tracks developed by Stringer and Derby, which assumes 

conservation of volume and a spherical cap shape along the track. Experimental results 

match the average width predicted by theory (Stringer & Derby, 2010) and are 

consistent to experiments from literature (Hsiao et al., 2014)(Soltman et al., 2010). 

This work’s contribution is on the estimation of the maximum track width (maximum 

material overflow) which we claim is a function of the ratio of momentum diffusivity 

and capillary diffusivity. Experimental results indicate excellent agreement with the 

prediction of the material overflow using the proposed analytical relationship. In 

addition, an analytical estimation of the size and frequency of primary and secondary 

bulges was developed as function of viscous, inertia and capillary timescales, based 

on lubrication theory (Thompson et al., 2014). Experimental results match the 

prediction of the primary bulge size and the number of secondary bulges, but the 

location of secondary bulges could not be accurately predicted. Also, a statistical 

estimation of the number of break-ups in the feature was devised using a droplet 

overlap map build considering the uncertainty of droplet position and size and solved 

using Monte Carlo simulation. Experimental results indicate very good agreement in 

the average number of break-ups found in a printed feature as function of droplet 

position and size uncertainty. Furthermore, the MPSA model considers the effect of 

droplet size and position uncertainty, multi-nozzle printing, UV exposure and 

chemical shrinkage acting in a semi-independent way, which covers the multiphysics 

and stochastic part of the model. Figure 9-1f illustrates the prediction of the 

morphology of a single track using the MPSA framework. As can be seen, the size and 

frequency of bulges shows very good agreement compared to experimental results. 

The maximum width and thickness prediction error is less than 10 m and 3 m, 

respectively. The largest prediction error was observed in the length dimension at 22 

m, which represents 2% of the dimension. The average time to predict the 
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morphology of single tracks is in the order of seconds, which enables the optimisation 

of printing parameters in real time. The main limitation of the MPSA model is that has 

only been validated using physical properties of TPGDA at 25°C deposited on glass 

or nitride-coated silicon wafer. Future short-term work includes the validation of the 

model with various photocurable inks deposited on rigid and flexible substrates. A 

long-term model enhancement is to incorporate the physics of evaporation necessary 

to predict the final shape of solvent-based inks.  

 

 

A comparison of the surface morphology prediction of freeform films with the 

methods developed in this investigation is presented in Figure 9-2. The capabilities of 

the prediction models found for freeform films are consistent to the ones observed for 

single tracks and only particular remarks are included next. Although, LBM 

simulations of square films showed good capability to capture bulging, uniform and 

Figure 9-1 Comparison of the surface morphology of single tracks using different prediction models. a. Lattice 

Boltzmann of a line build from 4 drops. b. Surrogate model built from sample of LBM simulation results. c. 

Experiments measured using CSI. d. Surrogate model built from experiments. e. Shape from shading prediction 

built from image. F. MPSA single track prediction. 
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separated films and compare well with observations found in literature (Zhang et al., 

2018)(Cheng et al., 2018) and our own experiments (Section 6.3.1), the excessive 

computational time required to predict the surface morphology of small patterns 

prevented the exploration of this method further. Instead, experiments were performed 

to directly measure the surface morphology of freeform films, as shown in Figure 9-2a, 

needed for the application of the surrogate modelling strategy. An alternative approach 

to measuring all printed samples using CSI was introduced and the morphology of the 

films was reconstructed using the SFS approach. The reconstructed surfaces using SFS 

showed excellent agreement on the footprint boundaries prediction since the method 

uses a mask derived from highly accurate image segmentation procedures (e.g., 

maximum error less than 3 m). In addition, it was found the SFS approach can build 

the surface of multiple segments with free-form shapes simultaneously in a timely 

manner (average build time of 6 minutes). It is important to note that details on the 

surface roughness caused by printer swaths were lost in the SFS prediction and only 

smooth surfaces could be reconstructed. Also, it was found that the predicted film 

morphology is highly influenced by localized specular reflection from the image, 

which is recommended to be controlled at the imaging process. An example of a film 

reconstructed using SFS approach is illustrated in Figure 9-2b and a comparison of the 

reconstructed geometry with the printed sample is shown in Figure 9-2e. The 

deviations between the reconstructed and measured morphology are within 5 m and 

the root mean square error is 2.8 m, confirming excellent qualitative agreement is 

achieved. Although, the SFS predicts fairly accurate the morphology of films, the 

search of the optimal printing parameters to achieve stable films in real time is still not 

feasible with direct surface reconstructions. Therefore, the surrogate modelling 

strategy was employed to build the morphology of films as function of printing 

parameters. Figure 9-2c depicts the film predicted using the surrogate modelling 

strategy. The prediction error relative to the main dimensions is less than 2.5% and the 

average root mean square error is 10.3 m. The increase in the RMSE is likely to be 

caused by the non-smooth morphology predicted by the surrogate modelling strategy 

due to low number of sample experiments used in the regression. However, the overall 

shape of the printed feature was successfully achieved in tenths of seconds, enabling 

the optimisation of printing parameters. Finally, the predicted morphology of a solid 

square film using the MPSA model is illustrated in Figure 9-2d. The MPSA was able 
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to capture the horizontal bands of cured material caused by printing swaths and the 

thickness reduction due to chemical shrinkage induced by photo-polymerization 

process in tenths of second. A comparison of the predicted morphology using MPSA 

model with measurements of printed sample is presented in Figure 9-2f. The results 

show a maximum absolute deviation of 75 m near the bottom left corner of the pattern 

and a root mean square error of 10.6 m. The average error along the thickness is 2.5 

m, reducing the prediction error for the thickness but yielding a larger error in the 

footprint length, since MPSA cannot capture adequately the coalescence between 

swaths, which is the main limitation of the MPSA simulation. 
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In summary, various methodologies to predict the surface morphology of single tracks 

and freeform films as function of printing parameters were evaluated for accuracy and 

speed of execution. Based on the results, the surrogate modelling framework provides 

the best trade-off between accuracy and speed to evaluate the design space for 

parameter optimisation purposes when experiments are available. Otherwise, the 

MPSA model provides a fast way to predict the morphology of printed features, losing 

some accuracy in the footprint dimensions, but enabling parameter optimisation. 

Future work may expand the capability of MPSA model simulation to account for 

inter-swaths coalescence and improve its accuracy. In the next section, the optimal 

Figure 9-2 Comparison of the surface morphology of solid square films using different prediction models. a. 

Experiments measured using CSI. b. Shape from shading prediction built from image. C. Surrogate model built 

from experiments. d. Analytical model prediction. e. Deviation of SFS prediction from experiments. f. Deviation 

of analytical prediction from experiments. 
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printing parameters derived for single tracks and films using the surrogate modelling 

framework are discussed. 

 

9.1.2 Parameter optimisation results. 

Table 9-1 lists the optimal printing parameters derived from various surface 

morphology prediction models explored throughout this investigation. Four sets of 

optimal printing parameters were derived targeting feature’s stability with minimum 

thickness and one set targeting stable features with maximum thickness. Analysing the 

sets focused on minimum thickness, the results show that irrespective of the prediction 

model used, the optimal printing parameters converged to an approximate drop 

spacing, printing frequency and standoff distance of 30 m, 3 kHz and 0.5 mm, 

respectively, except for the set derived using LBM results. The optimal printing 

parameters are consistent to the parameters used by Zhao et al. (2021) to achieve stable 

films. The difference observed in the optimal parameters derived using LBM can be 

attributed to important process factors not considered in the LBM modelling 

assumptions such as deformation due to UV curing shrinkage, droplet location and 

size variation introduced by equipment tolerances and chemically inhomogeneous 

substrates due to poor cleaning process. More details regarding the observed optimal 

parameters difference were included in Section 5.3.3. Furthermore, only the MPSA 

model provided a set of optimal printing parameters for thickest features, since it was 

revealed by MPSA model that bulge frequency was greatly reduced if the 

multiplication of printing frequency and drop spacing is approximately 90 mm/s. More 

details regarding the critical interaction of the drop spacing and printing frequency and 

its influence in the stability of printed features can be found in Section 8.3.3. In 

addition, the MPSA model generates a stability diagram based on statistical analysis 

of an overlap map to obtain the onset of bulging and break up thresholds as well as the 

recommended optimal parameters considering drop location and size uncertainty. 

Further details about this novel contribution can be found in Section 8.3.6. Several 

patterns of different shape and size were printed employing the optimal printing 

parameters to confirm the fabrication of stable features, as illustrated in Figure 9-3. As 

can be seen, patterns present minimal footprint waviness and a stable morphology 

(e.g., no bulges or break-ups, forming a continuous, uniform film). Printing swaths are 
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noticeable in the surface of the films (e.g., ridges less than 1 m) in the form of regular 

horizontal bands, except for the bottom swaths due to partial curing. Overall, 

experimental data indicates that stable films can be achieved when optimal printing 

parameters are employed. 

 

Table 9-1 Optimal printing parameters derived from different prediction models. 

Parameter Units 
Lines Films Lines and Films 

LBM* EXP SFS (exp) MPSA (thin) MPSA (thick) 

Drop spacing m 37.4 31.4 31.0 29.6 10.0 

Printing frequency kHz M 2.8 3.0 3.1 9.2 

Standoff distance mm L 0.5 0.5 1.0 0.5 
Note: * Printing frequency and standoff distance in LBM simulation were modelled qualitatively and the magnitude of this 

parameter is reported as low (L), medium (M), or high (H). 

 

 

In summary, it has been demonstrated that using a multi-objective genetic algorithm 

to minimise printed feature’s waviness and roughness simultaneously enables robust 

inkjet printing parameter optimisation. Furthermore, printed sample waviness can be 

quantified in a fast and accurate way using the normalised central geometric moments 

of the footprint. It was also shown that printed sample roughness can be quickly 

calculated from point cloud data of the predicted morphology. The genetic algorithm 

was able to determine with high accuracy the three key printing parameters: drop 

spacing, printing frequency and standoff distance from physics-based simulations and 

experiments. The Pareto front was built in less than 3 min evaluating more than 5000 

Figure 9-3 Samples printed with optimal printing parameters for validation purposes. 
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combinations seeking the global minimum. The results reveal that optimal printing 

parameters to achieve the best quality of inkjet-printed films (layers) of any size and 

shape can be derived from single tracks, reducing the time, cost, and complexity of the 

experiments. The main limitation of the optimisation process lies on the adequate 

selection of the genetic algorithm hyperparameters such as crossover and mutation 

rates and convergence criteria. The effectiveness of the algorithm may be further 

improved by understanding the effect of hyperparameters on the execution time and 

accuracy of optimal parameters, which demand a wider range of testing values. 

Although, the parameter optimisation process takes approximately 3 min, it is not fast 

enough for real-time monitoring and feedback to printer for rapid correction. 

Therefore, future work may explore analytical methods to constraint parameter space 

and enable faster determination of optimal parameters. In the next section, the results 

of the geometry compensation framework using a machine learning approach are 

discussed. 

 

9.1.3 Deformed geometry generation and compensation results. 

In the course of the investigation, observations from experiments revealed that optimal 

printing parameters derived for single tracks and films do not achieve the most 

dimensionally accurate 3D inkjet-printed parts, as illustrated in Figure 9-4a. 

Significant differences between measured data and the CAD model were observed 

along the width, depth, and height of the printed artifact (e.g., cuboid 2x2x0.75 mm). 

It was found that first layer matched target footprint fairly well with a maximum 

deviation of 30 m; however, as layers were superimposed the material overflow 

beyond target footprint was exacerbated. The average deviations in width, depth, and 

height exceed target in 30 m, 168 m and 150 m, respectively. Therefore, a method 

to compensate the CAD geometry by counteracting the deviations of the printed 

geometry introduced by the superposition of layers was developed. It was 

demonstrated that nodal coordinates from microCT scan measurements together with 

its corresponding locations in the CAD geometry can train a convolutional neural 

network (CNN) iteratively until the mean squared error determined from geometry 

deviations is minimised. The compensated CAD geometry was generated by 

predicting the location of the original CAD vertices using the CNN, as shown in Figure 
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9-4b. Results indicate that our machine learning model trained with measured data can 

compensate the original shape and build a STL file which is vital to obtain binary 

layers for 3D inkjet printing application. The compensated geometry presents a 

negative taper on the external faces (e.g., inverted truncated pyramid shape), since the 

cross-sectional area of the measured artifacts gradually reduces along the part height 

and away from target. The reduction of the area at bottom section of the compensated 

geometry is particularly pronounced to control material spreading beyond the target 

footprint. In addition, there is a clear increase of the height in the compensated 

geometry to match the target shape dimension. Using a CNN to compensate the 

deformed geometry predicted by a FE thermo-mechanical model has been used 

effectively by Chowdhury et al. (2018) in applications where deformed and target 

geometries have identical meshes. In this work, the registration process of dissimilar 

meshes was developed by creating a mapping algorithm between point cloud of CAD 

model surface and the 3D scan of the printed part. The main limitation of this 

methodology is that requires a thorough statistical analysis to validate the CNN 

regression. For example, for the cuboid CNN, the coefficient of determination indicate 

an excellent correlation between predicted and target values (e.g., 0.999), but the 

magnitude of the residuals is in the order of 100 m which may not be accurate enough 

for the prediction. Therefore, the regression models are statistically valid but not 

accurate enough to approximate the part deformed geometry as a function of the 

coordinates of its surface points. The most likely cause of the large error in the 

prediction model is the presence of outliers in the measurement data point clouds. It 

was found that the mapping algorithm picked points inside the deformed geometry 

surface that introduce a large variation in the regression model. It is recommended to 

clean measurement data point clouds so that only points defining the deformed surface 

are kept for training the neural network and achieve more accurate predictions. 

Since the focus of this investigation was to devise novel methodologies to accurately 

predict the deformed geometry of 3D parts, physics-based and analytical models were 

developed. We demonstrate that the deformed geometry of 3D inkjet-printed parts can 

be estimated by a chemo-mechanical FE simulation, a MPSA simulation based on 

layer superposition and a semi-empirical model based on spherical cap equations, as 

depicted in Figure 9-4c, Figure 9-4e and Figure 9-4f, respectively. It was found that 

the only model capable to predict the material overflow and rounded shape observed 
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in 3D printed part was the semi-empirical model based on spherical cap equations. The 

chemo-mechanical FE model shows the maximum shrinkage at the top section of the 

printed artifact where maximum degree of monomer consumption occurs. As the 

printing progress from top to bottom of the artifact, shrinkage linearly decreases due 

to the partial curing of the last swaths and higher mobility of the material is expected. 

This difference in height between top and bottom sections, may explain the propensity 

of the material to flow towards the top section due to gravity, increasing the thickness 

of the film as observed in the experiments performed in Chapter 6. Overall, the FE 

model is capable to predict the magnitude of the maximum thickness shrinkage fairly 

accurate, which validates the simplified methodology using static restarts instead of 

transient model and reducing the FE solution time from days to minutes. The FE results 

are consistent to the work of Tilford et al. (2021). However, the model does not capture 

the material spreading over the substrate which is typically present in experiments due 

to the perfect adhesion assumption used at bottom layer and material constitutive 

modelling assumptions. This is a critical limitation of the FE model to predict 

accurately the deformed geometry of 3D inkjet-printed parts. A potential improvement 

to the FE simulation is to incorporate the substrate geometry and model the interface 

assuming a friction coefficient to enable bottom layer displacement. Future work may 

incorporate a viscoplastic constitutive model to represent distortion in a more accurate 

way. Although, the FE model does not capture the behaviour from experiments, the 

results of the simulation were used to validate our proposed geometry compensation 

framework with identical meshes. Figure 9-4d illustrates the compensated geometry 

from FE simulation results. The data indicates that our machine learning compensation 

framework is capable to compensate CAD model using in silico experiments where 

the target and deformed geometries have the same number of nodes. Finally, the 

validation of the compensation framework was performed by direct printing the slices 

of the compensated geometry. The percentage of reduction in the mean square error 

due to the compensation strategy for the cuboid artifact is 72%, confirming the 

effectiveness of the framework. 

On the other hand, the MPSA simulation results show good agreement between 

prediction and target geometry with a maximum absolute deviation of less than 50 m. 

The walls of the artifacts show a non-uniform distribution of deviations due to the 

stochastic film formation. The layer thickness prediction from analytical model 
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enables to fabricate a 3D object closer to the target height compared to other 

methodologies. Although the predicted geometry matches target, the MPSA prediction 

does not represent what actually happens in reality. When the ink is deposited near the 

edges of previous films, the surface is not flat causing the ink to flow downwards, 

spreading beyond target dimensions. Therefore, the MPSA model is not capable of 

capturing the deformed geometry of actual 3D inkjet-printed parts and additional 

considerations must be implemented to consider the effect of multi-layer printing in 

the final part geometry. Future work may incorporate empirical correlations relating 

the amount of deviation from target as a function of number of layers, which follows 

a logarithmic relationship from experimental observations reported on Section 8.3.7. 

Finally, the semi-empirical model based on spherical cap equations show excellent 

agreement with printed sample, as depicted in Figure 9-4f. The spherical cap 

assumption embedded in the analytical model suitably predicts the final rounded shape 

of multi-layered objects. The maximum deviation is less than 15 m and the mean 

square error (MSE) for the solid square, is 5.6 m. The maximum thickness of the 

features is overpredicted by 2 m. Using the effect of multiple layers on the general 

dimensions, an offset on the binary pattern is calculated to predict the final footprint 

based on number of layers. This same deviation to target relationship as function of 

the number of layers helps compensating the geometry of binary patterns by offsetting 

the pattern radially inwards. Therefore, the strategy to compensate the geometry using 

the machine learning based approach is not needed for this case, reducing the 

computational prediction time from minutes to tenths of seconds. The semi-empirical 

model is limited to the prediction of the surface morphology of basic, symmetric 

shapes such as solid and hollowed polygons. Future work may expand its capability to 

include more complex shapes and different ink-substrate systems. 
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The discussion of the results presented in this section provide sufficient evidence to 

support our research hypotheses and achieve the aims of this investigation. In next 

section, we identify the benefits of this study to academia and industry and summarize 

the novelty of the research. 

 

Figure 9-4 Geometry compensation framework results. a. Experiments measured using microCT scan. b. Target 

vs compensated geometry using data measurements. c. Deformed geometry predicted using FE simulation. d. 

Target vs compensated geometry from FE results. e. MPSA model prediction of deformed geometry vs target. f. 

MPSA model prediction with spherical cap assumption for simple 3D features.  
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9.2 Benefits of the research to academia. 

The outcomes of this investigation are beneficial to the academic community as they 

contribute to filling the gaps in the literature relative to high throughput models to 

improve the quality of inkjet-printed parts. For instance, the surrogate model-based 

optimisation of printing parameters coupled with ML-based geometry compensation 

approach is a novel and efficient framework focused on producing high quality inkjet-

printed parts. Most of research studies from the literature have employed isolated 

efforts to either optimised AM process parameters (Vaithilingam et al., 2018)(Lanzotti 

et al., 2015)(Mohamed et al., 2015)(Rahul et al., 2017) or compensate the CAD 

geometry to counteract the error of printed parts (Chowdhury et al., 2018)(Decker & 

Huang, 2019)(Jin et al., 2020)(Huang et al., 2020). Whereas the current investigation 

proposed an integrated framework to produce stable, defect-free parts on a timely 

manner through the fast and accurate prediction and optimisation of the surface 

morphology of printed components. Furthermore, the surrogate modelling strategy is 

highly versatile since can be utilized in conjunction with complex multi-physics 

models or experimental results to find the optimal printing parameters for any size and 

freeform patterns considering different materials and substrates or even other AM 

technologies.  

This research is the first to report a multiphysics, stochastic, analytical (MPSA) 

framework to predict fast and accurately the morphology of inkjet-printed parts for 

any size and shape considering droplet size and position uncertainty, multi-nozzle 

printing, UV exposure and chemical shrinkage. The effect of droplet size and position 

uncertainty is graphically represented using an overlap map of the printed drops to 

statistically determine film defects such as bulges and voids. No study in the literature 

has proposed the overlap map concept as a performance indicator of the quality of 

inkjet-printed features, showing that the literature needed this data for better 

understanding of the mechanisms behind the generation of film defects. Furthermore, 

the effect of chemical shrinkage on the film thickness is introduced through the degree 

of monomer consumption distribution which is a function of the UV exposure time 

and printing strategy (Zhao et al., 2021). A significant original contribution to this 

MPSA model is the estimation of the maximum material overflow of single tracks and 

film edges by correcting the theoretical bead width (Stringer & Derby, 2010) using a 

factor that results from the ratio between the momentum diffusivity and capillary 
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diffusivity. The developed equation is valid for TPGDA deposited on glass and nitride 

coated silicon wafer for 2.4 pL and 10 pL droplet volumes. Through the 

implementation of the MPSA model simulation, the interaction between physical 

properties, printing parameters, droplet characteristics and substrate wettability and 

their effects in the generation of stable printed features is provided. The MPSA 

framework leverages learnings from the physics-based and data-driven models and 

integrates creative algorithms and heuristics rules to drive AM part quality 

optimisation within a computational inkjet printing environment. 

 

9.3 Benefits of the research to industry. 

This investigation achieved a number of findings that are of benefit to various 

industrial sectors interested in inkjet printing of photocurable materials such as the 

semiconductor and healthcare industries. For example, the surrogate model-based 

optimisation framework coupled with ML-based geometry compensation method 

reduces the time devoted to find the optimal printing parameters, enabling the ability 

to successfully print stable films made of dielectric inks with complex shapes which 

is paramount for electronic packaging applications. Furthermore, the simplicity of the 

framework makes it a promising tool for model driven inkjet printing process 

optimization, including real time process control, paving the way for rapid technology 

adoption in new fields where dimensional accuracy of the parts is critical. The 

adaptability of the framework is one of its main advantages since it could also be used 

to improve mechanical and electrical performance along with dimensional accuracy. 

This has potential implications in the development of optimal microelectronic devices 

with tailored performance for applications ranging from flexible electronics to 

photovoltaic cells.  

Practical findings of this investigation show the capability of the inkjet process to 

generate fine features, establishing resolution limits and providing recommendations 

on minimum achievable dimensions for corners, channels, and slots using a polymer-

based photocurable ink. These recommendations are expected to guide designers in 

the semiconductor industry on the feasibility of inkjet printing for their applications. 

Furthermore, the procedures to quantify footprint waviness and surface roughness for 

optimisation process along with the minimum achievable dimensions for fine features 
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can support the definition of an inkjet-printing ISO or IPC quality standard focused on 

polymer-based photocurable inks. 

The computational inkjet printing environment (EZInkjet) developed to demonstrate 

the MPSA model simulation provides a cornerstone step towards the generation of 

inkjet printing digital twins that would enable predictive maintenance and intelligent 

feed-forward capabilities to reduce part-to-part variation and enhance machine 

capability and availability. EZInkjet mimics the operation of the printer, allowing the 

user to generate bitmap patterns or slice STL files, input physical properties, wetting 

characteristics, printing parameters and droplet characteristics and simulate the 

printing operation. EZInkjet outputs the surface morphology based on the inputs and 

prompts the user if parameter optimisation or geometry compensation or both is 

required, requesting the necessary inputs to perform the operation. EZInkjet provides 

a standard workflow for the MPSA framework implementation that shorten processing 

times and reduce process variability, which represents great value for industry 

application. 

 

9.4 Novelty of the research. 

The novelty of this research lies in the development of a hybrid physics-based and 

data-driven modelling framework to predict and optimise the surface morphology of 

3D inkjet-printed parts as a function of printing parameters, material physical 

properties and wetting characteristics. The proposed framework introduces for the first 

time to the best of our knowledge the following features in a single process: 

Image Generation App. Produces ready-to-print bitmaps of patterns used in 

electronic packaging applications for any given size and position. Capable of reading 

and slicing STL files providing the desired resolution and layer thickness. 

Prediction App. Simulates the inkjet printing deposition process of the target layer 

pattern given material properties, printing parameters, wetting characteristics, UV 

curing shrinkage and droplet landing location and size uncertainties using an analytical 

model. Based on the initial inputs, creates a printability diagram illustrating if the 

system meets droplet formation and impact requirements and produces a stability 

diagram depicting thresholds for bulging and break-up and optimal values for drop 
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spacing, printing frequency and stand-off distance depending on the type of feature 

desired to print such as lines or films. 

Optimisation App. Builds matrix parametric study based on a response surface design 

of experiments to create a surrogate model from the results of high-fidelity 

simulations, shape from shading volume reconstructions or actual measurements of 

printed features. Creates an input file to run the simulations in our lattice Boltzmann 

multiphase flow solver or our finite element chemo-mechanical solver (for lines or 

small square films only) or our PDE shape from shading solver (for any shape but 

constrained to high contrast images). 

Compensation App. Trains a convolutional neural network (CNN) using the x, y and 

z coordinates of the 3D deformed geometry, which results from either our prediction 

models or from actual measurements. By providing the target shape coordinates, the 

CNN calculates the compensation required by the geometry to minimise the error to 

target shape. New geometry is sliced and bitmaps with compensated layer geometry 

are produced. 

Validation App. Provides a set of post-processing tools to compare the results from 

the model predictions or actual measurements against target 2D patterns and 3D 

shapes. For example, allows the calculation of the mean square error (MSE) and mean 

absolute deviation between two surfaces, generates cross-section images at any given 

location of a geometry, overlaps and measures footprints to evaluate dimensional 

accuracy. 

This investigation is significant since it has contributed to the advancement of the 

understanding of the complex fluid dynamics observed in inkjet printing: Some key 

contributions derived from this research are: 

• An analytical model to predict the material overflow at edges of films 

employing the ratio of momentum diffusivity and capillary diffusion, which 

provides an insightful connection between physical properties, printing 

parameters and wetting behaviour. 

• An analytical model to predict the centroid of the layer thickness utilising the 

ratio of the total volume of ink deposited and the square of the drop spacing, 
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which offers a fast and accurate way to estimate the layer thickness assuming 

a spherical cap minimal energy shape. 

• An analytical and experimental methodology to determine the droplet landing 

position and diameter uncertainty inherent to the printer motion system 

accuracy and precision which are critical to predict edge waviness and 

therefore, the optimal values of printing parameters. 

• An analytical and experimental methodology to identify the size and location 

of partial curing in printed films, which provides a way to account for its effects 

in the predicted deformed geometry of layers and 3D printed artifacts. 

• An analytical model to calculate the optimal traverse velocity as a function of 

the ratio between the ejection velocity and the capillary velocity and the contact 

line velocity, which is critical to determine the printing frequency and stand-

off distance required for printing stable tracks and films. 

• A droplet overlap map which provides a fast way to quantify statistically the 

number of defects such as bulges and break ups in tracks and films and helps 

determining a more realistic footprint edge than traditional simulation 

methods. 

• A film stability diagram which illustrates the onset of bulging and separation 

for lines and films as well as the optimal drop spacing, printing frequency and 

stand-off distance considering the uncertainty of the equipment. 
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CHAPTER TEN 

 

10 Conclusions and Future Work. 

The purpose of this chapter is to present the conclusions from the investigation and 

outline recommendations of future work to build upon this research. 

10.1 Conclusions. 

The main aim of this investigation, to develop new modelling techniques to predict 

fast and accurately the surface morphology of inkjet-printed features, enabling the 

optimisation of process parameters and the compensation of target patterns for better 

dimensional accuracy of printed electronics applications, has been achieved. Physics-

based, data-driven and hybrid models coupled with machine learning techniques were 

implemented to predict and optimise the morphology of single tracks (Chapter 5), 

freeform films (Chapter 6) and 3D components (Chapter 7). Furthermore, a 

multiphysics, stochastic, analytical (MPSA) model leveraging learnings from Chapters 

5-7 was developed to drive feature’s morphology prediction and optimisation within a 

computational inkjet printing environment (Chapter 8). This thesis demonstrated 

through the development of hybrid analytical frameworks that model driven inkjet 

printing process optimisation is feasible, paving the way for better quality devices in 

the printed electronics industry. 

The investigation explored three categories of modelling techniques to predict the 

surface morphology of inkjet-printed features: physics-based, data-driven and hybrid 

physics-based and data-driven. Two physics-based numerical models were developed 

to reproduce the inkjet printing droplet deposition and solidification processes using a 

lattice Boltzmann (LB) multiphase flow model and a finite element (FE) chemo-

mechanical model, respectively. The LB model was limited to the simulation of single 

tracks and small square films and the FE model was mainly employed for the distortion 

prediction of multi-layer objects. Alternatively, two data-driven models were 

implemented to reconstruct the surface morphology of single tracks and free-form 

films using images from experiments: image analysis (IA) and shape from shading 

(SFS). IA assumed volume conservation and minimal energy drop shape to reconstruct 

the surface while SFS resolved the height of the image using a reflection model. 
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Finally, a hybrid physics-based and data-driven approach (MPSA) was generated 

which incorporates the uncertainty of droplet landing position and footprint, 

hydrostatic analytical models, empirical correlations derived from experiments, and 

relationships derived from physics-based models to predict fast and accurately any 

free-form layer pattern as a function of physical properties, printing parameters and 

wetting characteristics. 

Depending on the selection of the modelling technique to predict the deformed 

geometry, further considerations were required. For the purely physics-based and data-

driven models, a surrogate model using response surface equations was employed to 

create a transfer function between printing parameters, substrate wetting 

characteristics and the resulting surface morphology. The development of a transfer 

function significantly decreased the computational time required by purely physics-

based models and enabled the parameter optimisation using a multi-objective genetic 

algorithm approach to attain the best film dimensional accuracy. Additionally, for 

multilayer printing applications, a ML-based geometry compensation approach was 

achieved utilizing a convolutional neural network trained by the predicted (deformed) 

geometry to reduce the out of plane error to target shape. The optimal combination of 

printing parameters and input image compensation helped with the generation of fine 

features that are traditionally difficult for inkjet, improved resolution of edges and 

corners by reducing the amount of overflow from material, accounted for varied 

topography and capillary effects thereof on the substrate surface and considered the 

effect of multiple layers built up on each other.  

Specific conclusions draw from Chapters 5 and 6 relative to the surrogate modelling 

framework results that have been confirmed with experimental observations and 

findings in the current literature are the following: 

• Drop spacing is the most critical parameter influencing the surface morphology 

stability of single tracks and films. 

• Advancing contact angle plays a significant role determining the track width. 

• Printing frequency and its interaction with drop spacing drives the track 

thickness uniformity. 
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• Standoff distance has a minor effect on the footprint waviness, but its 

interaction with printing frequency has a significant influence on the thickness 

uniformity. 

• Droplet overlap which is a function of drop spacing, contact angle and droplet 

volume is a key predictor of the stability of printed single tracks. 

• A set of full quadratic transfer functions can construct efficiently the surface 

morphology of printed features as function of the critical printing parameters 

only requiring a limited number of experiments.  

• For single track results, excellent agreement was found between predicted and 

measured values, with about 95% of data points within 10% error. Maximum 

absolute deviation of footprint width and feature thickness was within 10 m 

and 2 m, respectively.  

• The fast execution of the predictive models allowed the global exploration of 

the design space to find the optimum printing parameters by minimising the 

footprint width waviness and feature thickness roughness simultaneously.  

• The printing parameters that produce the most stable track representing the best 

trade-off point of the pareto front are drop spacing, printing frequency and 

standoff distance equal to 31 m, 2.8 kHz and 0.5 mm, respectively. The 

optimum parameters were validated in the Dimatix printer achieving a stable 

track. 

• A significant difference exists in the optimal printing parameters derived from 

simulations and experiments. The difference is attributed to the UV partial 

curing, the droplet location and footprint size variation introduced by 

equipment tolerances and chemically inhomogeneous substrates which are not 

considered in the high-fidelity simulations. 

• Optimal printing parameters to achieve the best quality of inkjet-printed parts 

printed with TPGDA can be derived using only single-track patterns, reducing 

the number and complexity of experiments. 

• Optimal printing parameters for single tracks can also achieve stable films 

regardless of size and shape of the pattern for TPGDA material applications. 
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• Drop overlap rather than single drop spacing (resolution) is key in determining 

film stability and therefore, the better we understand spot size transient 

behaviour, the better our ability to predict film stability. 

• Important to highlight that footprint shape prediction of single line is consistent 

to the edge behaviour observed in films simulations for different resolutions. 

 

Specific conclusions draw from Chapter 7 about the FE chemo-mechanical model and 

the ML-geometry compensation framework results that have been confirmed with 

experimental observations and findings in the current literature are the following: 

• Deformed geometry predicted by FE chemo-mechanical analysis does not 

capture the material spreading over the substrate which is typically present in 

experiments due to the perfect adhesion assumption used at bottom layer and 

material constitutive modelling assumptions. However, the geometry 

compensation was performed to demonstrate the capability of the method. 

• CNN can be trained with measured data and successfully compensate the 

original shape and build a STL file which is vital to obtain binary layers for 3D 

inkjet printing applications. 

• The registration process of the CAD model surface and the 3D scan of the 

printed part significantly influences the CNN prediction accuracy. This work 

contributes with a mapping algorithm that ensures unique pairs are fed to train 

the network. 

• Point cloud cleaning process plays a key role to ensure the CNN is trained 

accurately and, consequently, an adequate CAD geometry compensation is 

achieved. 

• Overall, the proposed ML-based compensation framework successfully 

counteracts the deformations resulting from the inkjet printing process, 

improving the dimensional accuracy (quality) of 3D printing parts in a timely 

manner. 
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Specific conclusions draw from Chapter 8 relative to the MPSA results that have been 

confirmed with experimental observations from experiments are the following: 

• Droplet size and position variation have a significant effect in the threshold 

values for bulging and break-up defects as well as in the optimal overlap to 

achieve stable features. 

• Overlap map quantification with uncertainty is critical to determine the average 

number of defects such as bulges and break-ups through Monte Carlo 

simulation. 

• The size of primary and secondary bulges is directly proportional to the 

advancing contact angle, and the overlap value at which a drastic change in 

volume happens predicts the onset of bulging in printed features. 

• The size and frequency of bulges is drastically reduced as printing frequency 

increases, which means that stability does not depend purely on drop spacing 

but also in the rate at which drops are deposited. 

• The standoff distance has no significant effect on the size of primary and 

secondary bulges. However, the frequency of secondary bulges is directly 

proportional to the standoff distance, suggesting minimal setting of this 

parameter would improve stability. 

• As surface tension increases the size of bulges increases since larger surface 

tension forces dominate the flow redistribution pulling drops towards bulge. 

Also, as viscosity increases the frequency of bulges decreases since flow 

mobility is lower preventing bulge formation. 

• The principle of superposition used to uncouple multiphysics phenomena is 

able to capture transient effects on a timely manner influencing the morphology 

of inkjet-printed features. 

• Semi-coupling parameter optimisation with geometry compensation improves 

the dimensional accuracy and thus the quality of 3D components. 

• Computational inkjet printing is feasible through the implementation of a 

digital twin proof of concept. 
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• Overall, the MPSA framework provides fairly accurate predictions of the 

average length, width and thickness defining the morphology of printed 

features, keeping the prediction error less than 10%. Furthermore, the model is 

capable to build the morphology of any freeform film in tenths of seconds 

which is critical for multilayer simulation and parameter optimisation. 

 

This investigation revealed new findings that help to understand the role of viscous 

and capillary forces and timescales and its interaction with printing parameters in the 

formation of stable, uniform features. The specific conclusions are the following: 

• The ratio of momentum diffusivity and capillary diffusivity provides an 

adequate estimate of the material overflow observed on boundaries of single 

tracks and films. 

• The ratio of inertia and capillary timescales provides a good estimate of the 

size of primary bulge and the ratio of capillary and viscous timescales has a 

significant influence in the frequency of secondary bulges.  

• Data suggests that substrate traverse speed resulting from the multiplication of 

the drop spacing and printing frequency drives the stability of printed features 

regardless of shape, size, droplet volume and substrate type. For the case of 

TPGDA deposited on silicon wafer and glass, the optimal traverse speed is 91.6 

mm/s.  

 

The study revealed for the first time to the best of our knowledge the role of the droplet 

location and footprint diameter uncertainty in the stability and uniformity of printed 

features. Using a droplet overlap map which was determined critical to assess the effect 

of printing parameters on pattern geometry, it was shown that reliable limits for break-

up and bulging of printed features were obtained. Considering droplet position and 

diameter size uncertainties, predicted optimal printing parameters improved the 

quality of printed films on substrates with different wettability. Finally, a stability 

diagram illustrating the onset of bulging and separation for lines and films as well as 

the optimal drop spacing, printing frequency and stand-off distance was generated to 

inform visually the results. 
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This investigation has developed a predictive physics-based model of the surface 

morphology of DIJP features on heterogeneous substrates and a methodology to find 

the printing parameters and compensate the layer geometry required for optimum part 

dimensional accuracy. The simplicity of the proposed technique makes it a promising 

tool for model driven inkjet printing process optimization, including real time process 

control and paves the way for better quality devices in the printed electronics industry. 

 

10.2 Future work. 

Although this study has covered several methods to predict and optimise the 

morphology of inkjet-printed parts, there are still areas of improvement that were 

impossible to explore within the PhD timeframe. A prioritised overview of 

recommended studies are presented in this section that would enhance the robustness 

of the proposed frameworks and build upon this research. 

 

10.2.1 Short term recommendations. 

We demonstrate that the surrogate model-based optimisation of printing parameters 

successfully achieve high quality tracks and freeform films of a polymer-based 

photocurable ink (e.g., TPGDA) printed on glass and nitride-coated silicon wafer with 

droplet volumes of 10 pL and 2.4 pL. The next step is to validate the framework using 

different materials such as SU-8, PVP or PEDOT-PSS deposited on different 

substrates such as PEN, PET or PI, which are traditionally employed in the printed 

electronics industry. It is recommended to perform experiments of single tracks 

adapting the matrix of experiments from Section 3.2.12 with adequate parameters and 

bounds. Then, follow the procedure described in Sections 4.4.1 and 4.5.1 to build the 

surface morphology prediction model and to perform the parameter optimisation, 

respectively. Finally, validate the optimal printing parameters by direct comparison to 

printed samples of single tracks and freeform films. 

We demonstrate that the ML-based geometry compensation framework successfully 

improve the dimensional accuracy of 3D inkjet-printed parts for six differently sized 

and shaped artifacts using in silico experiments. An 8-layer cuboid made of TPGDA 

printed on nitride-coated silicon wafer show the compensation scheme greatly reduce 
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the deviations from CAD model, particularly at the footprint dimensions. The next step 

is to validate the compensation framework with more complex shapes such as the TI 

sensor packaging included in Section 3.2.4. The geometry includes vertical slots, 

channels and coned holes covering a wide range of dimensions (e.g., 0.2 to 2.5 mm) 

and tolerances. It is recommended to use the optimal printing parameters derived in 

Section 5.3.2 to achieve stable films. Then, use microCT scanning to measure the 

printed part following the procedure described in Section 3.2.8. It is critical to clean 

the point cloud from the scanning process to ensure an accurate compensation of the 

geometry. Get the compensated CAD model to generate binary files as explained in 

Section 4.5.2 and determine the geometrical deviation of the printed sample with 

original CAD model using the post-processing tool from Section 4.7.3. 

We demonstrate that the MPSA framework predicts fast and accurately the 

morphology of inkjet-printed tracks and films for any size and shape considering 

droplet size and position uncertainty, multi-nozzle printing, UV exposure and 

chemical shrinkage, using TPGDA printed on glass or nitride-coated silicon wafer 

(e.g., flat, rigid, non-porous substrate) with two native droplet volumes: 2.4 and 10 pL. 

To make the MPSA framework more generalisable and robust, it is recommended to 

perform experiments with a range of polymer-based photocurable materials following 

the results described in Section 8.3.1. Then, test the recommended optimal printing 

parameters and confirm stable single tracks and freeform films are achieved. Of 

particular interest is the experimental validation of the relationships to estimate 

bulging frequency and volume as well as the models employed to predict average and 

maximum dimensions of single tracks described in Section 4.3.1.2. If results show 

good agreement, this potentially will advance the science behind inkjet printing by 

providing a theoretical way to estimate the maximum overflow of single tracks as 

function of material physical properties, substrate wetting characteristics and printing 

parameters. 

We highlight that the MPSA framework does not capture accurately the flow dynamics 

effects introduced by multi-layer behaviour observed in 3D inkjet-printed parts. 

Further improvements must be implemented to consider the effect of multi-layer 

printing in the final part geometry. It is recommended to investigate and validate 

empirical correlations relating the amount of deviation from target as a function of 

number of layers, which follows a logarithmic relationship from experimental 
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observations reported in Section 8.3.7. Preliminary results with a simplified MPSA 

model show excellent agreement with printed samples, but it is limited to the 

prediction of the surface morphology of basic, symmetric shapes such as solid and 

hollowed polygons. The next step is to fully deploy experimental results in the MPSA 

framework to adequately capture the multi-layer effect, enabling the prediction of 

complex shapes of any size. 

 

10.2.2 Long term recommendations. 

The MPSA framework could potentially be extended to include the prediction of the 

surface morphology of printed features using solvent-based inks, which entails the 

investigation and modelling of the physics behind evaporation phenomenon. Current 

framework assumes droplet volume is conserved and printed drops tend towards a 

spherical cap shape. Additional parameters must be included in the MPSA framework 

to model the loss of droplet volume and the potential “coffee ring” shape of printed 

drops due to the evaporation process such as relative humidity, vapor pressure, molar 

concentration and temperature and surface tension gradients. Preliminary 

investigations show that a coffee ring shape droplet can be modelled using a Stable 

distribution which is a function of four parameters. A relationship between the Stable 

distribution parameters and physical properties, printing parameters and wetting 

characteristics needs to be investigated. The purpose of this relationship is to enable 

the droplet profile to change from a spherical cap to a “coffee” ring depending on the 

Marangoni number driven by temperature or surface tension gradients. Further 

experimental work is needed to test the model hypothesis and deploy the findings into 

the MPSA framework. 

The inkjet printing parameter optimisation process could potentially be extended to 

include the jet formation process, ensuring fluid dynamics challenges from the 

printhead side and the substate side are tackled simultaneously. Since droplet 

frequency, velocity and size are critical for the inkjet formation and deposition stages, 

the optimisation process is very challenging. Current parameter optimisation process 

only considers the dimensional accuracy of the printed patterns, assuming stable 

droplets are ejected from nozzle with fixed velocity and size, which behaviour actually 

depends in the droplet frequency being optimised. Further work is needed to 
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quantitative understand the effect of waveform parameters and ink physical properties 

in droplet frequency, velocity, size, and stability. Considering these factors, a more 

robust and reliable parameter optimisation process can be developed towards faster 

inkjet printers with smaller droplets, enabling more accurate inkjet-printed parts. 

The surrogate model-based optimisation framework could potentially be extended to 

consider the mechanical and electrical properties (e.g., performance function 

characteristics) of the printed features as objective functions and find the optimal 

printing parameters that provide the best trade-off between fit and form characteristics 

(e.g., dimensional accuracy) and function characteristics of the printed features. In 

current framework, this can be achieved by measuring mechanical and electrical 

properties of single tracks and films generated using the matrix of experiments and 

solve the multi-objective genetic algorithm with three objectives or targeting a single 

objective with a weighted fitness function. The inclusion of additional objectives in 

the optimisation process might help design and manufacturing engineers in the 

development of optimal microelectronic devices with tailored performance. 

We demonstrate how the MPSA framework would be useful for industry or academic 

communities by implementing a computational inkjet printing process proof of 

concept (EZInkjet) in MATLAB, paving the way for real-time process control to 

improve the quality of inkjet-printed parts. To fully exploit the capabilities of the 

software, a hardware interface to automatically measure the droplet position and size 

variation as described in Section 8.3.1 needs to be developed. With the use of off-the-

shelf cameras, small single board computers such as Arduino or Raspberry Pi, and 

adequate network communication systems, a plug and play hardware interface could 

be implemented for real time measurements. The droplet variation would be an input 

to the MPSA framework for calibration purposes, parameter optimisation is performed 

analytically along with the compensation of the binary files and results are feedbacked 

to printer to achieve an active control of the inkjet printing process. This inkjet printing 

digital twin would enable printer self-correction to reduce part-to-part variation and 

enhance machine capability and availability  
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11 Appendices. 

11.1 Supplemental information on the lattice Boltzmann method. 

11.1.1 Mathematical formulation. 

The cornerstone of lattice Boltzmann model lies on the fundamental understanding of 

the particle distribution concept developed in kinetic theory. The continuous 

Boltzmann transport equation describes the advection of a particle distribution 𝑓 with 

microscopic velocity 𝜉 under the influence of external forces controlled by the local 

redistribution of 𝑓 due to particle collisions, 

 𝜕𝑓

𝜕𝑡
+ 𝜉 ∙ ∇𝑓 + �⃗� ∙ ∇

�⃗⃗�
𝑓 = Ω(𝑓) 

(54)  

 

The lattice Boltzmann equation is a discretization of Equation (54) from which the 

Navier-Stokes equations can be restored, 

 𝑓𝑖(�⃗� + 𝑒𝑖𝛿𝑡 , 𝑡 + 𝛿𝑡) − 𝑓𝑖(�⃗�, 𝑡) =  Ω𝑖(�⃗�, 𝑡)𝛿𝑡 + 𝑆𝑖(�⃗�, 𝑡)𝛿𝑡 (55)  

 

where 𝑓𝑖 is the discrete particle distribution function representing the field density, �⃗� 

is the particle position vector, 𝑒𝑖 is the particle microscopic velocity vector in the ith 

direction, t is the time step, Ω𝑖 is the collision operator and 𝑆𝑖 is the forcing term in 

velocity space. 

 

[𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9, 𝑒10, 𝑒11, 𝑒12, 𝑒13, 𝑒14, 𝑒15, 𝑒16, 𝑒17, 𝑒18]                                     

= 𝑐 [
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] 
(56

) 

 

The multi-relaxation collision operator is calculated as follows, 

 Ω𝑖(�⃗�, 𝑡) =  −𝑀−1Λ𝑀 (𝑓𝑖(�⃗�, 𝑡) − 𝑓𝑖
𝑒𝑞(�⃗�, 𝑡)) (57) 

 

where the equilibrium distribution function 𝑓𝑖
𝑒𝑞

 evolves from the second order Taylor 

expansion of the Maxwellian-Boltzmann distribution function given as, 
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 𝑓𝑖
𝑒𝑞(�⃗�, 𝑡) = 𝜔𝑖𝜌 [1 +

𝑒𝑖 ∙ �⃗⃗�

𝑐𝑠
2 +

(𝑒𝑖 ∙ �⃗⃗�)2

2𝑐𝑠
4 −

(�⃗⃗�)2

2𝑐𝑠
2 ] (58) 

 

where the speed of sound 𝑐𝑠
2  =

𝑐2

3
=

1

3
, and the weights based on velocity direction 

are, 

 𝜔𝑖 = {

1/3,
1/18,
1/36,

    
𝑖 = 0;

𝑖 = 1 − 6;
𝑖 = 7 − 18.

 (59) 

 

the macroscopic density and velocity can be obtained as, 

 𝜌 = ∑𝑓𝑖

18

𝑖=0

,                  𝜌�⃗⃗� = ∑𝑒𝑖𝑓𝑖

18

𝑖=0

+
�⃗�𝛿𝑡

2
 (60) 

 

The transformation matrix 𝑀 which maps particle distributions from velocity space to 

moment space is define as, 

 𝑀 =
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 (61) 

 

through the following relationship, 

 𝑚 = 𝑀 ∙ 𝑓,           𝑓 = 𝑀−1 ∙ 𝑚 (62) 

 

 is a diagonal matrix defining the inverse of the relaxation times towards distribution 

equilibrium and is given by: 
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 Λ
= 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 𝑠9, 𝑠10, 𝑠11, 𝑠12, 𝑠13, 𝑠14, 𝑠15, 𝑠16, 𝑠17, 𝑠18, 𝑠19) 

(63) 

=  𝑑𝑖𝑎𝑔(1,  𝑠𝑒 , 𝑠𝜉 , 1, 𝑠𝑞 , 1, 𝑠𝑞 , 1, 𝑠𝑞 , 𝑠𝜈 , 𝑠𝜋, 𝑠𝜈 , 𝑠𝜋, 𝑠𝜈 , 𝑠𝜈 , 𝑠𝜈 , 𝑠𝑡 , 𝑠𝑡 , 𝑠𝑡) 

 

The kinematic viscosity and bulk viscosity can be derived using the following, 

 
𝜈 =

1

3
(
1

𝑠𝑣
−

1

2
) 

(64) 

and 

 
𝜉 =

2

9
(
1

𝑠𝑒
−

1

2
) 

(65) 

 

The equilibrium particle distribution in moment space is given by, 

 𝑚𝑒𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜌

−11𝜌 +
19

𝜌
(𝑗𝑥

2 + 𝑗𝑦
2 + 𝑗𝑧
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3𝜌 −
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1

𝜌
𝑗𝑦𝑗𝑧

1

𝜌
𝑗𝑥𝑗𝑧

0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (66) 

where 𝑗𝑥 = 𝜌𝑢𝑥, 𝑗𝑦 = 𝜌𝑢𝑦 , 𝑎𝑛𝑑 𝑗𝑧 = 𝜌𝑢𝑧 are components of the mass fluxes. 

The improved forcing scheme is introduced as, 
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𝑆𝑖(�⃗�, 𝑡) = 𝑀−1 (𝐼 −

Λ

2
)𝑀�⃗�(�⃗�, 𝑡) + 𝐶(𝑥, 𝑡) 

(67) 

where 𝑀�⃗� is the forcing term in the moment space corrected for thermodynamic 

consistency condition derived by (D. Zhang et al., 2014) and given by: 

 𝑀�⃗�𝑖(�⃗�, 𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

38(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧) +
114𝜀�⃗�2

𝜓2(1 𝑠𝑒 − 0.5⁄ )

−11(𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧)
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−
2

3
𝐹𝑥

𝐹𝑦

−
2

3
𝐹𝑦

𝐹𝑧

−
2

3
𝐹𝑧

2(2𝑢𝑥𝐹𝑥 − 𝑢𝑦𝐹𝑦 − 𝑢𝑧𝐹𝑧)

(−2𝑢𝑥𝐹𝑥 + 𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧)

2(𝑢𝑦𝐹𝑦 − 𝑢𝑧𝐹𝑧)

(−𝑢𝑦𝐹𝑦 + 𝑢𝑧𝐹𝑧)

𝑢𝑦𝐹𝑥 + 𝑢𝑥𝐹𝑦

𝑢𝑧𝐹𝑦 + 𝑢𝑦𝐹𝑧

𝑢𝑧𝐹𝑥 + 𝑢𝑥𝐹𝑧

0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (68) 

 

where �⃗�2 = (𝐹𝑥
2 + 𝐹𝑦

2 + 𝐹𝑧
2)  𝑎𝑛𝑑 𝜀 is the parameter used to ensure model 

thermodynamic consistency. Furthermore, to decouple density ratio from surface 

tension, an additional term derived by (Ammar et al., 2017) to the forcing scheme 

needs to be included in the following form, 

 𝐶 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
2

5
𝑠𝑒(𝑄𝑥𝑥 + 𝑄𝑦𝑦 + 𝑄𝑧𝑧)

0
0
0
0
0
0
0

−𝑠𝑣(2𝑄𝑥𝑥 − 𝑄𝑦𝑦 − 𝑄𝑧𝑧)

0
−𝑠𝑣(𝑄𝑦𝑦 − 𝑄𝑧𝑧)

0
−𝑠𝑣𝑄𝑥𝑦

−𝑠𝑣𝑄𝑦𝑧

−𝑠𝑣𝑄𝑥𝑧

0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (69) 
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where the tensor �⃗⃗� can be obtained from the following equation, 

 �⃗⃗� =
𝜅𝐺

2
𝜓(�⃗�, 𝑡)∑𝜔(|𝑒𝑖

2|)[𝜓(�⃗� + 𝑒𝑖𝛿𝑡 , 𝑡) − 𝜓(�⃗�, 𝑡)]

18

𝑖=1

 (70) 

 

The fluid-fluid interparticle force 𝐹𝑖𝑛𝑡 derived by (Shan, 2006) is expressed as, 

 𝐹𝑖𝑛𝑡 = −𝐺𝜓(�⃗�, 𝑡)∑𝜔𝑖𝜓(�⃗� + 𝑒𝑖𝛿𝑡 , 𝑡)𝑒𝑖

18

𝑖=0

 (71) 

 

Where 𝐺 controls the strength of the interparticle force and 𝜓 is the mean field 

potential which represents the effective mass of the system and can be obtained by the 

non-ideal equation of state (EOS), 

 

𝜓(�⃗�, 𝑡) = √
2(𝑝 − 𝜌𝑐𝑠

2)

𝐺𝑐𝑠
2  

(72) 

 

where the factor 𝐺 is inserted only to ensure the positivity of the square root.  

In this study, the Carnahan-Starling (CS) EOS is employed to achieve high density 

ratios and numerical stability. The CS equation is given by, 

 
𝑝 = 𝜌𝑅𝑇

1 + (𝑏𝜌 4⁄ ) + (𝑏𝜌 4⁄ )2 − (𝑏𝜌 4⁄ )3

(1 − 𝑏𝜌 4⁄ )3
− 𝑎𝜌2 

(73) 

 

Where parameters a, b can be obtained from the values of critical pressure and 

temperature, using the following equations. 

 
𝑎 = .4963

𝑅2𝑇𝑐
2

𝑝𝑐
2 ,           𝑏 = .18727

𝑅𝑇𝑐

𝑝𝑐
 

(74) 

 

The fluid-solid interaction force 𝐹𝑎𝑑𝑠 derived by (Benzi et al., 2006) is, 
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 𝐹𝑎𝑑𝑠 = −𝐺𝜓(�⃗�, 𝑡)∑𝜔𝑖|𝑒𝑖
2|𝜓(𝜌𝑤)𝑆(�⃗� + 𝑒𝑖𝛿𝑡 , 𝑡)𝑒𝑖

18

𝑖=0

 (75) 

 

With the body force 𝐹𝑏𝑜𝑑𝑦, the total force F in Equation (68) is given by, 

 �⃗� = 𝐹𝑖𝑛𝑡 + 𝐹𝑎𝑑𝑠 + 𝐹𝑏𝑜𝑑𝑦 (76) 

 

11.1.2 Numerical validation. 

11.1.2.1 Evaluation of Thermodynamic Consistency. 

For the evaluation of the model’s thermodynamic consistency, a flat interface problem 

was solved numerically to compare coexisting densities with the Maxwell construction 

rule results. The critical properties for density, pressure and temperature in lattice units 

are derived as 0.11199, 0.00110 and 0.02358, respectively. Then, by substituting the 

pressure into the pseudopotential function, the Maxwell construction rule could be 

derived for a given temperature. 

A computational domain using periodic boundary conditions in all directions of size 

100x100x100 is initialized with a density field, where W is the initial interface 

thickness set to 5 lattice units. 

 
𝜌(𝑥, 𝑦, 𝑧) = 𝜌𝑔 +

𝜌𝑙 − 𝜌𝑔

2
(tanh(

2(𝑧 − 25)

𝑊
) − tanh (

2(𝑧 − 75)

𝑊
)) 

(77) 

 

Maxwell rule coexisting densities are graphed along with corresponding LBM results 

assuming Kappa = 0 and  = 0.319 in Fig. 2. Results show excellent agreement 

between analytical and numerical densities for density ratios up to 870.  
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11.1.2.2 Evaluation of Laplace’s Law. 

A benchmark test to ensure the lattice Boltzmann simulation is capturing adequately 

the physics behind surface tension properties is the satisfaction of Laplace’s law. For 

a 3D spherical drop, Laplace’s law is given by, 

 
𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡 = ∆𝑝 =

2𝜎

𝑅
 

(78) 

 

where 𝜎, 𝑅, 𝑎𝑛𝑑 ∆𝑝 are the surface tension, droplet radius and pressure difference, 

respectively. If the pressure difference between the inside and outside of the droplet is 

proportional to the curvature, then Laplace’s law is satisfied. 

To assess lattice Boltzmann model, a resting spherical droplet at the centre of a 

computational domain with periodic boundary conditions applied at all boundaries was 

prepared. The density field was initialized using Equation (79) where 𝑥0, 𝑦0 𝑎𝑛𝑑 𝑧0 

represent the droplet centre, R the droplet radius and W=5 the initial interface 

thickness,  

 𝜌(𝑥, 𝑦, 𝑧)

=
𝜌𝑙 + 𝜌𝑔

2

+
𝜌𝑙 − 𝜌𝑔

2
(tanh(

2(√(𝑥 − 𝑥0)2 + (𝑦 − 𝑦)2 + (𝑧 − 𝑧0)2 − 𝑅)

𝑊
)) 

(79) 
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Figure 11-1 Thermodynamic consistency validation. 
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The simulation was run using different radius in a cubic domain size of 120 lattice 

units. The parameter  was varied to demonstrate the model capability to modify 

surface tension independently of density ratio. Droplet radius and pressure difference 

were measured at equilibrium achieved after 20000 timesteps. The pressure difference 

is calculated between a point at the centre of the droplet and a point furthest away from 

it in the computational domain. In Figure 11-2, the pressure difference against 2 times 

the reciprocal of droplet radius is plotted at  = 0,0.6,0.89,0.95 with 15 < R < 35. The 

droplet radius, pressure difference and calculated surface tension are all in lattice units. 

The slope of the trendline represents the surface tension which are 0.0166, 0.0081, 

0.00175, 0.00078, respectively. The intercept of the linear fit is set to zero for all cases 

and the coefficients of determination are 0.9998, 0.9993, 0.9991, 0.9982, respectively. 

The parameter  = 0.89 is used in the rest of the study. Results show good agreement 

between theory and numerical simulation, satisfying Laplace’s law and demonstrating 

model’s ability to handle large density ratio with adjustable surface tension. 

 

 

11.1.2.3 Evaluation of spatial accuracy. 

Another benchmark test to validate the lattice Boltzmann model is to demonstrate 

second order accuracy in space, in agreement with derivation assumptions from theory. 
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Figure 11-2 Laplace's law validation. 
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Again, a spherical droplet in equilibrium with centre at the cubic computational 

domain with periodic boundary conditions applied at all boundaries was prepared. The 

density field was initialized using Equation (79) with initial interface thickness W=5. 

In this case, the ratio between the domain size and droplet radius was kept constant 

and equal to 4 (i.e., for a grid size equal to 40, the droplet radius is 10). It was assumed 

that a grid size equal to 160 is the finest mesh and yields accurate results. The CS EOS 

parameters were fixed at a=0.25, b=4, R=1, parameter  = 0.319 to satisfy 

thermodynamic consistency, and reduced temperature T=0.4898Tc to achieve a 

density ratio=870 with a diffuse interface of 5 lattice units. Parameter  was set equal 

to zero to incorporate the largest surface tension value possible using the current 

model. To assess spatial accuracy, an error measurement defined by the absolute value 

of the difference between the liquid or gas density at certain grid size level minus the 

density value obtained at the finer mesh was calculated. In Figure 11-3, the density 

error against grid size is plotted at grid size = 40, 80, 120. Thick blue line represents 

exact second order accuracy and results show model is approximately second order 

accurate in space. 

 

 

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

32 64 128

Er
ro

r 
= 

|
(N

x)
-

(1
7

6
)|

Domain size (Nx)

Exact 2nd order
accuracy

Liquid Density

Gas Density

Figure 11-3 Spatial accuracy validation. 
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11.1.2.4 Evaluation of contact angle. 

To adjust wetting characteristics, this work follows the approach developed by (Benzi 

et al., 2006). The desired contact angle is obtained by setting the parameter w, which 

represents a “wall density” to calculate the adhesion force between liquid/gas phase 

and solid walls. In this benchmark test, a droplet with radius r=20 is initially placed on 

a solid flat surface with half-way bounce back rule at top and bottom boundaries to 

simulate no-slip condition. Periodic boundary conditions were used in the left and right 

boundaries in a computational domain size of 100x100x80. Parameter  = 0.319 to 

satisfy thermodynamic consistency, parameter  = 0.89 to match desired surface 

tension and reduced temperature T = 0.4898Tc to achieve a density ratio = 870. A 

static droplet is obtained after 10000 timesteps. To measure the contact angles from 

simulation results, an interface tracking method was programmed to get the contact 

line radius (r) and drop height (h) at profile average density point. Then, the static 

contact angle is calculated using the following equation, 

 
𝜃𝑠 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

2ℎ𝑟

𝑟2 − ℎ2
) 

(80) 

 

The relationship between w and the static contact angle is illustrated in Figure 11-5a. 

The parameter w is inversely proportional to the static contact angle and its value 

ranges between 0.1 and 0.22 achieving a contact angle of 124° and 11°, respectively. 

Additionally, the simulation was validated by comparing the equilibrium spreading 

factor against the theoretical spread factor based on volume conservation of the 

droplet. Contact angles show good agreement with the theoretical values as shown in 

Figure 11-5b and a 3D representation of droplets with different wetting characteristics 

is illustrated in Figure 11-4. 
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11.1.2.5 Evaluation of contact line pinning. 

For the adequate simulation of multiple sequential drops spreading and coalescing, a 

wetting model considering contact angle hysteresis and fluid adhesion on the solid 

surface is required. In this work, we followed the methodology proposed by (J. R. 

Castrejón-Pita et al., 2011) to simulate contact angle hysteresis. First, the substrate is 

initialized with a “wall density” parameter that corresponds to the advancing contact 

angle (a). Once the surface is wetted at a given location, the local static contact angle 

changes to match the receding contact angle. This is imposed in the code when the 

density in the node above the wall is greater than a threshold (Hr) given by the 

following condition, 

 𝜌(𝑥, 𝑦, 𝑧 + 1) ≥ 𝜌𝑔 + 𝐻𝑟(𝜌𝑙 − 𝜌𝑔) (81) 

 

On the other hand, when the contact line starts to retract and the surface is dewetted, 

the local static contact angle reverts gradually from the receding contact angle (r) to 
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Figure 11-5 (a) Static contact angle vs w; (b) Theoretical vs numerical spreading factor comparison. 
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Figure 11-4 (a) Lyophobic surface; (b) Neutral surface; (c) Lyophilic surface. 
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a. This is imposed in the code when the density in the node above the wall is less than 

a threshold (Ha) given by the following condition, 

 𝜌(𝑥, 𝑦, 𝑧 + 1) ≤ 𝜌𝑔 + 𝐻𝑎(𝜌𝑙 − 𝜌𝑔) (82) 

In this work, we use linear interpolation to simulate the gradual change from receding 

to advancing contact angle. In addition, the values used for Hr and Ha are 0.9 and 0.1, 

respectively. To test the methodology, a simulation of two sequential drops impacting 

a flat and dry wall was prepared using the physical properties and drop characteristics 

from table 1. Parameter  = 0.319 to satisfy thermodynamic consistency, parameter 

 = 0.89 to match desired surface tension and reduced temperature T=0.4898Tc to 

achieve a density ratio=870. Periodic boundary conditions were used in the left and 

right boundaries, halfway bounce back in top and bottom, in a computational domain 

size of 170x140x80. Horizontal drop spacing and vertical drop spacing were set to 50 

and 20 lattice units, respectively. Advancing and receding contact angle were set to 

70° and 20°, respectively. The purpose is to compare the results of simulation run 

including wetting model with contact angle hysteresis against model without contact 

angle hysteresis. Figure 11-6 shows the dynamic contact line modelled by lattice 

Boltzmann method with and without contact angle hysteresis methodology. The effect 

of contact angle hysteresis is very apparent: with it, the contact line becomes pinned 

enabling the formation of a line; without it, all sequential droplets eventually reach a 

circular footprint and a spherical cap shape. Both simulations were run until 

equilibrium was achieved at approximately 12000 timesteps. 
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a) b)

Top View

3D View

Figure 11-6 Footprint of sequential drops a) with and b) without 

contact angle hysteresis. 
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11.2 Supplemental information on the image analysis technique 

validation for lines and freeform films. 

The validation of the image analysis approach employed in this investigation is 

performed by comparing footprints of single tracks and films extracted from images 

with feature’s measurements using coherence scanning interferometry and optical 

microscopy.  

Seven lines of 1 mm in length are printed on glass with cartridge model 11610 (native 

droplet volume 10 pL) using printing parameters listed in Table 11-1. Images of the 

single tracks are taken with Dimatix fiducial camera. Single tracks are measured with 

coherence scanning interferometry and post processed with in-house MATLAB code 

following the procedure described in Section 4.7.1. Single track footprints are 

extracted from the images following the procedure described in Section 4.7.2. 

 

Table 11-1 Printing parameters for single tracks used in image analysis validation. 

ID Drop spacing (m) Printing frequency (kHz) Standoff distance (mm) 

1 10 1 0.5 

2 40 2.5 1 

3 70 2.5 1 

4 40 4 1 

5 40 2.5 1 

6 40 2.5 1.5 

7 40 2.5 1 

 

Footprints from image (blue line) and measured data (black line) are compared in 

Figure 11-7. Overall, the image analysis process to segment and extract edges to assess 

dimensional accuracy of single tracks matches fairly well the CSI measurements. The 

main differences are observed in single tracks that are broken (e.g., present more than 

1 segment). A potential explanation is that digital images are immediately taken after 

printing and further expansion of the feature may happen, which is enhanced when 

multiple segments are present. 
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Bar charts comparing the dimensions of single tracks including length, average width, 

maximum width, and estimated thickness (Ink Volume/Area assumption) are shown 

in Figure 11-8. Results from the length comparison reveal that features extracted from 

images are shorter than measurements, since images are taken immediately after 

printing and further feature expansion might happen. The maximum length difference 

is 40 m and is observed in single track number 3, which corresponds to a line with 

multiple segments. The average length deviation is 18 m, which represents 2% error 

with respect to target dimension. From the average width (b) comparison, it is found 

that footprints extracted from image analysis are 3% larger than CSI measurements on 

average. Observation 5 shows a 9.2 m difference since footprint area measured by 

CSI shows disconnected line pattern whereas Dimatix image a single feature. It is also 

observed that average width of stable lines match the average spot size. From the 

maximum width comparison (c), maximum width difference is less than 5 m, which 

represents 4% error with respect to the average of the differences. The maximum 

difference is 7.5 m in single track number 5. Finally, from the thickness (d) 

comparison, the difference between measured and calculated values is less than 0.4 

Figure 11-7 Comparison of image analysis vs CSI measurements of the footprints of single tracks. 
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m, validating our analytical assumptions. Therefore, it is concluded that image 

analysis is a fast and adequate method to measure the surface morphology of single 

tracks. 

 

 

Same quantitative analysis is performed to evaluate the accuracy of the image analysis 

process to extract footprints of films. Footprints extracted from images (blue line) and 

from measured data (black line) are compared in Figure 11-9. Overall, the image 

analysis process to segment and extract edges to assess dimensional accuracy of solid 

and hollowed films matches fairly well the CSI measurements. For the square patterns, 

the maximum deviation in average length and width is 25 m and 5 m, respectively. 

For the ring pattern, the maximum deviation in outer average diameter is 13 m. The 

Figure 11-8 Comparison of dimensions measured using image analysis and CSI. a. Length, b. Average width, c. 

Maximum width and d. Average thickness. 
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error with respect to target dimension is less than 2.5% considering all patterns. The 

time to segment and measure images is in the order of seconds, compared to hours to 

book and perform measurements using CSI. Therefore, it is concluded that image 

analysis is a fast and adequate method to measure the surface morphology of solid and 

hollowed films. 

 

 

  

Figure 11-9 Comparison of image analysis vs CSI measurements of the footprints of solid and hollowed films. 
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11.3 Supplemental information on MATLAB GUI and FORTRAN 

scripts. 

Code used to generate the results in this investigation is available in a University of 

Nottingham repository (http://doi.org/10.17639/nott.7332) and in a GitHub repository 

(https://github.com/lunajfr/EZINKJET) upon request to authors. For further 

information, please contact Prof. Ian Ashcroft. 


