
Improving accuracy and efficiency of CFD simulations of

complex geometry and high-Re turbine blade cooling systems.

ZACHARZEWSKI, Piotr

MEng, AMIMechE

Thesis submitted to the University of Nottingham in partial fulfilment of the

requirements for the award of Doctor of Philosophy in Mechanical Engineering.

October 2021

To dad.

Acknowledgments

Having spent seven years completing this work, I was fortunate to be acquainted with

many brilliant minds all of whom contributed to my learning, progress of this work as

well as many great memories that will be with me forever. Firstly I would like to thank

my supervisor Dr. Richard Jefferson-Loveday for offering me a scholarship and all the

time and patience he had for me. Although we did not always agree I feel I went from

not knowing any programming language or numerical methods at all to creating my

own CFD code from scratch under Richard’s guidance. He has also given me ample

opportunities to attend national and international workshops, conferences and technical

meetings and always found time to explain a topic to me. I am very grateful for being

able to learn from Richard and can only hope to return professional kindness in the

future.

I had the privilege to meet Prof. Henry Power early on in my doctoral studies.

Henry never denied a meeting to explain a complex numerical method to me and did so

in a fantastically clear and technical way. His depth and breadth of knowledge was very

humbling and he will be dearly missed.

Thank you to all members of the G2TRC who made the office a great and vibrant

place to work; Jee, Dafne, Keith, Stephen, Bruce, Evgenia, Ben and many more with

whom I interacted less often - thank you for creating an atmosphere of friendship and

collaboration despite all the deadlines and other pressures we were all under. Although

most people I met have now graduated or moved on to other roles I have many fond

memories, including one particular Friday lunch where a nearby pub offered a Flaming

Challenge in which we duly took part.

I am grateful to the head of group Prof. Herve Morvan and recently Dr. Carol

Eastwick for steering the group and always being supportive and understanding . I

thank Dr. Donald Giddings, not only for assuming the role of my internal assessor but

all the productive discussions and reviews we had. I also thank Donald for all the Air-

con and fluid flow labs when I finally understood in depth the inner workings of my

fridge.

Last but not least a massive thank you to my colleague in Rolls-Royce, Dr. Luigi

Capone and manager Tony Phipps for being very supportive of my PhD and allowing

me the flexibility to complete the doctoral work alongside a full time job.

3

During this work I used several computational resources and it would be very hard to

manage without them. Large portion of simulations and code development was done on

the University of Nottingham HPC Minerva and its G2TRC segment, both administered

by the always helpful Colin Bannister. As the work progressed I also used the MidPlus

HPC which provided a good alternative and different hardware to test the robustness of

my code.

Thank you to Dr. David Henty and the whole ARCHER team at the University of

Edinburgh for giving me access to the ARCHER HPC and organising splendid courses

and documentation that allowed me to make the most of this resource.

Finally, many of the turbine blade simulations and meshing were done on the CFMS

HPC, courtesy of Rolls-Royce.

4

Abstract

Flow as well as geometry inside turbomachinery components such as turbine blades is

complex and difficult to handle accurately. Computationally affordable RANS simu-

lations are often not suitable and at least partly resolving simulations such as LES or

hybrid RANS-LES are needed for sufficient accuracy in the area. Within industrial tur-

bine design, these are not deployed routinely, if at all, due to their presently unaffordable

computational cost and time-consuming grid generation for realistic complex geome-

tries. Often even minor changes in geometry lead to relatively substantial changes in

the CFD result.

GPUs and other modern heterogeneous hardware offer computational capability

that is order of magnitude cheaper and takes significantly less space, enabling small

scale ’HPC-like’ workstations at every engineer’s desk. However so far they remain

mostly unharnessed due to difficulty of creating structured datasets in memory required

to utilise the GPUs effectively. Those difficulties are amplified by the need to avoid

even minor changes to geometry. While unstructured or hybrid grids can be used on

massively parallel platforms, it is believed the inter-thread communication usually pro-

hibits effective scaling and GPU remains mostly idle, negating the benefits. Within

CFD, structured grids naturally lead to structured datasets hence provide much faster,

linear, memory access making them an excellent candidate for GPU platforms.

In addition to computational and grid generation issues, accuracy needs to be im-

proved in turbomachinery internal flows. LES is usually still too expensive as a tur-

bulence treatment for the design process and hybrid RANS-LES methods such as DES

are explored for daily industrial engineering applications. A relatively new model is

the SST-SAS which aims to improve accuracy of lower cost URANS simulations by

forcing the turbulent viscosity lower where the grid is sufficiently refined to resolve the

largest turbulence fluctuations, as judged by the model’s ’Q’ factor. This results in the

simulation ’adapting’ to local scales of grid and turbulence hence generalise on DES

concepts, applying the resolving switch in the entire domain, not just near the wall. To

further improve the SST-SAS model concept of localised artificial forcing is tried. The

idea is to achieve finer control over the SAS-SST model and force turbulent viscosity

lower in user-defined areas on top of the model detected ones. This aims to address

some model deficiencies found in previous works. Overall, the SST-SAS simulations

5

should allow to only refine the grid in areas where resolving of smaller scales is judged

to be necessary for accuracy while performing a time-accurate unsteady simulation. The

current work presents an assessment of this model using standard LES metrics such as

two point correlations and energy spectra as well as experimental measurements. DES

and LES was also ran as reference on the same SST-SAS-suitable grids for reference. It

is found that for the present application the artificial forcing significantly improves the

revealed deficiencies of the SST-SAS model and simulating flow with sufficiently high

turbulence, such as a rotating ribbed channel, can similarly trigger the resolving mode.

Unfortunately however it is also found that given the same grid, DES or even ’coarse

grid LES’ produces more accurate solution than SAS-SST with artificial forcing. If the

grid has to be refined more than it is in the present study to obtain satisfactory solution

with the SST-SAS model, the author concludes LES would most likely produce better

result as refinement would make the grid conform to the strict LES requirements ren-

dering SAS-SST approach obsolete.

In the current work a GPU-accelerated IBM code is presented, verified and then val-

idated on classical test cases. It is shown that the combination of Immersed Boundary

Method with an implicit time scheme using the high-level OPS parallelisation library

and novel ADI tridiagonal solver provides geometric flexibility as well as computa-

tional performance. Additional benefit of the OPS library is that single source code

exists for major hardware platforms and the parallel implementation is decoupled from

the scientific codebase, making the code scalable and easily adaptable to any emerging,

future architectures.

6

Preface

The work described in this thesis was carried out in the Gas Turbine and Transmissions

Research Center (G2TRC), Department of Mechanical, Materials and Manufacturing

(M3), Faculty of Engineering, University of Nottingham between September 2015 and

May 2018 full time and continued until October 2021 part time. This document is the

result of my own work and includes nothing that is result of collaboration unless ex-

plicitly stated otherwise. No part of this work has been submitted elsewhere other than

the stated peer-reviewed venues. The thesis contains 7 chapters with a total of approx.

57,000 words and 97 figures.

Piotr Zacharzewski

7

List of publications

Current work resulted in the following peer-reviewed publications:

1. Zacharzewski P, Simmons K, Jefferson-Loveday R, Capone L. Evaluation of the

SST-SAS Model for Prediction of Separated Flow Inside Turbine Internal Cool-

ing Passages. ASME. Turbo Expo: Power for Land, Sea, and Air, Volume 5B:

Heat Transfer ():V05BT11A003. doi:10.1115/GT2016-56117.

2. Zacharzewski P., Jefferson-Loveday R. J. and Morvan H. (2017) SAS – SST sim-

ulations of the flow and heat transfer inside a square ribbed duct with artificial

forcing. In: 23rd ISABE Conference, 3-8 Sep 2017, Manchester, UK

3. Rouse, J.P., Zacharzewski P., Hyde C. J., Jefferson-Loveday R., Morris A., Kyaw

S. T., Case study investigation into the effects of spatially and temporally de-

pendent convection coefficients on the fatigue response of a power plant header

component. Multi-scale Fatigue, Fracture & Damage of Materials in Harsh Envi-

ronments, IUTAM, 2017.

4. Implicit GPU accelerated Numerical simulations via the use of Ghost Cell Im-

mersed Boundary Method. ASME turbo expo 2020: Turbomachinery techni-

cal conference & exposition. September 21-25 2012, Virtual, Online. GT2020-

15844.

5. Rouse, J.P., Zacharzewski P., Hyde C. J., Jefferson-Loveday R., Morris A., Kyaw

S. T., A case study investigation into the effects of spatially dependent convection

coefficients on the fatigue response of a power plant header component, Int. J.

Fatigue, 2017.

Posters and presentations:

1. Presentation: SST-SAS unsteady simulations for internal cooling passages, ASME

Turbo Expo, June 2016, Seoul.

2. Presentation: SAS – SST simulations of the flow and heat transfer inside a square

ribbed duct with artificial forcing, ISABE, september 2017, Manchester.

8

3. Presentation: GPU parallel Immersed Boundary CFD code, Research Software

Engineering meeting, July 2017, Nottingham.

4. Presentation: Implicit GPU parallel Immersed Boundary CFD code, HPC confer-

ence, May 2017, Nottingham.

5. Presentation: Improving computer simulations for aerospace, LINK ’16 student

conference, june 2016, Nottingham.

6. Presentation: GPU accelerated computations of turbulent, high-Re internal turbo-

machinery flows, Multicore and Manycore Algorithms to Tackle Turbulence user

meeting, march 2018, London.

7. Poster: Improving accuracy of CFD of complex geometry and high-Re turbine

blade cooling systems, March 2016, Rolls-Royce Annual Review, Derby.

8. Poster: SAS – SST simulations of the flow and heat transfer inside a square ribbed

duct with artificial forcing, March 2016, Rolls-Royce Annual Review, Derby.

9. Poster: Implicit GPU parallel Immersed Boundary CFD code, Engineering Re-

search Showcase, April 2016, Nottingham.

9

CONTENTS CONTENTS

Contents

i List of Figures 14

ii List of Tables 20

iii Nomenclature 21

1 Introduction 24

1.1 Aerospace industry outlook pre-2020 24

1.2 Aerospace industry outlook post-2020 26

1.3 Computational and numerical matters in CFD 28

1.4 Motivation for research . 29

1.5 Objectives of research . 30

1.6 Thesis structure . 30

2 Literature review 32

2.1 Chapter introduction . 32

2.2 Immersed Boundary Methods . 32

2.2.1 Introduction . 32

2.2.2 Continous forcing vs. Discrete forcing 37

2.2.3 Ghost Cell IBM . 38

2.2.4 Improved GCIBM . 40

2.2.5 Preprocessing algorithms necessary 42

2.2.6 Alternative non-body conformal techniques 43

2.2.7 Conclusions . 44

2.3 Parallelisation & computational approaches 45

2.3.1 Introduction . 45

2.3.2 CPU vs. GPU . 46

2.3.3 High level libraries . 46

2.4 Internal cooling in turbomachinery . 48

2.4.1 Heat Transfer . 50

2.5 High order schemes . 51

2.5.1 Compact high order . 52

10

CONTENTS CONTENTS

2.6 Turbulence modelling . 53

2.6.1 Nearest Wall distance . 55

2.7 Numerical methods . 55

2.7.1 High order schemes . 55

2.7.2 Implicit discretisation and compact schemes 56

2.8 Existing relevant CFD codes . 57

2.9 Chapter conclusions . 60

3 Methods & Theory 61

3.1 Chapter introduction . 61

3.2 Governing Equations: GPU IBM code 61

3.2.1 List of physical assumptions 61

3.2.2 Governing flow equations . 62

3.2.3 Non-dimensionalisation . 70

3.2.4 SA turbulence model . 70

3.2.5 Spatial discretisation . 70

3.2.6 Temporal discretisation . 71

3.2.7 Distance to the nearest wall 73

3.2.8 Metric transformation . 74

3.2.9 Oxford Parallel library for Structured applications (OPS) 75

3.2.10 Alternating Direction Implicit (ADI) solver 79

3.2.11 Artificial dissipation . 81

3.2.12 Code procedures . 89

3.3 IBM methodology . 91

3.3.1 Immersed Boundary Method fundamentals 91

3.3.2 Auxiliary relations . 102

3.3.3 Boundary Conditions for the Immersed Boundary Method . . . 102

3.3.4 Near wall scheme modifications 104

3.4 Commercial codes FV methodology 104

3.4.1 SST – SAS . 104

3.4.2 Artificial forcing for the SST – SAS model 105

3.4.3 Assessment of resolution of RANS-LES methods 108

3.5 Chapter conclusions . 110

11

CONTENTS CONTENTS

4 Results: SST-SAS model testing 111

4.1 Introduction . 111

4.2 Numerical details . 112

4.3 3D axisymmetric hill . 114

4.3.1 Computational setup . 114

4.3.2 Results . 118

4.4 Ribbed channel - periodicity . 124

4.4.1 Computational setup . 124

4.4.2 Results . 129

4.5 Conclusions of the initial results . 132

4.6 Stationary channel flow . 134

4.6.1 Computational setup . 134

4.6.2 Results . 138

4.7 Rotating channel flow . 148

4.8 Chapter conclusions . 150

5 Results: Turbine internal cooling 152

5.1 Chapter introduction . 152

5.2 Geometry creation . 153

5.2.1 Cooling holes geometry creation with Siemens NX 153

5.2.2 Blade geometry . 155

5.2.3 Clean-up with ANSYS SpaceClaim and ANSA 160

5.2.4 Meshing . 162

5.3 Computational setup . 165

5.3.1 Boundary Conditions . 166

5.4 RANS results . 167

5.5 DES . 170

5.6 Conclusions . 170

6 Results: GPU IBM program 172

6.1 Chapter introduction . 172

6.2 IBM specific preprocessing algorithms 173

6.2.1 Meshes generation . 174

12

CONTENTS CONTENTS

6.2.2 Nodes in/out and GN identification 175

6.2.3 Normals, IP, EIP and coefficients 179

6.2.4 Wall distance - Poisson equation 180

6.2.5 Cylinder . 181

6.2.6 Backward facing step . 185

6.2.7 Array of cylinders . 188

6.2.8 T106 cascade . 191

6.2.9 Parallelisation study . 193

6.2.10 Conclusions of the base algorithms validation 194

6.3 2D N-S solver . 195

6.3.1 Turbulent channel Re=13,800 195

6.3.2 Cylinder Re=3,900 . 198

6.3.3 Upstream facing step Re=36,000 202

6.3.4 Further validation . 206

6.4 Chapter conclusions . 207

7 Conclusions and future work 208

7.1 Summary . 208

7.2 Contribution to knowledge . 208

7.3 Limitations of current work . 209

7.4 Recommendations for future work . 210

7.5 Unique selling points . 210

8 References 212

9 Appendices 234

9.1 Appendix 1: UDF of forcing . 234

13

I LIST OF FIGURES

i List of Figures

2.1 Grid of the T106A 2D turbine cascade representation. 34

2.2 High level categorisation of the Immersed Boundary techniques 37

2.3 Schematic of the baseline Ghost Cell IBM versus Improved IBM. If the

distance δ is smaller than a control threshold (constant), the IP and EIP

are moved further away into the fluid domain. In both cases, distance δ

between IP and EIP is preserved and equal to distance from BI to GN. . 41

2.4 Schematic of a typical HP turbine blade 49

3.1 Comparison of the serial C code with parallel OPS implementation. . . 79

3.2 Schematic of modification required near the walls for the ADI in the

OPS framework. 80

3.3 Result obtained with different filtering coefficients. Excessive damping

on top, correct solution on the bottom. Non-dimensionalised µt shown. . 82

3.4 Solution schematic . 90

3.5 Demonstration of problematic point in GC IBM. 97

3.6 Tweak factor δ investigated. From the top, δ = min, middle δ = avg,

bottom δ = max. Not how the tweak factor makes the IBM interpola-

tions use nodes much further from the boundary, leading to instabilities. 100

3.7 Demonstration of extremely small relative distance of Ghost Node to

the wall. 101

4.1 Outline of the curve used to create the hill geometry 115

4.2 Schematic of the boundary conditions used for 3D axisymmetric hill. . . 116

4.3 Streamwise cross-section of 3D hill mesh resulting from sensitivity

study; every second grid point is shown 117

4.4 Spanwise component of velocity, 3D hill. x/H = 3.69. 118

4.5 Streamwise component of velocity, 3D hill. x/H = 3.69 118

4.6 streamwise velocity component vectors, experimental data, Simpson

et.al.[1] (a) Experimental data, (b) LES, (c) SAS 120

4.9 streamlines in streamwise direction along the 3d Hill predicted by dif-

ferent turbulence models; significant recirculation in cross-stream di-

rection is present causing the lines to appear to be “flowing” away from

the walls . 123

14

I LIST OF FIGURES

4.10 Surface streamlines for SAS and LES 123

4.11 Top view of the hill and flow structures. On the left the experiment on

the right a schematic of the flow. The image is of oil-flow on a wooden

hill and illustrates streamlines obtained experimentally. It confirms the

flow is symmetric and there are two main turbulent features around the

symmetry plane. Both from Simpson et.al. [1] 124

4.12 Schematic of the ribbed channel flow. 126

4.13 Cross-section of the ribbed channel mesh resulting from sensitivity study;

every second grid point is shown . 126

4.14 spanwise velocity component plot used to establish grid sensitivity for

ribbed channel. The lines are x/h 10, 10.5, 11.1, 13.6, 16.2, 17.6 left to

right, respectively. 127

4.15 streamwise velocity component plot used to establish grid sensitivity

for ribbed channel. The lines are x/h 10, 10.5, 11.1, 13.6, 16.2, 17.6

left to right, respectively. 128

4.16 Nusselt number plot used to establish grid sensitivity for the ribbed

channel. Obtained with the SAS–SST model. 128

4.17 Nusselt number plot for the ribbed channel. Experimental data by Acharya[2]130

4.18 Normalised streamwise velocity component. The lines are x/h 10, 10.5,

11.1, 13.6, 16.2, 17.6 left to right, respectively. 131

4.19 Normalised cross-stream velocity component. The lines are x/h 10,

10.5, 11.1, 13.6, 16.2, 17.6 left to right, respectively. 131

4.20 streamlines in streamwise direction along the ribbed channel predicted

by different turbulence models. Exp. data from [2] 132

4.21 3D representation of the geometry. Only lower half is shown (there

is a mirrored top cap on the long section). For simulations including

rotation, the axis of revolution is always the z-axis with right-hand rule

to determine direction. 135

4.22 Non-dimensional grid characteristics. 136

15

I LIST OF FIGURES

4.23 contour plots showing where the forcing terms are active. (a) is the

prescribed area where forcing terms were active in the simulation, (b)

is magnitude of the source forcing terms and (c) is the k−ω-SST first

blending function F1 magnitude indicating modelled near wall region . 137

4.24 Grid refinement test for SST – SAS model without forcing. RANS

solution is tested to be grid-insensitive. 138

4.25 Instantaneous vorticity magnitude at the last time step after at least ten

through flows of development. Except for the forcing, grid, boundary

conditions and numerical setup are identical for all simulations. 139

4.26 Normalised Q criterion isosurfaces of 0.2 value coloured by Turbulent

Viscosity Ratio. (a) SST – SAS without forcing, (b) SST – SAS with

forcing, (c) IDDES k−ω SST. Note low eddy viscosity in the unsteady

regions. 140

4.27 Resolved streamwise and wall-normal fluctuations starting from one

rib pitch downstream of inflow plane. Note constant velocity inlet in

simulations vs. naturally realistic in experimental data. 142

4.28 streamwise velocity component along a centreline and RMS of veloc-

ity fluctuations in streamwise and wall-normal direction for different

models. Baseline SAS – SST fluctuations not isible due to near-zero

values. 143

4.29 Streamwise velocity profile starting from one rib pitch downstream of

inflow plane for various models. Note the 0.25 scaling factor on the

horizontal axis for the velocity measurements. 144

4.30 Resolved to total Turbulent Kinetic Energy ratio γ . Locations are the

same as previously. The dashed vertical line marks height of the ribs.

The plots for ribs 2 and beyond are compounded in a ‘continued’ plot as

they do not vary greatly. Naphthalene sublimation experimental tech-

nique was used. 145

4.31 Heat transfer measurements and predictions along the wall centreline. . 145

16

I LIST OF FIGURES

4.32 Two-point correlation plots. Approximately 5.56mm spacing between

the measurement points. The streamwise lines are located in the centre

of the channel in z-normal direction and at one rib height in y-direction.

Spanwise lines are located two rib heights behind the rib and level with

streamwise ones. Grid spacing varies from 2mm to 4mm along the lines. 146

4.33 Power spectral density for the models tested. The point is located 10mm

downstream of 5th rib, one rib height away from the walls and on the

z-midplane. The energy spectrum does not appear to be sensitive to

location of the point. 147

4.34 Power Spectral Density predicted by the original SST-SAS model with

effects of rotation. Contours are of vorticity magnitude at the last time

step of simulation for fifth and sixth rib. 148

4.35 Heat Transfer predicted by the original SST-SAS model with effects of

rotation. 149

4.36 Time snapshots of vorticity magnitude for the second and third rib. The

initial time varies between the models but is always at least 10 through

flows. Time step was 0.00014s in all cases. 149

5.1 Overview of internal cooling hole stubs from the IMB project. This

geometry is then superimposed onto a ’blank’ blade without cooling

holes and the simulations combined using overset-style technique. . . . 153

5.2 Mesh of internal cooling hole stubs from the IMB project. 154

5.3 Visual representation of IMB technique. 154

5.4 Recreated geometry of internal cooling hole stubs. 155

5.5 CAD geometry of blade without cooling holes. 156

5.6 Cooling holes geometry superimposed on the main blade. 157

5.7 Side view into the cooling holes geometry. 158

5.8 CAD definition of the turbine blade complete with 102 cooling holes. . 159

5.9 Example of geometrical issues with the CAD. 160

5.10 Example of ANSYS Fluent ’mosaic’ mesh. 161

5.11 Example of ANSA produced mesh. 162

5.12 Final ANSA produced mesh. 163

5.13 Final ANSA produced mesh. 164

17

I LIST OF FIGURES

5.14 Representation of area used for spanwise averaging. 165

5.15 Plenum representation from paper of Charbonnier et. al. [3]. 166

5.16 RANS results vs. experiment. Vertical dashed lines represent locations

of the cooling holes. 168

5.17 Mach number contours. 169

5.18 Heat flux contours. 169

6.1 Example result of node identification algorithm on a cylinder section:

detailed view. 176

6.2 Example result of node identification algorithm: single pin. 177

6.3 Example result of node identification algorithm: single: array of pins. . 178

6.4 Actual plot of the normals computation. 180

6.5 Magnification of the IBM grid of cylinder, both structured and unstruc-

tured. 182

6.6 Convergence of the implicit diagonal scheme 183

6.7 Contours of distance to the wall of 2D cylinder. Slightly skewed to the

right as inlet (on the left) is further away than outlet and the image is

cropped. 184

6.8 Validation of distance to the nearest wall as computed by the differential

equation method of Tucker et.al. [4]. 184

6.9 Contours of distance to the wall of backward facing step. 185

6.10 Overall view of the backward facing step grid used in the present study. 186

6.11 Magnification of the backward facing step grid with the IBM geometry

superimposed. 187

6.12 Overall view of the the array of pins grid. 188

6.13 Pins representation in the array of pins case. Top figure is a full pin,

bottom image demonstrates the way half circumference was imposed

via IBM at the edges of the domain. 189

6.14 Contour plot of the distance to the nearest wall variable for the array of

pins geometry. 190

6.15 Grid of the T106A 2D turbine cascade representation. Every second

point is shown. 191

18

I LIST OF FIGURES

6.16 Contours of the distance to the nearest wall variable for the T106A 2D

cascade. 192

6.17 Comparison of runtimes on CPU and GPU. NVIDIA 1050Ti perfor-

mance is equivalent to 56 MPI ranks on Nottingham HPC Minerva.

Tests done in 2016 when the 1050Ti was the latest GPU available. Time

in wall clock seconds. 193

6.18 CPU scaling study. Scaling remains quite efficient despite two dimen-

sional geometry being used and less than 10,000 nodes per MPI rank

for the 192 ranks simulation. 194

6.19 Grid of the turbulent channel geometry with data extraction location

marked with initial y+ of 0.5 . 196

6.20 Near wall magnified view of the turbulent channel geometry grid. . . . 197

6.21 Validation of the turbulent channel simulation with experimental data

and Law of the Wall. DOLPHIN is University of Nottingham’s in-

house structured CFD tool developed by Dr. Richard Jefferson-Loveday

which inspired the present work. 197

6.22 In solid black are data extraction lines. The same locations and lengths

as experimental data of Parnaudeau et.al. [5]. Streamwise direction is

positive ”X”. 199

6.23 Cylinder x-component of velocity comparison with experimental data. . 199

6.24 Cylinder y-component of velocity comparison with experimental data.

Legend as in 6.23 . 200

6.25 Cylinder streamlines with viscosity ratio colours. 200

6.26 Cylinder velocity profile along the wake centerline directly behind and

away from the geometry. Legend as in 6.23 201

6.27 Cylinder pressure coefficient around the geometry. Legend as in 6.23 . . 201

6.28 Data extraction lines for the upstream facing step. Figure to scale. . . . 203

6.29 Streamwise velocity component on the first two data extraction lines. . . 203

6.30 Streamwise velocity component on the next two data extraction lines. . 204

6.31 Streamlines immediately after the step with the IBM geometry marked. 205

6.32 Overall view of the streamlines behind the step with turbulent viscosity

ratio marked. 205

19

II LIST OF TABLES

ii List of Tables

4.1 Grids used to establish mesh sensitivity for 3D hill. Average y+ = 1 for

all grids. ∆z+ and ∆x+ are y+ = 1 equivalent concepts in the other two

dimensions useful for measuring the grid with respect to the flow. . . . 115

4.2 Flow parameters for the ribbed channel flow. Nomenclature as per Fig-

ure 4.12 . 125

4.3 Grids used to establish mesh sensitivity for ribbed channel. Average

y+ = 1 for all grids. ∆z+ and ∆x+ are y+ = 1 equivalent concepts in the

other two dimensions useful for measuring the grid with respect to the

flow. 125

4.4 Lengths of the recirculating region upstream of the rib summarised . . . 130

6.1 Summary of the conditions of the turbulent flow over cylinder case . . . 198

6.2 Summary of the conditions of the upstream facing step case. 202

6.3 Summary of the conditions of the array of pins case 206

6.4 Summary of the conditions of the T106A turbine cascade test case. . . . 206

20

III NOMENCLATURE

iii Nomenclature

Put a note about einstein notation adopted throughout, give an example small equation

Acronyms

ACARE Advisory Council for Aviation Research in Europe

ADI Alternating Direction Implicit

BCG Body Conformal Grid

BI Body Intercept

B.C. Boundary Condition(s)

CAA Computational Aero Acoustics

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CHT Conjugate Heat Transfer

CPU Central Processing Unit

DES Detached Eddy Simulation

EIP Extra Image Point

FE Finite Element

GCIBM Ghost Cell IBM

GN Ghost Node

GPGPU General Purpose GPU

GPU Graphics Processing Unit

HPC High Performance Computing

HPT High Pressure Turbine

IBM Immersed Boundary Method

IDDES Improved Delayed DES

IIBM Improved IBM

IP Image Point

LBM Lattice Boltzmann Method

LES Large Eddy Simulation

MPI Message Passing Interface

N-S Navier-Stokes

21

III NOMENCLATURE

OPS Oxford Parallel library for Structured applications

PDE Partial Differential Equation

PIP Point In Polyhedron

RANS Reynolds Averaged Navier Stokes

SAS Scale Adaptive Simulation

SFC Specific Fuel Consumption

SRS Scale Resolving Simulation

SST Shear Stress Transport

TET Turbine Entry Temperature

TKE Turbulent Kinetic Energy

URANS Unsteady RANS

VM Vortex Method

Greek symbols

ε Turbulence dissipation rate [Jkg−1s−1]

εi jk Permutation symbol, Levi-Cita

ηn
i , ξ n

i , dn
i , ωn Random numbers

η ,ζ ,ξ Transformed curvilinear coordinates

κ Von Karman constant, 0.41

r⃗ Relative displacement vector [m]

V Vorticity [s−1]

τt Turbulence time scale [s]

ρ Density [kgm−3]

σφ SAS model constant, 2/3

γ Resolved to total TKE

Ω Rotational speed [rads−1]

ω Turbulence specific dissipation rate [s−1]

ζ2 SAS model constant, 1.47

22

III NOMENCLATURE

Roman symbols

C SAS model constant, 0.11

CF Q criterion constant, 0.5

Dh, L Reference hydraulic diameter, 0.149 [m]

F,i Forcing source term

h Rib height

H Axisymmetric hill height

k, TKE Turbulence Kinetic Energy [m2s−2]

Lt , L Modelled turbulence length scale [m]

LV K Von Karman length scale [m]

N Number of harmonic modes, 100

Nu0 Reference Nusselt number

Pr Prandtl number

RAB (⃗r) Normalised correlation coefficient

ReL,u Reynolds number based on length L and velocity u

Ro Rotation number

S Strain rate [s−1]

∆h Maximum cell extent [m]

∆t Timestep [s−1]

u
′

Fluctuating x velocity component [ms−1]

u, uin Mean or bulk velocity [ms−1]

u f ,i Forcing velocity

x⃗A Absolute displacement vector [m]

x Streamwise coordinate

y Wall-normal coordinate

z Cross-stream coordinate

23

1 INTRODUCTION

Chapter 1

1 Introduction

The goal of this chapter is to provide a wider societal, economic and industrial con-

text of the current work, present clear objectives and motivation for research as well

as introduce structure of the thesis. Work on this project started in September 2015.

Majority of research work and much of this chapter was completed before the global

corona virus pandemic of 2020/2021 and a subsection is added to reflect the impact of

events on the present work.

1.1 Aerospace industry outlook pre-2020

According to the two major airframe manufacturers, US based Boeing [6] and Europe

based Airbus [7] global air traffic is expected to increase by 4% – 5% annually in the

next 20 years. This corresponds to doubling today’s air traffic in 15 years. Such growth

will require major investments in new ground infrastructure, aircraft operating strate-

gies as well as new aircraft themselves. To limit, or even eliminate altogether, the

increasing environmental impact on the planet of the global aircraft fleet efficiency is

ever more important. There is also the aspect of increasing public awareness of the

environmental as well as medical concerns. Aircraft noise has been linked to human

cardiovascular diseases [8, 9, 10] in both the US and the UK. All these form what is

sometimes referred to as “aviation related nuisances” and resulted in increased legisla-

tion in the field. It has been established as early as in 2000 that evolutionary, incremental

changes in technology will be far outpaced by the aviation-related nuisances if the 5%

annual air traffic increase is sustained [11] [12]. Both the European and North Ameri-

can governmental agencies set out regulations that ensure the aerospace industry must

introduce step-change innovations. They are the National Aeronautics Research and

Development Plan by the US National Science and Technology Council [13] and the

report titled “Creating innovative air transport technologies for Europe” set by the Ad-

visory Council for Aviation Research in Europe (ACARE) [14]. They both set similar,

aggressive targets limiting aviation-related nuisances by 2020, namely:

• Increasing lift to drag ratio by 25%
(
US target

)

24

1.1 Aerospace industry outlook pre-2020 1 INTRODUCTION

• Reduce fuel burn by 70% per passanger-kilometer compared to Boeing 737/CFM56
(
US target

)

– reduce fuel consumption and CO2 emissions by 50% per passenger kilome-

tre compared to 2000 average values
(
EU target

)

• reduce noise by 62 dB cumulative below current Federal Aviation Authority
(
FAA

)

standard for large subsonic jet aircraft
(
US target

)

– reduce perceived noise by 50% compared to 2000 average values
(
EU target

)

• reduce NOx emissions by 80% below current international standard
(
US target

)

– reduce NOx emissions by 80% compared to 2000 average values
(
EU target

)
.

The European and American target values are not dissimilar and both require sig-

nificant improvements in current technologies (i.e. physics-based breakthroughs) as

well as the way aircraft are operated. The Cleansky project [15] estimates up to 25%

contribution to 2020 targets will come from better engine or aircraft design and approxi-

mately 10% from more efficient aircraft operation. All of these are part of a longer term

strategy and vision named “Flightpath 2050” [14]. Apart from environmental concerns

and targets imposed by the governments there is the industrial business case of reducing

cost of operation per aircraft if the machine is made more efficient. A whole new issue

is the time it takes for the investment in new technologies to pay off.

Many different technologies contribute to designing an efficient aircraft. Structural,

Finite Element (FE) simulations predicting stresses and deformations or Computational

Aero Acoustics (CAA) predicting noise are only two examples. The key role however

in physics based breakthroughs is played by the use of Computational Fluid Dynamics

(CFD) in both industry and academia; CFD is often the starting point and input to other

models such as FE as well as performance. Improvements of CFD methods are neces-

sary [16] [17] to achieve substantial progress in both the whole aircraft and aeroengine

efficiency. The present work focuses on aeroengine components, specifically turbine

blade cooling technologies.

Some of the key practical metrics aeroengine designers use to measure efficiency

include Specific Fuel Consumption (SFC) or thermal efficiency [18, 19]. The main

ways these metrics are improved are by increasing Turbine Entry Temperature (TET)

or reducing pressure losses associated with turbine blade cooling [20]. As the first few

stages of a typical turbine operate at temperatures beyond their melting point relatively

25

1.2 Aerospace industry outlook post-2020 1 INTRODUCTION

“cool” air at 600-700°C is taken from compressors [21] to cool turbines reducing the

overall air that is combusted and hence used to directly propel the aircraft. Losses as-

sociated with this bleed air must be minimised for a more efficient aircraft. There is

also the benefit of increased component life if accurate simulation is performed; even

30°C (2% with respect to 1700°C present) difference in operating temperature makes

significant difference in creep or fatigue life of turbine components. It is interesting to

note here how much the TET has changed; 20 years ago TET was about 1300°C [22]

while now it can be as high as 2200°C. It has been established that improvements in tur-

bine technologies will be the major contributor towards increasing overall aeroengine

efficiency, both in terms of SFC and thermal efficiency [23]. Overall, improvements in

turbine blade cooling technology give high impact for the given investment and accu-

rate prediction of blade temperature has direct impact on aeroengine efficiency [24].

Another very important aeroengine metric is the Bypass Ratio (BPR). It is ratio of

air that that travels around the core and is used solely for propulsion to air that is in-

gested by the core. While core exhaust also creates thrust it tends to be significantly less

than the ’bypassed’ air. Increasing BPR is always the goal of designers of commercial

aeroengines and results in higher thrust per fuel burnt (SFC) and lower fan speed hence

noise. Increasing BPR however imposes higher temperatures and stresses inside the

core of the engine, among other practical challenges such as the engine being simply

too large for taxiing. Increasing BPR is always a multi-faceted engineering trade-off

but almost always requires better cooling or heat resistance of the core components and

that is the contribution of the current work to the BPR.

1.2 Aerospace industry outlook post-2020

The recent widespread travel restrictions have drastically changed the aerospace indus-

try dynamic and likely affected the long term prognosis made pre-2020. Some analysis

has been done to understand impact of the recent events on the current work of fluid

flow inside turbine blade cooling systems.

The first observation is that the CFD fundamentals such as insufficient RANS accu-

racy, cost of LES and time consuming mesh generation for the present application are

mostly unchanged. One may even hazard a statement that cost and time efficiency of

simulations is even more important in the current economic climate.

26

1.2 Aerospace industry outlook post-2020 1 INTRODUCTION

However, as the societies around the world are moving to less carbon-producing

technologies at increasing pace, demand hence funding for combustion-based technolo-

gies may appear to be in rapid decline. There are even calls to drastically reduce air

travel altogether, for instance in favour of electrical trains or simply virtual meetings.

While electrical or hydrogen propulsion systems are viable to be commercialised for

shorter range travel, it does not appear the same will be true for ’long haul’ journeys.

This is due to the comparatively low energy density of current batteries or hydrogen

storage systems; for instance the battery weight required for fully electric journey from

London to New York would effectively prohibit such flight. The argument is similar

for hydrogen storage; either weight or container pressure would have to be enormous

with current hydrogen storage technologies for long haul flights. While those energy

mediums are rapidly developing, is it not expected they will not be mature enough for

long haul commercial aviation use for at least another 40 years, if not more.

A social argument can also made, that while air travel does indeed account for 2%

of global C02 emissions (and increasing % as other industries decarbonise much faster

than aerospace) it is unlikely that our society will choose to avoid this type of trans-

portation in the future. The global society is more connected than ever before, people

have been used to the comforts of fast international travel and the aerospace, travel,

airport and other related industries are a major contributor to the economy. There are

approximately 25,000 aircraft currently on the planet, with that number expected to

double in the next 20 years due to increasing demand for air travel.

One of the very few commercially viable options to decarbonise long haul air travel

are synthetic Sustainable Aviation Fuels (SAF). While there are many different methods

of creating such fuels, they are generally obtained by capturing carbon dioxide from the

atmosphere with the use of electricity and can then be stored for combustion during

flight. If the electricity used to produce such fuels is sustainable, no C02 is added to

the atmosphere as a result. The synthetic fuel can then be used on existing aircraft with

very little modification to the engines.

It is however expected that the cost of SAF will be at least double that of current

kerosene-based fuels. It is the cost argument that leads the author to believe investment

in increasing aeroengine efficiency is likely to increase in the mid to long term if SAF

fuels are more widely adopted or mandated by governments around the planet.

27

1.3 Computational and numerical matters in CFD 1 INTRODUCTION

In summary, while the world is rethinking priorities in the short term and aero-

engine efficiency may temporarily not be on top of the list, the author believes the

present work will still be very much relevant for our society in the future.

1.3 Computational and numerical matters in CFD

Generally, there are only two ways efficiency and effectiveness of CFD can be im-

proved. One is improving algorithms/mathematics (be it core numerical schemes, mesh-

ing algorithms or using Machine Learning) or their implementation (hardware, libraries,

automated meshing).

Numerical schemes tend to take long time to be tested and mature enough for com-

mercial use. The majority of CFD codes nowadays use the Finite Volume scheme de-

vised largely in 1970s [25] and RANS turbulence modelling originating with Reynolds

in the early 20 century with more recent modifications such as that by Menter 2008

[26]. The progress in this area is generally slow, despite high overall investment in both

scientific and industrial communities.

Hardware and libraries on the other hand tend to develop rapidly, largely due to their

more widespread use and non-specialised nature (e.g. CPUs). An example can be in-

creasing reliance of hardware on vector processing. The problem with non-specialised

approaches like this is that not all advances are applicable to specialised CFD applica-

tion and often to fully utilise the ’flop’ rating of the latest HPCs one must maximise the

use of approaches such as vector processing, which is not always possible or efficient

due to the CFD algorithms.

An argument is also made that a typical lifespan of an industrial CFD code is ap-

proximately 40-50 years and there are likely to be several major computational advances

over such a time frame. Some of the advances will be efficiency improvements, oth-

ers will be an entire industry wide paradigm shift to new hardware. For a CFD solver

to remain viable or remotely competitive the program must be able to use those new

advances. This typically requires major rewrite, re-validation and re-certification of

the code with relevant aviation authorities which usually has a very high cost. Cost of

engineering simulation software rewrites can be so high that is effectively prohibitive,

leading to that software being abandonded in favour of something else that utilises the

latest computational capabilities. A new code then must be chosen and for a safety

28

1.4 Motivation for research 1 INTRODUCTION

critical application such as aeroengines, all the routines and algorithms must be verified

and validated anew, again resulting in large cost. A proposed solution to this issue is a

’future-proof’ high level library where scientific and computational elements are rela-

tively independent of each other and can be upgraded in a ’modular’ way. Some even

argue this is not an optional requirement for new CFD codes [27, 28] and the use of

such approach will be investigated here

It should also be mentioned that the specific type of internal flow targeted in the present

work is not uncommon in other parts of an aeroengine or indeed other industries, such

as steam flow inside a ground powerplant element [29]. It is therefore expected that the

present work will be applicable to a variety of practical industrial analysis.

1.4 Motivation for research

The current problem is multi-faceted and requires trade off between three key matters:

1. solution’s accuracy (RANS-LES, SAS-SST, LES)

2. engineer’s time (e.g. manipulating and clean-up of geometry, creating grid of

sufficient quality for the method chosen)

3. computational cost

The balance between these trade offs is ever changing due to development of underly-

ing technologies. They are not unique here and are present in many CFD applications.

However from the author experience of working for a major aeroegnine manufacturer

what is unique in the present application is that the balance is very delicate and getting

it even slightly wrong can easily result in overwhelming cost (either computational due

to very large meshes or engineer time manipulating the geometries and meshes) or sig-

nificantly underperforming or even unsafe aeroengine components.

This work will attempt to advance the turbine fluid flow simulation technology in

two ways; one is testing of new and promising turbulence models in a range of common

conditions, the other is an entirely new approach that will aim to drastically improve

computational as well as human time needed for analysis.

While it is challenging for one doctorate research project to solve the problem en-

tirely it is hoped useful conclusions and pointers for how better to optimise the trade-offs

in the long term will be provided.

29

1.5 Objectives of research 1 INTRODUCTION

1.5 Objectives of research

The aim of the present work is to increase accuracy of CFD simulations of internal cool-

ing passages without increasing, or even while reducing the total cost of the simulations

for the same accuracy. Ultimately the flow field is necessary to compute Heat Transfer

through the blade and predict metal temperatures. Good knowledge of the thermal field

in turn allows one to make more informed design choices hence turbine efficiency and

life of the blade are improved. Both fluid flow and heat transfer simulations will be

performed.

In order, objectives of the work are:

• Perform simulations using SST-SAS model on increasingly complex and realis-

tic geometries and conditions. Evaluate SST-SAS performance against LES and

DES. (research)

• Recognising a step change in methods is required, to create and parallelise a CFD

code used for faster computation on several massively parallel platforms where

performance and portability is maximised. (research & implementation)

• To research, select and implement the most appropriate at the time Immersed

Boundary Method (IBM) to significantly ease grid generation for complex ge-

ometries and allow wider use of structured grids (research & implementation)

• To validate the GPU IBM work using standard test cases of increasing complexity

and with experimental or analytical data, with one being of significant complexity

and relevance to the turbine blade internal cooling passages flow (verification &

validation)

• To investigate how to apply the current techniques with Conjugate Heat Transfer

simulations needed for internal cooling (research)

• Find one other industrial application to which the present research may apply and

perform at least a preliminary study (exploitation)

1.6 Thesis structure

Chapter 2 presents a review of techniques, computational matters, turbulence modelling

as well as numerical methods suitable to achieve the goals set out, with emphasis on in-

30

1.6 Thesis structure 1 INTRODUCTION

ternal cooling of turbine blades. A broad survey of existing works will be conducted to

underpin the reasoning and choice of methods for implementation.

In Chapter 3 the final choice of methods and techniques is presented in more detail and

theory explained before implementation. It is also the intention to expand the formula-

tions in ’as-implemented’ form for clarity and future reference.

Chapter 4 contains results of hybrid RANS-LES model testing on channel geometries

with rotation and comparison with experimental measurements. Models tested include

SST-SAS, DES variants and LES. Standard metrics to measure resolved vs. modelled

turbulence content were used and recommendations made for study in further chapters.

Content of this chapter is mostly drawn from two ASME peer-reviewed conference pa-

pers published during this PhD.

Chapter 5 is an attempt to create a hybrid RANS-LES simulation on near-realistic yet

free of sensitive Intellectual Property or Export Control considerations turbine blade

geometry with internal cooling passages using conclusions from the previous chapter.

Chapter 6 presents work done developing and validating GPU Immersed Boundary

Method (IBM) code, including validation results of the necessary prerequisite algo-

rithms such as nearest wall distance calculation.

Recommendations for future work and final conclusions are drawn in Chapter 7.

Recognising that digesting a technical thesis is a substantial task each chapter will

begin with a short introduction and set out goals and questions it intends to answer.

Every chapter will also conclude how these goals were achieved, brief conclusions and

set background for the next chapter.

31

2 LITERATURE REVIEW

Chapter 2

2 Literature review

2.1 Chapter introduction

The aim of this chapter is to explore existing scientific and technical literature in detail,

provide rationale for the chapters ahead and build a foundation for the present work.

Since the current problem of internal cooling, as indeed the whole field of CFD, draws

from multiple disciplines, several different topics will be explored. While this unfortu-

nately results in a lengthy review of past works, a summary will be provided. For the

same reason it is sometimes challenging to explore all the literature in as much depth as

a keen scientific mind would strive to.

It should also be mentioned this work was started in October 2015 and most of the

results were obtained before the end of 2018. Given rapid advancements in some areas,

in particular computer hardware or high level libraries, every effort was made to stay

up to date. However there had to be a point at which the Doctoral research work stops

and writing up the results begins. For that reason some of the conclusions which were

based on state of art at the time may appear odd or out of place at the time of reading

this work. A good example is the use of Improved IBM method published in 2017 by

Chi et.al. [30]. Originally the Ghost Cell IBM of [31] was implemented and even some

results obtained however after reading the new IIBM work of Chi [30] in 2017 it was

clear that this method is more promising, accurate and likely more stable hence some

of the code was rewritten to accommodate the IIBM. In reality there is a limited scope

for such modifications as the work nears completion and a discrete cut-off point must

at some point be decided.

2.2 Immersed Boundary Methods

2.2.1 Introduction

Most of the commonly used CFD tools require a body-conformal grid (BCG). Gener-

ating a suitable structured BCG is time consuming and from the author experience is

often a major bottleneck in industrial simulations preventing regular use of a structured

32

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

solver. It is often not possible at all due to geometry complexity. Creation of a suitable

unstructured BCG can take little user time, it can be computed in parallel and is often

even automated, but usually results in a grid with massive cell count, often an order

of magnitude more than a suitable structured BCG grid. Additionally quality of un-

structured grids can easily lead to lower fidelity of the solution or stability issues during

convergence. Additionally if the designers wish to use advanced CFD tools, e.g. LES

in design optimisation grid must really be kept mostly structured and as small as possi-

ble and meshing bottlenecks must be eliminated in the structured grid generation space.

There are a myriad of BCG grid-generation tools, both commercial and open source,

structured, unstructured but none of them solve the two problems simultaneously. It

is usually a trade off between time a user spends generating grid, grid quality and cell

count.

The present research looks at grid generation from a different perspective. Instead

of generating a Body Conformal Grid to impose Boundary Conditions, two grids are

generated. One is a fully structured non-BCG volume grid that spans over the entire

fluid and solid domain as shown on Figure 2.1; the other is a Body Conformal Grid, but

only surface or perimeter in 2D must be meshed; the surface (line in 2D) grid may be

structured or unstructured and is usually relatively easy to generate for any geometry

even in an automated non-interactive fashion (e.g. stereo-lithography (STL)). The so-

lution is stored and progressed on the Cartesian grid while the surface grid is only used

to impose BCs implicitly via forcing terms or suitable modification of near-wall cells,

e.g. to set velocity to 0 at certain points. The surface grid is only needed in the prepro-

cessing stage to identify on the Cartesian grid exactly which nodes are solid, fluid, or

IB nodes and compute distances from the BCG to the appropriate nearest nodes. This

approach, termed the Immersed Boundary Method (IBM) effectively allows one to use

unstructured grids to impose BCs and simulate the flow with a fully structured solver.

Easy generation of a structured mesh is combined with speed and ease of solving of the

structured code.

The key benefits of the IBM are as follows:

• Relatively easy and quick grid generation, even for complex geometries. To gen-

erate a high quality surface grid, one doesn’t need well-cleaned CAD geometry.

CFD grid generation tools tend to require a “clean” and well defined CAD geom-

33

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

Figure 2.1: Grid of the T106A 2D turbine cascade representation.

34

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

etry without any, even smallest holes to create a suitable volume grid. It is often

the case that a CFD analyst receives CAD geometry from designers and must in-

vest significant time to ensure it is well defined in the CAD package. This is true

for generating volume grid only; to generate a surface mesh in grid generation

packages one can usually get away without a well defined geometry.

• Allows one to use a structured solver with even very complex geometries easily.

This brings a number of benefits as structured solvers scale excellently on parallel

platforms and are much more prone to sophisticated algorithms. For instance one

may use a true high order (>2) accurate in space method on a structured grid

more easily than on unstructured grids and there is no theoretical limit to order of

accuracy. Also in general, structured grids usually have much lower node count

for the same suitability and quality of grid compared to unstructured counterparts.

This effect manifests itself the most in highly turbulent, hence nonlinear, flows.

• The N-S equations are exactly the same as without an IBM, with an extra term

added only immediately near the boundaries. This means any existing resolving

or modelling approach may be used without additional development time.

• Since the grid on which the numerical solution progresses is independent of the

actual geometry being simulated, one may accommodate moving meshes rela-

tively easily. Doing this would indeed require a pre-processing step each time the

BCs imposing grid (surface) is changed, but for a structured grid this is signifi-

cantly less effort than re-generating the entire volume grid at each step and that

makes the IBM much more prone to automation.

The challenges of IBM are also summarised:

• The presently pencilled combination of tools and methods has has never been

attempted with a high level parallelisation library, e.g. the Oxford Parallell library

for Structured grid applications(OPS) used here. High level libraries such as OPS

tend to be inflexible in how the data must be arranged and accessed in memory in

order to use a library. This might prove to be a severe limitation when combining

structured and unstructured datasets.

• Several additional interpolation procedures near the boundaries are needed as

well as many algorithms to identify and mark Solid, Fluid and IB nodes are

needed. All of these need to be thoroughly tested for accuracy and robustness.

35

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

• Ghost Cell Immersed Boundary Method (GCIBM) requires at least one node in-

side the solid domain to be present and solved on to correctly impose BCs on the

surfaces. This requires an algorithm to interpolate between real, physical solution

in the fluid domain and the imaginary Ghost Cell inside the solid domain. This

also requires that one must invest additional effort to ensure the solution order of

accuracy is as expected, in particular in the near-wall regions.

• Grid refinement must be done on a full structured grid as hanging nodes are not

possible with the OPS library, often leading to excessive refinement away from

the walls. Computational grid must also exist inside the solid domain, regardless

whether it is actually used for physical computations or no. These issues can be

addressed with approaches such as overset or specific LES models but introduce

another layer of complexity and instabilities and are beyond scope of the present

work.

• The method is in early development for high Re., turbulent flows. IBM was

originally designed for low Re and flexible boundaries [32]. It has then been

extended to rigid boundaries and high Re. Not many studies have been performed

on IB with high Re and compressible flows and while results are promising so far

[33], [34] this is an immature technology with many gaps in understanding.

• Stability of the solution is highly influenced by the normal vectors at Ghost

Nodes. This appears to be a simple mathematical problem and accurate normals

are not difficult to obtain however there are several peculiarities which can easily

destabilise the solution leading to numerical divergence. This effect is likely to

be even more pronounced in 3D [30].

Historically, the Immersed Boundary Method was first developed by Peskin [35] to

simulate blood flow and heart mechanics. The geometry was changing during solution,

Re was low (up to ˜5000) and the boundaries were elastic. The fluid used by Peskin,

blood, is considered non-Newtonian. Since Peskin, many variants of IB were developed

to adapt the basic principles to other applications, such as viscous unsteady flows or

rigid non-elastic boundaries. Paper of Mittal and Iaccarino [36] is an excellent and often

quoted review of the IB methods since they were first developed. Another, somewhat

more up to date high level review of IB methods is by Gornak[37]. They both also

provide a clear explanation of the principles and an outline of the procedures required.

36

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

The two papers review all the main variants of IB developed since Peskin. As the

two papers really provide a comprehensive and detailed, yet easy to understand IBM

background only a high level summary with reasoning for choices of specific IBM will

be provided here.

2.2.2 Continous forcing vs. Discrete forcing

IB methods are usually catalogued on a high level as on Figure 2.2. The first level of

categorisation is direct or continuous forcing. Continuous forcing means the extra Im-

mersed Boundary “IB” terms are derived analytically and added to the main flow equa-

tions (or other equations being solved) before discretisation of the equations. Direct

forcing means the terms are added numerically, after the equations have been discre-

tised, on each node.

Continuous forcing, also sometimes referred to as Indirect Approach is independent

of discretisation method and found to be good for elastic boundaries [38, 39]. How-

ever when modelling sharp rigid boundaries (such as walls of a Titanium alloy turbine

blade) the method was found to be unstable near the wall and produce significant er-

ror [36, 40, 38]. This is mostly due to the forcing imposing the BC being spread over

Figure 2.2: High level categorisation of the Immersed Boundary techniques

37

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

several nodes near the boundary. It is not a problem for elastic, low Re boundaries but

becomes more significant with increasing Re when accurate resolution of the boundary

layer is critical. Another disadvantage of indirect approach is that the equations must

be solved inside the solid as well as the fluid domain and there is no way to effectively

disable the solid domain. The time step was also found to be relatively restricted to

achieve numerical stability [41].

Direct forcing approaches can be divided into two main categories; direct and indi-

rect BC imposition; while terminology is similar, the ideas however are very different

when it comes to the way Boundary Conditions are imposed. Direct BC imposition,

while applying forcing terms after discretisation still spreads application of the bound-

ary over several nodes; a feature undesirable at higher Re. It also requires implicit set

of equations to be solved at each step as exact forcing terms are not known; this can

cause problems for parallelisation. The advantage here however is absence of any user-

defined parameters and no stability constraints on the solution.

Indirect BC imposition on the other hand was designed from the beginning to handle

high Re flows and is the most suitable for this purpose. There are three main categories

of indirect BC imposition methods; Ghost Cell, forcing without ghost cells and Cut Cell

approach. From the reviews it is clear the Cut Cell was designed for Finite Volume only

[42]. It was also found this method is not easily extensible to 3D and actually creates

unstructured datasets that will likely be highly problematic on GPU architectures. It

also has several other problems associated with cutting cells, e.g. creating very small,

sharp edged cells. A cut-cell method will not be of any use in the present work with

finite difference approach.

There are also attempts to further customise the IBM coefficients such as having dif-

ferent interpolation coefficients in each direction direction (x, y, z) as in Gautier et.al.

[43]. This is promising and can result in improved stability and accuracy of the IBM

method but will likely require significant investment to mature the technique and make

it robust for a larger range of cases.

2.2.3 Ghost Cell IBM

The IB method chosen for implementation in the present work is Direct Forcing with

Indirect BC imposition with the Ghost Cell approach. The specific method, originally

38

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

designed for the Finite Difference method by Tseng et.al. [44], was also implemented

by various other researchers, but not in internal cooling or similar fields [45], also ap-

plying it to high Re flows over airfoils, e.g. NACA0012 [46] and other relatively simple

geometries such a ribbed channels [47], however all at incompressible flow conditions.

A variant of it was also attempted to address local grid refinement issue [33]. The

reference method in the present work however is that of Ghias et.al. [31] and further

improved by Nam et.al. [41], due to their use of compressible flows. In the ghost cell

method the solution doesn’t need to be solved inside the solid domain and only one or

two (depending on the stencil length) layers of “Ghost Nodes” are required inside the

solid domain. The solution is then interpolated appropriately to obtain values as if the

boundary was present on the Cartesian grid.

Along with the Ghost Cell IBM is another method [40, 38, 45, 48, 49, 42, 50],

which is similar but has some important differences. It has no formal name and the

procedures are different to the Ghost Cell technique. The dominating motivation for

development of this alternative was Conjugate Heat Transfer. The key difference be-

tween these methods is the layer of IB cells used to reconstruct the solution near the

wall, hence impose Boundary Conditions. In the GCIBM the solution is reconstructed

at the ghost cells, inside the solid domain, while in the reconstruction method one layer

of nodes closest to the boundary in the fluid domain is used. While seemingly simple

modification, this changes notably the numerical behaviour of the scheme near the wall

and can likely affect near-wall accuracy at high-Re, which is precisely the topic of the

present research.

The interpolation (no GCIBM) version of IBM shares the general procedure with

several other researchers’ work, e.g He and Tafti [18] or Nagendra and Tafti [42]. The

method by Tafti is an extension of the IBM developed by Gilmanov [48] to use curvi-

linear generalised coordinates. One of the key benefits of this method is that it only

requires modification of the solution in the immediate vicinity (up to 2 nodes near the

boundaries) near the Immersed Boundary allowing any modelling or resolving to be

used in the bulk of the domain (LES/RANS etc.). It has been done with Combined Heat

Transfer (CHT) simulation.

The reason Ghost Cell method was chosen is compressibility and turbulence treat-

ment. GCIBM was done and validated with compressible boundary conditions whilst

39

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

the interpolation method was not. It is likely possible to extend the interpolation method

to compressible B.C.s however this is beyond the scope of present research. It was also

found that turbulence is modelled best and easiest with the GCIBM as the interpolation

method requires additional considerations for turbulent viscosity at the walls.

There are several key considerations for the IBM procedure to work.

• A Search and locate algorithm choice. Algorithm of Allevi and Bermejo [51] is

recommended by most researchers with Indirect BC imposition and direct forc-

ing. The algorithm relates an arbitrary lagrangian point to the background Carte-

sian grid.

• Interpolation procedures. An interpolation procedure is necessary to interpolate

from the background Cartesian grid onto an arbitrary Lagrangian point in the

vicinity of the Cartesian nodes. The two most quoted and recommended such

algorithms are by Roman et.al. [52, 53] and Majumdar et.al. [54]. They also

provide detailed discussions on the use and performance of the algorithms as

well as review of others available.

• Ghost nodes. Different stencil lengths will require different number of layers of

Ghost Cells. Stencil length depends mostly on the differencing scheme used and

will likely be longer for higher order techniques. This issue can be eliminated by

using backwards difference near the boundaries and still achieving the required

accuracy.

2.2.4 Improved GCIBM

Improved Immersed Boundary Method (IIBM) was devised and published in early 2017

by Chi et.al. [30]. Their method notably improves the previously used compressible

flow version of GCIBM [31, 41] in two ways:

• it involves using an Extra Image Point (EIP) further away in the fluid domain,

along the normal from the Ghost Node to the Body Intercept, as shown on Figure

2.3.

• the base Image Point is moved further away into the fluid domain if it isn’t fully

enclosed by fluid cells (a check is performed for each cell and modification per-

formed according to algorithm). This is critical for stability and that the problem

is numerically well posed.

40

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

F
ig

u
re

2
.3

:
S

ch
em

at
ic

o
f

th
e

b
as

el
in

e
G

h
o
st

C
el

l
IB

M
v
er

su
s

Im
p
ro

v
ed

IB
M

.
If

th
e

d
is

ta
n
ce

δ
is

sm
al

le
r

th
an

a
co

n
tr

o
l

th
re

sh
o
ld

(c
o
n
st

an
t)

,
th

e
IP

an
d

E
IP

ar
e

m
o
v
ed

fu
rt

h
er

aw
ay

in
to

th
e

fl
u
id

d
o
m

ai
n
.

In
b
o
th

ca
se

s,
d
is

ta
n
ce

δ
b
et

w
ee

n
IP

an
d

E
IP

is
p
re

se
rv

ed
an

d
eq

u
al

to
d
is

ta
n
ce

fr
o
m

B
I

to

G
N

.

41

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

The two modifications make the IBM more stable and accurate for boundary defi-

nition. It also ensures the problem is always well posed. One extra model constant is

introduced to control the distance of IPs from the boundary. Neumann boundaries are

imposed easier via the use of EIP and cumbersome handling of incomplete interpolation

is eliminated.

Regarding new and relevant insights about the previous IBM, PhD Thesis by Adam

Preece [55] presents a GCIBM code. The code has very interesting and useful insights

however uses an old version of the IBM and low Re (up to 100) is only studied. Tyagi

et.al. [56] use IBM to simulate a multi-phase flow inside an impeller stirred tank, with

LES. The impeller is simulated via moving grid and updated with IBM every timestep.

Verzicco et.al. [57] studied very similar configuration, and again with Re < 2000. Yang

et.al. [58] investigate and develop sophisticated interpolation and smoothing techniques

for use with IBM that aim to reduce near-boundary oscillations and stabilise the solu-

tion in that region while improving accuracy. These stabilising functions are complex

and will not be used in the present work before the baseline solver is complete and

validated. Also, it appears Roman and Napoli et.al. [52] are the first to use an IBM

formulation with implicit discretisation, albeit with indirect B.C. imposition.

It is worth noting that all the papers discussed in this section use an indirect B.C.

imposition version of IBM where forcing terms are added to the main N-S equations.

Publications using the GCIBM, where the original formulations are preserved and the

IBM is suitable for high Re flows, are very scarce and this is also the motivation behind

the current work.

2.2.5 Preprocessing algorithms necessary

An important practical consideration that emerged when developing the Immersed Bound-

ary Method solver was an efficient algorithm to determine whether a given point lies

inside or outside of an arbitrary two/three dimensional convex/concave shape. While a

trivial task for humans, machines struggle to solve this problem efficiently. Addition-

ally, an algorithm for computing distance and vector normal to the shape of said point

is needed for IBM. This problem overwhelmingly becomes the bottleneck for simula-

tions with moving geometry as the Point-In-Polyhedron (PIP) problem must be solved

at the end of each time step. Although for stationary geometries the PIP must only be

42

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

solved prior to the solution and never dominates the overall solution time, an algorithm

is needed nevertheless.

The simplest solution is a family of build in MATLAB libraries of two dimensional

point in polygon. There exist many implementations and the computation is straight-

forward. The difficulty with those libraries is that they are computationally inefficient

and realistically only work for two dimensional geometries. Due to these limitations

this is not a solution that could be deployed in an industrial or business context without

significant development. It is however suitable for initial research and proof-of-concept

stage.

The main approaches widely used in research are:

• Ray tracing

• Angle counting

• K-D tree (more involved and not very often used technique with IBM)

• ’Normals’ technique

• Transformation to computational space (η ,ζ ,ξ)

An excellent source of the above geometry algorithms is book by O’Rourke [59]. A ray

tracing algorithm with IBM has been implemented by Iaccarino et.al. who contributed

significant amount to development of IBM techniques [60]. Tafti and Nagendra et.al.

[42, 50] extensively use the search and locate algorithm developed by Allievi [51]. The

problem with these approaches is that no standard computational library is available

publicly. Gilmanov et.al. [48] use transformation to the computational space technique,

but again it is custom developed and not available publicly. Roman and Napoli [52] and

Kim et.al. [61] also use the ray tracing algorithm developed themselves and provide a

good overview of the methods available.

There are several MATLAB [62] implementations of the ray tracing as well as an-

gle counting algorithms as well as an efficient K-D tree technique implemented in the

CGAL library [63]. While a custom written technique may be more efficient and inte-

grated, a standard library is used at present.

2.2.6 Alternative non-body conformal techniques

The most common type of imposing Boundary Conditions at present is via a body con-

formal grid, where edges of the grid closely coincide with edges of the geometry being

43

2.2 Immersed Boundary Methods 2 LITERATURE REVIEW

simulated. This way enforcing the boundary conditions is relatively straightforward as

the algorithm simply imposes wall velocity (zero or non-zero) or any other required

conditions at all extremes of the existing grid, which is physically meaningful for coin-

ciding nodes. This however comes at a cost of time spent ensuring the grid curvatures

and cell distributions are created appropriately and are of sufficient quality. As the

geometries of turbine blades’ internal cooling become more complex and flow more

difficult to simulate (hence requiring high quality grid), the task of creating a mesh can

easily become so overwhelming it completely dominates the entire simulation process,

as will be shown in Chapter 5. It is also often not possible at all to create fully structured

grids for some geometries in design timescales, which limits the numerical methods and

often results in greatly elevated cell count to achieve the necessary accuracy.

An alternative to body conformal grids are non-body conformal grids where geome-

try does not coincide with edges of the grid and boundary conditions are imposed via

a complex numerical or mathematical (depending on the method) manipulation of the

underlying equations being solved. This spawns an entire cache of issues while devel-

oping the code but the task is done only once during development and Verification and

Validation (V&V) and benefits can be exploited for decades over the lifespan of a CFD

code. From a business investment point of view such ’front loading’ of simulations cost

makes sense and can save alot of money in the long run.

Among the more popular non-body conformal techniques are flux reconstruction, over-

set grids, cartesian cut cell or discontinuous galerkin. There are also particle based

methods such as SPH which do not use a grid at all. Some of them such as Smooth

Particle Hydrodynamics (SPH) are notoriously difficult to parallelise on General Pur-

pose Graphics Processing Units (GPGPU) platforms, while others such as Flux Recon-

struction (FR) provide added benefits such as easy ability to implement higher order

schemes.

2.2.7 Conclusions

While it appears several methods might be potentially be suitable there are usually much

higher chances of success if all attention is diverted to one method. There also does not

appear to be a CFD code in existence that combines all the computational and scientific

benefits into one. There are no universal ’silver bullet’ solutions in the CFD world and

44

2.3 Parallelisation & computational approaches 2 LITERATURE REVIEW

it is the engineering judgment of the author at a time that Immersed Boundary Method

will yield the best compromise between all the requirements of the field of turbine

blade internal cooling. Another judgment the author has made at this stage is that even

a moderate success in combining the set of chosen techniques together should provide a

good contribution to industrial, engineering and scientific communities as an actionable

intelligence to guide further research investments. For this reason a higher level of risk

is acceptable. However the author acknowledges that as both algorithms and hardware

evolve and mature a different combination of methods may become the most optimal in

future.

2.3 Parallelisation & computational approaches

2.3.1 Introduction

Until about 2005 computational power was increased mostly by increasing CPU clock

frequency [64, 65, 28]. This gave rise to almost free performance increase for devel-

opers and did not require the CFD programmer to consider any parallelisation strate-

gies as the code could be fully built on a new CPU without any modifications. Since

about 2005 however the CPU clock frequency has stagnated as further increases are

unsustainable due to non-linear relationship between CPU clock frequency and power

requirements. The HPC stakeholders in fact often prefer to have more CPUs with lower

clock frequency as the power cost for a CPU over its lifespan is comparable with its

purchase [64] and similar performance can be achieved with lower clock frequency for

lower cost this way. This has created industry-wide shift from single core processing to

initially multi (up to 10), then many (hundred thousands) and eventually exascale (mil-

ions of cores) core processing in CFD simulations [66, 67]. Other hardware vendors

also responded with a huge variety of heterogeneous hardware which all can be used to

accelerate a CFD code [68]. Examples are General Purpose Graphics Processing Units

(GPGPUs) or Intel XeonPhis.

There are many different variants of each hardware, for instance Fermi or Kepler

architectures offered by NVIDIA or different AMD boards. Each requires different

low-level programming and often significant performance can be gained if a code is re-

structured or even a numerical method changed to be suitable on a particular hardware.

45

2.3 Parallelisation & computational approaches 2 LITERATURE REVIEW

Several programming models gained a widespread acceptance over the past 10 years;

by far the most popular on HPC systems today is Message Passing Interface (MPI) due

to its versatility and broadness of use. It can be used on both shared and distributed

memory machines. There are general frameworks such as OpenMP, OpenCL or vendor

specific such as CUDA. It is also very likely that new coding models, or hardware will

emerge in future that will require a code to be substantially changed. It is not certain

which of these, or even what combination of these will give the best performance or

even exist in practice in years to come.

Once a parallelisation strategy has been chosen many years of development are re-

quired to get the code to work reliably in industrial settings, validate and maintain it.

Once in use, lifespan of CFD codes is of the order of tens of years and significant re-

sources are committed to each CFD code in the long run. Hence CFD developers are

now faced with a question which of the parallelisation strategies to adopt. Realistic an-

swer is all of them and neither at the same time. Ideally one doesn’t want to be limited to

a particular hardware, but also doesn’t want to spend significant resources porting code

to another parallel framework. There is also the issue of performance; much expertise

is required to create a parallel CFD code that performs best for a given application.

2.3.2 CPU vs. GPU

As a final note, CPU vs. GPU debate will be mentioned. Among many others, Lee

et.al. argue [69] that developers of future codes will not be choosing between CPU or

GPU, but combining them together to maximise codes’ performance. GPUs perform

significantly (orders of magnitude) better for raw calculation than CPUs but are less

flexible in terms of what they can do. In addition GPUs provide significantly reduced

power cost of simulation per flop [70] - something that will be ever more important as

global focus shifts to sustainability.

2.3.3 High level libraries

In the field of CFD recently multiple researchers have independently concluded that a

high-level abstraction is recommended and necessary [71, 72, 28] for the CFD codes to

be able to keep up to date with rapidly evolving hardware and programming models.

High level abstractions allow the code to be written once, only in terms of the abstrac-

46

2.3 Parallelisation & computational approaches 2 LITERATURE REVIEW

tion and compiled on multiple architectures using a source-to-source translation. The

key benefits to such approach are that the CFD developer doesn’t need the extensive

expertise in parallel framework such as MPI. Instead the high level abstractions are

designed to be simple and allow the developer to focus on the physics and the applica-

tion. The code is also written only once and support for new programming models, e.g.

CUDA, can be easily added as they emerge in the future. This is opposed to completely

rewriting a code for new model. Due to these factors, the performance can be max-

imised easier as the back-end code is written by experts in this particular framework,

e.g. MPI and the code is said to be ’performance-portable.

This sounds like an excellent way forward for CFD developers however such high-

level abstractions only exist for specific applications, for example OP2 for unstructured

codes or OPS for structured multiblock. Other abstractions such as MAGMA or BLAS

only provide a set of building blocks [64] which restricts their usability and actually

lowers the level of abstraction, requiring the developer to have more expertise to use

them correctly.

The code developed in the present work uses the OPS high level library for both

performance and portability between architectures. The starting point for current devel-

opment, DOLPHIN, is a multiblock structured grid application and as such is a perfect

candidate for OPS. It has been demonstrated that both OPS and OP2 give the same

or sometimes better performance as hand-coded parallel implementations without an

abstraction library. The applications on which it was demonstrated are small 2D app

CloverLeaf and full 3D inhouse production code HYDRA, used by Rolls-Royce [73].

All the low-level intricacies of a parallel implementation are handled by OPS and as

such even user with minimal knowledge of e.g. MPI is able to have maximum per-

formance easily and quickly. A disadvantage of using the OPS is its immaturity. The

framework has only been published in 2014 and has only few users applying it to real

codes [74]. The documentation is developing, there are bugs in the code and some

important features are to be implemented. These disadvantages however are expected

to diminish with time and the present work also contributes to OPS development by

testing its capabilities and reporting issues to OPS developers. Ultimately developing a

CFD code is a very long term strategy and the shortcomings of the OPS library are all

judged to be resolvable without major infrastructure difficulties.

47

2.4 Internal cooling in turbomachinery 2 LITERATURE REVIEW

2.4 Internal cooling in turbomachinery

Much research has been carried to improve turbine blade cooling in the past 20 years,

both experimental and numerical. The aerospace industry went from empirically driven

designs with occasional simulations 30 years ago to complex CFD-led design with min-

imal experimental testing now [19] and this is also partly reflected in turbine blade cool-

ing technologies. However at the moment primarily RANS models are used to design

the internal channels and other cooling systems for turbines [21, 75]. Mostly empiri-

cally established 1D corrections are used [76, 77] in design process of turbine blades

to get the necessary accuracy. It is argued by Tucker and Tyacke [78, 79] variance up

to 100% in predicting the heat transfer can be encountered between different RANS

approaches in the present methods. In the application where even small variations of

temperature (2%) give significantly different life of components such error is unaccept-

able for design. There are very few reliable numerical studies on engine representative

geometries [75] and these are usually guarded as a commercial advantage. Additionally

due to speeds and temperatures involved high quality experimental data is very hard

to obtain and it is not uncommon for measurements to have > 10% uncertainty. Mov-

ing to LES or resolving methods will be especially important for cooled turbine blades

[19, 78] due to the flow being dominated by larger scale structures and highly transient

in nature. Resolving methods however are more computationally intensive and this is

the primary reason they haven’t been adopted as standard in the design process. In-

creasing computational power allows CFD users to perform simulations that haven’t

been possible before, or allows to use more CPU-demanding calculations to be used

routinely in design [80, 64]. In the field of internal cooling passages, both apply. In the

next 10 years one will likely be able to simulate a full turbine blade with all the details

of a cooling system, a calculation with amount of nodes of the order of several billion

cells; these will likely be occasional simulations, but frequent enough to be useful for

designers. On the other hand smaller simulations, of the order of ˜100m cells will be

possible in short, design timeframes, contributing directly to significant improvements

of engine efficiency. There will also likely be a shift from RANS to resolving methods

in internal cooling passages design.

Previous studies in the field deal mainly with simplified geometries and/or body fit-

ted grids. However as shown on Figure 2.4 the geometry is rather complex and consists

48

2.4 Internal cooling in turbomachinery 2 LITERATURE REVIEW

Figure 2.4: Schematic of a typical HP turbine blade

of several different features designed to increase cooling. The main features are: pin fin

cooling, ribs turbulators, impingement cooling, tip cap cooling, film cooling and trail-

ing edge ejection. All these features are important, likely interact with each other and

the blade is rotating in operation which adds another layer of complexity. It would be

of great value to turbomachinery designers to simulate a complete system with all the

features.

The discussion of experimental and numerical work on turbine blade internal cool-

ing starts from a historical perspective and will move on to more modern cases. One of

the earliest numerical studies on rotating turbine internal ducts is performed by Majum-

dar in 1977 [81] and then series of smooth and rotating rectangular ducts, computations

with RANS k− ε model by Iacovides and Launder as early as in 1991 [82]. Similar

work to Majumdar et.al. was performed later by Dutta in 1996 [83]. The researchers

investigated smooth ducts and mainly the effects of rotation were looked at. These are

probably some of the earliest studies which compares experimental data with RANS

calculations which were relatively rare for a 3D geometry in that time. Additional

terms in k−ε equation are introduced based on experiments to obtain “satisfactory pre-

dictions” of Nusselt numbers. Using the same geometry multiple experimental studies

using different techniques are done by Han et.al. [84]. Up to approximately 2000 the

geometries and flow investigated numerically were mostly either two dimensional or

very simple, boundary conditions were constant and no ribs were introduced. Realistic

engine representative internal cooling passages were investigated only experimentally

and only experimental papers exist from that period, such as by Han et.al.[85, 86]. The

studies investigate effects of ribs non-orthogonal to the flow, and of different aspect

49

2.4 Internal cooling in turbomachinery 2 LITERATURE REVIEW

ratio, all at high Reynolds numbers (>500,000) as well as early studies investigating

passages inside the blade leading edge such as that by Taslim et.al. [87]. Other studies

attempting to optimise the heat transfer via a ribbed triangular channel were done ex-

perimentally by Zhang et.al.[88] in 1994. Ralabandi et.al. [89] provide a more detailed

review of general experimental and numerical work done prior to 2009.

More current work on turbine blade cooling technologies, numerical as well as ex-

perimental are the review paper by Iacovides and Launder [90], experimental papers by

Schuler et.al. [91], Lee et.al. [92], Ralabandi et.al. [89] and numerical work by Tafti

et.al. [18].

Moving on to the use of Immersed Boundary Method (IBM) to investigate turbine

cooling the only known IBM approach on such geometries is done by Tafti and He

[18]. In terms of latest experimental data the EU project ERICKA [93], much data

has been produced related specifically to internal cooling for realistic geometries and

flows with many major companies in the sector involved. Data is numerical, but largely

also experimental at real conditions as the aim was to serve as a base for further CFD

development. The data appears to be guarded as commercial advantage.

2.4.1 Heat Transfer

The primary purpose for which CFD is used in internal cooling passages design is to

predict metal temperatures and decide on geometrical features of the blade to be manu-

factured. This requires accurate prediction of heat transfer from the metal to the fluid.

Nusselt number is defined as the ratio of convective to conductive heat transfer and is

the one of the main practical measures of effectiveness of fluid cooling when designing

cooling passages. The turbulators and ribs are designed to promote mixing and max-

imise convective (forced convection) heat transfer in the fluid. Hence it is important

not only to predict the flow accurately, but also the heat transferred to the fluid. Ul-

timately, Conjugate Heat Transfer simulations provide the complete transient thermal

analysis directly useful in the design process. It is the objective of the present work to

investigate, if time permits, Conjugate Heat Transfer simulations with IB method after

the IBM is validated. However the primary focus will be on Heat Transfer without in-

clusion of inside of the metal. Four key papers dealing with heat transfer augmentation

in internal cooling passages were identified. They provide reviews of the field and a

50

2.5 High order schemes 2 LITERATURE REVIEW

detailed discussion of the main two CHT strategies widely used.

Amaral et.al. [76] provide a good review on CHT application in internal cooling

as well as review of different CHT computational strategies. Bell et.al. [77] provide

similar discussion with practical, design oriented discussion with description of the 1D

empirical correlations presently used by industrial designers. Ligrani et.al. [94] and

Gupta et.al. [95] provide more general discussion and review of heat transfer augmen-

tation techniques. Although general it is still specific to turbine internal cooling and is

an excellent overview of the specific field and work done in the past.

2.5 High order schemes

Through detailed and broad studies in both academia and industry there is a consistently

established consensus that a numerical scheme’s order is considered to be ’high’ if it is

proven to be 3 or higher [96, 8, 97] via specific and targeted numerical tests. This con-

sensus has been reached in the wider CFD community without doubt. The first question

one may ask here is why bother with higher order schemes in CFD at all.

Higher order schemes offer lower computational cost of achieving the same accu-

racy [96, 97, 98]. While more computation is required per grid point, fewer nodes are

overall required as each cell is able to simulate non-linearities more accurately with

increasing scheme order. It was found the node count savings are up to 50% larger

than extra computations of solving equations to achieve the same accuracy. This will

become increasingly important with transition to exascale computing where commu-

nication between the partitions is a critical limiting factor. Higher order schemes also

tend to have significantly reduced diffusivity than their 1st or 2nd counterparts. This is

necessary for some applications such as flow over a helicopter [96] or noise prediction

in the field of Computational Aero Acoustics (CAA) [99, 100]. First and second order

methods can strongly dissipate unsteady vortices and one needs relatively refined mesh

to have an accurate simulation with lower order methods in certain specific applications

[101].

There are however limitations and disadvantages to higher order schemes, notably

they are only really possible on structured grids. Methods such as Flux Reconstruction

can be used however they introduce an entirely different field of challenges and require-

ments. It was proved by Leonard [102, 103] that an unstructured FV scheme does not

51

2.5 High order schemes 2 LITERATURE REVIEW

achieve “true” high order accuracy even using all the interpolators of higher order. High

order methods provide the most benefit with scale resolving techniques such as LES,

DES or LES-RANS. While not entirely fruitful there is significantly less benefit in ap-

plying high order schemes to steady RANS computations. Moreover, they can be more

numerically unstable than lower order, require extra attention to achieve stability and

are often more difficult to implement than lower order methods.

The present work on internal cooling provides a good ground for higher order meth-

ods as the code used uses Finite Difference schemes on strictly structured grids with the

aim of performing Large Eddy Simulations. It has also been established flows present

in internal cooling passages of turbines would benefit greatly from the use of higher or-

der methods due to their decreased dissipative properties [104]. Given that massive (of

the order of 1b nodes) simulations are expected to be performed regularly in this area

even small percentage performance increase will give substantial benefits. In addition,

it is almost a certainty that industrial CFD practitioners will have routine access to exa

scale computing facilities in the next decade.

2.5.1 Compact high order

A significant subset of high order schemes are compact high order schemes. They re-

duce dispersion and anisotropy errors introduced by the Boussinesq approximation due

to their spectral-like resolution [105, 106, 107]. They also require fewer halo points in

the vicinity of the current node to perform computation to a given order of accuracy, re-

ducing communication for parallel calculations. The latter point becomes increasingly

important as more computational units are used that communicate with each other (or

’ranks’ in MPI speak). It is already becoming a ’common knowledge’ among HPC

practitioners that it is the communication that is the costly element and computation

can even be considered ’free’ by comparison.

The major drawback of compact higher order methods is they tend to require si-

multaneous systems of equations to be solved as will be explained in Section 2.7.2

in more detail. In effect more computation, but less communication between threads

is needed and that shifts the CFD code to more compute-bound than communication-

bound. However in practice this requires solving a tri-diagonally dominant matrix via

the usual methods such as inversion or iterative solves. For instance in principle a

52

2.6 Turbulence modelling 2 LITERATURE REVIEW

PETSC [108] library could be used for this purpose. PETSC has powerful and scalable

iterative matrix solving routines but is judged too complex for a simple Tri-Diagonal

matrix present here. It is certain that only TriDiagonal matrices will be present and

there is no risk of utilizing a simpler solution with less overhead in terms of both main-

tenance and implementation. Several standard simpler TDMA algorithms exist, for

example the Thomas algorithm [109] however they are inherently sequential in opera-

tion, as the value at any node depends on the calculation outcome from all the previous

nodes, i.e. there is order-dependency leading to race conditions in parallel implementa-

tions. This can be somewhat parallelised by a directional split but would be difficult and

far from general, likely resulting in poor scalability and long term suitability. A TriDi-

agonal Matrix Algorithm (TDMA) by Laszlo [110] was chosen to be used here due to

its parallel-first design and the method specifically targetting Tri-Diagonal matrix solve.

Even though the OPS library was not designed to work directly with order-dependent

schemes such as TDMA, external functions can be integrated to do the implicit com-

putation as will be explained in more detail in the parallelisation chapter. All of this

unfortunately adds complexity (hence cost) to the overall implementation however is

judged to be highly beneficial as it enables a range of compact high order schemes to

be used efficiently and in a scalable manner.

2.6 Turbulence modelling

Commonly established CFD methods in industry often fail to predict strongly unsteady

flow with sufficient accuracy (such as RANS) or are too expensive to use routinely

throughout the design process (LES). Scale Resolving Simulations (SRS) such as Large

Eddy Simulation (LES) or Detached Eddy Simulation (DES) or its variants such as

Improved Delayed Detached Eddy Simulation (IDDES) are only few examples of the

expensive tools. In response to this hybrid Reynolds Averaged Navier Stokes LES

(RANS-LES) methods have emerged as a balance of cost and accuracy but are still

largely in experimental phases [111, 112, 113]. Other SRS approaches include Scale

adaptive Simulation - Shear Stress Transfer (SAS-SST) [114, 115, 116], which can be

considered a generalisation of DES, or explicit hybrid RANS-LES by Davidson et.al.

[117, 118] which offers very fine grained control over which areas are designated as

’resolved’. As mentioned before, it has been consistently established that internal cool-

53

2.6 Turbulence modelling 2 LITERATURE REVIEW

ing passages will benefit greatly from the use of scale resolving approaches such as

LES or even the hybrid methods. SAS-SST for instance promises to relax significantly

the strict near-wall grid requirements imposed by LES in a manner similar to DES,

but also generalise that concept to the entire fluid domain further reducing cost while

still providing improvement in accuracy vs. URANS. While there are various other

turbulence approaches such as k−
√

kl, the hybrid RANS-LES techniques remain the

primary choice of most researchers due to their performance.

It is an objective of the current work to demonstrate which turbulent models offer

the best compromises in the framework of Immersed Boundary Method with high order

discretisation. DES, SAS, LES all with different modelling strategies will be tested.

On a final note, it is worth pointing out that majority of CFD performed in indus-

trial design environment, including all simulations in the present work is based on the

Navier-Stokes equations. This has become the most common way of simulating fluid

flows. There are however other possibilities to obtain a fluid flow solution, for instance

the Lattice Boltzmann equations. A good comparison of the two can be found in Elha-

didi and Khalifa [119] or Marie et.al. [120]. The Lattice Boltzmann Method (LBM) is

used widely in the automotive industry (e.g. ExaCorp [121]). It is best suited for bluff

body flows, incompressible, non-newtonian flows or multiphase simulations as the idea

behind the LBM is statistical averaging of points over time. The LBM algorithms are

simpler relative to NS and give accurate predictions of incompressible or moderately

compressible flows. This technique was also applied to the field of Computational Aero

Acoustics [120]. In addition LBM is perfectly suited for parallelisation including GPU

cores and it was found LBM works well with IBM [122] and can be implemented rel-

atively easily. However, in the present application the flow is strongly compressible in

regions of interest [18] and NS equations are more precise being a continuum. It is

also difficult to obtain an averaged solution such as RANS with LBM as it is inherently

an unsteady technique. The main argument against using LBM for the present pur-

pose however is the fact LBM does not represent the energy equation well, especially

at high Re. Since heat transfer is critical in turbine blade internal cooling LBM is not

recommended. Using LBM technique would also add another layer of complexity to

an already complex set of requirements for a CFD code; NS equations are better un-

derstood and documented for the present application. It is also worth noting the N-S

54

2.7 Numerical methods 2 LITERATURE REVIEW

equations can be recovered from the more general LBM equations, given certain as-

sumptions [123].

2.6.1 Nearest Wall distance

The very first equation that was solved with the present solver on a GPU was the Poisson

equation [4]. It was used to compute distance to the nearest wall, quantity necessary for

majority of turbulence models. There are several methods to compute the wall distance

[124], Poisson [4] and Hamilton-Jacobi [125] methods being the most popular, however

the Poisson method is the most simple to implement. It was found that the present solver

does not require any smoothers or artificial stabilisers to solve this equation without any

oscillations.

2.7 Numerical methods

2.7.1 High order schemes

The use of high order spatial discretisation techniques with Immersed Boundary was

investigated as they seem to offer great benefits in the present application. Parnaudeau

et.al. [126, 5] use 6th order discretisation with an indirect B.C. imposition version of

the IBM. Although this IBM is not suited for high Re. flows, it is demonstrated on flow

over cylinder that high order methods with IBM are possible and have the expected

benefits of a non-IBM high-order approach. Laizet and Li [127] demonstrated via a

DNS code that although formally IBM can only be made 2nd order near the wall, using

higher order schemes overall does make the solution more accurate. To achieve higher

order of accuracy near the walls the IBM technique itself would need to be modified,

which would also likely lead to more instabilities and need for more complex filtering

schemes at the wall. This is of course a possible and important improvement to the

method but creating a robust baseline solver that works must be a priority.

It must be mentioned that although simulations with Incompact3d code are of 6th or-

der and use compact stencils, they have maximum Re of 22,000 [128, 129, 130, 131].

This is moderately high, but not high enough as needed for internal cooling simula-

tions, where Reynolds number an order of magnitude higher is expected. This is in line

with the fact that indirect BC imposition method of IB, which incompact3d uses, is best

55

2.7 Numerical methods 2 LITERATURE REVIEW

suited for low to medium Re range. In addition, Flageul et.al. [129] performed IBM

simulation including Conjugate Heat Transfer through the Immersed Boundary wall.

Another investigation of high order techniques with GCIBM is made by Xia, Luo et.al.

[132, 133], although again with Re up to 200. It is proven that even for moving geome-

try, multiphase flow and heat transfer calculations the high order techniques with IBM

exhibit excellent potential and do indeed work as expected, even with wall formally

updated only to 2nd order accuracy.

IBM schemes’ accuracy order of the solution can be increased in the bulk of the domain

by modifying the primary spatial discretisation method (e.g. going from 2nd order to 4th

order central difference) or in the near-wall IBM interpolation itself where the Bound-

ary Conditions are imposed via GNs. Majumdar et.al [54] and Roman et.al. [52] tested

higher interpolation schemes for the Immersed Boundary and found that they do not

appear to be making any significant, or often even noticeable difference. Tseng et.al.

[44] also came to conclusion that higher order interpolation technique for Image Points

does not improve overall solution accuracy but can make the solution less stable, as the

IBM even with 2nd order interpolators already exhibits some amount of ever-present

oscillations.

The higher order boundary interpolations have not been tested on the significantly mod-

ified version of Improved IBM by Chi et.al. [30] with EIPs and the conclusions about

accuracy may not hold. However it is concluded from the present review that increasing

order of discretisation in the bulk domain will most likely yield the greatest accuracy

and efficiency benefits.

2.7.2 Implicit discretisation and compact schemes

It is well established in both industry and academia that implicit discretisation is more

stable as well as computationally efficient [96, 134, 107, 135]. A discretisation, whether

in time or space domain, is usually considered ’implicit’ when advancement or updating

of variables is done via solving a set of simultaneous equations. In implicit discretisa-

tion there is no direct formula to compute for updated variables and a set of simultane-

ous equations must be solved for the current time step. This is in contrast to ’explicit’

methods where updated variable is directly obtained from existing one via mathemati-

cal operations with known coefficients. The updating process can be complex such as in

56

2.8 Existing relevant CFD codes 2 LITERATURE REVIEW

RK4 scheme but the variable is always obtainable directly without a need for additional

equation solvers.

For time discretisation, implicit techniques usually allow significantly larger time step

and increased stability of solution. In theory the stability is unconditional but in prac-

tice there is an upper limit of timestep at which the solution becomes unstable and

leads to divergence. That limit however is often up to two orders of magnitude higher

than explicit time discretisation. For that reason even extra computations resulting from

solving a set of equations quickly yield computational savings over time.

Interestingly a similar matter arises with spatial discretisation. Explicit 4th order differ-

encing uses stencil spanning 2 nodes (hence 8 total in 2D and 12 in 3D) in each direction

while implicit methods are able to achieve the same resolution with stencil only 1 node

long (so 4 in 2D and 6 in 3D). Such implicit spacial discretisation methods are termed

’compact’ schemes and while they usually provide increased stability and decreased

dissipation the main benefit computationally is significantly reduced communication

’halo’. By using half the amount of neighbouring nodes the inter-thread communica-

tion is reduced in favour of more computation (solving a set of equations) which almost

always has the effect of improved scalability. Majority of commercial CFD softwares

offer implicit spatial and temporal schemes and while they are not always suitable they

tend to be the ’workhorse’ in the field.

The main difficulty of implicit schemes lies in implementation cost and limitation they

place on parallelisation. Implicit schemes tend to require a more complex set of equa-

tion to be implemented than explicit schemes and need a specialised equation solver not

normally present in CFD codes. Such solvers, or matrix inversion schemes must be in-

terwoven and communicate with a primary parallel numerical solver and that can create

significant bottlenecks in scalability. This matter will be explored further throughout

the thesis.

2.8 Existing relevant CFD codes

Embarking on a development of new CFD code it is necessary to review the existing

programs; this is to avoid duplication but also draw knowledge from them and even

create opportunities for collaboration. The review begins by comprehensive list of re-

quirements that became clearer after carrying out the literature survey:

57

2.8 Existing relevant CFD codes 2 LITERATURE REVIEW

• use of a high level library for performance portability

• ability to run on multiple hardware efficiently, e.g. CPU, GPU and adapt to future

hardwares without major code rewrite. Emphasis is placed on ability to run on

cost efficient GPUs

• ability to solve tri diagonal systems of equations for implicit time stepping and

high order compact methods

• ability to handle generalised geometries without significant time spent on mesh-

ing

• ability to accurately simulate complex, compressible, high Re flows with rotation

• ability to accurately simulate fluid heat transfer with potential to extend to conju-

gate heat transfer simulations

A list of relevant codes is compiled:

• incompact3d [127]

• GenIDLEST [136]

• ASL is interesting, though last update was in 2015: http://asl.org.il/

• LBM open source code Palabos: http://www.palabos.org/

• Adam Preece 2008 Thesis IBM code: [55]

• Kang 2008 Thesis has IBM code: [137]

• Ikram thesis 2011 ibm code: [138]

• Flux reconstruction based code [139]; https://hifiles.stanford.edu/

• IMPACT: http://www.ifd.mavt.ethz.ch/research/group-kleiser/impact.html, mas-

sively parallel, high order, high Re, compact FD

• Witherden Thesis [140], PyFR, massively parallel, GPU, FR code

Not all of the softwares will be commented on or reviewed in detail here as that

task alone could easily become a major chapter. Most of the above have features that

satisfy majority of requirements here, there appear to be the most relevant due to their

unique choices of numerical and computational methods that satisfy all but one or two

requirements listed previously:

• Incompact3d

• GenIDLEST

58

2.8 Existing relevant CFD codes 2 LITERATURE REVIEW

• HifiLES

Incompact3d appears to be highly scalable and the developers proved it scales well

for 260,000 cores [127]. It can perform implicit operations with 6th order compact

schemes for space, RK explicit and AB 2nd for time, code is incompressible. It is also

using a high level library similar to OPS, but only MPI is supported, no CUDA etc.

Code is written in fortran, used primarily for DNS/LES at Re up to 20,000. IBM vari-

ant used is with direct forcing, but indirect BC imposition (i.e. adding a forcing term

to momentum equations and switching it on/off inside/outside of the solid body). This

indirect BC imposition method is described in all other IB papers as inaccurate at high

Re due to local error near the wall spreading in to solution too much. The authors of

incompact3d mention nothing about this. It may not be a big problem for DNS/LES

where grid near the wall is refined significantly. Present work is using Ghost Cell IBM,

compressible with a high level portable library that supports multiple platforms includ-

ing GPUs. Targeting higher Re (internal cooling application has Re in the range 20,000

– 500,000)

GenIDLEST: Incompressible, parallel with MPI. 2nd order. Immersed Boundary

with very similar forcing to Ghost Node. Applied the IBM to internal cooling, simple

geometries and promising for more complex ones. No high-level library is used and the

code is a hand crafted MPI application.

HifiLES: Although this code uses the Flux Reconstruction (FR) method and is aimed

primarily at LES for aeroacoustics it is probably the closest to meeting the current re-

quirements that the author was able to find. It is developed for use with high order

methods and use with GPU architectures and is capable of compressible flow simula-

tions. Due to the use of FR method, unstructured grids can be used for high order com-

putations but it is not clear how the efficiency is achieved on GPUs with the datasets

that result in such approach. Primary drawback of this code is lack of any implicit com-

putations; focusing primarily on LES this is not a major issue but it might become a

significant problem if RANS or hybrid RANS-LES is performed.

In summary while all the existing codes appear to be suitable for the present ap-

plication, each lacks at least one critical component necessary (e.g. compressibility,

high Re, high level library for portability or sharp IBM boundaries). The author is now

satisfied that the current work will not be a duplication but an extension of the existing

59

2.9 Chapter conclusions 2 LITERATURE REVIEW

academic software portfolio.

2.9 Chapter conclusions

While reviewing literature is not a task that can ever be truly ’complete’, broad survey

of existing works has been carried out covering both academic and commercial space.

Requirements for an ’ideal’ CFD code for simulating flows related to turbine blades

were iterated and clarified. A set of solutions is proposed and its benefits and drawbacks

are understood. It is also clear there are likely other combinations of techniques that

could satisfy the requirements and as technologies progress there will probably be even

more. This is unavoidable however to make any progress at all one must set sails on a

single set of techniques and focus on their implementation.

60

3 METHODS & THEORY

Chapter 3

3 Methods & Theory

3.1 Chapter introduction

This chapter presents details of all the numerical and computational approaches used in

the present work. The methods cover development of the GPU IBM solver as well as

testing of the hybrid RANS-LES. Governing equations, discretisation as well as parallel

approach will be presented where possible in long-handed, fully expanded version as

they were actually implemented in the solver. An attempt will also be made to list all

the principles and assumptions with the aim of providing a solid reference for clarity

and future works.

The chapter is arranged into three subsections; first are the core flow equations,

discretisations and procedures necessary for physical simulation of a flow using Navier-

Stokes and their parallelisation. Second subsection contains details of the modifications

needed to use the IBM method and third presents the commercial codes (Fluent and

CFX) approach used in some of the simulations for turbulence models testing.

3.2 Governing Equations: GPU IBM code

3.2.1 List of physical assumptions

1. Newtonian fluid, with Stokes assumptions:

• The stress tensor is a linear function of the strain tensor.

• The fluid is isotropic.

• for a fluid at rest, ∇⃗• τ⃗ must be zero

• τ is proportional to du
dy

2. Stokes Hypothesis

λ =−2
3 µ

3. Boussinesq approximation for compressible Favre Averaged Navier Stokes (FANS)

equations

61

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

4. Single phase

5. Perfect gas

6. Not reacting chemically

7. Thermally and calorifically perfect gas

8. Sutherland law for viscosity(temperature) dependence

µ = µ0T
3
2

1+ 110.4
Tre f

T+ 110.4
Tre f

Where τ⃗ is shear stress of the fluid, λ is kinematic viscosity, µ is dynamic viscosity and

T is total temperature.

Boussinesq approximation is a widely used assumption that results in isotropic tur-

bulence formulation and constant of proportionality µT . No anisotropic turbulence

model such as the Reynolds Stress Model (RSM) will be used in the present work as

the aim is to resolve majority of the turbulent energy by the grid directly and turbulence

models are only used at subgrid.

Although the present code uses the full N-S formulation without the thin-layer ap-

proximation, it is worth pointing out that this simplification is best avoided with IBM

techniques. The thin-layer approximation that eliminates several terms and is com-

monly used in CFD codes does not hold if using non-body fitted grid [141] and may

reduce accuracy of the near-wall solution as non-body fitted grids are the workhorse of

the IBM. It could be a potentially significant source of error in IBM but also a notable

computational cost saving, however more investigation is needed before using that as-

sumption with IBM. At present no papers exist that examine the issue of the thin layer

approximation with IBM and to what degree does it affect the solution. It should be

noted at this point that in the field the IBM is known for its near-wall inaccuracies in

comparison with body-fitted grids and investigation into thin-layer approximation with

IBM could prove a valuable future research.

3.2.2 Governing flow equations

Starting from a common vector form and moving on to the most expanded forms are

focused on as they are most useful for practical implementation.

62

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Continuity:
∂ρ

∂ t
+ ∇⃗(ρV⃗) = 0 (1)

∂ρ

∂ t
+

∂ρu

∂x
+

∂ρv

∂y
+

∂ρw

∂ z
= 0 (2)

∂ρ

∂ t
+

∂ρu j

∂x j
= 0 (3)

Where ∂ρ is density and V⃗ is the velocity vector.

Momentum:

∂ρu

∂ t
+ ∇⃗(ρ u⃗V) =−∂ p

∂x
+

τxx

∂x
+

τyx

∂x
+

τzx

∂x
+ρ fx (4)

∂ρv

∂ t
+ ∇⃗(ρ v⃗V) =−∂ p

∂y
+

τxy

∂y
+

τyy

∂y
+

τzy

∂y
+ρ fy (5)

∂ρw

∂ t
+ ∇⃗(ρwV⃗) =−∂ p

∂ z
+

τxz

∂ z
+

τyz

∂ z
+

τzz

∂ z
+ρ fz (6)

Where fx, fy, fz are body forces and t is time.

Note that the Right Hand Side of momentum must be multiplied by 1
Re

factor due to

non-dimensionalisation.

But

∇⃗(ρ u⃗V) =
∂

∂x
(ρuu)+

∂

∂y
(ρuv)+

∂

∂ z
(ρuw) (7)

∇⃗(ρ v⃗V) =
∂

∂x
(ρvu)+

∂

∂y
(ρvv)+

∂

∂ z
(ρvw) (8)

∇⃗(ρwV⃗) =
∂

∂x
(ρwu)+

∂

∂y
(ρwv)+

∂

∂ z
(ρww) (9)

Full momentum in strong conservative form is then:

∂ρu

∂ t
+

∂

∂x
(ρuu)+

∂

∂y
(ρuv)+

∂

∂ z
(ρuw) =−∂ p

∂x
+

τxx

∂x
+

τyx

∂y
+

τzx

∂ z
+ρ fx

∂ρv

∂ t
+

∂

∂x
(ρvu)+

∂

∂y
(ρvv)+

∂

∂ z
(ρvw) =−∂ p

∂y
+

τxy

∂x
+

τyy

∂y
+

τzy

∂ z
+ρ fy

∂ρw

∂ t
+

∂

∂x
(ρwu)+

∂

∂y
(ρwv)+

∂

∂ z
(ρww) =−∂ p

∂ z
+

τxz

∂x
+

τyz

∂y
+

τzz

∂ z
+ρ fz

(10)

(11)

(12)

Momentum eqs in the Einstein notation: summing on j (i = 1,2,3)

∂ρui

∂ t
+

∂

∂x j
(ρuiu j) =− ∂ p

∂xi
+

τ ji

∂x j
+ρ fi (13)

63

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

The Energy Equation:

∂

∂ t
(ρe)+ ∇⃗(ρ e⃗V) = ρ q̇ (14)

+
∂

∂x

(
k

∂T

∂x

)
+

∂

∂y

(
k

∂T

∂y

)
+

∂

∂ z

(
k

∂T

∂ z

)
(15)

− ∂

∂x
(up)− ∂

∂y
(vp)− ∂

∂ z
(wp) (16)

+
∂

∂x
(uτxx)+

∂

∂y
(uτyx)+

∂

∂ z
(uτzx) (17)

+
∂

∂x
(uτxy)+

∂

∂y
(uτyy)+

∂

∂ z
(uτzy) (18)

+
∂

∂x
(uτxz)+

∂

∂y
(uτyz)+

∂

∂ z
(uτzz) (19)

+ρ f⃗ V⃗ (20)

Energy equation expanded:

∂

∂ t
(ρe)+

∂

∂x
(ρeu)+

∂

∂y
(ρev)+

∂

∂ z
(ρew) = ρ q̇

+
∂

∂x
(−qx)+

∂

∂y
(−qy)+

∂

∂ z
(−qz)

− ∂

∂x
(up)− ∂

∂y
(vp)− ∂

∂ z
(wp)

+
∂

∂x
(uτxx)+

∂

∂y
(uτyx)+

∂

∂ z
(uτzx)

+
∂

∂x
(uτxy)+

∂

∂y
(uτyy)+

∂

∂ z
(uτzy)

+
∂

∂x
(uτxz)+

∂

∂y
(uτyz)+

∂

∂ z
(uτzz)

+ρ (u fx + v fy +w fz)

(21)

Energy equation in the Einstein notation

∂

∂ t
(ρe)+

∂

∂x j
(ρeu j − k

∂T

∂x j
+u j p+uiτ ji)−ρ q̇ = 0 (22)

64

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Where:

e = e0 +
u2 + v2 +w2

2
= e0 +

u ju j

2
(23)

ρ f⃗ V⃗ = ρ (u fx + v fy +w fz) (24)

∇⃗(ρ e⃗V) =
∂

∂x
(ρeu)+

∂

∂y
(ρev)+

∂

∂ z
(ρew) (25)

f⃗ =

f x

f y

f z

 (26)

q j =−k
∂T

∂x j
=−Cp

µ

Pr

∂T

∂x j
(27)

Pr =
Cpµ

k
(28)

γ =
Cp

Cv
(29)

p = ρRT (30)

e0 =CvT (31)

Cp −Cv = R (32)

a =
√

γRT (33)

And

p = (γ −1)
[
e− ρ

2
(u2 + v2 +w2)

]
(34)

Where γ , Cp, Cv, R are constants. Eq 34 is from Pulliam 2014 [141] , p.61.

Combined the equations read. Subscript indicates viscous terms, no subscript are

inviscid terms.

∂Q

∂ t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂ z
− ∂Fv

∂x
− ∂Gv

∂y
− ∂Hv

∂ z
= B f (35)

65

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Where:

Q =

ρ

ρu

ρv

ρw

ρe

(36)

F =

ρu

ρuu+ p

ρvu

ρwu

ρeu+qx +up

(37)

G =

ρv

ρuv

ρvv+ p

ρwv

ρev+qv + vp

(38)

H =

ρw

ρuw

ρvw

ρww+ p

ρew+qw +wp

(39)

Fv =

0

τxx

τxy

τxz

u(τxx + τxy + τxz)

(40)

Gv =

0

τyx

τyy

τyz

v(τyx + τyy + τyz)

(41)

(42)

66

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Hv =

0

τzx

τzy

τzz

v(τzx + τzy + τzz)

(43)

B f =

0

fx

fy

fz

ρ(u fx + v fy +w fz)

(44)

(45)

Shear Stresses τ are computed from:

τxix j
=

1

ReL

[
µ

(
∂ui

∂x j
+

∂u j

∂xi

)
+λ

∂uu

∂xu
∂i j

]
(46)

Where ∂i j is the standard Kronecker delta. The original equation includes M∞

ReL
term

instead of 1
ReL

. Also, when simulating turbulent flow, µ is defined as µp + µT , i.e.

viscosity is sum of physical and numerical turbulent ’viscosity’.

A value for turbulent viscosity µT is now needed at each computational node. It is a

major field of study and Reynolds Averaged Navier Stokes (RANS) and Favre Averaged

Navier Stokes (FANS) methodology will be used in the present work. While the full

derivation of both is rather complex and can be found in [142], an extract used is shown

here. The methodology inside the code essentially boils down to several relatively

simple manipulations of the Navier Stokes equations, as follows.

Begin by replacing all variables by their time-mean, removing time dependent terms,

τ ji in the above full N-S equations is replaced by: (derivation is common in books)

τ̄ ji −ρui
′′u j

′′ (47)

Ri j =−ρui
′′u j

′′ (48)

In continuity, only the time term is ommited and values replaced by mean

∂ ρ̄ ū

∂x
+

∂ ρ̄ v̄

∂y
+

∂ ρ̄w̄

∂ z
= 0 (49)

67

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

In momentum, the following Reynolds stresses are added to x, y, z equation respectively

Rx =
∂

∂x

(
−ρu′′u′′

)
+

∂

∂y

(
−ρv′′u′′

)
+

∂

∂ z

(
−ρw′′u′′

)

Ry =
∂

∂x

(
−ρu′′v′′

)
+

∂

∂y

(
−ρv′′v′′

)
+

∂

∂ z

(
−ρw′′v′′

)

Rz =
∂

∂x

(
−ρu′′w′′)+ ∂

∂y

(
−ρv′′w′′)+ ∂

∂ z

(
−ρw′′w′′)

(50)

(51)

(52)

Resulting in 9 extra terms, 6 of which are unique.

For the energy equation, in addition to the above τ ji modification there is also Reynolds

heat flux added to the flux term:

∂

∂x j

(
−k

∂T

∂x j
+ρu j

′′h′′
)

(53)

Where Qi j = ρu j
′′h′′ is the Reynolds heat flux. Overall there are 7 extra unknowns

introduced by Reynolds/Favre averaging.

The key assumption now is the Boussinesq approximation:

Ri j ∝ Si j (54)

Where Si j is the strain rate tensor and constant of proportionality is turbulent viscosity

µt .

Ri j = µt

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3

∂uk

∂xk

∂i j

)
− 2

3
ρk∂i j (55)

Where k is turbulence kinetic energy on which most two equation turbulence models

are based.

k =
1

2
v′iv

′
i (56)

68

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

The Reynolds heat flux is replaced by:

Qi j =−kt
∂T

∂x j
(57)

and:

kt =
cpµt

Prt
(58)

Prt is turbulent Prandtl number, typically 0.71 and considered constant for a material.

Now its only a question how to compute k and µt .

The full τ ji for RANS with Boussinesq approximation is: (see τ ji and R ji on previ-

ous pages:

τ ji = (µ +µt)

(
∂ui

∂x j
+

∂u j

∂xi
− 2

3

∂uk

∂xk

∂i j

)
− 2

3
ρk∂i j (59)

All in terms of averaged quantities.

q j, the total heat flux term becomes:

q j =−k
∂T

∂x j
− kt

∂T

∂x j
=−(k+ kt)

∂T

∂x j
(60)

q j =−cp

(
µt

Prt
+

µ

Pr

)
∂T

∂x j
(61)

Again in terms of averaged quantities.

In practice, ’mechanistically’ turning the ’original’ DNS equations to Favre Aver-

aged equations boils down to the following steps:

• remove the time dependent terms ∂
∂ t

• add µt to the real kinematic viscosity

• add kt to the real conductivity coefficient

• add equations to solve for k and µt via a turbulence model. k = 0 for some models

69

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

• add the −2
3ρk∂i j term to shear stresses based on turbulence kinetic energy, or

omit depending on the model

This is not a strictly a ’scientific’ approach but rather a mechanical one, however that

clarity is important when developing a software from the ground up.

3.2.3 Non-dimensionalisation

All the variables are iterated in their non-dimensional form. After reading the grid

from disk the variables are non-dimensionalised as follows. The three reference values

(ρ,u, l,T) - reference velocity, reference length scale, reference density and reference

temperature are user-provided in the input file and all the other reference values are de-

rived from them:

ure f = input (62)

Tre f = input (63)

ρre f = input (64)

lre f = input (65)

pre f = ρre f RgasTre f (66)

µre f = Sutherland law based on Tre f (67)

Before writing the variables for post-processing they are scaled back with the above.

Non-dimensionalisation also means that the right hand side of the momentum equation

must be divided by Re = ρuL
µ to reflect the units correctly.

3.2.4 SA turbulence model

Spalart Almaras RANS turbulence model [143] was implemented in the GPU IBM code

as a starting point due to its relative simplicity. The model was originally designed for

aerospace applications and is judged suitable for initial testing. More complex models

such as k−ω will be implemented as the code matures.

3.2.5 Spatial discretisation

Primarily a combination of the standard explicit central 2nd and 4th order Finite Dif-

ference discretisation is used for the Navier-Stokes equations for both viscous and the

70

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

inviscid terms.

δ 2φ

δx2
i

= φi+1, j,k −2φi, j,k +φi−1, j,k (68)

δ 4φ

δx4
i

= φi+2, j,k −4φi+1, j,k +6φi, j,k −4φi−1, j,k +φi−2, j,k (69)

An upwinding technique was also attempted to stabilise the solution but yielded very

limited results here and was eventually abandoned. Nodes near the non IBM boundaries

are modified to lower order or forced to a one-sided formulation. It was possible to

preserve the order of discretisation nodes near the IBM boundaries due to the Ghost

Nodes approach and it is expected that this will be the case for up to 4th order for non-

compact methods and 6th for compact high order. It also appears possible to use more

GNs deeper inside the non-fluid domain for an even higher order near wall formulation

however this investigation was beyond the scope of the current work and no works were

found that examine this possibility in more detail.

The geometric metric coefficients of generalised curvilinear coordinate transformation

must be computed numerically also as no analytical solution is available. Pure 2nd

order central difference is used for this purpose although it was found that higher order

metric calculation can change the solution notably towards more stable or accurate one.

At present, this will not be investigated in more detail but could potentially be critical

to achieve a stable numerical solution. As mentioned earlier, a combination of 2nd and

4th order high frequency filtering is used to stabilise the numerical solution.

3.2.6 Temporal discretisation

To discretise the time derivatives initially the explicit Runge Kutta 4th order integration

algorithm is used as described in detail by Yu [144]. Jameson’s [145] dual time stepping

is used for unsteady solution. This allows steady-like sub-iterations in time to be per-

formed (in pseudo-time space) between each physical time-step, hence the same time

stepping algorithms can be used for steady and unsteady solution, including any multi-

grid or other convergence accelration strategy. Without the dual time-stepping these

aren’t applicable.

RHS =
δφ

δτ
(70)

Where τ is pseudotime, t is real time, RHS is set of residuals obtained by current (at

this point of RK stage) field values and Q are the actual field variables. For steady state

71

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

simulations where no physical temporal terms are present this can also be used to iterate

to ’infinity’ or ’steady state’ where Right Hand Side of the N-S is zero.

The time boundary (the first time step) where previous time step data is not yet available

is discretised with one sided difference.

δφ

δτ
≈ φ m+1 −φ m

∆τ
(71)

φ m+1 = φ m +∆τRHSm = φ m +∆τRm = φ m +∆τR(Qm) (72)

Where m+ 1 is the next pseudotime level (not the next RK level) The overall pro-

cedure is as follows. Qm is the previous iteration value, or from initialisation. Q1, Q2,

Q3, Qm+1 are obtained using algorithms with Under relaxation factors (URFs)

Q1 = Qm +
∆τ

2
R(Qm) (73)

Q2 = Q1 +
∆τ

2
R
(
Q1
)

(74)

Q3 = Q2 +∆τR
(
Q2
)

(75)

Qm+1 = Q3 +
∆τ

6

(
Rm +2R1 +2R2 +R3

)
(76)

Qm values are saved in a separately allocated memory before the RK iterations and

used through RK procedure. When updating primitive variables after each RK stage,

the residual from the current RK stage along with the pre-RK values are used. The RK

terms (e.g. ∆τ
2 R
(
Q1
)
) are calculated the same way in both cases.

δφ

δτ
+

δφ

δ t
= R(Qm) (77)

Similar first order backward FD for the physical time t. m is pseudotime n is real

time

φ m+1 −φ m

∆τ
+

φ n+1 −φ n

∆t
= R(Qm) (78)

φ m+1 −φ m

∆τ
= R(Qm)− φ n+1 −φ n

∆t
(79)

72

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

φ m+1 = φ m +∆τ

(
R(Qm)− φ n+1 −φ n

∆t

)
(80)

φ m+1 = φ m +∆τ (R(Qm))−∆τ

(
φ n+1 −φ n

∆t

)
(81)

Compare this to the steady equation

φ m+1 = φ m +∆τR(Qm)− steady (82)

φ m+1 = φ m +∆τ

(
R(Qm)− φ n+1 −φ n

∆t

)
−unsteady (83)

Effectively, an extra unsteady term is added to residual each time it is calculated

φ n+1 −φ n

∆t
==

φ n −φ n−1

∆t
(84)

∆t is known and variables from previous iterations are saved (φ n−1) before updating.

Several pseudo-time iterations are then performed on the following, until the values

between the pseudotimesteps no longer change (i.e. convergence)

φ m+1 = φ m +∆τ

(
R(Qm)− φ n+1 −φ n

∆t

)
(85)

φ m+1 −φ m

∆τ
≈ 0 (86)

In practice, before each iteration, values of the current physical time step are saved

in separate memory as ”old”.

Then at the end of the residual calculation routine term related to the time deriva-

tive is computed and added to the total residual. The total residual is then used in the

pseudotime-RK scheme as previously.

3.2.7 Distance to the nearest wall

As explained in Section 2.6.1 to compute distance to the nearest wall required by the

majority of the turbulence models, the Poisson equation was solved as a precursor cal-

culation before each turbulent simulation. The procedure and full set of equations is

explained in more detail in Tucker et.al. [4]:

∇2φ =−1 (87)

73

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Standard second order central differences were used to discretise the equation. It was

found that no artificial dissipation was required here and the solution was stable up to

much higher Courant number than the Navier-Stokes equations.

While there exist many other algorithms to compute the wall distances Poisson was

chosen for simplicity of implementation but also as the first equation that will be solved

numerically. This will allow the author to debug software and numerical issues on a

relatively simple algorithm while still performing useful calculations.

3.2.8 Metric transformation

To enable practical computations with the Finite Difference method, the equations must

be transformed to generalised curvilinear coordinates, where each variable is trans-

formed from real to computational space. Metric transformation is not strictly neces-

sary for the Immersed Boundary Method however the code is capable of performing

non-IBM multiblock computations. In addition one may create outer curvilinear grid

with classical B.C.s and only use the IBM to impose B.C. on the complex inner shape

to enhance computational efficiency and reduce complexity hence room for error. All

the variables are iterated in their non-dimensional form but stored and written out as

dimensional for ease of postprocessing.

Φ̂ =
Φ

J
(88)

ξ = ξ (x,y,z, t) (89)

η = η(x,y,z, t) (90)

ζ = ζ (x,y,z, t) (91)

τ = τ(t) (92)

J =
∂ (ξ ,η ,ζ , t)

∂ (x,y,z, t)
(93)

Where J is Jacobian and contravariant velocity components are computed as follows

wherever needed:

U = ξxu+ξyv+ξzw (94)

V = ηxu+ηyv+ηzw (95)

W = ζxu+ζyv+ζzw (96)

74

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

More detailed derivation and full formulation is available in [141] but it is also

common in literature and will not be presented here.

3.2.9 Oxford Parallel library for Structured applications (OPS)

One of the key novel elements in the present work is the approach to parallelisation

and performance portability. Novel set of libraries is used where the scientific code is

clearly separated from the parallel implementation. Single source code can be trans-

lated into various parallel implementations easily. This is achieved by expressing the

problem to be solved in OPS’s custom syntax and the library parsing it to produce re-

quested parallelisation automatically. The parsers are provided by OPS and are its key

feature in scientific-computational decoupling.

One of the key requirements for the parallelisation approach was performance portabil-

ity, hence a level of ’future-proof’ design. This narrows down the search to mainly high

level domain specific libraries. Oxford Parallel library for Structured grid applications

(OPS) was chosen as it is very specifically designed for the type of computations ap-

pearing in a structured CFD code and integrates an efficient novel tridiagonal solver for

implicit-type operations. The author also believes that efficient parallelisation requires

significant expertise in the field and is best left to computation experts as opposed to

scientific code developers. The fact that a code can be manually implemented on a tar-

get platform more efficiently (e.g. CUDA, MPI) than via high level library does not

mean the engineering software developer will have the necessary expertise to achieve

such results. It was indeed found [146] that often times due to that it is the high level

library is more effective as the experts take time and focus on its back-end rather than

individual instances. By utilising a high level library even a novice in parallelism can

tap into the expertise coded into it.

An example loop structure is shown below:

1 #include ” stdlibs .h”

2 #define OPS 3D

3 #include ”ops seq .h”

4 #include ” function headers .h”

5 #include ” def globals .h”

6

75

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

7 #include ” update visc kernel .h”

8

9 void CALL UPDATE VISC() {
10

11 ops par loop (update visc kernel , ” update visc kernel ” , dolphin block , 3,

12 range full ,

13 ops arg dat (MU , 1, S3D 000, ”double”, OPS WRITE),

14 ops arg dat (T , 1, S3D 000, ”double”, OPS READ),

15 ops arg dat (IBLANK I, 1, S3D 000, ”int” , OPS READ),

16 ops arg idx ()

17) ;

18

19 }

And the implementation itself:

1 # ifndef UPDATE VISC KERNEL H

2 #define UPDATE VISC KERNEL H

3

4 #include ” stdlibs .h”

5 #include ” function headers .h”

6 #include ” def globals .h”

7

8 void update visc kernel (double *MU, const double *T, const int *IBLANK I,

const int *idx) {
9

10 if (((INPUTI[44] == 1) && (IBLANK I[OPS ACC2(0, 0, 0)] !=60)) ||
(INPUTI[44] == 0)) {

11

12 MU[OPS ACC0(0, 0, 0)] = pow(T[OPS ACC1(0, 0,

0)],3.0/2.0) *((1.0+(110.4/ REF[2])) /(T[OPS ACC1(0, 0, 0)]+(110.4/REF[2]))) ;

13

14 }

76

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

15

16 }
17

18 #endif

Which differs from serial implementation relatively little:

1 #include ” stdlibs .h”

2 #include ” function headers .h”

3 #include ” def globals .h”

4

5 void LOOP KJI(double **q, int **qi) {
6 int i , j , k;

7

8 qi [PNT][I1] = 1; // i increment

9 qi [PNT][I2] = qi [MESH][I]; // j increment

10 qi [PNT][I3] = qi [MESH][I]*qi[MESH][J]; //k increment

11 qi [PNT][DIR] = 1; // Direction

12 qi [PNT][ID1MN] = 0;

13 qi [PNT][ID1MX] = qi[MESH][I] − 1;

14 qi [PNT][ID2MN] = 0;

15 qi [PNT][ID2MX] = qi[MESH][J] − 1;

16 qi [PNT][ID3MN] = 0;

17 qi [PNT][ID3MX] = qi[MESH][K] − 1;

18

19 if (qi [MESH][K]==1) { qi[PNT][I3]=0; }
20

21 for (k = 0; k < qi[MESH][K]; k++) {
22 for (j = 0; j < qi[MESH][J]; j++) {
23 for (i = 0; i < qi[MESH][I]; i++) {
24

25 qi [PNT][ID3] = k;

26 qi [PNT][ID2] = j ;

77

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

27 qi [PNT][ID1] = i ;

28 qi [PNT][IN] = (k*qi[MESH][J] + j)*qi[MESH][I] + i;

29 UPDATE VISC(q,qi);

30

31 }
32 }
33 }
34

35 }

And the body of update visc:

1 #include ” stdlibs .h”

2 #include ” function headers .h”

3 #include ” def globals .h”

4

5 void UPDATE VISC(double **q, int** qi) {
6 int in ;

7

8 in = qi [PNT][IN];

9

10 q[MU][in] = pow(q[T][in],3.0/2.0) *

11 ((1.0+(110.4/ q[REF][2])) /(q[T][in]+(110.4/ q[REF][2]))) ;

12

13 }

Figure 3.1 shows a quick comparison of a typical hand-implemented structured

block computation in C with three nested loops with the equivalent OPS operation.

A full sample of one routine is also presented. In the OPS code, the problem is always

expressed in two parts, one is the ’kernel’ where computations are performed, the other

is the actual parallel loop request via ’par loop’. The kernel contains bulk of the calcu-

lations while par loop is effectively how are they to be performed, how the data is to be

accessed, dimensionality and other parameters. OPS can then parse these and produce

78

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Figure 3.1: Comparison of the serial C code with parallel OPS implementation.

an optimised version of all the parallel implementation (e.g. CUDA, MPI, OpenMP,

etc.)

3.2.10 Alternating Direction Implicit (ADI) solver

While in conventional tridiagonal solution physical walls (and grid edge) coincide with

boundaries of the matrix, this is not the case with the IBM here and effective “wall”

nodes are typically surrounded by other nodes, solid or fluid. A fundamental limitation

of OPS is that entire data structures are operated on and the libraries make no distinction

as to which node is solid and which is fluid; all are computed equally. To eliminate the

impact of values inside the solid to the fluid solution a modification to the lower and

upper diagonal coefficients was devised in the vicinity of the IBM geometry, as shown

on Figure 3.2. This proved to be very important to stability as well as accuracy of the

scheme. Several configurations were tried and the one shown on the figure proved to be

the most stable.

79

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

F
ig

u
re

3
.2

:
S

ch
em

at
ic

o
f

m
o
d
ifi

ca
ti

o
n

re
q
u
ir

ed
n
ea

r
th

e
w

al
ls

fo
r

th
e

A
D

I
in

th
e

O
P

S
fr

am
ew

o
rk

.

80

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

3.2.11 Artificial dissipation

As the code has non-staggered variable arrangement, an odd-even decoupling of pres-

sure and velocity is likely to impact the solution. Combined with pure central differenc-

ing and inherent instabilities and non-linearities present in engineering turbulent flows,

the solution is prone to developing oscillations that eventually lead to divergence, in

particular for more complex flows or geometries. To remedy this problem and achieve

stability, some amount of artificial dissipation, or viscosity must be added, or the equa-

tions otherwise stabilised numerically by other means. More detailed study as to why

this is the case is presented by Chen et.al. p.76. [147].

It was found in the present work that the problem of oscillations and odd-even de-

coupling is major and no single scheme tested gave satisfactory results, hence the liter-

ature search was extended significantly to find a suitable artificial dissipation scheme.

It was also found that only the inviscid, or convective Navier-Stokes terms require some

stabilising treatment; the viscous or diffusive terms appear to be numerically stable with

very little if any additional modifications.

An inherent instability and unboudedness of pure central differencing at Peclet num-

ber Pe > 2 should also be noted. This adds to development of numerical oscillations.

Upwind schemes, which are unconditionally bounded were also considered. Bounded-

ness comes from the idea of solving hyperbolic PDEs and direction from which infor-

mation propagates. Upwinding is bounded due to stencil being biased towards where

the information originates.

It also became apparent via extensive numerical experiments that varying the smooth-

ing coefficients even by relatively small amounts changed the solution significantly as

shown on Figure 3.3, frequently to the point where the solution was too viscous to pre-

dict any separation at all. The search for an appropriate artificial dissipation scheme

began and this chapter summarises its findings. The goal is to include the minimum

amount of dissipation possible to eliminate oscillations, while not affecting the accu-

racy with artificial viscosity.

In an ideal scenario, a sophisticated and well understood implicit smoother such

as that presented by Visbal [107] would be used. Its order is easily variable and can be

increased up to 10 for use with high order discretisation techniques. In addition such

implicit filtering scheme is less sensitive to user input coefficients, reducing scope for

81

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Figure 3.3: Result obtained with different filtering coefficients. Excessive damping on

top, correct solution on the bottom. Non-dimensionalised µt shown.

error and increasing scope for automation and robustness. It is recommended by Visbal,

Wang [8, 97] as well as generally accepted in the field that the filtering operation should

be at least two orders of accuracy higher than the main N-S discretisation scheme. The

filter by Visbal [107] however requires a tridiagonal system of equations to be solved,

capability which is relatively immature within the code in the parallel OPS framework.

Explicit, larger stencil or less sophisticated smoothers must therefore be employed

at least initially and these are generally much less optimised for providing the right

amount of smoothing. It was also found via numerical experiments in the present work

that explicit smoothers tend to be more sensitive to input coefficients. Excellent reviews

of the smoothers, both explicit and implicit with reasoning and derivations are provided

by Ekaterinaris [148], Pulliam [149] and more recently in 2016 by Maulik et.al. [150].

The first smoother investigated was that of Turbostream code, by Brandvik and Pul-

lam [65]. A dissipation term Di is added to the right hand side of the Navier-Stokes

equations on a per-direction basis in each direction:

Di = ε
(2)
i

(
δ 2φ

δx2
i

)
+ ε

(4)
i

(
δ 4φ

δx4
i

)
(97)

82

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Where φ is a variable to be filtered (typically the very minimum is velocity vector

components) and xi is the direction along which the filtering is done. Both constant

and variable non-dimensional coefficients ε
(2)
i , ε

(4)
i were tried. Where variable, the

definition reads:

ε
(2)
i = κ(2)αi (98)

ε
(4)
i = max

(
0,κ(4)− ε

(2)
i

)
(99)

Where κ(4) and κ(2) are again user supplied non-dimensional coefficients based on past

experience and αi is a pressure oscillation sensor and reads:

αi =

∣∣pi+1, j,k −2pi, j,k +2i−1, j,k

∣∣
pi+1, j,k +2pi, j,k +2i−1, j,k

(100)

Discretisation of the derivatives is performed to 2nd order of accuracy via standard

central differences:

δ 2φ

δx2
i

= φi+1, j,k −2φi, j,k +φi−1, j,k (101)

δ 4φ

δx4
i

= φi+2, j,k −4φi+1, j,k +6φi, j,k −4φi−1, j,k +φi−2, j,k (102)

With standard one sided differences near the boundaries.

This smoother was tried with and without the pressure sensor, with and without 4th

derivatives and proved to be unsuccessful as with the current numerical setup the os-

cillations were not removed even with very high values of coefficients. The solution

always lead to divergence via global oscillations, regardless of initial conditions and

search for further stabilising solution continued.

Ciardi et.al. propose a self-adapting 2nd order explicit smoother [151]. The smoother

is used successfully in the framework of Finite Volume, staggered code Hydra, devel-

oped by Rolls-Royce. The idea is that smoothing coefficients are set based on ’wiggles’

or local oscillations of any variable, not just pressure and the smoothing coefficient is

varied locally, on a per-cell basis rather than based on an input value. Only the mini-

mum and maximum allowed values of coefficients are specified.

Chen in his PhD thesis, p.112 [147] uses relatively simple explicit method of smoothing

primitive flow variables and finds it is not overly sensitive to user input coefficients:

φ new = φ old +ω

(
δ 2φ old

δx2
+

δ 2φ old

δy2

)
(103)

83

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Where ω is an input coefficient. The smoother is effectively a two dimensional (three

in 3D) sum of derivatives in each direction that overwrites variables with those of in-

creased viscosity. ω in the range of 0.05 and 0.2 was used by Chen and he concluded

that it provides similar levels of smoothing as widely used implicit smoother as de-

scribed by Anderson [152]. This smoother was implemented in its original form and

found to damp the solution so drastically that any separation from the Immersed Bound-

ary Surface was impossible, no matter the Reynolds number or value of the coefficient.

If the coefficient was reduced to 0.0001 the solution was not damped however began to

exhibit oscillations leading eventually to convergence. This may only be due to the use

of IBM and was not investigated further.

Instead, the following two modifications were made to this smoother:

• Fourth order derivatives were included and again discretised with standard central

differences as explained above.

φ new = φ old +ω(2)

(
δ 2φ old

δx2
+

δ 2φ old

δy2

)
+ω(4)

(
δ 4φ old

δx4
+

δ 4φ old

δy4

)
(104)

• The modified scheme was combined with the Self-adaptive Discretization Scheme

(SDS) technique for coefficients as described in Jefferson-Loveday PhD thesis,

p.55 [153]

The SDS scheme locally varies the value of coefficients with minimum/maximum bounds,

similar to that of Ciardi [151], however a combination of second and fourth order deriva-

tives is employed and the variables are overwritten instead of a term added. At the end

of each time step, or pseudotimestep for steady iterations, each cell is probed for neigh-

bouring oscillations and the local smoothing coefficient is increased if the oscillation is

detected, decreased if it isn’t. This proved the most effective technique to date and is

the state of art in the present work.

Finally, on the subject of filtering it must also be mentioned that in the present numeri-

cal setup values of filtering coefficients appear to have great effect on the final solution.

Typical values for second and fourth order coefficients used by other researchers were

84

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

investigated [154, 155, 156] and found to be:

ε(2) = 0.2−0.5 (105)

ε(4) = 0.004−0.0156 (106)

Typical values, limits and change increment used in the present work are:

εmax = 0.001 (107)

εmin = 0.000001 (108)

∆ε = 0.000001 (109)

The exact values very much depend on a range of practical factors such as non-dimensionalisation

techniques for N-S, overall combination of numerical schemes, typical grid resolutions,

Re to name few. The goal however with any type of coefficients like this in filtering

schemes is to arrive at the minimum possible values where numerical stability of solu-

tion is achieved. Filtering schemes are hugely important and very few if any CFD codes

would be numerically stable without them but they are fundamentally unphysical and

not derived from conservation laws or other physical assumptions.

The values change significantly depending on the numerical and computational meth-

ods employed by different researchers and based on numerical experiments performed

here it is suspected that the IBM and the filtering procedure may be strongly interde-

pendent. The values in the SDS scheme are also time and space dependent. This would

be an excellent area to deploy a Machine Learning algorithm in the future.

Another variation and discussion of artificial viscosity is provided by Anderson p.238

[152]. This smoother, combined with varying SDS coefficients is used as baseline.

Another common technique tested was upwinding as described by Patankar [157].

This method is widely used by commercial Finite Volume solvers such as ANSYS Flu-

ent or StarCCM. A limiter with variable coefficient is usually employed to blend in-

herently unstable pure central differencing [149] with the upwind-discretised value to

achieve maximum stability with minimum artificial dampening of the solution. Third

order upwind formulae are used to discretise convective terms for all variables:

u− =
2ui−1 +3ui −6ui−1 +ui−1

6∆x
(110)

u+ =
−ui+2 +6ui+1 −3ui −2i−1

6∆x
(111)

85

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Where either u− or u+ are used depending on local velocity sign. As the velocities are

stored in memory in the real space, they must be transformed to computational space to

obtain contravariant velocities as described in Visbal [107]:

U = ξxu+ξyv+ξzw (112)

V = ηxu+ηyv+ηzw (113)

W = ζxu+ζyv+ζzw (114)

Where ξ ,η ,ζ denote metric terms in each spatial direction respectively. Lowercase are

real space, uppercase are computational space.

A promising explicit smoother is presented by Pulliam et.al. [141], p. 96-101.

The smoother is sophisticated and simpler ones will be tested first before proceeding

with this one. In two dimensions, dissipation terms Dξ and Dη are added to ξ and η

directions of the inviscid flux derivative respectively (added to the R.H.S. of the N-S,

so essentially as they were viscous terms)

(
Dξ

)
j,k

= ∇ξ
(

ε(2) |̂A|J−1
)

j+1/2,k
∆ξ Q j,k (115)

−∇ξ
(

ε(4) |̂A|J−1
)

j+1/2,k
∆ξ ∇ξ ∆ξ Q j,k (116)

(Dη)i, j = ∇η
(

ε(2) |̂A|J−1
)

i+1/2,k
∆ηQi,k (117)

−∇η
(

ε(4) |̂A|J−1
)

i+1/2,k
∆η∇η∆ηQi,k (118)

Where |̂A| is matrix that is usually calculated via implicit techniques by |̂A| = δ Ê

δ Q̂
and

is computationally demanding and difficult to solve. It can be approximated by the

spectral radius of Â given by σ :

|̂A| ≈ σ = |U |+a

√
ξ 2

x +ξ 2
y (119)

U = ξxu+ξyv+ξzw (120)

Similarly for the other directions:

|̂B| ≈ σ = |V |+a

√
η2

x +η2
y (121)

V = ηxu+ηyv+ηzw (122)

Jacobian inverse J−1 is given by:

J−1 =
1

Vol
(123)

86

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

Midpoint values of the second and fourth order terms can be avaluated by: (similarly

for other directions)

(
ε(2) |̂A|J−1

)
j+1/2,k

=
1

2

[(
ε(2) |̂A|J−1

)
j,k
+
(

ε(2) |̂A|J−1
)

j+1,k

]
(124)

(
ε(4) |̂A|J−1

)
j+1/2,k

=
1

2

[(
ε(4) |̂A|J−1

)
j,k
+
(

ε(4) |̂A|J−1
)

j+1,k

]
(125)

Pressure sensor is used to control the second order terms. The sensor is capable of

detecting shock waves and is similar to previously used one. The difference is that

sensor coefficients are taken at neighbouring nodes and maximum value of the sensor

taken:

ε
(2)
j,k = κ2max

(
Γ j+1,k,Γ j,k,Γ j−i,k

)
(126)

Γ =

∣∣∣∣
p j+1,k −2p j,k + p j−1,k

p j+1,k +2p j,k + p j−1,k

∣∣∣∣ (127)

ε
(4)
j,k = max

(
0,κ4 − ε

(2)
j,k

)
(128)

Differencing operators ∆ and ∇ required for the smoother are defined as:

∇φ j = φ j −φ j−1 (129)

∆φ j = φ j+1 −φ j (130)

Typical value of constants in this model are:

κ2 = 0.5 (131)

κ4 = 0.02 (132)

And finally, as the dissipation terms are applied to all the variables, Q is the solution

vector as presented before:

Q =

ρ

ρu

ρv

ρw

ρe

(133)

Based on the compounded differencing operators, terms can be expanded to:

∇ξ ∆ξ Q j,k = Q j−1,k −2Q j,k +Q j+1,k (134)

−∇ξ ∆ξ ∇ξ ∆ξ Q j,k =−Q j−2,k +4Q j−1,k −6Q j,k +4Q j+1,k −Q j+2 (135)

87

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

And the final form in 2D reads:

Di =
1

2

(
Qi−1, j −2Qi, j +Qi+1, j

)[(
ε(2) |̂A|J−1

)
i, j
+
(

ε(2) |̂A|J−1
)

i+1, j

]

(136)

+
1

2

(
−Qi−2,k +4Qi−1, j −6Qi, j +4Qi+1, j −Qi+2

)[(
ε(4) |̂A|J−1

)
i, j
+
(

ε(4) |̂A|J−1
)

i+1, j

]

(137)

As the fourth differential terms include −/+ 2 stencil, definition of the fourth order

term near boundaries must be modified and replaced with the following relation:

−∇ξ ∆ξ ∇ξ ∆ξ Q j,k =−1×Q j−2,k +4×Q j−1,k −5×Q j,k +2×Q j+1,k +0×Q j+2,k

(138)

−∇ξ ∆ξ ∇ξ ∆ξ Q j,k = 0×Q j−2,k +2×Q j−1,k −5×Q j,k +4×Q j+1,k −1×Q j+2,k

(139)

Where the top formula is applied near jmax wall and the bottom near jmin wall. Similar

approach is done for the other directions. This artificial dissipation scheme is formally

third order and capable of detecting and handling shocks with stability and appropriate

level of dissipation. The definition near the walls is first order and proved to be dissi-

pative and stable. Clearly this filtering scheme is rather complex and implementation

would be time consuming, however it is judged such sophisticated techniques will be

necessary to achieve a good balance of accuracy and dissipation with the IBM method.

In final summary, there are five major artificial dissipation schemes tested and imple-

mented in the code:

1. Simple explicit smoother as described by Anderson et.al. [152, 158]

2. 2nd order derivative technique as used by Chen [147]

3. A variant of the upwinding method

4. Pulliam advanced explicit shock capturing [141]

5. Self-adaptive Discretisation Scheme (SDS) [153]

The implicit high order filter by Visbal has not been implemented due to lack of a ro-

bust ADI solver at the time but is very much recommended in future works. The filters

88

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

can be combined with each other and with careful consideration one should be able to

arrive at a better balance of dampening and accuracy this way. In the future it is also

recommended to try midpoint discretisation with all the central differences and investi-

gate staggered arrangement for storing variables. The latter will likely require re-design

of majority of the code however most commercial CFD codes appear to be using this

technique.

One final problem to mention in this section is the well known fact low Mach

(approx. < 0.3) impairs convergence in compressible solvers [159]. While there are

specific schemes to handle this, they will not be implemented initially and flows of

Ma > 0.3 will largely be used. Where that is not possible it will have to be accepted

that convergence rates are suboptimal before a scheme to handle that issue is imple-

mented.

3.2.12 Code procedures

A brief high level schematic of the iteration loops inside the program is shown below.

Not all the routines are shown for obvious reasons.

89

3.2 Governing Equations: GPU IBM code 3 METHODS & THEORY

preprocessing, set

initial values etc.

update viscosity

set pseudotimestep

get residual

Runge Kutta

stage update

Update field vari-

ables u,v,w, p,T

Update Energy

and Density

Finished

four RK

stages for

main

N-S?

4 RK stages needed

Set pseudotime for

scalar equation(s)

get residual for scalar

Perform RK stages

and updates for the

scalar equation(s)

Finished

four RK

stages for

scalar?

Has the

solution

con-

verged?

4 RK stages needed
Iterate until

convergence

compute IBM co-

efficients. can be

skipped if no IBM

set boundary con-

ditions and convert

to HDF5 format

write out data

(parallel HDF5)

convert to standard

format and put data

together (tecplot)

no

no

no

Figure 3.4: Solution schematic

90

3.3 IBM methodology 3 METHODS & THEORY

3.3 IBM methodology

3.3.1 Immersed Boundary Method fundamentals

The IBM method implemented here is described well in the papers of Ghias et.al. [31],

Nam et.al. [41] and finally the IIBM improvements by Chi et.al. [30] and those three

papers underpin the present work. A summary of implementation will be given here as

well as the necessary modifications to use the IBM method with the ADI scheme.

In general, any IBM simulation begins with creation of two grids; structured back-

ground grid on which the solution is performed and unstructured grid of an arbitrary

geometry of interest. The grid generation steps can be done in any standard meshing

package and the packages need not be the same for each task. Then nodes inside/outside

of the geometry are identified by the preprocessing algorithm and solid (inside) nodes

within computational stencil of the nearest fluid nodes are marked as Ghost Nodes.

Normal distances from the Ghost Nodes to the unstructured boundary are computed.

This also allows computation of normal vectors to the boundary, required to impose

Boundary Conditions correctly. Further Image Points (IP) are computed by extending

via normal vector inside the fluid domain. If the IP does not fall completely within a

cell made entirely of fluid cells, distance is extended until it does. This forms the basis

of the Improved IBM as opposed to the classic Ghost Cell IBM where non-complete

cells are allowed and accounted for as will be explained ahead. Interpolation coeffi-

cients for each IP are then computed so that field variables can be quickly interpolated

to IP during the iterations. All the values are written out as Hierarchical Data Format 5

(HDF5) for the solver which then reads all the data and meshes and iterates as outlined

in previous chapters. Given the overall process there are several important algorithms

that must be devised, implemented and tested as follows.

To interpolate from 4 neighbouring points on the Structured Grid to the Image Point

simple bilinear interpolation is used:

φn (n = 1,2,3,4) are the 4 neighbours. φ is be a flow variable to be interpolated, pres-

sure, velocity etc., Cn are the interpolation coefficients to be found and x,y,z are spatial

coordinates of a node.

91

3.3 IBM methodology 3 METHODS & THEORY

[
δφ

δn

]

BI

=C1 (yBInx + xBIny)+C2 (nx)+C3 (ny)+C4 (140)

φ(x,y) =C1(xy)+C2(x)+C3(y)+C4 (141)

(142)

There are 4 sets of (xn,yn) around the Image Point, therefore:

φ1

φ2

φ3

φ4

=

x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1

C1

C2

C3

C4

(143)

And of course: {
C

}
=
[
V

]−1{
φ
}

(144)

Let us define ann as the solution to matrix V:

[
V

]−1
=

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

=

x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1

−1

(145)

C1

C2

C3

C4

=

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

φ1

φ2

φ3

φ4

(146)

Now C’s are a function of φ ’s, they will change each iteration as variables update.[
V

]−1
however won’t change and can be precomputed based on grid and geometry be-

fore solution. This step, however simple, saves a great deal of computation over time.

92

3.3 IBM methodology 3 METHODS & THEORY

Then

C1 = a11φ1 +a12φ2 +a13φ3 +a14φ4 (147)

C2 = a21φ1 +a22φ2 +a23φ3 +a24φ4 (148)

C3 = a31φ1 +a32φ2 +a33φ3 +a34φ4 (149)

C4 = a41φ1 +a42φ2 +a43φ3 +a44φ4 (150)

Substituting C′s into φ to compute value at the Image Point: (Capital I for Image Point)

φ(xI,yI) =C1(xIyI)+C2(xI)+C3(yI)+C4 (151)

φ(xI,yI) = (a11φ1 +a12φ2 +a13φ3 +a14φ4)(xIyI) (152)

+(a21φ1 +a22φ2 +a23φ3 +a24φ4)(xI) (153)

+(a31φ1 +a32φ2 +a33φ3 +a34φ4)(yI) (154)

+a41φ1 +a42φ2 +a43φ3 +a44φ4 (155)

Grouping by a variable φn

φ(xI,yI) = φ1(a11xIyI +a21xI +a31yI +a41) (156)

+φ2(a12xIyI +a22xI +a32yI +a42) (157)

+φ3(a13xIyI +a23xI +a33yI +a43) (158)

+φ4(a14xIyI +a24xI +a34yI +a44) (159)

Defining the final interpolation coefficient α for simplicity:

φ(xI,yI) =
n=4

∑
i=1

αiφi (160)

93

3.3 IBM methodology 3 METHODS & THEORY

Where α ′s are

α1 = a11xIyI +a21xI +a31yI +a41 (161)

α2 = a12xIyI +a22xI +a32yI +a42 (162)

α3 = a13xIyI +a23xI +a33yI +a43 (163)

α4 = a14xIyI +a24xI +a34yI +a44 (164)

And the φ ′s are the solution retrieved from the neighbouring nodes after each iteration.

α ′s are computed in Matlab before the solution begins, hence the solver doesn’t have

to explicitly have access to the boundary grid, only the cartesian solution grid. This

is another very important reason for performing these pre computations as accessing

the unstructured grid from a structured solver point of view would be expensive either

memory wise or communication wise.

Then after the value at the Image Point is interpolated, there are two types of Bound-

ary Conditions that can be applied at the Ghost Node to which the IP belongs:

Dirichlet:

φGN =−φIP (165)

and Neumann:

φGN = φIP +∆lψ (166)

Where ∆l is distance from the Image Point to the Ghost Node and ψ is the boundary

condition applied for the given variable. For pressure and density it will most likely be

ψp = ψρ = 0 (167)

If using nonzero heat flux, it would be

ψq̇ = q̇B (168)

94

3.3 IBM methodology 3 METHODS & THEORY

For adiabatic B.C. either zero heat flux or fixed temperature T at the boundary can be

used.

With the standard non-Improved GCIBM [31] a second look at these matrices is needed

to address the following edge cases:

• One or more points Cn is located inside the solid, hence physical values of vari-

ables not available.

• Interpolation point is the Ghost Node itself.

These cases must be somehow handled or will result in undefined behaviour most

likely leading to immediate divergence or at best strongly inaccurate solution. The

points can be identified in pre-processing and are replaced with nearest points on the

boundary and the boundary’s coordinates as well as the value taken (variable at the

boundary).

This was the first formulation implemented and while is not preferred for majority of

simulations it can likely be useful in certain scenarios:

C1

C2

C3

C4

=

x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

x4y4 x4 y4 1

−1

φ1

φ2

φ3

φ4

(169)

If the last point lies inside solid (order doesn’t matter, just a convention to write it

this way). Need to create two sets of modified matrices [V], one for Neumann one for

Dirichlet B.C.

Dirichlet interpolation matrix:

C1

C2

C3

C4

=

x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

xByB xB yB 1

−1

φ1

φ2

φ3

φB = 0

(170)

95

3.3 IBM methodology 3 METHODS & THEORY

Neumann interplation matrix:

C1

C2

C3

C4

=

x1y1 x1 y1 1

x2y2 x2 y2 1

x3y3 x3 y3 1

yBnx + xBny nx ny 0

−1

φ1

φ2

φ3

ψB = 0

(171)

Consequently, there will be two sets of αi constants, one for Neumann one for Dirichlet.

In the bilinear equation

φ(xI,yI) =
n=4

∑
i=1

αiφi (172)

Either (αi)V N or (αi)D will be used, depending whether φ is Dirichlet type BC (u, v, w,

T) or Von Neumann type BC (ρ , p, q).

At each of node of the background structured grid the following quantities are ex-

ported from the preprocessing script to the solver:

• 2 x 4 sets of (i, j) locations - these will be used to specify from which nodes to

access and retrieve the solution φi - this is 16 integers per node for a 2D case.

• 2 sets of αi - this is 8 doubles

• ∆l, rghost - length between IP and GN - one double. Not necessary initially until

non-zero gradients at the wall are required.

This is 10 doubles and 16 ints for 2D case. On a 64-bit machine integer is 4 bytes, dou-

ble is 8 bytes. Total of 144 bytes per grid point are necessary for the IBM in the main

solver. This results in 140.625 mb of extra ’IBM’ data per milion grid points needed.

The considerations are important when dealing with GPUs as it is ideal if the entire

simulation is stored inside dedicated GPU memory; time consuming memory transfers

can otherwise occur and bottleneck the simulation.

With the Improved IBM, the constants should be set so that it is guaranteed that all

interpolation points are fluid nodes in all geometric situations. The problem is shown

on Figure 2.3 or Figure 3.5. The IIBM avoids incomplete interpolation and using two

sets of matrices and was in fact a main motivation for the Improved IBM version by Chi

[30]. This is achieved by comparing the distance of the Ghost Node to the boundary

with a factor δ and increasing that distance for Image Point purpose as shown on image

2.3. By adjusting the constant appropriately it is possible to optimise so that complete

96

3.3 IBM methodology 3 METHODS & THEORY

Figure 3.5: Demonstration of problematic point in GC IBM.

interpolation is achieved but the nodes do not lie too far away from the geometry, mak-

ing the solution unstable and less accurate. The following factors were tested:

δ = φ
√

2 max(∆x,∆y,∆z) (173)

δ = φ
√

2 min(∆x,∆y,∆z) (174)

δ = φ
√

2
∆x,∆y,∆z

3
(175)

Where φ is a case-dependent ’tweak’ factor introduced by the author. It was found it

improves the stability and varies from 0.8−1.2 depending on the grid refinement used.

It was also found that altogether different definitions of δ were suitable for different

grid refinements and geometric combinations.

Good example of this issue is shown on Figure 3.6. It is evident from Figure 3.6 that

definition of δ based on maximum cell extent would produce a very unstable IIBM

set of coefficients as the majority of the interpolation points lie very far away from the

boundary. Due to rapid changes of aspect ratio in this case, δmin is the most suitable.

For grids with more uniform aspect ratio however, average of even maximum δ is the

most suitable as it produces coefficients well away from the boundary (which is desired)

but not too far to cause instabilities. In case the grid does not fit into one of the three

categories of δ (min, avg, max), the closest match is used and tweak factor φ adjusted

97

3.3 IBM methodology 3 METHODS & THEORY

away from the default value of 1 to achieve maximum stability. It is clearly a manual

process for each grid and some automated checking could be introduced in the future to

detect the grid and set the scheme appropriately.

The above procedure generally worked well however some deviation was required to

achieve stable solution in certain situations. For instance average grid size rather than

maximum was used if the standard deviation of cell size was large, or
√

3 factor was

used to push the Image Points further into the fluid domain. The author did not man-

age to arrive at a consistent prescription that worked for all situations equally well. It

would certainly be an area of further study and potentially an application for a Machine

Learning algorithm to set factor δ individually in each cell based on past data.

Additionally the IIBM simulations with adjustment factor were only performed on a

2D plane here. It is expected that complexity of manually tweaking the δ factor will be

significantly greater for a 3D simulation, as will likely be the stability issues.

Next, with IIBM, additional treatment is needed to handle the Extra Image Point

resulting from the adjustment factor δ .

To impose Dirichlet B.C.: (assuming δu
δx

= 0, non-zero gradients require additional

treatment)

ughost = uEIP −
(

1+
2rghost

δ

)
uIP (176)

And Neumann B.C.:

ughost = uIP − (uEIP −uIP)
δ − rghost

δ
(177)

The procedure is explained in more detail in Chi et.al. [30].

In addition, in the vicinity of any IBM walls (Fluid Nodes with one or more Ghost

Nodes in their stencil), special treatment can be applied, similarily to the vicinity of

standard walls. Stencil can be modified to use one-sided differences or order of dis-

cretisation lowered near the boundaries. This is not strictly necessary and higher order

formulations can be used however it was found it improves stability of the solution in

near-wall IBM region very notably. All discretisation routines are modified and it is

carefully ensured that the stencil uses valid nodes where physical values are present

(i.e. nothing uses Solid Node values, where variables are undefined but memory is still

allocated and accessible correctly at each rank).

98

3.3 IBM methodology 3 METHODS & THEORY

One final practical issue to mention was when a Ghost Node distance to the nearest

wall was very small relative to cell size as shown on Figure 3.7. Apart from this most

likely leading to problems with the IIBM tweak factor δ it also caused non-insignificant

inaccuracies in normal vector computation hence eventually the location of the Image

Points for interpolation. The only satisfactory solution the author managed to devise

for this problem under time pressure was local grid refinement to prevent this situation

from occurring in the first place. An extra check was put in place in the code to detect

it and the user was alerted if this problem arose. It is not ideal and adds an extra man-

ual step but was a robust temporary workaround needed for development. A long term

solution would be a double precision accurate normal computation and extra tweaks of

the δ factor specifically designed to handle this situation.

99

3.3 IBM methodology 3 METHODS & THEORY

Figure 3.6: Tweak factor δ investigated. From the top, δ = min, middle δ = avg,

bottom δ = max. Not how the tweak factor makes the IBM interpolations use nodes

much further from the boundary, leading to instabilities.

100

3.3 IBM methodology 3 METHODS & THEORY

Figure 3.7: Demonstration of extremely small relative distance of Ghost Node to the

wall.

101

3.3 IBM methodology 3 METHODS & THEORY

3.3.2 Auxiliary relations

When performing unsteady calculations, it is still the mean and Root Mean Square

(RMS) field that are usually of most interest. A routine of cumulative average was im-

plemented to sample the flow at the end of each time-step and add the values to the

overall average as follows:

φ n+1 =
(n−1)φ n +φ

n
(178)

φ n+1 =
(n−1)φ n +φ 2

n
(179)

(180)

Where the first formula samples for mean, the second for mean of the sum of squares,

required to compute the R.M.S. To prove correctness, consider n = 1, i.e. the first time

step. The mean value is simply the current value of the variable. In subsequent time

steps, the next values are weighted appropriately based on time step and added to the

overall mean.

R.M.S.=

√
a2

1 +a2
2 +a2

3 + ...+a2
n

n
(181)

Running mean of sum of squares is kept in memory and square root taken just before

writing out the results. The unsteady sampling can be switched on or off in the code, or

set to sample after a user-specified value of time step.

Another way:

φ n+1 = φ n +
φn+1 −φ n

n+1
(182)

3.3.3 Boundary Conditions for the Immersed Boundary Method

Although the boundaries of the inner shape of interest are imposed via the IBM method,

the outer domain is defined by conventional boundary conditions. The B.C.s are defined

as follows.

102

3.3 IBM methodology 3 METHODS & THEORY

Inflow:

δ p

δn
= 0 (183)

T = Tinput (184)

U =Uinput (185)

V =Vinput (186)

Outflow:

p = pinput =
pre f

ρre f u2
input

(187)

δT

δn
= 0 (188)

δU

δn
= 0 (189)

δV

δn
= 0 (190)

Viscous walls:

δ p

δn
= 0 (191)

δT

δn
= 0 (192)

U = 0 (193)

V = 0 (194)

Inviscid walls:

δ p

δn
= 0 (195)

T = Tinput (196)

δU

δn
= 0 (197)

δV

δn
= 0 (198)

Finally translational periodic boundaries without pressure gradient can be imposed by

simply copying all the fundamental variables between the corresponding edges. More

complex periodic boundaries will need much more careful consideration and involve

adding extra terms to N-S equations to balance out the ’looped’ periodic energy, for

instance as in Patankar [160] or the SST-SAS computations in Chapter 4, Figure 4.12.

However during the initial development only the simplest translational periodicity will

be considered for ease of debugging and verification.

103

3.4 Commercial codes FV methodology 3 METHODS & THEORY

3.3.4 Near wall scheme modifications

As more simulations were performed more edge cases arose and some nodes near the

wall must be modified for the scheme to remain viable. Apart from the usual near-wall

treatment where no nodes are available right at the grid edges for central differencing

schemes there was the issue of Ghost Nodes located on the boundaries of the grid such

as shown on Figure 6.13. This only happens if the IBM imposed geometry is directly

connected to the edge of the structured mesh and the IBM geometry is directly perpen-

dicular to the non-IBM wall. It is a very specific situation but it does happen with a

certain regularity. The crux of the issue is how to handle the very edge nodes which

have multiple designations: one ID coming from the wall and one coming from the

IBM (i.e. the Ghost Node designation). Several ways to handle this were devised:

• keep original (non-GN) node designation and treat as wall inflow etc.

• force interpolation along a wall line and use effectively only two nodes not four

to interpolate onto Image Points

• force the IP and EIP to shift slightly away from the wall, it will cause minor error

but proved to be the most stable of all options.

The list is not exhaustive and there are likely other more numerically sophisticated

methods of solving this issue however the last option proved to be sufficient for the time

being.

3.4 Commercial codes FV methodology

3.4.1 SST – SAS

The primary model investigated to simulate the high Re, turbulent flow in the present pa-

per was the Shear Stress Transport-Scale Adaptive Simulation (SST-SAS) [161]. From

a mathematical point of view it was the standard k−ω URANS model with an extra

QSAS term added to the specific turbulence dissipation rate ω equation:

QSAS = max

[
ζ2κS2

(
L

LV K

)2

−C
2k

σφ
max

(|∇ω|2
ω2

,
|∇k|2

k2

)
,0

]
(199)

Physically, the model and its functioning is discussed in more detail by the authors

previously in [162] as well as by its creators Menter et.al. [161] [115] and various

other authors mentioned previously. In essence, the QSAS term is based on ratio of

104

3.4 Commercial codes FV methodology 3 METHODS & THEORY

turbulent length scale to the von Karman length scale and is only significant in regions

of high strain and unsteadiness. Where the grid is refined sufficiently to resolve the

flow as judged by the term, ω is increased, eddy viscosity is lowered and more of the

energy spectrum should be resolved. In this case, once the resolving mode is triggered

the underlying k −ω SST formulation begins to act as a subgrid scale model. Eddy

viscosity is limited further by the use of the wall adapting local eddy viscosity (WALE)

subgrid model. It is possible to simply use an artificial numerical viscosity instead of a

subgrid model for LES [163] but this is another topic altogether and a standard approach

of an explicitly defined subgrid model will be used.

3.4.2 Artificial forcing for the SST – SAS model

As the original SST-SAS formulation was deemed insufficient to allow the grid to re-

solve largest scale turbulent regions correctly, a synthetic turbulence generator was

added in the hope to improve this. The formulation is based on the work of Kraich-

nan(1969), Batten(2004), Smirnov(2001) and Keating(2004) and was formally devised

by Menter et.al. [161]. Primary motivation for trying this technique was that it could

allow the cost effective SAS-SST to be used while avoiding the more expensive DES. If

the synthetic turbulence generator does not improve the SST-SAS accuracy for a given

application it would appear the SAS is not suitable to be used. Additionally, the for-

mulation was implemented in ANSYS Fluent manually via the User Defined Function

(UDF) functionality. This was not necessary in ANSYS CFX as the option was natively

available.

As previously, the long handed, expanded version, will be presented. The formulation

of the artificial forcing for the SST-SAS model is as follows: Let f actor = f be:

f =

√
2

3
k

√
2

N
(200)

u⃗ (⃗x, t) = f
N

∑
n=1

(p⃗ cos(argn)+ q⃗ sin(argn)) (201)

Where:

105

3.4 Commercial codes FV methodology 3 METHODS & THEORY

p⃗n =

px

py

pz

n

= pn
i = εi jkηn

j dn
k =

η2d3 −η3d2

η3d1 −η1d3

η1d2 −η2d1

n

(202)

q⃗n =

qx

qy

qz

n

= qn
i = εi jkξ n

j dn
k =

ξ2d3 −ξ3d2

ξ3d1 −ξ1d3

ξ1d2 −ξ2d1

n

(203)

With i = 1,2,3, εi jk is the alternating Levi-Cita symbol and η⃗n, ξ⃗ n, d⃗n and ωn are

random numbers (N = N(φ , ψ)) from 3D or 2D or scalar gaussian distribution of mean

φ and standard deviation ψ . Number of modes is usually N = 200 and each mode has

its own unique random set of values. n denotes mode, not the power of variable.

η⃗n =

ηx

ηy

ηz

n

; ξ⃗ n =

ξx

ξy

ξz

n

; d⃗n =

dx

dy

dz

n

(204)

Mean and standard deviation are: ηn
i = N(0,1), ξ n

i = N(0,1), dn
i = N(0,0.5),

ωn = N(1,1). Note ωn is scalar, not a vector

argn is:

argn = 2π

(
d⃗nx⃗

Lt
+

ωnt

τt

)
= 2π

(
dn

i xi

Lt
+

ωnt

τt

)
(205)

= 2π

(
dn

x x+dn
y y+dn

z z

Lt
+

ωnt

τt

)
(206)

Where x⃗ is the standard cartesian position vector and Lt , τt are length and time scale of

turbulence coming from the RANS model given as:

Lt =CL

√
k

Cµω
; τt =

Lt√
k

(207)

Where CL = 0.5, Cµ = 0.09, ∆t is the timestep and ∆h = max(∆x,∆y,∆z) is the maxi-

mum cell extent in any direction.

106

3.4 Commercial codes FV methodology 3 METHODS & THEORY

Also Nyquist limiter is imposed on the length and time scales:

τt = max(2∆t ωn,τt) (208)

Lt = max
(

2∆h |d⃗n|,Lt

)
(209)

Where |d⃗n| is magnitude of the wave number:

|d⃗n|=
√

dn
i dn

i =
√

dn
x

2 +dn
y

2 +dn
z

2 (210)

This can now be expanded into the three components in 3D, or two in 2D:

ux = ux (⃗x, t) = f
N

∑
n=1

(pn
x cos(argn)+qn

x sin(argn)) (211)

uy = uy (⃗x, t) = f
N

∑
n=1

(
pn

y cos(argn)+qn
y sin(argn)

)
(212)

uz = uz (⃗x, t) = f
N

∑
n=1

(
pn

z cos(argn)+qn
z sin(argn)

)
(213)

Note argn is constant across directions but changes with modes.

Having computed u⃗ (⃗x, t) it can be used in the momentum source:

Fx−mom =
ρux

∆t
(214)

Fy−mom =
ρuy

∆t
(215)

Fz−mom =
ρuz

∆t
(216)

And turbulent kinetic energy:

FT KE =−0.5
ρ (⃗u)2

∆t
(217)

Where u⃗2 probably is:

u⃗2 = u2
x +u2

y +u2
z (218)

107

3.4 Commercial codes FV methodology 3 METHODS & THEORY

The algorithm in practice is as follows:

• generate η⃗n; ξ⃗ n, d⃗n and ωn with given mean and standard deviations

• compute p⃗n and q⃗n from above

• compute the time and length scale of turbulence with the Nyquist limiter

• compute argn for a given mode

• compute the velocity fluctuation u⃗ components ux, uy and uz with all the above

• apply to momentum and TKE equation as constant source terms

3.4.3 Assessment of resolution of RANS-LES methods

One of the primary methods of quantifying the resolved content of a hybrid RANS-

LES simulation (or any simulation really, it is equally applicable) is concept of two-

point correlation as described in the work of Gaitonde et.al. [164]. The paper has good

overall description of the method used here and provides more detailed mathematical

formulation.

There are two main ways two point correlation can be done:

• 1) spatial two-point correlation

• 2) temporal self-correlation

Technique 1) involves sampling a set of equidistant points over time and creating a

time-averaged product between the starting point and all the subsequent points as ex-

plained below but also in Gaitonde et.al. [164]. A ’correlation’ factor is then obtained

for each point with respect to the starting location. The plotted set of factors then allows

to assess how strongly the flow is correlated in space hence how much of the recirculat-

ing region has been explicitly captured by the grid.

Technique 2) involves sampling only a single point in space over a long period of time

to capture both the high and low frequency temporal oscillations. By fourier analysis

and processing of this data, an energy spectrum can be plotted and compared against

standard LES-like distributions. This allows a quantified comparison between the flow

in question and a ’typical’ resolved simulation in a given application. For practical

purposes all points used for 1) will have their self-correlation computed but also three

additional points in other parts of the domains will be used to cross check for any dis-

108

3.4 Commercial codes FV methodology 3 METHODS & THEORY

crepancies. It is worth noting that the points choice for self correlation is just as impor-

tant as the set chosen for two-point technique - the location must be in the appropriate

region of interest as this is where the ’resolved’ content will be measured.

Both methods, while quantitative, carry a range of assumptions and errors. For instance,

homogenous turbulence is assumed and the choice of sampling points for both 1) and 2)

can strongly influence the result. While majority of turbulence is indeed homogenous

and multiple sets of points can be sampled to get an idea of variations these are inaccu-

racies that cannot be avoided. Nevertheles the two-point correlations are widely used in

the hybrid RANS-LES community and the quantitative result provides excellent base

for comparison between other researchers’ simulations.

Spatial two-point correlation as in 1) will now be explained:

Let A and B be two points in space and:

u = u+u′

uA mean velocity component at point A

uB mean velocity component at point B

u′ fluctuating velocity component

u instantaneous velocity

The two-point correlation is the time-averaged product of instantaneous velocities

at two points. Velocities do not have to be the same, i.e. we might have uA correlated

with vB, or any variable not necessarily velocity

RAB = uAuB =
(
uA +u′A

)
(uB +u′B) = uAuB +2uAu′B +u′Au′B (219)

But

uAu′B = 0 (220)

So:

(
uA +u′A

)
(uB +u′B) = uAuB +u′Au′B (221)

The procedure is as follows:

109

3.5 Chapter conclusions 3 METHODS & THEORY

• define a line in space, based on two points

• create N equispaced points

• first point on a line (on either end, but it must be chosen) is going to be the

reference uA = ure f = u0and all the other values (ui where i is point number along

the line) are going to be with respect to that point

• On each of the points, monitor and export the variables of interest to a file during

the transient run (full time history along a line)

• Process as follows

– obtain product of the two variables of interest uAuB at each time step at each

point where always uA = ure f = u0

– obtain mean of the products uAuB at each point i

– obtain means of each variable along a line individually u0,u1...un

– obtain product of the averages u0 ui at each point, keeping u0 as reference

always

– the two-point correlation is: uAuB −u0 ui

– normalise the correlation with respect to the first point so it starts with 1

The energy spectra used for self-correlation metric in resolving simulations mathemat-

ically are a Power Spectral Density (PSD) which estimate the energy distributions at

each frequency of simulation output (in this case x,y or z velocities). The spectra were

created using MATLAB’s in built pwelch function [165], with the sample rate Fs being

the unchanging time step of simulation. There are other techniques which manually

obtain and process a Fourier transform however the pwelch function was found to be

ideally suitable for the present purpose containing all the postprocessing required here.

3.5 Chapter conclusions

An attempt to provide complete and detailed set of equations, procedures and ap-

proaches was made. Many of the well-known numerical tools were only referenced

to avoid duplication as excellent and clear sources of documentation already exist. All

the key methods and equations were stated in as-implemented form for clarity but also

ease of debugging as the work progresses. It is hoped this chapter will provide a refer-

ence for other researchers developing their own CFD code in the future.

110

4 RESULTS: SST-SAS MODEL TESTING

Chapter 4

4 Results: SST-SAS model testing

4.1 Introduction

On top of the computational issues explored so far there is also a matter of accuracy.

The question is posed whether the necessary level of accuracy can be achieved with

lower computational demand, e.g. coarser grid leading to lower cell count, simpler

turbulence model leading to fewer or less computationally demanding equations. This

chapter presents testing of a new approach termed Scale Adaptive Simulation and its

most common and initial variant based on k−ω SST model. The overall idea is that one

can refine the grid in the regions where LES-like resolving of smaller scales is required

and keep all other areas in URANS mode. There is no dependency on wall proxim-

ity in the equations or other necessities typical of fixed boundary RANS-LES hybrids,

such as treatment of the RANS-LES interface to preserve energy correctly. The aim is

to achieve required accuracy in critical regions and minimise the computational cost.

Only the results are presented here; more detailed discussion of the SST–SAS model as

well as other techniques used in this chapter can be found in Section 3.4.2, 3.4.3 and

3.2.12.

This chapter structure has three key components. Firstly, 3D axisymmetric rib

and ribbed channel geometries are used to initially assess the SST–SAS model against

RANS, URANS, LES and DES and establish a baseline comparison for further study -

aim was to highlight the differences between SAS–SST and other standard hybrid re-

solving models and identify areas of focus for further research. The second part is an

investigation into flow inside square ribbed channel with 9 ribs with and without artifi-

cial forcing or rotation. More detailed assessment of the differences with other models

is made with this channel, including standard LES metrics such as two point correla-

tions and energy spectra. The work is largely driven by findings of the first part. The

last part of this chapter presents simulations of flow inside a more realistic blade. It is a

strongly turbulent and three dimensional flow with inlets positioned at various irregular

locations. It is believed the high levels of turbulence and strong three dimensionality

111

4.2 Numerical details 4 RESULTS: SST-SAS MODEL TESTING

and asymetry of the boundary conditions should be sufficient to trigger the resolving

of scales in the SAS–SST model with respect to a URANS model. Should the smaller

scales not appear there seems to be little hope for the SAS–SST model in the present

internal cooling application as few applications will exhibit stronger turbulence.

While the test cases appear simple in geometry, they were chosen carefully to con-

tain the key flow features commonly present in turbomachinery. The test cases are also

known to expose majority of flaws and inaccuracies in numerical schemes without the

complexities of real geometries. Using the latter in initial stages of code development

not only slow down the progress but can sometimes hide issues as complex effects can-

cel each other out.

Four peer-reviewed publications resulted from this work. Two papers covering the first

two parts of the chapter and two papers investigating the header component. The latter

was collaborative work and the CFD model was used as input to novel fatigue models.

4.2 Numerical details

Two solvers were used to obtain the present results: ANSYS Fluent v17.2 and AN-

SYS CFX v17.2. The simulations without artificial forcing were performed in AN-

SYS Fluent using the incompressible Finite Volume cell-centred solver with implicit

bounded second order time formulation. The Semi-Implicit Method for Pressure Linked

Equations (SIMPLE) was used for pressure-velocity coupling. No upwind (smoothing)

method was used and all equations were spatially discretised with 2nd order formula-

tions. The bounded second order modification was used for momentum equations as it

was found to produce more realistic results and was also recommended for use with the

SST-SAS model [166].

Simulations including the forcing were performed in ANSYS CFX with an incom-

pressible finite element-based finite volume formulation and a vertex-based discretisa-

tion strategy as explained in detail in [167]. Rhie-Chow [168] coupling was used for

the pressure-velocity link as the pressure and velocity is collocated. All equations were

discretised with second order accuracy formulations without special treatment.

The SAS-SST forcing term Q was implemented in ANSYS Fluent 17.2 via the use

of User Defined Function, however it was found by testing that ANSYS CFX has a

faster and more robust implementation of the forcing and differs from the authors own

112

4.2 Numerical details 4 RESULTS: SST-SAS MODEL TESTING

implementation only in the number of harmonic modes used. For this reason, the latter

was used for simulations with forcing.

All simulations were performed on the University of Nottingham HPC and utilised

64 to 112 cores. The time step range used in the simulations for all unsteady models is

0.00014s to 0.00012s for the most refined grid. This corresponds to mean Courant num-

ber of 0.5-0.8 in the critical regions of interest around the ribs and 1.6 in the streamwise

centre of the channel, where the SST-SAS model is expected, and observed, to operate

in the modelling mode. Small regions with higher courant number exhibited no un-

steadiness or turbulence as they were far away from the ribs. After developing the flow

for at least three through flows based on mean inlet velocity, arithmetic averaging was

performed on the transient data for another three to five through flows minimum.

Convergence was achieved in both solvers by ensuring that the RMS of residuals

drops by at least three orders of magnitude after the time step was incremented. This

was achieved in 3-6 iterations per time step.

The guidelines used for setting the cell edge lengths for the SST–SAS model were

taken from Davidson[169] [118] and proved to be very similar to recommendations for

DES grid design by Spalart [170]. Given that scale resolving SAS is regarded as a gen-

eralisation of DES it makes sense for the guidelines to be similar and applicable. For

completeness, ∆x+ ≈ 100−300 and ∆z+ ≈ 100−600 were used as recommended. For

instance, the current 3D hill grid sizes can be compared to grids of up to 9.6 million

cells used in LES simulations by Tessicini et.al. [171], 1.7 million cells by Davidson

[169] and also 1.7 million cells by Rodi et.al. [172]. For completeness the periodic

channel grids used by Liu [173] are 0.3 to 3 million cells.

The time step was optimised based on the CFL criterion and varied during the grid

sensitivity study. ∆t varied from 3.5×10−5s to 8×10−5s for the 3D hill and 1.6×10−5s

to 2.9× 10−5s for the ribbed channel. Values of 7.3× 10−5s and 2× 10−5s were used

for the final grids resulting from sensitivity studies for the hill and rib, respectively.

Three sub iterations per time step were found sufficient in the present study for both the

3D hill and the ribbed channel, based on convergence histories of multiple runs. Four

sub iterations were used to enforce the streamwise periodicity for the ribbed channel

case.

All transient simulations were started from an appropriate precursor RANS simula-

113

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

tion and ran for at least two through-flows based on freestream velocity to develop the

flow. Data was then cumulatively sampled for three through flows or until the averaged

quantity stabilised, whichever was longer.

Several more parameters were monitored as standard for all simulations in addi-

tion to residuals: the streamwise component of velocity, turbulent kinetic energy and ω

where available. The reason for monitoring ω is that it is critical to the SAS-SST model

as the ω-equation is where the Qsas term is added.

4.3 3D axisymmetric hill

4.3.1 Computational setup

The computational setup for the 3D hill employed here is similar to that of Davidson

et.al. [118] [169]. The geometry used is based on that investigated experimentally by

Simpson et.al. [1] [174] and Davidson et.al. The hill is axisymmetric and the setup is

three-dimensional. The hill height, H, is 78mm and is used as the normalizing factor

for most of the plots. The shape of the hill is defined by:

y(r) =−H
1

6.04844

[
J0 (A) I0

(
A

r

a

)
− I0 (A)J0

(
A

r

a

)]
(222)

where y(r) is the hill height and is shown plotted on the vertical axis of Figure 4.1. The

value of A is constant and equal to 3.1926; a = 2H is the radius of the base of the hill.

The radius of the hill base is equal to twice the height as indicated on Figure 4.1. J0 is

the Bessel function of the first kind and I0 is the modified Bessel function of the first

kind. The constant ν used in both the Bessel functions was set to zero. The origin of

the coordinate system is located on the axis of the hill, at height y = 0, as demonstrated

on Figure 4.1. X is the streamwise coordinate, z is the cross-stream coordinate and y is

the wall-normal coordinate.

The full computational domain is 11.6H × 3.2H × 19.7H, which is the same as in

Davidson [169]. The inlet is located 4.1H ahead of the hill axis along X coordinate.

Similar computational domains were used by Tessicini & Leschiziner [171] (domain

3.7H shorter in x-direction), Rodi [172] (0.3H longer in x-direction), Garcia-Villalba

et.al. [172] and Persson [175] (7.7H shorter in x-direction). Several other lengths were

investigated by the mentioned authors and it was concluded by Tessicini [171] that ap-

proximately 19.7H is likely the most optimal length for computational analysis.

114

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.1: Outline of the curve used to create the hill geometry

Grid Size ∆x+ range ∆z+ range

154×76×197 2.3m 100-200 100-200

178×82×226 3.3m 80-160 80-150

193×90×248 4.3m 60-135 70-140

223×100×294 6.5m 50-110 60-120

Table 4.1: Grids used to establish mesh sensitivity for 3D hill. Average y+ = 1 for all

grids. ∆z+ and ∆x+ are y+ = 1 equivalent concepts in the other two dimensions useful

for measuring the grid with respect to the flow.

ICEM CFD software was used to create all the grids in present study. Figure 4.3

shows one of the grid configurations used with every second grid point hidden for clar-

ity. Table 4.1 summarises the grids used in the mesh sensitivity study for the 3D hill. A

wall value of y+ ≈ 1 through the domain was achieved with an average first cell size of

y = 0.025mm and this value was used for all 3D hill grids. Typical grid densities used

in industry for turbine blade problems range from 0.5 million cells to 3 milion cells for

a steady calculation of a single turbine blade at the time of writing.

The boundary conditions are set as in [172], [171] or [118]. The z-direction normal

walls are slip walls (zero shear stress prescribed). The outlet is set to the Von Neumann

condition with the gradient of all variables set to zero; including pressure. Left and

right (Z-normal) walls are standard slip walls.

115

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

F
ig

u
re

4
.2

:
S

ch
em

at
ic

o
f

th
e

b
o
u
n
d
ar

y
co

n
d
it

io
n
s

u
se

d
fo

r
3
D

ax
is

y
m

m
et

ri
c

h
il

l.

116

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.3: Streamwise cross-section of 3D hill mesh resulting from sensitivity study;

every second grid point is shown

The inlet for the 3D hill is the most challenging and important boundary here, es-

pecially given the inherently unsteady nature of the flow. The approach boundary layer

has been experimentally found to be of thickness δ = 0.5H and was initially set to

match the 1/7th law without any time-varying quantity. The freestream velocity used

for the 1/7th law is 27.5 m/s as measured by Simpson [1]; it was also confirmed in the

study that the actual flow matches the profile well. The Reynolds number based on hill

height and freestream velocity is 130,000.

In order to fully evaluate the SAS model another approach used in this study was

to impose velocity fluctuations on top of the 1/7th profile. The method chosen was the

synthesized turbulence as defined by Kraichnan [176] and modified by Smirnov et.al

[177]. As will be later explained there is slight improvement in using the unsteady

inlet boundary condition however the sensitivity was found to be low for SST-SAS

simulations and consequently a constant velocity profile was applied at the inlet for

most simulations.

Mean turbulence intensity at inlet was found experimentally [1] to be 0.1% and this

value is used here. A value for viscosity ratio of approximately 10 is recommended by

Tessicini [171] and Rodi [172]. It is also judged that viscosity ratio should not affect

the result strongly as the turbulence intensity is very low.

Figures 4.4 and 4.5 show the key results used to judge grid dependence. While the

streamwise velocity component shows relatively strong grid independence, spanwise

velocity component indicates that at z/h=-0.16 the finest grid of 6.5 million cells results

in higher accuracy than the other grids, however the difference is significant on only one

of the lines where data was extracted. For prediction of streamwise velocity field the

finest grid made negligible difference, apart from at z/h=-0.16. The mesh with 2.3m

cells was chosen for all further investigation based on this study.

117

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.4: Spanwise component of velocity, 3D hill. x/H = 3.69.

Figure 4.5: Streamwise component of velocity, 3D hill. x/H = 3.69

4.3.2 Results

There is comparison and validation data available for the present study, both compu-

tational and experimental. Figure 4.6a shows the vector field obtained experimentally

by Simpson [1] and this can be compared to the SAS CFD data from the current study

shown in Figures 4.6(b) and (c). As is immediately apparent there are significant dif-

118

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

ferences between the two with the SAS model showing a large recirculation region not

present experimentally.

Figure 4.7 and Figure 4.8 show cross-stream and streamwise velocity profiles ob-

tained along side the experimental data of Simpson [1] and the computational results

from Davidson & Dahlstrom [169] [118] obtained using hybrid LES-RANS. Both Fig-

ure 4.7 and Figure 4.8 also show the LES data is significantly closer to the experimental

data than other computations run in the present study. It is both surprising and note-

worthy that even with a very coarse grid the LES model appears to be much closer to

experimental measurements than any of the others investigated including SAS. It is also

shown by Tessicini et.al. [171] that even on grid of 1.6 million cells (less than the 2.3m

cells used here) LES is still significantly closer to the experimental data than the SAS

model in the current study. Pure LES however is not as accurate as the hybrid LES-

RANS method used by Davidson et.al. [118] and the line plots of Figure 4.7 and 4.8

confirm this finding.

Figure 4.9 shows time averaged streamlines predicted by different modelling ap-

proaches. The recirculation region behind the hill is predicted by SAS, RANS and DES

(with k−ω model) with a very similar size in each case of approximately H. The size

predicted by LES is close to experimental data; while no streamline plots are available

from the experimental study, the vectors shown on Figure 4.6 show a relatively thin

layer (≈ 0.1H) of recirculation, in agreement with LES. The grid used in this study was

not designed for LES and is approximately two orders of magnitude coarser in terms of

x+ and z+ than normally is required for LES computation.

The general structure of the flow and the main separation point are approxi-

mately similar for all the turbulence models used, as indicated by Figure 4.9. Surface

streamlines shown on Figure 4.10 suggest two eddy-like structures, one on each side

of the hill, in agreement with experimental data shown on Figure 4.11. The stream-

wise size of these eddy structures is predicted to be far larger than found experimen-

tally by any model investigated other than LES. It is well established by all the authors

[169, 112, 178, 171, 172, 179, 175] as well as by comparison with experimental data

[1] here that the RANS approach completely fails to predict the flow in this case.

Another interesting numerical feature of the flow, although not found experimen-

tally is the small “bubble” at the foot of the hill, upstream of the hill axis (see Figure

119

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.6: streamwise velocity component vectors, experimental data, Simpson

et.al.[1] (a) Experimental data, (b) LES, (c) SAS

120

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

F
ig

u
re

4
.7

:
C

ro
ss

-s
tr

ea
m

v
el

o
ci

ty
co

m
p
o
n
en

ts
.

L
E

S
-R

A
N

S
d
at

a
w

it
h

fo
rc

in
g

at
in

te
rf

ac
e

b
y

D
av

id
so

n
,

al
l

at
x
/H

=
3
.6

9
.

E
x
p
er

i-

m
en

ta
l

d
at

a
b
y

S
im

p
so

n
.

L
eg

en
d
:

—
S

A
S

,
-·-
·L

E
S

,
-

-
-

D
E

S
,
··

·R
A

N
S

,
-×

-×
S

A
S

-s
y
n
th

et
ic

in
le

t,
×
×
×

h
y
b
ri

d
L

E
S

-R
A

N
S

b
y

D
av

id
so

n

121

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

F
ig

u
re

4
.8

:
S

tr
ea

m
w

is
e

v
el

o
ci

ty
co

m
p
o
n
en

ts
.

L
E

S
-R

A
N

S
d
at

a
w

it
h

fo
rc

in
g

at
in

te
rf

ac
e

b
y

D
av

id
so

n
,a

ll
at

x
/H

=
3
.6

9
.

E
x
p
er

im
en

ta
l

d
at

a
b
y

S
im

p
so

n
.

L
eg

en
d
:

—
S

A
S

,
-·-
·L

E
S

,
-

-
-

D
E

S
,
··

·R
A

N
S

,
-×

-×
S

A
S

-s
y
n
th

et
ic

in
le

t,
×
×
×

h
y
b
ri

d
L

E
S

-R
A

N
S

b
y

D
av

id
so

n

122

4.3 3D axisymmetric hill 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.9: streamlines in streamwise direction along the 3d Hill predicted by different

turbulence models; significant recirculation in cross-stream direction is present causing

the lines to appear to be “flowing” away from the walls

Figure 4.10: Surface streamlines for SAS and LES

123

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.11: Top view of the hill and flow structures. On the left the experiment on the

right a schematic of the flow. The image is of oil-flow on a wooden hill and illustrates

streamlines obtained experimentally. It confirms the flow is symmetric and there are

two main turbulent features around the symmetry plane. Both from Simpson et.al. [1]

4.9). The feature is predicted by all computational approaches tested, except for LES

and is also not present in the Hybrid LES-RANS results [118], or LES [172]. Such

features are a good test of the accuracy of the method as their presence becomes an

immediate indicator.

SAS with synthetic inlet turbulence [177][176] imposed on the mean velocity profile

was also tested, and Figure 4.7 and Figure 4.8 suggest there is little difference in results

using this method. The main differences between SAS with and without synthetic tur-

bulence can be seen near the inlet at lower z/H and the velocity profile is further away

from the experimental data in the synthetic turbulence case. It is interesting to see both

DES (k−ω subgrid model, without synthetic turbulent inlet) and SAS producing very

similar result for the most part, including streamlines.

4.4 Ribbed channel - periodicity

4.4.1 Computational setup

The computational setup used for the ribbed channel is identical to the experimen-

tal setup of Acharya [2] and computational setup of Liu [173]. Figure 4.12 shows a

124

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Reb 14200

L×H ×W 0.127×0.061×0.3m3

Ub 3.6 m/s

e 6.35 mm

Dh 101.6 mm

q
′′

w 280 W
m2

Table 4.2: Flow parameters for the ribbed channel flow. Nomenclature as per Figure

4.12

Grid Size ∆x+max ∆z+max

204×94×120 2.3m 9 30

186×88×112 1.8m 10 33

170×82×106 1.5m 12 35

158×76×98 1.2m 13 39

138×68×94 0.9m 14 42

Table 4.3: Grids used to establish mesh sensitivity for ribbed channel. Average y+ = 1

for all grids. ∆z+ and ∆x+ are y+ = 1 equivalent concepts in the other two dimensions

useful for measuring the grid with respect to the flow.

schematic diagram of the ribbed channel geometry and Table 4.2 shows the input val-

ues used for calculations.

A structured multiblock grid was created, as for the 3D Hill. Table 4.3 summarises

grid sizes used to establish grid sensitivity for ribbed channel. Figure 4.13 shows an

example mesh used in the present study. y+ < 1 was achieved in the entire domain with

first grid node being 0.11mm away from the wall. For comparison the grid density used

by Liu [173] varies from 139×21(x,y) to 199×142(x,y).

Standard no-slip conditions are prescribed on all the walls. Since experimental data

involved a channel with nine ribs [2] the inlet conditions for this case was streamwise

periodic flow with prescribed massflow. Although Liu [173] used pressure to enforce

the streamwise periodicity, in the present work massflow of ṁ = 0.080703 was applied

based on a Reynolds number of 14,200 and a length scale of 101.6 mm as used by Liu

125

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.12: Schematic of the ribbed channel flow.

Figure 4.13: Cross-section of the ribbed channel mesh resulting from sensitivity study;

every second grid point is shown

126

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.14: spanwise velocity component plot used to establish grid sensitivity for

ribbed channel. The lines are x/h 10, 10.5, 11.1, 13.6, 16.2, 17.6 left to right, respec-

tively.

[173] and Acharya [2], see also Table 4.2. A uniform heat flux of 280 Wm−2 was ap-

plied on the bottom channel surface, excluding the rib surface, as shown on Figure 4.12.

A constant temperature of 300K was applied for the inflow. No heat flux condition was

prescribed for all remaining walls. Heat transfer results were extracted from the plane

mid-way in the spanwise direction. Turbulent Prandtl number was set to 0.9 for RANS

calculations and 0.4 for resolved (LES) simulations.

Figure 4.14 and 4.15 show streamwise and spanwise velocity components, respectively.

Figure 4.16 shows Nusselt number plots for different size meshes used in the current

work. It is apparent that grids of 2.3m cells and 1.7m cells perform similarly and re-

finement above 1.7m cells gives little benefit for the extra computational time required.

Velocities appear to have much less pronounced grid sensitivity than heat transfer re-

sults and even on a grid as coarse as 0.8m cells the velocity field is almost identical. As

to heat transfer, while the results have 200% – 500% error with respect to experimental

data, meshes of 2.3m and 1.7m cells appear to be performing best. The grid of 2.3m

cells was used for further computations as the cells‘ aspect ratio was becoming too high

for the grid of 1.7m cells, given that y+ < 1 was kept for all the grids.

127

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.15: streamwise velocity component plot used to establish grid sensitivity for

ribbed channel. The lines are x/h 10, 10.5, 11.1, 13.6, 16.2, 17.6 left to right, respec-

tively.

Figure 4.16: Nusselt number plot used to establish grid sensitivity for the ribbed chan-

nel. Obtained with the SAS–SST model.

128

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

4.4.2 Results

Figures 4.18 and 4.19 compare velocity field with that obtained experimentally by

Acharya [2]. Similarly as for the hill case, streamwise velocities are predicted well

by most turbulence models, including the RANS. LES is for the most part the most

accurate for velocity prediction, however this accuracy is not consistent and there are

regions, especially away from the wall, where all other models exhibit much higher ac-

curacy than LES.

The ribbed channel case is another example of flow with well established experi-

mental data that’s used widely for validation purposes. Figure 4.20 shows streamlines

with the z component of velocity set to zero to display the recirculating regions midway

between the channel walls. There is one main recirculating region upstream of the rib

and three smaller ones, each adjacent to either of the three walls of the rib. The geom-

etry is sharp-edged and the separation point is well established for all the models and

grids tested here. The reattachment length however is different for each model.

It is interesting that all models apart from LES, and to an extent DES predict almost

zero cross-stream velocity.

Figure 4.20 shows time averaged streamlines predicted by different methods. A

characteristic feature of such flows is the length of the recirculating region, LR, sum-

marised in Table 4.4. From the two it is apparent that DES and LES predict the length of

the recirculation region closest to experimental values. DES however predicts a larger

height for the region in comparison with experiment. While there is some improvement

in SAS over RANS in prediction of velocity field, it is still below the accuracy offered

by LES.

As to the heat transfer results, LES also appears to be predicting Nusselt numbers

closest to the experimental data, as shown on Figure 4.17. The DES and SAS predic-

tions are comparable with RANS.

129

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Method Value of LR % error w.r.t. exp.

LES 8.0 14

SAS 9.5 36

RANS k−ω 11.0 57

DES 9.0 28

experiment 7.0 –

Table 4.4: Lengths of the recirculating region upstream of the rib summarised

Figure 4.17: Nusselt number plot for the ribbed channel. Experimental data by

Acharya[2]

130

4.4 Ribbed channel - periodicity 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.18: Normalised streamwise velocity component. The lines are x/h 10, 10.5,

11.1, 13.6, 16.2, 17.6 left to right, respectively.

Figure 4.19: Normalised cross-stream velocity component. The lines are x/h 10, 10.5,

11.1, 13.6, 16.2, 17.6 left to right, respectively.

131

4.5 Conclusions of the initial results 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.20: streamlines in streamwise direction along the ribbed channel predicted by

different turbulence models. Exp. data from [2]

4.5 Conclusions of the initial results

While the idea behind the SAS modelling is generally favourable, in the present case

leads to the unfavourable situation when the equations operate neither in resolving LES-

like mode, nor in the modelling RANS mode, but somewhere in between. This is likely

due to too low ‘unsteadiness’ levels for the SAS-SST model. This situation was also

mentioned by Menter et.al. [166] and was the motivation behind creating the forcing

terms.

The turbulent viscosity in the SAS-SST simulations is likely too high for a resolving

simulation and the simulation differs little w.r.t. RANS, in comparison with LES which

is closer to the experimental data. This conclusion is also stated by Davidson [169].

Going back to the original application of turbine blade cooling passages, based on

132

4.5 Conclusions of the initial results 4 RESULTS: SST-SAS MODEL TESTING

the results so far it is concluded that more testing should be done on the SAS-SST model

to more conclusively state whether or not this approach can be recommended instead of

LES or other methods. The results obtained here suggest LES or Hybrid LES-RANS

with fixed LES y+ boundary is likely a more feasible approach even if the grid must be

kept coarse. If, however, explicit modelling of several bumps is required a mesh even

coarser than the present grid would likely be used as computational cost would increase

massively otherwise. In such cases SAS-SST may be more attractive and it is recom-

mended that this should also be further investigated. Additionally inside a turbine blade

there are multiple hill-shaped obstacles following one another and turbulent structures

generated grow cumulatively to a certain size; this will increase overall turbulence in-

tensity and the resulting field may be more suitable for the SAS-SST computation.

The Scale Adaptive Simulation computational approach was investigated through appli-

cation to a three-dimensional axisymmetric geometry and ribbed channel and compared

with other researchers’ simulations as well as experimental data. Both the hill and the

channel used are representative of features used inside turbine blade cooling passages

to promote heat transfer.

It was found that while RANS approaches fail to predict the flow completely, LES

appears to produce a reasonable momentum solution even on coarser meshes. The fact

that LES appears to be doing well is somewhat surprising as the computational grids

are not sufficiently refined as required by standard LES practice. Using SAS was found

to offer only minor improvement over RANS for velocities calculation and much larger

improvement for heat transfer results. The error in heat transfer however was still large

for SAS with respect to experimental data (> 200%).

The size of the recirculation region predicted by LES is similar to that found exper-

imentally in both cases tested here whereas the size predicted by SAS is significantly

larger than that of LES, and similar to that of RANS.

In addition, SAS predicts a small recirculating region upstream at the foot of the

3D hill, not found experimentally. The DES and RANS models predict a similar result.

The flow separation point on the hill occurs at approximately the same point (≈ 0.1H

past hill peak) for all models, in agreement with experimental data. Due to geometry

the ribbed channel has clearly defined separation point which is similar for all models.

The ribbed channel study confirms the findings from the 3D hill. The LES approach

133

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

also appears to be the better choice of model for the present problem, for both velocity

prediction and heat transfer.

Overall the evidence suggests for the present geometries there is little improvement

in using SAS over RANS, DES, LES or hybrid LES-RANS while incurring noticeable

computational penalty for solving the additional terms in the SAS model. LES on the

same grid (coarse for LES) produced velocity results significantly closer to experimen-

tal data than SAS. Heat transfer is also predicted better by LES.

Also the SAS model however was found to be lacking resolved content even on

geometries that are well known to be unsteady and strongly separated such as an ax-

isymmetric hill [169] or sharp edged rib [162]. It was found that the resolving mode is

not triggered even under those strongly turbulent conditions. To remedy the problem,

Menter et. al. proposed artificial forcing [166] to trigger the LES-like behaviour of

the SST-SAS model. The forcing is based on ideas of Kraichnan et. al. [176], Smirnov

[177] and Keating [180] and was proven to work for a reverse-facing step [166]. Forcing

will be discussed in more detail later.

4.6 Stationary channel flow

4.6.1 Computational setup

The geometry consists of a development section with eight equi-spaced ribs and a longer

outflow region, as shown in Figure 4.21. The channel edge is taken as the hydraulic di-

ameter. The square rib height to hydraulic diameter ratio is 0.1 and pitch to rib ratio is

10. The inflow is positioned at half a rib pitch upstream of the first rib and the outflow

boundary is sufficiently coarse and far downstream for all the generated recirculation to

be dissipated before exiting.

The grid used in the present study is similar to Viswanathan et.al. [181] in and is

suitable for DES simulations as shown in Figure 4.22 and as described by Spalart et. al.

[170]. The non-dimensional wall distance y+ is less than 1.5 in the near-rib region in

all cases and varies locally up to y+ ≈ 4 The motivation for using the present grid was

to test the SST – SAS model on a DES grid and benchmark its resolving performance

against DES. From the present simulations, SAS required approximately 15% more

computational time than LES and 5% more than DES per iteration on the same grid. If

134

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.21: 3D representation of the geometry. Only lower half is shown (there is a

mirrored top cap on the long section). For simulations including rotation, the axis of

revolution is always the z-axis with right-hand rule to determine direction.

the grid must be refined to LES requirements, the LES approach is more advantageous

as it is faster and already proven to produce good results [182]. The study therefore

should be beneficial to industrial users of the model as it assesses SST – SAS perfor-

mance under realistic, cost-efficiency driven environment where grids must be coarse

and run times kept to minimum.

The Reynolds number used in the present study is 20,000 based on the hydraulic

diameter. The Prandtl number is 0.7 and the Rotation number is 0.3 for the case with ro-

tation examined in the later section. Non-rotation simulations are performed for bench-

marking the models together as well as with experimental data. The inlet definition is

a constant ‘plug flow’ definition, as described in experimental following Sewall et. al.

[182]. In the numerical simulations of [182] it was found in the paper that imposing a

non-constant velocity inlet is inconsequential after the second rib and very minor after

the first. A constant velocity inlet was used for simplicity but also to be consistent with

other numerical results. It is also shown by Davidson et. al. [169] who performed SST

– SAS simulations with a fluctuating, realistic inlet without forcing that it seemed to

have very little effect on the solution. This is likely due to the fluctuations being insuffi-

135

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.22: Non-dimensional grid characteristics.

cient to switch the SAS model to resolving mode and hence being damped out. Finally,

in the LES simulations of Tyacke and Tucker [183] of the same geometry it was also

found that turbulent inlet fluctuations of 10% did not have a strong impact on the flow

development.

All the walls are prescribed a temperature of 330K, while the inflow temperature

is 300K. This latter value is also used as reference in the calculations. Both heat flux

and temperature thermal boundary conditions were tried and it was found that very mi-

nor differences in heat transfer predictions were observed. Hence the isothermal wall

boundary conditions were used for consistency with other available numerical data.

All heat transfer plots are normalised with the hydraulic diameter Dh and Dittus-

Boelter correlation:

Nu0 = 0.023Re
(0.8)
b Pr0.4 (223)

A grid refinement study was performed using the steady state k−ω SST model and

the SST-SAS model. While in general a resolving simulation such as SAS is expected

to exhibit grid sensitivity as it approaches DNS with grid refinement, it is still of value

to examine the solution sensitivity to the grid.

As shown on Figure 4.24, without introducing any forcing terms, the transient SST –

136

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.23: contour plots showing where the forcing terms are active. (a) is the pre-

scribed area where forcing terms were active in the simulation, (b) is magnitude of the

source forcing terms and (c) is the k −ω-SST first blending function F1 magnitude

indicating modelled near wall region

SAS simulation performed similarly to RANS on the refined grid (approximately 0.5∆x

in any direction). The grid is of LES requirements and has 9.3m cells. Even with such

refinement there appears to be very little resolved content.

The figure demonstrates that unforced SST – SAS solution is nearly identical to

RANS even with significant grid refinement. In addition very little instantaneous fluc-

tuations were present in the transient SAS solution without forcing. This is indeed

the reason for the present work. All unsteady simulations in the present study were

started from a well-developed DES solution that exhibited much higher instantaneous

unsteadiness than SAS. The final grid used was one consisting of 2.4m cells.

137

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

0 1 2 3 4 5

x/D
h

0

1

2

3

4

5

N
u
/N

u
0

0 2 4 6 8 10 12

x/D
h

0

0.5

1

1.5

2

u
/u

in LDV

1.2m cells

2.4m cells

5.2m cells

9.3m cells

Figure 4.24: Grid refinement test for SST – SAS model without forcing. RANS solution

is tested to be grid-insensitive.

4.6.2 Results

As shown on Figure 4.25, the forcing appears to make significant difference for the

SST – SAS model. The plots show that switching from modelling mode (where most

of the TKE is captured by turbulence model) to resolving mode (where most TKE is

modelled explicitly as velocities) is present when the forcing terms are active. Impor-

tantly, unsteady content appears outside the boundary of the forcing zone, suggesting

the turbulence is self-sustaining and the entire domain does not need to have the forcing

applied. On the other hand, by further examination of the forcing function effect on

Figure 4.23 and Figure 4.25 it was found that forcing is only significant in the unsteady

recirculating regions behind each of the ribs and away from the wall. It is concluded

that the forcing could likely be safely applied to the entire domain as it will interact

with the SST – SAS model and reduce itself in steady or near-wall regions.

Looking at Q criterion isosurfaces on Figure 4.26, the absolute magnitude of the

138

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.25: Instantaneous vorticity magnitude at the last time step after at least ten

through flows of development. Except for the forcing, grid, boundary conditions and

numerical setup are identical for all simulations.

Q criterion is not of primary importance, rather it is a useful metric in visualising tur-

bulence. It is again clear from the figure that very little unsteadiness is present in the

unforced SST-SAS solution and there is noticeable increase of unsteady content only as

a result of the introduction of the forcing terms with identical boundary conditions.

Next, mean velocity profiles and their fluctuations are analysed. Measurements at

four locations downstream of the inflow plane are shown on Figure 4.27. The veloc-

ity profiles are taken midway between the ribs in the streamwise direction and mid-

way between the walls in the spanwise direction. The measurement locations in the

wall-normal direction range from the y = 0 to one quarter of the height of the duct.

Apart from the first profile location, an improvement of streamwise velocity prediction

is observed with the introduction of the SAS forcing term (Q, shown on Figure 4.23)

compared with the original SAS approach. It can also be seen that the profiles are very

similar to both the SA and k−ω SST variants of DES.

The velocity fluctuations on Figure 4.27 in the streamwise direction are both un-

derpredicted and over predicted by all models. The SAS-F model dramatically over

139

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.26: Normalised Q criterion isosurfaces of 0.2 value coloured by Turbulent

Viscosity Ratio. (a) SST – SAS without forcing, (b) SST – SAS with forcing, (c)

IDDES k−ω SST. Note low eddy viscosity in the unsteady regions.

140

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

predicts the fluctuations at the second profile location and at larger values of y/Dh for

the third profile location. At the fourth rib it can be seen that the SAS-F and DES vari-

ants are similar. It should be noted that very little resolved turbulence was observed for

the standard SAS model as can be seen on the plots. The wall normal velocity fluctua-

tions are generally under predicted by all models and interestingly the values predicted

by the SAS-F model are approximately 50% below the DES.

To further confirm that the models are operating in resolving mode, ratio of resolved

to total turbulent kinetic energy γ is plotted in Figure 4.30. The ratios are nearly iden-

tical after the first rib and arithmetic average of γ for all ribs ahead of the first one was

taken for simplicity. Pope [184] recommends that at least 80% of energy should be

resolved for a simulation to be considered well-resolved. Apart from the region imme-

diately downstream of the first rib this is true for both DES and SST-SAS. Again it can

be seen from the figure that very little resolved turbulent kinetic energy is present in

unforced SST-SAS model.

Figure 4.28 shows velocity as well as its fluctuations along a geometric centre-

line of the channel, with streamwise locations at 1, 2, 3 and 4 rib lengths. It is im-

mediately apparent from this, and all other plots that baseline SST-SAS solution be-

haves nearly identically to RANS and there is little benefit in the SAS-SST simulation

while requiring significant extra computational cost with respect to RANS. With intro-

duction of forcing terms the fluctuations in streamwise direction are greatly increased

and are overpredicted. The velocity fluctuations in wall-normal direction appear to be

under-predicted. Since the forcing terms are statistically isotropic in all directions, it is

likely that the SST-SAS model is under-resolving content in the wall-normal direction

and over-resolving in streamwise as opposed to not being enough ‘stimulation’ for the

model to do so. It can also be observed that DES, while still exhibiting significant error

is much more accurate than the SST-SAS model in predicting the fluctuating component

of decomposed velocity. Looking at the total velocity however on both Figure 4.29 and

Figure 4.28 the difference in prediction between DES and forced SST-SAS is marginal

and greatly improved with respect to RANS or URANS. It is also noteworthy that the

first rib is not predicted accurately, likely a consequence of steady inlet definition.

Figure 4.31 shows the normalised Nu plot along the wall centreline of the channel.

The forced SST-SAS solution is significantly improved with respect to RANS. Impor-

141

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x/D
h
; 5/6 * u

rm s
/u

in

0

0.1

0.2

0.3

0.4

0.5

y
/D

h

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x/D
h
; 5/4 * v

rm s
/u

in

0

0.1

0.2

0.3

0.4

0.5

y
/D

h

LDV

IDDES k- ωSST

IDDES SA

SST-SAS

SST-SAS-F

Figure 4.27: Resolved streamwise and wall-normal fluctuations starting from one rib

pitch downstream of inflow plane. Note constant velocity inlet in simulations vs. natu-

rally realistic in experimental data.

tantly, the unforced SST-SAS as well as RANS do not predict the sharp peak of cooling

efficiency immediately ahead of the ribs and significantly under-predict heat transfer

in all cases. The trends themselves predicted by SST-SAS-F and DES are similar to

experimentally found ones however the Nusselt number is still significantly underpre-

dicted by all approaches. This suggests deficiency in the near-wall RANS model and

that further investigation is required.

Comparing with other authors, the LES of Sewall et.al. [182] is very close to the

experimental measurements; the LES predictions are far superior to any other RANS or

hybrid RANS-LES performed on the geometry. The hybrid LES-RANS of Tyacke and

Tucker [183] is somewhat further away from the experimental solution, but requires sig-

nificantly less computational effort due to RANS modelling near the wall. Viswanathan

and Tafti [181] performed DES and confirmed the present conclusions that DES is much

less accurate than LES on the present geometry. They also show that LES exhibits much

smaller scale structures than DES, as expected.

142

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

x
/D

h

0
.0

0
.5

1
.0

1
.5

2
.0

u/u
in

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

u
rms

/u
in

, v
rms

/u
in

, w
rms

/u
in

ID
D

E
S

 k
-
ω

 S
S

T

ID
D

E
S

 S
A

S
S

T
-S

A
S

 k
-ω

S
S

T
-S

A
S

 k
-ω

-F

L
D

V
 u

L
D

V
 u

' rm
s

L
D

V
 v

' rm
s

ID
D

E
S

 k
-
ω

 S
S

T
 u

' rm
s

ID
D

E
S

 k
-
ω

 S
S

T
 v

' rm
s

S
S

T
-S

A
S

 u
' rm

s

S
S

T
-S

A
S

 v
' rm

s

F
ig

u
re

4
.2

8
:

st
re

am
w

is
e

v
el

o
ci

ty
co

m
p
o
n
en

t
al

o
n
g

a
ce

n
tr

el
in

e
an

d
R

M
S

o
f

v
el

o
ci

ty
fl

u
ct

u
at

io
n
s

in
st

re
am

w
is

e
an

d
w

al
l-

n
o
rm

al
d
ir

ec
ti

o
n

fo
r

d
if

fe
re

n
t

m
o
d
el

s.
B

as
el

in
e

S
A

S
–

S
S

T
fl

u
ct

u
at

io
n
s

n
o
t

is
ib

le
d
u
e

to
n
ea

r-
ze

ro
v
al

u
es

.

143

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x/D
h
; 0.25 * u/u

in

0

0.05

0.1

0.15

0.2

0.25

y
/D

h

SAS
LDV
IDDES k- ω SST
IDDES SA
SST-SAS k-ω - F

Figure 4.29: Streamwise velocity profile starting from one rib pitch downstream of

inflow plane for various models. Note the 0.25 scaling factor on the horizontal axis for

the velocity measurements.

Figure 4.33 shows the energy spectra present in the resolving simulations. It should

be noted that such plots were generated at various points behind different ribs and all

produced very similar results. The standard SST-SAS model is steady and not shown

on this plot. For the SAS-F and DES approaches an inertial range is visible beyond

which there is a frequency band indicating the existence of an inertial sub-range with a

-5/3 slope. The steeper slope beyond this relates to the damping of the energy content

of the frequencies due to molecular and turbulent viscosity. Also shown on the plot is

the grid cut-off frequency of 320Hz beyond which structures cannot be resolved. Com-

paring the forced SST-SAS solution with DES, the low frequency eddies for the SAS-F

solution contain more energy and the higher frequency eddies less energy than for DES

(close to the cut-off frequency).

Figure 4.32 shows streamwise and spanwise two-point cross-correlation plots re-

spectively for SAS-F and DES behind the third rib. The SAS-F results show steeper

curves and this would indicate that smaller scale structures are more prevalent in down-

stream grid locations. The correlation plots are generally smoother for forced SAS

solution. As expected, the unforced SAS solution exhibits large scale structures only

and two point correlations were not obtained as it is essentially a steady solution.

144

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

y/D
h

0

0.2

0.4

0.6

0.8

1

γ

DES rib1

DES contd.

SST-SAS rib1

SST-SAS contd.

SST-SAS-F rib1

SST-SAS-F contd.

Figure 4.30: Resolved to total Turbulent Kinetic Energy ratio γ . Locations are the same

as previously. The dashed vertical line marks height of the ribs. The plots for ribs 2 and

beyond are compounded in a ‘continued’ plot as they do not vary greatly. Naphthalene

sublimation experimental technique was used.

0 1 2 3 4 5 6

x/D
h

0

1

2

3

4

5

N
u
/N

u
0

exp.

IDDES k- SST

IDDES SA
SST-SAS
SST-SAS-F
RANS

Figure 4.31: Heat transfer measurements and predictions along the wall centreline.

145

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

Figure 4.32: Two-point correlation plots. Approximately 5.56mm spacing between the

measurement points. The streamwise lines are located in the centre of the channel in

z-normal direction and at one rib height in y-direction. Spanwise lines are located two

rib heights behind the rib and level with streamwise ones. Grid spacing varies from

2mm to 4mm along the lines.

146

4.6 Stationary channel flow 4 RESULTS: SST-SAS MODEL TESTING

10
0

10
1

10
2

frequency [s−1]

10
-5

10
0

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y grid cutoff uin/2∆x

-5/3

IDDES k- ω SST

SST-SAS-F

Figure 4.33: Power spectral density for the models tested. The point is located 10mm

downstream of 5th rib, one rib height away from the walls and on the z-midplane. The

energy spectrum does not appear to be sensitive to location of the point.

147

4.7 Rotating channel flow 4 RESULTS: SST-SAS MODEL TESTING

4.7 Rotating channel flow

In this preliminary work, a Rotation number of 0.3 was used, which corresponds to 37.3

revolutions per minute, with axis of rotation as shown on Figure 4.21. With added ro-

tations, other boundary conditions are unchanged from the stationary case and similar

to LES of Sewall et.al. [185]. Effects of rotation on present type of geometry were also

investigated via DES and URANS by Saha et.al. [186]. Experiments were performed

10
0

10
1

10
2

frequency [s 1]

10
-5

10
0

P
o
w

e
r
S

p
e
c
tr
a
l
D

e
n
s
it
y grid cutof uin/ 2

-5/3

SST-SAS rotation

Figure 4.34: Power Spectral Density predicted by the original SST-SAS model with

effects of rotation. Contours are of vorticity magnitude at the last time step of simulation

for fifth and sixth rib.

by Hibbs et.al. [187]. The following simulations are performed without any additional

forcing terms and original SST-SAS formulation.

From Figures 4.34 and 4.35 it can be seen that the solution appears unsteady with a

much more realistic energy spectrum even though no forcing terms are active. This con-

firms the findings of Dobrzynski et.al. [188], who used the unforced SST-SAS model

on a cavity flow with rotation and obtained results close to experimental measurements.

Figure 4.35 further confirms those observations by comparison with experimental data.

To summarise and compare the findings, Figure 4.36 shows time snapshots of the

148

4.7 Rotating channel flow 4 RESULTS: SST-SAS MODEL TESTING

0 1 2 3 4 5 6 7 8
0

5
N

u
/N

u
0

Leading Edge

0 1 2 3 4 5 6 7 8

x/D
h

0

5

N
u

/N
u

0

Trailing Edge

Hibbs et.al. - exp

SST-SAS

Figure 4.35: Heat Transfer predicted by the original SST-SAS model with effects of

rotation.

Figure 4.36: Time snapshots of vorticity magnitude for the second and third rib. The

initial time varies between the models but is always at least 10 through flows. Time step

was 0.00014s in all cases.

149

4.8 Chapter conclusions 4 RESULTS: SST-SAS MODEL TESTING

flow in intervals of 357 time steps for the different models investigated. The figure

shows that unforced SAS solution is essentially steady and does not vary with time. For

the case with rotation, the SAS model appears to only be resolving the trailing edge,

while leading edge appears as URANS. This is consistent with the expectation that ro-

tation causes turbulence to be attenuated at leading edge and amplified at trailing edge.

The forced SAS solution seems to exhibit finer turbulent structures than DES.

4.8 Chapter conclusions

The Scale Adaptive Simulation computational approach was investigated through appli-

cation to a three-dimensional axisymmetric geometry and ribbed channel and compared

with other researchers’ simulations as well as experimental data. Both the hill and the

channel used are representative of features used inside turbine blade cooling passages to

promote heat transfer. Several different CFD models were applied to. It was found that

while RANS approaches fail to predict the flow completely, LES appears to produce

a reasonable momentum solution even on coarser meshes. The fact that LES appears

to be doing well is somewhat surprising as the computational grids are not sufficiently

refined as required by standard LES practice. Using SAS was found to offer only minor

improvement over RANS for velocities calculation and much larger improvement for

heat transfer results. The error in heat transfer however was still large for SAS with

respect to experimental data (> 200%).

The size of the recirculation region predicted by LES is similar to that found exper-

imentally in both cases tested here whereas the size predicted by SAS is significantly

larger than that of LES, and similar to that of RANS. In addition, SAS predicts a small

recirculating region upstream at the foot of the 3D hill, not found experimentally. The

DES and RANS models predict a similar result. The flow separation point on the hill

occurs at approximately the same point (≈ 0.1H past hill peak) for all models, in agree-

ment with experimental data. Due to geometry the ribbed channel has clearly defined

separation point which is similar for all models. The ribbed channel study confirms the

findings from the 3D hill. The LES approach also appears to be the better choice of

model for the present problem, for both velocity prediction and heat transfer. Overall

the evidence suggests for the present geometries there is little improvement in using

SAS over RANS, DES, LES or hybrid LES-RANS while incurring noticeable compu-

150

4.8 Chapter conclusions 4 RESULTS: SST-SAS MODEL TESTING

tational penalty for solving the additional terms in the SAS model. LES on the same

grid (coarse for LES) produced velocity results significantly closer to experimental data

than SAS. Heat transfer is also predicted better by LES.

Moving on to investigate SST-SAS model with forcing terms, with stationary flow

the introduction of the forcing terms triggers the resolving capability of the model and

the solution is significantly improved, including more realistic spectral content. While

the solution is still further away from experiment than DES or LES, it presents a signifi-

cant improvement over pure SST-SAS. The forcing terms successfully trigger resolving

mode with only the modelled time and length scale provided by the base model.

Introducing rotation to the flow seems to trigger the resolving mode of the SAS

model similar to that of the SAS-F for the stationary case. This suggests that very

strong three-dimensionality of the flow is needed to fully make use of the models’ ben-

efits.

Future recommendations include further comparisons of rotating flow against other

hybrid RANS-LES models. Friction factors and other more detailed metrics of the flow

can also be investigated to further assess applicability of SST-SAS. Test cases where

DES struggles to obtain accurate solutions are recommended.

151

5 RESULTS: TURBINE INTERNAL COOLING

Chapter 5

5 Results: Turbine internal cooling

5.1 Chapter introduction

Now that it was established DES is likely a better overall choice for the present ap-

plication than SST-SAS, a more complex and realistic geometry is chosen for further

evaluations. While the Reynolds numbers and rotational speeds used here are compara-

ble to the geometries in Chapter 4, the geometrical features present in a more realistic

blade presented in this chapter create significant, complex and localised turbulence re-

gions. In addition high pressure flow from rotating cooling holes with sharp endings

trigger sudden detached flow and mixing into the boundary layer causing complex flow

structures to appear close to the wall. It is believed in the industrial turbine blade cool-

ing community these effects can have notable impact on overall blade performance and

should be captured accurately. Such high and localised turbulence levels are also the

reason SST-SAS was invented and it will be interesting to see if the SST-SAS performs

better simulating flow inside the current more complex geometry while it struggled on

simpler ones.

Another purpose of this chapter was to explore a single simulation containing all

of three key turbine blade flows; the main gas path, film cooling and flow inside the

cooling passages. At the moment, all of industrial design process known to the author

simulate blade and cooling holes separately and very few simulations include all three

together as one continuous domain. While there have been many attempts at unified

simulations such as overset, this chapter aims to try a relatively simple approach of a

continuous mesh domain. It is believed the CAD and meshing tools have significantly

improved to the point where that may just be possible in realistic cost and timescales.

Also, much work of this type tends to be commercially guarded as ability to simulate a

continuous turbine blade flow domain robustly would give significant advantages to an

aeroengine enterprise.

152

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.1: Overview of internal cooling hole stubs from the IMB project. This geome-

try is then superimposed onto a ’blank’ blade without cooling holes and the simulations

combined using overset-style technique.

5.2 Geometry creation

5.2.1 Cooling holes geometry creation with Siemens NX

After spending several months trying to find the CAD geometry of the internal cooling

holes, only an overset-type mesh from a previous project that used the same geometry

was found [189, 190]. The technique named Immersed Mesh Boundary (IMB) aimed

to mimic the functioning of overset grids where in certain parts of the domain two

overlapping volume grids exist and the solution is only progressed on the mesh with

higher resolution. A representation of overset-type IMB approach applied to the current

geometry is shown on Figure 5.3. The IMB technique was found to be relatively tolerant

to CAD and grid imperfections and the mesh obtained needed significant improvements

near the boundaries. As a ’watertight’ CAD is necessary for most meshing softwares

to create high quality meshes with necessary CFD features it was therefore decided to

recreate the cooling holes geometry in Siemens NX [191] from the mesh provided.

As can be seen from Figure 5.2 the mesh contains artefacts of IMB technique. While

they don’t seem to affect the IMB solution as the boundaries in IMB allow flow through

freely, they must be first removed for the present purpose as it would interfere with

153

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.2: Mesh of internal cooling hole stubs from the IMB project.

Figure 5.3: Visual representation of IMB technique.

geometry merging and create unnecessary CAD issues.

The cleaned and recreated geometry is presented on Figure 5.4.

154

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.4: Recreated geometry of internal cooling hole stubs.

5.2.2 Blade geometry

Blade geometries are often created and handled entirely within in-house industrial de-

sign systems, separate from cooling system and sometimes even other features. The

features are often simulated together via ’loosely-coupled’ simulations that transfer

boundary conditions between two independent simulations. Such was the case with

the current blade geometry as it was created in Rolls-Royce program suite ’Parablad-

ing’. Meshing and geometry handler within it, PADRAM [192], was used to export the

geometry to a standard parasolid format. The full domain is shown on Figure 5.5

155

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.5: CAD geometry of blade without cooling holes.

Next, the geometries must be combined as shown on Figure 5.6. This proved to

be not trivial task as the stubs of cooling holes often join the main blade at very sharp

angles and each stub is slightly twisted with respect to the previous one, as shown on

Figure 5.7. There are 10 rows with a total of 102 cooling holes.

156

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.6: Cooling holes geometry superimposed on the main blade.

157

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.7: Side view into the cooling holes geometry.

The final result is shown on Figure 5.8. Some geometry checks and basic cleanup

and surfaces merging was performed in Siemens NX with advice of a CAD expert ahead

of meshing.

158

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.8: CAD definition of the turbine blade complete with 102 cooling holes.

159

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

5.2.3 Clean-up with ANSYS SpaceClaim and ANSA

Attempting to create mesh of the fluid domain using ANSYS ICEM as well as ANSYS

Fluent Meshing [167] it was quickly evident the geometry is not only non-watertight

but also has some undesired CAD characteristic shown on Figure 5.9. For instance the

blade surfase was split near the root causing meshing process to fail. Also not all the

cooling holes were recognised as cylinders with an axis, making mesh inconsistent and

requiring significant manual intervention.

Figure 5.9: Example of geometrical issues with the CAD.

It was quickly evident both manual and automatic geometry cleanup operations with

siemens NX will not be sufficient, even with the help of a CAD expert. Some cleanup

was performed in ANSYS Space Claim Design Modeller [193] as well as CADFix

[194]. After several unsuccessful attempts with ICEM [195] it was decided to try Fluent

meshing engine as it offered a robust non-watertight geometry handler. A mesh was

160

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

finally obtained as shown on Figure 5.10 however it still seemed to have geometry-

related issues and not all the cooling holes were meshed in a satisfactory way. It became

clear at this stage that cooling holes are going to be an issue and most of the 102 stubs

will need to be handled manually for meshing purposes. It was also found at this stage

that Fluent Meshing offers very convenient and powerful meshing capabilities but is

relatively sensitive to CAD definition imperfections.

Figure 5.10: Example of ANSYS Fluent ’mosaic’ mesh.

An opportunity to participate in a commercial trial of Beta CAE Ansa [196] meshing

tool arose and it was decided to work with representatives of Beta CAE to try mesh the

problematic geometry with their software. After preliminary work the resulting mesh

still doesn’t have all the necessary features for CFD simulation; however it doesn’t

appear to have any obvious geometry issues or extremely high aspect ratio elements

either. An example is shown on Figure 5.11. It can also be observed that some cooling

hole tubes have different surface refinement than others. This is due to the software not

recognising many of the tubes as cylinders with an axis but treating them as generalised

surfaces. There are two solutions to this, both unfortunately very manual; one is to

remedy that at the CAD level, one is to set each tubes’ refinements during meshing.

However, now that a verifiably watertight geometry was obtained, a meshing can be

performed in any software.

161

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.11: Example of ANSA produced mesh.

5.2.4 Meshing

Using ANSA pre-processor, mesh with average first cell value of y+ = 4 in areas of

interest was finally obtained and is shown on Figure 5.12 and Figure 5.13. The mesh

has a total of 34 million cells. It is likely possible to reduce the grid size further by

introducing a hexa blocked structure in the volume domain however it was judged to be

very manual and too time consuming. Structured layers are already present in the near

wall region via an in-built automated wall layers extrusion tool.

For purposes of grid independence this mesh was then refined by a factor of 1.8 in all

directions resulting in grid size of 150 million cells and theoretical y+ = 2. One coars-

ened grid was also generated, resulting in 16 million cells and theoretical y+ = 10.

In an attempt to further reduce computational cost and take an opportunity to test this

162

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.12: Final ANSA produced mesh.

feature, polyhedral conversion was applied to the ’base’ grid of 34 million cells. This

was done using ANSYS Fluent and driven by the CFL number and pressure field ob-

tained from the RANS solution presented in the following subsection. This resulted in

18 million cell grid. While the polyhedral conversion seemed to not produce different

result to the base grid in steady RANS simulation it was not expected for this grid to

perform well with a hybrid RANS-LES technique such as DES. The polyhedra exercise

was done primarily to test the feature for future use if necessary.

163

5.2 Geometry creation 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.13: Final ANSA produced mesh.

164

5.3 Computational setup 5 RESULTS: TURBINE INTERNAL COOLING

5.3 Computational setup

5 compute nodes with 24 physical cores each were used resulting in 120 ranks for

parallel ANSYS Fluent. Spanwise-averaged quantities were obtained in the same way

as in [3] as well as the experiment. The area is shown on Figure 5.14. It is slightly

different for heat flux and mach number averaging and is not exactly in the middle of

the cooling hole region but the region is consistent with experiment and calculations of

[3]. The procedure for obtaining the averages was to first, using Paraview, eliminate

all but the relevant region of the blades surface (shown in blue), then using the slice

filter segment the averaging area into spanwise lines (bottom of the figure). All flow

quantities were interpolated onto those lines and the data exported to Matlab. From

there it was a simple matter of taking an arithmetic average of all the points on each of

the spanwise lines and plotting them as a function of perimeter of the blade.

Figure 5.14: Representation of area used for spanwise averaging.

165

5.3 Computational setup 5 RESULTS: TURBINE INTERNAL COOLING

5.3.1 Boundary Conditions

Majority of the boundary conditions were replicated from Chardonnier et.al. [3] and

are consistent with experimental setup. The main difference in present work is lack of

plenum as shown on Figure 5.15. Constant pressure was therefore applied at the en-

trances of the cooling hole stubs. This is in contrast to a more realistic distribution as

shown on the Figure 5.15. While the internal passages are not engine-representative

their existence alone makes considerable difference to the flow, as advised by industrial

internal cooling experts and also confirmed by the paper [3]. Unfortunately passages’

geometry was not available and there was not enough information available to replicate

them easily. Combined with time pressure, it was decided to simulate the geometry

without the passages as this would still likely provide a meaningful comparison be-

tween the hybrid RANS-LES models.

Figure 5.15: Plenum representation from paper of Charbonnier et. al. [3].

Another, likely less significant, difference is that the coolant used in [3] and EPFL

experiment is Carbon Dioxide. CO2 has 65% higher density as well as different thermal

properties and this has been accounted for by adjusting the mass flow into the cooling

holes. To simplify the simulation however no multi-phase calculations were performed

and it was assumed that mass of CO2 is insignificant with respect to air in main gas path.

This assumption is not ideal and was not validated but allowed the author to perform

166

5.4 RANS results 5 RESULTS: TURBINE INTERNAL COOLING

the simulation in realistic timescales.

5.4 RANS results

RANS result using the k−ω SST model was obtained as a starting solution to further

unsteady simulations but also to validate the current computational configuration. Due

to the Boundary Conditions differences mentioned previously this result, especially the

thermal equation, cannot be expected to be identical to experiment. It does however

show consistencies in surface distributions and trends on spanwise averaged quantities

as shown on Figure 5.16, Figure 5.17 and Figure 5.18. It will also provide a good

foundation on which to perform the further unsteady simulations.

167

5.4 RANS results 5 RESULTS: TURBINE INTERNAL COOLING

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

0
.6

0
.8

1
1
.2

-6
0
0
0

-4
0
0
0

-2
0
0
00

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

heat flux [W/m
2
]

-1
-0

.8
-0

.6
-0

.4
-0

.2
0

0
.2

0
.4

0
.6

0
.8

1
1
.2

x
/c

0

0
.2

0
.4

0
.6

0
.81

isentropic Mach no.

F
ig

u
re

5
.1

6
:

R
A

N
S

re
su

lt
s

v
s.

ex
p
er

im
en

t.
V

er
ti

ca
l

d
as

h
ed

li
n
es

re
p
re

se
n
t

lo
ca

ti
o
n
s

o
f

th
e

co
o
li

n
g

h
o
le

s.

168

5.4 RANS results 5 RESULTS: TURBINE INTERNAL COOLING

Figure 5.17: Mach number contours.

Figure 5.18: Heat flux contours.

169

5.5 DES 5 RESULTS: TURBINE INTERNAL COOLING

5.5 DES

Computational benchmarking shown based on current grid and required timestep of

5.4× 10−5 it would take 4 weeks on 120 cores on CFMS HPC for the flow to go ten

times through the domain. At least three ’flow-through’ times are usually required for

the flow to develop a fully unsteady characteristics when starting from a RANS solution

and at least another three to six flow ’travels’ for temporal averaging to settle. While

these timescales don’t guarantee a well averaged solution, from experience they are

usually the minimum for this type of simulations. The bulk of the mesh, as is typical,

is in the near wall region where refinement to low y+ is done. This can be somewhat

reduced but it is well known that present application of turbine cooling is sensitive to

this and y+ should be kept to ideally 1.

After many attempts to obtain a sustained unsteady solution, the simulation was

found to not be stable enough and the solution always ended at convergence issues and

unphysical flow. After detailed inspection most problematic areas were found to be

those where the cooling holes meet the boundary layers of the main flow. Cause of

the issue is likely twofold; flow in this area is highly turbulent, three dimensional and

irregular or mesh with high aspect ratio and sharp edges. While Reynolds Averaged

simulation appears to be able to handle sharp mesh near hole inlets DES clearly strug-

gles to converge there. Is is likely the meshing step has to be revisited to improve quality

and structure of the mesh and potentially refine further to obtain stable DES solution.

The author eventually ran out of allocated time and the work had to cease.

5.6 Conclusions

Majority of work shown in this chapter has been the preprocessing legwork of CFD.

While RANS results were obtained, unfortunately the work has not resulted in a sat-

isfactory DES simulation in the time frame given. The work did however highlight

that meshing and geometry handling is a significant issue for present application and

this difficulty is only going to increase with realistic internal cooling passages or more

complex blade features. Despite there being 102 cooling holes of different shapes, cur-

rent geometry is still very simplified with respect to components commonly certified

for commercial aeroengines. Other works such as overset and IMB [189, 190] simplify

170

5.6 Conclusions 5 RESULTS: TURBINE INTERNAL COOLING

greatly the meshing but introduce other issues and are a different technique fulfilling

different requirements altogether.

Achieving stable numerical solution was also difficult, judged largely due to locally

inadequate mesh exacerbated by the high speed flow.

Another, perhaps less scientific, conclusion is that obtaining or recreating geometry

from previous works is less than trivial and must not be underestimated. Any contri-

bution to knowledge rests on such practical points which sometimes even prevent any

contribution at all.

But even work like this results in useful insights; it is now clear that a radically

different approach to simulating flow around complex internal geometries is needed.

Such rethink and development of alternative method to simulate problematic geome-

tries in environment of fast paced component design timescales will be offered in the

next chapter.

171

6 RESULTS: GPU IBM PROGRAM

Chapter 6

6 Results: GPU IBM program

6.1 Chapter introduction

As demonstrated in the previous chapters, our current computational tools appear to

struggle to address the challenges of turbine blade design well. While it is not impos-

sible to simply use the current industrial state of art, obtaining quality solution requires

large amount of time and expertise, making it impractical and preventing widespread

use. Work presented in this chapter aims to create a path towards unique, step-change,

solution to a unique set of problems encountered in the field.

The solution proposed is a General Purpose Graphical Processing Unit (GPGPU)

Immersed Boundary Method (IBM) – based program where a standard square ’back-

ground’ grid is generated with minimal user intervention and a user-specified geometry

is imposed onto the Navier-Stokes solution via Ghost Nodes. The Navier-Stokes solver

only operates on the fully structured ’background grid’ and each node is checked for

proximity to the user provided geometry. The numerical solver is appropriately modi-

fied to make it behave as if the geometry was physically there. This introduces a number

of benefits, such as easy grid generation and ability to solve any arbitrary geometry on

a structured grid. The latter enables the code to be readily portable to different architec-

tures, such as GPGPUs, with little performance penalty and without introducing numer-

ical or computational complexities. Accuracy of the method will also be addressed via

high order schemes and verification and validation exercises. This chapter will present

results of two relatively distinct projects required to make the technology work.

One will be a set of preprocessing algorithms that will detect location of the nodes

relative to geometry, compute Immersed Boundary coefficients for the Ghost Nodes

and ensure the problem is well posed for the solver. Methodology of obtaining dis-

tance to the nearest wall must also be arrived at and tested as most turbulence models

require wall distance parameter. This is less trivial task using IBM then with geometry-

conformal grids and accuracy must be preserved over even very small distances near

the walls.

172

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Second is development of the solver itself that will be adapted to make use of these

coefficients with the finite difference method. The usual issues of computational effi-

ciency and stability need to be addressed. While it is possible, and likely better long-

term, to create the two steps in one software, separating them allows experimentation

with different types of Immersed Boundary methods via the standard interface between

the preprocessing and the solver. It also allows the use of different underlying languages

and scripting before the final optimised configuration is found.

In addition, a practical consideration of code portability leads to the use of OPS

library where the computational and scientific issues are treated separately. A single

source code is written in a high level domain language and automatically translated to

all required hardware platforms with the use of OPS language.

This chapter will present development of the method, rationales behind the meth-

ods’ choices and validation with analytical and experimental data.

Summary of the key results and highlights of the methods’ development from this

chapter have been peer reviewed and published in ASME Turbo Expo conference with

paper number GT2020-15844. The work was also attempted to be published in ASME

2019 as GT2019-90265 however it had to be withdrawn as no author was able to attend

the conference in the end.

6.2 IBM specific preprocessing algorithms

This section will present a number of algorithms that must be implemented and vali-

dated prior to solving the Navier Stokes equations. Turbulence models require distance

to the nearest wall at each node, Immersed Boundary Method requires interpolation co-

efficients, accurate identification of nodes inside and outside of the solid domain, Ghost

Nodes need to be identified, vectors normal to the boundary computed and Image Points

identified. The complete list is long and all the steps will be shown. In this section re-

sults of all the prerequisite algorithms and calculations will also be presented. Poisson

equations will be solved and validated.

Additionally since central second order spatial discretisation is used some numerical

dissipation must be introduced to stabilise the numerical solution of the Navier Stokes

equations. This chapter will also present comparison of artificial dissipation schemes.

Finally, parallel scaling will be shown and compared to serial computations as well

173

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

as various different GPUs.

This chapter is essentially intended to validate all the algorithms necessary to be

able to solve the Navier Stokes equations on realistic geometries using the Ghost Cell

Improved Immersed Boundary Method of Chi [30].

6.2.1 Meshes generation

The procedure starts by generating two grids in a common coordinate system, as shown

on Figures 6.10 and 6.11 or 2.1. Firstly, a geometry representation is created as shown

by dashed line on the figures; in practice this is a csv list of (x,y) pairs for a two dimen-

sional simulation or a commonly used Stereolithography (STL) representation in three

dimensions. While certain level of points density is required for the node identification

algorithm to work correctly this step usually does not tend to pose a major challenge

regardless of geometry complexity. STL representation were generated by Creo CAD

suite [197] but can even be created by a postprocessing software such as ParaView

[198]. The two dimensional csv files were created using the slicing and projection tools

in Paraview for complex shapes and Matlab for simpler ones where analytical expres-

sions exist.

The second step is to generate the background grid for Navier-Stokes computations.

Those grids must be given more thought as the usual recommendations of y+ and gen-

eral best practices apply. Ansys ICEM CFD [195] and Pointwise [199] software were

used for this task and the geometry generated in previous step was first imported as

shown on Figure 6.5. The reason for this was to aid generating suitable, but not ex-

cessive, wall refinements; as the grids are generated independently, not having a clear

geometry representation while creating the background grid would make the task prob-

lematic and result in suboptimal mesh. As can be seen on 6.10 the IBM grids closely

resemble body conforming type grids in terms of near wall refinement and expansion

ratios. One notable difference is that grid cells and points exist inside the geometry as

for instance shown on Figure 6.5. There is no flow inside the geometry but those cells

are still parallelised across compute ranks and computations, however unphysical, are

still performed there. This creates a penalty in the present application however presents

an excellent opportunity for conjugate heat transfer computations as a natural extension

of the method.

174

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

6.2.2 Nodes in/out and GN identification

Having both meshes generated, the very first task on which all else is built is to identify

two types of nodes:

• nodes of the background grid located inside the geometry defined by the user.

This step will assign either a ’solid domain’ or ’fluid domain’ tag to each node of

the grid.

• Ghost Nodes, here defined as nodes of the solid domain which have at least one

neighbour in the fluid domain. The neighbour can be either +i, +j, or a combina-

tion of them. The reason for including diagonal nodes in the search is that some

more advanced smoothing / filtering algorithms use it to determine dissipation co-

efficients. Only one layer of Ghost Nodes is required for most 2nd order schemes

however expanding to increase more ’layers’ of Ghost Nodes is straightforward

once the program is written.

The main difficulty here was node identification. There are many algorithms to

accomplish this, ranging from ray tracing, kd-tree or by ’brute force’ simply computing

distance to curve at each of the nodes. Brute force here was chosen for simplicity

of implementation and debugging and performance was found to be acceptable. The

structured grid can easily be parallelised, user geometry is small so can be stored on

each core and no communication is necessary between the grid nodes. This makes

the brute force method attractive for early research where speed of implementation is

prioritised over ’production grade’ optimisations. In addition, MATLAB was used to

implement the method, which further eased the parallelisation via its in-built shared

memory approach.

Results of the computations on a sample cylinder and array of such cylinders are

shown on Figures 6.1, 6.2 and 6.3. It was found that density of at least 4 points of the

user defined geometry within one background grid cell were necessary to achieve robust

result. Overall the program appears to be able to handle any number of geometries of

any arbitrary shape once the user geometry is sufficiently refined, i.e. if multiple shapes

exist they do not have to be explicitly defined separately, the algorithm is general enough

to recognise when a node is enclosed.

175

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.1: Example result of node identification algorithm on a cylinder section: de-

tailed view.

176

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

F
ig

u
re

6
.2

:
E

x
am

p
le

re
su

lt
o
f

n
o
d
e

id
en

ti
fi

ca
ti

o
n

al
g
o
ri

th
m

:
si

n
g
le

p
in

.

177

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.3: Example result of node identification algorithm: single: array of pins.

178

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

6.2.3 Normals, IP, EIP and coefficients

Having identified the IBM tags of the nodes, for the IIBM technique used here each

Ghost Node must now have a corresponding set of points as also shown on Figure 2.3

and explained in detail previously:

• Body Intercept (BI) - the algorithms search for it as the point on the user geometry

that is closest to the Ghost Node

• normal unit vector - unit vector along the line between GN and BI.

• Image Point (IP) - produced by extending a fixed distance δ along the normal unit

vector, from the BI towards the fluid domain.

• Extra Image Point (EIP) - produced by extending a distance of δ along the normal

unit vector, from IP. This point only exists in Improved IBM technique [30] and

is used primarily in ensuring the gradients imposition is more stable and accurate

along the IBM line.

There were some caveats found when computing the above coefficients. If the grid is

too coarse or there are concave areas this might produce unphysical results or algorithm

fail entirely for Boundary Intercept. The simplest solution was to refine the background

grid such that the curvature radius was relatively high per Ghost Node and no concave

areas are present - a concave area is a series of smaller convex areas.

Another observation here was that any number of shapes can be used, each consisting

of any arbitrary amount of points. The technique is entirely local and detects each GN

and handle them on node-by-node basis without assumptions on the unstructured shape

or their quantity. This aspect was one of the rare surprises where practical reality did

not pose any unexpected challenges at all.

Figure 6.4 shows an example of the computations results on part of the cylinder where

all edge cases with varying δ are visible on the image. As a reminder, the δ in the

present context is the distance between Image Point and Extra Image point and is a

local indicator of how likely the image points are to form a ’complete’ interpolation

(where all 4 nodes are in the fluid domain). The way it’s used is to move the IP and EIP

slightly further away from the boundary if δ is below a prescribed threshold.

179

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

0.7939 0.794 0.7941 0.7942 0.7943 0.7944 0.7945 0.7946 0.7947
0.1188

0.1189

0.119

0.1191

0.1192

0.1193

0.1194

Immersed Boundary

Body Intercept (BI)

Ghost Node (GN)

Image Point (IP)

Extra Image Point (EIP)

Solid Node

Fluid Node

Figure 6.4: Actual plot of the normals computation.

6.2.4 Wall distance - Poisson equation

As explained in sections 2.6.1 and 3.2.7 the method of Tucker et.al. [4] was used to

compute distance to the nearest user-defined wall at each fluid node of the background

grid. This relatively simple Poisson equation allowed much easier debugging than more

elaborate schemes. The following two dimensional geometries were used to validate the

algorithm:

• turbulent channel

• cylinder

• backward facing step

Several other cases were also prepared but not simulated on with the N-S solver due to

the stability issues uncovered with the code.

A brief scalability and memory use investigation then will be carried out to under-

stand what can be expected from the present solver and to allow planning for hardware

for when the full Navier-Stokes solver is completed.

The first test of the code, although without the IBM, was performed on Poiseuille

flow [200, 201]. Next, using the IBM the calculations with the Navier-Stokes solver

180

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

were performed on backward facing step [202, 203], cylinder at canonical Re=3900

[204] and NACA0012 [205, 206, 207].

6.2.5 Cylinder

Figure 6.5 shows the cylinder grid with mean y+ of approximately 4 based on ghost

node distance to nearest fluid node. Arguably a better metric would be y+ based on

distance of fluid node to user geometry and it will be implemented later however in the

initial stages of development this option was judged to be a good first approximation

given the cells sizes do not change drastically around the geometry.

Figure 6.6 shows implicit convergence history. Explicit pseudo-iteration history is

not shown as it would be a flat line and the solution is not converged with explicit any-

way. 64,000 iterations took 853.502 seconds (approximately 75 iterations per second)

with implicit time integration and CFL of 40,000. Such high CFL is acceptable for

Poisson equation but also because of high aspect ration and flow parallel to the wall.

Explicit solution was not fully converged for practical reasons as it was not possible

to obtain a stable solution with CFL higher than 0.2 with the present solver. There is

no convergence acceleration such as multigrid or residual smoothing currently imple-

mented in the code and physical time requirement to converge a solution using explicit

time integration would be impractical. 4,270,000 explicit iterations were performed,

taking 61,257 seconds (around 69 iterations per second) with CFL of 0.2 and to the au-

thor surprise appear to be the same or slower as the implicit solver. All CFLs were tried

first and set to the highest values that could produce a stable non-diverging solution.

Analysing the output of the program, contour of the obtained solution is shown on

Figure 6.7. The contours are somewhat skewed to the right as the inlet (on the left) is

further away than outlet and the image is cropped. Figure 6.8 shows comparison of the

result against an exact geometric node-by-node measurement, taken from the rightmost

point on the middle of the cylinder, moving downstream. Until approximately 20% of

cylinder diameter the solution is relatively accurate and then begins to diverge notably.

This is a known limitation of the present method and the Hamilton-Jacobi approach is

reported to be significantly more accurate as well as more computationally efficient.

However, implementation of Hamilton-Jacobi method is much more complex while

accuracy of the distance to nearest wall in turbulence equations only matters in the

181

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

F
ig

u
re

6
.5

:
M

ag
n
ifi

ca
ti

o
n

o
f

th
e

IB
M

g
ri

d
o
f

cy
li

n
d
er

,
b
o
th

st
ru

ct
u
re

d
an

d
u
n
st

ru
ct

u
re

d
.

182

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

0 10 20 30 40 50 60 70
10

-2

10
0

10
2

0 10 20 30 40 50 60 70
0

0.5

1

Figure 6.6: Convergence of the implicit diagonal scheme

immediate vicinity of the wallwhere y+ is low. Away from the wall terms that use wall

distance are insignificant and the error has less impact. For these reasons the present

method of computing distance to the nearest wall was judged to be sufficiently accurate

to move on with further development of this experimental solver.

183

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.7: Contours of distance to the wall of 2D cylinder. Slightly skewed to the right

as inlet (on the left) is further away than outlet and the image is cropped.

0 0.2 0.4 0.6 0.8 1 1.2

Physical distance x/D

0

0.2

0.4

0.6

0.8

C
o

m
p

u
te

d
 d

is
ta

n
c
e

 t
o

 t
h

e
 w

a
ll

Actual

Ideal

Figure 6.8: Validation of distance to the nearest wall as computed by the differential

equation method of Tucker et.al. [4].

184

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

6.2.6 Backward facing step

Figures 6.10 and 6.11 show the computational grids used for the backward facing step

simulation. Note two grids are shown on Figure 6.11; the ’background’ cartesian grid

on which computations are actually performed and the dotted ’user-defined’ geometry

which is used to impose wall boundary conditions for IBM purpose. The IBM grid is

extended beyond the computational grid intentionally as it helped make the IBM algo-

rithms more stable. Specifically the search algorithm struggled if every node (including

wall nodes) wasn’t clearly encapsulated by IBM grid. There is no risk to Navier Stokes

computations using the extended grid as the IBM always computes normal to the user

defined geometry in this case resulting in stencil along the bottom walls.

Figure 6.9 shows contours of the Poisson wall distance along the step with the values

computed as geometrically expected.

Figure 6.9: Contours of distance to the wall of backward facing step.

185

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

F
ig

u
re

6
.1

0
:

O
v
er

al
l

v
ie

w
o
f

th
e

b
ac

k
w

ar
d

fa
ci

n
g

st
ep

g
ri

d
u
se

d
in

th
e

p
re

se
n
t

st
u
d
y.

186

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.11: Magnification of the backward facing step grid with the IBM geometry

superimposed.

187

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

6.2.7 Array of cylinders

Figure 6.12 shows the computational as well as IBM grid used for wall distance calcu-

lation validation of the array of cylinders. Figure 6.13 shows magnified representation

of the pins. Several things are worth noting here. Grid around the full pin is very re-

fined and combined with all the pins around it, the heavy refinement must be present in

the entire domain. This is a limitation of the IBM in the present work. Secondly, the

IBM geometry of the half cylinder again extends beyond the cartesian computational

domain, similarly to the backward facing step. This again ensures the geometry ends

well outside of any tolerances or the δ factor and all nodes are properly designated as

solid. Also it is worth noting that the boundary conditions imposed by the IBM always

are applied on top, and after the boundary conditions applied at the cartesian grid. So

in this case the outer edges of the domain are walls but IBM designates them as solid

and the flow is not computed there at all. While inconsequential in this test case, such

approach is important for a range of edge cases that do occasionally occur elsewhere.

Finally, Figure 6.14 shows results of the Poisson equation computations with dis-

tances to the nearest walls as expected. As shown already on Figure 6.8 the solution

here tends to be very close to geometrically ideal at close distances to the wall. This do-

main is fully encapsulated by walls and contains a number of wall boundary conditions

inside designating the cylinders and the errors are minimised.

Figure 6.12: Overall view of the the array of pins grid.

188

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.13: Pins representation in the array of pins case. Top figure is a full pin, bottom

image demonstrates the way half circumference was imposed via IBM at the edges of

the domain.

189

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

F
ig

u
re

6
.1

4
:

C
o
n
to

u
r

p
lo

t
o
f

th
e

d
is

ta
n
ce

to
th

e
n
ea

re
st

w
al

l
v
ar

ia
b
le

fo
r

th
e

ar
ra

y
o
f

p
in

s
g
eo

m
et

ry
.

190

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

6.2.8 T106 cascade

Figure 6.15 shows the two dimensional grids (computational and IBM) of the T106A

test case. It was necessary to only display every second grid point for the figure to be

legible. Note very high refinement near the suction side. This is not strictly necessary

for the wall distance computation but it was necessary for any attempts at Navier-Stokes

simulation of the geometry and correct capture of the separation point. There are no N-

S computations shown here for this geometry as there was not enough time to complete

the analysis properly however after few attempts it quickly became clear IBM needs a

very high level of grid refinement to capture separation correctly at high Re.

Figure 6.15: Grid of the T106A 2D turbine cascade representation. Every second point

is shown.

And finally, Figure 6.16 shows results of the computatons which appear to be as

expected. Note the grid oscillations at the periodic boundary. This appears to be only

a visual artefact due to the way the results are displayed and no IBM computations are

taking place in those areas. However only the simplest translational periodicity was

applied there without more advanced filters or checks and this area should be watched

closely in any N-S computations.

191

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.16: Contours of the distance to the nearest wall variable for the T106A 2D

cascade.

192

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

6.2.9 Parallelisation study

Memory usage was 4.8 GB per million nodes and changing linearly. This value can be

greatly optimised by compressing the variables together and removing several arrays.

Significant amount of IBM data was also held on per-core basis for debugging. Due to

the way the code was initially written with OPS library there is no distinction of memory

used for NS or Poisson computations as all memory is always allocated. This was

mainly due to the way IBM computations were initially implemented but was improved

in later versions of the code.

Figure 6.17 shows a Poisson computation on a grid with 600,000 nodes, ran for

100,000 iterations. Minerva HPC used Intel Xeon E5 Sandy Bridge 2.6GHz CPUs,

arranged in 16 core nodes. Tests shown an NVIDIA 1050Ti performed comparably

to 56 CPU cores (7 physical 8 core CPUs). This is where cost effectiveness can be

demonstrated as at the time of performing the simulations the NVIDIA GPU was about

the price of one of the CPU units. Power consumption will also be much lower with

GPUs; NVIDIA 1050ti is rated at 75W while the Intel CPU is 130W (910W total for 7

CPUs). This is acceptable for small scale systems but will become a significant benefit

as simulations are scaled up to thousands or millions of cores.

1
M

P
I

2
M

P
I

4
M

P
I

8
M

P
I

16
 M

P
I

32
 M

P
I

64
 M

P
I

12
8

M
P
I

19
2

M
P
I

M
20

90

10
50

Ti
10

1

10
2

10
3

ti
m

e
 [

s
]

Figure 6.17: Comparison of runtimes on CPU and GPU. NVIDIA 1050Ti performance

is equivalent to 56 MPI ranks on Nottingham HPC Minerva. Tests done in 2016 when

the 1050Ti was the latest GPU available. Time in wall clock seconds.

193

6.2 IBM specific preprocessing algorithms 6 RESULTS: GPU IBM PROGRAM

Figure 6.18: CPU scaling study. Scaling remains quite efficient despite two dimen-

sional geometry being used and less than 10,000 nodes per MPI rank for the 192 ranks

simulation.

Figure 6.18 shows ’strong’ scaling capability of the present approach. Even on a

small two dimensional grid the scaling remained mostly linear up to 192 cores (and

192 MPI ranks). Note this required no involvement of the author in the low level MPI

implementation inside the OPS library.

6.2.10 Conclusions of the base algorithms validation

It appears that the implementation of the IIBM using OPS and ADI has so far been

successful and produces working set of IBM coefficients that lead to expected result

of a simple differential equation on a grid using various hardware. Some instability is

observed at the periodic boundary as can be see on Figure 6.16; this is unlikely to be

coming from the IBM coefficients but will need to be investigated before running more

simulations with periodic boundary conditions.

More detailed verification is still needed however top level validation is sufficient to

begin with due to time constraints. It is also still unknown whether the present com-

bination of computational techniques is even viable and detailed V&V study will be

194

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

conducted once the 3D Navier-Stokes solver is at least operational, however ineffi-

ciently that may be. The reason is that three dimensional IBM methods are much less

mature or stable than two dimensional work and also implementation is likely going to

be significantly more complex to adapt to the ADI algorithm and OPS framework.

6.3 2D N-S solver

Now that the necessary IBM coefficients have been validated, a solution of two dimen-

sional RANS equations can be attempted.

6.3.1 Turbulent channel Re=13,800

The RANS equation validation begins with a very common channel test case as shown

on Figures 6.19 and 6.20 to demonstrate the two dimensional parallelised code. Al-

though this particular geometry does not have to be simulated via IBM due to it being

strictly rectangular, IBM boundary condition imposition will be used anyway to demon-

strate that it results in correct boundary layer. Geometry was imposed in a manner sim-

ilar show on Figure 6.11 previously.

The boundary conditions and geometry setup are that of Schlater et.al. [208] and

AGARD group [209]. The case is also a standard NASA CFD validation exercise [210]

although with Re of 80 million for validation of the SA model. There also exist simu-

lations at lower Reθ and DNS performed by Moser et.al. [211] and Home et.al. [212].

While exact analytical solution does not exist for this exercise a well known ’Law of

the Wall’ discovered by Von Karman et.al. [213] can be used to assess accuracy of the

near wall region outside of the viscous sublayer. The equations behind the Law of the

Wall as plotted on Figure 6.21 are as follows:

y+ =
u∗y

ν
(224)

u∗ =
√

τw

ρ
(225)

τw = µ

(
∂u

∂y

)

y=0

≈ µ
∆u

∆y
(226)

With u+ defined as:

195

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

Figure 6.19: Grid of the turbulent channel geometry with data extraction location

marked with initial y+ of 0.5

u+ =
1

κ
ln(y+)+C+ (227)

κ = 0.41 (228)

C+ = 5.0 (229)

Empirical measurements on Figure 6.21 were done by Hussain et.al. [214]. The

paper also goes into more detail regarding the analytical solution.

196

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

Figure 6.20: Near wall magnified view of the turbulent channel geometry grid.

10
-2

10
-1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

DOLPHIN

Law of the wall

experiment

Figure 6.21: Validation of the turbulent channel simulation with experimental data and

Law of the Wall. DOLPHIN is University of Nottingham’s in-house structured CFD

tool developed by Dr. Richard Jefferson-Loveday which inspired the present work.

197

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

6.3.2 Cylinder Re=3,900

Next validation case will be a cylinder with grid and geometry as shown on Figure 6.5.

The geometry at this particular Reynolds number is commonly used for validation and

many authors perform experiments as well as high fidelity simulations such as LES or

DNS on the cylinder. Some examples include Fornberg et.al. [215], Taneda et.al. [216],

Balabani et.al. [217], Kravchenko et.al. [204] and Parnaudeau et.al. [5]. There are also

extremes of Re, both very low Re studies reviewed by Preece [55] and very high Re

(> 107) by Roshko [218]. High order techniques were also investigated on the flow

around cylinder [219]. The actual boundary conditions used here are summarised in

Table 6.1.

Parameter Value

Re 3,900

Fluid used in exp. air, 20 degC

ubulk 9.81 m/s

Iinlet 1% - 5%

Lcharacteristic = dcylinder 6mm = 0.006m

Table 6.1: Summary of the conditions of the turbulent flow over cylinder case

Moving on to results of the simulations, data extraction locations is again relatively

common in literature and most researchers are using data on lines as shown on Figure

6.22. Figures 6.23 and 6.24 show velocity comparisons on the lines directly across the

wake while Figures 6.26 and 6.27 show velocity along the wake and pressure coefficient

around the cylinder circumference respectively.

RANS models are generally known to struggle simulating flow around this geometry

accurately and it was a challenge to even obtain a stable solution with the present code

at all. It is clear from the plots though that even under this conditions the Navier Stokes

equations appear to be converging at an approximately correct solution.

198

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

Figure 6.22: In solid black are data extraction lines. The same locations and lengths as

experimental data of Parnaudeau et.al. [5]. Streamwise direction is positive ”X”.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1
x/D=0.58

x/D=1.06

x/D=1.54

x/D=2.02

RANS SA

exp. data

High order LES

Figure 6.23: Cylinder x-component of velocity comparison with experimental data.

199

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

x/D=1.06

x/D=1.54

x/D=2.02

Figure 6.24: Cylinder y-component of velocity comparison with experimental data.

Legend as in 6.23

Figure 6.25: Cylinder streamlines with viscosity ratio colours.

200

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

0 2 4 6 8 10
-0.5

0

0.5

1

Figure 6.26: Cylinder velocity profile along the wake centerline directly behind and

away from the geometry. Legend as in 6.23

0 20 40 60 80 100 120 140 160 180
-1.5

-1

-0.5

0

0.5

1

Figure 6.27: Cylinder pressure coefficient around the geometry. Legend as in 6.23

201

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

6.3.3 Upstream facing step Re=36,000

The last two dimensional validation case is an upstream facing step as described by

Jespersen et.al. in the NASA validation resources [220]. Case details and boundary

conditions are the same as Jespersen et.al. [220] and summarised in table 6.2. Flow

around this geometry is often simulated at many different Reynolds numbers, such as

in paper by Le Moin et.al. [221] with step at Re=5,100 and expansion ratio of 1.2. A

NASA report [222] also has this step at Re=5100 for validation of the SA turbulence

model. Re=6000 and some more data is in paper by Schafer et.al. [223] but also in

Lee et.al. [224] and Vogel et.al. [225]. Overall, similarly to the previous cylinder case,

ample high fidelity simulation as well experimental data exist related to this geometry

and flow conditions to aid validation of CFD codes.

Parameter Value

Rere f 36,000

Mare f 0.22

Fluid used in exp. air, 20degC

ubulk[m/s] 75.5

Iinlet 1% – 5%

Lcharacteristic = hstep[m] 0.0070417

Table 6.2: Summary of the conditions of the upstream facing step case.

Data extraction lines again tend to be common across literature and for clarity are

shown on Figure 6.28. As before, the figure is to scale and the length of lines is repre-

sentative of the data in the four plots that follow.

Figures 6.29 and 6.30 show the streamwise (x) velocity component along the lines,

with legend as on 6.23 while Figures 6.31 and 6.32 show streamlines of the recirculating

region behind the step with the IBM imposed geometry marked with red dotted lines.

Since the model used to obtain the results is RANS it is not expected to agree fully

with experimental measurements or high fidelity simulations such as LES but it does

appear to be consistent with RANS simulations performed by commercial codes or

other researchers which is encouraging.

202

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

Figure 6.28: Data extraction lines for the upstream facing step. Figure to scale.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Figure 6.29: Streamwise velocity component on the first two data extraction lines.

203

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Figure 6.30: Streamwise velocity component on the next two data extraction lines.

204

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

Figure 6.31: Streamlines immediately after the step with the IBM geometry marked.

Figure 6.32: Overall view of the streamlines behind the step with turbulent viscosity

ratio marked.

205

6.3 2D N-S solver 6 RESULTS: GPU IBM PROGRAM

6.3.4 Further validation

Three further validation cases were identified that can be used to get more detailed

insight into performance of the CFD program:

• Array of cylinders as summarised in Table 6.3

• Rounded rib as used by Gillespie et.al. [226] and Rallabandi et.al. [89]

• T106A 2D turbine cascade as summarised in Table 6.4 and much data including

DNS provided by Kalitzin et.al. [227] [228] or Stieger et.al. [229].

Parameter Value

Re 12,858

Fluid used in exp. water, 20 degC

ubulk 0.93 m/s

Iinlet 1% - 5%

Lcharacteristic = dcylinder 10mm = 0.01m

ugap 1.2858

amount of cases 3

paper Balabani, Yianneskis et.al. [217]

Table 6.3: Summary of the conditions of the array of pins case

Re 148,000

Chord (characteristic length) 0.0313 m

Inlet flow angle 37.7◦

Mean flow velocity magnitude 69.48 m/s

Mach number 0.2

Air dynamic viscosity 1.8×10−5 Pas

Air inlet density 1.225 kg/m3

Table 6.4: Summary of the conditions of the T106A turbine cascade test case.

The data and geometries from the above papers will prove useful once the stability

issues with the code are resolved.

206

6.4 Chapter conclusions 6 RESULTS: GPU IBM PROGRAM

6.4 Chapter conclusions

All the necessary equations, including the two dimensional Navier-Stokes equations

were implemented. Immersed Boundary Method preprocessing algorithms were mod-

ified as necessary, tested and several optimisations performed to achieve a balance be-

tween speed, robustness and accuracy.

It was demonstrated that the bulk of the two dimensional algorithm works and has

been implemented correctly. There appear to be some instabilities and the filtering

scheme needs more work to achieve balance between artificial viscosity (i.e. accuracy)

and stability. While full verification was not performed, the results from the test cases

shown are encouraging to proceed to implementation of a three dimensional algorithm.

Scalability has been shown to be good, even in a scenario with very low node count per

rank. Due to this it is likely the scalability will remain good or better as the cell count

gets larger.

A 3D algorithm is likely to be more challenging and complex to get right, however

there do not appear to be any fundamental technical or practical obstacles as to why it

cannot be done. Overall the author believes it was demonstrated that this type of CFD

solver is feasible and can meet all the requirements set out earlier.

207

7 CONCLUSIONS AND FUTURE WORK

Chapter 7

7 Conclusions and future work

7.1 Summary

Several threads were explored in this thesis; turbulence modelling, numerical methods

as well as computational approaches. Meshing and geometry manipulation was also

considered, as is inevitable in any CFD work. As an engineering work, an element of

business rationale was also explored and the overarching application was industrial tur-

bine blade simulations with all its complexities such as internal and film cooling. The

primary aim of this doctoral work was to advance understanding and simulation capa-

bilities of the field and this goal was achieved in two ways.

One was a comprehensive study of advanced hybrid RANS-LES models, which

concluded that LES is often the most optimal type of simulation, even if done on a

grid that is coarser than the ideal LES requirement would dictate. DES and SST-SAS

variants are still promising and should be explored on engine-representative geometries

but for simpler shapes ’coarse grid LES’ appears to be acceptable. Progressively com-

plex geometries were created and simulated on. Attempting to simulate flow around the

most complex geometry proved that meshing is indeed a primary difficulty and funda-

mentally different approach to meshing is required.

The second way to achieve the thesis’ aims was a two dimensional, portable, Im-

mersed Boundary Method program that eases significantly the grid generation woes

and has the ability to harness the power of variety of hardware, current and future, ef-

ficiently. It was proved possible to use the IBM method with implicit time and spatial

discretisation on a GPU and with high order methods. While three dimensional exten-

sion will likely be much more complex to develop and achieve stability, there appear to

be no fundamental obstacles for making it happen.

7.2 Contribution to knowledge

• It was shown that GPUs can be effectively utilised to simulate flow around realis-

tic geometries, outperforming classical CPU solvers. This is without compromise

208

7.3 Limitations of current work 7 CONCLUSIONS AND FUTURE WORK

of numerical methods and the same implicit time and spatial discretisation that

are used on CPUs can be used effectively with minor modifications. It was also

demonstrated that GPUs offer cheaper computational power and higher power

density which makes it possible to run large scale simulations on local machines

• It was shown that structured grids do not have to be inflexible in terms of what

geometry can be modelled - in fact the IBM method proves that grid generation

is easier than for classical solvers and produces higher quality grids without com-

promising accuracy even at high, turbulent Re.

• It was shown that high level libraries provide significant and much needed bene-

fits to the scientific developer. Indeed it would not be possible to create the present

code within the timescale given if no high level library was used and performance

would likely be below that of a dedicated library. The code is also significantly

easier to maintain and deemed to be ’future–proof’, which is not the case with

manual parallel implementation.

• The combination of methods demonstrated to perform well in this work allows

easy implementation of high-order spatial discretisation to potentially arbitrary

order of accuracy, further increasing simulation efficiency.

• A hybrid RANS–LES turbulence approach termed SAS–SST was thoroughly

tested for use with turbomachinery internal cooling applications. It was shown

that the artificial forcing remedies some of the original models problems and the

model is a significant improvement of URANS with little increase in cost or com-

plexity. However, DES or even coarse grid LES is likely still preferred for the

present application.

7.3 Limitations of current work

• Larger simulations on GPU are memory limited

– One must distribute the grid and solution data across multiple GPUs, which

requires MPI + GPU; this is not yet available with OPS and ADI

– The best GPUs currently have 32gb memory. One would need > 20 very

expensive GPUs to perform a large scale LES simulation (assuming 1b cell

grid)

– The upside here is that having so many GPUs would result in even 1b cell

209

7.4 Recommendations for future work 7 CONCLUSIONS AND FUTURE WORK

calculations being done in design timescales, i.e. < 12h

• Grid must be very refined near the wall for IBM – main limitation for high Re so

far Hence IBM has been applied to low Re so far mainly

• The datasets of OPS are relatively inflexible and significant amount of unneces-

sary information is stored. For instance to store IBM interpolation coefficients an

ops dat datatype is used which allocates memory for each cell but has only useful

information near the unstructured boundary comprising of approximately 5 % of

cells. This was found to be unavoidable in many places in the code. Similarly

some pre-processing routines loop over each point and perform several checks for

every node of the domain while it is often apparent when a check is not required.

The impact of this is limited as pre-pre-processing is a one-off operation.

7.4 Recommendations for future work

The methods developed in the present work may be improved substantially by intro-

ducing some sort of appropriate local grid refinement. At the moment this is major

drawback of the present work; the grid must be refined locally and the refinement prop-

agates through the structured domain. Overset grids, or hanging nodes may be used, but

were found by other researchers to reduce the accuracy of solution locally, often even

to first order. It is also not clear how one may achieve hanging nodes or overset grids

with the datasets and halos of OPS. On top of these issues, hanging nodes introduce

more communication over computation which may reduce parallel performance. The

subject of local grid refinement is recommended as future work to improve the present

methods.

It is recommended to investigate applicability of the present research to be used in an

optimisation framework.

Conjugate Heat Transfer simulations and higher order discretisation are the next natural

step in the present work, utilising the already existing grid inside the solid.

7.5 Unique selling points

• User time to generate a structured grid of a complex geometry is significantly

reduced. This is achieved via Ghost Cell Immersed Boundary Method (GCIBM)

210

7.5 Unique selling points 7 CONCLUSIONS AND FUTURE WORK

and all standard turbulence models and equations can be used without modifica-

tion to them and only minor and easy modification near the IBM boundaries.

• The code is portable to different architectures (CPU, GPU) without modification

and single source code exist for all architectures. No new source needs to be

created if a new architecture emerges in future (e.g. Xeon PHI), only the back

end adapted.

• Simulations can be performed at much lower cost and performance of the code is

maximised by decoupling the parallel implementation from the scientific appli-

cation. GPU computational power is much cheaper per unit FLOP.

• Implicit temporal and spatial discretisation (filters) can be used and scales effec-

tively, including on massively parallel GPU platforms.

211

8 REFERENCES

8 References

[1] Roger L. Simpson, C. H. Long, and G. Byun. Study of vortical separation from

an axisymmetric hill. International Journal of Heat and Fluid Flow, 23(5):582–

591, 2002. ISBN: 0142-727X.

[2] T Myrum, S Acharya, and S Dutta. Developing temperature and periodically

developed flow , and heat transfer in a ribbed duct. International Journal of Heat

and Mass Transfer, 40(2):2069 – 2082, 1997.

[3] D. Charbonnier, P. Ott, M. Jonsson, Th Köbke, and F. Cottier. Comparison of nu-

merical investigations with measured heat transfer performance of a film cooled

turbine vane. In Proceedings of the ASME Turbo Expo, volume 4, pages 571–

582, 2008. Issue: PART A.

[4] P G Tucker, C L Rumsey, P R Spalart, R E Bartels, and R T Biedron. Computa-

tions of wall distances based on differential equations. AIAA Journal, 43(3):539–

549, 2005. ISBN: 9781624100314.

[5] Philippe Parnaudeau, Johan Carlier, Dominique Heitz, and Eric Lamballais. Ex-

perimental and numerical studies of the flow over a circular cylinder at Reynolds

number 3900. Physics of Fluids, 20(8), 2008.

[6] Boeing inc. http://www.boeing.com/boeing/commercial/cmo/.

[7] Airbus inc. http://www.airbus.com/company/market/forecast/.

[8] Z J Wang and Learned Hall. High-order computational fluid dynamics tools for

aircraft design Subject Areas :. 2014.

[9] A Correia, J Peters, J Levy, S Melly, and F Dominici. Residential exposure to

aircraft noise and hospital admissions for cardiovascular diseases: multi airport

retrospective study. Br. Med. J. 347, f5561, 2013.

[10] A L Hansell. Aircraft noise and cardiovascular disease near Heathrow airport in

London: small area study. Br. Med. J. 347, f5432, 2013.

212

8 REFERENCES

[11] Ilan M. Kroo and Nicolas E. Antoine. Framework for Aircraft Conceptual De-

sign and Environmental Performance Studies. AIAA Journal, 43(10):2100–2109,

2005. ISBN: 978-1-62410-019-2.

[12] J E Penner. Aviation and the Global Atmosphere. Cambridge university press,

1999.

[13] U S National Science and Technology Council.

http://www.whitehouse.gov/sites/default/files/ microsites/ostp/aero-rdplan-

2010.pdf.

[14] ACARE Europe. http://www.acare4 eu-

rope.com/sites/acare4europe.org/files/document/ Create-Final-Report-October-

2010.pdf.

[15] The Cleansky project. http://www.cleansky.eu/content/homepage/ aviation-

environment.

[16] John C Vassberg and Et.al. Summary of the Fourth AIAA CFD Drag Prediction

Workshop. AIAA Paper, (July):4547, 2010. ISBN: 9781617389269.

[17] D. Levy, R. Wahls, T. Zickuhr, J. Vassberg, S. Agrawal, S. Pirzadeh, and

M. Hemsch. Summary of data from the first AIAA CFD Drag Prediction Work-

shop. 40th AIAA Aerospace Sciences Meeting & Exhibit, pages 1–31, 2002.

ISBN: 978-1-62410-078-9.

[18] Long He and Danesh K. Tafti. Evaluating the Immersed Boundary Method in

a Ribbed Duct for the Internal Cooling of Turbine Blades. ASME Turbo Expo,

pages 1–10, 2015. ISBN: 9780791856710.

[19] Kevin Menzies. Delivering better power: the role of simulation in reducing the

environmental impact of aircraft engines. Philosophical transactions. Series A,

Mathematical, physical, and engineering sciences, 372(2022), 2014.

[20] Je-Chin Han. Recent Studies in Turbine Blade Cooling. International Journal of

Rotating Machinery, 10(6):443–457, 2004. ISBN: 1023-621X.

213

8 REFERENCES

[21] D K Tafti, L He, and K Nagendra. Large eddy simulation for predicting turbulent

heat transfer in gas turbines. Phil. Trans. R. Soc. A 372: 20130322, 372(2022),

2015. ISBN: 1364-503x.

[22] J. Schabacker, A. Bolcs, and B. V. Johnson. PIV Investigation of the Flow Char-

acteristics in an Internal Coolant Passage with Two Ducts Connected by a Sharp

180 0 Bend. International Gas Turbine, Aeroengine Congress and Exhibition,

(x):1–11, 1998. ISBN: 978-0-7918-7865-1.

[23] C Orozco-Pineiro. ERICKA Project final report. Technical report, Rolls-Royce

Derby, 2014.

[24] J.C. Tyacke and P.G. Tucker. Future use of Large Eddy Simulation in Aero-

engines. J.Turbomach., 137, 2015. ISBN: 978-0-7918-4561-5.

[25] Suhas V. Patankar. Numerical heat transfer and fluid flow. page 218, 1980. ISBN:

9780891165224.

[26] F.R. Menter. Turbulence Modeling for Engineering Flows. A Technical Paper

from ANSYS, Inc, pages 1–25, 2011.

[27] Tobias Brandvik and Graham Pullan. SBLOCK: A framework for efficient

stencil-based PDE solvers on multi-core platforms. Proceedings - 10th IEEE

International Conference on Computer and Information Technology, CIT-2010,

7th IEEE International Conference on Embedded Software and Systems, ICESS-

2010, ScalCom-2010, (3):1181–1188, 2010. ISBN: 9780769541082.

[28] T Brandvik and G Pullan. An accelerated Navier-Stokes solver for flows in tur-

bomachines. J. Turbomach. 133, 2011.

[29] J.P. Rouse, P. Zacharzewski, C.J. Hyde, R. Jefferson-Loveday, A. Morris, and

S.T. Kyaw. A case study investigation into the effects of spatially dependent

convection coefficients on the fatigue response of a power plant header compo-

nent. International Journal of Fatigue, 113, 2018.

[30] Cheng Chi, Bok Jik Lee, and Hong G. Im. An improved ghost-cell immersed

boundary method for compressible flow simulations. International Journal for

Numerical Methods in Fluids, 83(2):132–148, 2017.

214

8 REFERENCES

[31] R. Ghias, R. Mittal, and H. Dong. A sharp interface immersed boundary method

for compressible viscous flows. Journal of Computational Physics, 225(1):528–

553, 2007. ISBN: 0022112006.

[32] CS Charles S. Peskin. The immersed boundary method. Acta Numerica, 11(Jan-

uary 2002):479–517, 2002. ISBN: 1064827500.

[33] M. D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, and M. Napolitano. An

immersed boundary method for compressible flows using local grid refinement.

Journal of Computational Physics, 225(2):2098–2117, 2007.

[34] Francesco Capizzano. High Reynolds Number Simulations by Using an Im-

mersed Boundary Technique. Academy Colloquium Immersed Boundary Meth-

ods, pages 3–5, 2009.

[35] C S Peskin. Flow patterns around heart valves: a numerical method. J. Comp.

Phys. 10(2), pages 252–271, 1972.

[36] Rajat Mittal and Gianluca Iaccarino. Immersed Boundary Methods. Annual

Review of Fluid Mechanics, 37(1):239–261, 2005.

[37] Fraunhofer Itwm and T Gornak. A goal oriented survey on immersed boundary

methods. 235(235), 2013.

[38] J Mohd-Yusof. Development of immersed boundary methods for complex ge-

ometries. Center for Turbulence Research Annual Research Briefs, pages 325–

336, 1998.

[39] Roberto Verzicco, Jamaludin Mohd-Yusof, Paolo Orlandi, and Daniel Haworth.

Large eddy simulation in complex geometric configurations using boundary body

forces. AIAA Journal, 38(JANUARY 1998):427–433, 2000.

[40] J. Mohd-Yusof. Combined immersed boundary/b-spline methods for simulation

of flow in complex geometries. Center for Turbulence Research Annual Research

Briefs1, pages 317–328, 1997. arXiv: 1011.1669v3 ISBN: 9788578110796.

215

8 REFERENCES

[41] J W Nam and F S Lien. A ghost-cell immersed boundary method for large- eddy

simulations of compressible turbulent flows. International Journal of Computa-

tional Fluid Dynamics, 28(1–2):41–55, 2016.

[42] Krishnamurthy Nagendra, Danesh K. Tafti, and Kamal Viswanath. A new ap-

proach for conjugate heat transfer problems using immersed boundary method

for curvilinear grid based solvers. Journal of Computational Physics, 267:225–

246, 2014. Publisher: Elsevier Inc.

[43] Rémi Gautier, Sylvain Laizet, and Eric Lamballais. A DNS study of jet control

with microjets using an immersed boundary method. International Journal of

Computational Fluid Dynamics, 28(6):393–410, 2014.

[44] YH Tseng and JH Ferziger. A ghost-cell immersed boundary method for flow in

complex geometry. Journal of Computational Physics, 192(2):593–623, 2003.

ISBN: 0021-9991.

[45] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-

boundary finite-difference methods for three-dimensional complex flow simula-

tions. Journal of Computational Physics, 161(1):35–60, 2000. arXiv: 1501.0228

ISBN: 00219991.

[46] S Pantula, M H Lu, and W W Liu. Calculations of turbulent flow around airfoils

with Attached Flexible Fin using and Immersed Boundary method. AIAA 2009-

721. Proc. 47th AIAA Aerosp. Scien. Meeting Inc. the New Horizons forum and

Aerosp. Exposition. 5-8 Jan 2009, Orlando, USA, 2009.

[47] By Gianluca Iaccarino, Georgi Kalitzin, and Christopher J Elkins. Numerical and

experimental investigation of the turbulent flow in a ribbed serpentine passage.

pages 379–387, 2003.

[48] A. Gilmanov, F. Sotiropoulos, and E. Balaras. A general reconstruction algorithm

for simulating flows with complex 3D immersed boundaries on Cartersian grids.

Journal of Computational Physics, 191(2):660–669, 2003. ISBN: 0021-9991.

[49] Elias Balaras. Modeling complex boundaries using an external force field

216

8 REFERENCES

on fixed Cartesian grids in large-eddy simulations. Computers and Fluids,

33(3):375–404, 2004. ISBN: 0045-7930.

[50] D K Tafti, L He, and K Nagendra. Large eddy simulation for predicting turbulent

heat transfer in gas turbines. Philosophical Transactions of the Royal Society

a-Mathematical Physical and Engineering Sciences, 372(2022), 2014. ISBN:

1364-503x.

[51] Alejandro Allievi and Rodolfo Bermejo. A generalized particle search-locate

algorithm for arbitrary grids. Journal of Computational Physics, 132(2):157–

166, 1997.

[52] F. Roman, E. Napoli, B. Milici, and V. Armenio. An improved immersed bound-

ary method for curvilinear grids. Computers and Fluids, 38(8):1510–1527, 2009.

Publisher: Elsevier Ltd ISBN: 0045-7930.

[53] F. Roman, V. Armenio, J. Fröhlich, V. Armenio, J. Fröhlich, and V. Armenio.

A simple wall-layer model for large eddy simulation with immersed boundary

method. Physics of Fluids, 21(June), 2009.

[54] Sekhar Majumdar, Gianluca Iaccarino, and Paul Durbin. RANS solvers with

adaptive structured boundary non-conforming grids. Annual Research Briefs,

pages 353–366, 2001.

[55] Adam Preece. An Investigation into Methods to aid the Simulation of Turbulent

Separation Control. PhD Thesis, (April), 2008.

[56] Mayank Tyagi, Somnath Roy, Albert D. Harvey, and Sumanta Acharya. Simu-

lation of laminar and turbulent impeller stirred tanks using immersed boundary

method and large eddy simulation technique in multi-block curvilinear geome-

tries. Chemical Engineering Science, 62(5):1351–1363, 2007.

[57] R. Verzicco, M. Fatica, G. Iaccarino, and P. Orlandi. Flow in an impeller-stirred

tank using an immersed-boundary method. AIChE Journal, 50(6):1109–1118,

2004. ISBN: 9780080445441.

[58] Xiaolei Yang, Xing Zhang, Zhilin Li, and Guo Wei He. A smoothing

technique for discrete delta functions with application to immersed boundary

217

8 REFERENCES

method in moving boundary simulations. Journal of Computational Physics,

228(20):7821–7836, 2009. arXiv: 0911.5187 Publisher: Elsevier Inc. ISBN:

0021-9991.

[59] J. O’Rourke. Computational Geometry in C (J. O’Rourke). Smith College, Mas-

sachusetts, 2008.

[60] Gianluca Iaccarino and Roberto Verzicco. Immersed boundary technique for

turbulent flow simulations. Applied Mechanics Reviews, 56(3):331, 2003. ISBN:

00036900.

[61] J Kim. An Immersed-Boundary Finite-Volume Method for Simulations of Flow

in Complex Geometries. Journal of Computational Physics, 171(1):132–150,

2001.

[62] MATLAB. https://uk.mathworks.com/matlabcentral/fileexchange/.

[63] CGAL. https://github.com/CGAL/releases/blob/master/examples/AABB tree/AABB polyhedron

[64] M. B. Giles and I. Reguly. Trends in high-performance computing for en-

gineering calculations. Philosophical Transactions of the Royal Society A,

372(2022):20130319, 2014.

[65] Tobias Brandvik and Graham Pullan. An Accelerated 3D Navier–Stokes Solver

for Flows in Turbomachines. In ASME Turbo Expo 2009: Power for Land, Sea

and Air, volume 133, pages 1–11, 2009. Issue: 2 ISSN: 0889504X.

[66] Stan Posey. Considerations for GPU acceleration of parallel CFD. Procedia

Engineering, 61:388–391, 2013. ISBN: 1877-7058.

[67] G R Mudalige, I Z Reguly, M B Giles, W Gaudin, J A Herdman, and

A Mallinson. High-level Abstractions for Performance , Portability and Con-

tinuity of Scientific Software on Future Computing Systems - CloverLeaf 3D.

pages 1–18, 2015.

[68] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and

T. J. Purcell. A Survey of General Purpose Computation on Graphics Hardware.

26(1):80–113, 2007. ISBN: 1467-8659.

218

8 REFERENCES

[69] Seyong Lee and Jeffrey S. Vetter. Early evaluation of directive-based GPU pro-

gramming models for productive exascale computing. International Conference

for High Performance Computing, Networking, Storage and Analysis, SC, (iii),

2012. ISBN: 9781467308069.

[70] Paul Tucker, Simon Eastwood, Christian Klostermeier, Richard Jefferson-

Loveday, James Tyacke, and Yan Liu. Hybrid LES Approach for Practical Tur-

bomachinery Flows: Part 2—Further Applications. ASME Turbo Expo 2010:

Power for Land, Sea and Air, 134(March):2, 2010. ISBN: 9780791844021.

[71] D Curran, C B Allen, and D Beckingsale. DEVELOPING A FUTURE-PROOF

CFD CODE. international conference on parallel computational fluid dynamics,

pages 4–5.

[72] Istvan Zoltan Reguly, Gihan R. Mudalige, and Michael B. Giles. Design and

development of domain specific active libraries with proxy applications. Pro-

ceedings - IEEE International Conference on Cluster Computing, ICCC, 2015-

Octob:738–745, 2015. ISBN: 9781467365987.

[73] Istv??n Z. Reguly, Gihan R. Mudalige, Carlo Bertolli, Michael B. Giles, Adam

Betts, Paul H J Kelly, and David Radford. Acceleration of a Full-Scale Indus-

trial CFD Application with OP2. IEEE Transactions on Parallel and Distributed

Systems, 27(5):1265–1278, 2016. arXiv: 1403.7209 ISBN: 1045-9219.

[74] Oxford O P S main website. http://www.oerc.ox.ac.uk/projects/ops.

[75] D Jackson, P Ireland, and B Cheong. Combined Experimental and CFD Study

of a HP Blade Multi-Pass Cooling System. ASME Conference Proceedings,

2009(48845):851–862, 2009.

[76] S Amaral et.al. Design and Optimization of the Internal Cooling Channels of a

High Pressure TurbineBlade—Part I:Methodology. J. Turbomach. 132(2), 2010.

[77] C P Bell, W N Dawes, J P Jarrett, and P J Clarkson. TURBINE ROTOR

BLADE COOLING SYSTEMS 1 Introduction 2 Turbine blade cooling back-

ground. pages 1–10, 2005.

219

8 REFERENCES

[78] P. G. Tucker. Trends in turbomachinery turbulence treatments. Progress in

Aerospace Sciences, 63:1–32, 2013. arXiv: 1011.1669v3 Publisher: Elsevier

ISBN: 0376-0421.

[79] J C Tyacke and P G Tucker. Future use of Large Eddy Simulation in Aero en-

gines. J. Turbomach 137(8), 2015.

[80] P G Tucker and J R DeBonis. Aerodynamics, computers and the environment.

Philosophical Transactions of the Royal Society A, 372:20130331, 2014.

[81] A K Majumdar, V S Pratap, and D B Spalding. Numerical computation of flow

in rotating ducts. J. Fluids Eng. 99, pages 148–153, 1977.

[82] H Iacovides and B E Launder. Parametric and numerical study of fully developed

flow and heat transfer in rotating rectangular ducts. J. Turbomach 113(90), 1991.

[83] Sandip Dutta, Malcolm J. Andrews, and Je Chin Han. Prediction of turbulent

heat transfer in rotating smooth square ducts. International Journal of Heat and

Mass Transfer, 39(12):2505–2514, 1996. ISBN: 0017-9310.

[84] J C Han and Y M Zhang. Effects of uneven wall temperature on local heat

transfer in a rotating square channel with smooth walls and radial outward flow.

J. Heat Transfer 114, pages 850–858, 1992.

[85] J C Han. Heat Transfer and Friction Characteristics in Rectangular Channels

With Rib Turbulators. J. Heat Transfer 110(2), pages 321–328, 1988.

[86] J C Han and J S Park. Developing heat transfer in rectangular channels with rib

turbulators. Int. J. Heat Mass Transfer 31 (1), pages 183–195, 1988.

[87] M. E. Taslim, T. Li, and S. D. Spring. Measurements of Heat Transfer Coef-

ficients and Friction Factors in Rib-Roughened Channels Simulating Leading-

Edge Cavities of a Modern Turbine Blade. Journal of Turbomachinery,

119(3):601, 1997. ISBN: 9780791878811.

[88] Y M Zhang, W. Z. Gu, and J. C. Han. Augmented heat transfer in triangular ducts

with full and partial ribbed walls. Journal of Thermophysics and Heat Transfer,

8(3):574–579, 1994.

220

8 REFERENCES

[89] Akhilesh P Rallabandi, Huitao Yang, and Je-Chin Han. Heat Transfer and Pres-

sure Drop Correlations for Square Channels With 45 Deg Ribs at High Reynolds

Numbers. Journal of Heat Transfer, 131(7):71703, 2009.

[90] H. Iacovides and B. E. Launder. Internal blade cooling: The Cinderella of com-

putational and experimental fluid dynamics research in gas turbines. Proceedings

of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,

221(3):265–290, 2007.

[91] M Schüler, S O Neumann, and B Weigand. Experimental investigations of pres-

sure loss and heat transfer in a 180° bend of a ribbed two-pass internal cooling

channel with engine-similar cross-sections. Proc. Inst. Mech. Eng., Part A (J.

Pow. Ener.), 223:709 – 719, 2009. ISBN: 9783851250367.

[92] S. W. Lee, H. S. Ahn, and S. C. Lau. Heat, Mass Transfer Distribution in a

Two-Pass Trapezoidal Channel With a 180 deg Turn. Journal of Heat Transfer,

129(11):1529, 2007.

[93] ERICKA project. http://cordis.europa.eu/result/rcn/144025 en.html.

[94] P M Ligrani, M. M. Oliveira, and T. Blaskovich. Comparison of Heat Transfer

Augmentation Techniques. AIAA Journal, 41(3):337–362, 2003.

[95] S. Gupta, A. Chaube, and P. Verma. Review on heat transfer augmentation tech-

niques: Application in gas turbine blade internal cooling. Journal of Engineering

Science and Technology Review, 5(1):57–62, 2012.

[96] Z J Wang, Krzysztof Fidkowski, Francesco Bassi, Doru Caraeni, Andrew Cary,

Herman Deconinck, Ralf Hartmann, Koen Hillewaert, H T Huynh, Norbert Kroll,

Georg May, Per-olof Persson, Bram Van Leer, and Miguel Visbal. High-Order

CFD Methods : Current Status and Perspective. International Journal for Nu-

merical Methods in Fluids, pages 1–42, 2012.

[97] ZhiJian Wang. A perspective on high-order methods in computational fluid

dynamics. Science China Physics, Mechanics & Astronomy, 59(1):1–6, 2015.

ISBN: 1978646860.

221

8 REFERENCES

[98] Scott E. Sherer and James N. Scott. High-order compact finite-difference meth-

ods on general overset grids. Journal of Computational Physics, 210(2):459–496,

2005. ISBN: 0021-9991.

[99] Jan Delfs. An overlapped grid technique for high resolution CAA schemes for

complex geometries. 7th AIAA/CEAS Aeroacoustics Conference and Exhibit,

(May):1–11, 2001.

[100] Sanjiva K Lele and Joseph W Nichols. A second golden age of aeroacoustics?

Philosophical Transactions of the Royal Society a-Mathematical Physical and

Engineering Sciences, 372(2022, SI):1–16, 2014. ISBN: 9781461383420.

[101] Donald P. Rizzetta, Miguel R. Visbal, and Philip E. Morgan. A high-order com-

pact finite-difference scheme for large-eddy simulation of active flow control.

Progress in Aerospace Sciences, 44(6):397–426, 2008. ISBN: 9781563479373.

[102] B P Leonard, M K Macvean, and A P Lock. The flux-integral method for

multidimensional convection and diffusion. Applied Mathematical Modelling,

19(6):333–342, 1994. ISBN: ICOMP-94-13.

[103] B. P. Leonard. Simple high???accuracy resolution program for convective mod-

elling of discontinuities. International Journal for Numerical Methods in Fluids,

8(10):1291–1318, 1988. ISBN: 1097-0363.

[104] James Tyacke, Paul Tucker, Richard Jefferson-Loveday, Nagabushana Rao Vad-

lamani, Robert Watson, Iftekhar Naqavi, and Xiaoyu Yang. LES for Turbines:

Methodologies, Cost and Future Outlooks. J. Turbomach., 136, 2013. ISBN:

978-0-7918-5523-2.

[105] Sanjiva K. Lele. Compact finite difference schemes with spectral-like resolu-

tion. Journal of Computational Physics, 103(1):16–42, 1992. arXiv: DOI:

10.1002/fld.1 ISBN: 0021-9991.

[106] Miguel R. Visbal and Datta V. Gaitonde. High-order-accurate methods for com-

plex unsteady subsonic flows. AIAA Journal, 37(10):1231–1239, 1999.

222

8 REFERENCES

[107] Miguel R Visbal and Datta V Gaitonde. On the Use of Higher-”Order Finite-

Difference Schemes on Curvilinear and Deforming Meshes. Journal of Compu-

tational Physics, 181(1):155–185, 2002. ISBN: 0021-9991.

[108] PETSc, https://petsc.org/release/.

[109] L.H. Thomas. Elliptic Problems in Linear Differential Equations over a Network.

Report; Columbia University: New York, NY, USA, 1949.

[110] Endre László, Mike Giles, Jeremy Appleyard, Endre L Aszl, Mike Giles, Jeremy

Appleyard, Endre László, Mike Giles, and Jeremy Appleyard. Manycore Algo-

rithms for Batch Scalar and Block Tridiagonal Solvers. ACM Transactions on

Mathematical Software, 42(4):1–36, 2016.

[111] Lars Davidson and Simon Dahlström. Hybrid LES-RANS: An approach to make

LES applicable at high Reynolds number. International Journal of Computa-

tional Fluid Dynamics, 19(March 2015):415–427, 2005.

[112] Lars Davidson. The SAS model: A turbulance model with controlled modelled

dissipation. 20th Nordic Seminar on Computational Mecanics, 5:6–9, 2007.

[113] P Tucker, S Eastwood, C Klostermeier, R Jefferson-Loveday, J Tyacke, and

Y Liu. Hybrid LES Approach for Practical Turbomachinery flows - Part 1: Hi-

erarchy and Example Simulations. J. Turbomach 134, 2012.

[114] F Menter, M Kuntz, and R Bender. A Scale-Adaptive Simulation Model for

Turbulent Flow Predictions. AIAA Paper, 2003-0767(January), 2003. ISBN:

978-1-62410-099-4.

[115] F.R. Menter and Y Egorov. Formulation of the Scale-Adaptive Simulation (SAS)

Model during the DESIDER Project. DESider - A European Effort on Hybrid

RANS-LES Modelling, pages 51–62, 2009.

[116] Florian R. Menter and Yury Egorov. SAS Turbulence Modelling of Technical

Flows. Journal of Chemical Information and Modeling, 53(9):1689–1699, 2013.

arXiv: 1011.1669v3 ISBN: 9788578110796.

223

8 REFERENCES

[117] L. Davidson and M. Billson. Hybrid RANS-LES using synthetized turbulence

for forcing at the interface. European Congress on Computational Methods in

Applied Sciences and Engineering, pages 1–18, 2004.

[118] L. Davidson and S. Dahlström. Hybrid LES-RANS: Computation of the Flow

Around a Three-Dimensional Hill. Engineering Turbulence Modelling and Ex-

periments 6, pages 319–328, 2005. ISBN: 9780080445441.

[119] Basman Elhadidi and H. Ezzat Khalifa. Comparison of coarse grid lattice Boltz-

mann and Navier Stokes for real time flow simulations in rooms. Building Sim-

ulation, 6(2):183–194, 2013.

[120] Simon Mari??, Denis Ricot, and Pierre Sagaut. Comparison between lattice

Boltzmann method and Navier-Stokes high order schemes for computational

aeroacoustics. Journal of Computational Physics, 228(4):1056–1070, 2009. Pub-

lisher: Elsevier Inc. ISBN: 0021-9991.

[121] Exa Corporation. http://exa.com.

[122] Shin K. Kang and Yassin A. Hassan. A comparative study of direct-forcing im-

mersed boundary-lattice Boltzmann methods for stationary complex boundaries.

International Journal for Numerical Methods in Fluids, 66(9):1132–1158, July

2011.

[123] Hudong Chen, Shiyi Chen, and William H Matthaeus. Recovery of the Navier-

Stokes equations using a lattice-gas Soltzmann method. Physical Review A,

45(8):5339–5342, 1992. ISBN: 1050-2947.

[124] Jing Lei Xu, Chao Yan, and Jing Jing Fan. Computations of wall distances by

solving a transport equation. Applied Mathematics and Mechanics (English Edi-

tion), 32(2):141–150, 2011. ISBN: 1048301114018.

[125] P. G. Tucker. Hybrid Hamilton-Jacobi-Poisson wall distance function model.

Computers and Fluids, 44(1):130–142, 2011. ISBN: 0045-7930.

[126] P Parnaudeau, D Heitz, E Lamballais, and J H Silvestrini. Combination of the

immersed boundary method with compact schemmes for DNS of flows in com-

plex geometry. page 10p, 2003.

224

8 REFERENCES

[127] Sylvain Laizet and Ning Li. Incompact3d: A powerful tool to tackle turbulence

problems with up to O(105) computational cores. International Journal for Nu-

merical Methods in Fluids, 67(11):1735–1757, 2011.

[128] Alejandro Gronskis and Guillermo Artana. A simple and efficient direct forcing

immersed boundary method combined with a high order compact scheme for

simulating flows with moving rigid boundaries. Computers and Fluids, 124:86–

104, 2016. ISBN: 00457930.

[129] Cédric Flageul, Sofiane Benhamadouche, Éric Lamballais, and Dominique Lau-

rence. DNS of turbulent channel flow with conjugate heat transfer: Effect of

thermal boundary conditions on the second moments and budgets. International

Journal of Heat and Fluid Flow, 55(May):34–44, 2015. ISBN: 0142-727X.

[130] Sylvain Laizet and Eric Lamballais. High-order compact schemes for incom-

pressible flows: A simple and efficient method with quasi-spectral accuracy.

Journal of Computational Physics, 228(16):5989–6015, 2009. Publisher: El-

sevier Inc. ISBN: 0021-9991.

[131] Incompact3d. No Title.

[132] Junjie Xia, Kun Luo, and Jianren Fan. A ghost-cell based high-order immersed

boundary method for inter-phase heat transfer simulation. International Journal

of Heat and Mass Transfer, 75:302–312, 2014. Publisher: Elsevier Ltd ISBN:

00179310.

[133] Junjie Xia, Kun Luo, and Jianren Fan. Simulating heat transfer from moving

rigid bodies using high-order ghost-cell based immersed-boundary method. In-

ternational Journal of Heat and Mass Transfer, 89:856–865, 2015. Publisher:

Elsevier Ltd ISBN: 0017-9310.

[134] M. R. Visbal and D. P. Rizzetta. Large-Eddy Simulation on Curvilinear Grids

Using Compact Differencing and Filtering Schemes. Journal of Fluids Engi-

neering, 124(4):836, 2002.

[135] D. V. Gaitonde and M. R. Visbal. High-order schemes for Navier-Stokes equa-

225

8 REFERENCES

tions: algorithm and implementation into FDL3DI. Air Vehicles Directorate,

page 50, 1998.

[136] E. Sewall and D. Tafti. Large Eddy Simulation of Flow and Heat Transfer in

the 180 deg bend region of a stationary gas turbine blade ribbed internal cooling

duct. Journal of Turbomachinery, 128:763–771, 2006. ISBN: 0-7918-4726-8.

[137] Seongwon Kang. An improved immersed boundary method for computation of

turbulent flows with heat transfer. Ph.D. thesis Stanford, (June):1–125, 2008.

ISBN: 9780549622284.

[138] Z Ikram. Numerical Investigation of the effects of free-surface flow past sub-

merged bluff and streamlined bodies. 2011. Publisher: Queen Mary University

of London.

[139] R L Manuel, Jonathan Bull, Jacob Crabill, Joshua Romero, Abhishek She-

shadri, Jerry E Watkins Ii, David Williams, Francisco Palacios, and Antony

Jameson. Verification and Validation of HiFiLES : a High-Order LES unstruc-

tured solver on multi-GPU platforms. AIAA Aviation, (June):1–27, 2014. ISBN:

9781624102882.

[140] Freddie David Witherden. On the Development and Implementation of High-

Order Flux Reconstruction Schemes for Computational Fluid Dynamics by. PhD

thesis, 2015. Issue: September.

[141] Thomas H Pulliam and David W Zingg. Fundamental Algorithms in Computa-

tional Fluid Dynamics. Springer, 2014.

[142] Todd A Oliver. Turbulence Model Equation Documentation. 2009.

[143] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic

flows. In 30th Aerospace Sciences Meeting and Exhibit, Reno,NV,U.S.A., Jan-

uary 1992. American Institute of Aeronautics and Astronautics.

[144] S.-T. Yu. Center for Modeling of Turbulence Research Briefs - 1991 and Tran-

sition 93-15802. Center for Modeling of Turbulence and Transition Research

Briefs, NASA Lewis Research Center, N93-15802, 1991.

226

8 REFERENCES

[145] A. Jameson. Time Dependent Calculations Using Multigrid, with Applications

to Unsteady Flows Past Airfoils and Wings. 1991. Publication Title: AIAA 10th

Computational Fluid Dynamics Conference.

[146] István Z. Reguly, Gihan R. Mudalige, Michael B. Giles, Dan Curran, and Simon

McIntosh-Smith. The OPS domain specific abstraction for multi-block struc-

tured grid computations. Proc. of WOLFHPC 2014, pages 58–67, 2014. ISBN:

9781479970209.

[147] Kuo-huey Chen. A primitive variable , strongly implicit calculation procedure

for two and three-dimensional unsteady viscous flows : applications to compress-

ible and incompressible flows including flows with free surfaces. Retrospective

Theses and Dissertations, 9485, 1990.

[148] John A. Ekaterinaris. High-order accurate, low numerical diffusion methods for

aerodynamics. Progress in Aerospace Sciences, 41(3-4):192–300, 2005. ISBN:

0376-0421.

[149] Thomas H Pulliam. Artificial dissipation models for the Euler equations. AIAA

Journal, 24(12):1931–1940, 1986.

[150] Romit Maulik and Omer San. Evaluation of explicit and implicit LES closures

for Burgers turbulence. pages 1–37, 2016. arXiv: 1604.08649.

[151] M. Ciardi, P. Sagaut, M. Klein, and W. N. Dawes. A dynamic finite volume

scheme for large-eddy simulation on unstructured grids. Journal of Computa-

tional Physics, 210(2):632–655, 2005.

[152] John David Anderson. Computational fluid dynamics: basics with applications.

New York, NY, 1995. Publication Title: McGraw-Hill International editions.

[153] Richard J. Jefferson-Loveday. Numerical Simulations of Unsteady Impinging Jet

Flows. PhD thesis, Swansea, 2008. Publication Title: Ph.D. thesis Swansea.

[154] R. C. Swanson, R. Radespiel, and E. Turkel. Comparison of Several Dissipation

Algorithms for Central Difference Schemes. Methods, pages 357–372, 1996.

227

8 REFERENCES

[155] R C Swanson and E Turkel. Artificial dissipation and central difference schemes

for the Euler and Navier-Stokes equations. AIAA Comput. Fluid Dynamics Conf.,

(October 2016):AIAA 87–1107–CP, 1987.

[156] Antony Jameson, W Schmidt, and E Turkel. Numerical solutions of the Euler

equations by finite volume methods using Runge-Kutta time-stepping schemes.

AIAA paper, n/a(n/a):n/a, 1981. ISBN: 9781441976314.

[157] Suhas V. Patankar. Numerical heat transfer and fluid flow. page 218, 1980. ISBN:

9780891165224.

[158] Dale A Anderson, John C Tannehill, Richard H Pletcher, Munipalli Ramakanth,

and Vijaya Shankar. Computational fluid mechanics and heat transfer. CRC

Press, 2020.

[159] I J Keshtiban, F Belblidia, and M F Webster. Compressible flow solvers for

low Mach number flows – a review. Technical Report CSR2, Institute of Non-

Newtonian Fluid Mechanics, University of Wales, pages 1–12, 2004.

[160] S. V. Patankar, C. H. Liu, and E. M. Sparrow. Fully Developed Flow and Heat

Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional

Area. Journal of Heat Transfer, 99(2):180, 1977. ISBN: 0022-1481.

[161] Y Egorov and F Menter. Development and application of SST-SAS turbulence

model in the DESIDER project. In Proc. Num. Fluid Mech. and Multidis. Design,

volume 97, pages 261–270, 2008. ISSN: 16122909.

[162] P. Zacharzewski, K. Simmons, R. Jefferson-Loveday, and L. Capone. Evaluation

of the sst-sas model for prediction of separated flow inside turbine internal cool-

ing passages. In Proceedings of the ASME Turbo Expo, GT2016-56117, 2016.

[163] Thibault Dairay, Eric Lamballais, Sylvain Laizet, and John Christos Vassilicos.

Numerical dissipation vs. subgrid-scale modelling for large eddy simulation.

Journal of Computational Physics, 337:252–274, 2017. Publisher: Elsevier Inc.

[164] Ulka Gaitonde, Dominique Laurence, and Alistair Revell. Quality Criteria for

Large Eddy Simulation. Test, (May), 2006.

228

8 REFERENCES

[165] MATLAB inc. MATLAB pwelch function,

https://www.mathworks.com/help/signal/ref/pwelch.html.

[166] F. R. Menter, A. Garbaruk, P. Smirnov, D. Cokljat, and F. Mathey. Scale-adaptive

simulation with artificial forcing. Notes on Numerical Fluid Mechanics and Mul-

tidisciplinary Design, 111:235–246, 2010. ISBN: 9783642141676.

[167] inc. ANSYS. ANSYS Fluent R17.1.

[168] W.L. Rhie, C.M and Chow. “Numerical Study of the Turbulent Flow Past an

Airfoil with Trailing Edge Separation.”. AIAA Journal 21, 11(11):1525–1532,

1983. ISBN: 0001-1452\r1533-385X.

[169] Lars Davidson. Evaluation of the SST-SAS model: Channel flow, asymmetric

diffuser and axi-symmetric hill. European Conference on Computational Fluid

Dynamics (ECCOMAS CFD), pages 1–20, 2006.

[170] R Spalart. Young-Person’s Guide Simulation Grids Detached-Eddy. NASA Tech-

nical Note, 211032(July):1003–1008, 2001. ISBN: 0025600907.

[171] F. Tessicini, N. Li, and M. A. Leschziner. Large-eddy simulation of three-

dimensional flow around a hill-shaped obstruction with a zonal near-wall approx-

imation. International Journal of Heat and Fluid Flow, 28(5):894–908, 2007.

[172] M. Garcı́a-Villalba, N. Li, W. Rodi, and M. a. Leschziner. Large-eddy simulation

of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid

Mechanics, 627:55–96, 2009. ISBN: 0022-1120$\$r1469-7645.

[173] Yan Liu. Numerical Simulations Unsteady of Complex Geometry Flows. PhD

thesis, Warwick, 2004.

[174] G. Byun and R. L. Simpson. Structure of Three-Dimensional Separated Flow

on an Axisymmetric Bump. AIAA Journal, 44(5):999–1008, 2006. ISBN:

9781600867392.

[175] T Persson and M Liefvendahl. comparison of des and les for separated flow over

an axisymmetric hill.

229

8 REFERENCES

[176] Robert H Kraichnan. Diffusion by a Random Velocity Field. Physics of Fluids,

13(1):22, 1970. arXiv: 1011.1669v3 ISBN: 1070-6631.

[177] a. Smirnov, S. Shi, and I. Celik. Random Flow Generation Technique for Large

Eddy Simulations and Particle-Dynamics Modeling. Journal of Fluids Engineer-

ing, 123(2):359, 2001. ISBN: 0098-2202.

[178] Lars Davidson. Inlet boundary conditions for embedded LES. Proceed-

ings of 1st CEAS European Air and Space Conference Century Perspectives,

(September):1–10, 2007.

[179] Y. Egorov, F. R. Menter, R. Lechner, and D. Cokljat. The scale-adaptive sim-

ulation method for unsteady turbulent flow predictions. part 2: Application to

complex flows. Flow, Turbulence and Combustion, 85(1):139–165, 2010. ISBN:

1386-6184.

[180] Anthony Keating and Ugo Piomelli. Synthetic Generation of Inflow Velocities

for Large-Eddy Simulation. 34th AIAA Fluid Dyn. Conf., pages 1–13, 2004.

ISBN: 978-1-62410-031-4.

[181] Aroon K. Viswanathan and Danesh K. Tafti. Detached eddy simulation of turbu-

lent flow and heat transfer in a two-pass internal cooling duct. International

Journal of Heat and Fluid Flow, 27(1):1–20, 2006. ISBN: 0046-71380142-

727X0961-5539.

[182] Evan A. Sewall, Danesh K. Tafti, Andrew B. Graham, and Karen A. Thole. Ex-

perimental validation of large eddy simulations of flow and heat transfer in a

stationary ribbed duct. International Journal of Heat and Fluid Flow, 27(2):243–

258, 2006. ISBN: 0142-727X.

[183] J. Tyacke and P. G. Tucker. Large eddy simulation of turbine internal cooling

ducts. Computers and Fluids, 114:130–140, 2015. Publisher: Elsevier Ltd ISBN:

9780791856352.

[184] S.B. Pope. Turbulent Flows.pdf. 2000.

230

8 REFERENCES

[185] Evan A Sewall and Danesh K Tafti. Large Eddy Simulation of the Developing

Region of a Rotating Ribbed Internal Turbine Blade Cooling Channel. ASME

Conference Proceedings, 2004(41685):735–747, 2004.

[186] K Saha and Sumanta Acharya. Flow and Heat Transfer in an Internally Ribbed

Duct With Rotation: An Assessment of LES and URANS. ASME Conference

Proceedings, 2003:481–495, 2003. ISBN: 0-7918-3688-6.

[187] R. G. Hibbs, S. Acharya, Y. Chen, and D. E. Nikitopoulos. Heat/mass transfer

distribution in a rotating, two-pass channel with smooth and ribbed walls. 1996.

ISSN: 02725673.

[188] Artur Szymanski and Slawomir Dykas. Unsteady flow field evaluation in

labyrinth seals by means of computational fluid dynamics. pages 76 – 85, 2016.

[189] Yuewen Jiang, Lintong He, Luigi Capone, and Eduardo Romero. Investigation

of Steady and Unsteady Film-Cooling Using Immersed Mesh Blocks With New

Conservative Interface Scheme. page V05CT12A007, June 2016.

[190] Yuewen Jiang, Luigi Capone, Peter Ireland, and Eduardo Romero. A Detailed

Study of the Interaction Between Two Rows of Cooling Holes. Journal of Tur-

bomachinery, 140, December 2017.

[191] Siemens NX, https://www.plm.automation.siemens.com/global/en/products/nx/,

accessed 26 September 2021.

[192] Andrea Milli and Shahrokh Shahpar. PADRAM: Parametric Design and Rapid

Meshing System for Complex Turbomachinery Configurations. In Proceedings

of the ASME Turbo Expo, volume 8, June 2012.

[193] inc. ANSYS. ANSYS Space Claim Design Modelled (SCDM) R17.1.

[194] Wipro ITI Global. CADFix, https://www.iti-global.com/cadfix.

[195] inc. ANSYS. ANSYS ICEM CFD R17.1.

[196] ltd. beta cae. Beta CAE preprocessor. https://www.beta-cae.com/.

[197] inc. PTC. Creo R16.

231

8 REFERENCES

[198] inc. kitware. ParaView, paraview.org.

[199] inc. pointwise. Pointwise CAE. pointwise.com.

[200] J. PFITZNER. Poiseuille and his law. Anaesthesia, 31(2):273–275, 1976. ISBN:

1365-2044.

[201] S P Sutera and R Skalak. The History of Poiseuille’s Law. Annual Review of

Fluid Mechanics, 25(1):1–20, 1993. ISBN: 0199988519410.

[202] M. Biswas, G. Breuer and F. Durst. Backward-Facing Step Flows for Various

Expansion Ratios at Low and Moderate Reynolds Numbers. Journal of Fluids

Engineering, 126(3):362, 2004. ISBN: 0098-2202.

[203] J. Kim, S. J. Kline, and J. P. Johnston. Investigation of a reattaching turbulent

shear layer Flow over a backward-facing step. ASME Journal of Fluids Engi-

neering, 102(3):302–308, 1980. ISBN: 00982202 (ISSN).

[204] A G Kravchenko and P Moin. Numerical studies of flow over a circular cylinder

at Re= 3900. Physics of Fluids, 12(2000):403–417, 2000.

[205] Hong-Sik Im and Ge-Cheng Zha. Delayed Detached Eddy Simulation of a Stall

Flow Over NACA0012 Airfoil Using High Order Schemes. Proceedings of the

49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and

Aerospace Exhibition, (January):1–16, 2011.

[206] W. J. McCroskey. A critical assessment of wind tunnel results for the NACA

0012 airfoil. Technical report, 1987. Publication Title: A Critical Assessment of

Wind Tunnel Results for the NACA 0012 Airfoil.

[207] L. K. Loftin Jr. Airfoil Section Characteritics at High Angles of Attack. Technical

report, 1954.

[208] Philipp Schlatter and Ramis Örlü. Assessment of direct numerical simulation

data of turbulent boundary layers. Journal of Fluid Mechanics, 659:116–126,

2010. ISBN: 0022-1120.

[209] A. A. Wray. A Selection of Test Cases for the Validation of Large-Eddy Simula-

tions of Turbulent Flows. (345), 1998.

232

8 REFERENCES

[210] NASA CFD validation database, https://turbmodels.larc.nasa.gov/channelflow val.html.

accessed on 23 Mar 2016.

[211] Robert D. Moser, John Kim, and Nagi N. Mansour. Direct numerical simulation

of turbulent channel flow up to Reτ=590. Physics of Fluids, 11(4):943–945,

1999. arXiv: 1410.7809 ISBN: doi:10.1017/jfm.2015.268.

[212] D. Home, M. F. Lightstone, and M. S. Hamed. Validation of DES-SST based tur-

bulence model for a fully developed turbulent channel flow problem. Numerical

Heat Transfer; Part A: Applications, 55(4):337–361, 2009.

[213] Theodore Von Karman. Technical report no. 611. Mechanical similitude and

turbulence.

[214] A. K. M. F. Hussain and W. C. Reynolds. Measurements in fully developed

turbulent channel flow. Journal of Fluids Engineering, 97(4):568–578, 1975.

ISBN: 0098-2202.

[215] Bengt Fornberg. Steady viscous flow past a sphere at high Reynolds numbers.

Journal of Fluid Mechanics, 190:471, 1988.

[216] Sadatoshi Taneda. Experimental Investigation of the Wakes behind Cylinders

and Plates at Low Reynolds Numbers. Journal of the Physical Society of Japan,

11(3):302–307, 1956. ISBN: 1100019502.

[217] S Balabani, Dip Eng, and M Yianneskis. An experimental study of the mean flow

and turbulence structure of cross-flow over tube bundles. 210, 1996.

[218] Anatol Roshko. Experiments on the flow past a circular cylinder at very high

Reynolds number. J. Fluid Mech, (1924):345–356, 1961. ISBN: 0022-1120.

[219] Abrar Mohammad, Z.J. Wang, and Chunlei Liang. Large Eddy Simulation of

Flow Over a Cylinder Using High-Order Spectral Difference Method. 26th AIAA

Applied Aerodynamics Conference, pages 1–14, 2008. ISBN: 978-1-60086-987-

7.

[220] Dennis C Jespersen, Thomas H Pulliam, and Marissa L Childs. Turbulence Mod-

eling Resource Validation Results. 01:174, 2016.

233

9 APPENDICES

[221] H Le, , P Moin, and J Kim. Direct Numerical Simulation of Turbulent Flow Over

a Backward-Facing Step. J. Fluid Mech., 330:349–374, 1997.

[222] David M Driver. Backward-Facing Step Measurements at Low Reynolds Num-

ber, Reh=5000. (February 1994), 1994.

[223] F. Schäfer, M. Breuer, and F. Durst. The dynamics of the transitional flow over

a backward-facing step. Journal of Fluid Mechanics, 623:85–119, 2009. ISBN:

0022-1120.

[224] T. Lee and D. Mateescu. Experimental and numerical investigation of 2-D

backward-facing step flow. Journal of Fluids and Structures, 12(6):703–716,

1998.

[225] Eaton J.K. Vogel JC. Combined heat transfer and fluid dynamic measurements

downstream of a backward facing step. J Heat Transfer, 107:922–929, 1985.

[226] D. R. H. Gillespie, J. C. Ryley, and M. Mcgilvray. Stationary Internal Cool-

ing Passage Experiments for an Engine Realistic Configuration. Osney Thermo-

Fluids Lab, pages 1–10, 2011.

[227] Georgi Kalitzin and Gianluca Iaccarino. Turbulence modeling in an immersed-

boundary RANS method. Center for Turbulence Research, Annual Research

Briefs, 29(6):415–426, 2002. arXiv: 1512.00567 ISBN: 9781617796029.

[228] Georgi Kalitzin, Xiaohua Wu, and Paul A. Durbin. DNS of fully turbulent flow

in a LPT passage. International Journal of Heat and Fluid Flow, 24(4):636–644,

2003.

[229] Rory Douglas Stieger. The Effects of Wakes on Separating Boundary Layers in

Low Pressure Turbines. PhD thesis, 2002. Issue: February.

9 Appendices

9.1 Appendix 1: UDF of forcing

234

9.1 Appendix 1: UDF of forcing 9 APPENDICES

1 /*

2 * This is Fluent UDF routine to add source term to momentum

3 * and sink term to the kinetic energy equation for k−omega

4 * type Scale Adaptive Simulation unsteady model. Based on

5 * paper:

6 * Menter, F. R., Garbaruk, A., Smirnov, P ., Cokljat , D. and

7 * Mathey, F, 2010. ”Scale−Adaptive Simulation with Artificial

8 * Forcing ”, Progress in Hybrid RANS−LES Modelling, NNFM 111,

9 * pp. 235−246, 2010.

10 *

11 * Note: worth having a look through the references as the paper

12 * is not completely clear on some points .

13 *

14 * Author:

15 * Piotr Zacharzewski

16 * Gas Turbine and Transmissions Research Centre (G2TRC)

17 * The University of Nottingham

18 * zacharzewski .p@gmail.com

19 */

20

21 /* fluent includes */

22 #include ”udf .h”

23 #include ”mem.h”

24 #include ”sg udms.h”

25 #include ”unsteady .h”

26 #include ”metric .h”

27

28 /* standard C includes */

29 #include <stdio.h>

30 #include <stdlib .h>

31 #include <string .h>

235

9.1 Appendix 1: UDF of forcing 9 APPENDICES

32 #include <math.h>

33 #include <stdbool.h>

34 #include <time.h>

35

36 /*model constants (could get some via macros instead of hardode here)*/

37 #define M PI 3.14159265358979323846

38 #define N MODES 10

39 #define C L 0.5

40 #define C MU 0.09

41 #define SF 1 /* scaling factor for imposed fluctuations */

42

43 /* need to do in fluent before accessing variables

44 / define / user−defined / user−defined−memory 6 */

45

46 static int version = 1;

47 static int release = 2;

48

49 /*−−*/

50 /* RANDOM NUMBER WITH GIVEN MEAN AND STANDARD DEVIATION,

NEEDED FOR FORCING */

51 /*−−*/

52

53 void set seed () {
54 srand(time(NULL));

55 }
56

57 real gen rand () {
58 return ((real)rand ()) /(real)RAND MAX;

59 }
60

61 real gen rand norm(real mean, real std) {
62 return (mean + std* sqrt (−2.0*log(gen rand ())) * cos(2.0*M PI*gen rand())) ;

236

9.1 Appendix 1: UDF of forcing 9 APPENDICES

63 }
64 /*−−*/

65 /*−−*/

66

67 DEFINE EXECUTE ON LOADING(init case, libname) {
68

69 Message(”\nLoading %s version %d.%d\n”,libname,version, release) ;

70 Set User Memory Name(0,”turb length scale”) ;

71 Set User Memory Name(1,”turb time scale”);

72 Set User Memory Name(2,”source mom x”);

73 Set User Memory Name(3,”source mom y”);

74 Set User Memory Name(4,”source mom z”);

75 Set User Memory Name(5,”source tke”);

76

77 printf (” Setting the seed for random numbers ...\ n”) ;

78 set seed () ;

79

80 /*

81 * bug: doesn’ t display names properly . change UDM amount to 0, then back to

the required amount

82 * and the names appear

83 */

84

85 }
86

87 DEFINE ADJUST(gen sources store, domain)

88 {
89 /* loop over all cell centres to store the x−y−z and tke source */

90 cell t cell ;

91 Thread *thread ;

92 thread loop c (thread , domain)

93 {

237

9.1 Appendix 1: UDF of forcing 9 APPENDICES

94 begin c loop (cell , thread)

95 {
96

97 /* physical time and length scale of turbulence , density , timestep */

98 real L t = (C L/C MU)*(sqrt(C K(cell, thread)) /C O(cell , thread)) ;

99 real tau t = C L/(C MU*C O(cell, thread)) ;

100 real rho = C R(cell , thread) ;

101 real time step = (real)CURRENT TIMESTEP;

102

103 real eta x , eta y , eta z ;

104 real xi x , xi y , xi z ;

105 real d x, d y, d z ;

106

107 real omega n;

108

109 int cnt ;

110 real cell char size , d mag, limit t , limit l ;

111

112 real x [3];

113 C CENTROID(x, cell, thread);

114 real arg n , p x, p y, p z , q x, q y, q z ;

115 real u fx , u fy , u fz ;

116 u fx = 0.0;

117 u fy = 0.0;

118 u fz = 0.0;

119

120 /* this must be changed to include max(delta x , delta y , delta z) of a cell

*/

121 /* it is the characteristic cell length */

122 cell char size = pow(C VOLUME(cell, thread), 0.33333333333);

123

124 /* Sum up all the modes based on random number generator */

238

9.1 Appendix 1: UDF of forcing 9 APPENDICES

125 for (cnt = 0; cnt < N MODES; ++cnt) {
126

127 eta x = gen rand norm((real) 0.0, (real) 1.0) ;

128 eta y = gen rand norm((real) 0.0, (real) 1.0) ;

129 eta z = gen rand norm((real) 0.0, (real) 1.0) ;

130

131 xi x = gen rand norm((real) 0.0, (real) 1.0) ;

132 xi y = gen rand norm((real) 0.0, (real) 1.0) ;

133 xi z = gen rand norm((real) 0.0, (real) 1.0) ;

134

135 d x = gen rand norm((real) 0.0, (real) 0.5) ;

136 d y = gen rand norm((real) 0.0, (real) 0.5) ;

137 d z = gen rand norm((real) 0.0, (real) 0.5) ;

138

139 omega n = gen rand norm((real) 1.0, (real) 1.0) ;

140

141 /*−−*/

142 /* NYQUIST LIMITER FOR LENGTH AND TIME SCALE */

143 /*−−*/

144 d mag = sqrt (d x*d x + d y*d y + d z*d z) ;

145

146 limit t = 2*time step*omega n;

147 limit l = 2* cell char size *d mag;

148

149 if (tau t < limit t) { /* something is wrong with max() in fluent */

150 tau t = limit t ;

151 }
152 if (L t < limit l) {
153 L t = limit l ;

154 }
155 /*−−*/

156 /*−−*/

239

9.1 Appendix 1: UDF of forcing 9 APPENDICES

157 /*−−*/

158 /* THE FORCING TERM CALCULATION */

159 /*−−*/

160 arg n = 2*M PI*((d x*x[0] + d y*x[1] + d z*x[2]) / L t +

(omega n*CURRENT TIME)/tau t);

161

162 p x = eta y*d z − eta z *d y;

163 p y = eta z *d x − eta x*d z;

164 p z = eta x*d y − eta y*d x;

165

166 q x = xi y*d z − xi z*d y;

167 q y = xi z*d x − xi x*d z;

168 q z = xi x*d y − xi y*d x;

169

170 u fx = u fx + p x*cos(arg n) + q x*sin (arg n) ;

171 u fy = u fy + p y*cos(arg n) + q y*sin (arg n) ;

172 u fz = u fz + p z*cos(arg n) + q z*sin (arg n) ;

173

174 /*−−*/

175 /*−−*/

176 }
177

178 real fac = ((sqrt (2) / sqrt (3)) * (sqrt (2) / sqrt (N MODES)))*sqrt(C K(cell,

thread)) ;

179 u fx = u fx * fac ;

180 u fy = u fy * fac ;

181 u fz = u fz * fac ;

182

183 /* apply forcing only in specific region */

184 /* if (x[1] < 0.02 || x[1] > 0.13) {*/

185 C UDMI(cell, thread , 2) = (u fx * rho) / (time step) ; /* x−momentum

source */

240

9.1 Appendix 1: UDF of forcing 9 APPENDICES

186 C UDMI(cell, thread , 3) = (u fy * rho) / (time step) ; /* y−momentum

source */

187 C UDMI(cell, thread , 4) = (u fz * rho) / (time step) ; /* z−momentum

source */

188 C UDMI(cell, thread , 5) = ((u fx*u fx + u fy*u fy + u fz*u fz) * rho *

(−0.5)) / time step ; /* tke source */

189 /*}
190 else {
191 C UDMI(cell, thread , 2) = 0.0;

192 C UDMI(cell, thread , 3) = 0.0;

193 C UDMI(cell, thread , 4) = 0.0;

194 C UDMI(cell, thread , 5) = 0.0;

195 }*/

196

197 /* diagnostics

198 C UDMI(cell, thread , 6) = arg n ;

199 C UDMI(cell, thread , 7) = pow(C VOLUME(cell, thread), 0.33333333333);

200 C UDMI(cell, thread , 8) = C VOLUME(cell,thread);

201 C UDMI(cell, thread , 9) = q x; */

202 }
203 end c loop (cell , thread)

204 }
205

206 }
207

208 /* The main momentum sources passed to fluent */

209 DEFINE SOURCE(cell x source mom, cell, thread, dS, eqn)

210 {
211 /* derivative of source term w.r . t . x−velocity , always zero in here */

212 /* forces fluent to treat the source term explicitly */

213 dS[eqn] = 0.0;

214

241

9.1 Appendix 1: UDF of forcing 9 APPENDICES

215 /*get the source term for x−momentum equation and return*/

216 /* cell and thread must be passed also */

217 return C UDMI(cell, thread , 2) ;

218 }
219

220 DEFINE SOURCE(cell y source mom, cell, thread, dS, eqn)

221 {
222 /* derivative of source term w.r . t . x−velocity , always zero in here */

223 dS[eqn] = 0.0;

224

225 /*get the source term for y−momentum equation and return*/

226 /* cell and thread must be passed also */

227 return C UDMI(cell, thread , 3) ;

228 }
229

230 DEFINE SOURCE(cell z source mom, cell, thread, dS, eqn)

231 {
232 /* derivative of source term w.r . t . x−velocity , always zero in here */

233 dS[eqn] = 0.0;

234

235 /*get the source term for z−momentum equation and return*/

236 /* cell and thread must be passed also */

237 return C UDMI(cell, thread , 4) ;

238 }
239

240 DEFINE SOURCE(turb kin ener sink, cell, thread , dS, eqn)

241 {
242 /* derivative of source term w.r . t . x−velocity , always zero in here */

243 dS[eqn] = 0.0;

244

245 /*get the source term for tke equation and return */

246 /* cell and thread must be passed also */

242

9.1 Appendix 1: UDF of forcing 9 APPENDICES

247 return C UDMI(cell, thread , 5) ;

248 }
249

250 /*

251 allocate values to UDM memory, various interesting quantities

252 */

253 DEFINE ON DEMAND(fill UDM)

254 {
255 Domain *domain;

256 cell t c;

257 Thread *t ;

258

259 domain=Get Domain(1);

260

261 thread loop c (t ,domain)

262 {
263 begin c loop (c , t)

264 {
265 C UDMI(c,t,0) = (C L/C MU)*(sqrt(C K(c, t)) /C O(c, t)) ; /* L t */

266 C UDMI(c,t,1) = C L/(C MU*C O(c, t)); /* tau t */

267 }
268 end c loop (c , t)

269 }
270 }

243

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Aerospace industry outlook pre-2020
	Aerospace industry outlook post-2020
	Computational and numerical matters in CFD
	Motivation for research
	Objectives of research
	Thesis structure

	Literature review
	Chapter introduction
	Immersed Boundary Methods
	Introduction
	Continous forcing vs. Discrete forcing
	Ghost Cell IBM
	Improved GCIBM
	Preprocessing algorithms necessary
	Alternative non-body conformal techniques
	Conclusions

	Parallelisation & computational approaches
	Introduction
	CPU vs. GPU
	High level libraries

	Internal cooling in turbomachinery
	Heat Transfer

	High order schemes
	Compact high order

	Turbulence modelling
	Nearest Wall distance

	Numerical methods
	High order schemes
	Implicit discretisation and compact schemes

	Existing relevant CFD codes
	Chapter conclusions

	Methods & Theory
	Chapter introduction
	Governing Equations: GPU IBM code
	List of physical assumptions
	Governing flow equations
	Non-dimensionalisation
	SA turbulence model
	Spatial discretisation
	Temporal discretisation
	Distance to the nearest wall
	Metric transformation
	Oxford Parallel library for Structured applications (OPS)
	Alternating Direction Implicit (ADI) solver
	Artificial dissipation
	Code procedures

	IBM methodology
	Immersed Boundary Method fundamentals
	Auxiliary relations
	Boundary Conditions for the Immersed Boundary Method
	Near wall scheme modifications

	Commercial codes FV methodology
	SST – SAS
	Artificial forcing for the SST – SAS model
	Assessment of resolution of RANS-LES methods

	Chapter conclusions

	Results: SST-SAS model testing
	Introduction
	Numerical details
	3D axisymmetric hill
	Computational setup
	Results

	Ribbed channel - periodicity
	Computational setup
	Results

	Conclusions of the initial results
	Stationary channel flow
	Computational setup
	Results

	Rotating channel flow
	Chapter conclusions

	Results: Turbine internal cooling
	Chapter introduction
	Geometry creation
	Cooling holes geometry creation with Siemens NX
	Blade geometry
	Clean-up with ANSYS SpaceClaim and ANSA
	Meshing

	Computational setup
	Boundary Conditions

	RANS results
	DES
	Conclusions

	Results: GPU IBM program
	Chapter introduction
	IBM specific preprocessing algorithms
	Meshes generation
	Nodes in/out and GN identification
	Normals, IP, EIP and coefficients
	Wall distance - Poisson equation
	Cylinder
	Backward facing step
	Array of cylinders
	T106 cascade
	Parallelisation study
	Conclusions of the base algorithms validation

	2D N-S solver
	Turbulent channel Re=13,800
	Cylinder Re=3,900
	Upstream facing step Re=36,000
	Further validation

	Chapter conclusions

	Conclusions and future work
	Summary
	Contribution to knowledge
	Limitations of current work
	Recommendations for future work
	Unique selling points

	References
	Appendices
	Appendix 1: UDF of forcing

