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Summary

This thesis concerns the effective behaviour of waves in high-contrast composite media. We
formulate our study in the language of operators as follows: Fix dimension d > 2. For ¢ > 0,

consider the operator on L?(R%),
A; = —div(a: V), where a, is eZ%periodic.

Here, A, has the following features

o (“Stiff-soft-stiff” setup) If we write a. = ac(2) for a Z?-periodic matrix @. depending

on ¢ > 0, then we define

_ cl, RS UneZd(Qsoft + n)a
I, Y € Upezd((Qstiff-int U Qstifils) + 10).

Here, the sets Qsoft, Qstift-int (“stiff interior”), and Q1 (“stiff landscape”) partition the
reference period cell Q = [0,1)¢, and are arranged as follows: We have an annular “soft”
region Qo with remainder filled by the “stiff” regions Qstifiint and Qstifi-ls. We impose

transmission boundary conditions on the soft-stiff interfaces.

e (High-contrast/resonant inclusions) We allow ¢ to depend on e. That is, A. depends
on € in two ways, namely, in the periodicity and in the material coefficients. In particular,
we will focus on the case a. = a.2(2).

These features, together with the following requirement, makes our problem new

e (Mode of convergence) Identify the limiting behavior of A., as € | 0, in the norm-

resolvent sense.

After an introductory chapter, Chapter 2 details the process of homogenization for the stiff-
soft-stiff composite. We identify an operator A. pom that is asymptotically equivalent to A, in
the norm-resolvent sense, using an operator framework developed by Cherednichenko, Ershova,
and Kiselev in [35]. Chapter 3 focuses on the homogenized description A. pom. We investigate
three aspects of A, hom. First, we extract “dispersion functions” Kifint (T, 2) and Kiis(T, 2)
from A¢ hom- These are meant to capture the effective dispersion relations of an acoustic wave
travelling through the composite. Second, we provide formulas for A. y,,m on physical space
(A: hom was previously defined on frequency space). Third, we perform a spectral analysis on
A hom- Chapter 4 summarizes what was done in Chapters 2-3, collects the new results, and

concludes with open questions and next steps.
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Chapter 1

Introduction

1.1 Homogenization, high-contrast homogenization, and wave

propagation

This thesis lies in the subject of homogenization, which is the study of approximating a highly
heterogeneous medium with a homogeneous one. Physically, one is motivated by the desire to
understand various properties of composite materials. However, a good composite mixture is
highly heterogeneous in space, so one faces serious numerical challenges if one decides solve the
corresponding mathematical model directly. Guided by the intuition that the mixture looks
as if it is comprised of a single “averaged material” when zoomed out sufficiently far, we may
instead look at the mathematical model for this “averaged material”, as an approximation of
the original composite.

The above describes the idea of homogenization in physical terms. Turning this idea into a
mathematically rigorous one has been a subject of intense study since the 1970s, and to date
has amassed an extensive literature. We mention for instance, the books [2, 3, 6, 9, 10, 16, 18,

, 27]. Below, let us give an overview of one such study, from the point of view of a person
who wishes to understand the transport/scattering properties of a composite material. (This is
the point of view that we will take in the thesis.) We will keep the discussion fairly brief, and

refer the reader to [0, Chapter 12] for rigorous statements.

(Moderate-contrast periodic) homogenization of the wave equation

Fix dimension d > 2. For € > 0, consider the initial-value problem for the wave equation:

Opue — div (a:Vus) =0 in R% x (0, 00),

(1.1)
Ue(+,0) = ug, Oucs(-,0) =uy on RY x {t =0},

where uy and u; are given, and we seek a solution u.(x,t) in an appropriate sense.

The coefficient a. : R? — R%*? is a matrix-valued function which encodes physical properties
of the material. For simplicity, let us assume that our composite consists of two materials, a
“soft” one and a “stiff” one, and that they are combined in a periodic fashion to form a fine

mixture. We can encode this kind of structure in a. by letting a. be eZ%periodic and take



one of two possible values. That is, by writing a. = a.(), where a. is a Z%-periodic matrix,

depending on some fixed ¢ > 0, let us set

7o) cl, if y lies in the soft regions, (1.2)
ac(y) = .
1 if y lies in the stiff regions.

We refer to the choice (1.2) as the “moderate-contrast” setting, describing the fact that the
matrix a. is bounded and positive definite, uniformly in €. That is, there exist ceip > 0 and
Chdq > 0 such that

as ()€ - € > comiplé]? for almost every z and all £ € RY, (1.3)
[(ac)ijll e < Chaa, for 1 <4,5 <d. (1.4)

Equivalently (in the terminology of [17, Chapter 4]), we express (1.3) by saying that the operator
A, = —div (a. V") is uniformly (in € and z) strongly elliptic.

We are interested in the behavior of the solutions u. to the Cauchy problem (1.1) for small
€. As noted above, a. is highly oscillatory in space, and hence (1.1) is numerically challenging
to solve. The basic result of homogenization seeks to answer the following questions in the
affirmative (see [10, Theorem 12.6]):

e Do the solutions u. converge (and in what sense), as € | 0, to some limit upop,?

e Can we characterize upoy, as the solution to (1.1), but with a. replaced by a constant

matrix apom?

The advantage of such a homogenization result is that uyen, now satisfies a problem which is
numerically easier to solve, and apom provides an effective description of the original medium,

approximating the composite mixture as a single homogeneous material.

Remark. The case d = 1 has been excluded due to the limited possibilities on the arrange-
ment of the two materials. To generate interesting geometries in d = 1, one may consider

quantum/metric graphs. This is beyond the scope of the thesis. o

Extending the basic homogenization result

The basic homogenization result [10, Theorem 12.6], while elegant, is insufficient from a wave
propagation perspective. Indeed, it asserts the convergence of u. to upom in the sense of weak-*
in L°°([0, T]; H}), and is qualitative in nature (i.e. no rate of convergence is given). This prompts

us to ask:

Can we prove a quantitative homogenization result, under a mode of convergence

that captures the effective behavior of waves in the original composite?

There are many ways to tackle the above question. This thesis adopts an operator-theoretic

approach, focusing on the following operator on L?(R%):

A, = —div (a: V). (1.5)



From the perspective of operator theory, the homogenization task at hand requires us to identify
the limiting behavior of A, as € | 0 in an appropriate operator topology. To study the operator

A., we consider the resolvent equation
(Ae — 2)u. = f € L*(RY). (1.6)

Solving the resolvent equation helps identify the spectrum o(A.). That is: Find those z € C
such that (1.6) has a unique solution for every f € L?(R%). The complement of the set of such
values z is the spectrum o(A.).

The spectrum o (A¢) contains key information about wave propagation through the composite
medium. Therefore, the choice of operator topology should also capture the behavior of o(A.)
as € | 0. This prompts us to look at norm-resolvent convergence/asymptotics of A., a key

requirement of the thesis.

Remark. With wave propagation in mind, one intends to use the norm-resolvent asymptotics
of A, to deduce the effective behavior of the solution wu.(x,t) to the initial-value problem for
the wave equation (1.1), as € | 0. This can be achieved by employing a functional calculus,

although we will not perform this step in the thesis. o

Strengthening the basic homogenization result from a qualitative to a quantitative one re-
mains an active area of research, in part due to the vast number of setups that one could study
beyond (1.1). To name a few: differential operators with oscillatory lower order terms, integral
functionals (and non-linear problems), almost-periodic or random coefficients. In this thesis,
we are interested in extending the setup (1.1) from a moderate-contrast to a “high-contrast”
setting. This means that we will let ¢ depend on ¢ in (1.2), such that the constant cenip > 0
in (1.3) cannot be chosen independently of €, thus violating the assumption of uniform strong
ellipticity.

The high-contrast setting poses fundamental mathematical challenges. Methods used to
tackle the moderate-contrast setting quickly break down in the high-contrast case, and underly-
ing these technical issues is a basic question of identifying the homogenized description. Indeed,
does a limit even exist in the first place?

As it will become clear in Section 1.4, the answer to the existence of the limit and its form
depends on the choice of convergence and the arrangement of the materials in the composite.
This thesis studies a particular high-contrast setup where A, does not have a norm-resolvent
limit. Nonetheless we identify an operator A. hom which is asymptotically close to A, in the
norm-resolvent sense, and serves as a homogenized description of the medium. Let us now
provide a brief outline of the problem that we will study in this thesis. (In Section 2.1, we
will give a rigorous formulation of the problem and recall all the relevant notation introduced
below.)

Problem outline

Consider the problem of homogenization for a high-contrast eZ%-periodic composite on R?. Our

composite will consist of “soft” and “stiff” material components, adopting the terminology of



elasticity theory. We think of the “soft” component having small material coefficients relative
to the “stiff” ones.
For ¢ > 0, consider the operator A. = —div(a.V-), on L?(R?). The coefficient matrix a. is

defined as ac(x) := a.2(%), where a.2 is a Z%periodic matrix with values given by

621, S +n ’
Gea(y) = ¥ € Unez(@uo + ) (1.7)
I, Y € Uneza ((Qstiffint U Qstift1s) + 1) -

Here, the sets Qgoft, Qstifiint, and Qs partition the reference period cell @ = [0,1)?, and
are arranged in a “stiff-soft-stiff” setup as follows: We have a simply connected “stiff-interior”
region Qgtift-int, surrounded by an annular shaped “soft” region Qg.ft, with the remaining region
filled by the “stiff-landscape” part Qsifr1s- See Figure 1-1 for a pictorial description of a2 when
restricted to the period cell Q. We impose transmission boundary conditions on the soft-stiff

interfaces I';yt and I'ig. See Section 2.1 for the precise definition of A..

> Qstiff-1s

> Qsoft

> Qstiff-int

Figure 1-1: The period cell Q@ = [0,1)%. The subscript “stiff-int” stands for
stiff interior, and “stiff-1s” stands for stiff landscape.

We are interested in the limiting behavior as € | 0 of A, in the norm-resolvent sense. The
reason for this particular choice of (operator) topology is that it gives us direct access to the
spectrum, in the sense that identifying the norm-resolvent limit/asymptotics of A. implies the
spectral convergence/asymptotics of o(A.), in the sense of Hausdorff convergence/asymptotics
on compact subsets of the real line R (see Section 1.3.3 for details).

Altogether, the problem of homogenization that we will study in this thesis is new (see
Section 1.4 for a discussion of the existing literature), due to a combination of the following

features:

o (Stiff-soft-stiff setup) Our medium is eZ%periodic, and consists of a stiff mixture with

annular soft inclusions.

e (High-contrast/resonant inclusions) We allow ¢ in (1.2) to depend on €. That is, A,
depends on ¢ in two ways, namely, in the periodicity and in the material coefficients. In
particular, we will focus on the case a. = a.2(2).

e (Mode of convergence) Identify the norm-resolvent asymptotics of A., as e | 0.

Remark. The choice ¢ = 2 in (1.2), giving us (1.7), is referred to as the “double porosity”

scaling [29]. Under this scaling, we also say that the annular soft inclusions act as “resonators”



(hence the title of the thesis). This refers to the heuristic that waves propagating through the
medium, upon entering the soft inclusions, will have wavelength comparable to the size of the

inclusions. We refer the reader to Appendix A for an elaboration of this heuristic. o

1.2 Structure of the thesis

This thesis is structured as follows:

Chapter 1 is an introductory chapter. In Section 1.1, we have provided the motivation for
and an outline of the problem that will be studied in the thesis. In Section 1.3, we fix some
notations, introduce the notion of a periodic Sobolev space following [10], and review some facts
on convergence of unbounded operators and its relation to the spectrum. In Section 1.4, we will
review the existing literature, with focus on operator norm estimates in homogenization and

high-contrast homogenization. In Section 1.5 is a collection of the main results of the thesis.

Chapter 2 embarks on the task of homogenization for our stiff-soft-stiff composite. We will
follow the approach proposed by Cherednichenko, Ershova, and Kiselev in [35]. This is an

operator framework based on the following key ingredients (see Chapter 2 for precise definitions):

(A) The (rescaled) Gelfand/Floquet transform G, which helps take the eZ?-periodic operator
A. on L?(R?) to a family of operators A?) on L?(Q), indexed by T € Q' = [~7, 7)™

(B) Boundary triples (Ag, A, IT) in the sense of Ryzhov [17], to obtain norm-resolvent estimates
for each AgT).

(C) Perturbation theory in the sense of Kato [15], and Reed and Simon [20, Chapter XII], to

ensure that the estimates in (B) are uniform in .

(D) Generalised resolvents, such as the operator RgT)(z) = Psoft(AéT) — 2) " Pyog, where Piog
is the projection of L%(Q) onto L?(Qsof) (see Section 2.4). Here, the norm-resolvent
asymptotics of RgT)(z), which we denote as R{E‘T})lom

some (.A(T) — 2)7! (Theorem 2.4.20).

e,hom

(2), is identified with a compression of

Sections 2.1 and 2.2 involve setting up the “stiff-soft-stiff” problem. In Section 2.1, we
define the operator A. on L?(R%) and then explain why we can equivalently study the family
of operators {A@}Te[_mﬂ)d on L?(Q), obtained by the Gelfand transform. Section 2.2 further

casts the problem in the language of boundary triples.

Section 2.3 studies the resolvent asymptotics of AS), and is at the heart of the analysis.
Section 2.4 combines the result of Section 2.3 (Theorem 2.3.4) with the boundary triple setup of
()

< hom that captures the norm-resolvent asymptotics

Section 2.2 to give a self-adjoint operator A
of Ag). Section 2.5 unpacks the notation and summarizes the boundary triple approach for
homogenization, giving first the main result of the thesis, Theorem 2.5.3.

()

€,hom "

A% .y Section 3.1 we look at the bottom right entry of the resolvent for AW (this is a

e,hom* €,hom

Chapter 3 places focus on the limiting operator itself, A We study three aspects of

10



2 X 2 matrix, as we will see). We write each of the four entries in terms of an operator of multi-
plication on C by a constant. Moreover, for the two diagonal entries, we are able to express this
constant as (Kir.int (T, 2) — 2) ! and (Ktitint (T, 2) — 2) ~!, where we will refer to Ktigint (T, 2)
and Kgim1s(T, 2) as “dispersion functions”. In Section 3.2, we write down the homogenized
description on the full space, i.e. the operator A; pom = G* ( fée Ag})lomd’t> G. In Section 3.3 we
perform a spectral analysis of A nom-1 and Apom-11 (the norm-resolvent asymptotics for Models
I and II, see Figure 1-2, as obtained in [35]), with an eye towards treating A; hom. Section 3.3

leaves with some unfinished tasks, which are collected in Chapter 4.

We wrap up our investigation in Chapter 4. We give an overview of what we have done, and
state the new results obtained in this thesis (these are also collected in Section 1.5). We end by
discussing how one may take forward the work done in this thesis, including a list of short-term

unfinished tasks, and a few long-term problems.

1.3 Mathematical preliminaries

1.3.1 Notation, assumptions, abbreviations

Fix the dimension d > 2.

General notation. N ={1,2,3,---} and Ny = {0} UN. We will use C and C interchangeably.
To denote a strict subset, we will use C. The indicator function of a set U € R? will be denoted
by 1. @ refers to an orthogonal sum of Hilbert spaces, or of operators on Hilbert spaces. +
refers to a direct sum of vector spaces. For a,b € R%, we write a - b = Zle a;b; for the inner
product on R%, and |a| = v/a - a for the corresponding norm. For a € C, the real and imaginary

components of a are denoted by Re(a) and Im(a) respectively.

Spaces. We will assume that our Hilbert spaces (H, (+,-)#) are complex, and write | - || for
the corresponding norm. Let U C R? be open. Denote by C°°(U) the space of smooth functions
f:U — C, and C(U) for the vector subspace of functions that have compact support in U.
Let k € Ny and p € [1,00]. We will need the Lebesgue spaces (with respect to the Lebesgue
measure) LP(U), the Sobolev space W*P(U), and the subspace Wéc’p(U) = WWM, with
the important special cases being Hi(U) := Wol’Q(U), and H*(U) := WF2(U). We will also
need the space of locally p-integrable functions L (U), locally WHkP functions VVIIZCP(U ), and
fractional Sobolev spaces W*P s > 0. We will write, for instance, LP in place of LP(U),
whenever the domain is understood. Finally, we will also need periodic Sobolev spaces, which

are defined in Section 1.3.2.

Operators. We will mainly follow the notation of [22]. Let H, H; and Hs be Hilbert spaces.
By an (unbounded) operator T from #; to Hz2, we mean a linear mapping T : D(T) — Ha,
where D(T') is a linear subspace of 1. The set D(T) is referred to as the domain of 7', and we
also write (7, D(T)) to mean the operator 7', whenever we would like to place an emphasis on
the domain. We write ran(7") for the range of T, and ker(T") for the kernel of 7. S C T means

11



that T is an extension of S. If (T, D(T)) is an operator on H (i.e. from H to H), the spectrum
of T is denoted by o(T'), and the resolvent set by p(T). For A € p(T), the resolvent (T — \I)~!
will be abbreviated as (T'—\)~*. L£(H1,H2) denotes the space of bounded linear operators from
Hi and Ho, and L(H) := L(H,H). The operator norm of T" € L(H;,Hz) is denoted either by

| T |24, -2, or by || T||op if the spaces are clear from the context.

Special families of operators. Let T € R% The operator —(V + i1)? or (}V + 1)? (with
appropriately defined boundary conditions) are both shorthand for —A — 2it -V + |1|?, as
opposed to a composition of operators. The multiplication operator on LZ(JRd) by an almost
everywhere finite function f is denoted by M. Similarly, multiplication on C by a constant ¢
is denoted by M.. Our operators of interest are typically defined through a sesquilinear form.
If (A, D(A)) is constructed from a form (t,D(t)), then we will write D[A] := D(t) to distinguish
between the form domain and the operator domain. All our projections will be orthogonal. If

H is a subspace of H, then the projection onto H will be denoted either by Py or Pp.

Abbreviations. We will be using the following abbreviations:

LHS/RHS left hand side/right hand side (of an equation)
PDE partial differential equation
BVP/BC  boundary value problem/boundary condition

IBP integration by parts

a.e. almost everywhere (with respect to the Lebesgue measure)
w.r.t with respect to

resp. respectively

Conventions. We will be dealing with a multitude of projections on two Hilbert spaces, H
and €. The straight font (e.g. Pp) is reserved for projections on H, and the calligraphic font
(e.g. Pg) is reserved for projections on £. When writing integrals, we will omit the differential

“dz” where it is understood.

Use of colours. Throughout the thesis, we will use coloured text to highlight parallelism in

formulae and to help the reader navigate complicated expressions.

1.3.2 Periodic Sobolev spaces

Fix a reference cell @ = [0,1)<.

Definition 1.3.1. A function f, defined a.e. on R? is called Z-periodic if for all k € Z and
i€ {l,---,d}, we have f(z + ke;) = f(x) a.e. Here {e1,---,eq} denotes the standard basis of
R%,

We will also require a notion of periodicity up to and including the boundary d@Q. Since we

12



want to talk about traces of measurable functions on @), we need at least one weak derivative.

This prompts us to make the following definition:

Definition 1.3.2. C.(Q) := {u € C®(RY) : u is Z%-periodic}. We will identify u € C.(Q)

per per

with its restriction to Q.

The key definition of this section is the following Hilbert space:

Definition 1.3.3. H., (Q) := C (Q)H'”H”Q). We identify this space as a subspace of L?(Q).

per per

We list here several equivalent characterizations of H;ET(Q):

H).,(Q) = {u € HJ,.(R?) : u is Z%-periodic} (1.8)
= {u € L*(Q) : 9u € L*(Q), and u, d;u have equal trace on
opposite faces of @, 1 <i <d.} (1.9)
=ue Q) : Y (+kP)|aE)f <oy, (1.10)
kezd

where @ denotes the Fourier transform of u. For an explanation of the equalities, we refer to
[27, p. 6] and [10, Proposition 3.50] for the first, [10, Proposition 3.49] for the second, and [,

p. 137] for the third expression. Note that H', . (Q) = C22 (Q)H.”HI(Q) is in general a subspace

per per

of H'(Q), and Ty, (@)@ = L2(q).

per

Remark. At crucial points in Chapter 2, we will use the compactness of Q in our arguments.

Notably, this is used in Proposition 2.3.3, Theorem 2.3.4, and Proposition 2.3.5. )

1.3.3 Convergence of unbounded operators

In this section, we review various notions of convergence of unbounded operators and its relation

to the spectrum. Let T, T be (unbounded) self-adjoint operators on a Hilbert space H.

Definition 1.3.4 (Norm/strong-resolvent convergence). By norm (resp. strong) resolvent con-
vergence of T}, to T', mean that for some (hence all) A with Im\ # 0, the resolvents (7,,—\)~! con-

verges in operator norm (resp. strongly) to (T — \)~!. We will write T), — T (resp. T), — T).

We refer the reader to [21, Section VIIL.7], [19, Chapter 10], and [25, Chapter 6.6] for a
general discussion on norm and strong resolvent convergences. Here, we focus on the relation
between Definition 1.3.4 and the spectrum. To facilitate the discussion, let us first make the

following definition:

Definition 1.3.5. Let M, and M be non-empty and closed subsets of C. We write M, HG

or M = HC — limy,_,00 M), (“Hausdorff on compacts”) to mean that

dg(M,NK,MNK) — 0, for every compact K C C such that M, N K and
M, N K are non-empty.
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Here, dg is the Hausdorff distance, which is defined for every non-empty and closed M, N C C,
by the formula

dg(M,N) := max< sup inf |z —y|,sup inf |z —y| .
zeMYEN yeNxeM

Obtaining convergence/asymptotics of spectra in the sense of Definition 1.3.5 is the focus
of the thesis. However, for the purposes of discussing the literature, let us introduce another

notion of convergence for sets:

Definition 1.3.6. Let M,, and M be non-empty and closed subsets of C. We write M, Ny

or M =1s — lim,,—,oo M), (“limit set”) to mean that the following two conditions are satisfied:
e If A\ € M, then there exist a sequence A, € M, such that A\, — A.
e If \, € M,, and X € C satisfies A, — A, then A\ € M.

That is, Is — limy, oo My, = {A € C: I N\, € M,, and \,, — A}.

It can be shown that if HC — lim,, ., M,, exist, then so does Is — lim,,_ oo M}, and Is —
limy, 00 M, = HC — lim,,_,oc M,,, by an application of [!, Proposition 4.4.14]. See Appendix B
for details.

We now relate Definitions 1.3.4, 1.3.5 and 1.3.6.

Theorem 1.3.7. If T, ™ T, then o(T},) iy o(T) and o(T,) LN o(T). In other words,

Is — lim o(T},) = o(T) = HC — lim o(T},). (1.11)

n—00 n—00
Proof. See [57, Section 1.3] for a proof of o(T},) He o(T). The result now follows from
the remark preceding the theorem. Alternatively, see [21, Theorem VIII.23(a) and Theo-
rem VIII.24(a)] for a direct proof proof of o(7},) LN o(T). O
Remark. e In the case of T, converging to T in the strong-resolvent sense, we cannot

conclude o(7T5,) He o(T) nor o(T,) L o(T). (E.g. consider the operator 4, = 1z on
L%*(R), which gives A,, — 0.)

e The notation 2% and —5 are non-standard, but are introduced here to distinguish be-

tween various modes of spectral convergence found in the literature.

e In this thesis, we will encounter the setup where T,, is self-adjoint on H, whereas T is
self-adjoint as an operator on a subspace H; of H. Writing Py, for the projection of H

onto Hi, we will show that
(T 44)~ = (T + i) Py, | — 0, as n — oo. (1.12)

Inspecting the proof of Theorem 1.3.7 (i.e. [57, Section 1.3] and [21, Theorem VIII.23(a)
and Theorem VIII.24(a)]), one checks that (1.12) is sufficient to conclude o(T},) He o(T)

Is

and o(T,,) — o(T"). We omit the details for brevity. o
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1.4 Existing literature

This thesis is written under the context of two developments in the subject of homogenization.

The first is a push towards turning various qualitative results in [3, 6, 27] into quantitative
ones [2, 23]. The second is concerned with extending the techniques of [3, 0, 27] to account
for “degenerate” situations, for instance when there is a lack of uniform ellipticity [52]. The

purpose of this section is to elaborate on the relevant literature in these two developments.

Operator norm estimates in moderate-contrast homogenization

Let us begin with an overview on existing quantitative results in homogenization, restricting
our discussion to operator norm estimates. The first operator norm estimates were obtained by

Birman and Suslina in [32], for the resolvent (A. + I)~!. More precisely, it was proved that
(A + I)7! = (Apom + I)_1||L2(Rd)ﬁL2(Rd) < (Ce, where C is independent of .  (1.13)

Here, A. = —div(a.V-) is uniformly strongly elliptic, and Apom = — div(ahomV:+), where the
coefficient matrix apom is constant in space. Equivalently, this can be written in terms of
ue = (Ae + )71 f and upom = (Apom + 1)L f for a given f € L? by

llue — uollr2 < Cel|fllr2, where C is independent of € and f.

To obtain (1.13), the authors applied the Floquet transform to A. to obtain a family of operators
{AS)}[,MW, and then proceeded with a spectral analysis of AgT) using analytic perturbation
theory, with a focus on the behaviour of the resolvent of A, near the bottom of the spectrum.
The key object here is an auxillary operator referred to as the “spectral germ”. Their approach
was later extended to include other related setups, for instance, bounded domains [18, 19] and
perforated domains [50].

Other methods that appeared thereafter include:

e The periodic unfolding method, introduced by Griso in [10, 11].

e The shift method, introduced by Zhikov and Pastukhova in [54] (see also their survey
paper [55]).
e A refinement of the two-scale expansion method by Kenig, Lin, and Shen [13], which

directly dealt with the case of bounded domains (see also the recent book by Shen [23]).

e A recent work by Cooper and Waurick [3%], proposing an abstract framework under which

uniform in T norm-resolvent estimates for the family AS) can be achieved.

Let us remark that this list is non-exhaustive, and is growing at the point of writing. These
methods work well in the moderate-contrast setting (meaning that a(y) is positive definite and
bounded), but cannot be used in the high-contrast case a.(y) (see (1.7)), at least without serious

modifications. This brings us to the approach of [35].
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A boundary triple approach to high-contrast homogenization

As mentioned in Section 1.2, we will use a method proposed by Cherednichenko, Ershova, and

Kiselev in [35]. Recall that this is an operator framework based on four key ingredients:
(A) The (rescaled) Gelfand/Floquet transform G-.
(B) Boundary triples (Ag, A, II) in the sense of Ryzhov [17].
(C) Perturbation theory in the sense of Kato [15], and Reed and Simon [20, Chapter XII].
(D) Generalised resolvents (see Section 2.4 and Theorem 2.4.20).

Let us make a few historical remarks on (A) and (B). The use of Gelfand transform in the
mathematical analysis of periodic homogenization problems can be traced back to Zhikov [51],
and Conca and Vanninathan [37]. However, they did not pursue the goal of obtaining operator
norm estimates. Nonetheless, it is possible to extend the work of Zhikov [51] to obtain operator
norm estimates, as explained in the survey paper by Zhikov and Pastukhova in [54, Sections
9-11]. As for ingredient (B), the Ryzhov boundary triple is a generalization of the (“classical”)
boundary triple introduced independently by Kochubei [15] and Bruk [33] (see also [5], [14,
Chapter 3|, and [22, Chapter 14]). This generalization is more suited for the PDE setting, as
it allows the trace operators to be defined on a smaller set than what is required of a classical
boundary triple.

Next, we make a few remarks in connection with the moderate-contrast case. First, we point
out that the framework of [35] could in principle, be applied to the moderate-contrast problems.
Second, we note that the use of the Gelfand/Floquet transform in periodic homogenization
problems is a common first step in operator approaches to homogenization (Birman-Suslina
and Cooper-Waurick method). Third, we point out that the use of perturbation theory in
homogenization is not new. For instance, it is core to the Birman-Suslina approach. However,
the authors of [35] employed (C) in a novel way, by looking at perturbation of objects such as
the Dirichlet-to-Neumann operator between the soft-stiff interfaces.

The work [35] has been a culmination of a series of papers attempting to bring boundary
triple theory to the asymptotic analysis of high-contrast homogenization problems. We refer
the reader to the recent survey by Cherednichenko, Ershova, Kiselev, Ryzhov, and Silva [36] for
the full details. Here, let us give a truncated version of the survey: The authors of [35] initially
used a simplified version of their framework to study a high-contrast homogenization problem
on a periodic quantum graph (ODE on the full space R) [34]. In the quantum graph setting,
the classical triple suffices as the new ingredient in (B). In [14], Cherednichenko, Kiselev and
Silva demonstrate the use of Ryzhov triples under a PDE setting on a bounded domain. By
combining the techniques of [34] and [44], one is able to treat PDE setting on the full space R?
with periodic coefficients. This is the content of [35].

The operator framework of [35] has proven to be successful in the study of high-contrast
composites, at least for simple geometries like those in Figure 1-2. One of the goals of the thesis

is to demonstrate how the approach of [35] can be extended to a geometry like Figure 1-1.
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High-contrast homogenization for the stiff-soft-stiff composite

Next, let us comment on the choice of our setup, in relation to existing results. The stiff-soft-
stiff model (Figure 1-1) is derived from the two auxiliary models studied in [35], referred to as
Model T and Model II (Figure 1-2).

¥ Qstiff

> Qsoft I

A

0Q «~

Model | Model Il

Figure 1-2: Auxiliary models from [35].

As depicted in the figure, we see that the auxiliary models are geometrically identical, having
only one inclusion inside the period cell @), with smooth boundary I', and at a positive distance
from the boundary of the cube 0Q). Models I and II differ only in the choice of the soft and stiff
components.

Due to the similarity in geometry, one might naively guess that the homogenized descriptions
of A. are almost identical. This is true to a certain extent. Indeed, it was shown in [35, Section
4.2] that for both Models I and II, the fibres Ag))m of the homogenized operator Ayony, is one
that, roughly speaking, stays unchanged as —(V + iT)? on L?(Qsot), and acts only on a 1D
subspace of L?(Qg). A further study on how the constant of multiplication ¢ in L?(Qstig)
depends on T reveals a non-local behavior of Ayym, on L2(R?), see [35, Section 5.4].

But Apom of Model I and II are different in many respects. For starters, Apom depends
on ¢ for Model I, and does not for Model II. The fact that we only obtain asymptotics for
Model I is to be expected, because it is known from [12, p.1447] that A. in Model I does not
have a norm-resolvent limit. Model I does however possess a strong-resolvent limit Apom o (the
Dirichlet Laplacian on the soft parts of R? [12, Proposition 2.2]), and also a two-scale strong
resolvent limit Apom 2sr [73, Section 3].

However, the operator Apom s does not capture the spectral information of A., since o(A.) -
0 (Anom,sr) (in the sense of Definition 1.3.6). Furthermore, the manner in which the limit Apom s
was obtained in [12] does not provide us with a rate of convergence. On the other hand, the
operator Apom 2 satisfies 0(Az) = 0(Anom 2sr), and we even know the spectral decomposition of
0 (Ahom,2sr). But the proof is again qualitative in nature, relying on an additional compactness
argument to establish spectral convergence. An alternative route taken by [12] is to study o(A)
directly, without characterising the limiting behaviour as the spectrum of some Apgm, -

As for Model II, it was shown in [52, formulae (5.7) and (7.1), and Theorem 5.1] that the
two-scale strong resolvent limit Ayom s €xists, using qualitative arguments. But in contrast
to Model I, we do not know if there is spectral convergence of A, to Apom2sr, and we do

not know the decomposition of o(Anom,2sr). The norm-resolvent limit Apoy, (which is also the
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strong-resolvent limit, but different from Apom 2sr) is obtained in [35], together with a rate of

convergence.
The methods of [72] pertaining to two-scale strong resolvent limits are quite general, en-
compassing various configurations (see [52, Sect 5.1] for precise conditions), and various scaling

choices €®, @ > 0. This is in contrast to norm-resolvent asymptotics, where as mentioned earlier,
only the setups in Figure 1-2 have been studied so far, under the double porosity scaling o = 2.

Even though it is possible to apply the result of [52] to the stiff-soft-stiff model (with oo = 2)
and obtain a two-scale strong resolvent limit Ayom 2sr, there is work to be done. That includes:
verifying if there is spectral convergence; finding the spectral decomposition of Apom 2sr; and
turning the qualitative arguments into quantitative ones. We will not pursue that route here.
We will however apply the methods of [35] to obtain the norm-resolvent asymptotics Ay for
the stiff-soft-stiff model. This has been open prior to the writing of this thesis, and is the
content of Chapter 2.

One might wonder the sense in which the norm resolvent asymptotics Aypom, obtained from
[35], provides a simplified description of the high-contrast composite. We attempt to provide an
answer in the following context: just as how we may study the dispersion relation of a periodic

operator, we could also ask for the limiting dispersion relation of A.. We will do so by taking a
(1)

closer look at the non-local part of A ,

in particular at how the constant of multiplication c;
in the 1D subspace of L?(Qge) depends on T. The key object that is extracted from this study
is referred to as the “dispersion function” K (T, z). As shown in [35, Section 5], K (T, z) are very
different for Models I and II. In Chapter 3, we will derive K (T, z) for stiff-soft-stiff model, and

compare it with K (1, z) of Models I and II.

1.5 Main results

The main results of the thesis are as follows:

Results from Chapter 2

e A homogenization result for the composite material in Figure 1-1. This is Section 2.5,
and in particular, Theorem 2.5.3. We give an effective description of the composite by

identifying the norm-resolvent asymptotics of AgT), namely the operator AiTl’)lom'

e Moreover, we supplement the asymptotic argument in [35] with additional details, meant
to explain how the estimates obtained are uniform over T and z. These are Proposition

2.3.3 and large portions of the proof of Theorem 2.3.4.

Results from Chapter 3

e We look at the bottom right entry of the resolvent for Agﬁom. This is a 2 X 2 matrix,
due to the two stiff components. We write each entry in the form of a multiplication by
a constant on C. Moreover, for the diagonal entries we are able to express this constant
as (K(1,2) — 2)7%, and we refer to K(T,z) as the “dispersion function”. The precise

statements are
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— Cstiff-int — Cstiff-int: Theorem 3.1.06,
— Cstifr-1s — Castiff-1st Theorem 3.1.10,
— Cstiftrint — Cstifi-1s: Theorem 3.1.12 and Corollary 3.1.13,
— Cstifels — Cstiffeint: Theorem 3.1.15 and Corollary 3.1.16.

e In Section 3.2.3, we provide a formula for the homogenized description of our composite

on the full space, i.e. the operator
? 4@
Ae,hom =G" (/ Ae,hode> G.
Q/

e We prove results on the spectrum and spectral decomposition of A. hom-1 and Apom-11 (the
norm-resolvent asymptotics for Models I and IT on the full space L?(R%), as obtained in

[35]). The precise statements are

— For Model I: Proposition 3.3.3 (eigenvalues), Corollaries 3.3.6 and 3.3.7 (character-
ization of o(A. hom-1) in terms of the dispersion function Ki(T,z2)), and Proposition
3.3.8 (when Ki(T,2) is undefined).

— For Model II: Proposition 3.3.11 (eigenvalues), Corollaries 3.3.14 and 3.3.15 (char-
acterization of o(Apom.1) in terms of the dispersion function Kiyi(T,z)). We only

provided partial results when Kii(T, 2) is undefined (Propositions 3.3.16 and 3.3.17).

These results are also collected in Chapter 4, where we summarize the work of this thesis.
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Chapter 2

Homogenization of the stiff-soft-stiff

composite

In this chapter, we detail the process of homogenization of the stiff-soft-stiff composite using
the operator framework [35]. This chapter consists of five sections. The first four sections
roughly corresponds to the use of the four key ingredients: (A) Gelfand transform, (B) Ryzhov
boundary triples, (C) perturbation theory, and (D) generalized resolvents.

In Section 2.1, we provide a rigorous formulation of the problem outlined in Chapter 1.
We define the operator A. on L?(R%) and explain why we can equivalently study the operator
family {A@}Te[,mﬂ)d on L?(Q), obtained by the Gelfand transform. In Section 2.2, we recast
the problem yet again, this time in the language of boundary triples.

()
€

Section 2.3 studies the norm-resolvent asymptotics of Az "/, and is at the heart of the analysis.

To ensure that the asymptotics are uniform in T, we use a perturbative argument. In Section

2.4, we combine the result of Section 2.3 (Theorem 2.3.4) with the boundary triple setup of
(1)

€,hom

of Ag). Finally, Section 2.5 unpacks the notation and summarizes the boundary triple approach

Section 2.2 to give a self-adjoint operator A that captures the norm-resolvent asymptotics

for homogenization.

2.1 Problem formulation

This section is structured as follows: In Section 2.1.1, we define the operator A. on L?(R?%).
Next, we introduce the scaled Gelfand transform G, in Section 2.1.2, and use it to obtain a

family of operators AgT) on L?(Q) indexed by T € [—7, 7). With the help of G., our study of

the norm-resolvent asymptotics of A. can be restated in terms of the family AgT). This allows

to reformulate our problem in terms of AgT), which we will do in Section 2.1.3.

The operator A?) will be the main object of study in the remainder of the text. We will

)

refer to the setup in Section 2.1.3 as the “main model”, and AE;T as the “main model operator”.

2.1.1 Operator on the full space

In this section we will define the operator A.. On the reference cell Q = [0,1)?, consider the

setup as shown in Figure 1-1. That is, ) is split into three connected components: a simply
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connected “stiff interior” part Qstiftint, surrounded by an annular “soft” region Qgof, with the
remaining region filled by the “stiff landscape” part Qg.1s- For the soft-stiff interfaces 'yt and

I's we require that
e the boundaries I'jy; and I'ig are smooth, and
o iy, ['s, and JQ) are of positive distance from each other.

Recall from (1.7) that our coefficient matrix a.> : RY — R4 is given by

= (y) E2I, (RS Ungzd (Qsoft + n)7 (2 1)
€2 = ’
I, Y € Upezd ((Qstiff—int U Qstiff—ls) + n) )

where Qsofs + 17 = {y +n: Yy € Qo }, and similarly for (Qsiff.int U Qstiff1s) + 7. The matrix a2

is Z%periodic, and thus the matrix
Qe = Qoo <7) (2.2)

is eZ?-periodic.

The operator A; = —div(a.V-) is defined through its sesquilinear form:

(u,v) — a2 () Vu(Z) - Vo(Z) dZ, u,v € D[A] = HY(RY). (2.3)
R4
A, is an unbounded, lower-semibounded self-adjoint operator on LZ(Rd). Let us emphasize
again that A. is not uniformly strongly elliptic, in the sense that the coefficient matrices a.2(2)
cannot be bounded away from zero, independently of €.

If z € p(A;), then the resolvent equation
—div(ae (1) Vue) —zue = f, f€ L*(RY), zeC, (2.4)

has a unique solution wu., which can be written as u. = (4. — z)"'f. In terms of the weak

formulation, the resolvent equation is given by:
/ |:a€2 (Z) Vu(z) - V() — zu(az)v(az)] dz :/ f(@)w(z) dz, for all v e HY(R?Y). (2.5)
Rd RA

2.1.2 Passing from the full space to the unit cell

Let Q' = [, m)% It is customary in the study of periodic differential operators (Floquet
Theory, see e.g. [20, Section XIIL.16]) to begin the analysis of a Z?periodic operator T by
applying a unitary transformation to 7', giving us family of operators 79, T € Q. There are

two unitary transforms that we can choose from:

1. The Floquet transform, which takes v € L?(R%) to a function u #(x, x) that is quasiperiodic
in x and periodic in T. This gives rise to the differential operator (%V)2 on the unit cube

Q@ subjected to quasiperiodic BCs.

21



2. The Gelfand transform, which takes u € L%(R?) to a function u,(x, x) that is periodic in
x and quasiperiodic in T. This gives rise to the differential operator ( %V +1)? on the unit
cube @ subjected to periodic BCs.

We use the Gelfand transform, as it will be easier to deal with a varying action as opposed
to a varying boundary condition. Let us now summarize the necessary elements from Floquet
theory that will be of use here.

First, it would be more convenient to introduce a scaled version of the Gelfand transform

since A, is eZ%periodic rather than Z%periodic:

Definition 2.1.1. The scaled Gelfand transform is the operator G defined first for u € C°(R?)
by the formula

(Gou)(Z,0) = ( c )d/ ’ 3 u(@+en)e @ FeeQ, 9ee'qQ, (2.6)

2T
nezd

and extended by continuity to an operator from L?(RY) to L?(eQ x e~1Q’), which will we still
denote by G.

Remark. In fact, G¢ is unitary, with the following inversion formula:

- £ \4? N - md
u(i) = (7) (Geu)(7,0)e?%d0, 7 eRY, (2.7)
2T E—lQ/
where we have extended G.u in Z by eZ%periodicity to a function on R? x e~1Q". o
Next, we introduce a new notation for the Bochner spaces L?(M, u; H'), following [20, Section

VIIL16]:

Definition 2.1.2. Let (M, i) be a o-finite measure space, and H’ a separable Hilbert space.
We define the (constant fiber) direct integral space H = f;‘; H'du(m) to be the Bochner space
L?(M, p1; H'). Recall that this is a Hilbert space, equipped with inner product

(5.0 = [ (s(m), )y dim). (2.8)

Elements of this space s € H are called (measurable cross-)sections. The space H' is referred to

as fibers.

This notation places emphasis on the fibers H’, and therefore on operators on H' indexed by
the set (M, ), in a measurable way. This requires us to define a notion of measurability. We

continue with the notation of Definition 2.1.2 for the remaining definitions of this section:

Definition 2.1.3. We say that T'(-) : M — L(H') is measurable if for all z,y € H', the mapping
M > mw— (z,T(m)y),, €C (2.9)

is measurable.
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However, we would need to deal with unbounded self-adjoint operators, therefore we make

the following definition:
Definition 2.1.4. Let {A(m)}men be a collection of unbounded self-adjoint operators on H'.
We say that A(-) is measurable if the mapping

M >mw— (A(m) +i)"t € L(H) (2.10)

is measurable.

Remark. This is a simple case of the more general direct integral [ E H'(m)dp(m), for which
the definition may be found in [11, Section 8.4] or [7, Chapter 7]. See also [20, Section XIII.16]
for some useful results concerning the constant fiber direct integral. See [24, Lemma 1.2.2] for

equivalent characterizations of measurability for unbounded self-adjoint operators. o
We are now ready to introduce the notion of a “continuous direct sum of bounded operators”.

Definition 2.1.5 (Decomposable operator). Let T' be a bounded operator on H = fﬁ; H'dp.
Suppose there exists a measurable family 7'(-) € L°(X,u; £L(H')) such that for all sections
sEH,

(Ts)(z) =T(z)s(x). (2.11)

Then we call T' decomposable, write T' = ffj T(m)du(m), and call T'(m) the fibers of T
Similarly, we will need to extend this notion to the unbounded self-adjoint case:

Definition 2.1.6. Suppose A(-) is a measurable family of unbounded self-adjoint operators on
H'. We define the operator A = ff; A(m)du(m) by

D(A) = {ueH

w(m) € D (A(m)) jrace., with /M\|A(m)u(m)\%,du(m)<m}, (2.12)

(Au)(m) = A(m)u(m). (2.13)

This is an unbounded self-adjoint operator, by [20, Theorem XIII.85(a)].

Remark. With the notation of a direct integral space, the Gelfand transform may now be

written as
®
Ge: I’(RY) — L?(eQ x e7'Q') = / L*(cQ)do,
E_lQ/
(Geu)(0) = (Geu) (-, 0) = G=()u(f) € L*(Q).
Note also the special case fﬁlQ, Cdo = L2(e71Q"). o

Definition 2.1.7. For 0 € ¢~ 1Q’, define Aée) to be the operator on L?(eQ) corresponding to

the sesquilinear form

£

(u,v) — /Q a2 (2) (3Vs +0)u(@) - (3Vz +0)v(Z)dE, u,v € D[AV)] .= ngr(sQ). (2.14)
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That is, AW corresponds to the differential expression (+Vz +6)a.2(£)(3V; +60) with periodic

BCs on Q).
Since A. (from Section 2.1.1) has Z%-periodic coefficients, the scaled Gelfand transform sets
(0).
£t

up a unitary equivalence between A. and a family of operators A
Proposition 2.1.8. With A, as defined in Section 2.1.1 and AS‘” as in Definition 2.1.7, we

have the following identity:
(2.15)

52
A. =G ( / A@d@) G..
671Q’

Proof. This is just a direct consequence of the product rule, see for example |
for the short computation. The periodic BC follows from the fact that G.u(Z, 6) is eZ%-periodic
O

, Theorem 2.5]

in 7.
While we have shifted our perspective to consider a ( dependent) operator on a bounded
subset of R?, this is still rather inconvenient as the Hilbert space L?(£Q) varies with . Ideally,

we would like to have € only appearing in the domain and action of the operator, keeping the

underlying Hilbert space as L?(Q), for all # and . This motivates us to define:

Definition 2.1.9. For each ¢ > 0, define the unitary rescaling operators ®. and W,
D, : L2(eQ) — L*(Q) (®.u)(z) = e ?u(ex), (2.16)
(Wer)(1) = (2) 7 0(3). (2.17)

V. L2(e7'Q) = LA(Q))

Definition 2.1.10. For T € @', define AéT) to be the operator on L?(Q) corresponding to the

sesquilinear form
= HL(Q). (215)

(1, 0) 1> 512/ d.s (2) AV + O)u(e) - (Ve + O)u(@)dr, u,v € DIA]

That is, A corresponds to the differential expression (Vg +1) % a2 (2)(} V4 +1) with periodic

(
BCs on Q. We will refer to Ag) as the main model operator.

Lemma 2.1.11. Let T = €. Then, AS) = (I>EA§9)<I>§.

Proof. Equivalently, we need to show that AQ) d. = (I>€A§€) as an operator from L?(eQ) to
. It suffices to check this on a form core C5g, (eQ). Let u € Cpg.(eQ). We use & for the

L*(Q)
variable on €@, and x for the variable on Q. First we see that
(A<9>u) @) = (2vat0) - (an(Z) (Eve+0)u@
i “\e)\i "
:c) <1 0 +0k;> u(j)] :

= Zd: (1@*‘%‘) [5?5 <g i 07 -

Therefore, if T =¢6 and x = %, then

RHS = (@gAée)u) (z) = e¥/? (Age)u) (ex)
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Corollary 2.1.12. A, is unitarily equivalent to fg AgT)dT.

Proof. Using expressions relating A, AEJ’), and A@, T = €6, we have

2.1.8 ® emma : ®
A, Prop:_.l.\ G: </ A@d@) G. L a 2.1.11 G: (/ @:Agsg)(l)ECW) G.
—1Q =Y

52} 52 D
=G < / @;de) ( / A§9>d9> < / <I>5d9) Ge
E—lQ/ ale/ E—lQ/
53} S 2] D S5
=G < / @:Cw) ( / \Ir;dx> ( / Agﬂch) < / \I!Ed:r> ( / <I>5d9> G., (2.20)
e 1Q’ Q / Q 10

where in the last equality, we have used fﬁlQ' L2(Q)df = L*(Q x e71Q) = fg L2(e71Q")dx.
Note for instance, that || fﬁlQ/ ®.db|op = esssupy|| el 2(c0)—r2(@) = 1 [20, Theorem XIIL.83].
O

We will therefore turn our attention towards the operator AgT). In the following section, we

)

recast our problem of studying the norm-resolvent asymptotics of A, in terms of Ag .

2.1.3 Reformulation in terms of operators on the unit cell

Having established the unitary equivalence between A. and fg, AgT)dT, our goal can now be

stated as follows:
Identify, uniform in T, norm-resolvent asymptotics for AS;T), as e ] 0.

Having turned our focus towards Ag), let us collect several ways of describing AS) that will
be useful for purposes of interpretation.

First, we recall from Definition 2.1.10 that Ag) is an operator on L%(Q) that corresponds
to the differential expression (}V, + T)g%?igz (2)(3Vz + 7). Recall that the coefficient matrix is
given by:

eI, x € Quiftls,
Saa@) =1 aeQun (2.21)

-2
€ Ia HS Qstiff-intv



where the subscripts “Is” and “int” stands for landscape and interior respectively.

Second, we have obtained AS;T) from A, through a combination of the Gelfand transform G,

and rescaling ®. in the previous subsection. Figure 2-1 gives a description of this process, where

we pass from the full space R to the unit cell Q.

[
4 x Ostiff-1s

>
l/
Wl Qsoft

v Qstiff—int

Gelfand
Transform

D

Q ¥
flop!

1%

g B
5

(o

Main Model

Figure 2-1: Obtaining the main model operator AE;T) via Gelfand transform.

Third, we mentioned in Chapter 1, that A, (and thus AgT)) will have transmission BCs on

the soft-stiff interfaces. That Definition 2.1.10 implies transmission BCs on I'js and I'j,¢ can be

seen from the form domain D[Ag)] = H]..(Q). Alternatively, we can see this by writing out

the BVP for the resolvent equation for AS;T): The resolvent equation (A@ —2)u=f € L*Q)

has a unique solution u = u,E»T) = Ugtiffls + Usoft + Ustifi-ing Whenever the following BVP can be

solved uniquely in the weak sense:

2
—of1 o .
€ <;V + T) Ustiff-ls — 2ZUstiff-ls = f: m Qstiff-157

2

1 .
({v + T ) Usort — 2Usoft = f; n Qsoft

2
—2(1 _ ;
€ (;V + T) Ustiff-int — 2Ustiff-int = J, in Qstiff-int

Ustiff-ls = Usoft on 11157 (222)
—2 | Oustifi) ; ) ) OQUsof ; _
€ [m +i(t nStlH—lS)uStlﬁ-lS] + [a%sofz + (T Nsoft)Usofs | =0 on Iy,
on [y,

Usoft = Ustiff-int

Ju, . —2 | Qugtifi .
[szg + Z(T ' nSOft)uSOft:| +e€ [Wm + l(T : nstiﬁ-int)ustiﬁ-int] =0 on ',
on 0@,

Ustifi.1s periodic

where nyg denotes the outward unit normal vector with respect to Qx, % € {stiff-int, soft, stiff-1s}.

Finally, we conclude this section by introducing the following notation:

Definition 2.1.13. Let (%, e) € {(soft,ls), (stiff-Is, Is), (soft, int), (stiff-int, int)}, we denote by
ny the outward pointing unit normal vector with respect to the component Q4. Also, let
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87(:27.u be the trace of the co-normal derivative of u, with respect to %, on the boundary I',.
This is defined for u € H%/?(Q), by

(2.23)

(Note the minus sign convention.)

2.2 Boundary triple theory setup

2.2.1 Preliminaries

To study the operator AgT), it will be helpful to view it as a member of a larger family of

operators. In our case, this family will be constructed using the Ryzhov boundary triple [17],
for each T. In this section, we will discuss the three ingredients that make up the boundary
triple, namely, the t-Dirichlet decoupling, the T-harmonic lift, and the T-Dirichlet-to-Neumann

(T-DtN) operator. First, we introduce a new notation for the spaces:

Definition 2.2.1. Set H := L*(Q) = L*(Qstift-int) ® L?(Qsoft) ® L?(Qstit1s) and & := L2 (Tiny) ©
L?(Ts). We refer to € as the boundary space.

Remark (On notation). We will view L?(Qgtift-int), L2(Qsott), and L?(Qsifr1s) as subspaces of

H. This means, for instance, that a function u € L?(Qsof) may be viewed as an element of H
e by an extension by zero onto Qstiff.int U Wstiff-1s, in which we write 0 + u + 0 or simply u,
e or by an identification with the second component of (0, u,0).

We will switch between the two notations where convenient. A similar remark applies to £ and
its subspaces L?(T'iy) and L2(Tg). °

Definition 2.2.2 (Projections on H and &£). For % € {stiff-int, soft, stiff-Is}, we write Py €
L(H) for the orthogonal projection of H onto L?(Qy4). Similarly, for e € {int,1s} we write
Pe € L(E) for the orthogonal projection of € onto L%(T). (Note the calligraphic font for

projections on the boundary space.)

The t-Dirichlet decoupling

The first ingredient, the T-Dirichlet decoupling, is constructed using the Dirichlet operators

—(V +47)2, appropriately rescaled, on each connected component of Q.

Definition 2.2.3. The t-Dirichlet decoupling is the operator on H = L?(Q) defined by

AS(% _ Azf(i)ﬁ—int,(’r) 69A(s)oft,(’t) @A:(i)ﬂ_ls7(T) (2.24)

where,
A:gf_int’(T) is the operator —e~2(V +i1)? on L?(Qstift.ins) With Dirichlet BC on .Fir.lt' That
is, the operator defined through its sesquilinear form having form domain D[A:E)H'mt’m] =

H (Qstifin) and action (u,v) — stﬁﬁm e AV +Tu-e 1 (AV + 1.
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° ASOft’(T) is the operator —(V 4 i1)? on L?(Qsof;) with Dirichlet BCs on Iy UT'ys. That is,
sof
DA™ ) = H(Quor).

° AEEEH_IS’(T) is the operator —e=2(V + i1)? on L?*(Qg;g1s) with Dirichlet BC on T’y and

periodic BCs on 0Q. That is, D[Ait,é)ﬁ'ls’m] = H&,per(Qstiﬁ‘_ls), the closure of smooth
functions that are periodic on dQ and with compact support in 9Q U Qgtifi.ls, under the

H! norm.

Write gf)tiﬁ'int’m = 52Aitioﬁ_im’m and g(s)tiﬂ_ls’(ﬂ = 52Azt[i)ﬁ_ls’(1) for the unweighted operators.

We record some properties of A;()) that will be useful to us.
Proposition 2.2.4. For all T € Q' = [, 71]<, Ag& is self-adjoint, positive definite, has purely
discrete spectrum, and 0 € p(Ag())). Moreover, AE’)O&’(T) and A:[’)(T) are bounded below, uniformly

in T and €, assuming ¢ is small enough, % € {stiff-int, stiff-lIs}. We also have the following

estimates: For some C' > 0, independent of T and ¢, assuming ¢ is small enough,

soft, _
[[(Ag t(T)) 1HL2(Qsoft)—>L2(met) <C, (2.25)

*, —
H(Aa,om) 1HL2(Q*)—>L2(Q*) < Ce. (2.26)

Proof. The self-adjointness, positive-semi-definiteness, and spectral type follows immediately as
it is the orthogonal sum of operators with these properties. The positive-definiteness will then
follow from 0 € p(Ag())). To show this, we first note that the case T = 0 follows from the Poincaré
inequality applied to each of the three operators in Ag()), since the first/lowest eigenvalue \; is
related to the optimal Poincaré constant v by A\; = v~2 > 0. (v can be taken to be independent
of e, if we assume ¢ is small.)

For general T, the lowest eigenvalue is always greater than or equal to the T = 0 case. This is
due to the diamagnetic inequality |V|f|(x)| < |(V +iT) f(z)] a.e., f € H', and the fact that we
can always choose the first Dirichlet eigenfunction (for T = 0) to be strictly positive. (See [13,
Theorem 8.38] or first part of the proof of [¢, Theorem 6.34].) This shows the claim on being
uniformly bounded below.

Since the norm of (ABO&’(T))_1 is bounded above by (dist(O,a(AZOft’(T) )))_1, the estimate

follows. A similar argument applies to the “stiff” decouplings. ]

The t-harmonic lift

The second ingredient, the T-harmonic lift, generalizes the map that takes boundary data to

harmonic functions.

Definition 2.2.5. The T-harmonic lift is the operator II(V : &€ — H, defined by
H(T) —_ HStiff—int,(T)Pint + HSOft,(T) + HStiﬁ_ls’(T)Pls, (227)

where
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o IPHEnt(D . 12(Dy) — L2(Qgtiing) is the operator ¢ — ug, where ug is the unique
solution to the BVP
—V+z’12u =0 in iff-int »
( ) o) Qstff t (2.28)
Up = @ on Ijnt.

o II50f6(D) . £ L?(Qsoft) is the operator (¢, ) Uy, Where ug , is the unique solution

to the BVP
—(V+i1)%upp =0 in Qsofts
Upp = ¢ on iy, (2.29)
Upp = P on I'j.

o [stiff-ls, () . L?(T') — L?(Qstimr1s) is the operator ¢ +— Uy, where u4 is the unique solution

to the BVP
—(V+i1)us =0  in Qsgifils:
Uy = ¢ on T, (2.30)
u,, periodic on 0Q.

Note that while II(V is not a direct sum of IIStffnt.(0) [ysoft.(t) and I150f:(0)  their lifts into

the components L?(Qstift-int), L2 (Qsott), and L?(Qgir.1s) are mutually orthogonal:
H(T) (¢ + S0) —_ (Hstiﬂ—int,(T)¢,Hsoft,(’t) ((ls + (p)’Hstiﬂ"—ls,(T)@) , fOI' d) c LQ(Fint) and © € LQ(FIS)'

Below, we give a sketch on how the lifts are constructed, and refer the reader to [17, The-
orem 4.25] for the full details. For concreteness, we focus on IISHF®(Y) - We remark that the

construction applies to II°M:(  as Q. is connected with Lipschitz domain I'ine U D).

The lift II49F06(Y) i initially defined as a mapping from H/2(T'jy) to H Y Qstift-int)-
This is possible because the fully homogeneous problem (zero RHS and zero on the

boundary) is uniquely solved by u = 0, as A:(i)ﬂ_mt’m is injective (Proposition 2.2.4).

We then show that TIHnt(0) admits a continuous extension to L?(Tint), by verifying
an L? estimate for u = %60 where ¢ € H'/?(I'yy). To do this, consider the
adjoint problem “L*w = f” corresponding to our harmonic lift problem “Lu = 0”.

The idea now is to combine both problems with Green’s identity, giving
0= (u, ) 12(Quigin) + (6 O W) 12(1,0)-

Pick f = u. Bound ||87(LT)w||L2 in terms of ||f|| 2 (this step is tedious, and requires

elliptic regularity) and we get the required inequality.

By definition, the lifts do not depend on e. As for T, it is natural to ask for II(¥ to be
bounded (in the operator norm) uniformly in T, since T comes from a bounded set @)'. This is
true, and to show this from scratch would mean revisiting the tedious estimates in [1 7, Chapter

4], with extra care to be taken if the domain is only Lipschitz. We will not do this here. Rather,
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let us simply point out that the property that enables the estimate is the ellipticity of the

sesquilinear form in the sense of [22, Definition 11.2]:

Definition 2.2.6. A form t with domain D(t) = V is called elliptic if there exist constants
C >0,v >0 and c € R such that

(Boundedness) [t{u, v]| < Clullv|vlv, for u,v € V, (2.31)
(Abstract Garding inequality) (Re €)[u] — c|lul|* > ~|ul?, for u e V, (2.32)

where Re t = 2(t+t*), and the adjoint form t* is defined as D(t*) = D(t) and t*[u, v] = t[v, u].
Picking C' > 0 to be independent of T is straightforward. As for Garding inequality, a

sufficient condition is for the coefficient matrix a(x) of the second order terms (principal part)

to be uniformly elliptic, in the sense that if the form t is written as

d d

tlu, v] = Z ax Oy - Opvdx +/ Z(bkﬁkuﬁ—l— crulyv)dx —I—/ quvdz,
Qpi=1 Q=1 Q

then Re Zi 1=1 akt(2)6&K > o ZZZI |€k|?, for all € € C? and x € Q for some constant a > 0. See

[22, Proposition 11.10] for precise statement. We then observe that the differential expressions

—(V + i1)? have the same principal part, —A, therefore ¢ and v in Garding inequality could

also be chosen independently of T. To summarize,

Proposition 2.2.7. There is some C' > 0, independent of T (and ), such that
e < C. (2.33)

Remark. Alternatively, one could obtain Proposition 2.2.7 by the continuity of the mapping
Q' 51— [T ||g_5. We refer the reader to the proof of Proposition 2.3.5 (the term “||u; —w)|”)

for a proof of the continuity claim. )

Let us record two more properties of II(¥ that are necessary for constructing boundary
7

triples. First, owing to the fact that the decoupling A; j has Dirichlet BCs, one has
D(AL)) N ran(I1) = {0}. (2.34)
Second, the individual lifts ITs#Fn6(0) Tysoft.(t) - and T154H15:(Y) are injective, and hence
ker(II) = {0}. (2.35)

To prove the injectivity of, say IIHH6(0) one first observes that IISHEM6(T) can be characterized
as the adjoint of the operator

(Avstiff—int,("r) ) —1 f,

L?(Qutift-int) > f > O o

Nstiff-int 10t

(This is a prequel to the identity IT* = FlAal of Proposition 2.2.13.) Since I'jy is smooth, an
argument using elliptic regularity implies that the range of this operator contains C°°(T'iy),
which is dense in L?(T'jy).
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The t-Dirichlet-to-Neumann operator

The final ingredient of the boundary triple is the 1-Dirichlet-to-Neumann operator.

Definition 2.2.8. The t-Dirichlet-to-Neumann (t-DtN) operator is the (unbounded) operator
A" on & defined with domain D(Ag)) = H'(I'y) ® HY(T}s) and action

OUsof

_o | Oustift-i . .
(¢’ SD) = —c 2 |:Stllnt + Z(T : nstiff—int)ustiff—int:| - |: + Z(T : nsoft)usoft

ONgtiff-int

—9 |:8Ustiff—ls

— ¢ Zsuli-ls
8nstiff—ls

ONsoft

+i(T- nstiff-ls)ustiff-ls]

—24(7)

=£ .
Nstiff-int 110

Usoft 1 5_28(T) Ugtiff-1s - (236)

(™)
tus")ft + a Nistiff-1s, 1S

. (M)
t Ustiff-int +0 Noft 1S

Nsoft 110

where ug , = U = Ustiftint + Usoft + Ustiff-1s 15 the solution to the BVP

p
_(V + Z'T)Qustiﬂc—in‘c =0 in Qstiﬁ'—int7

_(V + iT)Qusoft =0 in Qsofta

—(V + iT)ZUStiff_]s =0 in Qstiff-187

(2.37)
Ustiff-int = Usoft = ¢ on I‘int?
Ustiff-ls = Usoft = ¥ on I,
Ugtiff-int periodic on 0Q).

For convenience, we introduce the following notation for the DtN on the individual components:

e Denote by Aztiﬁ_im’m the operator with domain H'(I'jy) and action ¢ + 29

nstiﬁ—intvintu¢7
where 1y = Ugtifint solves the BVP

_<v + iT)Qustiff-int =0 in Qstiff-in‘m

(2.38)
Ustiff-int = ¢ on I\int~
e Denote by A%ft:(D) the operator with domain H* (Ting) ® HY(T)s) and action
(¢, ) — Géz)m’mtqu’@ + GT(L:ZR’ISu@W where w4, = Ugof; solves the BVP
_(V + Z.T)2usti1"f-ls =0 in Qsoftu
Usoft = Qb on Fint7 (239)
Usoft = ¥ on I'j.
e Denote by ASTEI) the operator with domain H!(T's) and action ¢ 6*287(;21&_157181@,
where 1, = ;15 solves the BVP
_(v + iT)zustiff-ls =0 in Qstiff-lsa
Ustiff-1s = P on F187 (240)

Ustifi.ls Periodic on Q).
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o Write Astift-int(7) .— 52A§tiﬂ_int’m and AStftls,(0) .— 52A§tiﬁ_ls’(T) for the unweighted opera-

tors.

)

In this way, we may write AD as a sum of self-adjoint operators on L?(I'iy), £, and L?(I'y)

respectively:

A(T) — Aztiff—int,(”r)/])int +Asoft,(1) + Aitiﬁ_ls’(T)Pls. (2.41)

£

Remark. We have used the assumption that the boundaries I'jy; and I'js are at least C&1, so

that by [17, Theorem 4.21], the co-normal derivatives are well-defined. o

We refer the reader to [17, p. 145] and [30] for general properties of T-DtN maps. Of note in
the construction of the DtN maps, is the requirement that u = 0 is the unique solution to the
fully homogeneous problem, similarly to the lifts II. This refers to formulae (4.35) to (4.38) of
[17], and Section 3 of [30] (the assumption that 0 belongs to the resolvent set of the Dirichlet
Laplacian).

To construct our boundary triple, we require the DtN map to be self-adjoint [17, Assumption

2]. This is immediate for Aitiﬁ'im’m, A0 and Aztiﬁ_ls’m, by [30, Theorem 3.1].

Lemma 2.2.9. For € small enough, independently of T, AgT) is self-adjoint on &.

Sketch of proof. We will outline the idea of [35, Lemma 2.1] and state the modifications needed.
First, it suffices to discuss the T = 0 case, as general T can be viewed as a relatively bounded
perturbation of the T = 0 case. We hence omit writing T for the remainder of the proof.

Second, we note that
Aitiﬁ_intpint + A:tiﬁ—lsPls _ Aitiff—int D A;tiff—ls’ (242)

which is an orthogonal sum of self-adjoint operators, hence it is self-adjoint on £ with domain
HY(Tiy) ® HY(Ty,).

Third, we view A. as the operator ASHTFnt gy ASHES perturbed by the “soft” DtN operator
A%t In fact, we may verify the following estimate: there exist some «, 3 > 0, independent of
g, such that for all (¢, ) € D(ASHTnt g Astifils)

1A% (6 + @) [le < a®[|(AZT & AZT9) (6 + 9) e + Bllo + #lle-

Therefore, if € is small enough, then A% is relatively (ASHint g ASHES) hounded with bound
strictly less than 1, hence the sum A, = A% 4 (ASHfFint g ASHS) g gelf-adjoint by the Kato-
Rellich theorem [22, Theorem 8.5].

Finally, we note that A%t and AStfint g ASHHS have common domain H'(Tyu) @ H(T),

so this is also the domain of the sum A.. O

We will henceforth assume that ¢ > 0 is small enough to satisfy Proposi-
tion 2.2.4 and Lemma 2.2.9.

The DtN operator is an important object for our analysis. Not only is it one of the main

ingredients of the boundary triple, it also features prominently in Krein’s formula, a key result
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in the boundary triples theory. In particular, of interest to us are spectral properties of the
unweighted “stiff” DtN components ASHF-nt, (1) — 2 \SHIHNG(T) ) g Astiffs, (1) — o2 A SIS (D) y op

us collect the required properties in the proposition below.

Proposition 2.2.10. For all T € Q' = [—7, 7%, the DtN operators Astiff-int,(7) - Asoft,(T) 4
AstifIs,(D) are unbounded self-adjoint operators on L?(T'iy), &€, and L?(I'y) respectively. They
are semibounded from above (note our sign convention for &(LT)), and have compact resolvents.

Focusing on ASHFnt(0) and Astifs,(0) if we order their eigenvalues in descending order count-

ing multiplicities, then

Astiff-int, (1)

e The eigenvalues of satisfy

stiff-int, () stiff-int, (1) stiff-int, ()
1 > Mo

Forallt, 0=y > [y > s = —00. (2.43)

The eigenfunction witiﬁ'im’m corresponding to the first eigenvalue is

wftiﬁ'im’m (x) = \Fintr%e_”“. In particular this is a constant when T = 0.
e The eigenvalues of Astiff-s,(7) satisfy
stiff-ls, ()

stiff-1s, () stiff-1s, ()

If =0, then 0 =y > [l > fig > .- = —00. (2.44)
If © ?é 07 then 0 > 'uitiﬂ—ls,("r) > 'u;tiﬂ—ls,("r) > 'u;tiff—ls,("r) > .o —o0. (2‘45)

-1s,(7)

tiff: o :
Moreover, ;" is simple when |t| is small enough.

The first eigenvalue admits an asymptotic expansion in T with the leading order being

quadratic in T. That is, there exists a (strictly) negative-definite matrix pSHf!s satisfying
Mitiff—ls,(T) — Mitiﬁ_ls’t T+ 0 (|T|3) ) (2.46)
For the case T = 0, the eigenfunction witiﬂ'ls’m corresponding to the first eigenvalue is
constant, witlﬁ_ls’m (x) = |F]S’_%11"ls (x).
For general T, the eigenfunction witiff'ls’m admits an expansion: there exist some S!S =
S e d

(WS, - i) € (L2 (1)) such that
itiff—ls,("r) —_ |Fls|_% (1 LT witiff—ls +0 (|T|2)) ] (2.47)
Proof. See [30], which discusses the DtN operator corresponding to —A (the case T = 0), and

with a bounded connected domain Q C R? with Lipschitz boundary. In there, it is proven that
the DtN map is self-adjoint, semibounded, and has compact resolvent [30, Theorem 3.1]. The
key fact allowing us to conclude the compactness of the resolvent is the compactness of trace
operator H'(Q) — L?(02). An easy modification to the case —(V + iT)? allows us to conclude
the same for Kstiff—in‘c,('t)7 Kstiff—ls,("r)7 and Aot (D)

The simplicity of Mitiﬂ_int’(o) is proved in the follow-up work in [31, Theorem 1.2]. We then
note that (wzﬁﬁ_int’(o),,uztiﬁ'int’(o)) is an eigenpair for Astift-int, (0) i¢ 4 only if (wztiﬁ'int’(o)e*“"”,

tiff-int : . . ~ i
o ’(0)) is an eigenpair for ANt (1),
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Since Qgifr1s (with edges identified) is connected and I'ls is smooth, the arguments of [31,
Proposition 4.1] can be modified to the setting of Héer(Qstiff_]s) to give the simplicity of uimfms’(o).
The claim that uitﬁ'ls’m < 0 for T # 0 is a consequence of Corollary C.2. Corollary C.2,
combined with the fact that ,u;tlﬁ'ls’(ﬂ can be bounded away from zero uniformly in T implies
the simplicity of uitlﬁ'ls’m for small |t|. We postpone the self-contained argument on uztlﬁ'ls’(T)
to the proof of Theorem 2.3.4.

The claims that lowest eigenvalue is zero for ASHF%:(0 for all T and for ASHFIS(D) for 1 =0
is a direct check on the expression for the eigenfunctions.

stiff-1s,(T) stiff-1s,(T)
and ]

The proof of the asymptotic expansions for p; is postponed to Propo-

sition 2.3.5 (see the term “||ug — wl|”). O

ASHEIS,(T) in terms of the

To conclude the section, let us write the eigenvalue problem for, say,
associated BVP. The eigenvalue problem reads: Find the values z € C where KS“H‘IS’(T)@ = 2,
¢ € D(AsHH5(0) = HY(T),) has a non-trivial solution. In terms of the BVP, this reads: Find

z € C such that the problem

—(V+i1)?u=0 in Qsifts,

87(;213,15718“ = zu on FlS? (248)
u periodic on 0Q,

has a non-trivial solution u € ngr

the eigenvalues of AU are also referred to as Steklov etgenvalues.

(Qstifi1s)- This is also called the Steklov problem, and hence

2.2.2 Applying the triple framework. General properties.

We will now use the three ingredients provided in the previous section to define boundary triples

and several auxiliary operators. This construction is done for each € > 0 and T € Q.

Definition 2.2.11. ([17].) By a (Ryzhov) boundary triple, we mean two separable Hilbert
spaces H and & (& is called the boundary space), and a triple of operators (A, A, IT) such that:

e (Dirichlet decoupling) Ay is an unbounded self-adjoint operator on H, with 0 € p(Ap),

e (DtN operator) A is an unbounded self-adjoint operator on &,

(Lift) I : £ — H is a bounded linear map such that ker(II) = {0},

D(Ap) Nran(Il) = {0}.

When the underlying Hilbert spaces are clear form the context, we will simply refer to
(Ao, A, TI) as the boundary triple.

We now proceed to define the auxiliary operators A, Ty, T, S (2), and M(z), corresponding
to a boundary triple (Ag, A, II).

Definition 2.2.12. Let (Ap,A,II) be a boundary triple with spaces H and £. Define the

following operators:
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A:H > D(A) - H, with domain D(A) = D(Ay)-+ran(II) and action

AA Y f+Tg)=f, feH, ek (2.49)

To:H D D(Ty) — &, with domain D(T) = D(Ap)+ran(Il) and action

Lo(4;'f +116) =6, feM 6 €&, (2.50)
(We have used the assumptions D(Ap) Nran(II) = {0}, 0 € p(Ap), and ker(II) = {0}.)
e I'y : H D D) — &, with domain D(Ty) = D(A4p)+1D(A) and action

Ty(Ay f+TI¢) =" f + Ao, feEH,pcDA)CE. (2.51)

(Solution operator) For z € p(Ap), define the bounded linear operator S(z) : € — H by

S(z)¢ = (I +2(Ayg—2)"") g (2.52)

(M-operator) For z € p(Ap), we define the operator M(z) : € D D(M(z)) — &, with
domain D(M(z)) = D(A) (independent of z), and action

M(2)¢ :=T15(z)p, ¢ € D(M(z)). (2.53)
Remark. Note that D(I';) € D(I'g) = D(A). This is one key difference between the Ryzhov
triple and the “classical” triple described in [22, Chapter 14]. o

Let us now provide a motivation for the operators in Definition 2.2.12. Given f € H, ¢ € &,

and z € p(Ap), we would like to solve the following system of linear equations

(A\—Z)U:f,
Fou:¢.

(2.54)

The system bears resemblance to BVPs, with one equation on the main Hilbert space H and
another on the boundary space £. Here, I'y has the interpretation of the (Dirichlet) trace, since
by definition I'gll¢ = ¢ and II will be the harmonic lift in Section 2.2.1. This can also be seen
from ker(I'g) = D(Ap), where Ay will be the operator with Dirichlet BCs in Section 2.2.1.
Choosing A to be the DtN map from Section 2.2.1, the identity A = I'1II then implies that

I'y has the interpretation of the Neumann trace.

As for S(z), [17, Theorem 3.2] says that the system has a unique solution ul? = (Ag —
2)7Hf+ (I — 24y 1)=111¢, where the two terms solve the following systems respectively:
A—2u= , A—2u= 0,
(A= (A-2) -
Tou = 0. Tou = ¢.

We then set S(z) to be the operator solving the second system, justifying the name “solution
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operator”. One should compare this with the BVP for the harmonic lift in Section 2.2. Notice
that S(z) is not merely any generalization of I from z = 0 to z € p(Ap) in the sense that
S(0) = II, but one with an additional property that the dependence on z is reflected explicitly
in the first equation of our system, (j —2)u=0.

Combining the interpretations for I'y and S(z), we hence see that M (z) = I'15(2) could be
interpreted as the DtN map with spectral parameter z. Similarly to S(z), we could also check
that M (0) = A.

Let us return to our setting. In total we have four triples of interest:

o (Full cube) (A", A% TIM) with % = L2(Q) and € = L(Tny) & L2(I').

€,

o (Stiff interior) (A:é)ﬁ'int’(ﬂ,Aitiﬂ'int’(T),HStiH'int’(T)) with L?(Qsifint) and boundary space
L2 (Ting).

e (Soft annulus) (A(S)Oft’(T),ASOft’(T),HSOft’(T)) with L?(Qsof;) and boundary space L?(Tiy) ®
L2(Ty).

e (Stiff landscape) (A:gf_ls’(rc),Aitiﬂ_ls’m,HStiﬂC‘lS’(T)) with L?(Quif1s) and boundary space
L?(T'y).

We then apply Definition 2.2.12 to get the following auxiliary operators

(Full cube) AX, 159, T, 589(z), and M7 (2).

(Stiff interior) A\?iff-int,(’r)? Iwg‘ciﬁ“-int,(’r) I,Zfilff-int,(’r)? S:tiff—int,('r)(z), and Mgstiff—int,('r)(z)‘

Y

e (Soft annulus) Asoft, (1) FBO&’(T), FiOft’(T), S50ft(7) (), and MotV (2).

o (Stiff landscape) A\ztiﬁ—ls,("r), I‘(s)tiif—ls,("r)’ Fz‘filﬂ—ls,("r)’ S:tiff—ls,(”t)(z)7 and M;tiff—ls,(’r)(z)'

Remark. Our main model operator Ag) defined in Section 2.1.3 is not j@’ but as we see

shortly, will coincide with an operator denoted by ,21\273 I gg ; will be derived from XQ) . o

In the next section we will discuss some extra properties that arise from our specific setup.
Here, we collect some properties which are applicable to a general boundary triple (Ao, A, IT).

Some of these have already been used to motivate the definition of the triple.

Proposition 2.2.13 (Properties of auxiliary operators). Let (Ap, A,II) be a boundary triple
with spaces H and £. Construct the operators j’ Ty, Ty, S(2), and M(z). Let z € p(Ao).
Then,

1. ker(To) = D(Ap), and ran(S(z)) = ker(A — z).

2. T'9S(z) = I¢. In particular, since S(0) = II, we have I'0S(0) = T'oIl = I¢.
3. A=T4II and IT* =T A,

4. S(2) = (I — zAy")7'I. In particular, S(Z)* = T'1(4g — 2)~ .

5. M(z) = A+ 2IT*(I — 2A;") "L In particular, M(0) = A, and M(2)* = M(Z).
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6. p(Ap) 2 z — M(z) is an analytic operator-valued function where the operators are closed

in £ and have common (z-independent) domain D(A).

7. For z,{ € p(Ap), M(z) — M({) is bounded, and M(z) — M(¢{) = (2 — {)S(2)*S(Q).
In particular, ImM(z) = Im(z)S(2)*S(z). Here, we define the imaginary part of the
to

unbounded operator M(z) be the imaginary part of its bounded component, i.e.

ImM (z) := Im(M(z) — M(0)).

8. If u, € ker(A — z) N D(T'y), then M (2)Tou, = I'yus.

9. Ld_n C S(2)To

All of the proofs of these claims can be found in [17, Section 3]. Here, let us comment on
the statement of these properties. The identity A = I'1II gives the interpretation of I'y as the
Neumann trace, and hence II* = I'; A 1 gives an interpretation for II*: it takes f € L?(Q)
in Apu = f to the Neumann trace of u. Point 5 rewrites M (z) as an unbounded self-adjoint
operator plus a bounded operator (which is even analytic in z € p(Ap)). Point 8 says that
M (z) is the DtN map for the problem with spectral parameter z (i.e. with first equation being
(A — 2)u, = 0). In other words, we have not only generalized A in the sense that M(0) = A,
but also done so in a structured way that the dependence on z is seen explicitly in the BVPs.
(Recall that we have made a similar comment on S(z).) This relies crucially on the property
that I

ker(A—
One more property deserves mention. Because of its importance we put it as a separate

e S(z)To, which we record as point 9 for reference.

result.

Theorem 2.2.14 (Green’s second identity). For all u,v € D(I'1) = D(Ag)+IID(A), we have
(Au,v)y — (u, Av)y = (Tyu, Tov)e — (Dou, T1v)e. (2.56)

Proof. See [17, Theorem 3.6]. O

The power of the boundary triple framework starts to be felt once we start considering
different “boundary conditions”. By “boundary conditions” here, what we really mean is the
second equation of the system (2.54), a condition on the boundary space £. Motivated by the
classical triple, the goal of the Ryzhov triple here is to construct a family of operators which is
parameterized by the BCs, together with a Krein’s resolvent formula. From the point of view of

our homogenization task, employing the triple framework is ideal because
e this family includes all relevant operators that are needed for our analysis,
e these operators have a corresponding BVP interpretation (2.54), albeit slightly abstract,

e Krein’s formula provides a way to compute the norm resolvent asymptotics in terms of
“nicer” objects like M (z) and S(z).

Let us now outline the key ideas of the construction of the operator ;1\50751. (We
refer the reader to [17, Section 4-5] for the details.) Given f € H, ¢ € £, and z € p(4y), we
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would like to uniquely solve the following system:

(A-2)u=f,
(BoTo + Bil'1)u = ¢.

(2.57)

As per all constructions involving unbounded operators, we have to address the issue of
domains. The biggest set where this would make sense is u € D(I'1). That is, u = A; Ly 4+ T,
with ¢ € H and ¢ € D(A). Furthermore, we would like to make sense of fy, $1 not only
as numbers, but also as operators on £, as doing so would allow us to greatly expand our
interpretation of a BVP. To figure out reasonable conditions on By, 81, we observe that for u as

above,

(BoT'o + 61F1)(Aalg +1Ilp) = B1Il*g + (Bo + BiA)ep. (2.58)

Therefore, we make the following assumptions:

Definition 2.2.15. We assume that Sy and (1 are linear operators on £ such that D(5y) D
D(A), p1 € L(E), and Sy + S1A is closable.

The closability condition has been added because in what follows, we would like 53y + Bi A,
or equivalently By 4+ 81 M (z) by Proposition 2.2.13(5), to be boundedly invertible. (Recall that
if an operator is not closed, then it cannot be boundedly invertible.) As a byproduct, we have
expanded our solution space from u € D(I'1) = {u = Ay g + Iy | g € H,p € D(A)} to

Moo = {u=A"9+ 1 | g € H, € D(By + Bih)}.

The space HW and the closability of By + S1A is what enables the subsequent steps in

the construction:

1. It becomes a Hilbert space, equipped with norm HuHZoJrW = |lgll3+lellZ+1(Bo + Bid) ||

2. It allows Sol'g + 111 to be extended to a bounded operator from (Hz 5.7, | - l375%)
to €.

3. Consider the operator By + f1 M (z) which has domain D(By + S1M(z)) = D(Bo + f1 7).
If we assume that Sy + f1M(z) is boundedly invertible on &, then the system (2.57) has

a unique solution in ’Hm.

4. There exist an operator A\,Bo,& constructed from Sy, 51, and the triple (Ag, A, II):

Theorem 2.2.16. ([17, Theorem 5.5]) Assume z € p(Ap) is such that Sy + 1M (z) de-
fined on D(By + B1A) is boundedly invertible on €. Define

Rg, 8, (z) = (Ao — 2)71 + S(z)Qﬂoﬁl (Z)S(E)*, (2.59)

where Qp, 5,(2) == —(Bo + B1M(2)) "' 81. Then Rg, g, (2) is the resolvent at z of a closed

densely defined operator gﬁ(},ﬂl on H. Its domain satisfies the following inclusion

D(Apy 5,) C {u € Hgrzr | (Bolo + Bil1)u = 0} = ker(BoLo + BiT1). (2.60)
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Furthermore, we have gﬁo,ﬁl C A. That is, A\Bo,fhu = Au whenever u € D(A\ﬁoyﬁl)‘

Remark. o We refer to the formula for (gﬁo,m —2)71 = Ry, p,(2) as Krein’s formula.

e We did not give a complete description of D(A\Boﬁl). The best we have is D(A\Bo’ﬁl) =
ran(Rg, g, (%)), where the RHS can be expressed in the triple (Ao, A, IT) by Krein’s formula.
We also note here that D(A\,Bo,/h) fits into the following chain of inclusions:

ker(Fo) N ker(Fl) C 'D(A\goﬂgl) C ker(ﬁoro + B]Fl) C Hm C D(A) C H.

e We do not claim that gﬁo, 3, is self-adjoint. See [17, Corollary 5.8] for a sufficient condition.

e The construction of the closed operator 2507 3, from resolvents is a general result of “pseu-

doresolvents” which can be found in [12, Chapter 4, Proposition 1.6].

e For our application, it is important to point out that 8y and 1 are allowed to depend on

z. Correspondingly, the operator 260,61 depends on z as well. o

The theorem says that for f € H, the equation (;4\/307/31 — z)u = f can be solved uniquely if

and only if the same holds for the system

A—2u= ,
( ) f (2.61)
(,301_‘0 + 51F1)u =0.

A solution to this system implies a “weak solution” in the sense of [17, Definition 3.8], which

coincides with the typical definition of a weak solution. Therefore we can relate the operators
constructed in this way to a typical BVP, such as our main model in Section 2.1.3. To be

precise, for the case 8y = 0 and 81 = I, we conclude that

Corollary 2.2.17. AS) — AW

(.1, and (ALY — )71 = (A — ) = SO ()M ()15 (z)

whenever z € C\ R.

Proof. AgT) is self-adjoint, and so is /T(Tg’ ; by [17, Corollary 5.8]. Now consider the resolvents of

€,
both operators at z = i. The range of (Ag ;—i)7is D(ﬁg 1), and is also the set of solutions
to (2.61) for some f € H. Similarly, the range of (AS;T) —i)~lis D(A{ET)), and is also the set

of weak solutions to (2.61). By the preceding paragraph, we have D(//l\gg ;) C D(AE;T)), and so

A\g 1 C AgT). Since self-adjoint operators are maximally symmetric, they must be equal. O

This concludes our discussion of general boundary triples. We now proceed to study bound-

ary triple properties that are unique to our setup.

2.2.3 Properties of the triple arising from our setup

First, let us state the actions of our auxiliary operators in a more convenient form. We will skip
A and Iy since they are just null extensions of Ay and the left inverse of II respectively. We
will also do this only for the the triple on Qgifis, omitting similar statements for Qgtifing and

Qsoft for brevity.
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stiff-1s,(
e,1

Using the identity Aitiff_ls’(T) = FStilﬂ'ls’(T)HStiH‘lsv(T), we see that T’ " takes u = I1stiffls,(v) ¢ ¢

€,

Tstifi-ls, () pASH (D) 4 =250 1«U, where u solves the BVP

Nstiff-1s»

—~(V+it)?u=0 in Qs
u=¢ on I,

u periodic on 0Q).

Remark. The action of I'; is characterized by two equations, A = I'1Il and IT* =T'1 A 1 The

above description only discusses A = I'I1. o

For S35 (2) = (I — 2(AZYT> )OI it takes ¢ € L2(T) to
Uy € D(Aifli)ﬁ'ls’m)—i—ran(HStiﬁ'IS’(T)) C L*(Quuit1s),
where u = ug solves the BVP (in the sense of system (2.54))

(—e 3V +i1)? — 2)u =0,

I,ztiff—ls,('r) u=¢.

For Mastiff-ls,(’r) (Z) _ 11stiﬂ?-ls,('r) Sstiff-ls,(’r)(z)’ it takes ¢ € Hl(rls) _ D(Aitiﬁ-ls’(T)) to 8_28(T)

&1 Ngtiff-1s,18

where u = uy solves the BVP

(e 2(V+it)? —2u=0 i Quis,
U= ¢ on I,

u periodic on 0Q).
In view of keeping our notation compact, we make the following convention:

Remark (On notation). In the remainder of the text, we will often abuse notation and write

for instance, the operator “Py AP,”, for projections P; and P, to mean any one of the following:
e the composition of the three operators, PLAPy : H — H,
e the compression 7Py A|p,3 : PoH — P1H, where r : H — PyH is the restriction operator,

e the operator P1A|p,3 : PyH — H, which is equal to the composition of the embedding
1 : PiH — H with the compression,

e the operator 7P A|p,3 + rPl()\P;H : H — PiyH, which is the null extension of the com-

pression to the full space. )

Using the projections on H and £ (Definition 2.2.2), let us now discuss how the auxiliary
operators of different triples relate to each other. The first observation follows directly from the

definition of the triples:

U — g TPy, 00 = P and TS0 = pg TOPL (2.62)
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Secondly, by our description of the action of S(z), we have

SEEL) (2) = Pasgrin SO (2Pt S0 (2) = P SV (2),  and
SIS (M) (1) = P10 (2) Prs. (2.63)

This could be proven directly, for instance for SSO&’(T)(Z), by noting that

P S (2) = Pyog (I — z(A(()T) —2)"Hn® by definition of S(z),
= Peogt (I — z(A(()T) — Z)_l)PSOftH(T) LQ(QSOft) is an invariant subspace for A(()T),

= (Ir2(Qup) — z(AZOft’(T) — 2)"HI®() by construction of AgT) and by (2.62).

As for M(z), we have

Proposition 2.2.18. For z € p(Ag), the following identity holds

M(T) (Z) _ Mstiff—int,("r) (Z)Pint + Msoft,("r) (Z) + M:tiff—ls,("t) (Z)Pls- (264)

€

Proof. We will drop T and e. Let ¢ € H'(I'yy) and ¢ € H(T')5). We see that

° Mstiff—int (Z) —_ Pitiﬁ—intsstiff—int (Z) takes ¢ to 5_28(T)

- U,
Nstifi-ing,int ~ P

o MM (2) = TS5 (2) takes ¢ + ¢ to 87(:) Ug o + Ggift’lsu(b,@,

soft, 1Nt

o MStiffls ;) — [stiff-ls Gstiff-Is () takes o to £ 2 P

U
Ngtiff-1s,1S P

where u = Ugtiff-int + Usoft T+ Ustifi-ls = Ug + Ugp,, + Uy, solves the BVP

.
(e 2(V+141)% = 2)up =0 in Qutiftint,

(—(V + ’L'T)Q - Z)uqﬁ,cp =0 in Qsoft,

(_5_2(v + iT)Q - z)ulp =0 in Qstiff—lsa

(2.65)
Uy = Ugp = ¢ on Dint,
Up = Upp = P on I,
u,, periodic on 0Q).

(Recall that the DtN map and M-operator are related by the identity M(0) = A.) (¢, ) —

5_237(12iff4m,int fz:zft,intucﬁm +8£sztylsu¢’@ a2 U, is precisely the action of M(z). O

Ngtiff-1s,18

Ugp +

Remark. We will drop T and ¢ in this remark. Note that
Mstiﬁ-int<z) 7& PintM<z)7)int-

The LHS is [§ifnt5otifint () which takes ¢ € H'(Ting) to €28\ . w4 The RHS takes
¢ € H'(Tj) to 5_28£:2iﬂ_imimu¢ + 87(12ft’intu¢70. Even though we are confronted with this
asymmetry, the above proposition assures us that the additive structure of M(z) remains. The

additivity is exploited to great effect in [35]. o
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Finally, we discuss the dependence of the auxiliary operators on € and T, and the spectral
parameter z. To obtain estimates that are uniform in z, we will restrict our choice of z to the

following set.

Definition 2.2.19. Fix ¢ > 0 and a compact subset of K C C. Let K, be the compact subset
of K that is at o distance away from the real line. That is, K, = {z € C: z € K, dist(z,R) > o}.

Lemma 2.2.20. We have §51%(0 (z) — I8t (1) — O (£2), Sgtiﬁ_ls’(T)(z) — st () — O (e2)
and §%°f(%) (z) — T1°f:(Y) = O(1) in operator norm. These estimates are uniform in T € Q" and
z € K,.

Proof. This is a direct consequence of the formula S(z) = (I + z(A¢ — z)~1)IL O

In terms of estimates that are uniform over ¢, T, and z € K,, recall that we have already
provided one for the decoupling Ag in Proposition 2.2.4, and one for the lift II in Proposition
2.2.7.

Similarly to the solution operator S(z), we may ask for a simplification of M (z) up to O(£?).

Recall the notation for the unweighted decoupling sztiff—int,(”r)’ Agtiff-ls,(w) and unweighted DN
maps Kstiff-int,(”r) Kstiﬁ”—ls,(*r)‘

Lemma 2.2.21. For % € {stiff-int, stiff-Is}, we have

M* () = e72A%0 4 (IO % 4 O(e?), (2.66)

€

where the estimate is uniform over T € Q' and 2z € K.

Proof. We omit %. Since A(()T) =247 we get 62(11[(;))*1 = (Ag)*l. Hence

g,

~ oy 1\ 7!
MO (z) = e 2A0 4 211y <I — 2¢? (AéT)> > e

= e 2A 4 @)y I + 0(e?). (2.67)

The second equality follows from the Neumann series, which is justified by the uniform in
T bounds for the decoupling and the lift from Propositions 2.2.4 and 2.2.7, and assuming ¢ is

small enough. 0

2.3 Norm-resolvent asymptotics

After the long setup, we are now ready to begin the task of homogenization. By “homogeniza-
tion”, we mean that we would like to study the norm-resolvent asymptotics of our main model
operator Ag) of Section 2.1.3. We would like to identify an operator .Al(;)m

as a homogenized operator. To qualify as a “homogenized” operator, we require that

that we will refer to

° A&)m be self-adjoint on a possibly smaller subspace L?(Qsof;) @ H of L*(Q).

e The dependence ¢ is only allowed in the action of A}(l?m, on the stiff component. In
particular, the subspace H, and the domain D(A(T)

hom) Must be independent of e.

° A&)m and Ag) are asymptotically equivalent, as € | 0, in some specified topology.
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2.3.1 Decomposing the boundary space

In this section, we will decompose the boundary space & = L?(T'yyt) @ L?(I'js) with respect to

the spectral subspaces of the DtN map Agﬂ

. This is a key step in [35], so let us explain the
underlying rationale.

By the Krein’s formula (Theorem 2.2.16), we turn our attention to the solution operator
SéT)(z) and M-operator MY (z). Lemmas 2.2.20 and 2.2.21 tells us that M(z) is the badly
behaved term of the two. Focusing on M (z), problematic region of the resolvent set is located
at z = 0 and its vicinity. To see this, recall from Corollary 2.2.17 that Ag) has Gy = 0 and
B1 =1, giving us By+ 1 M (z) = M (z), which the Krein’s formula then assumes to be boundedly
invertible. This however, becomes increasingly difficult as ¢ is small, because Lemma 2.2.21
shows that the term e 2A* dominates when ¢ is small.

This suggests us to break the problem into two in the spectral picture: a compact neigh-
borhood of z = 0 and its complement. Thanks to A having compact resolvent (Proposition
2.2.10), the spectral subspace of the former could be chosen to be finite dimensional, which
greatly simplifies the analysis.

Recall the unweighted DtN map in Proposition 2.2.10. We introduce the following notation:

Definition 2.3.1. Let % € {stiff-int, stiff-Is}. From now on, we will only consider the first

eigenvalue and eigenfunction pair. Therefore, we will drop the indices and write

u*,(’t) — /1’1*7(T)7 and w*,(’r) — wik,(”t)

Note that wlmﬁ 600 and wlmﬁ 150 are mutually orthogonal. Introduce the orthogonal projec-
tions
P (g * D)y * @ p® = p) g D) d PV =1 PO
Y 7\ £ ) stiff- mt stiff-1s? an = 1 :
Remark. e (On notation) Note the use of calligraphic font for projections on £. So Ps(;)ﬁ int

should not be confused with Pkt int, which is a projection on H.

e As Proposition 2.2.10 does not assert the simplicity of uimﬁ 1s,(v)

the moment ple any eigenfunction witlﬁ Is,(1).
that wstlff Is,(

will assume from that point on. )

for large T, we may for
In Proposition 2.3.5, we will then show

stiff-1s,(T)

may be chosen in a way that makes T — 1] continuous, which we

Recall that the unweighted DtN on the stiff-components, AStf-int,(t) gy Astiftls,(9) ig self-adjoint
with domain H'(T'jy) @ H'(T)). With respect to the decomposition £ = P @ P(;)ﬂf 1€ @

stiff-int
P(E)E , we may now write ASHFINE(D) g Astiffls (1) 5

,ustiff—int,(’t) 0 0
Kstiff—int,("r) @ Kstiff—ls,("r) _ 0 lustiff—ls,(”r) 0
0 0 fPJ(:f) (Kstiff—int,(”r) D Kstiff—ls,(r)) PJ(_T)
(2.68)
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As for the (weighted) M-operator ME(T)(Z), we write its block operator representation with
respect to the decompositions & = P ¢ &) Ps(,fi)ff_lsé’ &) P(f)é' and £ = POE @ P(I)S :

stiff-int

Pinim€ Pansé PUE

@e plg
(0 A A B P L
M(T) (Z) — stlff—mtg 1 12 1 = ’P(T)g A B \. (269)
€ (1)
Pstiff—lsg A21 A22 B2 fp(’f)g E D
¢ E, Ey D +

Lemma 2.3.2. The components A, B, and E of ME(T) (z) are all extendable to bounded operators

on their respective spaces, where z € p(AS())).

Proof. We will drop ¢ and t. We modify the arguments of [35, Section 3.2]. By Proposition
2.2.13(5), it suffices to check the claim for the case z = 0. Note that M(0) = A is not a

diagonal matrix, because this is the full DtN map, while the projection PV is constructed from
Astiff-int,(7) 55,4 Astiff-ls, (1)

We first check this for the operator B = PAP,. We claim that P, D(A) C D(A). In other
words, D(B) contains the set D(A) which is dense in €. This is because if (¢, ¢) € D(A), then
P(b,¢) = (Pstift-int @, Pstiis2) € span{ypsiFm @ span {151 “and the eigenvectors are in H'

on their respective spaces. Then, notice that P, (¢, ) can be written as a linear combination
of elements in D(A), as P1 (¢, ¢) = (¢ — Pstittint®: ¢ — Petitint ) = (&, p) — P(, p).

Now suppose that (¢, ¢) € D(A) = H(Tin) @ H(T}s) C D(B), then its image under B can
be written as

PAPJ_((ﬁ, (p) = (A,PJ_((Z); <,0)7 (wstiff-int7 wstiff-IS)) . (wstiﬂf-int7 wstiﬁ-lS)
= (PJ_(¢7 gp), A(wstiﬁ—int’ wStiff—IS)) . (wstiff—int’ wstiff—ls)7 (270)

as A is self-adjoint. Then using the Cauchy-Schwarz inequality, ||PL || < 1, and that gstff-int

and ¢S are normalized eigenfunctions, we deduce that
IPAPL (6, 9)lle < V2 AT ¢ T) e]|(9, )¢ (2.71)

Since H'(Tjyy) @ H'(T)s) is dense in £, B admits a continuous extension to an operator P& —
PE. The same reasoning holds for A = PAP and E = P AP. O

Remark. e We have used: P; = Ie =P = (Ir2r,,) © Ir2ry)) — (Petiftring © Petifils) =
(Ir2(ry) — Pstitint) © (Ir2(ry,) — Petifits), which follows as our setup has disjoint stiff

components.

e The argument does not work for D = P, AP, , because we do not have the finite eigen-

function expansion of (2.70) to work with. o

We will henceforth write A, B, and E to mean its continuous extension to
the full subspaces P(VE and P(LT)E .
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Note that A, B, and E depend on ¢, T, and z, since ME(T)(Z) does. In light of this, Lemma
2.3.2 is insufficient for our purposes: we would like to argue further why for B and E, the RHS
of (2.71) can be bounded by C/||(¢, ¢)||, where C' is a uniform constant.

Proposition 2.3.3. The bound on ||B|,, and ||E|/,, can be chosen independently of z € K,
t€ @, and € > 0. The bound on ||A||,, can be chosen independently of z € K, and T € @'.

Proof. Proposition 2.2.18 permits us to address the “soft” and “stiff” parts individually. Propo-
sition 2.2.13(5) allows us to split M(z) into an unbounded part A (which depends on ¢ and T),
and a bounded part 2IT*(I — zA; 1) ~'TI (which depends on ¢, T, and 2).

We claim that the bounded part may be bounded uniformly in e, T, and z. Indeed, by
Lemma 2.2.21, it suffices to work with the “soft” case. The claim then follows from Proposition
2.2.7, and the assumption that K, is compact. As the unbounded part does not depend on z,
this proves assertion on the independence on 2.

Next we discuss the independence on 1. Without loss of generality, let us consider B =

P AgT)PJ(_T). In (2.71), we have shown that B has operator norm not exceeding

\/>||A(T)( stiff-int, () wstlff Is, ( )H
< \/> ( |Ast1ff int, ( wstiff—inm(’t H5 + HAztiﬁ_lS’(T)wStiﬁ_ls (1) H + HAsoft (1) (wstlﬁ” int, (T) wstlff Is, ( )H )

<‘6—2Mstiﬁ?—int,(’r)| sttiﬂ”—int HS "HE 2 stlff Is, ( | sttiff—ls,(’r) H5
—_— —_———

=1 =1

+ HAsoft ,(T) (wstlff int, ( wstlff Is,( T))H > (2.72)

(Actually, the first two terms are absent for B and E, as we see below, but we would like to

7

include A for this discussion.) We apply a “(perturbation + compactness) argument” as
follows:

By perturbation theory, we have the continuity of the mapping Q' > © — p*(9. This
implies that |e=2u* (9| is bounded uniformly in T. Next, we turn to the third term in the RHS
of (2.72). By [39, Lemma 2], we may write,

AR — Asft0) 4 g e AR = A%O) L B e e {stiff-int, stiff-1s}, (2.73)

where By, Bog; are uniformly (in T) bounded operators. Also, recall that || (SHFn6(T) qstiffls, (1)) —

V2 as the eigenvectors are normalized. We then have

I Asoft, T)(wstlff—lnt wstlff Is, (7) )< Asoft, (0 (wsmﬂf—mt (1) ¢Smff Is, (1) ) + 1 Beott [l op V2 V2
< (A0 (stifi-int (1) ysftls (D)) 4 o
<y || RSN (0) St ()| y | Rstifl, (00, stifils (1) - 5
< oy (|| ASHIE (D) T (0| B stifling, (1)) o
0| RO 4| B T O +
< Oy || L o[t 4 oy (2.74)

where the constants are all independent of T. The second and fourth inequality follows from

45



(2.73). The third inequality follows by noting that the domains D(A®f:(D) D(A*(D) are
independent of T, and then using the observation that A% (9 is relatively A*(9-bounded by
[22, Lemma 8.4]. As noted above, |u**(| is bounded uniformly in 7.

Finally, for independence on ¢, we notice further that
B= 7)(’() (Asoft,(T) + Aztiﬂ—int,(T)zpls + Aztiff—int,(T)Pim)PJ(:f) — 'P(T)ASO&’(T)'PJ(_T), (2‘75)

)

since PJ(_T £ is an invariant subspace for the stiff DtN maps. (We have a diagonal block matrix.)

A similar statement holds for E, but not for A. O

Remark. e We remark that while [39] does not study the case of annuluar domains, the
arguments of [39, Lemma 2] still applies to give us (2.73), since Qgoft is connected with

smooth boundary Ty, U I'ig.

e Variants of the (perturbation + compactness) argument will be used again in Theorem
2.3.4 (for the term “S”). o

2.3.2 Inverting the M-operator

Corollary 2.2.17 suggests that our study of norm-resolvent asymptotics of the main model

)

operator Al requires us to estimate (Mt@ (2))~! in the operator norm. The goal of this section

is to prove

Theorem 2.3.4. We have the following estimate in the operator norm

(ME(T)(z))_l - (A: 8) +0(e?), (2.76)

relative to the decomposition & = P(VE EBPJ(_T)S . [[A71||op is bounded uniformly in e > 0, T € Q'
and z € K,. This estimate is uniform in T € Q' and 2z € K.

Remark. We lay out the details for the estimates on A, outlined in [35, Section 3.2, footnote

11]. These are Claim 1 and (Claim 2 + Proposition 2.3.5) in the proof below. o

Proof of Theorem 2.5./. Since Mo (z) is closed by Proposition 2.2.13(6), [26, Theorem 2.3.3(i)]

implies that its inverse can be written in block operator form as:

o) (A B (AT 4 ATBE)IEATY —ATB(S)!
(MO=) = (E D) —( _(§)-1EA-! o ) (2.77)

where the Schur-Frobenius complement S is given by S := D — EA™!'B. In writing down the

above formula, it suffices to check that
(a) A is boundedly invertible,
(b) B is bounded,

(c) D is closed, and
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(d) S is closable, with S being boundedly invertible.

(b) is immediate, since B has finite range. In the remainder of the proof, we verify (a), (c), and

(d), and provide bounds on A~! and (S)~!, with dependence on ¢, T, and z shown explicitly.

The term A = P(T)ME(T) (Z)p(T)

As A is an operator on the finite-dimensional space P(ME, A will be boundedly invertible
(uniformly in e, T, and z) if we can show that A is bounded below (uniformly in e, T, and
z), as this implies injectivity. To do so, recall from Proposition 2.2.13(7) that Im(ME(T)(z)) =
Im(MgT) (z) — ME(T)(O)). Now define the real part of ME(T)(Z) by

Re(MV(2)) := M{D(0) + Re (Mgﬂ (2) = MI(0)) = AL + Re (Z(H(T) V(I — Z(Agg)—1>—1n<ﬂ) .

Then, by the symmetry of AéT),
(M) (2)v,0)e = (Re(M D (2))v,v)e + i(Im(M D (2)v,v)e, ve DM (z)) =DAD).
(2.79)

Therefore, it suffices to show that Im(M: (T)( )) is bounded below on P(ME. To show this, we
recall from Proposition 2.2.13(7) that Im(M, (T)( )) = (Im z)SéT) (E)*SE(T) (z). Since z € K,, we
may ignore the term Im z. Then, for v € £, Proposition 2.2.13(4) implies that

(POSE(Z) SO (@) POw,v)e = ||(T - 2(AL7) )OO PO o3, (2.80)

Claim 1: (I — Z(A(%)*l)*l is bounded below in the operator norm, uniformly

)

in £, T, and z. By Proposition 2.2.4, A( has compact resolvent, and therefore admits an

eigenfunction expansion

AL =Y (@?)H ADw), (2.81)

=1

)

- are real, due to the self-adjointness of A(

)

where the eigenvalues )\( The idea now is to split
the operator in two, in the spectral picture: Since K, is compact, there is some R = R(K,) >0
such that B(0,R) contains K,. We then choose (¢ and T dependent) spectral projections

Py =PY and P, = P%) on H = L*(Q) such that P = I; — P; and
P;;)H = span {wffj) : J satisfies |)\£TJ)| >3R(>R> |§|)} . (2.82)
Next we observe that for f € H,

I ==2(AS) ™) 1B = 10 = Z(AS) ™ (PLf + Paf)Il,
= ||P (I — Z(A(T YO+ P (T —-Z(A T)) H=EH3 Py, P, are spectral projections.

g,

0
= ||P (I — z(A;())) D73, + || Pa(] — (A T DHTIHI3,  Pythagoras theorem.
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= [|(1 — (A P + 1 —2(AL) Y T R II, (2.83)

If we denote by J = JE( ) € N the smallest integer that satisfies the condition of P, = PE(TZ)7

then we may write P; f (and similarly for P»f) as

g1 J9 1
PRf= 3 (fol), ot Z Tl (2.84)
j=1

With this notation, the first term on the RHS of (2.83) can be estimated below as:

(7 —=2(AL)~ >1P51f||H—HA A5 -2 P f13,

> Cl”( 670 -Z)” 1P€(3 fl13, By Proposition 2.2.4.
70— () 2
= Z (T; "7 JUSJ) By functional calculus.
]:1 Eyj —Z 7_[
' 1)
= Z ﬁ By Parseval’s identity.
’ €,J - Z‘
I
> i |
= clcg||P€71 fl3 By Parseval’s identity, (2.85)

where ¢; > 0 and ¢ := 1/(2R)? are constants independent of ¢, T, and z. Observe that although
the projection P, depends on € and T, the constant co does not — it only depends on K, through
B(0, R).

As for the second term (I — z(Ai())) 1)_1Pé;) f, we observe that since PE(’TQ) is a spectral
projection for Ag()), the second term equals (I — E(ASO)P(E(;))*l)*l f. Next we recall that P; is

chosen such that

HZ(AS())PE(;))_ H’H—>H |Z’ H T)P T) HH—>H - |E‘dist (0 1)\( ) )
Jo
|3 A(Tl) <Plam <3 (2.86)
a,JE(T)

(Once again, notice that P, depends on ¢ and T, while this estimate does not.) As a result,

we may apply the Neumann series expansion:
(I - 2(ASP ) ) =1 +2(ARPY) 4 - (2.87)

The terms after I have norm not exceeding Y 7 ;(1/3)"™ = 1/2. Therefore the reverse triangle
inequality implies that (I — E(Agf()))_l)_lPs(;) is bounded below (independently of ¢, T, and z).
This proves Claim 1.



Applying Claim 1 to (2.80), we now have some ¢ > 0 independent of €, T, and z, such that
17 = 2(A5) ™) PO, = IO PO,
Claim 2: There is some c > 0, independent of ¢, T, and z, such that
ITOPy|2, > ¢|PDv|2, where v e E. (2.88)

Write v = ¢ + ¢, where ¢ € L?(I'yy) and ¢ € L?(I'). Since P is the projection onto
Span{wstiﬂ—int,(’t)} ® Span{wstiff—ls,(’t)}’ we can write P(T)U — Cll/}stiff—int,(”c) + CQQ/JStiH_lS’(T) where

c1,¢9 € C. Now suppose that P(Dv £ 0, then we must have either ¢; # 0 or ¢o # 0. Then

HH(T) (P) Hi{ > HHstiff-int,(T) cqasfint, (T
O (PON? > ||t (1) 1 gpstiff-ls, (7
[ PS5, = | 2

)||? i
HLQ(QStifﬂim) if e #0, (2.89)

2 .
)HLQ(QSUH—IS) if ¢z # 0.

The inequality follows by the Pythagoras theorem, as we recall that H(T)(gb—l—go) = qrstiff-int, (1) 4
115°76:(0) (p4-0) +-I13418:(D) 5 and the lifts into the individual components TT3HH06(7) g T1s0f(0) (4
¥), and 158180 ) are orthogonal. Therefore, by the linearity of IT and the homogeneity of

norms, it suffices to find some ¢ > 0 independent of ¢, T, and z such that

[T x|y > el g ¥ el L e e Istiff-int, stiff-Is).

The proof of this inequality follows from two facts:

(i) For each T € @', ||[IT*(Dyp*:(V|| is strictly positive, as or else this means the T—harmonic
lift of a non-zero function 1 is zero, which contradicts the injectivity of II(® (see comment

after Proposition 2.2.7).

(ii) The mapping Q' > T + |[TT*®y* (|| € Ry is continuous. (It is important that we

consider the closure of @’ here.)

Using (i) and (ii): Suppose we have a sequence T, € @’ with f(7,) | 0, then by closedness
of £(Q’) (due to (ii)), we must have some T € Q' with 0 = f(t), and this contradicts (i).
It remains to prove (ii) and hence complete Claim 2. The proof of the fact will be postponed

to Proposition 2.3.5, which concludes our discussion on A.

The term S=D — EA~!B

We will proceed in four steps. Step 1. First, we introduce the notation

DY (2) = DL, + DY e + DL (2) (2.90)

3

where Do = PJ(_T) Asoft:(7) ’PJ(_T), Dgtig = PJ(_T) (Aitiﬁ_int’(T) @Aitiﬁ_ls’(T))PJ(_T), and Dy, as what remains
of DgT)(z) = P(I)Mém (z)P(f). In this way, Dy is a bounded operator on P(I)S , with operator

norm bounded uniformly in e, T, and z, by Proposition 2.2.13(5).
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Furthermore, we claim that Dgog +Dgti is self-adjoint on P(LT)E with domain D(Dgo+Dgyir) =
D(Dgott) = D(Dsgtifr): The claim on the domain follows simply by construction. Dgg is self-
adjoint since P is a spectral projection. Dgog is symmetric, and is relatively Dg;g-bounded
with relative bound strictly less than one, as pointed out in the proof of Lemma 2.2.9. Therefore
the claim follows by the Kato-Rellich theorem [22, Theorem 8.5].

Being a sum of a closed Dy + Dgiir and a bounded Dy, operator, it follows that D is closed,
and so S is closed by the boundedness of EA~!B. We therefore drop the closures for S in (2.77).

Step 2. Next we discuss estimates for ). As mentioned in Step 1, ID)Sg(z) is uniformly
bounded in ¢, T and z. As for ]D)SS)tiff we claim that ]D)gs)tiff is invertible with the following

estimate

< Ce%,  C >0 is independent of ¢, 7 and 2. (2.91)
PPesprVe

The independence on z is immediate. Invertibility follows from Proposition 2.2.10 and the
fact that we have removed the lowest eigenspace using P(LT). Since PV is the projection w.r.t the
unweighted DtN operator, we can separate out € and obtain the bound Ce?, with C' independent
of €. It remains to justify the independence of C' on T. For this, we will use a pertrubative

argument as follows:

We need to show that the second eigenvalue ,uztiﬂ_int’(ﬂ and uztiﬂ_ls’m can be bounded

away from zero, uniformly in 1. This is certainly true for each T (by Proposition
2.2.10), and can be extended to a neighbourhood B(t,d) of T, as the mapping

()

T+ [iy~ is continuous, a consequence of perturbation theory.

Now consider a dense set {1,,} C Q. With B(t,, §,) obtained as above, { B(Ty, J5) }n
is now an open cover of Q’. By compactness of Q', we may extract a finite subcover
{B(Tn,, 0n, ) }E_,. Since ng) is bounded away from zero on each By = B(Tp,,0n,),
we deduce that ug) is bounded above by maxk{ug) : T € By}, the latter being

strictly negative (note our convention of the DtN map), and independent of T.

This concludes the justification of (2.91).
Step 3. Now consider the unweighted stiff DtN operator, denoted by ﬁ)gl)ﬂ» = €2D£T3tiﬁ. We
claim that there exists constants «, 8 > 0, independent of T such that

1Dkl < alBull + Bllul,  ¥u e DOS,) = DO). (2.92)
That is, ]D)g%t is relatively ﬁgi)ﬂr—bounded, with uniform constants a, 8. To prove this claim,
we first verify this without the projections PJ(_T), that is, for A%f:(9) and Astif-int, (1) gy Astifi-ls,(7),
This is done by using [22, Lemma 8.4] to show relative boundedness for each T, and then
then applying perturbation theory to the soft and stiff DtIN maps, then using the compactness
of @)/, similarly to what was done for (2.91). We omit the details for brevity.

We then proceed to add back the projections. Pre-composing with PE_T) is trivial. Since PV

is a spectral projection for the stiff DtN map, post-composing with P(E) is immediate, giving
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us the RHS of the inequality. As for A%f() we write

sof soff soff soff
AEP = pEpsotp(D 4 plopsft(Dp() = po) psott@p(D | ) (2.93)
The first term is bounded uniformly in T thanks to Proposition 2.3.3. Hence it can be absorbed

into the RHS by picking a bigger 5. This shows the claim for (2 .5)2).
Step 4. We omit the short argument combining (2.91) and (2.92) to arrive at

||]D)§3t( . Stlff) 1H7>(;>g%7>(f)g < Ce?,  where C > 0 is independent of &, T and z.  (2.94)
(See [35, Section 3.2] for details.) As a result, we have found the inverse for D, namely

-1
D Ds_tlff (‘[ (T)g + DSOftDSUfT + ]D)b]D)Stlff) : (295)

Furthermore, thanks to our estimates on ]D)SOft]D)S_tilff and ]D)S_tilff obtained above, we know that
the terms after I are of order O(g?). Therefore the Neumann series expansion applies, giving
the overall estimate of |[D~!|| < Ce?. Meanwhile, Proposition 2.3.3 implies that |[EA~!B|| < C,
where C is an independent constant. Therefore, the formula S™! = (I — D7'EA~!B)~ D!
implies that ||S7™!|| < Ce%. That is, S is boundedly invertible with the mentioned bound, where
C > 0 is independent of ¢, T, and z. This concludes the discussion on the term S.

We have shown that ||[A™!|| < C and ||S7!|| < Ce?. Together with |B|| < C, |[E|| < C
(Proposition 2.3.3), and (2.77), this concludes the proof of the theorem. ]

Remark. e The treatment of A would be different if P(VE were infinite dimensional, due to
the lack of rank-nullity theorem: We would have to show that (i) A is closed, (ii) bounded
away from zero, and (iii) has dense range in P(V&. Point (iii) is the key difficulty in the

infinite dimensional case. (iii) could be shown by proving that the adjoint is injective.

e On Step 1 of the term S: We do not show that Dy is self-adjoint, but only that it is
symmetric. This is in contrast with P(MAsH(DP  hecause P(VE is finite dimensional
while P(I)S is not. o

2.3.2.1 Continuous dependence on T

We conclude the proof of Theorem 2.3.4 with the following result:

Proposition 2.3.5 (Continuous dependence). The mapping f : Q' — Rxq given by
() = I Oyp* ) 12 )

is continuous, where (o, %) € {(int, stiff-int), (ls, stiff-1s)}.

We remind the reader that II*:(9 is the T-harmonic lift from I'y into Q4, and ¥* (9 is
the eigenfunction corresponding to the smallest (absolute value) eigenvalue of the unweighted
T-DtN operator AKX, Figure 2-2 below shows a diagram of the lifts IT%*:(9.

Remark. e We are taking T from the larger set Q.
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(On notation) We will drop the notation e, T, or % for notational simplicity. These will

be recalled whenever we have to make a distinction in the arguments.

e (On notation) The constants in the estimates below may differ from line to line, but the

dependence on the parameters will remain the same unless stated otherwise.

e As we will see below, Proposition 2.3.5 boils down to a proof of the continuity of T — IT*:(7)
and T — wl*’(T). The bulk of the proof is devoted to the continuity of T +— witlﬁ_ls’m, and

we will show this by the method of asymptotic expansions.

While this thesis does not prove every continuity claim, the proof below serves to demon-
strate how the other continuity claims can be proven. In total, we assert the continuity
of: T+ ul*’(T), T uz*’(T), T wf’(T), T A%y, and T — H*’(T)d)f’m.

e Implicit in our method by asymptotic expansions, is the use of elliptic regularity: For
instance, we have u = IT*(Dy*:(V ¢ H1 as opposed to the general case, IT* (V¢ € L2,

e The proof of [39, Lemma 2] contains a proof of the continuity of T +— IT*(Y (as a mapping

from H'/? to H'). We provide an alternative argument (see the term “||lu; — w||”). o

n stiff—int,(7) n stiff-l1s,(7)

Figure 2-2: Left: t-harmonic lift into Qgifing. Right: T-harmonic lift into
Qstiff—ls-

Proof of Proposition 2.5.5. Let 11,72 € Q' = [, 7]%. We will prove continuity of f at Ty, that
is, given € > 0, we seek a § = 0(T1,£) > 0 such that

f(B(Tl, 5)) C B(f(’fl), 6).
To this end, we estimate |f(T2) — f(T1)|:

£(52) = f(@)] < I -y (2.96)
< I — T4 I —TEyE) (2,97

Writing uq = II(™ (7)) gy = IM2)gp(T2) 4y = T1(72)4)(7) | the functions wuq, us, and w solves:

—(V +i711)%u; = 0, —(V 4i12)%uy = 0, —(V +1i19)%w = 0, in Qu,

U1|1". = w(Tl)‘ u2|1—1. = ¢(T2)‘ w|1-\. = ’(/](Tl) on I‘.’
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with periodic BCs on 0Q, if Qax = Qstiftint- We now begin our treatment of each term in
(2.97).

The term |jug — w|. We claim that:

lug — w]| < C|Jp™) — ™| (2.98)
< CTl‘TQ — T1|. (299)

The first inequality follows because the operator IT*(%2) : L2(T',) — L?(Qy) is bounded,
independently of Ty, by Proposition 2.2.7.

The second inequality follows from the claim that the mapping Q' 3 T — ¥*(V € L2(T,) is
locally Lipschitz about t;. When (e, %) = (int, stiff-int), this is immediate because we have an

explicit formula for the eigenfunction by Proposition 2.2.10:

wstiff—int,(r) (x) — e iTT

The case (o, %) = (Is, stiff-1s) is complicated as Qgifr.1s requires periodic BCs on 9Q. To
tackle this, we first note that the first eigenvector-eigenvalue pair for A* = Al 5 4 non-trivial
solution to KStiH_IS”L/J = u1. Recall from the last part of Section 2.2.1, that this can equivalently

be expressed by saying that the following BVP has a non-trivial solution u = ne)

Stiff-ls*
—(V+it)?u=0 in Qx = Qstift1s,
fb:ziﬂfls,ls == [ani?fffls +i(t- nstiff-ls)u] = pu on I'g = I, (2.100)
u periodic on 9Q.

Note that v is the Dirichlet trace of u. Therefore, by the boundedness of the trace operator
(independently of 1), it suffices to show that the mapping Q' > T ué:i)ff-ls € HY(Qgtifr1s) is
continuous. To show this, we will employ the method of asymptotic expansion in T, in polar
coordinates, taking inspiration from [32, Section 3.1].

Step 1: Propose a power series expansion for v and pu. Fix T € /. We begin the
method by first writing T = t0, where t = |t| and § € S*~! € R?. We then propose an expansion

for u = u(® = 4 t0).

" = g + (i) us + (if7])*uz + - = D uy(it)’. (2.101)
§=0

Here, u; : Quifr1s — C. At this stage we do not specify the space for which w;’s belongs to. This
will be done in Step 2 by specifying the BVPs that each u; solves. (It will turn out that the
BVPs depends on # and not t.) Substitute the expansion into the BVP (2.100) and formally

compute:

J

0=—(V+it)’ Zuj(z‘t)j =Y (—A-2it-V — (it))u,(it)!

= —Au() — 2(it)9 . VUO - (z't)2u0
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— (it)Au;  —2(it)*0 - Vuy — (it)3uy
— (it)* Aug — 2(it)30 - Vug — (it) ug
— (i) Auz  —2(it)*0 - Vuz — (it)ouz + - - -

We also propose a similar power series expansion for p = p(® = pt9).

p® =35 ay(it)*, axeC. (2.102)
k=1

Note that we are postulating that ap = 0 (in addition to p admitting a series expansion),
and this will be justified with remainder estimates. Similarly, we substitute this into the BVP
(2.100) and formally compute:

B [gz N i('t-n)} zj:uj(it)j — (%:ak(it)k> <Zuj(it)j>

J

&y —(it)! [8‘1 + (it)(6 - n)] uj =Y > ujog(it)(it)".
J ik

Remark (On notation). For ease of notation, we have dropped the subscript “stiff-1s” from
Nstifi-ls. We will henceforth do the same for Qg5 and I'is. Similarly, the DtN map AKX = Astiffls
will by denoted by A, omitting the weight “ ~”. We will also omit writing the periodic BC on
0Q. This will apply to the remainder of this case, (o, %) = (Is, stiff-1s). o

Now equate powers of it, to see that

(it)? : — %uo =0,
(i)t : — (it)a%ul — (it)(0 - n)ug = (it)agug + (it)apuy,
(it)? : — (it)Q%UQ — (it)(0 - n)uy = (it)2coug + (it)?aqur + (it)2agus.

Step 2: Write down the BVP for each power of it and deduce the coefficients u;
and ay. The problem for (it)? is therefore

—AUO = 0, in Q,

_Oug _
o =0 on I,

(2.103)

which we see to be independent of ¢, as mentioned earlier. We can use this to obtain information

about ug. Consider its weak formulation with 0 # ug € H' as the test function,

0 < (Vuy, VUO)LQ(Q) = (%w),u()) =0. (2.104)
" L2(T)

So Vuyg is zero a.e., and hence ug is a constant a.e.. We will set henceforth ug = 1 without loss
of generality, as the choice of this (universal) constant does not affect the remainder estimates.

Before we move on to higher powers of it, we further ask that [u; =0 for j > 1. (This
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is crucial for the application of the Poincaré inequality.) This can be done again without loss

of generality, by absorbing the mean into ug. Now the problem for (it)! is then

—Auy =0, in Q,

(2.105)
—%—(e'n):al on I
We have used the fact that up = 1 and ag = 0. Testing (2.105) with ug gives
6u1
(Vul, VUO)LQ(Q) == %, Uug == *(Oél +0- n, 1)L2(F)' (2106)
L*(T)
Testing (2.103) with u; gives:
auo
(VU(), Vul)Lz(Q) == %, Ui == *Oto(’LLo, Ul)LQ(F) =0. (2107)
LA(T)

This implies that (Vui, Vug) is also zero, in other words, (2.106) implies that
—(Oél + 9 *n, 1)L2(F) = O
Deducing a;: Fix j, 1 < j < d. Define g; : R? — R by g;(x) = 6;z;. Then,

Ag;=0 IBP 09;
0 gé (1,Agj)L2(Q) = (Vl,ng)Lz(Q)+ < ,éii) = (1,(0,-" ,9]',"- ,0)77,) .
LA(T) LA(T)

Summing over j, we get (1,6 - n)r2r) = 0. Since ay € C, we must have that oy = 0. With

the knowledge that ay = 0, we now test (2.105) with w1 to obtain

8u1

IBP
(Vur, Vur)r2g) = <6n’ Uy

> = —(0 - n, ul)Lz(p). (2108)
L2(T)

The problem for (it)? is:

—Aug =20 -Vuy + 1, in Q,

—%—(H'n)ul = ay on I

(2.109)

We now may test (2.109) with ug, u1, ug. We may also test (2.105) with ug, and (2.103)

with ug. Of these, the useful ones for our analysis later will be: testing (2.109) with ug =1,

GuQ

IBP
(20VU1+1, I)LZ(Q) = (—AU2; 1)L2(Q) = (VUQ, v1)L2(Q)— <8n, 1) Ly = ((9 . n)u1 + a9, 1)L2(F) ;
(2.110)

which is useful for obtaining an estimate for g, and testing (2.109) with ug,

ou
(26 - Vuy + 1,U2)L2(Q) = (—Auz, 1)L2(Q) 18P (VUQ, VUQ)L2(Q) — <62,u2> (2.111)
n LA(T)
= (Vug, VUQ)LQ(Q) + <(9 “n)uy + Ocz,u2> , (2.112)
LA(T)
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which is useful for obtaining an estimate for Vus.

Remark (Connection to classical results). Observe that since a1 = 0, by picking §; € S as
the standard basis and writing the solution u; ; as N;. We obtain the expression u, = Z;'l:1 N;0;
for arbitrary 6 = (01,--- ,604). So N; should be thought of as first order correctors, which are to
be compared with the first order term in the asymptotic expansion for periodic homogenization
WAT. Oug »

N; (y) e,

Ox;
Similarly, for as, we write 1 = |0|?> = 0 - 0, then putting the BVP for uy into (2.110), we
obtain ap = ﬁ fQ(H - Vuy + 1)dz. Again, we can further pick 6 to be the standard basis,
obtaining a coordinate-wise description of ay. This is to be compared with ag in [34, Appendix

B]. o

Step 3: Write down the BVP for the “remainder” terms for v and u. To do so,
we first define the remainder R € H' and r € C by

u=1+ (it)uw+ (it)*u2 + R,
= (it)2ag + 7.

Substituting this expression for u into the main BVP (2.100), we get, in Q,

—(V+it)2R=(—A —2(it)0 - V — (it)}) (=1 — (it)uy — (it)*us)
- + (it)?
+(it) Ay + 2(it)%0 - Vug + (it)3uy
- T (it)2Aug  +2(it)30 - Vg + (it)*us
—Au=0 _Auy=20-Vu;+1
= (it)3uy + 2(it)30 - Vg + (it) us.

On I', the main BVP (2.100) gives us

_g% — (it)(0 - n)R = (r 4+ ao(it)®)(1 + (it)u1 + (it)%uz + R) +X.

Qu
To find X, we further compute
0 . |

— + (it)(0-n)| R — pu

L On
(2100 [0 , | 9 .
= o + (it)(0 n) R+ [&n + (it)(0 n)] u
F o -
=+, (i) (0 - n) | (1 + (it)ur + (it)*uz)
=+ (it)(0-n)+ (it)*(0 - n)uy + (it)3(0 - n)uy
.\ Our 20U
——— ———
=0 by (2.105) =—(4t)2a2 by (2.109)

= = (iPax(1+ ()0 nua).
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The problem for R and r is therefore,

—(V+i1)’R = (it)3(20 - Vug + uy) — (it) us in Q,
=98 _(it)(0-n)R = (r+ as(it)?) (1 + (it)ur + (it)%us + R) (2.113)
—(it) %z (1 + (it) (6 - n)uz) onT.

Remark. To see where this is all going, recall that our goal is to obtain an estimate for

uw(™) — (™) in H'. Write 1) = t,0; and Ty = t20,. Using the expression u(¥ =1 + (z't)ugT) +

(it)QuéT) + R™, we see that

Hu(Tz WCSY | < H it)u (Tz) — (ity) U1 H +H its) ( 2) — (it1)? n HJFHRTQ R(Tl)H
< ™ )+ = )
+ [|(it2)?uf™ — (Ztl V2uS™ || + || (it1) 2uS™) — (it)2us™||
+ HR(Tz) _ R(Tl)H
< fty —ta] - [Jud™| + [ta] - [Jul™ — uf™)
16 8 ol a2 o™ o)
+||R) — ROV

We are therefore looking to obtain the following estimates in H'':

o Hu(T2 (Tz H < Oy,
. Hu(Tz - ugn) N ué“) _ uéTl)H, |R) — R™|| < Cr |12 — 11| (locally Lipschitz about
Tl.) o

Step 4: Remainder estimates. (Step 4a: u;.) As per the remark, we first start with
(t2) _ (7

the H' estimate for u; and uy o — Uy 1 Since J w1 = 0 this is equivalent to an L? estimate on

its gradient. Continuing from (2.108),

IVu{™ |22 < Cllui™ |2y for every x € T, |02 - n(x)| < [0s] - [n(z)| = 1.
< C'HVul HL2 by the Trace theorem + Poincaré, as /u1 =0.

(2.114)

This gives us HVU1 || r2(@) < €, where C' is independent of 11 and T2. As for the difference
u(1T2) ung), we first write the BVP that it satisfies:

AW —u{™) =0, in Q,

e (2.115)
8n(u12 —ull)—((02—91)-n):a1 on .
Similarly to the estimate above, we test (2.115) with u(Q) - ugﬁ) € HY(Q), to get:

IV (™ —u{™)|25 ) < Clo2 — 0] u{™ —u{™ |2y < Cl02 — 1] [V (™ — u{™)| 120
(2.116)
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This gives us the required estimate ||V(ugT2) - (Tl 2@y < Cl02 — 01], where C' is inde-

pendent of T; and To.

(Step 4b: us and «ay.) Next we turn to ugz). As mentioned in Step 3, we use (2.110) to

(T

obtain an estimate for o 2) The equation can be rearranged to give:

/ (265 - Vul™ +1) — / (03 - n)ul™ = [P|al™), (2.117)
Q r
so that together with Step 4a,

| )| < {HVU 2(q) + |Q@ < C, C is independent of 11 and To. (2.118)

IFI

We use (2.111) to obtain an estimate for ugm):

IVl HL2 )_/ (292.VU§T2)+1)u§T2)_/((QQ.n) (2)—|—a(1’2)) o)
Q r
<c[||w ™ >+1] 1S 2 +c[uu§“’||m(p)+|a .
< C{HVU(Q l20) + 1] Hvum)HLZ(Q)

< CHVUQ HL2(Q)7 by Step 4a. (2.119)

The second last estimate follows by the Trace theorem Poincaré inequality ([u1 = [ug = 0),

and the result |a ©2) | < C. This gives us ||Vu H r2(Q) < €, where C is independent of 11 and

T2.
As for the difference ugm) - ugﬁ), we first write the BVP that it satisfies:
~AWS™ —uf) = 20, - vul™ - 26, - vul™), mQ 5 ia)
— 2™ = ™) = (O™ = (01 n)u™) =afP —af enT.
To obtain an estimate for aém) — ongl), we proceed in the same manner by testing (2.120)
with u(()m) = 1, and rearrange the equation arriving at:

2 / (92 Vul™ =05 - Vul™ 4 0y - V™ — 0 - vugﬁ))
Q
+/ ((Hg-n)ugm)—(eg-n)ugn)—(Gg-n)u(fl) (01 - n)u( > |I‘|< (v2) _ ng)> (2.121)
r

(adding and subtracting new terms 63 - Vugﬁ) and (6 -n)ugn)). Of the eight terms on the LHS,

they may be grouped together in pairs, and each pair may be estimated by C|0#2—6;|. (Details are

omitted since they are similar to Step 4a.) Therefore, we deduce that |, (r2) _ (Tl | < Clf2—01].
We now test (2.120) with uéTz) - ugﬁ) € H'(Q), to get:

IV (us™ — uS™)|2 )
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= / <202 val™ 20, - w?”) <u§2) - U§T1)>
Q
+). <<92 ™ = (01 n)ul™ + af —a5“)> (“92) ng)>

< / [[292 . Vqu) — 201 - Vugm)] + 126, - Vugn) — 201 - VugTl ] ’u (72) uén)‘
Q

*/F {l(ez n)ul™ — (01 - n)al™| 4 |01 - )l — (01 - n)ul™| + af) — aé“)!] |ud™ — ul™]
: C/Q ['92 — 0] [Vuf™] + [V (u{™ — u&“)l] ug™ — ™)

+0 [ (182 = 0] 11 1 = 4 fa = o - o)
r
by Cauchy-Schwartz on RY. Note that |n(z)| = 1.
< 0162 — 01| hu ) — 0|2 + us™ — g™ e w]

since L? C L' as [T, |Q| < oo, use Cauchy-Schwartz on L.

Then, apply the estimates from Step 4a and from |a§T2) - a;ﬁ)\.

< Clhs — 0] | V(U5 — a5 1200

By the Trace theorem and Poincaré inequality, as / ug = 0. (2.122)

This gives us the required estimate ||V(ugT2) - (Tl Nir2g) < Cl2 — 61|, where C' is inde-
pendent of T; and To.
(Step 4c: R and p.) We first obtain a uniform bound for w9, by applying the min-max

principle (to the lower semibounded operator —A):

—Au, V +it)ul?
0%~ (rtagity) = p0= i  ThOUEO _, Jo (VAT 101,
u€H?(Q),uz0 HUHLz(r) HUHLQ(F) ‘F‘

(2.123)
where the final inequality follows by picking u = 1.

As for R = R, testing (2.113) with R gives, on the LHS,

LHS:—((V+VE)RRL2 /V+ZTR|2 /[?§+i(T-n)R}R

= /Q |(V +iT)R|? — /F [u R (1 + (it)uy + (it)*us + R) — (it) <1 + (it) (6 - n)u2>] R.
(2.124)

Meanwhile, the RH.S may be estimated using Step 4b, to give
RHS < Ct*||R||12(q)- (2.125)

Rearranging, we get
IV + )Rl g) + nO NIy < € [ Rt CllRlgy
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< C|VR|r2(q) + ClI Rl 2 Trace theorem + Poincaré.
<OV + ”)RHH )+ ClRI 2

C
< . +e||[(V + /LT)RHLQ + CR| 2(q Cauchy inequality with e.
(2.126)

For HR||L2(1‘ this is bounded below (note that u(® < 0) by Cp T)||VRHL2 by the Trace

theorem, which is further bounded below by Cu(®||(V + it) R L2 (@) by the trlangle inequality.

Therefore the LHS of the inequality may be replaced by (1—Cu(®)|(V+it)R|? 12(g)- Lo prevent

a trivial estimate, we assume that T is small enough, so that by (2.123), 1 — C,u(T) <1l--=.
Combining this with the RHS of the inequality, we arrive at

, C
(1= 2¢)[[(V +iT)R||72() < CIIR L2 + e (2.127)

Furthermore, the Poincaré inequality with t (for T small and [ R = 0) gives us an estimate
of ||R[[z2(g) in terms of [|(V + iT)R||12(g). So by picking e > 0 small enough, we obtain a
quadratic inequality in || R||*:

ClHRHQL2(Q) — C2HRHL2(Q) — 03 S 0, where 01702,03 > 0. (2.128)

Since the constants are positive, we must have that ||R||12(g) is bounded. This, (2.127), and
the reverse triangle inequality then implies that [[VR|[12(q) is bounded.
(Step 4d: (™) — ;(™).) For this, we appeal to the min-max principle (to —A) once again:

0< 4™ = min (—A(“)";a Wy _ o Je [y i n)u]a
u€H2(Q),u#0 HU’HLQ(F u€H2(Q),u#0 HUHLQ(F)
—um Jo (8% +i(t - n)u+i((t2 — 1) - n)ula
wE€EH2(Q),u#0 Hu|| )
<  min Jr [ + () - n)ul + C|t2 — 11| by Cauchy-Schwarz on RY. |n(z)| = 1.
u€H?(Q),u#0 HUHL 2(I)
= ) 4 Oty — 1. (2.129)

Exchanging the roles of T, and Ty, we arrive at [p(™) —p(™)| < C|to—1;|, where C is independent
of 19 and T.
(Step 4e: R(™) — R(™).) It will be more convenient to consider the BVP that R(™) — R(T2)
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satisfies (as opposed to R(™) — R(™)):

—(V +i11)?(R™) — R(2)) — 2j(1) — 13) - VR(™2) + (t3 — 13)R(™2)
= (it1)3(20 - Vul™ + u{™) + (it)ul™) — (it2)3(205 - Val™ + ul™)) + (ity) 4™ in Q,
_% [R(Tl) — R(E)} - [(ih)(@l -n)R™) — (ity)(0 - n)R(™)
= (1 + af™(it1)?) <1 + (it + (i) 2uf™) + R ) — (it)2af™ (1 + (it1) (6 - n>u§“)>

—(r®) 4 o™ (ity)?) (1 + (ito)ul™ + (ity)2ul™ + R(T2)> + (it2)2ad™ <1 + (it2) (05 - n)u§T2)>

on I'.

(2.130)
For brevity, write v = R(™) — R(™), Test (2.130) with v. The RHS is then

/Q <2(z’t1)391 VST 4 (it)3ul™ 4 (it )™ — 2(it0)305 - VUl + (it9)3ul™ + (it2)4u§2>) B
<1241 + Az + A3 — 241 — Ay — A3 12 V0l 2
by Cauchy-Schwartz on L? and Poincaré, as / v=0.
< ¢l 1l 4161 - 0 IVl 2131)
The final inequality is obtained by using a cancellation trick, for example,

141 — Aulr2g) = [(it2)?01 - Vus™ — (it)*01 - Vus™ |
+ [I(it2)"61 - Vugm — (it9)36; - Vung)H
+ (it)*0z - Vuy™ — (it2) 62 - Vul™ |
<18 = 631 101] V5™ | + 83161 — 0] [|Vul™ | + 31602 [V (™ — uf™)]|
by Cauchy-Schwartz on R,

§C[|t§’—t§|+|91—92|+\91—92|] by Step 4b.
< C|:‘t1 —to| + |01 — 92|:|. (2.132)

Next, the LHS gives

(—(V + ’iTl)zU, U)L2(Q) — <2i(T1 — Tg) . VR(TQ) + (t% - t%)R(TQ), U) . (2.133)
L2(Q)
The second term is brought to the RHS and estimated by

Olltf — 8] + It — T2l] IVl r2(q).
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We apply integration by parts to the first term to get

, 0 . _
IV + th)vH%Q(Q) - /F [5:; +i(Ty - n)v} v. (2.134)

For second term (2.134), we write

(T1) (T2)
/r [agn a a};n +i(t-n)R™ —i(tz - n) R

+i(to - n)R™) — (1 - n)R(“)] 7, (2.135)

and bring it over to the RHS. The bottom row is estimated by C|t1 — Ta| ||[Vv||12(g), by the

Trace theorem and Poincaré inequality. By the problem (2.130), the top row equals

/ {u(rz) <1 + (it2)ul™ + (its)?ul™) + R(”)) — (it2)?04™ (1 +i(Te- ”)“§T2)>
r

Gy (1 + (it)ul™ + (ity)2ul™ + R<Tl>> + (it1)2ai™ <1 +i(Ty - n)ué“’) }17. (2.136)

Excluding the term [ {p(™2) — (71 (v2) R(72) _ 1y (7) R(M)Y5 the rest are once again estimated
by C[[t1 — ta| + |61 — 02[] |[Vv| 12(q), using the cancellation trick. The excluded term may be
estimated by the cancellation trick applied to the third and fourth term as follows:

/F { L) () () ple) () Rm)}v
< O™ — p[ [V 2 ) + CHIIV] 72

S C [|92 - 01‘ + ’tQ - t1|:| HV’UHLz(Q) + CtlHVvH%Q(Q). (2.137)
What is left of the LHS is just [[(V + iTl)v||%2(Q). Since this equals
||VU||%2(Q) + /Q 2Re(iVv - 110) + t%||v||%2(Q),

the second and third term may be absorbed into the term Ct; ||V’UH%2(Q) on the RHS. Overall,

we obtain
(1= Ct)[[ V]2 < c[wQ 0|+ |ta — th IVollz20) (2.138)
= ||VU||L2(Q) < 011 [‘92 — ¢91| + |t2 — t1|:| . (2.139)

The equivalence is only valid when Cr, > 0, which is the case whenever |1;| = ¢; is small
enough. We have therefore verified the local Lipschitz property (2.99), for small values of t;.
(Step 4f: R(™) — R, for 1; bounded away from zero.) Fix tp > 0 and Ty with
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ITo| = to. Given T = t, propose a power series expansion for u(? about To:

u® = g + (i(|t] — o)) us + (/7] — o) Pz + - = 3w (it — 1))’ (2.140)
j=0

And similarly for ,u(T). Let us write 11 = (t; —to)01 and T2 = (t2 — tp)f2. Note that most of the

arguments follows through with minor to no modifications, until (2.137):

Step 2: No change as we are equating powers of (it — itg), so the arguments involved do

not depend on t.
Step 3: Just replace t with ¢t — tg.
Step 4a and 4b: No changes to the estimates, which are estimates by only |62 — 6]

Step 4c: No changes to the uniform bound on R and pu, however we now crucially have
that
0< —u™ <Ot —t0)?,

and have assumed henceforth that any T = (¢ — t¢)# we work with must be small enough.

Step 4d: (Global) Lipschitz continuity of T — u(® can be obtained with no modifications.

At (2.137) we have to replace t1 by t; — tg. We hence arrive at a version (2.138) centered at T:

(1= Clts ~ ) IVolagq) < |16 = 1] + It = 1] | IVl 12(g. (2.141)

To obtain (2.139), we just have to assume that |t1| = ¢; — ¢ is small enough. This means that

we have proven the local Lipschitz property for all T; = t16; residing in a neighbourhood of g,

and therefore verifying (2.99). This concludes our discussion on the term |ug — w/|| in (2.97).

The term |ju; — w|. We shall show that

||U1 — w”LQ(Q*) < C’rl |T2 — T1| (locally LipSChitZ at Tl.)

Firstly, u; — w solves the following BVP

—(V +i12)% (w1 — w) + [(V +i12)? — (V +i11)%|u1 = 0 in Q.
( 2)%(u1 —w) + | ( 2)” — ( 1)%| w1 * (2.142)

u—w=0 on I,

with periodic BCs on 0Q), if Qg = Qsift.1s- By testing the above BVP against u; —w € H'(Qy),

the weak formulation gives

I(V + i) (w1 — w)[1 220,

— ((v + i9)u, (V 4 it9) (ug — w)> — <(V + i1y )ur, (V 4 i11) (u1 — w))

= (Vul, —1iTow + 1T1w + 1Tou] — iTlul)
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+ (i”clul — 1ToU, Vw) + (iTQ’LLl —iT1U, Vul)

+ (itouy, itouy) — (iTyug, ityuy) — (iTouy, iTow) + (iTyug, iTiw)
< [t2 =l (IVul, fur —wl) + [t — 71| (Jua], [V(w —u1)]) +/Q [(!T2|2 —[tl?) Jua| fur = wl
by Cauchy-Schwarz on R?.
< Clty — 1 -HVWH Jur — wll + Jur | |V (w —w) || + ] [Jur — wH]
_ by Cauchy-Schwarz on L?(Qy).

< Clrg =l [[Vaull 2 + ||“|L2} V(w1 —w)| L2,

by the Poincaré inequality applied to u; — w, which has zero trace.
< Cqylte — 1l [[V(u — w)ll g2

as up € H'. Note that the BVP for uy depends on T;.
< Calra =] (7 +im)(n — w)le + el o~ wlze)
1 )
S ?H(V + ZTl)(ul — UJ)H%Q -+ EIC% ’TQ — T1|2 + Cfrl’TQ — Tl‘ |T1’ HU1 — wHL2. (2.143)

Rearrange,

1 .
(1 — 4€/> ||(V + ZT1)(U1 — w)H%Q(Q) < C’tl|T2 - T1| Hu1 - wHLz + CT1€I|T2 — T1‘2. (2.144)
On the other hand, since u; — w has trace zero, the Poincaré inequality with T for H}
functions applies to give a lower bound on the LHS. Therefore, by picking a suitable ¢’ > 0,

we arrive at

Clﬂul — wH%g < CQ|T2 — T1| Hu1 — w||L2 + C3|T2 — T1|2, C1,C5,C5 > 0 depends on T1 only.
(2.145)

This is a quadratic inequality in |ju; — w||;2, with positive coefficients. We therefore conclude
that

1
0< ||U1 — ’LUHLz < — CQ|T2 — T1| + \/(02|T2 —T1|)2 +40103|T2 —T1|2

- 204
< Cltg — T, where C depends on T but not Ts.
(2.146)
This completes the proof. O

Remark. In the proof of Proposition 2.3.5, we have used variants of the Poincaré inequality.

In total, we have used a “Poincaré inequality with T (i.e. for the operator —(V + it)?) for

e u € H}, for all T € Q. This is a consequence of Proposition 2.2.4.

e u€ H', [u=0, for small T. This is the Poincaré-Writinger inequality for T = 0, and can

be extended to a neighborhood of T = 0 by a continuity argument similar to Step 4d. o
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2.4 Identifying a suitable homogenized operator

The task now is to identify an operator 2/30,51 that is O(g?) close to AP = A7 in the norm-

resolvent sense, by using Theorem 2.3.4. To ensure that A\Bmﬁl is well defined, we need to check
that (i) By and [ satisfies the domain considerations, and (ii) By + ﬂlME(T) (z) is boundedly

invertible. Here we record a useful observation that is used for checking (ii):

Lemma 2.4.1. For z € K, we have

-1 1
- (Pf) + PO (2)> P = _p (P<T>M§T>(z)7J<T>) P, (2.147)

Proof. Note that P(LT) and P(T)MS(T) (z) are bounded operators, hence the sum is closed. That
PE_T) + P(T)Mgm(z) is boundedly invertible follows from the second equality of (2.77), as

—1
_( | p) 10 (z))fl - (P(T) MOPE p) Mg(ﬂﬁﬂ) B ( Al A_118>
1 € - = ,

0 1 0 1

(2.148)

which is bounded by Theorem 2.3.4. Now applying P(" on the right, we obtain

-1 ATt 0

— (P(f) +P(T)M§T>(z)> PO = — ( . 0) . (2.149)
This is precisely the RHS of (2.147), completing the proof. O

Remark. We have abused notation when writing P(¥ in (2.147). To be precise,

(1) -1 _ -1
—(P" —i-P(T)ME(T)(z)) p® — _ plv) (P(T)ME(T)(z)P(T)J) P o
E—E E-E =€ PMESE  pmegplog EoPE

Our first attempt on identifying a suitable homogenized operator is

Theorem 2.4.2. There exist C' > 0, independent of ¢ > 0 (assumed to be small enough),
z € K,, and T € )/, such that

-1
(t)y _ N-1_ ( 3™ _ 2
(ALY — z) (Aa,Pf),P(ﬂ z) < Ce*. (2.150)
H—H
The operator E(TL(T) () is constructed relative to the triple (AiT), Ag), H(T)) with H = L?(Q)
&Py, T s
and boundary space & = L?(T'yp) @ L?(T}s). Furthermore, AW is self-adjoint.

e, PP

Proof. The inequality follows by Krein’s formula (Theorem 2.2.16), the estimate on MO (2)

(Theorem 2.3.4), and the identity (2.147). Self-adjointness of E(T;(T) o
EF 1
Corollary 5.8]. O

., follows from [47,
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Remark. This is exactly the same formula as in [35, Theorem 3.1]. In other words, we have
managed to push through the analysis of [35] for our setup, with P now being two-dimensional,

corresponding to the two stiff components. o

While the operator A\(T;)m P satisfies the first criterion (self-adjointness) of a homogenized
e, PPt
()

operator, it is unclear what the action of A s
€

IR

) is, since it requires us to convert the
)

boundary condition P(LT)F(()T) + P(T)F(T% = 0 into the action of A () p(r)°
N Y

.. The goal now is to
build on our result and identify other O(s?)-close operators whose actions can be more easily

written down.

2.4.1 An “observer” in the soft component

We begin this section by making the following definitions

Definition 2.4.3. Mstiﬁ’(T)(z) = Mstiﬁ_int’(T)(Z’)Pint + Mgstiﬁ'ls’(T)(z)Pls.
Definition 2.4.4. For z € p(AgT)), set Rg) (2) :== Psoft(AS;T) — 2) " Py

We will refer to RgT)(z) as the generalized resolvent of A at 2z, with respect to L?(Qsoft).
The term “generalized resolvent” refers to the fact that it is the resolvent of some operator on
a larger space. This is not to be confused with pseudoresolvents in Theorem 2.2.16. Let us give

an interpretation of R (2).

The resolvent (A — z)~! takes f € L? to u = (A — z)~'f, which is the unique
solution to the BVP (A — z)u = f. Since f can be viewed as a forcing term for
our system, we may interpret RgT)(z) as an observer living in L?(Qsof): The goal of
the observer is to figure out what happens to the output u of the system, for each
input f. However, the observer only has partial information of the system, due to
the constraint that the input f must lie in L?(Qsof), and is only able to observe the

part of v which lie in L?(Qsoft ).

This point of this section is to demonstrate we can draw conclusions on the full system using

the partial information provided by RéT)(z), as the missing pieces can be attributed to “error”.

Let us begin with an easy but important computation, which says that RETT) is itself a solution

operator for some abstract BVP on L?(Qgoft):

Proposition 2.4.5. We have,

-1
[ soft,(T)
R{O(z) = (AM:ﬁff,<T> o1 Z> : (2.151)
qeoft:(7) i ; soft,(T) 4 soft,(t) Tysoft,(t) : 2
where AMS&H’(T)( B constructed from the triple (A4, A LT ) with L?(Qsog;) and

boundary space L?(Tiy) @ L?(I's). In other words RéT)(z) is the solution operator of the BVP:

(—(V + iT)2 - Z) u=f in Qsoft,
&(Lzﬂu = fMEStiﬁ_mt’(T)(z)u on i, (2.152)
&(L:thu = —Mstiﬁ'ls’m(z)u on I,
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which is to be rigorously interpreted in terms of the following system

(A\SOft,(T) N z)u = f,

11sloft,(”r)u _ —Mstiﬁ’(T) (Z)F(S]Oft’(T)u.

(2.153)

Here, f € L?(Qsoft). (Note the z-dependent boundary conditions.)

Proof. We have

—1 *
R (2) = Paor(AT) = 2) 7 Paote — PaorS0(2) (MO(2)) (89(2)) Paon
-1 *
_ (Azoft,(r) . Z)—l . Ssoft,(T)(Z) (ME(T)(Z)> (Ssoftv(T)(g))

. —1 *
_ (A?)oft,("f) _ Z)—l _ Ssoft,(r)(z) (Mstlﬁ’(T) (Z) + Msoft,(T)(Z)) (Ssoft,(T) (2)) . (2.154)

The first equality follows by Corollary 2.2.17. For the second equality, Psoft(Ag’Lg —2) 1P =
(AZOft’(T) — 2)71 follows directly by construction, and PsoftSE(T)(z) = §%ft(D(2) by (2.63). The
final equality follows by Proposition 2.2.18. The assertion on the solution operator then follows
by Theorem 2.2.16. O

Remark. In moving from the L?(Q) to L?(Qgof: ), our boundary conditions changed from (3,
B1) = (0,1) to (Bo, f1) = (M*'f(2), I). Using again the analogy of an observer, this means that
the observer living in L?(Qsof;) is able to feel the effect of the “stiff” part of the system through

the (z-dependent) boundary conditions. o

Recall the computations in Lemma 2.4.1: when converting —(77(;) + POV (2))" 1P to
—p (P(T)ME(T) (2)P™)~1P( | we are only interested in the left column of the block matrix.
This suggests that we could modify the top right entry to our desire. (The bottom right entry

should be kept as I to ensure invertibility of the matrix.) In particular,

sti -1
<P(T)M€t ff,(1) (Z)p(T) + P psoft,(t) (Z)P(T) P(T)ME(T) (z)Pj_T)> )
0 I

. -1
(P(T)M;tlﬁv(T)(z)P(T) +7)(T)Msoft,(T)(Z)P(T) P(T)Msoft,(T)(Z)P(f)> D) _ (Al O>'
0 I

This suggests us to make the following definition:

-1
ops (7) . [ soft,(7) .
Definition 2.4.6. R_ () := <A7>(LT)+P<T)M§“H’(T)(z)P<T>,7>(T> z) .

To check that the choice 8y and S for Rgﬁ(z) is valid, we note that (i) By 4 81 M=t (2)
is a sum of bounded operators with maximal domain hence it is closed, (ii) the invertibility of
the matrix follows because it is upper triangular, (iii) boundedness of the inverse follows from
the estimate for A~ in Theorem 2.3.4. The observation on the equality of matrices is used in

the following result:
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Proposition 2.4.7. We have the following estimate, uniform in z € K, and t € Q’:

Proof. See Appendix D. O

Remark. e We have two triples: one on the full space L?(Q) and one on the soft component
L?(Qsott ). Tt is Krein’s formula (Theorem 2.2.16) and our specific setup (in particular the

results from Section 2.2.3) that enables us to easily pass between the two sets of triples.

e A byproduct of the proof of Proposition 2.4.7 is that

—1 -1
~(7) _ [ soft,(T) -
Psoft (AE,P(I) P z Psoft - AP(LT)—FP(T)M:tiH’(T) (Z),P(T) z

—1
[ soft,(T) B ()
a (APYHP(@MS“H’(T)(z)pm,pm Z) =R, 4(2).

We have discussed extensively why we could discard P Mgstiﬁ’(T)(z)Pf), but the reason
for doing so is so that we can work with an operator on a finite-dimensional space pOE,

this is crucial in our proof of self-adjointness of the operator Ai?l om (to be defined later). o

We now turn our attention to discuss dilations of Rgﬁ(z). We would like to guess an
(M)

operator R_.z(z) (note the use of calligraphic font) on the full space L*(Q) that is O(e?) close
to (AgT) —2z)~L. The hope is that Rgﬁ(z) is the resolvent of a self-adjoint operator whose action
depends on ¢ in a clear way. One necessary condition is Rgﬁ«(z)* = RiT‘S)H(Z). The guess is as

follows:

Definition 2.4.8. Let R(T)H(z) be the operator on L?(Q) defined by the following formula with

e

respect to the decomposition H = L?(Qsott) © L?(Qstiftint) ® L2 (Qstift1s):

Rgﬁ(z) a2 a3
Rgﬁ(@: a1 a2 a23 (2.156)

asi az2 as3
where

an = I ORO @) [RE(2) - (470 - )71

agy = IS0 50 () [Rggﬁ(z) (A _ Z)_l]
a2 = (WOC) [RE() = (40 — 1)) (o)’
3y = TEHEIE(0) (D) () (k(T)(E) [Rgﬁc(?) _ (Azoft,(’f) _ 5)71})* <Hsm[;im,(T))*
agy = TS0 10 () (k(w)(/‘?) [Rggﬁ(z) A _ 5)_1D* (H““””“‘v(T)y

ap; = (k(T)(z) [Rife)ﬁ(;,) _ (A(S)Oftv(T) _ Z,)—lD* (Hstiﬂ'-ls,(»r))*

19y = TR (D) (D) ) (k:(T)(f) [Ri,gﬂr(f‘) _ (Azoft,(”r) B 5)—1})* (Hsl,iﬂ'-ls,("c)>*
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agy = TS ) () (k(T)(Z) [R(T) (5) - (AE’)O&’(T) _ 7)71]>* (H>Li|ills,(’r))*

e eff

T -— SOftv(T)
where ]{I( )(2) = FD |'D(A30ft’<’t))-‘;—ran(HSOft’(T)'P(T)).

Proposition 2.4.9. We have the following estimate, uniform in z € K, and t € Q’:
(AD — )7t —RY(2) = O(D).

Proof. This is verified entry-wise, and only requires minimal modifications to the proof in [35,

Theorem 3.9]. See Appendix D. O

Recall that for Rgﬂ(z) we have Jy = P(I) + P(T)Mstiﬁ’(T)(z)P(T). We can further simplify
the term P(T)MSUH’(T)(Z)P(T) by using Lemma 2.2.21 and (2.62):

P(T) M;tiﬁ’(T) (Z>P(T) _ P(T)Mastiff-int,(‘r) (Z)PintP(T) + r])('r) Mstiff-ls,('r) (Z)P]sP(T)
_ (T) Mstiff-int,('r) (Z)P(T) @ P(T) MStiH'lsz(T) (Z)'P(T)

- 7 ostiff-int " e stiff-int stiff-ls™""e stiff-ls
_ (1) stiff-int, () (T) (7) stiff-int, () \ s 7ystiff-int, (1) 5 (T)
- ( stiff-int AE 7)stiff-int + Zpstif‘f-int (H ) II 7Dstiff-int;

@ (Ps(gizf—ls‘/\iﬁﬁ?—ls,(T)Ps(:i)ff—ls + zlpsgti)ff—ls (HStiﬁtls,(T))*HStiﬁ-l&(T)Ps(giif—lS) + 0(62)
— p( ( Aitiff—int,(r) o Agtiﬁ"—ls,("c)) P

4+ 2p™ ((Hstiff—int,(T))*Hstiff-int,(’t) o (Hstiff—ls,(’t))*Hstiff—ls,(T)> PO 4 O(e?)
— p(® ( Aitiff—int,(r) o Aitiff-ls,(r)) p)

+ ZP(T) ((Hstiﬂ—int,(’r) ® Hstiff—ls,("r))*(Hstiﬂ—int,(’r) ® Hstiff—ls,("r))) P(T) + 0(52). (2.157)

This is helpful as it separates the term that depends on =2 (the stiff DtN maps), from the

terms that are uniformly bounded (the stiff harmonic lifts). We therefore define:

Definition 2.4.10. We define R(T)

e,hom

(2) as the following operator on L?(Qgof:):

-1
“soft, () _
,Pj(:r) +P() [(Aztiﬂ»int,(’r)@Aztiﬁ”-ls,(’f)> +Z(Hstiff—int,(1) @Hstiff—ls,(’r))* (Hstiﬁ»int,(T)@Hstiﬁ-ls,('r))] Pp(T) 773(1) )
and set RS:T})lom (2) as the operator on L?(QQ) defined by (2.156), but with all the terms involving
“RETG)H” to be replaced by R

e,hom*

For the validity of the choice (S, 51), we use: the validity of (S, 31) for R

€ eff

(z), and the
observation that A is bounded below uniformly in €, T, and z. (Details are provided in the proof
of Theorem 2.4.20 later (“top left entry”).)

We conclude this section with the following result:

Theorem 2.4.11. We have the following estimate, uniform in z € K, and T € Q’:

(AL =)t =R

e,hom

(2) = O(?).
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Proof. This follows from Rgﬁ(z) ~RY (2) = O(e?), which can be checked, for instance by the

e,hom

resolvent identity applied to —(8p + 1M (z))~! (this is boundedly invertible by construction).
(]

2.4.2 Self-adjointness of A"} _ (Preliminaries)

e, hom

In the previous section, we have identified a candidate operator Rg)lom(z) on L?(Q) which
()

€,hom"

However, the term k(Y (z) has finite-range, since P(V€ is finite dimensional. This implies that

could serve as the resolvent of some self-adjoint operator which will be denoted later by A

self-adjointness on L?(Q) is impossible, as we will be left with non-zero defect indices. (Zero
defect indices are a requirement for self-adjointness, see [22, Proposition 3.8].) We may still
pursue the question of self-adjointness, but on some subspace of L?(Q). This motivates us to
define:

Definition 2.4.12. Write £ := P(IE for the truncated boundary space. Now introduce the
following truncated operators:

ﬁsoft,('r) — Hsoft,(’c) ]\soft,(’t) — fP(T)Asoft,(T

£ )’g“<r)>
Frstiff-ingt, (t) . pystiff-int,(T)| | A stiff-int, (T) .__ T) A stiff-int, (1) | _
II ) =1I ( )|g(T)7 Aa ™ T P( )Aa ( )|5(T)>

ﬁstiff—ls,(T) — Hstiff—ls,(T) ]\itiff—ls,(’c) — P(T)Aztiff—ls,(T) ’é(T)-

(cj’(fr)a

Set ITstff(7) .= [ystiff-int,(7) g TPstiffls (1) apg jv\itiﬁ’m = lv\itiﬁ'im’m <) /V\itiﬁ'ls’m. By the truncated
DtN maps ]\, we mean its continuous extension to the full subspace E. (Recall Lemma 2.3.2

and the comment thereafter.)

Remark. As the goal of this section is to prove self-adjointness for each € and T, the dependence

on € and T is not important here and we will drop them where convenient. o

As P is a spectral projection with respect to the stiff DtN maps, we immediately see that
Astift-int and Asls e selfadjoint. In fact, A%t is self-adjoint too, as it is symmetric on the
finite dimensional space E.

The lifts ﬁSOft, fIStiff'int, and T30S are injective and bounded since they are restrictions of

operators that are so. We can turn it into a surjective map by restricting its codomain to:

Definition 2.4.13. Introduce the following subspaces of H = L?(Q):
r}_“[soft,(”r) — ran(ﬁsoft,("r)) r}_“tstiff—int,('t) — ran(ﬁstiff—int,(‘r)) ﬁstiff—ls,('r) — I,an(f[stii"f—ls,(T))

and set, HUE(T) = gystiftint,(1) g gystiftls (1) (The orthogonality is a consequence of our setup.)

We use the ingredients above to define the following triple on the soft component with its

auxiliary operators:

Definition 2.4.14. Consider the (A(S)Oft’(T),ASOft’(T),ﬁSOft’(T)) on L?(Qgof;) and boundary space

EM . Construct the following operators in accordance with Definition 2.2.12:
Asoft,(1) . D(Agoft,(T))Jr;qsoft,(T) s L2(Qsoft)a
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fsoft,(T) : ( soft +H80ft (1) - g( )

)
Bsoft,(T) SOft soft, ( soft, (1) (1)
foft(9) ( ) LoD p( A5l _ g0
(
©)

Definition 2.4.12 implies D(A%®:(Y) = £(U_ This means that the domains of A%ft| [oft and
fﬁ‘ﬁt coincide. This is a key assumption of the classical triple, which is not required here.

Remark. The following truncated triple is also available: (A:é)ﬁ_int’(T)@Az%ﬂ 1s,(v) Aitiﬂ’(T), f[StiH’(T))

on L?(Qsiftint) ® L?(Qstitr1s) With boundary space 545D hut we do not need them. o
We record some properties of the truncated triple in relation to its original counterpart.

Proposition 2.4.15.

1. [rsoft:(v) . gv(’c) N ﬁsoft,(’c) and (ﬁstiff—int,("r) ® f[Stiff—lS,(T)) . g(T) N ﬁstiff,(’r) are both bounded
and boundedly invertible.

2. A%ft6.(7) is densely defined and closed.
3. S«soft,(r)(z) _ SSOft’(T)(z)‘g.

4. M0 (z) = P(T)MSOft’(T)(zﬂg, that is, M®f(7(z) is the compression of its original

operator.

5. f‘(S)Oft’(T) nd f‘SOft’(T) are surjective mappings from D(ESOft’(T)) to £, Furthermore, their
restrictions to D(ASOft o )) are also surjective.

soft, (T )‘

6. szft’(T) Fo =soft, (1) _ P(T)FiOft’(T)‘

D(ASOR (T))+Hsoft () and P D(A;O“‘<T))-i-’}:[50ftﬂ('r) .

Proof. (1) We have already discussed the boundedness and invertibility of IT°f. The bounded-
ness of (IZISOft)_1 follows from the fact that & is finite dimensional. The same argument holds for
(TTtifF-int, (1) @ T1stifB1s,(0)) - (2) Density follows from the assumption that A% is densely defined.
Closedness follows from the observation that the graph of A\SOEV(T) is the union of the graph of
At with 75°%(0 % {0}, both of which are closed. (3) follows from the formula for S(z) in
Proposition 2.2.13(4) and the definition IT5°ft =
2.2.13(5) and the definitions I15°f = Trsft| g and ASOft = PV Asoft| g (5) Surjectivity of [goft
follows from the observation that T is defined as the null extension of (1)~ (left inverse.)

But (1)1 is in fact a two-sided inverse thanks to (1). Surjectivity of I follows from: If
f € L*(Qsott), ¢ € €, then

g Similarly, (4) follows from Proposition

f\ioft((A%Oft)flf + ﬁSOft(b) _ (ﬁsoft)*f + Asoft(b.

Surjectivity of fﬁ"ft is hence a consequence of surjectivity of (f[SOft)*, which was established in
(1). For (6), the claim on T is immediate from the definitions. As for I3°f, we can continue

the computation above, to see that
f\sioft((A[s)oft)—lf + ﬁsoft¢) _ P(T)(Hsoft)*f + P(T)ASOftP(T)¢ _ P(T) [(Hsoft)*f + AsoftfP(T) ¢] ]
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The latter is precisely the action of PT5% on D(AH)+#f. This completes the proof. O

Remark. The closedness of A%f(7) relies crucially on the fact that 750 = ran(IT°f(9) js

finite dimensional. For general triples, A is not necessarily closed nor closable. o

()

e,hom

We will do this with respect to the decomposition H = L?(Qsoft) ® (L*(Qstift-int) ® L (Qstift1s) ):

To conclude the section, let us write down R (z) with respect to the truncated objects.

R om(2)
ﬁstiﬁ,(T)k(T)(z) [R(T) (z) _ (AZO&’(T) _ Z)—l}

e,hom
</€(T)(2) |:R£:?10m(2) _ (A?)oft,('t) _ 2)—1]>* Tstiff, (1)
TS0 (7)) ( (2) — ( A(s)oft,(T) _ 5)71D LSt (1)
(2.158)

o
—~
&)
—
—
N
~—
—
=R
2
~

where we recall, Rg)lom(z) is defined in Definition 2.4.10, k(9 (z) = FSOft’(T)|D(A30ft’m)+ﬁs°“’m
and TTtf(0) — Tystifi-int,(v) g [stiff1s,(0)  With this in hand, we may view R\ (2) as an operator

€,hom
on LQ(QSOft) ® f)fLstiff,(T) — L2(Qsoft) @ ﬁstiff,(’r)g'

stiff, (T { stiff-int, (T % stiff-1s, (T
= Aa €

Remark. Recall also that AZ @A . Then by the Krein’s formula,

(2) = (A0 — )71

*

-1
_ Svsoft,(’r)<2) j“\itiff,(r) LTSt (st (1) Msoft,(’r)(z):| (Svsoft,('r)(2>> .

(2.159)
Therefore, RiT})mm(z) = (ﬁsﬁiﬁﬁ?) —z)7!, where 8; = I and
Bé:‘g (Z) — ]\ztiff,(’t) 4 Zﬁstiff,(’t)*ﬁstiﬂ‘,(’t)‘ (2160)

For the validity of the choice (S, 51), we refer to the proof of Theorem 2.4.20 below (“top left
entry”.) Compare this with Definition 2.4.10. We see that we have two different parameteriza-
tions of the boundary conditions (5, 31), arising from two different choices of boundary triples.
Formulas (2.158) and (2.159) will serve as quick reference for the subsequent sections. o

2.4.3 Self-adjointness of A%

¢,hom
In this section, will use [35, Section 4.1] and in the process supply further details to the argu-
ments provided. Recall the notations for I154.(0 and /v\itiff’(T). It will be convenient to set:
Definition 2.4.16. B{Y = —(ITstiff.(0))—1 {80 (qystiff, (7)) -1

soft, (1)

Using the truncated “soft” triple (A ,ASOft’(T),ﬁSOft’(T)) and its auxiliary operators we
define
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Definition 2.4.17. Let Agﬁom be the operator on L2(Qsof ) @& HHH(D defined by

D(AiT]f)lOm> = { (g) e LZ(Qsoft) @ ﬁStiH’(T) U e D(A\soft,(T))’ a — ﬁstiﬁ,(T)fWBOftv(T)u}’
’ U
(2.161)
(1) uy)y A\soft,(’t)u
Ashom (@) o (_(ﬁstiff,(T)*)—lf\iOft:(T)u +89a)° (2.162)
Linearity of the subspace D(.Ag})lom) and the operator Ay follows from the linearity of all the

operators involved.

(v)

e hom and B{E-T), for each fixed € and T (we will

Let us discuss some basic properties of A

therefore drop ¢ and T where convenient).
Lemma 2.4.18. Ay, is densely defined.

Proof. u € D(ESOft) can be expressed as u = (APM) 71 f 4+ 1%, for some f € L*(Quop) and
¢ € £. But recall that D(AsM(0) = D(A(S)Oft’(T))—i-ﬁSOft’(T) is a (vector space) direct sum, so we
may vary (A%*)~! f independently of IT°f¢. Since D(ABOft’(T)) is dense in L?(Qsoft), and

= ﬁstifffw%oftu — ﬁstiff¢7
ranging through ¢ € & implies that the second component of D(Apom) equals (1) Hsfl, O

Lemma 2.4.19. Ay is symmetric if and only if B is self-adjoint.

Proof. For (<), we use the Green’s identity (Theorem 2.2.14): If (u,2)”, (v,0)" € D(Anom),
then

(Ahom (3) : (f)) = (w, Aotty) — (Tplta, Tptte) + (TP, BTEUT) | (2.163)
u v

((3)  Anom (ﬁ)) = (o, Aot} — (Tt Tt ) o (TR0, BIFITRM) . (2164)
u v

We omit the details as these are exactly the same as [35, Lemma 4.3]. Comparing both equations

gives us the result. For (=), we use the above equations to arrive at
(u, BY) = (u, B*0). (2.165)

Since @ and ¥ are taken from a dense set of HsUf, B* = B. O

By Proposition 2.4.15, B is a bounded self-adjoint operator on U A explained in [35,
Section 4.1], the point of singling out the operator B is because the self-adjointness of 13 implies

the self-adjointness of Apom.
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An initial explanation is as follows: B features in the boundary condition 5y for Rpom(z2),

with respect to the truncated triple. To be precise, continuing from (2.160),
Bo = (I (B — I, g =1. (2.166)

Expressing §y in this way is helpful as we see that there are two bounded self adjoint
operators (IT3M)* BITSUf (thanks to the self-adjointness of B), and (IT)*[Ts%f Furthermore
(I8 * 16 > 0. The full explanation is contained in the proof of the following result:

Theorem 2.4.20. Fix ¢ > 0 (small enough) and T € Q'. Suppose that B is self-adjoint. Then
Ahnom is self-adjoint. Furthermore its resolvent (Apom — 2) ! is defined for all 2 € C \ R by the
following block matrix decomposition with respect to L?(Qsoft) © Fystiff,

(Ahom - 2)71
_ (u R(Z) ( 2 [R(E Asoft o 2)—1])* (ﬁstiff)u* )
HStiﬂk(z) [R(z) _ (A%oft _ Z)—l] Hstncfk( ) (k(?) [ ( ) (Agoft _ 5)—1])* (Hstiff)*
(2.167)

o e Prop 2.4.15(6)
.__ Tsoft P <Z soft
where we define k(z) := I'{) = Iy ‘D(Azoft’(—r))+ﬁsoft,(,r) and

~ -1
R(Z) = (ASOft’(T)(ﬁstiﬁ")*(B_Z)ﬁstiffJ - Z) . (2168)

Remark. By Proposition 2.4.15(6), k(z) as defined in this theorem coincides with the one in
(2.156). Thus (2.167) is precisely R (2). Also, we remind the reader that ran(Ss°f:()(2)P()

e,hom

C D(ASOft (T)) H(0) | which we will need in the proof below. o

Proof of Theorem 2./.20. See Appendix D. The proof is taken [35, Theorem 4.4], and we supply
it with further details. O

2.5 Homogenization result

This section summarizes the results thus far into a fibre-wise (for each T) homogenization result.
To begin, we collect the key ingredients of Sections 2.3 and 2.4 required for stating the result.

We have the following spaces

£ =pOg = P &P LE = span{y; TV} @ span{y; i), (2.169)
rHstlff,(T) _ /Hstlff int, (T) /Hstlff Is,(t) _ ran(Hs‘mﬂ—mt,( )|5(T)) ® l"aIl(HStlH_ls’ ’g‘(_r))‘ (2170)

We denote by ¥y the lifts of ¥; into their respective stiff spaces. That is,

X = [ *® ey X (o ) € {(int, stiff-int), (Is, stiff-ls) ). (2.171)
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The homogenized operator A% is defined to have domain

€,hom

(Ae hom) = { (ﬁ) € LA(Quore) ® HHHE
u

we D(Asoft (T)) i ran(HSOft’(T) .

), @ =IrEEp g"f”)u}. (2.172)

Remark. D(ASOft (T)) H?(Qsoft) N H} (Qsoft), which is independent of T. o

Definition 2.5.1. We write —(V + i1)2 to mean the operator of A%f6.(0) that is, —(V + iT)?
is the magnetic Laplacian on Qg with (zero) Dirichlet BCs, extended by zero on A (1),

For its action, we first note that a typical u € D(—(V + iT)?) may be written as
w= (AFHO) T A TR0 (@ by, f € 12(Quen), b e T (2173)

If we further expand @ € H (D into (Tggiring, Ustifrts) € HETE(D @ 7H18.(D)  then by the

definition of Ty, the condition on % in (2.172) may be written as
Iy s Eint, it
0= Ustiff-int _ aHS“f.f int,(7) ¢it1 int, (1) _ a\ljit{ int, (1)
Usiff-1s bnstlff-ls,(ﬂ¢§tlﬂ-1sv<ﬂ bq,itlff-lsm ’

Therefore, the action of .A
sttlﬂ? int,(T) D Hbtlff Is, (1) as

+ hom Ay be written in with respect to the decomposition L*(Qgoft) ®

u —(V +i1)?u
Ag})lom e | = _(ﬁstiff—int,(’c)*) P(tl)ff-mt I-\ioft,("c) +anﬁ int, (1) aqjitiff-int,(T)
Ustifils _(ﬁstiff—ls,( )% )~ 7)(8(lr y 1ﬂioft,( ) u+ Fzmlff Is,(T) (bqjitiﬁf-ls,(x)ﬂ
(2.174)
—(V +i1)?u
_ — (ITstifFint, (7))~ ,P(;?ff-lnt soft,(1),,,

—(Tstils, (1)) - 735(t1)ﬂr . [ ot (D,, 4 -2 Hstlff Is, (bwitlﬁ Is,( )}

(2.175)

To deduce this from Definition 2.4.17, we have used: In the first equality, that A = I'j1I
and II is boundedly invertible. In the second equality, that ]XSﬁﬁ‘IS acts as multiplication by

f—:_zusltiff_ls’(ﬂ and similarly for AStlﬂr int “but recall that p Smﬁ int (T) = 0 by Proposition 2.2.10.

Lemma 2.5.2. The action of (IT*(9*)~1 : span{@bf’m} — ran(I1%(7)| *, <T)}) is given by

span{;
DA i

Proof. We will drop e, %, and T where convenient. It suffices to figure out its action on ;.
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((ﬁfl)*l/’la‘l’l) - (iﬁlv (ﬁ)fl‘l’l) - (V1,%1) r2(r,) = 1.

L2(Qx L2 (Qx

But (II"1)*y; € ran(Il
we must have ¢ = 1/||¥y||%. O

g) is a multiple of Wy, say (ﬁfl)*wl = ¢W¥;. By the above calculation,

We are now in the position to state the homogenization result.

()

Theorem 2.5.3 (Fibre-wise homogenization result). With the homogenized operator A_}

as defined above, we have that:

%

° A(T) is asymptotically close to our main model operator Az’ in the norm-resolvent

€,hom

sense, with an O(e?) estimate. This estimate is uniform in z € K, and T € Q'.

— z)~1 is given by R (z) (see Definition 2.4.10 or (2.158) or

e,hom

e The resolvent (.Agﬁom
(2.167)).

o AY s self-adjoint on L2(Qgoft) @ 8T and its null-extension to the full space

€,hom

L2(Q) = L*(Qutt) ® L2(Quittine) ® L2(Quitrs), which we will still denote by A

€,hom’

is symmetric.

° Agﬁom depends on ¢ only through its action on the third component FH5tif1s:(7),

(0

e,hom

defined for z € C\ R (Theorem 2.4.20), can be extended to the whole resolvent set p(A(T) ).

€,hom
(™)

£,hom

always find an open ball B(z,e,), with z € C\ R, and zy € B(z,¢,), such that the formula
(2.167) holds. O

Proof. The only point that remains to be shown is why the operator R (z), while initially

This is due to the analyticity of the resolvent (Apom — 2) 1 Given zg € p(A ) NR, we can

Remark. Explicit expressions for I1 are available for the case Qstift-ing (for all T) and for Qstift1s

(for T =0). See Proposition 2.2.10 for the formulas for the eigenfunction ;. o
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Chapter 3

The homogenized description

From Chapter 2, we know that Ag})lom serves as a simplified description of the high-contrast
composite, in the sense that it acts only on a 2D subspace of L?(Qstiftint U Qstifils). However,
this is rather unsatisfactory as we have to contend with auxiliary objects arising from boundary
triples. Indeed, how do formulas in Section 2.5 inform the effective properties of our composite?

In this chapter, we take a closer look at the homogenized description .Agﬁom. We would

like to learn about the effective transport/scattering properties of our composite, and from this

perspective, we ask the following questions:

e What are the “dispersion functions” K (T, z) for the stiff-soft-stiff model? That is, can we
show that the resolvent (Ag?mm — 2)~! is unitarily equivalent to a multiplication operator

by some function (K (t,z) — z)~1?

e How does the norm-resolvent asymptotics look like on the full space? That is, compute
fée, A% e

e,hom

e Can we provide a reasonable characterization of the spectrum o( fg, AiTl)lode) and its

decomposition?

While these questions are non-trivial in the high contrast case, they are readily answered
in the moderate contrast case: Recall from Sections 1.1 and 1.4, that norm-resolvent limit of
A; = —div(a:V+), when a. is positive definite and bounded, is given by Apom = — div(apem V),
where apop, is positive definite and constant in space. Using the Fourier transform F, we have
Apom = F 1M,
(Apom —2) "1 = f_lM(ahomg.g—z)—l F, so the mapping & — apomé - € encodes dispersion of waves:

nomé-eF s thus 0(Apem) = [0,00), and is purely absolutely continuous. Also,

In the context of the wave equation (1.1), we set z = w?, and the dispersion relation becomes

CLhomg ) 5 = w?.

We will investigate the three bullet points in Sections 3.1, 3.2, and 3.3 respectively. In Section

3.1, we focus on the 2 x 2 matrix Pﬁstiﬁ,@ (A( )

T 1
s hom — 2) Py (v, and express each entry as an

operator of multiplication by some constant depending on T and z. Moreover, we show that for
the diagonal entries, this constant can be written in the form (K(t,z) — z)~!. In Section 3.2,
we write down formulas for the full space operator for Models I and II (Figure 1-2), and the
stiff-soft-stiff model.
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In Section 3.3, we conduct a spectral analysis of fg Al om

dt. This section only contains
the author’s preliminary results, and hence does not completely answer the third bullet point.
In particular, we give partial results on the spectrum and its decomposition for Models I and
II, and a short discussion on the difficulties of extending these arguments to the stiff-soft-stiff

model.

3.1 A closer look at the homogenized operator

In Chapter 2, we have tried as much as possible to separate the computations on Qgiftint and
Qstiff.1s- But intuitively, we would expect the two stiff components to have influence on each

other. Indeed, this is evidenced by the following:

e From (2.174), we see that the second and third components contains the term I‘Sf)ft’(T)u.

This takes u which lives on the annulus Qg.f;, and then applying the co-normal derivative
of u at the boundaries I'jy; (for the second component) and I'g (for the third component).

Clearly the two stiff components are “communicating” through w.

e From (2.167), we see that the bottom right entry of (Apom — 2)~!, when expanded out
as a 2 x 2 matrix with respect to the decomposition SN0 g gystiflls.(0) g ot block-

diagonal.

In this section, we study the bottom right entry of (Apom — 2)7 !, i.e.

ﬁstiﬂ—int,(’t) ﬁstiff—ls,(’c)

1 (2.156) o .co .
Pq_“[stiff,(w) (Ahom - Z) P;C[stiﬁ,(T) - HSUH int,(7) a9 ags s (31)
Hstlff—ls,(’t) aso ass

with a particular focus on the diagonal entries a0 and ass. To begin, we first apply an isomor-
phism s (7) gy gystiffls (1) o ©2 g6 that we do not have to deal with a varying space. Let us
define:

Definition 3.1.1. Set js(tTi)f-f-int : ran(HStiﬁ'intv(m 0

stiff-int

g) — C to be the unitary mapping

stiff-int, () stiff-int, ()
\Ill = ||\I}1 ||L2(Qstiﬁ”»int)'

Nt 1] -3 . . AT . AT
(Note: HSHFNG(T) — pap (T7stift mt’(T)\ps(:i)ﬁ —intg)) And similarly for ]S(ti)ﬁ_ls. Set j(V = js(ti)ﬁ_int @
(1)
Jstift-l1s-
Ip .this case, the operator .js(;)ﬂ_thStiﬁ‘mt\ g E Cis a mapping taking witiﬁ'int’(T) to
(\Ilitlﬁ'mt’m, and then to) H\I/imﬁ_mt’(ﬂ ||. For the reader’s convenience we compute the inverse of

its adjoint:

Lemma 3.1.2. Let % € {stiff-int, stiff-Is}. The action of ((!j(;)lil*’m)”‘)_1 : span{wf’m} —C

is given by
*7 *’ -
2 s )L,
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Proof. We drop % and T. We simply have to note that ((jII)*)~! = (j*)~}(IT*)~!. Since j is

unitary, (j*)~! = j. The result now follows from Lemma 2.5.2. O

Under this identification, we may View our homogenized operator as an operator on L?(Qgof; )®
C?, which we will still denote by A

the copies of C. In that case, our homogenized operator may be written as

e hom" Let us write Cgti.int ® Cqtif.1s to distinguish between

D(-A(T) ) = {(u7 Bstiff—inty Bstiff—ls) € Lz(Qsoft) @ (Cstiff—int S2) Cstiff Is - UE D(Aaoft) + ran(HSOft7(T)P(T))7

€,hom

(1) Hstiﬂ“—int,(*r) FBO&’(T)U,

i ls ft,
Bstifi-int = Jstiff-int (0| st (Opsoft (1), )

Bstifi-1s = Jstiff-1s

9

(3.2)
Y —(V+it)u
A B | = (O, Tastifnt () ~1p(D) i),
Ptift1s (g BTy P TP Dy 2 )(Js(tTi)ff G TEHECD) 7L
—(V +i1)%u
= Ta(,Ts)tiff-int (U, Bstifi-int» Bstitt1s) | | - (3.3)

T
T&Si;iff_ls (Ua Bstift-int Bstiﬂ—ls)—r

Before proceeding with the investigation of the entries a;; of (Apom — 2)~1, we record two

facts that we will use without mention throughout the chapter.

Lemma 3.1.3. There exist constants ¢,C > 0, which do not depend on T, such that ¢ <

tiff-1
H\I’SI l ||L2(Qstiff—ls) <C.

Proof. This follows from two facts: (i) the mappmg Q 51— \IISUH 5(0) ¢ L?(Qstifr1s) is

continuous (Proposition 2.3.5), and (ii) H\I/itllcf ts:( H # 0 (as T8 is injective). O
stiff-int, (T) . . .
While Lemma 3.1.3 is also true for ¥ , the situation is even better:
stiff-int, (1) Qstifi-in .

Lemma 3.1.4. H\II1 HLz (Quitiint) = W, which does not depend on T.

stiff-1s, ( itz stiff-int, (7)
Proof. Smce (N |Fmt| (Proposition 2.2.10), we must therefore have ¥}
= |Tint|~ JeiTT, O

3.1.1 Stiff-interior to stiff-interior

Let us now figure out the action of Pr_...  (Anom — 2) ' Pc_.q..,, Which is a multiplication by
a constant. We will drop € and T where convenient. We will also assume that z € K,,.

The operator in question takes § € C, solves the system

—(V +it)%u — zu = 0,
Tstiff—int (U7 Bstiﬁ?-inty Bstiff-ls)T - Zﬁstiff-int = 57 (34)

Tstiff—ls (u, Bstiff-inta 5sti‘ff-ls)T - Zﬁstiﬁ"-ls = 07

and then outputs Bi.int- (Recall Definition 2.5.1 for the notation —(V +47)2.) Our goal is to

write Tytift-int (U, Bstificint» Bstifils) . as a constant times Bytiing. 10 assist us, we define
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Definition 3.1.5. v := IT%f(7) (¢itiﬁ'int’m, 0), and w := I1%f:(7) (0, @Z)itiﬂ'ls’m).

Observe that if u = (AS™(D)=1 ¢ 4 [gsoft.(v) (S0 |y SIS0y g0 some € L2(Quont)
and a, b € C, then u = (AX")~1f + av + bw. That means @ := u — av — bw € D(APY). So
(—(V +i1)% — 2)u = (AP — 2)u. In fact,

(—(V+it)? —2)u= (= T — 2)u —( — iT)° —z)av — ( — iT)* —2z)bw = zav + zbw.

By (3.4) Since A(Ilp) = 0 Since A(TI¢) =0

This implies that
U= za( AP — 2) 7t + 2b(APY — 2) " lw.
The key is that a and b are related to Bstifint and Betifils respectively by
Batifiint, = al| W3, Bygs = bl WS

This is a consequence of the computation of u in the previous section, and the definition of the

isomorphism j. This allows us to write

u az(APT — 2) Lo 4+ bz (AP — 2)"tw + av + bw
Tstiff—int ﬁstiff-int = Lstiff-int /Bstiff—int
6stiﬁf—ls 5stiff-ls
ﬁstiff—int soff -1 Bstiff—ls soff -1 Bstiff—int Bstiff—ls
(AT — )Tl (AT — )Tl + =V + =W
H\I;itlff 1ntH ||\I/§t1ff ISH H\I,itlff 1ntH H\I,itlff ls”
= Lstiff-int ﬁ o
stiff-int
Bstiff-1s
/Bstiff—int ft -1 Bstiff—int Bstiff—ls ft —-1 /Bstiff—ls
H\I/Stiff'intH (A5 —2) " v+ H\Ijstiff-intH v H\I,stiff-lsH (A5 —2) 7w+ ||\I/StiH'ISH
o 1 1 T 1 1
= Lstiff-int Bsti foint stiff-int 0
0 ﬂstiﬁ—ls
- Z(A%Oft —2)"lw+tw . z(A%Oft —2) T tw+w
_ Bstift-int o H\IJStiﬁ'im H + Bstiff-1s o 0
H\I;stiff-int H stiff-int 1 ||lI/Stiff_ls H stiff-int
1 0 1 \Ijstiﬂ—ls
(R

(3.5)

Can we write Bgif1s in terms of Bgiint? Yes: By using the third equation of the system (3.4),
and (3.5) with Ti;int replaced by Tiig1s, we obtain

U
Bstiﬁ-ls = ; stiff-ls /Bstiff-int

Bstifi-1s
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2(APT — 2)" v 4o 2(APT — 2)lw 4w

5stiff-int tiff-int /Bstiﬁ-ls
= Wﬂtims ||| + WTSHHJS 0
1 0 w5t |
(3.6)
Rearranging and plugging this back into (3.5),
u . 2(AP — 2)"ly + o
Ttifi-int | Bstiftint | = Pstiff-int { WTstiﬁ-int || wtiff-int |
1
/Bstiff—ls 0
. (AP — )" 4o 2( A% — 2)"lw + w
+ : e Tstift1s H\Iji““imt H Tistiff-int 0 X
. s | -
0 s
. 2(APT — )l 4w -
o NH\TISHH;ISH Ttifr1s 0 } (37)
o o3|
= 6stiff—int {Ka,stiff—int (T, Z) + K stiff-int (T' 7«/)} (3-8)
= Bstift-int Kstiff-int (T, 2)- (3.9)

The derivation above suggests the following:

Theorem 3.1.6. For £ > 0 small enough, independently of z € K, and T € Q’,
Pc .A(T) - Z)_lp(c

cotine AL hom is the operator on Cgging of multiplication by the number
(Kstit-int (T, 2) — 2) . In the notation of Section 1.3.1, this means that

stiff-int

stlff int (AE hom Z)_lp(cstiff—int - M(Kstiff—int (T,Z)—Z)71 : (310)

Proof. To ensure that Kgfint (T, 2) is well-defined, we need to show that the denominator of the
second term in (3.7) is non-zero. We will do this by showing that it has a non-zero imaginary

component. This requires us to uncover the action of Tys. First, we observe that

2( A _ )y bw = (T + 2(A° — ) D
(I+ (ASOft( ) ) )Hboft T)(O_'_wstlﬂ‘ 1S T))
_ Ssoft,( )( )(0 +¢st1ff s, (T) (3‘11)

$of(%) then P(m)ff o> and then ((§11)*)~!

S

In the action of Tiig1s, we need to apply to the above, I']

(11~ PG 95000 (2) (0 + 47 )
_ ((]H) ) p(tlzc“SMsoft,( )( )(0+¢itlffls ))

— (AT ) soft, () stiff-1s,(T) stiff-1s,(T) stiff-1s,
()~ (OO + 9] ), @)

stiff-1s, stiff-1s, ( 1
(MO (2)(0 4+ 4O, (04 4O ) s (312)
1
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stiff-1s,( _9o stiff-ls,(7)

Also we need to apply to ||V ||, the operator (jﬁ)_l, then a multiplication by e ™% ,

then Psm)ﬂ» 1s» and then ((5I1)*)~1

(GT)) 7 P Gese 2O G ey ™)

stiff-1s
_o stiffls, iff-]
—c QIuit S (’T) ((JH) ) 17DS(t1)ff s St S (T)

—9 stiff-lIs, 15 stiff-1s, ( stiff-1s, ( stiff-1s, (
= =2 OG0+ wﬁ DO+ ) e U
—92 stiff-ls, stiff-1s,(
= e O ey
__—92 stiff-1s,(7) 1
=€ 'ul ||\I]Stiﬂ_ls7(T) || ' (313)

1

Using these two computations, we observe that the denominator of the second term in (3.7) is

2(APT — 2)lw +w

1 ()
1- W & stiff-ls 0
o)
1 —2  stiff-ls, SO stiff-ls, stiff-ls,
=1 — e [ (O 2 0 4 47T O), (04 4T O)) | (314

2 H qlitlﬁ-ls,(T) H 2

(Re 2) —i(Im 2) [ _5 stiff-ls,(v) soft, (t) stiff-1s, (1) stiff-1s, (T)
T R |72+ (O ) 0 4+ ), 04 97RO

(3.15)

Focusing on the imaginary part of (3.15), it suffices to show that the following expression is

non-zero for every T (Note that |Im z| > 0, since z € K,.):
—z'(Irn Z) {{-:ZIu,:SltiH-ls’(T) + <Re MSOfE(T)( )(O—i—l/)smff Is, ( T)) (O—i-l/JStlﬁ Is, ( T))>

— (Re z) <Ssoft (T)( ) Ssoft (T)( )(0 + witlﬂ Is, ( )) (0 + witlﬂ Is, ( ))>]
= —i(Im 2)[A+ B+ C] (3.16)
where we have used the identity Im M (z) = (Im 2)S(2)*S(Z) (Proposition 2.2.13(7)). Recall

that Re M®°™((2) was defined in the beginning of the proof of Theorem 2.3.4. The terms B

and C are real, and independent of €. In fact, they can be bounded umformly in T:

e For B, use the identity
M(z) = A+ 21T — 2451) 7!

(Proposition 2.2.13(5)). Now apply Proposition 2.2.7 to 15°ft:(Y  and apply the arguments
of Proposition 2.3.3 (see (2.74)) to (A0 (0, 50y (@, i“ff sy,

e For C, apply Lemma 2.2.20 to SSO&’(T)(Z), followed by Proposition 2.2.7.

If T # 0, Proposition 2.2.10 says that A = 8*2,11,?&3_15’(1) is a negative real number. If T =0, we

have A = 0 (Proposition 2.2.10). Nonetheless, the expression (3.14) non-zero. Indeed, we first
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compute

(MO )0+ 5", (0 4 4O ) (3.17)
To do this, we first write down the BVP that u := §%°f:(0)(2)(0 + witlﬂ fe )) solves:
—Au=zu n Qsoft
u=0 on Dint, (3.18)
= 1/)?1& Is,( = |Fls|_%11"15 on Fls-
Then, we compute
(MO ()0 + 91" ), 0+ wi“ﬁ )
_ _/ o= [ QuysitsO _ / SJul? / V. (3.19)
Tint T 8” Qsoft Qsoft

=0

We note that ||[Vu| # 0, or else u will be a constant function on the connected set Qgofs,
contradicting the fact that u has different traces on I'ipy and I'is. Since Im z # 0 and ||Vu|| # 0,
(3.19) implies that (3.14) non-zero.

Thus far, we have shown that for each T, we may pick ¢ small enough such that (3.141) is
non-zero. This is not enough, as we would like to pick € small enough independently of T. To
achieve this, we will have to enhance the above argument argument as follows: Since (3.14) is
continuous in T and non-zero at T = 0, it must be bounded away from zero in a neighbourhood
of T = 0. Furthermore, the expression (3.14) allows us to pick this neighbourhood independently
of . Now combine these facts with the arguments of the T # 0 case, which says that € > 0 can
be chosen small enough, independently of T € @’ outside this neighborhood, such that (3.14) is
non-zero.

We have therefore shown that for £ > 0 small enough, the mapping T — Kgifint(T, 2) is
well-defined. This concludes the proof. O

Definition 3.1.7. We call Kg;gint (T, 2) the dispersion function with respect to Qstiftint-

Remark. To justify Kgint Which describe wave propagation on the stiff-interior region, we

have relied crucially on the properties of the stiff-landscape region, namely the eigenvalue
stiff-1s,(T)
7 .

1 o

To conclude the section, let us make a few important observations.

1. The function Kif.int(T,2) consists of two terms, K, stiff-int (T, 2) and /Ay iigin (T, 2).

The first term, K, stifr-int (T, 2), is what we would have if there were only one stiff component
(See [35, Section 5.3], for Model II). In our case with two stiff components, we have to

compensate using the second “correction” term /7y, oifint (T, 2).

2. The dependence of Kgf.int(T,2) on e falls solely on the Tg;mis terms with a non-zero
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third component. In particular, we observe that € appears in the term ‘A’ of (3.16), and

nowhere else. So the correction term becomes small as € — 0. To be precise, we have

Corollary 3.1.8. If T # 0, then /) imini(T.2) = O(¢?), uniformly in z € K,. If we
assume further that 7 is uniformly bounded away from 0, then the estimate is also uniform

in T.

3.1.2 Stiff-landscape to stiff-landscape

We now turn our attention to Pc,,..,. (Anom — 2) *Pc We will use the functions v and w

stiff-1s *
as defined in the previous section. We omit the analogous derivation of K;f15(T, 2), and jump

straight to the result:

Definition 3.1.9. The dispersion function Kg;f.1s(T, 2) with respect to Qstis1s is given by

Ktifr1s(T, 2) 1= Kq stifits (T, 2) + K srimis (T, 2) (3.20)
. 2(APT — 2)lw 4w
= mﬂtiff—ls 0
1 ” \I/?tiff-ls H
. 2( A — 2)"lw + w (AP — )"l 4o
+ snﬁ—m‘r 0 Tsti{'f—ls H qjiti[[iim H

\Ilstl ff- mLH H\I,sll ff- ]\H

i) 0

‘ -1
2(AFT — ) "ly 4o

Wl*“ it H\I,.ll,lﬂ 111LH . (321)
0

Theorem 3.1.10. For £ > 0 small enough, independently of z € K, and T € @Q’,
Pe i1 (Anom — z)*lp(cstiﬁ_ls is the operator on Cg;g1s of multiplication by the number
(Kstiff-ls(Ta Z) - Z)_l' That iS,

stlff Is (AE hom - Z)_IPCstifffls = M(Kstiff—ls(’t:z)fz)_l. (322)

Proof. The first part of the proof proceeds analogously to the proof of Theorem 3.1.6, so we

omit this. In place of (3.14), we now have

1

iff-ins stiff-in
1+W<Msof“<T><z><¢it YO 0), @0 0)), (329)

and now we would like to show that the following expression
<Msoft ( )(witlﬁ int, ( _|_ 0) ( stiff-int, (7) + 0)> (324)

is a non-zero constant that does not depend on 1. The argument is a generalization of the case
T =0 in Theorem 3.1.6. To begin, we write down the BVP that u := SSOft’(T)(z)(@bitlﬁ'lnt’(T) +0)
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solves:

—(V + i’t)2u = zUu in Qsoft,
_ witiﬁ—int,(’r) — =T on Ty, (3.25)
u = O on FIS

(Ignore the normalization constant as it will not affect the arguments.) Now define w(z) =
e’ yu(x). Then in Qsof;, we have that
—(V +i1)%u = —e "™div (e"*(V + iT)u)
= —e T (jy (e”'x(v + iT)(eiiT'ww))

= —e "div (eiT'I [e—i1~wi +W+ iT)e=" w]) = —e T Aw.

(3.26)
Since e~ cannot be zero, we deduce that w solves the BVP:
—Aw = zw in Qsoft,
w = 1p;, on Ling, (3.27)
w=0 on I'.

Back to our goal, we compute

(Msoft,(’r)(z) (witiﬂ—int,(’r) + 0)7 (d)itiff—int,("r) 4 0))

ou . stiff-int, () /
= - - tuT-n)u =
/Fth |:6n ( ) :| ! 1—‘ls

-0
:/ z|u]2—/ (V + it)ul?
Qsoft Qsoft

:/ z|e“"’”w|2—/ |eiT’2Vw|2:/ z|w|2—/ |Vwl|?. (3.28)
Qsoft Qsoft Qsoft Qsoft

Since (3.27) does not depend on T, the same is true for w, and thus for (3.28). Since Im z # 0
and [|[Vwl| # 0, (3.28) implies that (3.24) is a non-zero constant. O

Similarly to Kgiff.int(T, 2), we make a few important observations for Kggis(T, 2).

1. Again, Kg;m1s(T, z) consists of two terms, K gim1s(T, 2) and A oo (T, 2).

The first term, K, «if1s(T, 2), corresponds to the dispersion function for Model I of |

)

Section 5.3] (one stiff component). In our case with two stiff components, we have a

second “correction” term [} i 1s(T, 2).

2. Kgstifis(T, 2) depends on e while /A, yiq05(T, 2) does not.
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3.1.3 Stiff-interior to stiff-landscape

We now turn our attention to FPc_q . (Ahom — z)_lP@ The operator in question takes

stiff-int *

d € C, solves the system (3.4), and then outputs Sstift1s-

Once again, replacing Tiif.int by Tstift1s in (3.5) gives us

’ Bstit 2(AP* —2) o+
tiff-int s
Tstift1s /Bstiﬂ_int = H\I/sstliTlirrlltHTStiff'ls ”\I]iﬁlﬂ 1nt||
1
Bstiff-ls 0
8 Z(AB‘)& —2)tw+w
stiff-ls
+ Wﬂmms 0 ) (3.29)

1 s

Using this, along with Buiftint = 6(Kstiftint (T, 2) — 2) 1 (Theorem 3.1.6), we see that the

third equation of the system (3.4), becomes

Z(A%oft o Z)—lw +w

1
WTSHH'IS 0 — 2 | Bstift-1s
! H\Pitlﬁ_lsn
5 Z(A%Oft o Z)_lv +
= . i
= — (Ketittan (T, 2) — 2) ||\I,itiﬁ"—int [ Tistift1s H\Ilﬁtl int H ‘ (3.30)
: , .

This prompts us to make the following definition

Definition 3.1.11. For z € K, and T € Q', let Fifint—stifi.1s(T, 2) be the number

Z(ABO& _ Z)_l’U 4+

1 .
Ft‘ﬁ”_‘ t—sstiff-1 (T, Z) == — Tt'ff-l \I]Stlﬂ—lnt x
STIT-1INt—>st1 S (Kstlﬁ_lnt ("[" Z) _ Z)H\I]?tlﬂ‘_lntn St1 S H 1 O ”
-1
. Z(A(s)oft _ Z)flw +w
Wﬂmfms 0 —z| . (331

g

Theorem 3.1.12. For £ > 0 small enough, independently of z € K, and T € Q’,
P(Cstiﬁtls (Ahom - Z)_IP(C
Ftiff-int—stifi-1s (T, 2). That is,

: Catifint — Catifts 1s the operator of multiplication by the number

stiff-int

AT y-lp,

stiff—ls( g,hom

Pc = Mp,

stiff-int—stiff-1s (T,Z) :

(3.32)

stiff-int
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Proof. We just have to observe that the expression

Z(A(S)Oft _ z)_lw 4w
0 —z (3.33)
gt |

I )
||\IIStiH_IS’(T) || e,stiff-1s
1

is non-zero if and only if

2(APY — 2)Tlw+w
0 (3.34)
s

1 (¥
- iff- iff-1
ZH\I’?IH Is,(T) || g,stiff-ls

is non-zero. The latter is shown to be true in the proof of Theorem 3.1.6, for & small enough,
independently of z € K, and T € Q'. O

By a closer inspection of the proofs of Theorems 3.1.6 and 3.1.10, we can say more about
P (Anom — Z)ilp(c

stiff—int:
Corollary 3.1.13 (The case of large T). Suppose that T is uniformly bounded away from 0,
i.e. that |t| > ¢ > 0 for some constant ¢ independent of € and z, then

Pe s (-A(T) - Z)71P<C

£,hom

= 0(£%), (3.35)

stiff-int
in the operator norm. This estimate is uniform over all T with |t| > ¢ and z € K.

Proof. In the proof of Theorem 3.1.6, we have already shown that if T is uniformly bounded
away from zero, then the denominator of the number Fyigint—sstift1s(T, 2), i.e. the expression
(3.33), is of order O(¢2), uniformly over T and z € K,.

It remains to show that the numerator of Fiig int—sstifi1s(T, 2) is of order O(1), uniformly over
T and z € K,. We check this in two steps:

Step 1: Similarly to the proof of Theorem 3.1.6, we may compute the action of Tg;m1s on
the vector (z(Af)oft —2)" v+, ||\I/§tiﬁ'int||, 0)7”:

Z(A%Oft - Z)—lv + o .

i tiff-int, tiff-int,
S U B ey (M () (O ), (T 4 0))
0 1

(3.36)

Recall from the proof of Theorem 3.1.10, that this expression does not depend on &, and may
be bounded above by a constant, uniformly in T € Q' and 2z € K.

Step 2: We next compute:

| (Kstift-ing (T, 2) — Z)_1| = HM(Kstiff-inc(T:Z)*z)_lHOP
< II(AﬁTﬁom - Z)_1||op By Theorem 3.1.6.
1
= (T) S 0'71 AS z € Ko—. (337)
dist(z, U(‘As,hom>)
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This completes the proof. O

3.1.4 Stiff-landscape to stiff-interior

We now turn our attention to Pc_.q . . (Ahom — z)_lP(Cstiﬂ_ls. Once again, we omit the analogous

derivation of Fiif1s—sstifiint (T, 2) and jump straight to the result:

Definition 3.1.14. For z € K, and T € Q', let Fyft1s—sstiftint (T, 2) be the number

Z(A%oft o Z)—lw +w
Tititt-int 0 X
gy

1
(Kstiff—ls (T, Z) — z)”\l}itiff—ls”

Ftift1s—stiff-int (Ta Z) ==

1
Z(ABoft _ Z)_l’U T+

Titiff-int || stifi-int —z . (3.38)
0

1
stiff-int
[Nt

Theorem 3.1.15. For £ > 0 small enough, independently of 2z € K, and T € @Q’,
Peigine (Ahom — z)_lP@Sﬁﬁ_ls : Catirs — Catifi-int 18 the operator of multiplication by the number
Fstiff—ls—>stiﬂ—int (T, Z) That iS,

© -1 —
Pcstiﬁ-int (Aa,hom o Z) Pcstiﬁ—ls - MFstiff—lsﬁstiff—int(Tvz)' (3’39)
Proof. Similarly to Theorem 3.1.12, we note that the expression
. Z(ABO& _ Z)_l’U T+
[t | Tstit-int | wstif-ing)| -z (3.40)
! 0
is non-zero if and only if (3.23) is non-zero, which is indeed the case by Theorem 3.1.10. O]

Corollary 3.1.16 (The case of large T). Suppose that T is uniformly bounded away from 0,

i.e. that |t| > ¢ > 0 for some constant ¢ independent of € and z, then

P(Cstiff-int (-A(T) - Z)_lptc

€,hom

= O(e?), (3.41)

stiff-1s
in the operator norm. This estimate is uniform over all T with |t| > ¢ and z € K.

Proof. This follows from the identity

*
PCistint (Agﬁom - Z)_lpcstiff-ls = (P(Cstiff.ls (Ag,?lom - 2)_1P(Cstiﬁ'-int) ) (3.42)

and an application of Corollary 3.1.13, where we note that the O(e?) estimate remains even
after the set K, is enlarged to K, U{Z: z € K,}. O
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3.2 The homogenized operator on the full space, A; hom

The homogenization result that we have provided in Chapter 2 (Theorem 2.5.3) are stated

fibre-wise (for each T). In this section, we pass from the unit cell back to the full space, and

provide formulas for the operator

b
As,hom =G" </Q/ Ag})lode> G, (343)

where G := (3 is the unscaled Gelfand transform. We will begin with Model I in Section 3.2.1,
then Model II in Section 3.2.2, and finally discuss the stiff-soft-stiff model in Section 3.2.3.

Remark. In [35, Section 5.4], the authors obtained a full space description of the resolvent of

homogenized operator, for Model I, when restricted to the stiff component. To be precise, if we
()

c hom.1 (see Section 3.2.1 for definition), then

denote the fibre-wise homogenized operator by A

the authors showed that the operator

¢ (¥ 1
/ (Pstiﬁf(Agyhom_I - Z) Pstiff) dt, z€ K,

/

is unitarily equivalent to a pseudo-differential operator with symbol
a(z,0) = 1.-1¢(0)(K1(e0, 2) — z)7h

See Definition 3.3.4 for the definition of the dispersion function Kj. In the following subsection
(Section 3.2.1), we seek (3.43) for Model I, thus extending the result of [35, Section 5.4]. o

3.2.1 Model I

We begin by adapting the notation of Section 2.5 to Model I. In accordance with Figure 1-2,
we have H = L?(Q) = L*(Qstiet) ® L?(Qsoft) and € = L?(T'). Our boundary triples are

e (Full cube) (AS&, AéT),H(T)) w.r.t. H and £.
e (Stiff component) (Azfé)ﬁ’(T),Aitiﬂ’(T), 989 wort. L2(Quug) and €.

e (Soft component) (ASOft’(T), A0 T1%0f()) wort. L2(Quofy) and .

These are defined similarly to Section 2.2.1. For example, we have Ag) = Aitiﬁ’(T) + ASft(7)

which is a self-adjoint operator on £ with domain H'(T"). For each of the triples, we introduce
auxiliary operators in accordance with Definition 2.2.12, keeping a similar notation to Chapter
2. We omit the details.

Let (Mitiﬁ’(T),witiﬁ’(T)) be the first eigenvalue-eigenfunction pair with respect to Astift(0) =

52A§tiﬁ’(T). In the current setting, ASHE(D) share the same properties as Astiftls, (1) of Proposition
2.2.10. We set \Ilitlﬁ’m = HStiﬁ’(T)wimH’(T). Our truncated spaces are
EM =pg = span{zﬁitiﬁ’(ﬂ} and  HSHE — ran(HStiH’(T)\g(T)). (3.44)
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By [35], the fibre-wise homogenized operator Agr})lom-l is given by

u ~ .
D(Aé(::?lom-l) = { <a> S LQ(Qsoft) > HStlH’(T) :

u € D(ASOft( )) + ran(I1%°%()

)7 0= ﬁstiff,(T)f‘ZOft’(T)u}, (345)

(1) U —(V +i7)
‘As,hom—l m = _(ﬁstiﬂ,(T)*)—lp(T) F§Oft’(T)u+8_2uitiﬁ(T ((T)QIZ)SUH T))} ’ (346)

where u = (APHM) =1 4 00 (D2 for some f € L2(Quote) and ¢ € C.
0

With these notation at hand, the goal for this section is to find the domain and action of

®
-As,hom—l =G" </ ‘Agt})lom—ldﬂt> G. (347)
Q' ’

In the case of Model I, Qo is of positive distance away from the boundary of the cube 0Q),

and so

* @ soft, () Soft
G Ay Mdr ) G = € Ay ), (3.48)

nezd

where on the RHS, Affff’(o) refers to the Dirichlet Laplacian on the soft part of [0,1)% +n

The domain of A, hom-1

The first component of D(Ag hom-1) consists of v € L?(R%) such that the function Gv € L?(Q x
Q') satisfies Gu(-,T) € D(ASOft( )) 4 ran(T1°f% (T) ) for almost every t. By (3.45) and (3.48),

we know that

@ Asoft ‘|‘ G* (Hsoft,(’r) (span{lﬁitiﬁ’(T)})) mLQ(Rd) (349)

nezd

That is,

v = Z v, + G* (C(T)HSOft’(T)i/JitiH’(T)) ) (3.50)

nezd

subject to the conditions

Up € D(ASOft (0)) Hz(Qsoft + n) N H&(Qsoft + n) and H Z UNHLz(Rd) <0

(3.51)
ce L2(Q).

The requirement that @’ 3 T — ¢ € C belongs to L?*(Q’) follows from the fact that the

stiff, (T)

mapping Q' > T — HSOft’(T)q/Jl is continuous, and hence belongs to L*°(Q’).

Having determined v, the second component of D(A; hom.1) is now fixed by (3.45): In the
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notation of (3.50), these are the v such that

7= G*HStiH’(T) F(S)Oftv(T) Gv
TSt () psofts () R R G A P (3.52)

The action of A. hom-1

Let us now compute the action of A yom-1. We already know its action on the soft component,
by (3.48). As for its action on the stiff component, we perform two separate computations.
Computation 1: Fix 7, and let u(9 e D(Fgﬂ) C L*(Q). Then

rrsti *\— soft, Frsti *\ — stiff, stiff,
() APOREy ) = ([0 (p0u), g <T)>L2(F) ST (1)
Lemm:a 252 (1), (1) ,,stiff,(1) 1 stiff, (1)
<8" wh >L2(F) Hq;itiff,(ﬂ||2q}1 ' (3:53)

Computation 2: Let ¢ € L?(Q’). Then

N (ﬁstiff,(‘r)* ) — LP(T) szilff,(’f) (C(T) \Ijsltiff, (T)>

_(ﬁstiff,(’c)*)—lg—2ubiﬁff»( ) T <w5tlﬂ (1)) stiff witiﬁv(’f) By A = I'IL
L2(T)
. 1 .
= g2 (r )7\??@@ By Lemma 2.5.2.  (3.54)
Stlff ”2

N3

Conclusion

We summarize our results for Model I. The domain of A. pom1 consists of pairs (v,v) €
L2(Up(Qsott + 1)) @ L?(Un(Qstist + 1)) such that

v €D Bz A ) + {6 (O ) e e 12(Q)]

3.55
— GIrstiffs or SOft +(7) Gu. ( )

Equivalently, (v,v) € D(A¢ hom-1) if and only if
e v can be written in the form (3.50), under the conditions (3.51).
e v is determined by v, through the formula (3.52).

The action of A pom.1, With respect to the decomposition L?(Uy, (Qsoft + 1)) & L2 (Un (Qstist +
n)), and in the notation of (3.50), is given by

) (Zen)
A m- = i i 1 i
Shom-l <'17> G <— (07 (Go) D, >L2(F) — e 2l H’(T)> T Hz\ﬂt H’(T)]

(3.56)
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Aeg hom-1 is symmetric on L?(R%), and is self-adjoint on the subspace
L*(Upeza(Quont + 1)) & {G* (Hsoftv@ (c(%?iff’(”)) ce LQ(Q’)} . (3.57)

3.2.2 Model II

Most of Section 3.2.1 carries over to Model II, so we will keep our discussion fairly brief. We

keep the same notation for the spaces H, £, the boundary triples, and the truncated spaces.

Astiff-int, (1)

We note that ASHE(Y) now share the same properties as of Proposition 2.2.10, and in

particular ,usltiﬂ’(T) = 0. As a result, the fibre-wise homogenized operator Aﬁ?m-ll for Model II,
does not depend on &, and by [35] is given by

U "
D(Agl?m-ﬂ) = { (a> S LQ(Qsoft) ©® ’Hbtlﬂc’(T) :

uc D(Agoft,('f)) I I‘an(HSOft’(T)’g(T)), = ﬁStiH’(T)f‘SOft’(T)u}’ (3.58)

(1) (AN —(V+iT)2u
.Ahom-II (ﬂ) - (—(ﬁStiH’(T)*)173(T)Fi0ft’(ﬂu ’ (3.59)

where u = (A(S)Oft’(T))_lf + HSOftv(T) (C(T)¢itiﬁ’(T)) for some f S L2(Qsoft) and C(T) € C. Now set

®
Apome11 == G* < / A}(Qm_ndr> G. (3.60)
Q/

In the case of Model II, we have

* @ soft, (T) .
e AP 4r) 6 = —Ap (3.61)

where —Ap denotes the Dirichlet Laplacian on L*(U,,cz4(Qsoe + 7). In contrast to Model I,
Upezd(Qsofs + 1) is now a connected set.

The domain of Apem.11 consists of pairs (v,7) € L?(Upn(Qsoft + 1)) ® L?(Un(Qstist + n))
such that

veD(-Ap) + {G* (RO Oy ™)) o e (@)}

. (3.62)
7= G*HS“H’(T)F(S)O&’(T)G’U.
Equivalently, (v,?) € D(Apom.11) if and only if
v=uvp+G* (C(T)HSOft’(T)@Z)itiﬁ’(T)) , where wvp € D(—Ap) and c€ L*Q).
(3.63)

T=G* <C(T)\Ijitiff,(r)> .

The action of Apom.11, With respect to the decomposition L?(Uy, (Qsofc +7)) ® L2 (Un (Qsti +
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n)), and in the notation of (3.63), is given by

—AUD
Anom-11 i), = * ( stiff, (T 1 stiff,(T) : (364)
v G —<<9n (Go) @, ) > W‘I’l

Anom-11 1S symmetric on LQ(Rd)7 and is self-adjoint on the subspace
L2(Upez(Quon + ) @ {G* (PO (D90 ) s o e 22(@) (3.65)

3.2.3 Stiff-soft-stiff model

Finally, we compute the domain and action of A; pom, as defined in (3.43). In the present case,

the annulus Qs is of positive distance away from 0Q), thus

* @ soft (T soft
G Ay = P A5 (3.66)

n€zd

where Aff:lt’(o) refers to the Dirichlet Laplacian on the soft part of [0,1)% +n

The domain of A; hom consists of triples

(v, Vstifi-int Vstificls) € L2 (Un(Qsoft + 1)) @ L*(Un (Qstifteint + 1)) @ LA (U(Qstits + 1))
such that

veb (@nezd A ))
i {G* <Hsoft ( T)¢st1ff int (r d}imﬁ‘ s, ( )> abe LQ(Q/)}’

(3.67)
G*Hstiﬁ—inu(’t) SOftv( )G’U

Ustiff-int =

GFTTstif-1s (O SOft (1) Gu.

)

 Ustiff-ls =

Remark. While the condition v € L? only asks that a(® + b e L?(Q"), we have to impose
the stronger condition a(?,b(" € L2(Q'), as we also want Ugiging € L? and Tgig1s € L2. o

quﬂvalentl% (’U, 5stiﬂ—inta 17stiff—ls) € D(-As,hom> if and Only if

e v can be written in the form

v = Z 'Un + G* (Hsoft (T)( (T)QpStlﬁ-lnt T) b witlﬁ lS )) 7 (3,68)

nczd

subject to the conditions

vn € H3(Qsoft + 1) N HY (Qsoft +n) and || > Unllr2mey < o0

(3.69)
a,be L*(Q").

93



® Ugiifiiing and Ugiis are determined by v, through
Tt = G (aPUITO) and G, = 67 (0O0FTE0) L 30)
The action of A. om, with respect to the decomposition
L*(Un(Qsofs + 1)) @ L (Un(Qstitt-int + 1)) & L (Un(Qstittis + 1)),
and in the notation of (3.68), is given by

v

AE,hOm Ustiff-int

’6stiff—ls
—A (X vn)
N VNGO (t) , stiff-int, (1) 1 stiff-int, (1)
— G <an (GU) ’1/}1 > H\IJSUH 1nt HQ\Ijl ]
* . (1) stiff-1s, ( _ =23 (1), stiff-1s,(T) 1 stiff-1s,(T)
G < <8n (GU) ¢1 >L2(F) e b My ) H\Ifitiff_ls’(ﬂ H2 \Ijl ]
(3.71)
Ac hom is symmetric on L2(R?), and is self-adjoint on the subspace

L2 a* Hsoft (7) stiff-int, ( stiff-1s, ( . b L2 / 3.79
(Upeza (Qsoft +1n)) @ ( d’l 1/]1 ) ra,be L7(Q) . (3.72)

3.3 Spectral analysis of A; nom, first steps

In this section, we embark on the task of identifying the spectrum and spectral decomposition
of Ag hom (defined in (3.43)). We follow the approach of the two-scale strong resolvent case [53],

proceeding in three steps:
1. Find the eigenvalues of A; 1,om.
2. Characterize 0(Az hom) in terms of the dispersion functions Kigint (T, 2) and Kgigis(T, 2).
3. Prove the absence of singular continuous spectrum.

As mentioned at the start of the chapter, we do not complete the program in this thesis.
We will only discuss steps 1 and 2 for A; hom-1 (Model I) and Apom-11 (Model II), and include
a short discussion on the stiff-soft-stiff case A pom. A list of unfinished tasks can be found in
Chapter 4.

3.3.1 Model I

We use the notation of Section 3.2.1. We will write ¢(T) to also mean the function (¥ in (3.50).

94



The eigenvalues of A; hom-1

We begin with a preparatory lemma.

Lemma 3.3.1 (Model I). Let ¢ € L?*(Q’). Suppose that

SO stiff, (T stiff, (T —9 stiff, 1 stiff,
<<A ft rlzz)l ﬂfht >L2(F) +e€ 2/”'1 (T)) C(T)H\I,Sﬁw‘ljlt (T) (l’) = 0 (373)
1

for a.e. z € Q and T € Q', then ¢V = 0 for almost every .

Proof. In the case of Model I, we have

( Asoft,(T)witiff’(T)’ itiﬁ’m) <0 forevery T € @',

Mitiff,(o) —0, (3.74)
stiff, () /
<0 for every T € Q"\ {0}.
Moreover, by the same arguments as Lemma 3.1.3, we also know that
0<ec< ||\I/Stlff () | < C < oo, for constants ¢, C' which do not depend on T. (3.75)

Let us abbreviate the LHS of (3.73) as f(T)c(t )H\I'Stlff I~ Q‘IISUH (T)(az), and compute the

square of its norm in L?(Q x Q'):

2
- 1 stiff, (1)
0= , qustlﬁ ||2\I/1 (z)| dzdt
stiff, 2 1
- [ f(T)c(T)M /Q O @) | dede = /Q ORI g 47 (370
1 1
The result now follows from (3.75) and (3.74). O

Let us now find the eigenvalues of A; hom-1-
Proposition 3.3.2. 0 is not an eigenvalue of A; hom.I-

Proof. Let (v,v) € D(Az hom-1) and suppose that

A hom 1 <;> - (g) . (3.77)

This is a system of two equations. The first equation implies that v must be of the form

v=G" (C(T)HSO&’(TW?H’(T)> , for some ¢ € L*(Q'), (3.78)

as the Dirichlet Laplacian ABO&’(O) on the soft component of () has trivial kernel. Substituting

this into the second equation of the system (3.77), and we have

SO - st 1 sti
(T @) @) + 72 T ") =0, (3.79)
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for a.e. x and T. Equivalently,

iff, (T iff,(t —9 stiff, iff,
(<Asoft (1) 1/)St ’wit > . 2N1t (T)) (T)H\IjstfffHQ\IJSlt (T)(:E) -0, (3.80)

for a.e.  and 1. By Lemma 3.3.1, we obtain ¢ = 0. Thus (v,v) = (0,0). O

Let us now turn to the non-zero eigenvalues of A.pom-1. Let A # 0, and consider the

A: homl (?ﬂ) =\ ("i) . (3.81)

We enumerate the possibilities where (v, v) could be an eigenfunction for A, pom-1 W.r.t eigen-

eigenvalue equation

value \.

Case 1: v is of the form
v=G* (C(T)HSOft’(T)thiH’(T)) , for some non-zero ¢ € L*(Q). (3.82)

Then, by definition of A. nom.1, the first component of A hom-1(v, 0)T is zero. This implies that
the first equation of the system (3.81) is 0 = Av. Since A # 0, we get 0 = v, and thus v = 0. In
other words, it is not possible to have eigenfunctions of the form (3.82).

Case 2: v is of the form
v = Zvn #0, where v, satisfies (3.15). (3.83)
Then v = 0, and the eigenvalue equation (3.81) becomes

—AQZ vn)

(2
G* < ( (Z Un)) Stlff (T)> 1\I]sltiff,(~c)] =A ( 0 ) . (384)

tiff,
o w2

By the first equation of the system (3.84), this is only possible if A € U(ASOft (0 ))

soft,(0)

. Moreover,

v =) v, must be constructed from eigenfunctions of A with respect to the eigenvalue A

soft,(0)

of ABOft 0 We will now investigate how the eigenfunctions of A can be used to create an

eigenfunction v of A¢ hom-1-

soft,(0)

Assume for the moment, that A is a simple eigenvalue of A , corresponding to the

eigenfunction w € L?(Qgof;). If we set v = w (i.e. take v = w on Q, and extend by zero to the

whole of R?), then a direct computation gives us

1
)= G

—iTT

(Gv)(z,T

x)e

Thus, if 3> v, = crw(- + n1) + cow(- + na) for some ¢y, ¢ € C and ny, ny € Z%, then

1

(Gv)(z,7) = W

w(x)efir-m (Clefi"r-nl + Cze—ir-ng) )
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In general, we can take

v= Z Uy = Z cpw(- +n), where ¢, € C, and v € L*(R%). (3.85)

nezd nezd
This is equivalent to

1

Wu)(m)e—”“a(’r), for some a € L*(Q"). (3.86)

(Gv)(z,T) =

Let us put (3.86) into the second equation of the system (3.84). We note that G is unitary,
and we take the L?(Q x Q') norm for the expression in the square brackets (see the argument

of Lemma 3.3.1). This gives us the condition for A to be an eigenvalue for A. hom-1:
<F810ft’(T)( (z)e™ ™), q/)itlff > a(t) =0, for some non-zero a € L*(Q').

Equivalently, if

HT cqQ < o) (4 ()70, witiﬁ’“)> - 0}‘ > 0. (3.87)
Remark. The condition (3.87) should be thought of as the norm-resolvent analogue of the two-
scale strong resolvent case in [53]. For instance, when T = 0, the equation in (3.87) becomes

0
< “ ) 1F> =0.
Onsoft r L2(T)
(Recall that ¢imﬁ = |F|7%1p by Proposition 2.2.10.) That is, the Neumann trace of the
Dirichlet eigenfunction (on Qgof) has zero mean. Compare this with [53], where the author
soft,(0)

looked at whether the eigenspace of A
ie. (w,1)r2(Q. 4 =0 o

w.r.t A contains eigenfunctions of zero mean,

The above argument may be enhanced to include the case when the eigenvalue A of ASOft ©

has multiplicity K > 1. We omit the details and jump straight to the criterion: Write the K

linearly independent eigenfunctions as wi, -+ ,wg. Then A is an eigenvalue for A. pom.1 if
HT €eq : < ot T)( p(2)e™ ), witlﬂ >: OH >0 forsome ke {1,---,K}. (3.88)
Case 3: v is of the form
v=3 v, +G" ( (v) ppsott.(x wf“ﬁ"’“)) , (3.89)

where where ¢ and v, satisfies (3.45), and both ¢ and ) v, are non-zero.

Then, the first component of eigenvalue equation is

S —Av, =3 v, +AG* (C(T)HSO&’(TW?H’(T)) : (3.90)
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and the second component of eigenvalue equation is

SOft (T ( (Z Un))(rr ’ Stlff (T) Stlé q]:Sltlﬁ‘,(T)
o

sti sti —9 sti 1 sti sti
" |:<ASOft’(T)¢1t ff,(¢)7 1t ff,(T)> te 2M1t ﬁ:,(T)i| o )H\I,stlff Hglplt ff,(v) _ A w tff( )‘ (3.91)

To keep the notation compact, let us set

9(1) = (TGS o). S“"f“>>,

. (3.92)
f(T) _ <Asoft( ¢Stlﬁ ’r)’wstlﬂr > g_gﬂimff,(’r)7
so that after rearranging (3.91), we obtain
[90) + (£(0) = AT 2) o) | w00 () = o, (3.93)

for a.e. z and T. By taking the L?(Q x Q') norm (see the argument of Lemma 3.3.1) we arrive

at the condition
g(T) + (f( ) — A @St ) c(t) =0, for almost every . (3.94)

To summarize the present case:

v taking the form (3.89) is an eigenfunction for A, pom.1 w.r.t eigenvalue A, if (3.90)
and (3.94) are satisfied.

Unfortunately, (3.90) and (3.94) are a pretty unwieldy set of conditions. At the time of
writing, the author is unsure if these conditions could be simplified further. Nonetheless, we
attempt to address this concern by unpacking aspects of (3.90) and (3.94) (The following bullet

points are not critical to our discussion.):

e We focus on A > 0, since A; y,om-1 is asymptotically close to the main model operator Ag,
which are non-negative. So let A > 0. Then the expression f(T) — )\||\IlStlff ||2 is zero at

T =0, and is strictly negative if T # 0. This allows us to rearrange (3.94) into

B 9(7)
() = A2

= (7). (3.95)

(Note that f(t)—Al| \IISUH | does not depend on v.) Moreover, by a continuity argument,
we know that T — f(1) — )\||\IJStlff | belongs to L>(Q’ ) So if ¢ € L?*(Q"), then g €
L?(Q"). The converse does not hold, as f(t) — )\H\IIStlﬂr H2 is not bounded away from

Z€ero.

Note that to construct v (3.89), we make a choice on v, and ¢, which in turn determines
g(T) and ¢(7) respectively (colored in blue in (3.95)). Thus, (3.95) says that once v, has

been picked, c¢ is also fixed.
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e As for the first condition, let us rearrange (3.90) into
(24500 = 2) (Sva) = AG" (Mm@y i) (3.96)

This shows that if v takes form (3.89) and is an eigenfunction for A. hom-1, then > v, ¢
C(U(Qsoft +m)). Indeed, if > v, were so, then the LHS of (3.96) lies in D(GBASOft )y,
which has trivial intersection with the subspace {G*(II%°f:( (T )witlff (T)) cece L2(Q)}.

e In fact, it is rather unlikely that a positive A € ,O(ASOft (0)) (EBAEO,: (0 )) is an eigenvalue
for A¢ hom-1- This is because @ASO& (0)
(3.96) and (3.48), we require that > v, satisfy

— A is now a bijection, and combining (3.95) with

s AT OG0, 55 -
Asoft,('r) ~\)d )G ) = Hsoft,(r) Stlff,('[)'
(f, "0 =) 6o £lx) — AT "

(3.97)

In other words, a positive \ € ,O(ASO £, (T)) is an eigenvalue for A. om.1 if and only if there

exists v of the form (3.89) (Case 3), where the LHS of (3.95) belongs to L?*(Q’), and Y vy,

satisfies (3.97). While unlikely, it remains to be proven that this cannot happen.

e We do not exclude the possibility that eigenfunctions of the form (3.83) (Case 2) and

(3.89) (Case 3) contribute to the same eigenvalue .

We summarize our findings in the proposition below:

Proposition 3.3.3 (Eigenvalues of A; hom.1). A € R is an eigenvalue for A. pom.1 if and only if

A # 0 and if either one of the following (not mutually exclusive) criterion is satisfied:
e \€ (I(ASOft (0)) (EBAE?S’(O)) is such that (3.88) holds.

e There exist v of the form (3.89) satisfying (3.90) and (3.94).

The dispersion function for Model I

Before we proceed to Step 2 of our analysis (locating o (A. hom-1)), we have to recall the dispersion
function K(T,z) for Model I defined in [35].
Identify HsHE(0) = ran(HStiH’(T)]p<T) ¢) with C using the isomorphism

j(T) : ran(HStiﬁ’(T)|p(T)g) — C

3.98
(T) \Ijstlff || \I;Stlff ( )

||L (thlﬁ)

so that our homogenized operator may now be viewed as an operator on L? (Qboft) @ C, which
we will still denote by AE hom.g (and similarly for A. pom-1). In that case, .A( hom.T 1S OW given
by

DA 1) = {(w.8) € LA(Quo) B C :
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we D(A?)oft,(’c)) i ran(Hsoft,(T)P(T))’ B = j(T)Hstiﬁ,(T)onft,(T)u}’ (3.99)
A (AN ~(V +i7)’u
¢ hom-I 3 =1 (( j(T)ﬁStiﬂ,(T))*)—lp(T) [Fioft,(’r) u+ 8—2Mitiff,("r) (j(T)fIstiﬂ,(T))—l ﬁ}

—(V +i1)%u
_. ( T((TI)(u,;T > . (3.100)

Definition 3.3.4. The dispersion function for Model I, is the mapping K;. = K7 given by

K[:Q/XKU—>(C

1 ) <z(A(S)Oft’(T) —2)"twy + w[> (3.101)

Ki(t,2) = ————=-1.; Giff ,
| e @St

where w; = T10ft:(7) witiﬁ?,(»r).

We make some comments on K;(T, z) in relation to the dispersion functions of the stiff-soft-

stiff model in Section 3.1. First, it was proven in [35, Sect 5.3], that
P(C(Ag,?lom—l —2) P = Mk, (x,2)—2)-1, forall Te Q' and z € K,. (3.102)

Second, we recall an earlier remark, that K, sif1s(T, 2) of the stiff-soft-stiff model is simply

the function K;(T,z) extended by zero on the complementary 1D subspace Cgiff.int-
(1)

Finally, the most important point: We note that the resolvent equation for A} ;, when
the RHS is restricted to (f,0) € 0 C, is
—(V +i1)%u — zu = 0,
((T) )T (3.103)
T57](u76) _ZB:(Sv
and this can be written in terms of Kj(T,z) as
—(V +i1)%u — zu = 0,
( ) (3.104)
(K(t.2) = 2)8 =6,
as long as z € p(A(S)Oft’(T)). In other words, we may extend K7 to include real-valued z, provided

soft, (T

that z does not lie in (A4, )) for some T, or equivalently (by (3.48)), if z ¢ J(AZOft’(O)).

Locating the spectrum of A; hom-1

Motivated by the two-scale strong resolvent case [53], we characterize o(Ag hom-1) (for a fixed,

small ¢) in terms of K;(t,z). The key ingredient for this step is the following result:

Proposition 3.3.5 (A partial decoupling for Model I). Fix T € @'. Suppose that z €
p(AEOft’(O)), so that Kj(t,z) is well-defined. Then the resolvent equation for A%

£,hom-1

(ASs — 2) (g) - (j;) , (3.105)
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has a unique solution in D(A(T) ) for every f € L*(Qsott), f € C if and only if the system

e,hom-1

—(V +it)%u — z2u = g,

. (3.106)
(KI(T7 Z) - Z)U =9,
has a unique solution in D(Ag)lom_l) for every g € L?(Qgott), g € C.
Remark. e The significance of this result is that we have partially “decoupled” the system

(3.105), so that the operator in the second equation (3.106), namely K(T,2) — z, does
not depend on u. Note that v and @ are still connected by the identity

’lAjj — j(T)HStiﬂ"(T)FSOft7(T)u. (3107)

e To simplify the notation, we will write a typical u € D(ASOft’(T))%ran(HSOft’(T)P(T)) as

U = Uuq + up, where u, € D(ABO&’(T)) and u, € ran(I1°%(MP(M) | Furthermore, we write
ab _ j(T)HStiH’(T)FSOft’(T)ub7 (3108)
and note that @, = j (T)HS“H’(T)FSOR’(T)% =0. o

Proof of Proposition 5.3.5. (=) Let g € L?(Qsot;) and § € C be given. Since z € p(AZOft’(O)),
(A%Oft’(T) — z) is invertible. So take u, = (ABOft’(T) —2)"tg. Then @, = j (T)HSﬁH’(T)FEOft’(T)ua =0,

and we have
A9y [ - g _ g , 3.109
( €,hom-1 Z) 0 TI(ua7 O)T —2-0 T](U@, O)T ( )

and (ug,0) solves (3.109) uniquely by our assumption.
Next, pick f =0 and f =g in (3.105). Let (us, %) be the solution to

(Agﬁom-l - Z) <;Z> = (g) : (3.110)

which exists and is unique by our assumption. Note that the first equation of the system
(3.110) implies that up € ran(IFHMPM) since (A(S)Oft’(T) — z) is invertible. Note also, that by
the definition of K(T, 2), the second equation of (3.110) is

(K](T, Z) — Z)ﬁb = § (3.111)
Therefore, u = u, + up and u = ua/—l\—/ub = Uy, solves

(=(V+i1)? = 2)u = (=(V +i1)* = 2)ua = g,

(3.112)
(Ki(t,2) — 2)u= (K1(T,2) — 2)up = g.

It is clear that the choice u, € D(Af)Oft’(O)) has to be unique. Similarly, (up,u;) must also be

unique.
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(<) Let f € L?(Qsof;) and f € C be given. As (ASOft( ) — z) is invertible by assumption, we
can take u, = (AZOft (0 _ 2)~'f. Then @, = jOIEHH(0) (S)Oft’(T)ua =0, and we have

SRV f !
(Aa,hom—l ) <0> - (T[(’U,G,O) .. 0) (fua> (3113)

We now show that there exist a unique u € ran(I1°%-(DP() solving

T u 0
(A s = 2) <a;’> - (f— z ) . (3.114)

Indeed, by definition of Kj(t,z), the second equation of (3.114) is
(K1(t,2) = 2)ip = f = fu,, (3.115)

so the system (3.114) is the same as (3.106) with RHS (0, f — f., ), which we know has a unique
solution (uy, up), by our assumption on (3.106). Here, uj and w;, are related by (3.108). Moreover
the first equation of (3.114) implies that u, € ran(IT**(DP) since (AEOft () _ z) is invertible.

Back to the proof of the proposition, if we set u = u, + up, then © = 0+ Uy, and (u, u) solve

(1) B U +up | _ f _ f
(A~ 2) (0 . ) (fua JFe fua> (}v) . (3.116)

Once again, it is clear that the choice u, € D(ASOft 0 )) here is unique. This in turn fixes f,,,

and as a consequence (up, up) must also be unique. This completes the proof. ]

Remark. While the (3.108) says that fixing u; determines u,, we can proceed in the reverse
direction: If we know u, and we assume that u, € ran(HSOft( )p(r )), then wuy is completely
determined. Indeed since up = HSOft(m/Jimﬁ’(T)) for some ¢, the identity (3.108) implies that

stiff, (T

up = c||¥] H Hence

_ soft,(t) [ Ub  stifi(7)
up = 0+ [ (!‘I’S“ﬁ’(”\lwl ) . (3.117)
1

This is useful for the proof below. o
With the “decoupling” result (Proposition 3.3.5), we can now characterize o(Az hom-1):
Corollary 3.3.6. If z € p(Ay £, (0)) is such that Ky(t,2) —2 # 0 for all T, then z ¢ o(A: hom-1)-

Proof. By definition, (Achom-1 — #) is unitarily equivalent to fg (A(T

€,hom-1

i.e. (3.105). Since z ¢ o(A 30&’(0)), we

— z) dt, so we can

equivalently look at the resolvent equation for Aa hom-T*

may apply Proposition 3.3.5, and check that the system

—(V +it)%u — zu = g,

(3.118)
(KI(T7 Z) - Z)’lj =9,
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has a unique solution in D(A. phom-1) for every g € L?(Qsoft) and g € C. We remind the reader
that @ = jOTEIEEOPFH0,,

In fact, under the hypothesis of this corollary, we can show that the system (3.118) is solved
uniquely by

_N\ly .
u = (AP0 _ )=ty 4 reeft(0) <(Kf|(|T’ Zt)ﬁ (T)ZI) g@z;it‘ff’(T)) =t Uq + Up (3.119)
i

Indeed, it is clear that u, is the unique element in D(A(S)Oft’(T)) that gives (—(V+i1)% —2)u, =

g, due to the assumption z ¢ U(A[s)oft,(O))

. Meanwhile, by setting
Uy = jOREOPY Ty, =0, and @ = OOy, (3.120)
we see that
(Ki(1,2) — 2)u = (K1(T,2) — 2)up

)17 . —
:W_\Zl( I 7Stiﬁ || gj(T)Hstlff,(T) soft, (T 7T)¢it1ff7(”r) _ g (3121)

Hence u does indeed solve the second equation of (3.118). We argue further that the choice uy

is unique: By the assumption (K(T,z) — 2z) # 0, Uy is uniquely determined by g by the formula
(Ky(t,2) — 2)~'g = up. Having fixed @y, we observe that uy as defined in (3.119) is the unique
element in ran(IT%(DP() satisfying (3.120) (see (3.117)). O

Corollary 3.3.7. If z € p(A%Oft’(O)) is such that Ky(t,2) — 2z = 0 some T, then z € 0( Az hom-1)-
Proof. This means that there is some T such that the system

—(V +it)%u — 2u = g,
(KI(T7 Z) - Z)ﬁ = ga

(3.122)

does not have a unique solution for every g € L?(Qsott) and g € C. (Just consider a RHS (g, 9)
with g # 0.) The result now follows from Proposition 3.3.5. O

Proposition 3.3.8. J(ABOft’(O)) C 0(Ag hom-1)-

Proof. Let z € ¢ A g6 2 £ 0. Let U, € D AP0 pe an eigenfunction for A0
0 0 0

w.r.t. the eigenvalue z. We will construct a non-zero u € D(AEO&’(O)) + ran(115°%:(0)P0)) such
that (u,u) € l<:e1r(¢4g]})lom_I — z). We remind the reader that u = j (O)HS“H’(O)FZO&’(O)U.

Let up € ran(I1°%(0P(0)) 5o that we may write u;, = cHSOft’(OWTtiH’(O) for some ¢ € C. Then,

with @, and up defined by the formula (3.120), we have

Uy =0, and =TSO (3.123)
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With u, and u, = 0 at hand, we can compute

(A s —2) (;:) = (TI (uj, 0)T> = (J}S) . (3.124)

Let us show that we can always find (up, up) such that
0
~ ). (3.125)
_fua

0
A ) (") =
( &;hom-I > up Tr(up, ﬂb)T — 2y
<Asoft( wstlff (0)’witlff ) =0, and 5*2;&%’(0) —0. (3.126)

To see this, we first note that the setup of Model I gives us

This means that T7(up, Up) ' = TE(OI) (up, )" = 0, and thus

Stlff ) H

Tr(up, Up) | — 20y = —20p = —zc|| V] (3.127)

Since z and H\IISUH

|| are non-zero, we can always pick ¢ € C so that (3.125) holds.
In other words, by setting u := ug + up, which gives u = u, + up = Uy, the pair (u, u) belongs

to the kernel of (.A( ) z), hence

€, hom-1
zZ € O‘(‘Aii)})lom-I) C J(AS,hOm—I)' D

Remark. Proposition 3.3.8 does not imply that A € U(ASOft 0 )) is an eigenvalue for o ( Az hom-1)-
A is an eigenvalue for A, pom.1 if and only if [{T : A is an eigenvalue for Agﬁom_IH > 0 (see [20,
Theorem XIII.85(e)]). o

3.3.2 Model I1

We will use the notation of Section 3.2.2. We first modify Lemma 3.3.1 to the case of Model II.

Lemma 3.3.9 (Model II). Let ¢ € L?(Q’). Suppose that

sti sti 1 sti
<ASOft,(T)¢}1t ﬁ,(T)’ lt H,(T)>L2(F)C(T) W‘Pf ff,(T) (:L') — 0 (3128)

for a.e. z € Q and T € @', then ¢(¥ = 0 for almost every T.

Proof. In the case of Model II, H\I/Stllcf () |

(Lemma 3.1.4). Similarly to the proof of Lemma 3.3.1, we compute the L?(Q x Q') norm of the
LHS of (3.128), and it remains to show that

| is a non-zero constant that does not depend on T

<Asoft (T)¢Stlﬂ ,@bitlﬁ >L2 o <0 (3129)

for almost every T (note the strict inequality). For this, we note that ASf(9 (of Model II)
satisfies the same properties as AStHfHs(7) (of the stiff-soft-stiff model). Recall from Proposition
2.2.10, that this means A% (Y is strictly negative when T # 0. O
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Proposition 3.3.10. 0 is not an eigenvalue of Ayom.11-

Proof. We just have to note that —Ap, the Dirichlet Laplacian on the (connected) set U, cza
(Qsoft + M), has trivial kernel. This follows from (3.61). The rest of the proof proceeds in the

same manner as Proposition 3.3.2, using Lemma 3.3.9 in place of Lemma 3.3.1. ]

For the rest of the section, we will keep the discussion brief, since most of the details are
similar to Model I in Section 3.3.1.

For the non-zero eigenvalues A\ # 0 of Apom-11, consider the eigenvalue equation

Abom-11 (g) =A (;) : (3.130)

Once again, enumerating the possibilities for an eigenfunction (v, v), we have that

e Case 1: v =G* (C(T)HSOft’(T)thiH’(T)), where ¢ € L?(Qqoft) and c # 0, cannot give rise

to an eigenfunction for Ayom.11-.

e Case 2: v =vp € D(—Ap), where vp # 0. This is only possible if A is an eigenvalue
of —Ap, and there exist an eigenfunction vp  of —Ap corresponding to the eigenvalue A
such that

soft, (1) (v) ,,stiff,(7) _
<I‘1 (Gup )", ¢y >L2(F) 0 for almost every T. (3.131)

(It is possible that —Ap has no eigenvalues, and in that case (vp,0) cannot be an eigen-

function for Apom.11-)

e Case 3: v is of the form
v = vp + G (D0 (0 S0y (3.132)

where ¢ and vp satisfies (3.63), and both ¢ and vp are non-zero. Then, the first

component of (3.130) is
~Avp = Avp +AG* (et O) (3.133)
Setting

92(1) = (T (Gup) (9, 4510,

134
fQ(T) <Asoft ,(T) d}smff ”lpitlff > ’ (3 3 )

the second component of (3.130) gives us the condition
g2(T) + (fg(’r) - )\]|\Ilsltiﬁ’(T)||2> ¢(t) =0, for almost every T. (3.135)

To summarize,
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Proposition 3.3.11 (Eigenvalues of Apom.11). A € R is an eigenvalue for Ao, g1 if and only if

A # 0 and if either one of the following (not mutually exclusive) criterion is satisfied:
e ) is an eigenvalue of —Ap is such that (3.131) holds.

e There exist v of the form (3.132) satisfying (3.133) and (3.135).

The dispersion function for Model 11

Next, let us quickly recall the dispersion function Kiy(t,2) for Model II, defined in [35]. Intro-
duce the isomorphism j(® : ran(TI*H(%)| ) .) — C in the same way as we did for Model I. Now
the fibre-wise homogenized operator may be viewed as an operator on L?(Qgot;) ® C, which we

will still denote by 'Ag;)m—ﬂ (and similarly for Apom.11)- Aﬁ?m_n is now given by

D(Al(l?m-H) = {(uaﬁ) € LQ(Qsoft) ®C:
we ,D(A?)oft,(”r)) i+ ran(Hsoft,(T)rP(T))’ 8= j(T)HstiH,(T)F(s)oft,(T)u}’ (3.136)

(1) u\ —(V+ Z'T)Qu L —(V+ iT)Qu
A hom-11 =\ (0 st (1) y#y — Lp (1) rsoft,(1), ] T () E (3.137)
g (4711 )*) T PYT u Ty (u, B)

Definition 3.3.12. The dispersion function for Model II, is the mapping K11 given by

KHZQIXKU—>(C

1 (T) <Z(A%Oft7(’f) _ z)_l'UH -+ UH) (3138)

Ku(t, z) = P o | tiff
193 |23

where vy = I15°ft:(0) ¢itiff,(~:).

Once again we make three remarks: First, in [35, Sect 5.3], the authors proved that
Po(AD = 2) 7 Pe = Mggyesy-z1, forallT€ @ and z € K,. (3.139)

Second, we recall an earlier remark, that K gifint(T, 2) of the stiff-soft-stiff model is simply

the function K7i(T, 2z) extended by zero on the complementary 1D subspace Cg;g.1s. Finally, we

emphasize that K71(T, 2) may be extended to real-valued z, provided z ¢ J(A(S)Oft’(T)) for any T,

or equivalently (by (3.61)), if z ¢ o(—A).
Locating the spectrum of Ayom-11

Much of our discussion here follows with minimal modifications to the case of Model I. We
remind the reader that by (3.61), we have

o(—Ap) = U J(A%Oft’(T)).
T€Q’

We also have a decoupling result for Model II:
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Proposition 3.3.13 (A partial decoupling for Model II). Fix T € Q'. Suppose that z €
p(—Ap), so that Kyi(T, z) is well-defined. Then the resolvent equation for A](n?m_n

(An — 2) (g) - (9 , (3.140)

has a unique solution in D(A}(;)m_ﬂ) for every f € L?(Qsoft), f € C if and only if the system

—(V +i1)%u — 2u = g,
(KH(T, Z) — Z)a = g

(3.141)

has a unique solution in D(A}(l?m_ﬂ) for every g € L?(Qsott), g € C.
In the same vein, Proposition 3.3.13 gives us the following two results:
Corollary 3.3.14. If z € p(—Ap) is such that Kyi(t,2) — z # 0 for all T, then z ¢ o(Anom-11)-
Corollary 3.3.15. If z € p(—Ap) is such that Kyi(t,2) — 2 = 0 some T, then z € o(Apom.11)-
We state some partial results on whether an element A of o(—Ap) belongs to o(Apom.11):

. ft,
Proposition 3.3.16. J(ABOt (0)) C o(Anom.11)-

Proposition 3.3.17. If Tt # 0 and z € J(AZO&’(T)) is such that —%fz(’f) # z, where fo is

defined in (3.134), then z € U(A](n?m_n) C 0 (Apom.11)-

The first proposition follows by the same argument as Proposition 3.3.8. For the second

proposition, we follow the proof of Proposition 3.3.8, and a computation on Tir(up, up) ' — 22y,

will give us the criterion —% f2(T) # z. We omit the details of this short computation. Note

r o -
that QL:!H\ (Lemma 3.1.4).

1
Stiff,
w52

3.3.3 Stiff-soft-stiff model

In the final section of this chapter, we highlight some differences in the spectral analysis of
Models T (Section 3.3.1) and II (Section 3.3.2) with the stiff-soft-stiff setting.
Regarding the point spectrum, we can adapt Lemma 3.3.1 to the stiff-soft-stiff case, and we

will encounter the following two expressions:

< Asoft,(T)(a(T) witiff—int,("r) + p(® witiﬁ_ls’(T))» (a(T) ¢itiﬁ—int,(1’) i (o ¢itiff—ls,("r))> ’ (3.142)

6_2b(T)uitiff—ls,(T). (3143)

We see that by picking a(® = —b(™, and letting supp a be away from a neighbourhood of T = 0,
we may construct non-zero a, b € L%(Q’) such that the two expressions above sum to zero. As
a consequence, 0 is an eigenvalue of A; hom (compare this with Proposition 3.3.2 of Model I).
The analysis of the non-zero eigenvalues of A, pom, should closely follow Section 3.3.1 (Model

I), since the annulus Qg is at a positive distance from the boundary of the cube.
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Key difficulties arise when we discuss attempt to characterize the spectrum of A. pom in
terms of the dispersion functions obtained in Section 3.1. The first is to prove a decoupling
result in the sense of Proposition 3.3.5: What would the system (3.106) be for the stiff-soft
stiff model? Should this be a system of three equations (involving —(V + i1)2, Kiff-int (T, 2),
and Kgim1s(T, 2)), or five equations (involving the previous three, plus Fyif int—stifi-1s(T, 2) and
Fytift-ls—stiff-int (T, 2)) 7

The second and most critical point, is with regards to the extension of K int(T,2) and

Kifrs(T, 2) to real-valued z: Just like in Models I and II, we have to exclude the case

e U soft (T _ O'(ABOft’(O)),

TeEQ'!

so that Kgitint (T, 2) and Kgifrs(T, 2) are well-defined, and deal with this case afterwards. In the
present setting, there are more that needs to be excluded (see Section 3.1.1). For Kgf.int (T, 2),

these are:

e The case z = 0. This is actually a rather harmless case, as the derivation in Section 3.1.1
may be suitably modified, and in many instances simplified (e.g. the terms z[fgtift.int and
2(AP" —2)~! = 0 are absent). Note that 0 is always an eigenvalue, as discussed above, but
it might also belong to the absolutely continuous spectrum. That is, the intersection of the

closed sets 0qc( Az hom) and op(A: hom) may be non-empty due to embedded eigenvalues.

e The case z € R\ {0}, where z satisfies

1 —2 stiff-ls,(7) oft, stiff-1s,(T) stiff-1s,(T) .
+ g (£ (OO BT, 041 O))] 0
1

(3.144)

for some T (see (3.14)). In this case we do not have K int (T, 2), but we do have an extra
equation (3.144). Nonetheless this splits into further sub-cases, and in each instance we

have to check if the system (3.4) is uniquely solvable.

Lastly, we point out that if K int(T, 2) is undefined at some z € R, it does not necessarily
mean that z € 0(A; pom) — it just means that the second equation of (3.4) cannot be written

in the form (Kgimint(T,2) — 2)5 = J, and we have to deal with (3.4) as it is.
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Chapter 4
Conclusion and next steps

In this thesis, we looked at a high-contrast eZ? periodic composite, consisting of a “soft” and a
“stiff” material, and arranged in a stiff-soft-stiff setup (Figure 2-1). Under the Gelfand transform
and rescaling operators, we arrived at a family of operators {AET)}TGQ/ on L?(Q), where the

period cell @ and AET) are roughly described by Figure 4-1 below.

--» Stiff landscape, O(¢72)

- Soft annulus, 0(1)

= Stiff interior, 0(¢72)

Figure 4-1: The period cell Q = [0,1).
Our investigation on the stiff-soft-stiff composite was broken into two stages:

Summary of Chapter 2

In Chapter 2, we homogenized the composite. More precisely, we identified the (uniform in
T) norm-resolvent asymptotics of the family {Ag)}. As we saw in the thesis, the analysis of
high-contrast composites depends greatly on how the two materials are configured. We perform
the analysis using the method of boundary triples, following [35]. This is a novel approach
introduced by Cherednichenko, Ershova, and Kiselev in the context of homogenization. In
short, this is a tool that brings the problem on the unit cell Q) to a problem on the soft-stiff
interfaces, and in turn we may rely on the spectral properties of the Dirichlet-to-Neumann

operators on these interfaces. By adapting the framework of [35] to our setting, we obtained:

e A homogenization result for the stiff-soft-soft composite. This is Section 2.5. We give

an effective description of the composite by identifying the norm-resolvent asymptotics of

(v

€,hom"

AgT), namely the operator A

e Moreover, we supplement the asymptotic argument in [35] with additional details. These
are meant to explain how the estimates obtained are uniform over T and z. (See Proposi-
tion 2.3.3 and Theorem 2.3.4.)
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Summary of Chapter 3

The second stage of our investigation is detailed in Chapter 3. We passed to the norm-resolvent
()

asymptotics, and studied the family {AiT}zom}Tte. As our homogenized operator A_; is
defined using objects from boundary triples, there is some work to be done to uncover the
effective transport/scattering properties of our composite. We explored three aspects of the

homogenized description:

e In Section 3.1, we focused on the bottom right entry of the resolvent for Aéf})lom. This
is a 2 x 2 matrix, due to the two stiff components. We wrote each entry in terms of an
operator of multiplication on C by a constant. For the diagonal entries, we were able to
express this constant as (K(T,z) — z)~!, in which we refer to K (7, z) as the “dispersion

function”. In particular, our results are

— Cstif-int — Cstiff-ing: Theorem 3.1.6,
— Cstir-1s — Cstiff-1st Theorem 3.1.10,
— Cstifeint — Cstiffels: Theorem 3.1.12 and Corollary 3.1.13,

— Cstimr1s — Cstiff-int: Theorem 3.1.15 and Corollary 3.1.16.

e In Section 3.2.3, we wrote down the homogenized description of our composite on the full

space, i.e. the operator

e
Az hom = G* < / AgThode> G.
Q’ ’

e In Section 3.3, we performed a spectral analysis of A; hom-1 and Apom-11 (the norm-resolvent
asymptotics for Models I and II on the full space L?(R%), as obtained in [35]), with an eye

towards treating the stiff-soft-stiff case A. pom. Our results are

— For Model I: Proposition 3.3.3 (eigenvalues), Corollaries 3.3.6 and 3.3.7 (character-
ization of 0(A: hom-1) in terms of the dispersion function Ki(t,z2)), and Proposition
3.3.8 (when Kij(t,2) is undefined).

— For Model II: Proposition 3.3.11 (eigenvalues), Corollaries 3.3.14 and 3.3.15 (char-
acterization of o(Apom.q1) in terms of the dispersion function Kii(T,z)). We only

provided partial results when K7(T, 2) is undefined (Propositions 3.3.16 and 3.3.17).
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Next steps

We mention some open problems and possible directions for future work.
First, we have some unfinished tasks from Chapter 3, namely Section 3.3, the spectral analysis

of A¢ homs Ae hom-1, and Apom.11. Here are a list of them:

e On eigenfunctions of Case 3, (3.89) and (3.132): Can we simplify the conditions (3.90)
and (3.95) for Model I?7 (And similarly for Model II.)

e Find the singularly continuous spectrum of A. hom, Ae hom-1, and Apom.11. We expect that
these are all empty, since they arise from the dilation of an operator that is asymptotically
close to Psoft(AéT) — 2) " Py

e In the case of Model II, what is 0(—Ap)? Does o(—Ap) contain eigenvalues? When does
A € o(—Ap) belong to the spectrum of Apom.q1?

e Extend the arguments of Sections 3.3.1 (Model I) and 3.3.2 (Model II) to A hom. See

Section 3.3.3 for a discussion on the difficulties of this task.
Here are some directions for future work:

e Investigate the norm-resolvent asymptotics with respect to other scaling choices e*, o > 0,
starting with Models I and II.

e Adapt the boundary triple approach to unbounded domains. This will be a step towards

treating non-periodic and even random high-contrast composites.

e An example of a random high-contrast composite: Consider the stiff-soft-stiff setup (Fig-
ure 1-1), where the coefficient matrix a2 = @2, is random on the soft annulus, and equals
£72] on the stiff regions. What is the norm-resolvent asymptotic of the corresponding

operator A;,, = —div(as-)? What is its spectrum?

e Establish a precise connection between the dispersion relation of the pre-limit (i.e. A. for

very small €) and the dispersion functions K (T, 2).

This is not immediate from norm-resolvent asymptotic equivalence, as o(A;) is purely ab-
solutely continuous, while o(A¢ hom) may contain eigenvalues. It is expected that K (T, z)
captures the absolutely continuous part of the spectrum (e.g. Corollaries 3.3.6 and 3.3.7),

but as mentioned above, this has yet to be shown.
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Appendix A

A heuristic explanation of the

phrase “resonant inclusions”

In this appendix, we provide an informal justification of the term “resonant inclusions”, which
we use to describe the soft annular regions of the stiff-soft-stiff model (Figure 2-1).

We do this in two steps. Step 1: Consider the matrix A(z) = A.(x), given by

Al) g2l if x lies in the soft regions, (A1)
x) = .
1 if  lies in the stiff regions.

For a fixed wavenumber k € R?, let us find u = u(z), made up of standing waves, such that
—V - A(2)Vu(z) = [k|?u(z). (A.2)

To find u, we have a useful computation

_v,52vei§-m — |k’26i§-x7 A3
v . yeika = |k|2eik e (A-3)
so that u is given by
€1 if z lies in the soft regions,
u(w) =4 (A4)
e if z lies in the stiff regions.

Thus, when u(x) enters the soft region, it has wavelength of the order O(e), which coincides
with the size of the (width of the) soft inclusions. In this case we say that the soft inclusions
act as “resonators”.

Step 2: Returning to the wave equation
(att -V AV)U(%’, t) = 0, (A5)

we would like to find plane wave solutions that oscillates at a specified frequency w. Moreover,

we ask that the wave keeps its direction of propagation as it passes through the soft and stiff
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regions. In this case, we have

Ulzx,t) = u(z)e ™" (A.6)
Here, w is fixed, and u(z) is made up of standing waves. For instance, let us write

etFsof' if g lies in the soft regions,
u(z) =« (A7)
eFstr® if 1 lies in the stiff regions.

Our requirement for a constant direction of travel gives us ckgot = Kstit-

Since U(x,t) solves (A.5), we require that —V - AVu(z) = w?u(x). And in this case, it is

clear from Step 1 that we must have ¢ = é In other words, our solution is

i Estif
(& €

Ulet) Te=wl if 2 lies in the soft regions, (A8)
'CC, = . . *
ethstit o=t if 2 Jies in the stiff regions,

where we can pick any kgig € R? so long as |ksig|? = w? (the dispersion relation for the wave
equation (0y — A)U = 0).

To summarize, we call the soft inclusions in Figure 2-1 “resonators”, because of the heuris-
tic that if U(x,t) is a plane wave propagating through the full medium, solves (A.5), oscillates
at a specific frequency w, and travels in a single direction, then as U enters the soft region, its
wavelength will be comparable to the size of (the width) of the inclusion.

Figure A-1 below provides a sketch of U(x,t), in the setup of Model I (Figure 1-2, soft
inclusions in a stiff medium).

stiff region  soft region

VAN

v
v
v
v
1
1
v
Y
1
v
1
1

o(1)

0(e)

Figure A-1: A picture of U(x,t), in the 2D case, for Model 1. The wave is
oscillating into and out of the paper with frequency w, and is travelling in the
direction % € S! (to the right). The wavelength is O(1) in the stiff regions,

and becomes O(¢) as it enters the soft inclusions. U(x,t) has amplitude O(1)
throughout the medium.
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Appendix B

Comparing various notions of

convergence for sets

In this appendix, we will look at various notions of convergence for sets on a metric space X.
The main example we have in mind is the case X = C.
First, we look at convergence with respect to the Hausdorff distance dy. We repeat the

definition of dg here for the reader’s convenience:

dg(M,N) :=max< sup inf |z —y|,sup inf |z —y| (B.1)
zeM YEN yeN:ceM
=inf{e>0: M C U (N)and N C U.(M)}, (B.2)

where U.(M) = {z € X :inf ey | —y| < €} is the e-fattening of the set M. It is assumed here
that the sets M and N are non-empty. For simplicity, let us assume further that M and N are

closed.

Definition B.1. [I, Definition 4.4.11] Let M,, and M be non-empty and closed subsets of X.
We write M, A MorM=H- lim,, o0 M, (“Hausdorff”) to mean that

dug(Mp, M) — 0, asn — oo. (B.3)

In this case, we say that M,, converges to M in the Hausdorfl metric.
Second, we introduce a new notion of convergence:

Definition B.2. [I, Definition 4.4.13] Let M,, and M be non-empty and closed subsets of X.
We write M, KMo M=K-— lim,, o0 M), (“Kuratowski”) if the following two conditions

are satisfied:

(i) If x = limg_,o0 Ty, for some subsequence {z,, } of a sequence {z,} such that z, € M,,
then z € M.

(ii) If z € M, then there exist a full sequence {z,}, with x,, € M, such that lim, - z, = .

In this case, we say that M,, convergence to M in the sense of Kuratowski.

114



The two conditions in Definition B.2 can be written in terms of “upper closed limits” and
“lower closed limits” respectively. For this we follow [, Section 5.2], restricting ourselves to the

case of a metric space X.

Definition B.3. Let X be a metric space and {M,,} be a sequence of subsets of X. Define

Li M, := {x € X : for all open neighbourhoods U of z, U N M,, # 0 for n large enough},
Ls M, := {x € X : for all open neighbourhoods U of z, U N M,, # 0 for infinitely many n}.

We call the set Li M, the lower closed limit of M,, and Ls M, the upper closed limit of M,,.

In other words, Li M, is the set of limit points for {M,}, and Ls M, is the set of cluster
points for {M,,}. As the name suggests, we always have Li M,, C Ls M, and Li M,, and Ls M,
are closed. Using upper and lower closed limits, we can write the two conditions in Definition
B.2 as

(i) Ls M,, C M,
(ii) M C Li M,.

We can also do the same for limit set convergence (Definition 1.3.6). This gives us an

equivalent way of defining limit set convergence:

Definition B.4. Let M,, and M be non-empty and closed subsets of X. We write M, NV

or M =1s — limy,—,0o M,, (“limit set”) if the following two conditions are satisfied:
(i) Li M,, C M,
(i) M c Li M,

That is, if M = Li M,.

Remark. Clearly, M,, always has a limit in the sense of Definition B.4, namely Li M,. But
it is another question if a candidate set M equals this limit. For example, we are interested
in the case M, = o(Ay) and M = o(A) for self-adjoint operators A, and A. We know that
Is — limo(A,,) exist, but it is another question if o(A) = ls — limo(A,,) holds. o

In this way, we can now easily compare the four notions of set convergence. To remind the

reader, the four notions are:
e Hausdorff convergence (Definition B.1),
e Hausdorff convergence on compact subsets of X (Definition 1.3.5),
e Kuratowski convergence (Definition B.2),
e limit set convergence (Definition 1.3.6).

Clearly, if M,, converges in the sense of Hausdorff, then M,, must also converge in the sense
of Hausdorff on compact subsets of X, and the two limits must coincide.
As for Hausdorff convergence on compact subsets of X and Kuratowski convergence, we

quote the following result:
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Proposition B.5. [I, Proposition 4.4.14] Assume that M,, and M are non-empty and closed
subsets of X, then M, X M if and only if M, HS .

Finally, for Kuratowski convergence and limit set convergence, we have

Lemma B.6. Assume that M,, are non-empty and closed subsets of X. If the Kuratowski limit

K — lim,,_,oc M, exists, then it must coincide with Is — lim,, . M, i.e.
K— lim M, =Is— lim M,. (B.4)
Proof. The conditions (i) and (ii) for the Kuratowski limit K — lim,_,, M,, means that

Ls M, C K — lim M, C Li M,,. (B.5)
n—oo

Together with Li M, C Ls M,,, this means that

K— lim M, =Ls M,, = Li M,. (B.6)
n—oo
Meanwhile, we recall that Is — lim,,_,,, M,, is just another notation for Li M,. ]

Remark. In fact, the author of [1] defines Kuratowski convergence by (B.6). As Li M,, C Ls M,

is always true, this is equivalent to Definition B.2 (which we took from [1]). o

To summarize, Hausdorff convergence implies Hausdorff convergence on compact subsets
of X, the latter is equivalent to Kuratowski convergence, and Kuratowski convergence implies
limit set convergence. Moreover, if one limit exist, so does the next, and the limits must coincide
(as an equality of sets).

To make things concrete, let us provide several examples to show that these notions of set

convergence are indeed distinct. We focus on the case X = C.

Example B.7 (Limit set vs Kuratowski).

{0,1} if n is odd,
M, = (B.7)

{0,—1} if n is even.
Then Li M, = {0} and Ls M,, = {-1,0,1}. So Is — lim,,yoc M,, = Li M,, = {0}. Since
Li M,, # Ls M,,, K —lim,_,, M, does not exist. We may use Proposition B.5 to conclude that
HC —limy,—, 0 M,, does not exist (alternatively a direct check would suffice). Similarly, it is clear

that M, does not convergence with respect to the Hausdorff metric dg. o

Example B.8 (Kuratowski vs Hausdorff, with unbounded sets).
M=N and M,=Nu{n+1}. (B.8)

Then dg(M,, M) = % for all n, and thus M, does not converge to M in the Hausdorfl sense.
In fact, dg (M, M,,) > 1 if n # m, so M,, does not have a Hausdorff limit. On the other hand,
we may check directly from the definitions, that M, HC , M, KM , and M, NV o
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As discussed in Section 1.3.3, if T}, and T are self-adjoint operators on a Hilbert space H,
then T,, - T implies o(T},) He o(T). The following example shows that this cannot be
upgraded to “o(T},) LI o(T)”:

Example B.9. Let H = L?([0,00); C). Define the functions f,, f : [0,00) — C by

f(CC) = Z ml[m—l,m)(x)a
m=1

= 1
fu(z) := Z ML —1,m) (z) + 51[n+%,n+1)($)
m=1

n 1 o0
— Z ML —1,m) (x) + nl[n7n+%)(w) + <n + 2) 1[n+%7n+1)(m) + Z ML 1,m) (x).
m=1 m=n+2

(The second line of f, views the function as sum of four terms with disjoint support.) Now

consider the multiplication operators My, and My on ‘H. We have
o(My)=ranf =N and o(My,)=ranf, =NU{n+ 3}.

In particular O lies in the resolvent sets of My and My, . Let us compute the difference of the

resolvents for My and My, at the point z = 0:
(Mf)fl - (an)il = Mf—1 — Mfgl = Mfflffﬁl'

Figure B-1 shows a graph of f=1 — f 1.

gx),
1 1 |
n n+1/2

n n+s n+l1

Figure B-1: The graph of g = f~1 — f 1.
We may now compute

_ _ 1 1 w+ 5 -
1M1 prllop = 157 = oo = 5 = = =222 50, asn s oo,

Thus, My, =M ¢- Meanwhile, Example B.8 tells us that

dy(o(My,),0(My)) 40, while o(My,) 25 o(My). o
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Appendix C

Preparatory results for estimating
the first Steklov eigenvalue with
respect to the stiff landscape

The following result is a slight modification of [16, Proposition A.7]:

Proposition C.1. There exists a constant C' > 0 such that for every u € H} (Q), T € Q" we

have the following estimates:
1l ull 2y < C Y + i) ul 2ggucn - (C.1)
IVull p2(gicay < C IV +i1) ull 2o,y 5 (C.2)

u—/u
Q

Proof. Fix u € ngr(Q) and consider its Fourier series decomposition:

u = Z ak627rik'y’ Vu = Z (27rik)ake27rik'y’ u— / u = Z ak627rik-y‘
Q

kezd kezd kezd\{0}

< CI(V +it) ull 2 gy - (C.3)
L2(Q)

Plancherel’s formula yields

2

= Yl

L2(Q)  kezd\{0}
(C.4)

2 2
||U||L2(Q) = Z |al€|27 HVUHL?(Q;cd) = Z |27T|2|ak|2\k|2,
kEZd keZd

u—/u
Q

Furthermore, we have

(V+itu= Y (2mik+it) are™*v. (C.5)
kezd

Now we calculate

IV +it)ull 22 ey = Y lak @mik +it) P = > |ax*2mik +it]> + |ao*|T]*.  (C.6)
kezd kez\{0}
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Since T € Q' = [, )4, if at least one (k); > 1, it is clear that
2mik + it)* > C, (C.7)
where the constant C' > 0 does not depend on T and k € Z¢\ {0}. This gives us

IV +it)ulZogen = > lal?|2mik +it* + |ao|* [

kezd\ {0}
2 (C.8)
> Z Clag|* = C u—/u .
kezd\{0} Y llL2(Q)

Moreover, we have

IV +it)ullfagea = D lawl*2mik +it]® + [ao*t* = Y Cltflaxl® = Clt* [ull72(q) -

kezd\{0} kezd
(C.9)
and also
. 2 2
IV + 0l g = S ClagP2el2lk]2 = C [Vul2a g0 - ©.10)
kezd
This concludes the proof. O
We are interested in using the above inequalities to estimate the eigenvalue pitiff_ls’m.
Corollary C.2. There exist constants C1, Cy > 0 independent of T such that
Cylr? < =S < oy |72, (C.11)

Proof. Fix u € Héer(QStiff_]s), since 0Qgtift.1s = I'ls 18 smooth, v may be extended to a function
in ngr(Q), which we will still denote as u, such that

1V + it)ull 2 i) < CIY + it)ul 2 pnice: (C.12)

where the constant C' > 0 only depends on Q.15 [25]. Combine this with (C.1) and (C.2),

and we get
Tl (Quige) < Cltlllullmg) < CI(V +it)ull2(g.cay < CIV +iT)ull 2(Quug ey (C.13)
By the Trace theorem, this implies that
[tlllulrg 2y, < CIV +it)ull L2 (@up..ica), (C.14)

which in turn gives us the lower bound of (C.11) by the min-max principle. The upper bound
follows by testing 1g_,,. . in the variational characterization of usltlﬁ_ls’(T) (similar to Step 4c in

the proof of Proposition 2.3.5). O
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Appendix D

Proofs for Section 2.4

Proof of Proposition 2./.7. Consider the generalized resolvent Pyqg (A\( ) —2) "' Pyogt, which

T

e, PV P
we know is O(e?) close to R?)(z) = Psoft(A?) — 2) 71 Py by Theorem 2.4.2. This can be ex-
pressed as

(1) -1
PSOft(Ae,Pf) P 2)" " Paott

1 .
= soft(AgT()) - 2)71Psoft - Psofth[) (Z) (PY) + /P(T)Ma(T) (Z)> P(T) (SE(T) (2)> Psoft

_ (ABO&’(T) _ z)_l . SSOft,(T)(z) (PJ(_T) + p(T)ME(T)(Z)> p() (Ssoft,(’[)<2))*

. —1 *
_ (A[s)oft,(”r) _ 2)71 . Ssoft,(T)(Z)P(T) (P(T)Mestlﬁ,(T)(Z)'p(T) + p(T)Msoft,(T)(Z>7)(T)) PO (Ssoft,("r) (g)) )
(D.1)

The second equality follows by the same reasoning as Proposition 2.4.5. The final equality uses

Lemma 2.4.1. On the other hand, by the Krein’s formula, we have

R (2) = (A?)Ofty('f) — )t

e eff

—1 %
_ Ssoft,(’c)(z) (p(f) + p(T)Mgstifﬂ(T)(z)p(T) + P(T)Msoft,(’t)(z)> P <Ssoft,(f) (5)>

_ (Azoft,("c) . Z)_l

. Ssoft,(r)(z)P(r) (P(T)Mgstiff,(’f) (z)p("r) + p(T)Msoft,(r)(z)p(T)) -1 P (SSO&’(T)(E)) * '
(D.2)

The second equality follows from the observation made before the proposition. O

Proof of Proposition 2.4.9. We will verify this entry-wise. The top left entry is done in Propo-
10

Ae,P(f) P
O(£?) close to (AE:T) — 2)7! by Theorem 2.4.2. In the computations below, we will use

sition 2.4.7. For the remaining entries, we will compare this with ( — )71 since it is

ran (SSOft’(T)(z)P(T)) C DALY Lran (el p) (D.3)
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which is a consequence of the identity S(z) = (I + 2(Ag — z)"})IL. The argument for as; and

a3y are the same. For ao;, we have

Pstiff—int (A\(T) - Z)_lpsoft

e, P, P
— it (7)) p (D) (P(T) MEHE ) ()P0 4 plo) ppsofts(0)( z)P(T)) o ( gsoft, (1) (2)) x
By a similar argument to (D.1).
_ Sstiff—int,("r) ( z)FBOft’(T) Gsoft, (1) ( Z)P(T) (P(T) Mstiff,('r) ( Z)P(T) 1 p(0) ppsoft, (1) ( Z)P(T)) -1 P ( gsoft,(T) ( 2)) *
By Proposition 2.2.13(2), TEef(0 gsoft.(0) (1) — .
__gtiftine () ()50 ) [ () ()Pl (fp(T) MEE) ()P 4 () ot (z)pm) o ( goft.(7) (2)) ]
= S ()R (2) | (=) — (47" = )7
By (D.2).
— qretifing (107 ) [Riﬁig(z) -~ (Azoft,(T) _ z)—l} +O(e2)

By Lemma 2.2.20. The remaining terms equals P(PA =P (SSOft’(T)(Z)) , which is O(1).
The argument for ai2 and aq3 are the same. For a12, we have

Pyogt (A\S) - Z)_lpstiff—int

P p
— _5%oft(0) ()P (P(T) M) ()p(0) 4 (@) ppsoft(0)( Z)P(T))_ P ( ptiftint, (0 (2))*
Similarly to (D.1). The decoupling term (Ag — 2)7! vanishes as L*(Qgof) and

(v

Qstlﬂ‘ int) are orthogonal, and are invariant subspaces for AE o

'p(T) POMO (= )7:(1)) 173(1) (Ssoft,(T) (Z))*>* (Sgtiff—int,(’r)(z))*

-(-
Take adjoint twice. Use Proposition 2.2.13(5).
<k Ssoft T) )P(T) (P(T)M( )( )p(T)) 173(1) (Ssoft,('f)(z)>*>* (S:tiff-int,('t)(z)>*
By Proposition 2.2.13(2), I‘BOft (%) gsoft(x )(z) = I, and FSOft () may be restricted to k(¥ (z).
— (k(T)(z) [Rgﬁr(i) _ (ABOft’(T) _ Z)AD (S:tlﬁ—lnt7(T) (5))*
_ (k(”r)(z) [Rife)ﬁ(f) B (Azoft,(T) _ 2)—1D* (Hstiff-int,(’r)>* +O(2).

The second last equality follows by (D.2). The final equality follows by Lemma 2.2.20.

The argument for a9y is the same as ass are the same. For ass, we have

~

Pstiﬂ—int(A(T) (1)

-1
— 2z P L
Epr ,P(T) ) stiff-int

— Ai‘fé)ff—int,(’r) )l S:tiff-int,(i’) (Z)P(T) (P(T) ME(T)( Z>P(T))‘1 P (Sstiff-int,(*r)(i))*

Similarly to (D.1).
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_ (Ai‘fé)ff-int,(’r) )l S:tiff-int,(i’) (Z)k("r) (Z)Ssoft,(r)(z)zp(’r) (P(T)ME(T)(Z)?(T)) P (S:tiff-int,(r) (5)>*
By Proposition 2.2.13(2), T’ SOft (1) goft, (v )(z) =1, and FZOft’(T) may be restricted to k(¥ (z).
iff-in - stiff-in = = soft, =\ — * stiff-in 2\
= (Azfo t,(1) _ 2)~ 1 4 gotiff t’(T)(z)k(T)(z) (k(T)(z) [Rgﬂ(z) — (A t,(T) _ 2) 1]) (SEtﬂ t,(T)(z)>
By the arguments of a1s.
_ Hstiff—int,('t)(z)k(’r)(z) (]{(T)(Z) [RSQH(Z) _ (Agoft,("r) _ 5)_1]> (Hstiff—int,("r)(z)> + 0(62)

By Lemma 2.2.20 and Proposition 2.2.4.

Finally, the argument for as3 and ass is similar to that of ass, the only difference being that

1

the decoupling term (Ag — z)~" is now absent. This completes the proof. ]

Proof of Theorem 2./.20. We will start with the top left entry of (2.167). To qualify as a
resolvent of Apom at z, the operator on the top left entry must take any given f € L?(Qgof:)

to u, where u is the first entry of (u, )’ € D(Anom), and (u, ) is the unique solution to the

fTSVOftu —zu=f,
(Anom—2) [ ) = (1) = {4 ] ! (D.4)
u 0 — (IS8 ) =180ty 4 Bl — 21 = 0.

But we may rearrange the second line of the latter system:

problem

(ﬁstiff *)flfwioftu —(B-2)i=0

& ISty — (1) (B — 2)i = 0

N \I//fwioftu _(ﬁstiff)*(B _ Z)ﬁstiﬁ“ f%oftu —0. (D.5)
Br:= Bo:=

That is, the mapping f +— u as described above, is precisely that of (E%‘);ftﬁl —2)7! = R(2),
provided it exist. This means to check the conditions on By + 81 M*%(z) so that Theorem
2.2.16 applies: The condition on the domains of 5y and 57 are immediate as these are bounded
operators. The boundedness also implies that Sy + 81 M*°f(z) (with its maximal domain) is
closed.

As for the boundedness of the inverse, it suffices to check that it is bounded below, since we
are working on a finite dimensional space 8 Just like in Theorem 2.3.4, it suffices to show
that the imaginary part is bounded below: Let ¢ € &, then

‘( [ ( mff) (B Z)ﬁstiﬁ+Msoft(z)] &, ¢>g
‘( [z (11t *Hstlff+Msoft( )} &, ¢)g
_ ‘Imz ( Ssoft Ssoft( 2) + (ﬁstiﬂ)*ﬁstiﬁ¢’ d))g

as (IT9F)* BITHT is self-adjoint.

by Proposition 2.2.13(7).

= |Imz| <(SS°ft( ))* 5%t ()¢, ¢>g + |Imz| ((ﬁStiH)*f[Stiﬁqb, ¢>g both operators are positive.

> [Imz| |12 both operators are positive.

Hst iff
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> [Imz| [P 20 ll0l5 (D.6)

ﬁstiﬂ_ngv

We have shown that R(z) exists, and equals Piog; (Anom —2) ~* Psots. Next, we check the bottom
left entry of (2.167). This is the mapping f — u, where (u,u) solves the system (D.5). But
we defined @ = I3y, and have just shown that u = R(z)f, therefore

= ﬁstifff%oftR(Z)f
_ ﬁstiﬁf%oft [R(Z) _ (A%Oft _ Z)_l] f as D(A(S)Oft) = ker(f‘%c’ft) by definition.

= Ik (2) [R(2) - (3" = 2)7'] 1.

The final equality holds by exactly the same argument as Proposition 2.4.9 (the term as;),
since the Krein’s formula is now applicable to R(z). We have shown that Py (Anom —2) " Peoft
equals the bottom left entry of (2.167).

Next, we discuss the top right entry of (2.167). Similarly to R(z), this must take any
given f € HUT to u, where u is the first entry of (u,4)" € D(Apom), and (u, @) is the unique

solution to the problem

0 Asoftyy — zqy = 0,
u
(-Ahom — Z) <ﬂ) = (f) <~ I fbioftu _ (ﬁstiff)*(B o Z)ﬁsti{f f%Oftu _ (lv‘[stiff)*ﬁ (D?)

B1= —Bo=
We would like to put the system into the form (2.61), forcing us address the term (ﬁStiH)*f

7€ D(APY) satisfying

Using Proposition 2.4.15(5) (“furthermore” part), we find some v
f\ioftvf _ (ﬁstiff)*f'

Now consider the function v = R(z)(A$" — z)va. By applying Theorem 2.2.16 to R(z), we

know that v € D(A\SO&(T)), and furthermore v solves the following system uniquely:

(A%ft — 2)p = (AP — 2)v-

f7
Bolsofty + BiI50fty = 0.
Using the first line of the system, v € D(APY), and AP C Asoft

(Asoft — 2)(v — vy) = (At — 2)vp— (Asoft _ 2)up=0.

Using the second line of the system, v € D(AP™), and D(AP") = ker(I3°),

Bof\aoft (’U - ’Uf) + fwioft(,u - Uf) _ _ﬂof\aoftvf_ f\ioft,vf _ —f§0ftvf _ _(ﬁstiff)*.]?' (DS)

In other words, if we define u € D(A%*M() by u := v — vy = R(2)(A¥t — 2)uy = v, then u

is a solution to the system (D.7). To show that the solution is unique, we consider the fully
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homogeneous case, f = 0 and f = 0. But this can be viewed as a special case of (D.1), for

which uniqueness has been established by Theorem 2.2.16. We further compute

u = [R(z) (At z)—l} (AP — 2oz

_ _Ssoft(z)p(T) (50 + ]\2[50& ) 173 (SSOft )>* (A%Oft — z)vf By Krein’s formula.

— _gft(5yp) (50 + T ) ' p( Tty By Proposition 2.2.13(4)
_ Ssoft( Z)p(T) ( Bo + Msoft ) ! plt 1‘[5tlff f Definition of v

_ (k:(z) [R(Z) (At 2)—1}) (1Tt 7, (D.9)

where the last equality is proven in the same way as in Proposition 2.4.9(the term a12). Therefore
the expression for u does not depend on the choice v+ 7 and coincides with the top right entry
of (2.167).

Next, we discuss the bottom right entry of (2.167). Similarly to the bottom left entry, we

= _ Tystiffpsoft
use u = IIP"HI

u, and that u is given by (D.9) to see that
& ﬁstiﬁ“fxgoft (/{7(2) [R(E) _ (A%oft _ 2)71]> (ﬁstiff)*f
= TPk (2) (k(2) |[R(2) — (45" = 2)7)] ) (P9 as D(AF™) = ker (T3,

Finally the show the self-adjointness of Apom- Notice that the arguments provided above
implies that (Apom — 2) is surjective for all z € C\ R. As Ayop is symmetric by Lemma 2.4.19,

the conclusion follows from [22, Proposition 3.11]. O
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