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Summary

This thesis concerns the effective behaviour of waves in high-contrast composite media. We

formulate our study in the language of operators as follows: Fix dimension d ≥ 2. For ε > 0,

consider the operator on L2(Rd),

Aε = −div (aε∇·) , where aε is εZd-periodic.

Here, Aε has the following features

• (“Stiff-soft-stiff” setup) If we write aε = ãc(
·
ε) for a Zd-periodic matrix ãc depending

on c > 0, then we define

ãc(y) =

cI, y ∈ ∪n∈Zd(Qsoft + n),

I, y ∈ ∪n∈Zd((Qstiff-int ∪Qstiff-ls) + n).

Here, the sets Qsoft, Qstiff-int (“stiff interior”), and Qstiff-ls (“stiff landscape”) partition the

reference period cell Q = [0, 1)d, and are arranged as follows: We have an annular “soft”

region Qsoft with remainder filled by the “stiff” regions Qstiff-int and Qstiff-ls. We impose

transmission boundary conditions on the soft-stiff interfaces.

• (High-contrast/resonant inclusions) We allow c to depend on ε. That is, Aε depends

on ε in two ways, namely, in the periodicity and in the material coefficients. In particular,

we will focus on the case aε = ãε2(
·
ε).

These features, together with the following requirement, makes our problem new

• (Mode of convergence) Identify the limiting behavior of Aε, as ε ↓ 0, in the norm-

resolvent sense.

After an introductory chapter, Chapter 2 details the process of homogenization for the stiff-

soft-stiff composite. We identify an operator Aε,hom that is asymptotically equivalent to Aε in

the norm-resolvent sense, using an operator framework developed by Cherednichenko, Ershova,

and Kiselev in [35]. Chapter 3 focuses on the homogenized description Aε,hom. We investigate

three aspects of Aε,hom. First, we extract “dispersion functions” Kstiff-int(τ, z) and Kstiff-ls(τ, z)

from Aε,hom. These are meant to capture the effective dispersion relations of an acoustic wave

travelling through the composite. Second, we provide formulas for Aε,hom on physical space

(Aε,hom was previously defined on frequency space). Third, we perform a spectral analysis on

Aε,hom. Chapter 4 summarizes what was done in Chapters 2-3, collects the new results, and

concludes with open questions and next steps.
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Chapter 1

Introduction

1.1 Homogenization, high-contrast homogenization, and wave

propagation

This thesis lies in the subject of homogenization, which is the study of approximating a highly

heterogeneous medium with a homogeneous one. Physically, one is motivated by the desire to

understand various properties of composite materials. However, a good composite mixture is

highly heterogeneous in space, so one faces serious numerical challenges if one decides solve the

corresponding mathematical model directly. Guided by the intuition that the mixture looks

as if it is comprised of a single “averaged material” when zoomed out sufficiently far, we may

instead look at the mathematical model for this “averaged material”, as an approximation of

the original composite.

The above describes the idea of homogenization in physical terms. Turning this idea into a

mathematically rigorous one has been a subject of intense study since the 1970s, and to date

has amassed an extensive literature. We mention for instance, the books [2, 3, 6, 9, 10, 16, 18,

23, 27]. Below, let us give an overview of one such study, from the point of view of a person

who wishes to understand the transport/scattering properties of a composite material. (This is

the point of view that we will take in the thesis.) We will keep the discussion fairly brief, and

refer the reader to [10, Chapter 12] for rigorous statements.

(Moderate-contrast periodic) homogenization of the wave equation

Fix dimension d ≥ 2. For ε > 0, consider the initial-value problem for the wave equation:∂ttuε − div (aε∇uε) = 0 in Rd × (0,∞),

uε(·, 0) = u0, ∂tuε(·, 0) = u1 on Rd × {t = 0},
(1.1)

where u0 and u1 are given, and we seek a solution uε(x, t) in an appropriate sense.

The coefficient aε : Rd → Rd×d is a matrix-valued function which encodes physical properties

of the material. For simplicity, let us assume that our composite consists of two materials, a

“soft” one and a “stiff” one, and that they are combined in a periodic fashion to form a fine

mixture. We can encode this kind of structure in aε by letting aε be εZd-periodic and take
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one of two possible values. That is, by writing aε = ãc(
·
ε), where ãc is a Zd-periodic matrix,

depending on some fixed c > 0, let us set

ãc(y) =

cI, if y lies in the soft regions,

I if y lies in the stiff regions.
(1.2)

We refer to the choice (1.2) as the “moderate-contrast” setting, describing the fact that the

matrix aε is bounded and positive definite, uniformly in ε. That is, there exist cellip > 0 and

Cbdd > 0 such that

aε(x)ξ · ξ ≥ cellip|ξ|2, for almost every x and all ξ ∈ Rd, (1.3)

∥(aε)ij∥L∞ ≤ Cbdd, for 1 ≤ i, j ≤ d. (1.4)

Equivalently (in the terminology of [17, Chapter 4]), we express (1.3) by saying that the operator

Aε = −div (aε∇·) is uniformly (in ε and x) strongly elliptic.

We are interested in the behavior of the solutions uε to the Cauchy problem (1.1) for small

ε. As noted above, aε is highly oscillatory in space, and hence (1.1) is numerically challenging

to solve. The basic result of homogenization seeks to answer the following questions in the

affirmative (see [10, Theorem 12.6]):

• Do the solutions uε converge (and in what sense), as ε ↓ 0, to some limit uhom?

• Can we characterize uhom as the solution to (1.1), but with aε replaced by a constant

matrix ahom?

The advantage of such a homogenization result is that uhom now satisfies a problem which is

numerically easier to solve, and ahom provides an effective description of the original medium,

approximating the composite mixture as a single homogeneous material.

Remark. The case d = 1 has been excluded due to the limited possibilities on the arrange-

ment of the two materials. To generate interesting geometries in d = 1, one may consider

quantum/metric graphs. This is beyond the scope of the thesis. ◦

Extending the basic homogenization result

The basic homogenization result [10, Theorem 12.6], while elegant, is insufficient from a wave

propagation perspective. Indeed, it asserts the convergence of uε to uhom in the sense of weak-∗
in L∞([0, T ];H1

0 ), and is qualitative in nature (i.e. no rate of convergence is given). This prompts

us to ask:

Can we prove a quantitative homogenization result, under a mode of convergence

that captures the effective behavior of waves in the original composite?

There are many ways to tackle the above question. This thesis adopts an operator-theoretic

approach, focusing on the following operator on L2(Rd):

Aε = −div (aε∇·) . (1.5)
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From the perspective of operator theory, the homogenization task at hand requires us to identify

the limiting behavior of Aε as ε ↓ 0 in an appropriate operator topology. To study the operator

Aε, we consider the resolvent equation

(Aε − z)uε = f ∈ L2(Rd). (1.6)

Solving the resolvent equation helps identify the spectrum σ(Aε). That is: Find those z ∈ C
such that (1.6) has a unique solution for every f ∈ L2(Rd). The complement of the set of such

values z is the spectrum σ(Aε).

The spectrum σ(Aε) contains key information about wave propagation through the composite

medium. Therefore, the choice of operator topology should also capture the behavior of σ(Aε)

as ε ↓ 0. This prompts us to look at norm-resolvent convergence/asymptotics of Aε, a key

requirement of the thesis.

Remark. With wave propagation in mind, one intends to use the norm-resolvent asymptotics

of Aε to deduce the effective behavior of the solution uε(x, t) to the initial-value problem for

the wave equation (1.1), as ε ↓ 0. This can be achieved by employing a functional calculus,

although we will not perform this step in the thesis. ◦

Strengthening the basic homogenization result from a qualitative to a quantitative one re-

mains an active area of research, in part due to the vast number of setups that one could study

beyond (1.1). To name a few: differential operators with oscillatory lower order terms, integral

functionals (and non-linear problems), almost-periodic or random coefficients. In this thesis,

we are interested in extending the setup (1.1) from a moderate-contrast to a “high-contrast”

setting. This means that we will let c depend on ε in (1.2), such that the constant cellip > 0

in (1.3) cannot be chosen independently of ε, thus violating the assumption of uniform strong

ellipticity.

The high-contrast setting poses fundamental mathematical challenges. Methods used to

tackle the moderate-contrast setting quickly break down in the high-contrast case, and underly-

ing these technical issues is a basic question of identifying the homogenized description. Indeed,

does a limit even exist in the first place?

As it will become clear in Section 1.4, the answer to the existence of the limit and its form

depends on the choice of convergence and the arrangement of the materials in the composite.

This thesis studies a particular high-contrast setup where Aε does not have a norm-resolvent

limit. Nonetheless we identify an operator Aε,hom which is asymptotically close to Aε in the

norm-resolvent sense, and serves as a homogenized description of the medium. Let us now

provide a brief outline of the problem that we will study in this thesis. (In Section 2.1, we

will give a rigorous formulation of the problem and recall all the relevant notation introduced

below.)

Problem outline

Consider the problem of homogenization for a high-contrast εZd-periodic composite on Rd. Our

composite will consist of “soft” and “stiff” material components, adopting the terminology of
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elasticity theory. We think of the “soft” component having small material coefficients relative

to the “stiff” ones.

For ε > 0, consider the operator Aε = −div(aε∇·), on L2(Rd). The coefficient matrix aε is

defined as aε(x) := ãε2(
x
ε ), where ãε2 is a Zd-periodic matrix with values given by

ãε2(y) =

ε2I, y ∈
⋃
n∈Zd(Qsoft + n),

I, y ∈
⋃
n∈Zd ((Qstiff-int ∪Qstiff-ls) + n) .

(1.7)

Here, the sets Qsoft, Qstiff-int, and Qstiff-ls partition the reference period cell Q = [0, 1)d, and

are arranged in a “stiff-soft-stiff” setup as follows: We have a simply connected “stiff-interior”

region Qstiff-int, surrounded by an annular shaped “soft” region Qsoft, with the remaining region

filled by the “stiff-landscape” part Qstiff-ls. See Figure 1-1 for a pictorial description of ãε2 when

restricted to the period cell Q. We impose transmission boundary conditions on the soft-stiff

interfaces Γint and Γls. See Section 2.1 for the precise definition of Aε.

𝑄 = 0,1 𝑑

𝑄stiff−int

𝑄soft
Γls

Γint

𝑄stiff−ls

𝜕𝑄

Figure 1-1: The period cell Q = [0, 1)d. The subscript “stiff-int” stands for
stiff interior, and “stiff-ls” stands for stiff landscape.

We are interested in the limiting behavior as ε ↓ 0 of Aε, in the norm-resolvent sense. The

reason for this particular choice of (operator) topology is that it gives us direct access to the

spectrum, in the sense that identifying the norm-resolvent limit/asymptotics of Aε implies the

spectral convergence/asymptotics of σ(Aε), in the sense of Hausdorff convergence/asymptotics

on compact subsets of the real line R (see Section 1.3.3 for details).

Altogether, the problem of homogenization that we will study in this thesis is new (see

Section 1.4 for a discussion of the existing literature), due to a combination of the following

features:

• (Stiff-soft-stiff setup) Our medium is εZd-periodic, and consists of a stiff mixture with

annular soft inclusions.

• (High-contrast/resonant inclusions) We allow c in (1.2) to depend on ε. That is, Aε

depends on ε in two ways, namely, in the periodicity and in the material coefficients. In

particular, we will focus on the case aε = ãε2(
·
ε).

• (Mode of convergence) Identify the norm-resolvent asymptotics of Aε, as ε ↓ 0.

Remark. The choice c = ε2 in (1.2), giving us (1.7), is referred to as the “double porosity”

scaling [29]. Under this scaling, we also say that the annular soft inclusions act as “resonators”
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(hence the title of the thesis). This refers to the heuristic that waves propagating through the

medium, upon entering the soft inclusions, will have wavelength comparable to the size of the

inclusions. We refer the reader to Appendix A for an elaboration of this heuristic. ◦

1.2 Structure of the thesis

This thesis is structured as follows:

Chapter 1 is an introductory chapter. In Section 1.1, we have provided the motivation for

and an outline of the problem that will be studied in the thesis. In Section 1.3, we fix some

notations, introduce the notion of a periodic Sobolev space following [10], and review some facts

on convergence of unbounded operators and its relation to the spectrum. In Section 1.4, we will

review the existing literature, with focus on operator norm estimates in homogenization and

high-contrast homogenization. In Section 1.5 is a collection of the main results of the thesis.

Chapter 2 embarks on the task of homogenization for our stiff-soft-stiff composite. We will

follow the approach proposed by Cherednichenko, Ershova, and Kiselev in [35]. This is an

operator framework based on the following key ingredients (see Chapter 2 for precise definitions):

(A) The (rescaled) Gelfand/Floquet transform Gε, which helps take the εZd-periodic operator
Aε on L

2(Rd) to a family of operators A
(τ)
ε on L2(Q), indexed by τ ∈ Q′ = [−π, π)d.

(B) Boundary triples (A0,Λ,Π) in the sense of Ryzhov [47], to obtain norm-resolvent estimates

for each A
(τ)
ε .

(C) Perturbation theory in the sense of Kato [15], and Reed and Simon [20, Chapter XII], to

ensure that the estimates in (B) are uniform in τ.

(D) Generalised resolvents, such as the operator R
(τ)
ε (z) = Psoft(A

(τ)
ε − z)−1Psoft, where Psoft

is the projection of L2(Q) onto L2(Qsoft) (see Section 2.4). Here, the norm-resolvent

asymptotics of R
(τ)
ε (z), which we denote as R

(τ)
ε,hom(z), is identified with a compression of

some (A(τ)
ε,hom − z)−1 (Theorem 2.4.20).

Sections 2.1 and 2.2 involve setting up the “stiff-soft-stiff” problem. In Section 2.1, we

define the operator Aε on L2(Rd) and then explain why we can equivalently study the family

of operators {A(τ)
ε }τ∈[−π,π)d on L2(Q), obtained by the Gelfand transform. Section 2.2 further

casts the problem in the language of boundary triples.

Section 2.3 studies the resolvent asymptotics of A
(τ)
ε , and is at the heart of the analysis.

Section 2.4 combines the result of Section 2.3 (Theorem 2.3.4) with the boundary triple setup of

Section 2.2 to give a self-adjoint operator A(τ)
ε,hom that captures the norm-resolvent asymptotics

of A
(τ)
ε . Section 2.5 unpacks the notation and summarizes the boundary triple approach for

homogenization, giving first the main result of the thesis, Theorem 2.5.3.

Chapter 3 places focus on the limiting operator itself, A(τ)
ε,hom. We study three aspects of

A(τ)
ε,hom: In Section 3.1 we look at the bottom right entry of the resolvent for A(τ)

ε,hom (this is a
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2× 2 matrix, as we will see). We write each of the four entries in terms of an operator of multi-

plication on C by a constant. Moreover, for the two diagonal entries, we are able to express this

constant as (Kstiff-int(τ, z)− z)−1 and (Kstiff-int(τ, z)− z)−1, where we will refer to Kstiff-int(τ, z)

and Kstiff-ls(τ, z) as “dispersion functions”. In Section 3.2, we write down the homogenized

description on the full space, i.e. the operator Aε,hom = G∗
(∫ ⊕

Q A(τ)
ε,homdτ

)
G. In Section 3.3 we

perform a spectral analysis of Aε,hom-I and Ahom-II (the norm-resolvent asymptotics for Models

I and II, see Figure 1-2, as obtained in [35]), with an eye towards treating Aε,hom. Section 3.3

leaves with some unfinished tasks, which are collected in Chapter 4.

We wrap up our investigation in Chapter 4. We give an overview of what we have done, and

state the new results obtained in this thesis (these are also collected in Section 1.5). We end by

discussing how one may take forward the work done in this thesis, including a list of short-term

unfinished tasks, and a few long-term problems.

1.3 Mathematical preliminaries

1.3.1 Notation, assumptions, abbreviations

Fix the dimension d ≥ 2.

General notation. N = {1, 2, 3, · · · } and N0 = {0}∪N. We will use ⊂ and ⊆ interchangeably.

To denote a strict subset, we will use ⊊. The indicator function of a set U ⊂ Rd will be denoted
by 1U . ⊕ refers to an orthogonal sum of Hilbert spaces, or of operators on Hilbert spaces. +̇

refers to a direct sum of vector spaces. For a, b ∈ Rd, we write a · b =
∑d

i=1 aibi for the inner

product on Rd, and |a| =
√
a · a for the corresponding norm. For a ∈ C, the real and imaginary

components of a are denoted by Re(a) and Im(a) respectively.

Spaces. We will assume that our Hilbert spaces (H, (·, ·)H) are complex, and write ∥ · ∥H for

the corresponding norm. Let U ⊂ Rd be open. Denote by C∞(U) the space of smooth functions

f : U → C, and C∞
c (U) for the vector subspace of functions that have compact support in U .

Let k ∈ N0 and p ∈ [1,∞]. We will need the Lebesgue spaces (with respect to the Lebesgue

measure) Lp(U), the Sobolev space W k,p(U), and the subspace W k,p
0 (U) := C∞

c (U)
Wk,p

, with

the important special cases being H1
0 (U) := W 1,2

0 (U), and Hk(U) := W k,2(U). We will also

need the space of locally p-integrable functions Lploc(U), locally W k,p functions W k,p
loc (U), and

fractional Sobolev spaces W s,p, s > 0. We will write, for instance, Lp in place of Lp(U),

whenever the domain is understood. Finally, we will also need periodic Sobolev spaces, which

are defined in Section 1.3.2.

Operators. We will mainly follow the notation of [22]. Let H, H1 and H2 be Hilbert spaces.

By an (unbounded) operator T from H1 to H2, we mean a linear mapping T : D(T ) → H2,

where D(T ) is a linear subspace of H1. The set D(T ) is referred to as the domain of T , and we

also write (T,D(T )) to mean the operator T , whenever we would like to place an emphasis on

the domain. We write ran(T ) for the range of T , and ker(T ) for the kernel of T . S ⊂ T means
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that T is an extension of S. If (T,D(T )) is an operator on H (i.e. from H to H), the spectrum

of T is denoted by σ(T ), and the resolvent set by ρ(T ). For λ ∈ ρ(T ), the resolvent (T − λI)−1

will be abbreviated as (T −λ)−1. L(H1,H2) denotes the space of bounded linear operators from

H1 and H2, and L(H) := L(H,H). The operator norm of T ∈ L(H1,H2) is denoted either by

∥T∥H1→H2 , or by ∥T∥op if the spaces are clear from the context.

Special families of operators. Let τ ∈ Rd. The operator −(∇ + iτ)2 or (1i∇ + τ)2 (with

appropriately defined boundary conditions) are both shorthand for −∆ − 2iτ · ∇ + |τ|2, as

opposed to a composition of operators. The multiplication operator on L2(Rd) by an almost

everywhere finite function f is denoted by Mf . Similarly, multiplication on C by a constant c

is denoted by Mc. Our operators of interest are typically defined through a sesquilinear form.

If (A,D(A)) is constructed from a form (t,D(t)), then we will write D[A] := D(t) to distinguish

between the form domain and the operator domain. All our projections will be orthogonal. If

H is a subspace of H, then the projection onto H will be denoted either by PH or PH .

Abbreviations. We will be using the following abbreviations:

LHS/RHS left hand side/right hand side (of an equation)

PDE partial differential equation

BVP/BC boundary value problem/boundary condition

IBP integration by parts

a.e. almost everywhere (with respect to the Lebesgue measure)

w.r.t with respect to

resp. respectively

Conventions. We will be dealing with a multitude of projections on two Hilbert spaces, H
and E . The straight font (e.g. PH) is reserved for projections on H, and the calligraphic font

(e.g. PE) is reserved for projections on E . When writing integrals, we will omit the differential

“dx” where it is understood.

Use of colours. Throughout the thesis, we will use coloured text to highlight parallelism in

formulae and to help the reader navigate complicated expressions.

1.3.2 Periodic Sobolev spaces

Fix a reference cell Q = [0, 1)d.

Definition 1.3.1. A function f , defined a.e. on Rd is called Zd-periodic if for all k ∈ Z and

i ∈ {1, · · · , d}, we have f(x+ kei) = f(x) a.e. Here {e1, · · · , ed} denotes the standard basis of

Rd.

We will also require a notion of periodicity up to and including the boundary ∂Q. Since we

12



want to talk about traces of measurable functions on Q, we need at least one weak derivative.

This prompts us to make the following definition:

Definition 1.3.2. C∞
per(Q) := {u ∈ C∞(Rd) : u is Zd-periodic}. We will identify u ∈ C∞

per(Q)

with its restriction to Q.

The key definition of this section is the following Hilbert space:

Definition 1.3.3. H1
per(Q) := C∞

per(Q)
∥·∥H1(Q) . We identify this space as a subspace of L2(Q).

We list here several equivalent characterizations of H1
per(Q):

H1
per(Q) = {u ∈ H1

loc(Rd) : u is Zd-periodic} (1.8)

= {u ∈ L2(Q) : ∂iu ∈ L2(Q), and u, ∂iu have equal trace on

opposite faces of Q, 1 ≤ i ≤ d.} (1.9)

=

u ∈ L2(Q) :
∑
k∈Zd

(1 + |k|2)|û(k)|2 <∞

 , (1.10)

where û denotes the Fourier transform of u. For an explanation of the equalities, we refer to

[27, p. 6] and [10, Proposition 3.50] for the first, [10, Proposition 3.49] for the second, and [8,

p. 137] for the third expression. Note that H1
per(Q) = C∞

per(Q)
∥·∥H1(Q) is in general a subspace

of H1(Q), and C∞
per(Q)

∥·∥L2(Q) = L2(Q).

Remark. At crucial points in Chapter 2, we will use the compactness of Q in our arguments.

Notably, this is used in Proposition 2.3.3, Theorem 2.3.4, and Proposition 2.3.5. ◦

1.3.3 Convergence of unbounded operators

In this section, we review various notions of convergence of unbounded operators and its relation

to the spectrum. Let Tn, T be (unbounded) self-adjoint operators on a Hilbert space H.

Definition 1.3.4 (Norm/strong-resolvent convergence). By norm (resp. strong) resolvent con-

vergence of Tn to T , mean that for some (hence all) λ with Imλ ̸= 0, the resolvents (Tn−λ)−1 con-

verges in operator norm (resp. strongly) to (T −λ)−1. We will write Tn
nr−→ T (resp.Tn

sr−→ T ).

We refer the reader to [21, Section VIII.7], [19, Chapter 10], and [25, Chapter 6.6] for a

general discussion on norm and strong resolvent convergences. Here, we focus on the relation

between Definition 1.3.4 and the spectrum. To facilitate the discussion, let us first make the

following definition:

Definition 1.3.5. Let Mn and M be non-empty and closed subsets of C. We write Mn
HC−→M

or M = HC− limn→∞Mn (“Hausdorff on compacts”) to mean that

dH(Mn∩K,M ∩K) → 0, for every compact K ⊂ C such that Mn∩K and

Mn ∩K are non-empty.
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Here, dH is the Hausdorff distance, which is defined for every non-empty and closed M , N ⊂ C,
by the formula

dH(M,N) := max

{
sup
x∈M

inf
y∈N

|x− y|, sup
y∈N

inf
x∈M

|x− y|

}
.

Obtaining convergence/asymptotics of spectra in the sense of Definition 1.3.5 is the focus

of the thesis. However, for the purposes of discussing the literature, let us introduce another

notion of convergence for sets:

Definition 1.3.6. Let Mn and M be non-empty and closed subsets of C. We write Mn
ls−→M

or M = ls− limn→∞Mn (“limit set”) to mean that the following two conditions are satisfied:

• If λ ∈M , then there exist a sequence λn ∈Mn such that λn → λ.

• If λn ∈Mn and λ ∈ C satisfies λn → λ, then λ ∈M .

That is, ls− limn→∞Mn = {λ ∈ C : ∃ λn ∈Mn and λn → λ}.

It can be shown that if HC − limn→∞Mn exist, then so does ls − limn→∞Mn, and ls −
limn→∞Mn = HC− limn→∞Mn, by an application of [1, Proposition 4.4.14]. See Appendix B

for details.

We now relate Definitions 1.3.4, 1.3.5 and 1.3.6.

Theorem 1.3.7. If Tn
nr−→ T , then σ(Tn)

HC−→ σ(T ) and σ(Tn)
ls−→ σ(T ). In other words,

ls− lim
n→∞

σ(Tn) = σ(T ) = HC− lim
n→∞

σ(Tn). (1.11)

Proof. See [57, Section I.3] for a proof of σ(Tn)
HC−→ σ(T ). The result now follows from

the remark preceding the theorem. Alternatively, see [21, Theorem VIII.23(a) and Theo-

rem VIII.24(a)] for a direct proof proof of σ(Tn)
ls−→ σ(T ).

Remark. • In the case of Tn converging to T in the strong-resolvent sense, we cannot

conclude σ(Tn)
HC−→ σ(T ) nor σ(Tn)

ls−→ σ(T ). (E.g. consider the operator An = 1
nx on

L2(R), which gives An
sr−→ 0.)

• The notation
HC−→ and

ls−→ are non-standard, but are introduced here to distinguish be-

tween various modes of spectral convergence found in the literature.

• In this thesis, we will encounter the setup where Tn is self-adjoint on H, whereas T is

self-adjoint as an operator on a subspace H1 of H. Writing PH1 for the projection of H
onto H1, we will show that

∥(Tn + i)−1 − (T + i)−1PH1∥H→H → 0, as n→ ∞. (1.12)

Inspecting the proof of Theorem 1.3.7 (i.e. [57, Section I.3] and [21, Theorem VIII.23(a)

and Theorem VIII.24(a)]), one checks that (1.12) is sufficient to conclude σ(Tn)
HC−→ σ(T )

and σ(Tn)
ls−→ σ(T ). We omit the details for brevity. ◦
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1.4 Existing literature

This thesis is written under the context of two developments in the subject of homogenization.

The first is a push towards turning various qualitative results in [3, 6, 27] into quantitative

ones [2, 23]. The second is concerned with extending the techniques of [3, 6, 27] to account

for “degenerate” situations, for instance when there is a lack of uniform ellipticity [52]. The

purpose of this section is to elaborate on the relevant literature in these two developments.

Operator norm estimates in moderate-contrast homogenization

Let us begin with an overview on existing quantitative results in homogenization, restricting

our discussion to operator norm estimates. The first operator norm estimates were obtained by

Birman and Suslina in [32], for the resolvent (Aε + I)−1. More precisely, it was proved that

∥(Aε + I)−1 − (Ahom + I)−1∥L2(Rd)→L2(Rd) ≤ Cε, where C is independent of ε. (1.13)

Here, Aε = −div(aε∇·) is uniformly strongly elliptic, and Ahom = −div(ahom∇·), where the

coefficient matrix ahom is constant in space. Equivalently, this can be written in terms of

uε = (Aε + I)−1f and uhom = (Ahom + I)−1f for a given f ∈ L2 by

∥uε − u0∥L2 ≤ Cε∥f∥L2 , where C is independent of ε and f .

To obtain (1.13), the authors applied the Floquet transform to Aε to obtain a family of operators

{A(τ)
ε }[−π,π)d , and then proceeded with a spectral analysis of A

(τ)
ε using analytic perturbation

theory, with a focus on the behaviour of the resolvent of Aε near the bottom of the spectrum.

The key object here is an auxillary operator referred to as the “spectral germ”. Their approach

was later extended to include other related setups, for instance, bounded domains [48, 49] and

perforated domains [50].

Other methods that appeared thereafter include:

• The periodic unfolding method, introduced by Griso in [40, 41].

• The shift method, introduced by Zhikov and Pastukhova in [54] (see also their survey

paper [55]).

• A refinement of the two-scale expansion method by Kenig, Lin, and Shen [43], which

directly dealt with the case of bounded domains (see also the recent book by Shen [23]).

• A recent work by Cooper and Waurick [38], proposing an abstract framework under which

uniform in τ norm-resolvent estimates for the family A
(τ)
ε can be achieved.

Let us remark that this list is non-exhaustive, and is growing at the point of writing. These

methods work well in the moderate-contrast setting (meaning that ã(y) is positive definite and

bounded), but cannot be used in the high-contrast case ãε(y) (see (1.7)), at least without serious

modifications. This brings us to the approach of [35].
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A boundary triple approach to high-contrast homogenization

As mentioned in Section 1.2, we will use a method proposed by Cherednichenko, Ershova, and

Kiselev in [35]. Recall that this is an operator framework based on four key ingredients:

(A) The (rescaled) Gelfand/Floquet transform Gε.

(B) Boundary triples (A0,Λ,Π) in the sense of Ryzhov [47].

(C) Perturbation theory in the sense of Kato [15], and Reed and Simon [20, Chapter XII].

(D) Generalised resolvents (see Section 2.4 and Theorem 2.4.20).

Let us make a few historical remarks on (A) and (B). The use of Gelfand transform in the

mathematical analysis of periodic homogenization problems can be traced back to Zhikov [51],

and Conca and Vanninathan [37]. However, they did not pursue the goal of obtaining operator

norm estimates. Nonetheless, it is possible to extend the work of Zhikov [51] to obtain operator

norm estimates, as explained in the survey paper by Zhikov and Pastukhova in [54, Sections

9-11]. As for ingredient (B), the Ryzhov boundary triple is a generalization of the (“classical”)

boundary triple introduced independently by Kochubei [45] and Bruk [33] (see also [5], [14,

Chapter 3], and [22, Chapter 14]). This generalization is more suited for the PDE setting, as

it allows the trace operators to be defined on a smaller set than what is required of a classical

boundary triple.

Next, we make a few remarks in connection with the moderate-contrast case. First, we point

out that the framework of [35] could in principle, be applied to the moderate-contrast problems.

Second, we note that the use of the Gelfand/Floquet transform in periodic homogenization

problems is a common first step in operator approaches to homogenization (Birman-Suslina

and Cooper-Waurick method). Third, we point out that the use of perturbation theory in

homogenization is not new. For instance, it is core to the Birman-Suslina approach. However,

the authors of [35] employed (C) in a novel way, by looking at perturbation of objects such as

the Dirichlet-to-Neumann operator between the soft-stiff interfaces.

The work [35] has been a culmination of a series of papers attempting to bring boundary

triple theory to the asymptotic analysis of high-contrast homogenization problems. We refer

the reader to the recent survey by Cherednichenko, Ershova, Kiselev, Ryzhov, and Silva [36] for

the full details. Here, let us give a truncated version of the survey: The authors of [35] initially

used a simplified version of their framework to study a high-contrast homogenization problem

on a periodic quantum graph (ODE on the full space R) [34]. In the quantum graph setting,

the classical triple suffices as the new ingredient in (B). In [44], Cherednichenko, Kiselev and

Silva demonstrate the use of Ryzhov triples under a PDE setting on a bounded domain. By

combining the techniques of [34] and [44], one is able to treat PDE setting on the full space Rd

with periodic coefficients. This is the content of [35].

The operator framework of [35] has proven to be successful in the study of high-contrast

composites, at least for simple geometries like those in Figure 1-2. One of the goals of the thesis

is to demonstrate how the approach of [35] can be extended to a geometry like Figure 1-1.
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High-contrast homogenization for the stiff-soft-stiff composite

Next, let us comment on the choice of our setup, in relation to existing results. The stiff-soft-

stiff model (Figure 1-1) is derived from the two auxiliary models studied in [35], referred to as

Model I and Model II (Figure 1-2).

Model II

𝑄
𝑄soft

Γ 𝑄stiff

𝜕𝑄

𝑄
𝑄stiff

Γ 𝑄soft

𝜕𝑄

Model I

Figure 1-2: Auxiliary models from [35].

As depicted in the figure, we see that the auxiliary models are geometrically identical, having

only one inclusion inside the period cell Q, with smooth boundary Γ, and at a positive distance

from the boundary of the cube ∂Q. Models I and II differ only in the choice of the soft and stiff

components.

Due to the similarity in geometry, one might naively guess that the homogenized descriptions

of Aε are almost identical. This is true to a certain extent. Indeed, it was shown in [35, Section

4.2] that for both Models I and II, the fibres A
(τ)
hom of the homogenized operator Ahom is one

that, roughly speaking, stays unchanged as −(∇ + iτ)2 on L2(Qsoft), and acts only on a 1D

subspace of L2(Qstiff). A further study on how the constant of multiplication cτ in L2(Qstiff)

depends on τ reveals a non-local behavior of Ahom on L2(Rd), see [35, Section 5.4].

But Ahom of Model I and II are different in many respects. For starters, Ahom depends

on ε for Model I, and does not for Model II. The fact that we only obtain asymptotics for

Model I is to be expected, because it is known from [42, p. 1447] that Aε in Model I does not

have a norm-resolvent limit. Model I does however possess a strong-resolvent limit Ahom,sr (the

Dirichlet Laplacian on the soft parts of Rd [42, Proposition 2.2]), and also a two-scale strong

resolvent limit Ahom,2sr [53, Section 3].

However, the operator Ahom,sr does not capture the spectral information of Aε, since σ(Aε) ↛
σ(Ahom,sr) (in the sense of Definition 1.3.6). Furthermore, the manner in which the limit Ahom,sr

was obtained in [42] does not provide us with a rate of convergence. On the other hand, the

operator Ahom,2sr satisfies σ(Aε) → σ(Ahom,2sr), and we even know the spectral decomposition of

σ(Ahom,2sr). But the proof is again qualitative in nature, relying on an additional compactness

argument to establish spectral convergence. An alternative route taken by [42] is to study σ(Aε)

directly, without characterising the limiting behaviour as the spectrum of some Ahom,ε.

As for Model II, it was shown in [52, formulae (5.7) and (7.1), and Theorem 5.1] that the

two-scale strong resolvent limit Ahom,2sr exists, using qualitative arguments. But in contrast

to Model I, we do not know if there is spectral convergence of Aε to Ahom,2sr, and we do

not know the decomposition of σ(Ahom,2sr). The norm-resolvent limit Ahom (which is also the
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strong-resolvent limit, but different from Ahom,2sr) is obtained in [35], together with a rate of

convergence.

The methods of [52] pertaining to two-scale strong resolvent limits are quite general, en-

compassing various configurations (see [52, Sect 5.1] for precise conditions), and various scaling

choices εα, α > 0. This is in contrast to norm-resolvent asymptotics, where as mentioned earlier,

only the setups in Figure 1-2 have been studied so far, under the double porosity scaling α = 2.

Even though it is possible to apply the result of [52] to the stiff-soft-stiff model (with α = 2)

and obtain a two-scale strong resolvent limit Ahom,2sr, there is work to be done. That includes:

verifying if there is spectral convergence; finding the spectral decomposition of Ahom,2sr; and

turning the qualitative arguments into quantitative ones. We will not pursue that route here.

We will however apply the methods of [35] to obtain the norm-resolvent asymptotics Ahom for

the stiff-soft-stiff model. This has been open prior to the writing of this thesis, and is the

content of Chapter 2.

One might wonder the sense in which the norm resolvent asymptotics Ahom, obtained from

[35], provides a simplified description of the high-contrast composite. We attempt to provide an

answer in the following context: just as how we may study the dispersion relation of a periodic

operator, we could also ask for the limiting dispersion relation of Aε. We will do so by taking a

closer look at the non-local part of A
(τ)
hom, in particular at how the constant of multiplication cτ

in the 1D subspace of L2(Qstiff) depends on τ. The key object that is extracted from this study

is referred to as the “dispersion function” K(τ, z). As shown in [35, Section 5], K(τ, z) are very

different for Models I and II. In Chapter 3, we will derive K(τ, z) for stiff-soft-stiff model, and

compare it with K(τ, z) of Models I and II.

1.5 Main results

The main results of the thesis are as follows:

Results from Chapter 2

• A homogenization result for the composite material in Figure 1-1. This is Section 2.5,

and in particular, Theorem 2.5.3. We give an effective description of the composite by

identifying the norm-resolvent asymptotics of A
(τ)
ε , namely the operator A(τ)

ε,hom.

• Moreover, we supplement the asymptotic argument in [35] with additional details, meant

to explain how the estimates obtained are uniform over τ and z. These are Proposition

2.3.3 and large portions of the proof of Theorem 2.3.4.

Results from Chapter 3

• We look at the bottom right entry of the resolvent for A(τ)
ε,hom. This is a 2 × 2 matrix,

due to the two stiff components. We write each entry in the form of a multiplication by

a constant on C. Moreover, for the diagonal entries we are able to express this constant

as (K(τ, z) − z)−1, and we refer to K(τ, z) as the “dispersion function”. The precise

statements are
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– Cstiff-int → Cstiff-int: Theorem 3.1.6,

– Cstiff-ls → Cstiff-ls: Theorem 3.1.10,

– Cstiff-int → Cstiff-ls: Theorem 3.1.12 and Corollary 3.1.13,

– Cstiff-ls → Cstiff-int: Theorem 3.1.15 and Corollary 3.1.16.

• In Section 3.2.3, we provide a formula for the homogenized description of our composite

on the full space, i.e. the operator

Aε,hom = G∗
(∫ ⊕

Q′
A(τ)
ε,homdτ

)
G.

• We prove results on the spectrum and spectral decomposition of Aε,hom-I and Ahom-II (the

norm-resolvent asymptotics for Models I and II on the full space L2(Rd), as obtained in

[35]). The precise statements are

– For Model I: Proposition 3.3.3 (eigenvalues), Corollaries 3.3.6 and 3.3.7 (character-

ization of σ(Aε,hom-I) in terms of the dispersion function KI(τ, z)), and Proposition

3.3.8 (when KI(τ, z) is undefined).

– For Model II: Proposition 3.3.11 (eigenvalues), Corollaries 3.3.14 and 3.3.15 (char-

acterization of σ(Ahom-II) in terms of the dispersion function KII(τ, z)). We only

provided partial results when KII(τ, z) is undefined (Propositions 3.3.16 and 3.3.17).

These results are also collected in Chapter 4, where we summarize the work of this thesis.
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Chapter 2

Homogenization of the stiff-soft-stiff

composite

In this chapter, we detail the process of homogenization of the stiff-soft-stiff composite using

the operator framework [35]. This chapter consists of five sections. The first four sections

roughly corresponds to the use of the four key ingredients: (A) Gelfand transform, (B) Ryzhov

boundary triples, (C) perturbation theory, and (D) generalized resolvents.

In Section 2.1, we provide a rigorous formulation of the problem outlined in Chapter 1.

We define the operator Aε on L
2(Rd) and explain why we can equivalently study the operator

family {A(τ)
ε }τ∈[−π,π)d on L2(Q), obtained by the Gelfand transform. In Section 2.2, we recast

the problem yet again, this time in the language of boundary triples.

Section 2.3 studies the norm-resolvent asymptotics of A
(τ)
ε , and is at the heart of the analysis.

To ensure that the asymptotics are uniform in τ, we use a perturbative argument. In Section

2.4, we combine the result of Section 2.3 (Theorem 2.3.4) with the boundary triple setup of

Section 2.2 to give a self-adjoint operator A(τ)
ε,hom that captures the norm-resolvent asymptotics

of A
(τ)
ε . Finally, Section 2.5 unpacks the notation and summarizes the boundary triple approach

for homogenization.

2.1 Problem formulation

This section is structured as follows: In Section 2.1.1, we define the operator Aε on L2(Rd).
Next, we introduce the scaled Gelfand transform Gε in Section 2.1.2, and use it to obtain a

family of operators A
(τ)
ε on L2(Q) indexed by τ ∈ [−π, π)d. With the help of Gε, our study of

the norm-resolvent asymptotics of Aε can be restated in terms of the family A
(τ)
ε . This allows

to reformulate our problem in terms of A
(τ)
ε , which we will do in Section 2.1.3.

The operator A
(τ)
ε will be the main object of study in the remainder of the text. We will

refer to the setup in Section 2.1.3 as the “main model”, and A
(τ)
ε as the “main model operator”.

2.1.1 Operator on the full space

In this section we will define the operator Aε. On the reference cell Q = [0, 1)d, consider the

setup as shown in Figure 1-1. That is, Q is split into three connected components: a simply
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connected “stiff interior” part Qstiff-int, surrounded by an annular “soft” region Qsoft, with the

remaining region filled by the “stiff landscape” part Qstiff-ls. For the soft-stiff interfaces Γint and

Γls we require that

• the boundaries Γint and Γls are smooth, and

• Γint, Γls, and ∂Q are of positive distance from each other.

Recall from (1.7) that our coefficient matrix ãε2 : Rd → Rd×d is given by

ãε2(y) =

ε2I, y ∈ ∪n∈Zd(Qsoft + n),

I, y ∈ ∪n∈Zd ((Qstiff-int ∪Qstiff-ls) + n) ,
(2.1)

where Qsoft + n = {y + n : y ∈ Qsoft}, and similarly for (Qstiff-int ∪Qstiff-ls) + n. The matrix ãε2

is Zd-periodic, and thus the matrix

aε := ãε2
( ·
ε

)
(2.2)

is εZd-periodic.
The operator Aε ≡ −div(aε∇·) is defined through its sesquilinear form:

(u, v) 7→
∫
Rd

ãε2
(
x̃
ε

)
∇u(x̃) · ∇v(x̃) dx̃, u, v ∈ D[Aε] := H1(Rd). (2.3)

Aε is an unbounded, lower-semibounded self-adjoint operator on L2(Rd). Let us emphasize

again that Aε is not uniformly strongly elliptic, in the sense that the coefficient matrices ãε2(
·
ε)

cannot be bounded away from zero, independently of ε.

If z ∈ ρ(Aε), then the resolvent equation

−div(ãε2
( ·
ε

)
∇uε)− zuε = f, f ∈ L2(Rd), z ∈ C, (2.4)

has a unique solution uε, which can be written as uε = (Aε − z)−1f . In terms of the weak

formulation, the resolvent equation is given by:∫
Rd

[
ãε2
(
x̃
ε

)
∇u(x̃) · ∇v(x̃)− zu(x̃)v(x̃)

]
dx̃ =

∫
Rd

f(x̃)v(x̃) dx̃, for all v ∈ H1(Rd). (2.5)

2.1.2 Passing from the full space to the unit cell

Let Q′ = [−π, π)d. It is customary in the study of periodic differential operators (Floquet

Theory, see e.g. [20, Section XIII.16]) to begin the analysis of a Zd-periodic operator T by

applying a unitary transformation to T , giving us family of operators T (τ), τ ∈ Q′. There are

two unitary transforms that we can choose from:

1. The Floquet transform, which takes u ∈ L2(Rd) to a function uf (x, χ) that is quasiperiodic

in x and periodic in τ. This gives rise to the differential operator (1i∇)2 on the unit cube

Q subjected to quasiperiodic BCs.
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2. The Gelfand transform, which takes u ∈ L2(Rd) to a function ug(x, χ) that is periodic in

x and quasiperiodic in τ. This gives rise to the differential operator (1i∇+τ)2 on the unit

cube Q subjected to periodic BCs.

We use the Gelfand transform, as it will be easier to deal with a varying action as opposed

to a varying boundary condition. Let us now summarize the necessary elements from Floquet

theory that will be of use here.

First, it would be more convenient to introduce a scaled version of the Gelfand transform

since Aε is εZd-periodic rather than Zd-periodic:

Definition 2.1.1. The scaled Gelfand transform is the operator Gε defined first for u ∈ C∞
c (Rd)

by the formula

(Gεu)(x̃, θ) :=
( ε

2π

)d/2 ∑
n∈Zd

u(x̃+ εn)e−iθ·(x̃+εn), x̃ ∈ εQ, θ ∈ ε−1Q′, (2.6)

and extended by continuity to an operator from L2(Rd) to L2(εQ× ε−1Q′), which will we still

denote by Gε.

Remark. In fact, Gε is unitary, with the following inversion formula:

u(x̃) =
( ε

2π

)d/2 ∫
ε−1Q′

(Gεu)(x̃, θ)e
iθ·x̃dθ, x̃ ∈ Rd, (2.7)

where we have extended Gεu in x̃ by εZd-periodicity to a function on Rd × ε−1Q′. ◦

Next, we introduce a new notation for the Bochner spaces L2(M,µ;H′), following [20, Section

VIII.16]:

Definition 2.1.2. Let (M,µ) be a σ-finite measure space, and H′ a separable Hilbert space.

We define the (constant fiber) direct integral space H =
∫ ⊕
M H′dµ(m) to be the Bochner space

L2(M,µ;H′). Recall that this is a Hilbert space, equipped with inner product

(s, t)H :=

∫
M

(s(m), t(m))H′ dµ(m). (2.8)

Elements of this space s ∈ H are called (measurable cross-)sections. The space H′ is referred to

as fibers.

This notation places emphasis on the fibers H′, and therefore on operators on H′ indexed by

the set (M,µ), in a measurable way. This requires us to define a notion of measurability. We

continue with the notation of Definition 2.1.2 for the remaining definitions of this section:

Definition 2.1.3. We say that T (·) :M → L(H′) is measurable if for all x, y ∈ H′, the mapping

M ∋ m 7→ (x, T (m)y)H′ ∈ C (2.9)

is measurable.
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However, we would need to deal with unbounded self-adjoint operators, therefore we make

the following definition:

Definition 2.1.4. Let {A(m)}m∈M be a collection of unbounded self-adjoint operators on H′.

We say that A(·) is measurable if the mapping

M ∋ m 7→ (A(m) + i)−1 ∈ L(H′) (2.10)

is measurable.

Remark. This is a simple case of the more general direct integral
∫ ⊕
M H′(m)dµ(m), for which

the definition may be found in [11, Section 8.4] or [7, Chapter 7]. See also [20, Section XIII.16]

for some useful results concerning the constant fiber direct integral. See [24, Lemma 1.2.2] for

equivalent characterizations of measurability for unbounded self-adjoint operators. ◦

We are now ready to introduce the notion of a “continuous direct sum of bounded operators”.

Definition 2.1.5 (Decomposable operator). Let T be a bounded operator on H =
∫ ⊕
M H′dµ.

Suppose there exists a measurable family T (·) ∈ L∞(X,µ;L(H′)) such that for all sections

s ∈ H,

(Ts)(x) = T (x)s(x). (2.11)

Then we call T decomposable, write T =
∫ ⊕
M T (m)dµ(m), and call T (m) the fibers of T .

Similarly, we will need to extend this notion to the unbounded self-adjoint case:

Definition 2.1.6. Suppose A(·) is a measurable family of unbounded self-adjoint operators on

H′. We define the operator A ≡
∫ ⊕
M A(m)dµ(m) by

D(A) =

{
u ∈ H

∣∣∣∣ u(m) ∈ D (A(m)) µ-a.e., with

∫
M

∥A(m)u(m)∥2H′dµ(m) <∞
}
, (2.12)

(Au)(m) = A(m)u(m). (2.13)

This is an unbounded self-adjoint operator, by [20, Theorem XIII.85(a)].

Remark. With the notation of a direct integral space, the Gelfand transform may now be

written as

Gε : L
2(Rd) −→ L2(εQ× ε−1Q′) ∼=

∫ ⊕

ε−1Q′
L2(εQ)dθ,

(Gεu)(θ) = (Gεu)(·, θ) = Gε(θ)u(θ) ∈ L2(εQ).

Note also the special case
∫ ⊕
ε−1Q′ Cdθ ∼= L2(ε−1Q′). ◦

Definition 2.1.7. For θ ∈ ε−1Q′, define A
(θ)
ε to be the operator on L2(εQ) corresponding to

the sesquilinear form

(u, v) 7→
∫
εQ
ãε2
(
x̃
ε

)
(1i∇x̃ + θ)u(x̃) · (1i∇x̃ + θ)v(x̃)dx̃, u, v ∈ D[A(θ)

ε ] := H1
per(εQ). (2.14)
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That is, A
(θ)
ε corresponds to the differential expression (1i∇x̃+ θ)ãε2(

x̃
ε )(

1
i∇x̃+ θ) with periodic

BCs on εQ.

Since Aε (from Section 2.1.1) has εZd-periodic coefficients, the scaled Gelfand transform sets

up a unitary equivalence between Aε and a family of operators A
(θ)
ε :

Proposition 2.1.8. With Aε as defined in Section 2.1.1 and A
(θ)
ε as in Definition 2.1.7, we

have the following identity:

Aε = G∗
ε

(∫ ⊕

ε−1Q′
A(θ)
ε dθ

)
Gε. (2.15)

Proof. This is just a direct consequence of the product rule, see for example [56, Theorem 2.5]

for the short computation. The periodic BC follows from the fact that Gεu(x̃, θ) is εZd-periodic
in x̃.

While we have shifted our perspective to consider a (θ dependent) operator on a bounded

subset of Rd, this is still rather inconvenient as the Hilbert space L2(εQ) varies with ε. Ideally,

we would like to have ε only appearing in the domain and action of the operator, keeping the

underlying Hilbert space as L2(Q), for all θ and ε. This motivates us to define:

Definition 2.1.9. For each ε > 0, define the unitary rescaling operators Φε and Ψε

Φε : L
2(εQ) → L2(Q) (Φεu)(x) = εd/2u(εx), (2.16)

Ψε : L
2(ε−1Q′) → L2(Q′) (Ψεv)(τ) =

(
2π
ε

)d/2
v(τε ). (2.17)

Definition 2.1.10. For τ ∈ Q′, define A
(τ)
ε to be the operator on L2(Q) corresponding to the

sesquilinear form

(u, v) 7→ 1

ε2

∫
Q
ãε2 (x) (

1
i∇x + θ)u(x) · (1i∇x + θ)v(x)dx, u, v ∈ D[A(τ)

ε ] := H1
per(Q). (2.18)

That is, A
(τ)
ε corresponds to the differential expression (1i∇x+τ) 1

ε2
ãε2(x)(

1
i∇x+τ) with periodic

BCs on Q. We will refer to A
(τ)
ε as the main model operator.

Lemma 2.1.11. Let τ = εθ. Then, A
(τ)
ε = ΦεA

(θ)
ε Φ∗

ε.

Proof. Equivalently, we need to show that A
(τ)
ε Φε = ΦεA

(θ)
ε as an operator from L2(εQ) to

L2(Q). It suffices to check this on a form core C∞
per(εQ). Let u ∈ C∞

per(εQ). We use x̃ for the

variable on εQ, and x for the variable on Q. First we see that(
A(θ)
ε u

)
(x̃) =

(
1

i
∇x̃ + θ

)
·
(
ãε2

(
x̃

ε

)(
1

i
∇x̃ + θ

)
u(x̃)

)
=

d∑
j,k=1

(
1

i

∂

∂x̃j
+ θj

)[
ãjk
ε2

(
x̃

ε

)(
1

i

∂

∂x̃k
+ θk

)
u(x̃)

]
. (2.19)

Therefore, if τ = εθ and x = x̃
ε , then

RHS =
(
ΦεA

(θ)
ε u

)
(x) = εd/2

(
A(θ)
ε u

)
(εx)
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= εd/2
d∑

j,k=1

(
1

i

∂

∂x̃j
+ θj

)[
ãjk
ε2

(εx
ε

)(1

i

∂

∂x̃k
+ θk

)
u(εx)

]

= εd/2
d∑

j,k=1

(
1

iε

∂

∂xj
+

τj

ε

)[
ãjk
ε2
(x)

(
1

iε

∂

∂xk
+

τk
ε

)
u(εx)

]

= εd/2
d∑

j,k=1

(
1

i

∂

∂xj
+ τj

)[
1

ε2
ãjk
ε2
(x)

(
1

i

∂

∂xk
+ τk

)
u(εx)

]

= εd/2
(
1

i
∇x + τ

)
·
(

1

ε2
ãε2(x)

(
1

i
∇x + τ

)
u(εx)

)
=

(
1

i
∇x + τ

)
·
(

1

ε2
ãε2(x)

(
1

i
∇x + τ

)
(Φεu)(x)

)
=
(
A(τ)
ε Φεu

)
(x) = LHS.

Corollary 2.1.12. Aε is unitarily equivalent to
∫ ⊕
Q′ A

(τ)
ε dτ.

Proof. Using expressions relating Aε, A
(θ)
ε , and A

(τ)
ε , τ = εθ, we have

Aε
Prop 2.1.8

= G∗
ε

(∫ ⊕

ε−1Q′
A(θ)
ε dθ

)
Gε

Lemma 2.1.11
= G∗

ε

(∫ ⊕

ε−1Q′
Φ∗
εA

(εθ)
ε Φεdθ

)
Gε

= G∗
ε

(∫ ⊕

ε−1Q′
Φ∗
εdθ

)(∫ ⊕

ε−1Q′
A(εθ)
ε dθ

)(∫ ⊕

ε−1Q′
Φεdθ

)
Gε

= G∗
ε

(∫ ⊕

ε−1Q′
Φ∗
εdθ

)(∫ ⊕

Q
Ψ∗
εdx

)(∫ ⊕

Q′
A(τ)
ε dτ

)(∫ ⊕

Q
Ψεdx

)(∫ ⊕

ε−1Q′
Φεdθ

)
Gε, (2.20)

where in the last equality, we have used
∫ ⊕
ε−1Q′ L

2(Q)dθ ∼= L2(Q × ε−1Q′) ∼=
∫ ⊕
Q L2(ε−1Q′)dx.

Note for instance, that ∥
∫ ⊕
ε−1Q′ Φεdθ∥op = esssupθ∥Φε∥L2(εQ)→L2(Q) = 1 [20, Theorem XIII.83].

We will therefore turn our attention towards the operator A
(τ)
ε . In the following section, we

recast our problem of studying the norm-resolvent asymptotics of Aε in terms of A
(τ)
ε .

2.1.3 Reformulation in terms of operators on the unit cell

Having established the unitary equivalence between Aε and
∫ ⊕
Q′ A

(τ)
ε dτ, our goal can now be

stated as follows:

Identify, uniform in τ, norm-resolvent asymptotics for A
(τ)
ε , as ε ↓ 0.

Having turned our focus towards A
(τ)
ε , let us collect several ways of describing A

(τ)
ε that will

be useful for purposes of interpretation.

First, we recall from Definition 2.1.10 that A
(τ)
ε is an operator on L2(Q) that corresponds

to the differential expression (1i∇x + τ) 1
ε2
ãε2(x)(

1
i∇x + τ). Recall that the coefficient matrix is

given by:

1

ε2
ãε2(x) =


ε−2I, x ∈ Qstiff-ls,

I, x ∈ Qsoft,

ε−2I, x ∈ Qstiff-int,

(2.21)
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where the subscripts “ls” and “int” stands for landscape and interior respectively.

Second, we have obtained A
(τ)
ε from Aε through a combination of the Gelfand transform Gε

and rescaling Φε in the previous subsection. Figure 2-1 gives a description of this process, where

we pass from the full space Rd to the unit cell Q.

Main Model

…

…

…

…

… …

… …

Gelfand
Transform

𝑄 = 0,1 𝑑

𝑄stiff−int

𝑄soft

Γls Γint

𝑄stiff−ls

𝜕𝑄

Figure 2-1: Obtaining the main model operator A
(τ)
ε via Gelfand transform.

Third, we mentioned in Chapter 1, that Aε (and thus A
(τ)
ε ) will have transmission BCs on

the soft-stiff interfaces. That Definition 2.1.10 implies transmission BCs on Γls and Γint can be

seen from the form domain D[A
(τ)
ε ] = H1

per(Q). Alternatively, we can see this by writing out

the BVP for the resolvent equation for A
(τ)
ε : The resolvent equation (A

(τ)
ε − z)u = f ∈ L2(Q)

has a unique solution u ≡ u
(τ)
ε = ustiff-ls + usoft + ustiff-int whenever the following BVP can be

solved uniquely in the weak sense:

ε−2

(
1
i∇+ τ

)2

ustiff-ls − zustiff-ls = f, in Qstiff-ls,(
1
i∇+ τ

)2

usoft − zusoft = f, in Qsoft,

ε−2

(
1
i∇+ τ

)2

ustiff-int − zustiff-int = f, in Qstiff-int,

ustiff-ls = usoft on Γls,

ε−2

[
∂ustiff-ls
∂nstiff-ls

+ i(τ · nstiff-ls)ustiff-ls
]
+

[
∂usoft
∂nsoft

+ i(τ · nsoft)usoft
]
= 0 on Γls,

usoft = ustiff-int on Γint,[
∂usoft
∂nsoft

+ i(τ · nsoft)usoft
]
+ ε−2

[
∂ustiff-int
∂nstiff-int

+ i(τ · nstiff-int)ustiff-int
]
= 0 on Γint,

ustiff-ls periodic on ∂Q,

(2.22)

where n⋆ denotes the outward unit normal vector with respect toQ⋆,⋆ ∈ {stiff-int, soft, stiff-ls}.
Finally, we conclude this section by introducing the following notation:

Definition 2.1.13. Let (⋆, •) ∈ {(soft, ls), (stiff-ls, ls), (soft, int), (stiff-int, int)}, we denote by

n⋆ the outward pointing unit normal vector with respect to the component Q⋆. Also, let
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∂
(τ)
n⋆,•u be the trace of the co-normal derivative of u, with respect to ⋆, on the boundary Γ•.

This is defined for u ∈ H3/2(Q), by

∂
(τ)
n⋆,•u := −

(
∂u

∂n⋆
+ i(τ · n⋆)u

) ∣∣∣∣
Γ•

. (2.23)

(Note the minus sign convention.)

2.2 Boundary triple theory setup

2.2.1 Preliminaries

To study the operator A
(τ)
ε , it will be helpful to view it as a member of a larger family of

operators. In our case, this family will be constructed using the Ryzhov boundary triple [47],

for each τ. In this section, we will discuss the three ingredients that make up the boundary

triple, namely, the τ-Dirichlet decoupling, the τ-harmonic lift, and the τ-Dirichlet-to-Neumann

(τ-DtN) operator. First, we introduce a new notation for the spaces:

Definition 2.2.1. Set H := L2(Q) = L2(Qstiff-int)⊕L2(Qsoft)⊕L2(Qstiff-ls) and E := L2(Γint)⊕
L2(Γls). We refer to E as the boundary space.

Remark (On notation). We will view L2(Qstiff-int), L
2(Qsoft), and L

2(Qstiff-ls) as subspaces of

H. This means, for instance, that a function u ∈ L2(Qsoft) may be viewed as an element of H

• by an extension by zero onto Qstiff-int ∪Qstiff-ls, in which we write 0 + u+ 0 or simply u,

• or by an identification with the second component of (0, u, 0).

We will switch between the two notations where convenient. A similar remark applies to E and

its subspaces L2(Γint) and L
2(Γls). ◦

Definition 2.2.2 (Projections on H and E). For ⋆ ∈ {stiff-int, soft, stiff-ls}, we write P⋆ ∈
L(H) for the orthogonal projection of H onto L2(Q⋆). Similarly, for • ∈ {int, ls} we write

P• ∈ L(E) for the orthogonal projection of E onto L2(Γ•). (Note the calligraphic font for

projections on the boundary space.)

The τ-Dirichlet decoupling

The first ingredient, the τ-Dirichlet decoupling, is constructed using the Dirichlet operators

−(∇+ iτ)2, appropriately rescaled, on each connected component of Q.

Definition 2.2.3. The τ-Dirichlet decoupling is the operator on H = L2(Q) defined by

A
(τ)
ε,0 = A

stiff-int,(τ)
ε,0 ⊕A

soft,(τ)
0 ⊕A

stiff-ls,(τ)
ε,0 (2.24)

where,

• A
stiff-int,(τ)
ε,0 is the operator −ε−2(∇+ iτ)2 on L2(Qstiff-int) with Dirichlet BC on Γint. That

is, the operator defined through its sesquilinear form having form domain D[A
stiff-int,(τ)
ε,0 ] =

H1
0 (Qstiff-int) and action (u, v) 7→

∫
Qstiff-int

ε−1(1i∇+ τ)u · ε−1(1i∇+ τ)v.
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• A
soft,(τ)
0 is the operator −(∇+ iτ)2 on L2(Qsoft) with Dirichlet BCs on Γint ∪Γls. That is,

D[A
soft,(τ)
0 ] = H1

0 (Qsoft).

• A
stiff-ls,(τ)
ε,0 is the operator −ε−2(∇ + iτ)2 on L2(Qstiff-ls) with Dirichlet BC on Γls and

periodic BCs on ∂Q. That is, D[A
stiff-ls,(τ)
ε,0 ] = H1

0,per(Qstiff-ls), the closure of smooth

functions that are periodic on ∂Q and with compact support in ∂Q ∪ Qstiff-ls, under the

H1 norm.

Write Ã
stiff-int,(τ)
0 := ε2A

stiff-int,(τ)
ε,0 and Ã

stiff-ls,(τ)
0 := ε2A

stiff-ls,(τ)
ε,0 for the unweighted operators.

We record some properties of A
(τ)
ε,0 that will be useful to us.

Proposition 2.2.4. For all τ ∈ Q′ = [−π, π]d, A(τ)
ε,0 is self-adjoint, positive definite, has purely

discrete spectrum, and 0 ∈ ρ(A
(τ)
ε,0). Moreover, A

soft,(τ)
0 and A

⋆,(τ)
ε,0 are bounded below, uniformly

in τ and ε, assuming ε is small enough, ⋆ ∈ {stiff-int, stiff-ls}. We also have the following

estimates: For some C > 0, independent of τ and ε, assuming ε is small enough,

∥(Asoft,(τ)
0 )−1∥L2(Qsoft)→L2(Qsoft) ≤ C, (2.25)

∥(A⋆,(τ)
ε,0 )−1∥L2(Q⋆)→L2(Q⋆) ≤ Cε2. (2.26)

Proof. The self-adjointness, positive-semi-definiteness, and spectral type follows immediately as

it is the orthogonal sum of operators with these properties. The positive-definiteness will then

follow from 0 ∈ ρ(A
(τ)
ε,0). To show this, we first note that the case τ = 0 follows from the Poincaré

inequality applied to each of the three operators in A
(τ)
ε,0, since the first/lowest eigenvalue λ1 is

related to the optimal Poincaré constant γ by λ1 = γ−2 > 0. (γ can be taken to be independent

of ε, if we assume ε is small.)

For general τ, the lowest eigenvalue is always greater than or equal to the τ = 0 case. This is

due to the diamagnetic inequality |∇|f |(x)| ≤ |(∇+ iτ)f(x)| a.e., f ∈ H1, and the fact that we

can always choose the first Dirichlet eigenfunction (for τ = 0) to be strictly positive. (See [13,

Theorem 8.38] or first part of the proof of [8, Theorem 6.34].) This shows the claim on being

uniformly bounded below.

Since the norm of (A
soft,(τ)
0 )−1 is bounded above by

(
dist(0, σ(A

soft,(τ)
0 ))

)−1
, the estimate

follows. A similar argument applies to the “stiff” decouplings.

The τ-harmonic lift

The second ingredient, the τ-harmonic lift, generalizes the map that takes boundary data to

harmonic functions.

Definition 2.2.5. The τ-harmonic lift is the operator Π(τ) : E → H, defined by

Π(τ) = Πstiff-int,(τ)Pint +Πsoft,(τ) +Πstiff-ls,(τ)Pls, (2.27)

where
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• Πstiff-int,(τ) : L2(Γint) → L2(Qstiff-int) is the operator ϕ 7→ uϕ, where uϕ is the unique

solution to the BVP −(∇+ iτ)2uϕ = 0 in Qstiff-int,

uϕ = ϕ on Γint.
(2.28)

• Πsoft,(τ) : E → L2(Qsoft) is the operator (ϕ, φ) 7→ uϕ,φ, where uϕ,φ is the unique solution

to the BVP 
−(∇+ iτ)2uϕ,φ = 0 in Qsoft,

uϕ,φ = ϕ on Γint,

uϕ,φ = φ on Γls.

(2.29)

• Πstiff-ls,(τ) : L2(Γls) → L2(Qstiff-ls) is the operator φ 7→ uφ, where uϕ is the unique solution

to the BVP 
−(∇+ iτ)2uϕ = 0 in Qstiff-ls,

uφ = φ on Γls,

uφ periodic on ∂Q.

(2.30)

Note that while Π(τ) is not a direct sum of Πstiff-int,(τ), Πsoft,(τ), and Πsoft,(τ), their lifts into

the components L2(Qstiff-int), L
2(Qsoft), and L

2(Qstiff-ls) are mutually orthogonal:

Π(τ)(ϕ+ φ) =
(
Πstiff-int,(τ)ϕ,Πsoft,(τ)(ϕ+ φ),Πstiff-ls,(τ)φ

)
, for ϕ ∈ L2(Γint) and φ ∈ L2(Γls).

Below, we give a sketch on how the lifts are constructed, and refer the reader to [17, The-

orem 4.25] for the full details. For concreteness, we focus on Πstiff-int,(τ). We remark that the

construction applies to Πsoft,(τ), as Qsoft is connected with Lipschitz domain Γint ∪ Γls.

The lift Πstiff-int,(τ) is initially defined as a mapping from H1/2(Γint) to H
1(Qstiff-int).

This is possible because the fully homogeneous problem (zero RHS and zero on the

boundary) is uniquely solved by u ≡ 0, as A
stiff-int,(τ)
ε,0 is injective (Proposition 2.2.4).

We then show that Πstiff-int,(τ) admits a continuous extension to L2(Γint), by verifying

an L2 estimate for u = Πstiff-int,(τ)ϕ, where ϕ ∈ H1/2(Γint). To do this, consider the

adjoint problem “L∗w = f” corresponding to our harmonic lift problem “Lu = 0”.

The idea now is to combine both problems with Green’s identity, giving

0 = (u, f)L2(Qstiff-int) + (ϕ, ∂(τ)n w)L2(Γint).

Pick f = u. Bound ∥∂(τ)n w∥L2 in terms of ∥f∥L2 (this step is tedious, and requires

elliptic regularity) and we get the required inequality.

By definition, the lifts do not depend on ε. As for τ, it is natural to ask for Π(τ) to be

bounded (in the operator norm) uniformly in τ, since τ comes from a bounded set Q′. This is

true, and to show this from scratch would mean revisiting the tedious estimates in [17, Chapter

4], with extra care to be taken if the domain is only Lipschitz. We will not do this here. Rather,
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let us simply point out that the property that enables the estimate is the ellipticity of the

sesquilinear form in the sense of [22, Definition 11.2]:

Definition 2.2.6. A form t with domain D(t) = V is called elliptic if there exist constants

C > 0, γ > 0 and c ∈ R such that

(Boundedness) |t[u, v]| ≤ C∥u∥V ∥v∥V , for u, v ∈ V , (2.31)

(Abstract G̊arding inequality) (Re t)[u]− c∥u∥2 ≥ γ∥u∥2V , for u ∈ V, (2.32)

where Re t = 1
2(t+ t∗), and the adjoint form t∗ is defined as D(t∗) = D(t) and t∗[u, v] = t[v, u].

Picking C > 0 to be independent of τ is straightforward. As for G̊arding inequality, a

sufficient condition is for the coefficient matrix a(x) of the second order terms (principal part)

to be uniformly elliptic, in the sense that if the form t is written as

t[u, v] =

∫
Ω

d∑
k,l=1

akl∂lu · ∂kvdx+

∫
Ω

d∑
k=1

(bk∂kuv + cku∂kv)dx+

∫
Ω
quvdx,

then Re
∑d

k,l=1 akl(x)ξlξk ≥ α
∑d

k=1 |ξk|2, for all ξ ∈ Cd and x ∈ Ω for some constant α > 0. See

[22, Proposition 11.10] for precise statement. We then observe that the differential expressions

−(∇ + iτ)2 have the same principal part, −∆, therefore c and γ in G̊arding inequality could

also be chosen independently of τ. To summarize,

Proposition 2.2.7. There is some C > 0, independent of τ (and ε), such that

∥Π(τ)∥E→H < C. (2.33)

Remark. Alternatively, one could obtain Proposition 2.2.7 by the continuity of the mapping

Q′ ∋ τ → ∥Π(τ)∥E→H. We refer the reader to the proof of Proposition 2.3.5 (the term “∥u1−w∥”)
for a proof of the continuity claim. ◦

Let us record two more properties of Π(τ) that are necessary for constructing boundary

triples. First, owing to the fact that the decoupling A
(τ)
ε,0 has Dirichlet BCs, one has

D(A
(τ)
ε,0) ∩ ran(Π(τ)) = {0}. (2.34)

Second, the individual lifts Πstiff-int,(τ), Πsoft,(τ), and Πstiff-ls,(τ) are injective, and hence

ker(Π(τ)) = {0}. (2.35)

To prove the injectivity of, say Πstiff-int,(τ), one first observes that Πstiff-int,(τ) can be characterized

as the adjoint of the operator

L2(Qstiff-int) ∋ f 7→ ∂
(τ)
nstiff-int,int

(Ã
stiff-int,(τ)
0 )−1f.

(This is a prequel to the identity Π∗ = Γ1A
−1
0 of Proposition 2.2.13.) Since Γint is smooth, an

argument using elliptic regularity implies that the range of this operator contains C∞(Γint),

which is dense in L2(Γint).
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The τ-Dirichlet-to-Neumann operator

The final ingredient of the boundary triple is the τ-Dirichlet-to-Neumann operator.

Definition 2.2.8. The τ-Dirichlet-to-Neumann (τ-DtN) operator is the (unbounded) operator

Λ
(τ)
ε on E defined with domain D(Λ

(τ)
ε ) = H1(Γint)⊕H1(Γls) and action

(ϕ, φ) 7→ − ε−2

[
∂ustiff-int
∂nstiff-int

+ i(τ · nstiff-int)ustiff-int
]
−
[
∂usoft
∂nsoft

+ i(τ · nsoft)usoft
]

− ε−2

[
∂ustiff-ls
∂nstiff-ls

+ i(τ · nstiff-ls)ustiff-ls
]

=ε−2∂
(τ)
nstiff-int,int

ustiff-int + ∂
(τ)
nsoft,int

usoft + ∂
(τ)
nsoft,ls

usoft + ε−2∂
(τ)
nstiff-ls,ls

ustiff-ls. (2.36)

where uϕ,φ = u = ustiff-int + usoft + ustiff-ls is the solution to the BVP

−(∇+ iτ)2ustiff-int = 0 in Qstiff-int,

−(∇+ iτ)2usoft = 0 in Qsoft,

−(∇+ iτ)2ustiff-ls = 0 in Qstiff-ls,

ustiff-int = usoft = ϕ on Γint,

ustiff-ls = usoft = φ on Γls,

ustiff-int periodic on ∂Q.

(2.37)

For convenience, we introduce the following notation for the DtN on the individual components:

• Denote by Λ
stiff-int,(τ)
ε the operator with domain H1(Γint) and action ϕ 7→ ε−2∂

(τ)
nstiff-int,int

uϕ,

where uϕ = ustiff-int solves the BVP−(∇+ iτ)2ustiff-int = 0 in Qstiff-int,

ustiff-int = ϕ on Γint.
(2.38)

• Denote by Λsoft,(τ) the operator with domain H1(Γint)⊕H1(Γls) and action

(ϕ, φ) 7→ ∂
(τ)
nsoft,int

uϕ,φ + ∂
(τ)
nsoft,ls

uϕ,φ, where uϕ,φ = usoft solves the BVP
−(∇+ iτ)2ustiff-ls = 0 in Qsoft,

usoft = ϕ on Γint,

usoft = φ on Γls.

(2.39)

• Denote by Λ
stiff-ls,(τ)
ε the operator with domain H1(Γls) and action φ 7→ ε−2∂

(τ)
nstiff-ls,ls

uφ,

where uφ = ustiff-ls solves the BVP
−(∇+ iτ)2ustiff-ls = 0 in Qstiff-ls,

ustiff-ls = φ on Γls,

ustiff-ls periodic on ∂Q.

(2.40)
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• Write Λ̃stiff-int,(τ) := ε2Λ
stiff-int,(τ)
ε and Λ̃stiff-ls,(τ) := ε2Λ

stiff-ls,(τ)
ε for the unweighted opera-

tors.

In this way, we may write Λ
(τ)
ε as a sum of self-adjoint operators on L2(Γint), E , and L2(Γls)

respectively:

Λ(τ)
ε = Λstiff-int,(τ)

ε Pint + Λsoft,(τ) + Λstiff-ls,(τ)
ε Pls. (2.41)

Remark. We have used the assumption that the boundaries Γint and Γls are at least C1,1, so

that by [17, Theorem 4.21], the co-normal derivatives are well-defined. ◦

We refer the reader to [17, p. 145] and [30] for general properties of τ-DtN maps. Of note in

the construction of the DtN maps, is the requirement that u ≡ 0 is the unique solution to the

fully homogeneous problem, similarly to the lifts Π. This refers to formulae (4.35) to (4.38) of

[17], and Section 3 of [30] (the assumption that 0 belongs to the resolvent set of the Dirichlet

Laplacian).

To construct our boundary triple, we require the DtN map to be self-adjoint [47, Assumption

2]. This is immediate for Λ
stiff-int,(τ)
ε , Λsoft,(τ), and Λ

stiff-ls,(τ)
ε , by [30, Theorem 3.1].

Lemma 2.2.9. For ε small enough, independently of τ, Λ
(τ)
ε is self-adjoint on E .

Sketch of proof. We will outline the idea of [35, Lemma 2.1] and state the modifications needed.

First, it suffices to discuss the τ = 0 case, as general τ can be viewed as a relatively bounded

perturbation of the τ = 0 case. We hence omit writing τ for the remainder of the proof.

Second, we note that

Λstiff-int
ε Pint + Λstiff-ls

ε Pls = Λstiff-int
ε ⊕ Λstiff-ls

ε , (2.42)

which is an orthogonal sum of self-adjoint operators, hence it is self-adjoint on E with domain

H1(Γint)⊕H1(Γls).

Third, we view Λε as the operator Λstiff-int
ε ⊕ Λstiff-ls

ε perturbed by the “soft” DtN operator

Λsoft. In fact, we may verify the following estimate: there exist some α, β > 0, independent of

ε, such that for all (ϕ, φ) ∈ D(Λstiff-int
ε ⊕ Λstiff-ls

ε ),

∥Λsoft(ϕ+ φ)∥E ≤ αε2∥(Λstiff-int
ε ⊕ Λstiff-ls

ε )(ϕ+ φ)∥E + β∥ϕ+ φ∥E .

Therefore, if ε is small enough, then Λsoft is relatively (Λstiff-int
ε ⊕ Λstiff-ls

ε )-bounded with bound

strictly less than 1, hence the sum Λε = Λsoft + (Λstiff-int
ε ⊕ Λstiff-ls

ε ) is self-adjoint by the Kato-

Rellich theorem [22, Theorem 8.5].

Finally, we note that Λsoft and Λstiff-int
ε ⊕ Λstiff-ls

ε have common domain H1(Γint) ⊕H1(Γls),

so this is also the domain of the sum Λε.

We will henceforth assume that ε > 0 is small enough to satisfy Proposi-

tion 2.2.4 and Lemma 2.2.9.

The DtN operator is an important object for our analysis. Not only is it one of the main

ingredients of the boundary triple, it also features prominently in Krein’s formula, a key result
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in the boundary triples theory. In particular, of interest to us are spectral properties of the

unweighted “stiff” DtN components Λ̃stiff-int,(τ) = ε2Λ
stiff-int,(τ)
ε and Λ̃stiff-ls,(τ) = ε2Λ

stiff-ls,(τ)
ε . Let

us collect the required properties in the proposition below.

Proposition 2.2.10. For all τ ∈ Q′ = [−π, π]d, the DtN operators Λ̃stiff-int,(τ), Λsoft,(τ), and

Λ̃stiff-ls,(τ) are unbounded self-adjoint operators on L2(Γint), E , and L2(Γls) respectively. They

are semibounded from above (note our sign convention for ∂
(τ)
n ), and have compact resolvents.

Focusing on Λ̃stiff-int,(τ) and Λ̃stiff-ls,(τ), if we order their eigenvalues in descending order count-

ing multiplicities, then

• The eigenvalues of Λ̃stiff-int,(τ) satisfy

For all τ, 0 = µ
stiff-int,(τ)
1 > µ

stiff-int,(τ)
2 ≥ µ

stiff-int,(τ)
3 ≥ · · · → −∞. (2.43)

The eigenfunction ψ
stiff-int,(τ)
1 corresponding to the first eigenvalue is

ψ
stiff-int,(τ)
1 (x) = |Γint|−

1
2 e−iτ·x. In particular this is a constant when τ = 0.

• The eigenvalues of Λ̃stiff-ls,(τ) satisfy

If τ = 0, then 0 = µ
stiff-ls,(τ)
1 > µ

stiff-ls,(τ)
2 ≥ µ

stiff-ls,(τ)
3 ≥ · · · → −∞. (2.44)

If τ ̸= 0, then 0 > µ
stiff-ls,(τ)
1 ≥ µ

stiff-ls,(τ)
2 ≥ µ

stiff-ls,(τ)
3 ≥ · · · → −∞. (2.45)

Moreover, µ
stiff-ls,(τ)
1 is simple when |τ| is small enough.

The first eigenvalue admits an asymptotic expansion in τ with the leading order being

quadratic in τ. That is, there exists a (strictly) negative-definite matrix µstiff-ls∗ satisfying

µ
stiff-ls,(τ)
1 = µstiff-ls∗ τ · τ+O

(
|τ|3
)
. (2.46)

For the case τ = 0, the eigenfunction ψ
stiff-ls,(τ)
1 corresponding to the first eigenvalue is

constant, ψ
stiff-ls,(τ)
1 (x) = |Γls|−

1
21Γls

(x).

For general τ, the eigenfunction ψ
stiff-ls,(τ)
1 admits an expansion: there exist some ψstiff-ls

∗ =

(ψstiff-ls
(1) , · · · , ψstiff-ls

(d) ) ∈
(
L2(Γls)

)d
such that

ψ
stiff-ls,(τ)
1 = |Γls|−

1
2

(
1 + τ · ψstiff-ls

∗ +O
(
|τ|2
))
. (2.47)

Proof. See [30], which discusses the DtN operator corresponding to −∆ (the case τ = 0), and

with a bounded connected domain Ω ⊂ Rd with Lipschitz boundary. In there, it is proven that

the DtN map is self-adjoint, semibounded, and has compact resolvent [30, Theorem 3.1]. The

key fact allowing us to conclude the compactness of the resolvent is the compactness of trace

operator H1(Ω) → L2(∂Ω). An easy modification to the case −(∇+ iτ)2 allows us to conclude

the same for Λ̃stiff-int,(τ), Λ̃stiff-ls,(τ), and Λsoft,(τ).

The simplicity of µ
stiff-int,(0)
1 is proved in the follow-up work in [31, Theorem 1.2]. We then

note that (ψ
stiff-int,(0)
k , µ

stiff-int,(0)
k ) is an eigenpair for Λ̃stiff-int,(0) if and only if (ψ

stiff-int,(0)
k e−iτ·x,

µ
stiff-int,(0)
k ) is an eigenpair for Λ̃stiff-int,(τ).
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Since Qstiff-ls (with edges identified) is connected and Γls is smooth, the arguments of [31,

Proposition 4.1] can be modified to the setting ofH1
per(Qstiff-ls) to give the simplicity of µ

stiff-ls,(0)
1 .

The claim that µ
stiff-ls,(τ)
1 < 0 for τ ̸= 0 is a consequence of Corollary C.2. Corollary C.2,

combined with the fact that µ
stiff-ls,(τ)
2 can be bounded away from zero uniformly in τ implies

the simplicity of µ
stiff-ls,(τ)
1 for small |τ|. We postpone the self-contained argument on µ

stiff-ls,(τ)
2

to the proof of Theorem 2.3.4.

The claims that lowest eigenvalue is zero for Λ̃stiff-int,(τ) for all τ and for Λ̃stiff-ls,(τ) for τ = 0

is a direct check on the expression for the eigenfunctions.

The proof of the asymptotic expansions for µ
stiff-ls,(τ)
1 and ψ

stiff-ls,(τ)
1 is postponed to Propo-

sition 2.3.5 (see the term “∥u2 − w∥”).

To conclude the section, let us write the eigenvalue problem for, say, Λ̃stiff-ls,(τ), in terms of the

associated BVP. The eigenvalue problem reads: Find the values z ∈ C where Λ̃stiff-ls,(τ)φ = zφ,

φ ∈ D(Λ̃stiff-ls,(τ)) = H1(Γls) has a non-trivial solution. In terms of the BVP, this reads: Find

z ∈ C such that the problem 
−(∇+ iτ)2u = 0 in Qstiff-ls,

∂
(τ)
nstiff-ls,ls

u = zu on Γls,

u periodic on ∂Q,

(2.48)

has a non-trivial solution u ∈ H2
per(Qstiff-ls). This is also called the Steklov problem, and hence

the eigenvalues of Λ̃stiff-ls,(τ) are also referred to as Steklov eigenvalues.

2.2.2 Applying the triple framework. General properties.

We will now use the three ingredients provided in the previous section to define boundary triples

and several auxiliary operators. This construction is done for each ε > 0 and τ ∈ Q.

Definition 2.2.11. ([47].) By a (Ryzhov) boundary triple, we mean two separable Hilbert

spaces H and E (E is called the boundary space), and a triple of operators (A0,Λ,Π) such that:

• (Dirichlet decoupling) A0 is an unbounded self-adjoint operator on H, with 0 ∈ ρ(A0),

• (DtN operator) Λ is an unbounded self-adjoint operator on E ,

• (Lift) Π : E → H is a bounded linear map such that ker(Π) = {0},

• D(A0) ∩ ran(Π) = {0}.

When the underlying Hilbert spaces are clear form the context, we will simply refer to

(A0,Λ,Π) as the boundary triple.

We now proceed to define the auxiliary operators Â, Γ0, Γ, S(z), and M(z), corresponding

to a boundary triple (A0,Λ,Π).

Definition 2.2.12. Let (A0,Λ,Π) be a boundary triple with spaces H and E . Define the

following operators:
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• Â : H ⊃ D(Â) → H, with domain D(Â) = D(A0)+̇ran(Π) and action

Â(A−1
0 f +Πϕ) = f, f ∈ H, ϕ ∈ E . (2.49)

• Γ0 : H ⊃ D(Γ0) → E , with domain D(Γ0) = D(A0)+̇ran(Π) and action

Γ0(A
−1
0 f +Πϕ) = ϕ, f ∈ H, ϕ ∈ E . (2.50)

(We have used the assumptions D(A0) ∩ ran(Π) = {0}, 0 ∈ ρ(A0), and ker(Π) = {0}.)

• Γ1 : H ⊃ D(Γ1) → E , with domain D(Γ1) = D(A0)+̇ΠD(Λ) and action

Γ1(A
−1
0 f +Πϕ) = Π∗f + Λϕ, f ∈ H, ϕ ∈ D(Λ) ⊂ E . (2.51)

• (Solution operator) For z ∈ ρ(A0), define the bounded linear operator S(z) : E → H by

S(z)ϕ :=
(
I + z(A0 − z)−1

)
Πϕ. (2.52)

• (M-operator) For z ∈ ρ(A0), we define the operator M(z) : E ⊃ D(M(z)) → E , with
domain D(M(z)) = D(Λ) (independent of z), and action

M(z)ϕ := Γ1S(z)ϕ, ϕ ∈ D(M(z)). (2.53)

Remark. Note that D(Γ1) ⊂ D(Γ0) = D(A). This is one key difference between the Ryzhov

triple and the “classical” triple described in [22, Chapter 14]. ◦

Let us now provide a motivation for the operators in Definition 2.2.12. Given f ∈ H, ϕ ∈ E ,
and z ∈ ρ(A0), we would like to solve the following system of linear equations(Â− z)u = f,

Γ0u = ϕ.
(2.54)

The system bears resemblance to BVPs, with one equation on the main Hilbert space H and

another on the boundary space E . Here, Γ0 has the interpretation of the (Dirichlet) trace, since

by definition Γ0Πϕ = ϕ and Π will be the harmonic lift in Section 2.2.1. This can also be seen

from ker(Γ0) = D(A0), where A0 will be the operator with Dirichlet BCs in Section 2.2.1.

Choosing Λ to be the DtN map from Section 2.2.1, the identity Λ = Γ1Π then implies that

Γ1 has the interpretation of the Neumann trace.

As for S(z), [47, Theorem 3.2] says that the system has a unique solution uf,ϕz = (A0 −
z)−1f + (I − zA−1

0 )−1Πϕ, where the two terms solve the following systems respectively:(Â− z)u = f,

Γ0u = 0.

(Â− z)u = 0,

Γ0u = ϕ.
(2.55)

We then set S(z) to be the operator solving the second system, justifying the name “solution
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operator”. One should compare this with the BVP for the harmonic lift in Section 2.2. Notice

that S(z) is not merely any generalization of Π from z = 0 to z ∈ ρ(A0) in the sense that

S(0) = Π, but one with an additional property that the dependence on z is reflected explicitly

in the first equation of our system, (Â− z)u = 0.

Combining the interpretations for Γ1 and S(z), we hence see that M(z) = Γ1S(z) could be

interpreted as the DtN map with spectral parameter z. Similarly to S(z), we could also check

that M(0) = Λ.

Let us return to our setting. In total we have four triples of interest:

• (Full cube) (A
(τ)
ε,0,Λ

(τ)
ε ,Π(τ)) with H = L2(Q) and E = L2(Γint)⊕ L2(Γls).

• (Stiff interior) (A
stiff-int,(τ)
ε,0 ,Λ

stiff-int,(τ)
ε ,Πstiff-int,(τ)) with L2(Qstiff-int) and boundary space

L2(Γint).

• (Soft annulus) (A
soft,(τ)
0 ,Λsoft,(τ),Πsoft,(τ)) with L2(Qsoft) and boundary space L2(Γint) ⊕

L2(Γls).

• (Stiff landscape) (A
stiff-ls,(τ)
ε,0 ,Λ

stiff-ls,(τ)
ε ,Πstiff-ls,(τ)) with L2(Qstiff-ls) and boundary space

L2(Γls).

We then apply Definition 2.2.12 to get the following auxiliary operators

• (Full cube) Â
(τ)
ε , Γ

(τ)
0 , Γ

(τ)
ε,1, S

(τ)
ε (z), and M

(τ)
ε (z).

• (Stiff interior) Â
stiff-int,(τ)
ε , Γ

stiff-int,(τ)
0 , Γ

stiff-int,(τ)
ε,1 , S

stiff-int,(τ)
ε (z), and M

stiff-int,(τ)
ε (z).

• (Soft annulus) Âsoft,(τ), Γ
soft,(τ)
0 , Γ

soft,(τ)
1 , Ssoft,(τ)(z), and M soft,(τ)(z).

• (Stiff landscape) Â
stiff-ls,(τ)
ε , Γ

stiff-ls,(τ)
0 , Γ

stiff-ls,(τ)
ε,1 , S

stiff-ls,(τ)
ε (z), and M

stiff-ls,(τ)
ε (z).

Remark. Our main model operator A
(τ)
ε defined in Section 2.1.3 is not Â

(τ)
ε , but as we see

shortly, will coincide with an operator denoted by Â
(τ)
ε,0,I . Â

(τ)
ε,0,I will be derived from Â

(τ)
ε . ◦

In the next section we will discuss some extra properties that arise from our specific setup.

Here, we collect some properties which are applicable to a general boundary triple (A0,Λ,Π).

Some of these have already been used to motivate the definition of the triple.

Proposition 2.2.13 (Properties of auxiliary operators). Let (A0,Λ,Π) be a boundary triple

with spaces H and E . Construct the operators Â, Γ0, Γ1, S(z), and M(z). Let z ∈ ρ(A0).

Then,

1. ker(Γ0) = D(A0), and ran(S(z)) = ker(Â− z).

2. Γ0S(z) = IE . In particular, since S(0) = Π, we have Γ0S(0) = Γ0Π = IE .

3. Λ = Γ1Π, and Π∗ = Γ1A
−1
0 .

4. S(z) = (I − zA−1
0 )−1Π. In particular, S(z)∗ = Γ1(A0 − z)−1.

5. M(z) = Λ + zΠ∗(I − zA−1
0 )−1Π. In particular, M(0) = Λ, and M(z)∗ =M(z).
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6. ρ(A0) ∋ z 7→M(z) is an analytic operator-valued function where the operators are closed

in E and have common (z-independent) domain D(Λ).

7. For z, ζ ∈ ρ(A0), M(z) − M(ζ) is bounded, and M(z) − M(ζ) = (z − ζ)S(z)∗S(ζ).

In particular, ImM(z) = Im(z)S(z)∗S(z). Here, we define the imaginary part of the

unbounded operator M(z) to be the imaginary part of its bounded component, i.e.

ImM(z) := Im(M(z)−M(0)).

8. If uz ∈ ker(Â− z) ∩ D(Γ1), then M(z)Γ0uz = Γ1uz.

9. I
ker(Â−z) ⊂ S(z)Γ0.

All of the proofs of these claims can be found in [47, Section 3]. Here, let us comment on

the statement of these properties. The identity Λ = Γ1Π gives the interpretation of Γ1 as the

Neumann trace, and hence Π∗ = Γ1A
−1
0 gives an interpretation for Π∗: it takes f ∈ L2(Q)

in A0u = f to the Neumann trace of u. Point 5 rewrites M(z) as an unbounded self-adjoint

operator plus a bounded operator (which is even analytic in z ∈ ρ(A0)). Point 8 says that

M(z) is the DtN map for the problem with spectral parameter z (i.e. with first equation being

(Â − z)uz = 0). In other words, we have not only generalized Λ in the sense that M(0) = Λ,

but also done so in a structured way that the dependence on z is seen explicitly in the BVPs.

(Recall that we have made a similar comment on S(z).) This relies crucially on the property

that I
ker(Â−z) ⊂ S(z)Γ0, which we record as point 9 for reference.

One more property deserves mention. Because of its importance we put it as a separate

result.

Theorem 2.2.14 (Green’s second identity). For all u, v ∈ D(Γ1) = D(A0)+̇ΠD(Λ), we have

(Âu, v)H − (u, Âv)H = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E . (2.56)

Proof. See [47, Theorem 3.6].

The power of the boundary triple framework starts to be felt once we start considering

different “boundary conditions”. By “boundary conditions” here, what we really mean is the

second equation of the system (2.54), a condition on the boundary space E . Motivated by the

classical triple, the goal of the Ryzhov triple here is to construct a family of operators which is

parameterized by the BCs, together with a Krein’s resolvent formula. From the point of view of

our homogenization task, employing the triple framework is ideal because

• this family includes all relevant operators that are needed for our analysis,

• these operators have a corresponding BVP interpretation (2.54), albeit slightly abstract,

• Krein’s formula provides a way to compute the norm resolvent asymptotics in terms of

“nicer” objects like M(z) and S(z).

Let us now outline the key ideas of the construction of the operator Âβ0,β1. (We

refer the reader to [47, Section 4-5] for the details.) Given f ∈ H, ϕ ∈ E , and z ∈ ρ(A0), we
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would like to uniquely solve the following system:(Â− z)u = f,

(β0Γ0 + β1Γ1)u = ϕ.
(2.57)

As per all constructions involving unbounded operators, we have to address the issue of

domains. The biggest set where this would make sense is u ∈ D(Γ1). That is, u = A−1
0 g +Πφ,

with g ∈ H and φ ∈ D(Λ). Furthermore, we would like to make sense of β0, β1 not only

as numbers, but also as operators on E , as doing so would allow us to greatly expand our

interpretation of a BVP. To figure out reasonable conditions on β0, β1, we observe that for u as

above,

(β0Γ0 + β1Γ1)(A
−1
0 g +Πφ) = β1Π

∗g + (β0 + β1Λ)φ. (2.58)

Therefore, we make the following assumptions:

Definition 2.2.15. We assume that β0 and β1 are linear operators on E such that D(β0) ⊃
D(Λ), β1 ∈ L(E), and β0 + β1Λ is closable.

The closability condition has been added because in what follows, we would like β0 + β1Λ,

or equivalently β0 + β1M(z) by Proposition 2.2.13(5), to be boundedly invertible. (Recall that

if an operator is not closed, then it cannot be boundedly invertible.) As a byproduct, we have

expanded our solution space from u ∈ D(Γ1) = {u = A−1
0 g +Πφ | g ∈ H, φ ∈ D(Λ)} to

Hβ0+β1Λ
:= {u = A−1

0 g +Πφ | g ∈ H, φ ∈ D(β0 + β1Λ)}.

The space Hβ0+β1Λ
and the closability of β0 + β1Λ is what enables the subsequent steps in

the construction:

1. It becomes a Hilbert space, equipped with norm ∥u∥2
β0+β1Λ

:= ∥g∥2H+∥φ∥2E+∥(β0 + β1Λ)φ∥2E .

2. It allows β0Γ0 + β1Γ1 to be extended to a bounded operator from (Hβ0+β1Λ
, ∥ · ∥β0+β1Λ)

to E .

3. Consider the operator β0 + β1M(z) which has domain D(β0 + β1M(z)) = D(β0 + β1Λ).

If we assume that β0 + β1M(z) is boundedly invertible on E , then the system (2.57) has

a unique solution in Hβ0+β1Λ
.

4. There exist an operator Âβ0,β1 constructed from β0, β1, and the triple (A0,Λ,Π):

Theorem 2.2.16. ([47, Theorem 5.5]) Assume z ∈ ρ(A0) is such that β0 + β1M(z) de-

fined on D(β0 + β1Λ) is boundedly invertible on E . Define

Rβ0,β1(z) := (A0 − z)−1 + S(z)Qβ0,β1(z)S(z)
∗, (2.59)

where Qβ0,β1(z) := −(β0 + β1M(z))−1β1. Then Rβ0,β1(z) is the resolvent at z of a closed

densely defined operator Âβ0,β1 on H. Its domain satisfies the following inclusion

D(Âβ0,β1) ⊂ {u ∈ Hβ0+β1Λ
| (β0Γ0 + β1Γ1)u = 0} = ker(β0Γ0 + β1Γ1). (2.60)
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Furthermore, we have Âβ0,β1 ⊂ Â. That is, Âβ0,β1u = Âu whenever u ∈ D(Âβ0,β1).

Remark. • We refer to the formula for (Âβ0,β1 − z)−1 ≡ Rβ0,β1(z) as Krein’s formula.

• We did not give a complete description of D(Âβ0,β1). The best we have is D(Âβ0,β1) =

ran(Rβ0,β1(z)), where the RHS can be expressed in the triple (A0,Λ,Π) by Krein’s formula.

We also note here that D(Âβ0,β1) fits into the following chain of inclusions:

ker(Γ0) ∩ ker(Γ1) ⊂ D(Âβ0,β1) ⊂ ker(β0Γ0 + β1Γ1) ⊂ Hβ0+β1Λ
⊂ D(A) ⊂ H.

• We do not claim that Âβ0,β1 is self-adjoint. See [47, Corollary 5.8] for a sufficient condition.

• The construction of the closed operator Âβ0,β1 from resolvents is a general result of “pseu-

doresolvents” which can be found in [12, Chapter 4, Proposition 1.6].

• For our application, it is important to point out that β0 and β1 are allowed to depend on

z. Correspondingly, the operator Âβ0,β1 depends on z as well. ◦

The theorem says that for f ∈ H, the equation (Âβ0,β1 − z)u = f can be solved uniquely if

and only if the same holds for the system(Â− z)u = f,

(β0Γ0 + β1Γ1)u = 0.
(2.61)

A solution to this system implies a “weak solution” in the sense of [47, Definition 3.8], which

coincides with the typical definition of a weak solution. Therefore we can relate the operators

constructed in this way to a typical BVP, such as our main model in Section 2.1.3. To be

precise, for the case β0 = 0 and β1 = I, we conclude that

Corollary 2.2.17. A
(τ)
ε = Â

(τ)
ε,0,I , and (A

(τ)
ε − z)−1 = (A

(τ)
ε,0 − z)−1 − S

(τ)
ε (z)M

(τ)
ε (z)−1S

(τ)
ε (z)∗

whenever z ∈ C \ R.

Proof. A
(τ)
ε is self-adjoint, and so is Â

(τ)
ε,0,I by [47, Corollary 5.8]. Now consider the resolvents of

both operators at z = i. The range of (Â
(τ)
ε,0,I − i)−1 is D(Â

(τ)
ε,0,I), and is also the set of solutions

to (2.61) for some f ∈ H. Similarly, the range of (A
(τ)
ε − i)−1 is D(A

(τ)
ε ), and is also the set

of weak solutions to (2.61). By the preceding paragraph, we have D(Â
(τ)
ε,0,I) ⊂ D(A

(τ)
ε ), and so

Â
(τ)
ε,0,I ⊂ A

(τ)
ε . Since self-adjoint operators are maximally symmetric, they must be equal.

This concludes our discussion of general boundary triples. We now proceed to study bound-

ary triple properties that are unique to our setup.

2.2.3 Properties of the triple arising from our setup

First, let us state the actions of our auxiliary operators in a more convenient form. We will skip

Â and Γ0 since they are just null extensions of A0 and the left inverse of Π respectively. We

will also do this only for the the triple on Qstiff-ls, omitting similar statements for Qstiff-int and

Qsoft for brevity.

39



Using the identity Λ
stiff-ls,(τ)
ε = Γ

stiff-ls,(τ)
ε,1 Πstiff-ls,(τ), we see that Γ

stiff-ls,(τ)
ε,1 takes u = Πstiff-ls,(τ)ϕ ∈

Πstiff-ls,(τ)D(Λ
stiff-ls,(τ)
ε ) to ε−2∂

(τ)
nstiff-ls,ls

u, where u solves the BVP
−(∇+ iτ)2u = 0 in Qstiff-ls,

u = ϕ on Γls,

u periodic on ∂Q.

Remark. The action of Γ1 is characterized by two equations, Λ = Γ1Π and Π∗ = Γ1A
−1
0 . The

above description only discusses Λ = Γ1Π. ◦

For S
stiff-ls,(τ)
ε (z) = (I − z(A

stiff-ls,(τ)
ε,0 )−1)Πstiff-ls,(τ), it takes ϕ ∈ L2(Γls) to

uϕ ∈ D(A
stiff-ls,(τ)
ε,0 )+̇ran(Πstiff-ls,(τ)) ⊂ L2(Qstiff-ls),

where u = uϕ solves the BVP (in the sense of system (2.54))(−ε−2(∇+ iτ)2 − z)u = 0,

Γ
stiff-ls,(τ)
0 u = ϕ.

ForM
stiff-ls,(τ)
ε (z) = Γ

stiff-ls,(τ)
ε,1 S

stiff-ls,(τ)
ε (z), it takes ϕ ∈ H1(Γls) = D(Λ

stiff-ls,(τ)
ε ) to ε−2∂

(τ)
nstiff-ls,ls

u,

where u = uϕ solves the BVP
(−ε−2(∇+ iτ)2 − z)u = 0 in Qstiff-ls,

u = ϕ on Γls,

u periodic on ∂Q.

In view of keeping our notation compact, we make the following convention:

Remark (On notation). In the remainder of the text, we will often abuse notation and write

for instance, the operator “P1AP2”, for projections P1 and P2, to mean any one of the following:

• the composition of the three operators, P1AP2 : H → H,

• the compression rP1A|P2H : P2H → P1H, where r : H → P1H is the restriction operator,

• the operator P1A|P2H : P2H → H, which is equal to the composition of the embedding

i : P1H → H with the compression,

• the operator rP1A|P2H + rP10|P⊥
2 H : H → P1H, which is the null extension of the com-

pression to the full space. ◦

Using the projections on H and E (Definition 2.2.2), let us now discuss how the auxiliary

operators of different triples relate to each other. The first observation follows directly from the

definition of the triples:

Πstiff-int,(τ) = Pstiff-intΠ
(τ)Pint, Πsoft,(τ) = PsoftΠ

(τ), and Πstiff-ls,(τ) = Pstiff-lsΠ
(τ)Pls. (2.62)
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Secondly, by our description of the action of S(z), we have

Sstiff-int,(τ)
ε (z) = Pstiff-intS

(τ)
ε (z)Pint, Ssoft,(τ)(z) = PsoftS

(τ)
ε (z), and

Sstiff-ls,(τ)
ε (z) = Pstiff-lsS

(τ)
ε (z)Pls. (2.63)

This could be proven directly, for instance for Ssoft,(τ)(z), by noting that

PsoftS
(τ)
ε (z) = Psoft(I − z(A

(τ)
0 − z)−1)Π(τ) by definition of S(z),

= Psoft(I − z(A
(τ)
0 − z)−1)PsoftΠ

(τ) L2(Qsoft) is an invariant subspace for A
(τ)
0 ,

= (IL2(Qsoft) − z(A
soft,(τ)
0 − z)−1)Πsoft,(τ) by construction of A

(τ)
0 and by (2.62).

As for M(z), we have

Proposition 2.2.18. For z ∈ ρ(A
(τ)
ε,0), the following identity holds

M (τ)
ε (z) =M stiff-int,(τ)

ε (z)Pint +M soft,(τ)(z) +M stiff-ls,(τ)
ε (z)Pls. (2.64)

Proof. We will drop τ and ε. Let ϕ ∈ H1(Γint) and φ ∈ H1(Γls). We see that

• M stiff-int(z) = Γstiff-int
1 Sstiff-int(z) takes ϕ to ε−2∂

(τ)
nstiff-int,int

uϕ,

• M soft(z) = Γsoft
1 Ssoft(z) takes ϕ+ φ to ∂

(τ)
nsoft,int

uϕ,φ + ∂
(τ)
nsoft,ls

uϕ,φ,

• M stiff-ls(z) = Γstiff-ls
1 Sstiff-ls(z) takes φ to ε−2∂

(τ)
nstiff-ls,ls

uφ,

where u = ustiff-int + usoft + ustiff-ls = uϕ + uϕ,φ + uφ solves the BVP

(−ε−2(∇+ iτ)2 − z)uϕ = 0 in Qstiff-int,

(−(∇+ iτ)2 − z)uϕ,φ = 0 in Qsoft,

(−ε−2(∇+ iτ)2 − z)uφ = 0 in Qstiff-ls,

uϕ = uϕ,φ = ϕ on Γint,

uφ = uϕ,φ = φ on Γls,

uφ periodic on ∂Q.

(2.65)

(Recall that the DtN map and M -operator are related by the identity M(0) = Λ.) (ϕ, φ) 7→
ε−2∂

(τ)
nstiff-int,int

uϕ+∂
(τ)
nsoft,int

uϕ,φ+∂
(τ)
nsoft,ls

uϕ,φ+ε
−2∂

(τ)
nstiff-ls,ls

uφ is precisely the action ofM(z).

Remark. We will drop τ and ε in this remark. Note that

M stiff-int(z) ̸= PintM(z)Pint.

The LHS is Γstiff-int
1 Sstiff-int(z), which takes ϕ ∈ H1(Γint) to ε−2∂

(τ)
nstiff-int,int

uϕ. The RHS takes

ϕ ∈ H1(Γint) to ε−2∂
(τ)
nstiff-int,int

uϕ + ∂
(τ)
nsoft,int

uϕ,0. Even though we are confronted with this

asymmetry, the above proposition assures us that the additive structure of M(z) remains. The

additivity is exploited to great effect in [35]. ◦

41



Finally, we discuss the dependence of the auxiliary operators on ε and τ, and the spectral

parameter z. To obtain estimates that are uniform in z, we will restrict our choice of z to the

following set.

Definition 2.2.19. Fix σ > 0 and a compact subset of K ⊂ C. Let Kσ be the compact subset

ofK that is at σ distance away from the real line. That is, Kσ = {z ∈ C : z ∈ K,dist(z,R) ≥ σ}.

Lemma 2.2.20. We have S
stiff-int,(τ)
ε (z)−Πstiff-int,(τ) = O(ε2), S

stiff-ls,(τ)
ε (z)−Πstiff-ls,(τ) = O(ε2)

and Ssoft,(τ)(z)−Πsoft,(τ) = O(1) in operator norm. These estimates are uniform in τ ∈ Q′ and

z ∈ Kσ.

Proof. This is a direct consequence of the formula S(z) = (I + z(A0 − z)−1)Π.

In terms of estimates that are uniform over ε, τ, and z ∈ Kσ, recall that we have already

provided one for the decoupling A0 in Proposition 2.2.4, and one for the lift Π in Proposition

2.2.7.

Similarly to the solution operator S(z), we may ask for a simplification ofM(z) up to O(ε2).

Recall the notation for the unweighted decoupling Ã
stiff-int,(τ)
0 , Ã

stiff-ls,(τ)
0 and unweighted DtN

maps Λ̃stiff-int,(τ), Λ̃stiff-ls,(τ).

Lemma 2.2.21. For ⋆ ∈ {stiff-int, stiff-ls}, we have

M⋆,(τ)
ε (z) = ε−2Λ̃⋆,(τ) + z(Π⋆,(τ))∗Π⋆,(τ) +O(ε2), (2.66)

where the estimate is uniform over τ ∈ Q′ and z ∈ Kσ.

Proof. We omit ⋆. Since Ã
(τ)
0 = ε2A

(τ)
ε,0, we get ε2(Ã

(τ)
0 )−1 = (A

(τ)
ε,0)

−1. Hence

M (τ)
ε (z) = ε−2Λ̃(τ) + z(Π(τ))∗

(
I − zε2

(
Ã

(τ)
0

)−1
)−1

Π(τ)

= ε−2Λ̃(τ) + z(Π(τ))∗Π(τ) +O(ε2). (2.67)

The second equality follows from the Neumann series, which is justified by the uniform in

τ bounds for the decoupling and the lift from Propositions 2.2.4 and 2.2.7, and assuming ε is

small enough.

2.3 Norm-resolvent asymptotics

After the long setup, we are now ready to begin the task of homogenization. By “homogeniza-

tion”, we mean that we would like to study the norm-resolvent asymptotics of our main model

operator A
(τ)
ε of Section 2.1.3. We would like to identify an operator A(τ)

hom that we will refer to

as a homogenized operator. To qualify as a “homogenized” operator, we require that

• A(τ)
hom be self-adjoint on a possibly smaller subspace L2(Qsoft)⊕ H̃ of L2(Q).

• The dependence ε is only allowed in the action of A(τ)
hom, on the stiff component. In

particular, the subspace H̃, and the domain D(A(τ)
hom) must be independent of ε.

• A(τ)
hom and A

(τ)
ε are asymptotically equivalent, as ε ↓ 0, in some specified topology.
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2.3.1 Decomposing the boundary space

In this section, we will decompose the boundary space E = L2(Γint) ⊕ L2(Γls) with respect to

the spectral subspaces of the DtN map Λ
(τ)
ε . This is a key step in [35], so let us explain the

underlying rationale.

By the Krein’s formula (Theorem 2.2.16), we turn our attention to the solution operator

S
(τ)
ε (z) and M-operator M

(τ)
ε (z). Lemmas 2.2.20 and 2.2.21 tells us that M(z) is the badly

behaved term of the two. Focusing on M(z), problematic region of the resolvent set is located

at z = 0 and its vicinity. To see this, recall from Corollary 2.2.17 that A
(τ)
ε has β0 = 0 and

β1 = I, giving us β0+β1M(z) =M(z), which the Krein’s formula then assumes to be boundedly

invertible. This however, becomes increasingly difficult as ε is small, because Lemma 2.2.21

shows that the term ε−2Λ̃⋆ dominates when ε is small.

This suggests us to break the problem into two in the spectral picture: a compact neigh-

borhood of z = 0 and its complement. Thanks to Λ having compact resolvent (Proposition

2.2.10), the spectral subspace of the former could be chosen to be finite dimensional, which

greatly simplifies the analysis.

Recall the unweighted DtN map in Proposition 2.2.10. We introduce the following notation:

Definition 2.3.1. Let ⋆ ∈ {stiff-int, stiff-ls}. From now on, we will only consider the first

eigenvalue and eigenfunction pair. Therefore, we will drop the indices and write

µ⋆,(τ) := µ
⋆,(τ)
1 , and ψ⋆,(τ) := ψ

⋆,(τ)
1 .

Note that ψ
stiff-int,(τ)
1 and ψ

stiff-ls,(τ)
1 are mutually orthogonal. Introduce the orthogonal projec-

tions

P(τ)
⋆ := (·, ψ⋆,(τ))Eψ

⋆,(τ), P(τ) := P(τ)
stiff-int ⊕ P(τ)

stiff-ls, and P(τ)
⊥ = IE − P(τ).

Remark. • (On notation) Note the use of calligraphic font for projections on E . So P(τ)
stiff-int

should not be confused with Pstiff-int, which is a projection on H.

• As Proposition 2.2.10 does not assert the simplicity of µ
stiff-ls,(τ)
1 for large τ, we may for

the moment pick any eigenfunction ψ
stiff-ls,(τ)
1 . In Proposition 2.3.5, we will then show

that ψ
stiff-ls,(τ)
1 may be chosen in a way that makes τ 7→ ψ

stiff-ls,(τ)
1 continuous, which we

will assume from that point on. ◦

Recall that the unweighted DtN on the stiff-components, Λ̃stiff-int,(τ)⊕Λ̃stiff-ls,(τ) is self-adjoint

with domain H1(Γint)⊕H1(Γls). With respect to the decomposition E = P(τ)
stiff-intE ⊕P(τ)

stiff-lsE ⊕
P(τ)
⊥ E , we may now write Λ̃stiff-int,(τ) ⊕ Λ̃stiff-ls,(τ) as

Λ̃stiff-int,(τ) ⊕ Λ̃stiff-ls,(τ) =


µstiff-int,(τ) 0 0

0 µstiff-ls,(τ) 0

0 0 P(τ)
⊥

(
Λ̃stiff-int,(τ) ⊕ Λ̃stiff-ls,(τ)

)
P(τ)
⊥

 .

(2.68)
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As for the (weighted) M-operator M
(τ)
ε (z), we write its block operator representation with

respect to the decompositions E = P(τ)
stiff-intE ⊕ P(τ)

stiff-lsE ⊕ P(τ)
⊥ E and E = P(τ)E ⊕ P(τ)

⊥ E :

M (τ)
ε (z) =

P(τ)
stiff-intE P(τ)

stiff-lsE P(τ)
⊥ E

P(τ)
stiff-intE A11 A12 B1

P(τ)
stiff-lsE A21 A22 B2

P(τ)
⊥ E E1 E2 D

=

P(τ)E P(τ)
⊥ E

P(τ)E A B
P(τ)
⊥ E E D

. (2.69)

Lemma 2.3.2. The components A, B, and E ofM
(τ)
ε (z) are all extendable to bounded operators

on their respective spaces, where z ∈ ρ(A
(τ)
ε,0).

Proof. We will drop ε and τ. We modify the arguments of [35, Section 3.2]. By Proposition

2.2.13(5), it suffices to check the claim for the case z = 0. Note that M(0) = Λ is not a

diagonal matrix, because this is the full DtN map, while the projection P(τ) is constructed from

Λ̃stiff-int,(τ) and Λ̃stiff-ls,(τ).

We first check this for the operator B = PΛP⊥. We claim that P⊥D(Λ) ⊂ D(Λ). In other

words, D(B) contains the set D(Λ) which is dense in E . This is because if (ϕ, φ) ∈ D(Λ), then

P(ϕ, φ) = (Pstiff-intϕ,Pstiff-lsφ) ∈ span{ψstiff-int}⊕ span{ψstiff-ls}, and the eigenvectors are in H1

on their respective spaces. Then, notice that P⊥(ϕ, φ) can be written as a linear combination

of elements in D(Λ), as P⊥(ϕ, φ) = (ϕ− Pstiff-intϕ, φ− Pstiff-intφ) = (ϕ, φ)− P(ϕ, φ).

Now suppose that (ϕ, φ) ∈ D(Λ) = H1(Γint)⊕H1(Γls) ⊂ D(B), then its image under B can

be written as

PΛP⊥(ϕ, φ) =
(
ΛP⊥(ϕ, φ), (ψ

stiff-int, ψstiff-ls)
)
E
(ψstiff-int, ψstiff-ls)

=
(
P⊥(ϕ, φ),Λ(ψ

stiff-int, ψstiff-ls)
)
E
(ψstiff-int, ψstiff-ls), (2.70)

as Λ is self-adjoint. Then using the Cauchy-Schwarz inequality, ∥P⊥∥ ≤ 1, and that ψstiff-int

and ψstiff-ls are normalized eigenfunctions, we deduce that

∥PΛP⊥(ϕ, φ)∥E ≤
√
2∥Λ(ψstiff-int, ψstiff-ls)∥E∥(ϕ, φ)∥E . (2.71)

Since H1(Γint)⊕H1(Γls) is dense in E , B admits a continuous extension to an operator P⊥E →
PE . The same reasoning holds for A = PΛP and E = P⊥ΛP.

Remark. • We have used: P⊥ = IE − P = (IL2(Γint) ⊕ IL2(Γls)) − (Pstiff-int ⊕ Pstiff-ls) =

(IL2(Γint) − Pstiff-int) ⊕ (IL2(Γls) − Pstiff-ls), which follows as our setup has disjoint stiff

components.

• The argument does not work for D = P⊥ΛP⊥, because we do not have the finite eigen-

function expansion of (2.70) to work with. ◦

We will henceforth write A, B, and E to mean its continuous extension to

the full subspaces P(τ)E and P(τ)
⊥ E.
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Note that A, B, and E depend on ε, τ, and z, since M
(τ)
ε (z) does. In light of this, Lemma

2.3.2 is insufficient for our purposes: we would like to argue further why for B and E, the RHS

of (2.71) can be bounded by C∥(ϕ, φ)∥, where C is a uniform constant.

Proposition 2.3.3. The bound on ∥B∥op and ∥E∥op can be chosen independently of z ∈ Kσ,

τ ∈ Q′, and ε > 0. The bound on ∥A∥op can be chosen independently of z ∈ Kσ and τ ∈ Q′.

Proof. Proposition 2.2.18 permits us to address the “soft” and “stiff” parts individually. Propo-

sition 2.2.13(5) allows us to split M(z) into an unbounded part Λ (which depends on ε and τ),

and a bounded part zΠ∗(I − zA−1
0 )−1Π (which depends on ε, τ, and z).

We claim that the bounded part may be bounded uniformly in ε, τ, and z. Indeed, by

Lemma 2.2.21, it suffices to work with the “soft” case. The claim then follows from Proposition

2.2.7, and the assumption that Kσ is compact. As the unbounded part does not depend on z,

this proves assertion on the independence on z.

Next we discuss the independence on τ. Without loss of generality, let us consider B =

P(τ)Λ
(τ)
ε P(τ)

⊥ . In (2.71), we have shown that B has operator norm not exceeding

√
2∥Λ(τ)

ε (ψstiff-int,(τ), ψstiff-ls,(τ))∥E

≤
√
2
(
∥Λstiff-int,(τ)

ε ψstiff-int,(τ)∥E + ∥Λstiff-ls,(τ)
ε ψstiff-ls,(τ)∥E + ∥Λsoft,(τ)(ψstiff-int,(τ), ψstiff-ls,(τ))∥E

)
=

√
2

(
|ε−2µstiff-int,(τ)| ∥ψstiff-int,(τ)∥E︸ ︷︷ ︸

=1

+|ε−2µstiff-ls,(τ)| ∥ψstiff-ls,(τ)∥E︸ ︷︷ ︸
=1

+ ∥Λsoft,(τ)(ψstiff-int,(τ), ψstiff-ls,(τ))∥E
)
. (2.72)

(Actually, the first two terms are absent for B and E, as we see below, but we would like to

include A for this discussion.) We apply a “(perturbation + compactness) argument” as

follows:

By perturbation theory, we have the continuity of the mapping Q′ ∋ τ 7→ µ⋆,(τ). This

implies that |ε−2µ⋆,(τ)| is bounded uniformly in τ. Next, we turn to the third term in the RHS

of (2.72). By [39, Lemma 2], we may write,

Λsoft,(τ) = Λsoft,(0) +Bsoft, Λ̃⋆,(τ) = Λ̃⋆,(0) +B⋆, ⋆ ∈ {stiff-int, stiff-ls}, (2.73)

whereB⋆, Bsoft are uniformly (in τ) bounded operators. Also, recall that ∥(ψstiff-int,(τ), ψstiff-ls,(τ))∥ =√
2 as the eigenvectors are normalized. We then have

∥Λsoft,(τ)(ψstiff-int,(τ), ψstiff-ls,(τ))∥ ≤ ∥Λsoft,(0)(ψstiff-int,(τ), ψstiff-ls,(τ))∥+ ∥Bsoft∥op
√
2

≤ ∥Λsoft,(0)(ψstiff-int,(τ), ψstiff-ls,(τ))∥+ C

≤ α1∥Λ̃stiff-int,(0)ψstiff-int,(τ)∥+ α2∥Λ̃stiff-ls,(0)ψstiff-ls,(τ)∥+ β

≤ α1(∥Λ̃stiff-int,(τ)ψstiff-int,(τ)∥+ ∥Bstiff-intψ
stiff-int,(τ)∥)+

α2(∥Λ̃stiff-ls,(τ)ψstiff-ls,(τ)∥+ ∥Bstiff-lsψ
stiff-ls,(τ)∥) + β

≤ C1|µstiff-int,(τ)|+ C2|µstiff-ls,(τ)|+ C3, (2.74)

where the constants are all independent of τ. The second and fourth inequality follows from
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(2.73). The third inequality follows by noting that the domains D(Λsoft,(τ)), D(Λ̃⋆,(τ)) are

independent of τ, and then using the observation that Λsoft,(0) is relatively Λ⋆,(0)-bounded by

[22, Lemma 8.4]. As noted above, |µ⋆,(τ)| is bounded uniformly in τ.

Finally, for independence on ε, we notice further that

B = P(τ)(Λsoft,(τ) + Λstiff-int,(τ)
ε Pls + Λstiff-int,(τ)

ε Pint)P(τ)
⊥ = P(τ)Λsoft,(τ)P(τ)

⊥ , (2.75)

since P(τ)
⊥ E is an invariant subspace for the stiff DtN maps. (We have a diagonal block matrix.)

A similar statement holds for E, but not for A.

Remark. • We remark that while [39] does not study the case of annuluar domains, the

arguments of [39, Lemma 2] still applies to give us (2.73), since Qsoft is connected with

smooth boundary Γint ∪ Γls.

• Variants of the (perturbation + compactness) argument will be used again in Theorem

2.3.4 (for the term “S”). ◦

2.3.2 Inverting the M-operator

Corollary 2.2.17 suggests that our study of norm-resolvent asymptotics of the main model

operator A
(τ)
ε requires us to estimate (M

(τ)
ε (z))−1 in the operator norm. The goal of this section

is to prove

Theorem 2.3.4. We have the following estimate in the operator norm

(
M (τ)
ε (z)

)−1
=

(
A−1 0

0 0

)
+O(ε2), (2.76)

relative to the decomposition E = P(τ)E⊕P(τ)
⊥ E . ∥A−1∥op is bounded uniformly in ε > 0, τ ∈ Q′

and z ∈ Kσ. This estimate is uniform in τ ∈ Q′ and z ∈ Kσ.

Remark. We lay out the details for the estimates on A, outlined in [35, Section 3.2, footnote

11]. These are Claim 1 and (Claim 2 + Proposition 2.3.5) in the proof below. ◦

Proof of Theorem 2.3.4. SinceM
(τ)
ε (z) is closed by Proposition 2.2.13(6), [26, Theorem 2.3.3(i)]

implies that its inverse can be written in block operator form as:

(
M (τ)
ε (z)

)−1
=

(
A B
E D

)−1

=

(
A−1 + A−1B(S)−1EA−1 −A−1B(S)−1

−(S)−1EA−1 (S)−1

)
, (2.77)

where the Schur-Frobenius complement S is given by S := D − EA−1B. In writing down the

above formula, it suffices to check that

(a) A is boundedly invertible,

(b) B is bounded,

(c) D is closed, and
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(d) S is closable, with S being boundedly invertible.

(b) is immediate, since B has finite range. In the remainder of the proof, we verify (a), (c), and

(d), and provide bounds on A−1 and (S)−1, with dependence on ε, τ, and z shown explicitly.

The term A = P(τ)M
(τ)
ε (z)P(τ)

As A is an operator on the finite-dimensional space P(τ)E , A will be boundedly invertible

(uniformly in ε, τ, and z) if we can show that A is bounded below (uniformly in ε, τ, and

z), as this implies injectivity. To do so, recall from Proposition 2.2.13(7) that Im(M
(τ)
ε (z)) =

Im(M
(τ)
ε (z)−M

(τ)
ε (0)). Now define the real part of M

(τ)
ε (z) by

Re(M (τ)
ε (z)) :=M (τ)

ε (0) + Re
(
M (τ)
ε (z)−M (τ)

ε (0)
)
= Λ(τ)

ε +Re
(
z(Π(τ))∗(I − z(A

(τ)
ε,0)

−1)−1Π(τ)
)
.

(2.78)

Then, by the symmetry of Λ
(τ)
ε ,

(M (τ)
ε (z)v, v)E = (Re(M (τ)

ε (z))v, v)E + i(Im(M (τ)
ε (z))v, v)E , v ∈ D(M (τ)

ε (z)) = D(Λ(τ)
ε ).

(2.79)

Therefore, it suffices to show that Im(M
(τ)
ε (z)) is bounded below on P(τ)E . To show this, we

recall from Proposition 2.2.13(7) that Im(M
(τ)
ε (z)) = (Im z)S

(τ)
ε (z)∗S

(τ)
ε (z). Since z ∈ Kσ, we

may ignore the term Im z. Then, for v ∈ E , Proposition 2.2.13(4) implies that

(P(τ)S(τ)
ε (z)∗S(τ)

ε (z)P(τ)v, v)E = ∥(I − z(A
(τ)
ε,0)

−1)−1Π(τ)P(τ)v∥2H. (2.80)

Claim 1: (I − z(A
(τ)
ε,0)

−1)−1 is bounded below in the operator norm, uniformly

in ε, τ, and z. By Proposition 2.2.4, A
(τ)
ε,0 has compact resolvent, and therefore admits an

eigenfunction expansion

A
(τ)
ε,0 =

∞∑
j=1

(
·, w(τ)

ε,j

)
H
λ
(τ)
ε,jw

(τ)
ε,j , (2.81)

where the eigenvalues λ
(τ)
ε,j are real, due to the self-adjointness of A

(τ)
ε,0. The idea now is to split

the operator in two, in the spectral picture: Since Kσ is compact, there is some R = R(Kσ) > 0

such that B(0, R) contains Kσ. We then choose (ε and τ dependent) spectral projections

P1 = P
(τ)
ε,1 and P2 = P

(τ)
ε,2 on H = L2(Q) such that P1 = IH − P2 and

P
(τ)
ε,2H = span

{
w

(τ)
ε,j : j satisfies |λ(τ)ε,j | > 3R(> R ≥ |z|)

}
. (2.82)

Next we observe that for f ∈ H,

∥(I − z(A
(τ)
ε,0)

−1)−1f∥2H = ∥(I − z(A
(τ)
ε,0)

−1)−1(P1f + P2f)∥2H
= ∥P1(I − z(A

(τ)
ε,0)

−1)−1f + P2(I − z(A
(τ)
ε,0)

−1)−1f)∥2H P1, P2 are spectral projections.

= ∥P1(I − z(A
(τ)
ε,0)

−1)−1f∥2H + ∥P2(I − z(A
(τ)
ε,0)

−1)−1f)∥2H Pythagoras theorem.
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= ∥(I − z(A
(τ)
ε,0)

−1)−1P1f∥2H + ∥(I − z(A
(τ)
ε,0)

−1)−1P2f)∥2H. (2.83)

If we denote by J = J
(τ)
ε ∈ N the smallest integer that satisfies the condition of P2 = P

(τ)
ε,2 ,

then we may write P1f (and similarly for P2f) as

P
(τ)
ε,1 f =

J
(τ)
ε −1∑
j=1

(
f, w

(τ)
ε,j

)
H
w

(τ)
ε,j =

J
(τ)
ε −1∑
j=1

c
(τ)
ε,jw

(τ)
ε,j . (2.84)

With this notation, the first term on the RHS of (2.83) can be estimated below as:

∥(I − z(A
(τ)
ε,0)

−1)−1P
(τ)
ε,1 f∥

2
H = ∥A(τ)

ε,0(A
(τ)
ε,0 − z)−1P

(τ)
ε,1 f∥

2
H

≥ c1∥(A(τ)
ε,0 − z)−1P

(τ)
ε,1 f∥

2
H By Proposition 2.2.4.

= c1

∥∥∥∥∥∥
J
(τ)
ε −1∑
j=1

c
(τ)
ε,j

λ
(τ)
ε,j − z

w
(τ)
ε,j

∥∥∥∥∥∥
2

H

By functional calculus.

= c1

J
(τ)
ε −1∑
j=1

|c(τ)ε,j |2

|λ(τ)ε,j − z|2
By Parseval’s identity.

≥ c1

(
min

1≤j≤J(τ)
ε −1

{
1

|λ(τ)ε,j − z|2

})
J
(τ)
ε −1∑
j=1

|c(τ)ε,j |
2

= c1c2∥P (τ)
ε,1 f∥

2
H By Parseval’s identity, (2.85)

where c1 > 0 and c2 := 1/(2R)2 are constants independent of ε, τ, and z. Observe that although

the projection P1 depends on ε and τ, the constant c2 does not – it only depends on Kσ through

B(0, R).

As for the second term (I − z(A
(τ)
ε,0)

−1)−1P
(τ)
ε,2 f , we observe that since P

(τ)
ε,2 is a spectral

projection for A
(τ)
ε,0, the second term equals (I − z(A

(τ)
ε,0P

(τ)
ε,2 )

−1)−1f . Next we recall that P2 is

chosen such that∥∥∥z(A(τ)
ε,0P

(τ)
ε,2 )

−1
∥∥∥
H→H

= |z|
∥∥∥(A(τ)

ε,0P
(τ)
ε,2 )

−1
∥∥∥
H→H

= |z| 1

dist

(
0, λ

(τ)

ε,J
(τ)
ε

)
= |z| 1∣∣∣∣λ(τ)ε,J(τ)

ε

∣∣∣∣ < |z| 1

3R
<

1

3
. (2.86)

(Once again, notice that P2 depends on ε and τ, while this estimate does not.) As a result,

we may apply the Neumann series expansion:

(I − z(A
(τ)
ε,0P

(τ)
ε,2 )

−1)−1 = I + z(A
(τ)
ε,0P

(τ)
ε,2 )

−1 + · · · (2.87)

The terms after I have norm not exceeding
∑∞

n=1(1/3)
n = 1/2. Therefore the reverse triangle

inequality implies that (I − z(A
(τ)
ε,0)

−1)−1P
(τ)
ε,2 is bounded below (independently of ε, τ, and z).

This proves Claim 1.
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Applying Claim 1 to (2.80), we now have some c̃ > 0 independent of ε, τ, and z, such that

∥(I − z(A
(τ)
ε,0)

−1)−1Π(τ)P(τ)v∥2H ≥ c̃∥Π(τ)P(τ)v∥2H.

Claim 2: There is some c > 0, independent of ε, τ, and z, such that

∥Π(τ)P(τ)v∥2H ≥ c∥P(τ)v∥2E , where v ∈ E . (2.88)

Write v = ϕ + φ, where ϕ ∈ L2(Γint) and φ ∈ L2(Γls). Since P(τ) is the projection onto

span{ψstiff-int,(τ)} ⊕ span{ψstiff-ls,(τ)}, we can write P(τ)v = c1ψ
stiff-int,(τ) + c2ψ

stiff-ls,(τ) where

c1, c2 ∈ C. Now suppose that P(τ)v ̸= 0, then we must have either c1 ̸= 0 or c2 ̸= 0. Then
∥∥Π(τ)(P(τ)v)

∥∥2
H ≥

∥∥Πstiff-int,(τ)c1ψ
stiff-int,(τ)

∥∥2
L2(Qstiff-int)

if c1 ̸= 0,∥∥Π(τ)(P(τ)v)
∥∥2
H ≥

∥∥Πstiff-ls,(τ)c2ψ
stiff-ls,(τ)

∥∥2
L2(Qstiff-ls)

if c2 ̸= 0.
(2.89)

The inequality follows by the Pythagoras theorem, as we recall that Π(τ)(ϕ+φ) = Πstiff-int,(τ)ϕ+

Πsoft,(τ)(ϕ+φ)+Πstiff-ls,(τ)φ, and the lifts into the individual components Πstiff-int,(τ)ϕ, Πsoft,(τ)(ϕ+

φ), and Πstiff-ls,(τ)φ are orthogonal. Therefore, by the linearity of Π and the homogeneity of

norms, it suffices to find some c > 0 independent of ε, τ, and z such that

∥Π⋆,(τ)ψ⋆,(τ)∥H ≥ c∥ψ⋆,(τ)∥E
ψ is normalized

= c, ⋆ ∈ {stiff-int, stiff-ls}.

The proof of this inequality follows from two facts:

(i) For each τ ∈ Q′, ∥Π⋆,(τ)ψ⋆,(τ)∥ is strictly positive, as or else this means the τ−harmonic

lift of a non-zero function ψ is zero, which contradicts the injectivity of Π(τ) (see comment

after Proposition 2.2.7).

(ii) The mapping Q′ ∋ τ 7→ ∥Π⋆,(τ)ψ⋆,(τ)∥ ∈ R≥0 is continuous. (It is important that we

consider the closure of Q′ here.)

Using (i) and (ii): Suppose we have a sequence τn ∈ Q′ with f(τn) ↓ 0, then by closedness

of f(Q′) (due to (ii)), we must have some τ ∈ Q′ with 0 = f(τ), and this contradicts (i).

It remains to prove (ii) and hence complete Claim 2. The proof of the fact will be postponed

to Proposition 2.3.5, which concludes our discussion on A.

The term S = D− EA−1B

We will proceed in four steps. Step 1. First, we introduce the notation

D(τ)
ε (z) = D(τ)

soft + D(τ)
ε,stiff + D(τ)

ε,b (z) (2.90)

where Dsoft = P(τ)
⊥ Λsoft,(τ)P(τ)

⊥ , Dstiff = P(τ)
⊥ (Λ

stiff-int,(τ)
ε ⊕Λ

stiff-ls,(τ)
ε )P(τ)

⊥ , and Db as what remains

of D(τ)
ε (z) = P(τ)

⊥ M
(τ)
ε (z)P(τ)

⊥ . In this way, Db is a bounded operator on P(τ)
⊥ E , with operator

norm bounded uniformly in ε, τ, and z, by Proposition 2.2.13(5).
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Furthermore, we claim that Dsoft+Dstiff is self-adjoint on P(τ)
⊥ E with domainD(Dsoft+Dstiff) =

D(Dsoft) = D(Dstiff): The claim on the domain follows simply by construction. Dstiff is self-

adjoint since P(τ) is a spectral projection. Dsoft is symmetric, and is relatively Dstiff-bounded

with relative bound strictly less than one, as pointed out in the proof of Lemma 2.2.9. Therefore

the claim follows by the Kato-Rellich theorem [22, Theorem 8.5].

Being a sum of a closed Dsoft +Dstiff and a bounded Db operator, it follows that D is closed,

and so S is closed by the boundedness of EA−1B. We therefore drop the closures for S in (2.77).

Step 2. Next we discuss estimates for D. As mentioned in Step 1, D(τ)
ε,b (z) is uniformly

bounded in ε, τ and z. As for D(τ)
ε,stiff we claim that D(τ)

ε,stiff is invertible with the following

estimate ∥∥∥∥(D(τ)
ε,stiff

)−1
∥∥∥∥
P(τ)
⊥ E→P(τ)

⊥ E
≤ Cε2, C > 0 is independent of ε, τ and z. (2.91)

The independence on z is immediate. Invertibility follows from Proposition 2.2.10 and the

fact that we have removed the lowest eigenspace using P(τ)
⊥ . Since P(τ) is the projection w.r.t the

unweighted DtN operator, we can separate out ε and obtain the bound Cε2, with C independent

of ε. It remains to justify the independence of C on τ. For this, we will use a pertrubative

argument as follows:

We need to show that the second eigenvalue µ
stiff-int,(τ)
2 and µ

stiff-ls,(τ)
2 can be bounded

away from zero, uniformly in τ. This is certainly true for each τ (by Proposition

2.2.10), and can be extended to a neighbourhood B(τ, δ) of τ, as the mapping

τ 7→ µ
(τ)
2 is continuous, a consequence of perturbation theory.

Now consider a dense set {τn} ⊂ Q′. With B(τn, δn) obtained as above, {B(τn, δn)}n
is now an open cover of Q′. By compactness of Q′, we may extract a finite subcover

{B(τnk
, δnk

)}Kk=1. Since µ
(τ)
2 is bounded away from zero on each Bk ≡ B(τnk

, δnk
),

we deduce that µ
(τ)
2 is bounded above by maxk{µ

(τ)
2 : τ ∈ Bk}, the latter being

strictly negative (note our convention of the DtN map), and independent of τ.

This concludes the justification of (2.91).

Step 3. Now consider the unweighted stiff DtN operator, denoted by D̃(τ)
stiff = ε2D(τ)

ε,stiff. We

claim that there exists constants α, β > 0, independent of τ such that

∥D(τ)
softu∥ ≤ α∥D̃(τ)

stiffu∥+ β∥u∥, ∀u ∈ D(D(τ)
soft) = D(D̃(τ)

stiff). (2.92)

That is, D(τ)
soft is relatively D̃(τ)

stiff−bounded, with uniform constants α, β. To prove this claim,

we first verify this without the projections P(τ)
⊥ , that is, for Λsoft,(τ) and Λ̃stiff-int,(τ) ⊕ Λ̃stiff-ls,(τ).

This is done by using [22, Lemma 8.4] to show relative boundedness for each τ, and then

then applying perturbation theory to the soft and stiff DtN maps, then using the compactness

of Q′, similarly to what was done for (2.91). We omit the details for brevity.

We then proceed to add back the projections. Pre-composing with P(τ)
⊥ is trivial. Since P(τ)

is a spectral projection for the stiff DtN map, post-composing with P(τ)
⊥ is immediate, giving
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us the RHS of the inequality. As for Λsoft,(τ), we write

Λsoft,(τ)P(τ)
⊥ = P(τ)Λsoft,(τ)P(τ)

⊥ + P(τ)
⊥ Λsoft,(τ)P(τ)

⊥ = P(τ)Λsoft,(τ)P(τ)
⊥ + D(τ)

soft. (2.93)

The first term is bounded uniformly in τ thanks to Proposition 2.3.3. Hence it can be absorbed

into the RHS by picking a bigger β. This shows the claim for (2.92).

Step 4. We omit the short argument combining (2.91) and (2.92) to arrive at

∥D(τ)
soft(D

(τ)
ε,stiff)

−1∥P(τ)
⊥ E→P(τ)

⊥ E ≤ Cε2, where C > 0 is independent of ε, τ and z. (2.94)

(See [35, Section 3.2] for details.) As a result, we have found the inverse for D, namely

D−1 = D−1
stiff

(
IP(τ)

⊥ E + DsoftD−1
stiff + DbD−1

stiff

)−1
. (2.95)

Furthermore, thanks to our estimates on DsoftD−1
stiff and D−1

stiff obtained above, we know that

the terms after I are of order O(ε2). Therefore the Neumann series expansion applies, giving

the overall estimate of ∥D−1∥ ≤ Cε2. Meanwhile, Proposition 2.3.3 implies that ∥EA−1B∥ ≤ C,

where C is an independent constant. Therefore, the formula S−1 = (I − D−1EA−1B)−1D−1

implies that ∥S−1∥ ≤ Cε2. That is, S is boundedly invertible with the mentioned bound, where

C > 0 is independent of ε, τ, and z. This concludes the discussion on the term S.
We have shown that ∥A−1∥ ≤ C and ∥S−1∥ ≤ Cε2. Together with ∥B∥ ≤ C, ∥E∥ ≤ C

(Proposition 2.3.3), and (2.77), this concludes the proof of the theorem.

Remark. • The treatment of A would be different if P(τ)E were infinite dimensional, due to

the lack of rank-nullity theorem: We would have to show that (i) A is closed, (ii) bounded

away from zero, and (iii) has dense range in P(τ)E . Point (iii) is the key difficulty in the

infinite dimensional case. (iii) could be shown by proving that the adjoint is injective.

• On Step 1 of the term S: We do not show that Dsoft is self-adjoint, but only that it is

symmetric. This is in contrast with P(τ)Λsoft,(τ)P(τ), because P(τ)E is finite dimensional

while P(τ)
⊥ E is not. ◦

2.3.2.1 Continuous dependence on τ

We conclude the proof of Theorem 2.3.4 with the following result:

Proposition 2.3.5 (Continuous dependence). The mapping f : Q′ → R≥0 given by

f(τ) = ∥Π⋆,(τ)ψ⋆,(τ)∥L2(Q)

is continuous, where (•,⋆) ∈ {(int, stiff-int), (ls, stiff-ls)}.

We remind the reader that Π⋆,(τ) is the τ-harmonic lift from Γ• into Q⋆, and ψ⋆,(τ) is

the eigenfunction corresponding to the smallest (absolute value) eigenvalue of the unweighted

τ-DtN operator Λ̃⋆,(τ). Figure 2-2 below shows a diagram of the lifts Π⋆,(τ).

Remark. • We are taking τ from the larger set Q′.
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• (On notation) We will drop the notation •, τ, or ⋆ for notational simplicity. These will

be recalled whenever we have to make a distinction in the arguments.

• (On notation) The constants in the estimates below may differ from line to line, but the

dependence on the parameters will remain the same unless stated otherwise.

• As we will see below, Proposition 2.3.5 boils down to a proof of the continuity of τ 7→ Π⋆,(τ)

and τ 7→ ψ
⋆,(τ)
1 . The bulk of the proof is devoted to the continuity of τ 7→ ψ

stiff-ls,(τ)
1 , and

we will show this by the method of asymptotic expansions.

While this thesis does not prove every continuity claim, the proof below serves to demon-

strate how the other continuity claims can be proven. In total, we assert the continuity

of: τ 7→ µ
⋆,(τ)
1 , τ 7→ µ

⋆,(τ)
2 , τ 7→ ψ

⋆,(τ)
1 , τ 7→ Λ⋆,(τ)u, and τ 7→ Π⋆,(τ)ψ

⋆,(τ)
1 .

• Implicit in our method by asymptotic expansions, is the use of elliptic regularity: For

instance, we have u = Π⋆,(τ)ψ⋆,(τ) ∈ H1, as opposed to the general case, Π⋆,(τ)ϕ ∈ L2.

• The proof of [39, Lemma 2] contains a proof of the continuity of τ 7→ Π⋆,(τ) (as a mapping

from H1/2 to H1). We provide an alternative argument (see the term “∥u1 − w∥”). ◦

𝑄 𝑄

Π
stiff−int,(𝜏) Π

stiff−ls,(𝜏)

Figure 2-2: Left: τ-harmonic lift into Qstiff-int. Right: τ-harmonic lift into
Qstiff-ls.

Proof of Proposition 2.3.5. Let τ1, τ2 ∈ Q′ = [−π, π]d. We will prove continuity of f at τ1, that

is, given ε > 0, we seek a δ = δ(τ1, ε) > 0 such that

f
(
B(τ1, δ)

)
⊂ B

(
f(τ1), ε

)
.

To this end, we estimate |f(τ2)− f(τ1)|:

|f(τ2)− f(τ1)| ≤ ∥Π(τ1)ψ(τ1) −Π(τ2)ψ(τ2)∥ (2.96)

≤ ∥Π(τ1)ψ(τ1) −Π(τ2)ψ(τ1)∥+ ∥Π(τ2)ψ(τ1) −Π(τ2)ψ(τ2)∥. (2.97)

Writing u1 = Π(τ1)ψ(τ1), u2 = Π(τ2)ψ(τ2), w = Π(τ2)ψ(τ1), the functions u1, u2, and w solves:−(∇+ iτ1)
2u1 = 0,

u1|Γ• = ψ(τ1).

−(∇+ iτ2)
2u2 = 0,

u2|Γ• = ψ(τ2).

−(∇+ iτ2)
2w = 0, in Q⋆,

w|Γ• = ψ(τ1) on Γ•,
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with periodic BCs on ∂Q, if Q⋆ = Qstiff-int. We now begin our treatment of each term in

(2.97).

The term ∥u2 − w∥. We claim that:

∥u2 − w∥ ≤ C∥ψ(τ2) − ψ(τ1)∥ (2.98)

≤ Cτ1 |τ2 − τ1|. (2.99)

The first inequality follows because the operator Π⋆,(τ2) : L2(Γ•) → L2(Q⋆) is bounded,

independently of τ2, by Proposition 2.2.7.

The second inequality follows from the claim that the mapping Q′ ∋ τ 7→ ψ⋆,(τ) ∈ L2(Γ•) is

locally Lipschitz about τ1. When (•,⋆) = (int, stiff-int), this is immediate because we have an

explicit formula for the eigenfunction by Proposition 2.2.10:

ψstiff-int,(τ)(x) = e−iτ·x.

The case (•,⋆) = (ls, stiff-ls) is complicated as Qstiff-ls requires periodic BCs on ∂Q. To

tackle this, we first note that the first eigenvector-eigenvalue pair for Λ̃⋆ = Λ̃stiff-ls is a non-trivial

solution to Λ̃stiff-lsψ = µψ. Recall from the last part of Section 2.2.1, that this can equivalently

be expressed by saying that the following BVP has a non-trivial solution u = u
(τ)
stiff-ls:

−(∇+ iτ)2u = 0 in Q⋆ = Qstiff-ls,

∂
(τ)
nstiff-ls,ls

u = −
[

∂u
∂nstiff-ls

+ i(τ · nstiff-ls)u
]
= µu on Γ• = Γls,

u periodic on ∂Q.

(2.100)

Note that ψ is the Dirichlet trace of u. Therefore, by the boundedness of the trace operator

(independently of τ), it suffices to show that the mapping Q′ ∋ τ 7→ u
(τ)
stiff-ls ∈ H1(Qstiff-ls) is

continuous. To show this, we will employ the method of asymptotic expansion in τ, in polar

coordinates, taking inspiration from [32, Section 3.1].

Step 1: Propose a power series expansion for u and µ. Fix τ ∈ Q′. We begin the

method by first writing τ = tθ, where t = |τ| and θ ∈ Sd−1 ⊂ Rd. We then propose an expansion

for u ≡ u(τ) ≡ u(tθ):

u(tθ) = u0 +
(
i|τ|
)
u1 +

(
i|τ|
)2
u2 + · · · =

∞∑
j=0

uj
(
it
)j
. (2.101)

Here, uj : Qstiff-ls → C. At this stage we do not specify the space for which uj ’s belongs to. This

will be done in Step 2 by specifying the BVPs that each uj solves. (It will turn out that the

BVPs depends on θ and not t.) Substitute the expansion into the BVP (2.100) and formally

compute:

0 = −
(
∇+ iτ

)2∑
j

uj(it)
j =

∑
j

(
−∆− 2itθ · ∇ − (it)2

)
uj(it)

j

= −∆u0 − 2(it)θ · ∇u0 − (it)2u0
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− (it)∆u1 − 2(it)2θ · ∇u1 − (it)3u1

− (it)2∆u2 − 2(it)3θ · ∇u2 − (it)4u2

− (it)3∆u3 − 2(it)4θ · ∇u3 − (it)5u3 + · · ·

We also propose a similar power series expansion for µ ≡ µ(τ) ≡ µ(tθ):

µ(tθ) =
∞∑
k=1

αk
(
it
)k
, αk ∈ C. (2.102)

Note that we are postulating that α0 = 0 (in addition to µ admitting a series expansion),

and this will be justified with remainder estimates. Similarly, we substitute this into the BVP

(2.100) and formally compute:

−
[
∂u

∂n
+ i(τ · n)

]∑
j

uj(it)
j =

(∑
k

αk(it)
k

)(∑
j

uj(it)
j

)

⇔
∑
j

−(it)j
[
∂

∂n
+ (it)(θ · n)

]
uj =

∑
j

∑
k

ujαk(it)
j(it)k.

Remark (On notation). For ease of notation, we have dropped the subscript “stiff-ls” from

nstiff-ls. We will henceforth do the same for Qstiff-ls and Γls. Similarly, the DtN map Λ̃⋆ = Λ̃stiff-ls

will by denoted by Λ, omitting the weight “ ∼ ”. We will also omit writing the periodic BC on

∂Q. This will apply to the remainder of this case, (•,⋆) = (ls, stiff-ls). ◦

Now equate powers of it, to see that

(it)0 :− ∂

∂n
u0 = 0,

(it)1 :− (it)
∂

∂n
u1 − (it)(θ · n)u0 = (it)α1u0 + (it)α0u1,

(it)2 :− (it)2
∂

∂n
u2 − (it)(θ · n)u1 = (it)2α2u0 + (it)2α1u1 + (it)2α0u2.

Step 2: Write down the BVP for each power of it and deduce the coefficients uj

and αk. The problem for (it)0 is therefore−∆u0 = 0, in Q,

−∂u0
∂n = 0 on Γ,

(2.103)

which we see to be independent of t, as mentioned earlier. We can use this to obtain information

about u0. Consider its weak formulation with 0 ̸= u0 ∈ H1 as the test function,

0 ≤ (∇u0,∇u0)L2(Q) =

(
∂u0
∂n

, u0

)
L2(Γ)

= 0. (2.104)

So ∇u0 is zero a.e., and hence u0 is a constant a.e.. We will set henceforth u0 ≡ 1 without loss

of generality, as the choice of this (universal) constant does not affect the remainder estimates.

Before we move on to higher powers of it, we further ask that
∫
uj = 0 for j ≥ 1. (This
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is crucial for the application of the Poincaré inequality.) This can be done again without loss

of generality, by absorbing the mean into u0. Now the problem for (it)1 is then−∆u1 = 0, in Q,

−∂u1
∂n − (θ · n) = α1 on Γ.

(2.105)

We have used the fact that u0 ≡ 1 and α0 = 0. Testing (2.105) with u0 gives

(∇u1,∇u0)L2(Q) =

(
∂u1
∂n

, u0

)
L2(Γ)

= −(α1 + θ · n, 1)L2(Γ). (2.106)

Testing (2.103) with u1 gives:

(∇u0,∇u1)L2(Q) =

(
∂u0
∂n

, u1

)
L2(Γ)

= −α0(u0, u1)L2(Γ) = 0. (2.107)

This implies that (∇u1,∇u0) is also zero, in other words, (2.106) implies that

−(α1 + θ · n, 1)L2(Γ) = 0.

Deducing α1: Fix j, 1 ≤ j ≤ d. Define gj : Rd → R by gj(x) = θjxj . Then,

0
∆gj=0
= (1,∆gj)L2(Q)

IBP
= (∇1,∇gj)L2(Q) +

(
1,
∂gj
∂n

)
L2(Γ)

=

(
1, (0, · · · , θj , · · · , 0) · n

)
L2(Γ)

.

Summing over j, we get (1, θ · n)L2(Γ) = 0. Since α1 ∈ C, we must have that α1 = 0. With

the knowledge that α1 = 0, we now test (2.105) with u1 to obtain

(∇u1,∇u1)L2(Q)
IBP
=

(
∂u1
∂n

, u1

)
L2(Γ)

= −(θ · n, u1)L2(Γ). (2.108)

The problem for (it)2 is: −∆u2 = 2θ · ∇u1 + 1, in Q,

−∂u2
∂n − (θ · n)u1 = α2 on Γ.

(2.109)

We now may test (2.109) with u0, u1, u2. We may also test (2.105) with u2, and (2.103)

with u2. Of these, the useful ones for our analysis later will be: testing (2.109) with u0 ≡ 1,

(2θ·∇u1+1, 1)L2(Q) = (−∆u2, 1)L2(Q)
IBP
= (∇u2,∇1)L2(Q)−

(
∂u2
∂n

, 1

)
L2(Γ)

= ((θ · n)u1 + α2, 1)L2(Γ) ,

(2.110)

which is useful for obtaining an estimate for α2, and testing (2.109) with u2,

(2θ · ∇u1 + 1, u2)L2(Q) = (−∆u2, 1)L2(Q)
IBP
= (∇u2,∇u2)L2(Q) −

(
∂u2
∂n

, u2

)
L2(Γ)

(2.111)

= (∇u2,∇u2)L2(Q) +

(
(θ · n)u1 + α2, u2

)
L2(Γ)

, (2.112)
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which is useful for obtaining an estimate for ∇u2.

Remark (Connection to classical results). Observe that since α1 = 0, by picking θj ∈ Sd−1 as

the standard basis and writing the solution u1,j asNj . We obtain the expression u1 =
∑d

j=1Njθj

for arbitrary θ = (θ1, · · · , θd). So Nj should be thought of as first order correctors, which are to

be compared with the first order term in the asymptotic expansion for periodic homogenization

“Nj(y)
∂u0
∂xj

”.

Similarly, for α2, we write 1 = |θ|2 = θ · θ, then putting the BVP for u1 into (2.110), we

obtain α2 = 1
|Γ|
∫
Q(θ · ∇u1 + 1)dx. Again, we can further pick θ to be the standard basis,

obtaining a coordinate-wise description of α2. This is to be compared with α2 in [34, Appendix

B]. ◦

Step 3: Write down the BVP for the “remainder” terms for u and µ. To do so,

we first define the remainder R ∈ H1 and r ∈ C byu = 1 + (it)u1+ (it)2u2 +R,

µ = (it)2α2 + r.

Substituting this expression for u into the main BVP (2.100), we get, in Q,

−(∇+ iτ)2R = (−∆− 2(it)θ · ∇ − (it)2)(−1− (it)u1 − (it)2u2)

= + (it)2

+(it)∆u1 + 2(it)2θ · ∇u1 + (it)3u1

︸︷︷︸
−∆u1=0

+ (it)2∆u2︸ ︷︷ ︸
−∆u2=2θ·∇u1+1

+2(it)3θ · ∇u2 + (it)4u2

= (it)3u1 + 2(it)3θ · ∇u2 + (it)4u2.

On Γ, the main BVP (2.100) gives us

−∂R
∂n

− (it)(θ · n)R = (r + α2(it)
2)(1 + (it)u1 + (it)2u2 +R)︸ ︷︷ ︸

µu

+X.

To find X, we further compute

−
[
∂

∂n
+ (it)(θ · n)

]
R− µu

(2.100)
= −

[
∂

∂n
+ (it)(θ · n)

]
R+

[
∂

∂n
+ (it)(θ · n)

]
u

= +

[
∂

∂n
+ (it)(θ · n)

]
(1 + (it)u1 + (it)2u2)

= + (it)(θ · n) + (it)2(θ · n)u1 + (it)3(θ · n)u2

+ (it)
∂u1
∂n︸ ︷︷ ︸

=0 by (2.105)

+ (it)2
∂u2
∂n︸ ︷︷ ︸

=−(it)2α2 by (2.109)

= − (it)2α2

(
1 + (it)(θ · n)u2

)
.
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The problem for R and r is therefore,
−(∇+ iτ)2R = (it)3(2θ · ∇u2 + u1)− (it)4u2 in Q,

−∂R
∂n − (it)(θ · n)R = (r + α2(it)

2)
(
1 + (it)u1 + (it)2u2 +R

)
−(it)2α2

(
1 + (it)(θ · n)u2

)
on Γ.

(2.113)

Remark. To see where this is all going, recall that our goal is to obtain an estimate for

u(τ2) − u(τ1) in H1. Write τ1 = t1θ1 and τ2 = t2θ2. Using the expression u(τ) = 1 + (it)u
(τ)
1 +

(it)2u
(τ)
2 +R(τ), we see that

∥u(τ2) − u(τ1)∥ ≤
∥∥(it2)u(τ2)1 − (it1)u

(τ1)
1

∥∥+ ∥∥(it2)2u(τ2)2 − (it1)
2u

(τ1)
2

∥∥+ ∥∥R(τ2) −R(τ1)
∥∥

≤
∥∥(it2)u(τ2)1 − (it1)u

(τ2)
1

∥∥+ ∥∥(it1)u(τ2)1 − (it1)u
(τ1)
1

∥∥
+
∥∥(it2)2u(τ2)2 − (it1)

2u
(τ2)
2

∥∥+ ∥∥(it1)2u(τ2)2 − (it1)
2u

(τ1)
2

∥∥
+
∥∥R(τ2) −R(τ1)

∥∥
≤ |t2 − t1| ·

∥∥u(τ2)1

∥∥+ |t1| ·
∥∥u(τ2)1 − u

(τ1)
1

∥∥
+ |t22 − t21| ·

∥∥u(τ2)2

∥∥+ |t1|2 ·
∥∥u(τ2)2 − u

(τ1)
2

∥∥
+
∥∥R(τ2) −R(τ1)

∥∥.
We are therefore looking to obtain the following estimates in H1:

•
∥∥u(τ2)1

∥∥, ∥∥u(τ2)2

∥∥ ≤ Cτ1 ,

•
∥∥u(τ2)1 − u

(τ1)
1

∥∥, ∥∥u(τ2)2 − u
(τ1)
2

∥∥, ∥∥R(τ2) − R(τ1)
∥∥ ≤ Cτ1 |τ2 − τ1| (locally Lipschitz about

τ1.) ◦

Step 4: Remainder estimates. (Step 4a: u1.) As per the remark, we first start with

the H1 estimate for u1 and u
(τ2)
1 − u

(τ1)
1 . Since

∫
u1 = 0 this is equivalent to an L2 estimate on

its gradient. Continuing from (2.108),

∥∇u(τ2)1 ∥2L2(Q) ≤ C∥u(τ2)1 ∥L2(Γ) for every x ∈ Γ, |θ2 · n(x)| ≤ |θ2| · |n(x)| = 1.

≤ C∥∇u(τ2)1 ∥L2(Q) by the Trace theorem + Poincaré, as

∫
u1 = 0.

(2.114)

This gives us ∥∇u(τ2)1 ∥L2(Q) ≤ C, where C is independent of τ1 and τ2. As for the difference

u
(τ2)
1 − u

(τ1)
1 , we first write the BVP that it satisfies:−∆(u

(τ2)
1 − u

(τ1)
1 ) = 0, in Q,

− ∂
∂n

(
u
(τ2)
1 − u

(τ1)
1

)
− ((θ2 − θ1) · n) = α1 on Γ.

(2.115)

Similarly to the estimate above, we test (2.115) with u
(τ2)
1 − u

(τ1)
1 ∈ H1(Q), to get:

∥∇(u
(τ2)
1 − u

(τ1)
1 )∥2L2(Q) ≤ C|θ2 − θ1| ∥u(τ2)1 − u

(τ1)
1 ∥L2(Γ) ≤ C|θ2 − θ1| ∥∇(u

(τ2)
1 − u

(τ1)
1 )∥L2(Q).

(2.116)

57



This gives us the required estimate ∥∇(u
(τ2)
1 − u

(τ1)
1 )∥L2(Q) ≤ C|θ2 − θ1|, where C is inde-

pendent of τ1 and τ2.

(Step 4b: u2 and α2.) Next we turn to u
(τ2)
2 . As mentioned in Step 3, we use (2.110) to

obtain an estimate for α
(τ2)
2 . The equation can be rearranged to give:∫
Q

(
2θ2 · ∇u(τ2)1 + 1

)
−
∫
Γ
(θ2 · n)u(τ2)1 = |Γ|α(τ2)

2 , (2.117)

so that together with Step 4a,

|α(τ2)
2 | ≤ 1

|Γ|
C

[
∥∇u(τ2)1 ∥L2(Q) + |Q|

]
< C, C is independent of τ1 and τ2. (2.118)

We use (2.111) to obtain an estimate for u
(τ2)
2 :

∥∇u(τ2)2 ∥2L2(Q) =

∫
Q

(
2θ2 · ∇u(τ2)1 + 1

)
u
(τ2)
2 −

∫
Γ

(
(θ2 · n)u(τ2)1 + α

(τ2)
2

)
u
(τ2)
2

≤ C

[
∥∇u(τ2)1 ∥L2(Q) + 1

]
∥u(τ2)2 ∥L2(Q) + C

[
∥u(τ2)1 ∥L2(Γ) + |α(τ2)

2 |
]
∥u(τ2)2 ∥L2(Γ)

≤ C

[
∥∇u(τ2)1 ∥L2(Q) + 1

]
∥∇u(τ2)2 ∥L2(Q)

≤ C∥∇u(τ2)2 ∥L2(Q), by Step 4a. (2.119)

The second last estimate follows by the Trace theorem, Poincaré inequality (
∫
u1 =

∫
u2 = 0),

and the result |α(τ2)
2 | < C. This gives us ∥∇u(τ2)2 ∥L2(Q) ≤ C, where C is independent of τ1 and

τ2.

As for the difference u
(τ2)
2 − u

(τ1)
2 , we first write the BVP that it satisfies:−∆(u

(τ2)
2 − u

(τ1)
2 ) = 2θ2 · ∇u(τ2)1 − 2θ1 · ∇u(τ1)1 , in Q,

− ∂
∂n

(
u
(τ2)
1 − u

(τ1)
1

)
− ((θ2 · n)u(τ2)1 −

(
θ1 · n)u(τ1)1

)
= α

(τ2)
2 − α

(τ1)
2 on Γ.

(2.120)

To obtain an estimate for α
(τ2)
2 − α

(τ1)
2 , we proceed in the same manner by testing (2.120)

with u
(τ2)
0 ≡ 1, and rearrange the equation arriving at:

2

∫
Q

(
θ2 · ∇u(τ2)1 −θ2 · ∇u(τ1)1 + θ2 · ∇u(τ1)1 − θ1 · ∇u(τ1)1

)
+

∫
Γ

(
(θ2 · n)u(τ2)1 −(θ2 · n)u(τ1)1 − (θ2 · n)u(τ1)1 + (θ1 · n)u(τ1)1

)
= |Γ|

(
α
(τ2)
2 − α

(τ1)
2

)
(2.121)

(adding and subtracting new terms θ2 ·∇u(τ1)1 and (θ2 ·n)u(τ1)1 ). Of the eight terms on the LHS,

they may be grouped together in pairs, and each pair may be estimated by C|θ2−θ1|. (Details are

omitted since they are similar to Step 4a.) Therefore, we deduce that |α(τ2)
2 −α(τ1)

2 | < C|θ2−θ1|.
We now test (2.120) with u

(τ2)
2 − u

(τ1)
2 ∈ H1(Q), to get:

∥∇(u
(τ2)
2 − u

(τ1)
2 )∥2L2(Q)
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=

∫
Q

(
2θ2 · ∇u(τ2)1 − 2θ1 · ∇u(τ1)1

)(
u
(τ2)
2 − u

(τ1)
2

)
+

∫
Γ

(
(θ2 · n)u(τ2)1 − (θ1 · n)u(τ1)1 + α

(τ2)
2 − α

(τ1)
2

)(
u
(τ2)
2 − u

(τ1)
2

)
≤
∫
Q

[
|2θ2 · ∇u(τ2)1 − 2θ1 · ∇u(τ2)1 |+ |2θ1 · ∇u(τ2)1 − 2θ1 · ∇u(τ1)1 |

] ∣∣u(τ2)2 − u
(τ1)
2

∣∣
+

∫
Γ

[
|(θ2 · n)u(τ2)1 − (θ1 · n)u(τ2)1 |+ |(θ1 · n)u(τ2)1 − (θ1 · n)u(τ1)1 |+ |α(τ2)

2 − α
(τ1)
2 |

] ∣∣u(τ2)2 − u
(τ1)
2

∣∣
≤ C

∫
Q

[
|θ2 − θ1| |∇u(τ2)1 |+ |∇(u

(τ2)
1 − u

(τ1)
1 )|

] ∣∣u(τ2)2 − u
(τ1)
2

∣∣
+ C

∫
Γ

[
|θ2 − θ1| |u(τ2)1 |+ |u(τ2)1 − u

(τ1)
1 |+ |α(τ2)

2 − α
(τ1)
2 |

] ∣∣u(τ2)2 − u
(τ1)
2

∣∣
by Cauchy-Schwartz on Rd. Note that |n(x)| ≡ 1.

≤ C|θ2 − θ1|
[
∥u(τ2)2 − u

(τ1)
2 ∥L2(Q) + ∥u(τ2)2 − u

(τ1)
2 ∥L2(Γ)

]
since L2 ⊂ L1 as |Γ|, |Q| <∞, use Cauchy-Schwartz on L2.

Then, apply the estimates from Step 4a and from |α(τ2)
2 − α

(τ1)
2 |.

≤ C|θ2 − θ1| ∥∇(u
(τ2)
2 − u

(τ1)
2 )∥L2(Q)

By the Trace theorem and Poincaré inequality, as

∫
u2 = 0. (2.122)

This gives us the required estimate ∥∇(u
(τ2)
2 − u

(τ1)
2 )∥L2(Q) ≤ C|θ2 − θ1|, where C is inde-

pendent of τ1 and τ2.

(Step 4c: R and µ.) We first obtain a uniform bound for µ(τ), by applying the min-max

principle (to the lower semibounded operator −Λ):

0 ≤ −
(
r + α2(it)

2
)
= −µ(τ) = min

u∈H2(Q),u ̸=0

(−Λu, u)L2(Γ)

∥u∥2
L2(Γ)

= min

∫
Q |(∇+ iτ)u|2

∥u∥2
L2(Γ)

≤ |Q|
|Γ|

t2,

(2.123)

where the final inequality follows by picking u ≡ 1.

As for R ≡ R(τ), testing (2.113) with R gives, on the LHS,

LHS = −((∇+ iτ)2R,R)L2(Q) =

∫
Q
|(∇+ iτ)R|2 −

∫
Γ

[
∂R

∂n
+ i(τ · n)R

]
R̄

=

∫
Q
|(∇+ iτ)R|2 −

∫
Γ

[
µ(τ)

(
1 + (it)u1 + (it)2u2 +R

)
− (it)2α2

(
1 + (it)(θ · n)u2

)]
R̄.

(2.124)

Meanwhile, the RHS may be estimated using Step 4b, to give

RHS ≤ Ct3∥R∥L2(Q). (2.125)

Rearranging, we get

∥(∇+ iτ)R∥2L2(Q) + µ(τ)∥R∥2L2(Γ) ≤ C

∫
Γ
R̄+ C∥R∥L2(Q)
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≤ C∥∇R∥L2(Q) + C∥R∥L2(Q) Trace theorem + Poincaré.

≤ C∥(∇+ iτ)R∥L2(Q) + C∥R∥L2(Q)

≤ C

4ε
+ ε∥(∇+ iτ)R∥2L2(Q) + C∥R∥L2(Q) Cauchy inequality with ε.

(2.126)

For µ(τ)∥R∥2L2(Γ), this is bounded below (note that µ(τ) ≤ 0) by Cµ(τ)∥∇R∥2L2(Q) by the Trace

theorem, which is further bounded below by Cµ(τ)∥(∇+ iτ)R∥2L2(Q) by the triangle inequality.

Therefore the LHS of the inequality may be replaced by (1−Cµ(τ))∥(∇+iτ)R∥2L2(Q). To prevent

a trivial estimate, we assume that τ is small enough, so that by (2.123), 1− Cµ(τ) ≤ 1− ε.

Combining this with the RHS of the inequality, we arrive at

(1− 2ε)∥(∇+ iτ)R∥2L2(Q) ≤ C∥R∥L2(Q) +
C

4ε
. (2.127)

Furthermore, the Poincaré inequality with τ (for τ small and
∫
R = 0) gives us an estimate

of ∥R∥L2(Q) in terms of ∥(∇ + iτ)R∥L2(Q). So by picking ε > 0 small enough, we obtain a

quadratic inequality in ∥R∥2:

C1∥R∥2L2(Q) − C2∥R∥L2(Q) − C3 ≤ 0, where C1, C2, C3 > 0. (2.128)

Since the constants are positive, we must have that ∥R∥L2(Q) is bounded. This, (2.127), and

the reverse triangle inequality then implies that ∥∇R∥L2(Q) is bounded.

(Step 4d: µ(τ2) − µ(τ1).) For this, we appeal to the min-max principle (to −Λ) once again:

0 ≤ −µ(τ2) = min
u∈H2(Q),u̸=0

(−Λ(τ2)u, u)L2(Γ)

∥u∥2
L2(Γ)

= min
u∈H2(Q),u̸=0

∫
Γ

[
∂u
∂n + i(τ2 · n)u

]
ū

∥u∥2
L2(Γ)

= min
u∈H2(Q),u ̸=0

∫
Γ

[
∂u
∂n + i(τ1 · n)u+ i((τ2 − τ1) · n)u

]
ū

∥u∥2
L2(Γ)

≤ min
u∈H2(Q),u ̸=0

∫
Γ

[
∂u
∂n + i(τ1 · n)u

]
ū

∥u∥2
L2(Γ)

+ C|τ2 − τ1| by Cauchy-Schwarz on Rd. |n(x)| ≡ 1.

= −µ(τ1) + C|τ2 − τ1|. (2.129)

Exchanging the roles of τ2 and τ1, we arrive at |µ(τ2)−µ(τ1)| ≤ C|τ2−τ1|, where C is independent

of τ2 and τ1.

(Step 4e: R(τ2)−R(τ1).) It will be more convenient to consider the BVP that R(τ1)−R(τ2)
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satisfies (as opposed to R(τ2) −R(τ1)):

−(∇+ iτ1)
2(R(τ1) −R(τ2))− 2i(τ1 − τ2) · ∇R(τ2) + (t21 − t22)R

(τ2)

= (it1)
3(2θ1 · ∇u(τ1)2 + u

(τ1)
1 ) + (it1)

4u
(τ1)
2 − (it2)

3(2θ2 · ∇u(τ2)2 + u
(τ2)
1 ) + (it2)

4u
(τ2)
2 in Q,

− ∂
∂n

[
R(τ1) −R(τ2)

]
−
[
(it1)(θ1 · n)R(τ1) − (it2)(θ2 · n)R(τ2)

]
= (r(τ1) + α

(τ1)
2 (it1)

2)

(
1 + (it1)u

(τ1)
1 + (it1)

2u
(τ1)
2 +R(τ1)

)
− (it1)

2α
(τ1)
2

(
1 + (it1)(θ1 · n)u(τ1)2

)
−(r(τ2) + α

(τ2)
2 (it2)

2)

(
1 + (it2)u

(τ2)
1 + (it2)

2u
(τ2)
2 +R(τ2)

)
+ (it2)

2α
(τ2)
2

(
1 + (it2)(θ2 · n)u(τ2)2

)
on Γ.

(2.130)

For brevity, write v = R(τ1) −R(τ2). Test (2.130) with v. The RHS is then∫
Q

(
2(it1)

3θ1 · ∇u(τ1)2 + (it1)
3u

(τ1)
1 + (it1)

4u
(τ1)
2 − 2(it2)

3θ2 · ∇u(τ2)2 + (it2)
3u

(τ2)
1 + (it2)

4u
(τ2)
2

)
v̄

≤ ∥2A1 +A2 +A3 − 2Ã1 − Ã2 − Ã3∥L2(Q)∥∇v∥L2(Q)

by Cauchy-Schwartz on L2 and Poincaré, as

∫
v = 0.

≤ C

[
|t1 − t2|+ |θ1 − θ2|

]
∥∇v∥L2(Q). (2.131)

The final inequality is obtained by using a cancellation trick, for example,

∥A1 − Ã1∥L2(Q) = ∥(it1)3θ1 · ∇u(τ1)2 − (it2)
3θ1 · ∇u(τ1)2 ∥

+ ∥(it2)3θ1 · ∇u(τ1)2 − (it2)
3θ2 · ∇u(τ1)2 ∥

+ ∥(it2)3θ2 · ∇u(τ1)2 − (it2)
3θ2 · ∇u(τ2)2 ∥

≤ |t31 − t32| |θ1| ∥∇u
(τ1)
2 ∥+ t32|θ1 − θ2| ∥∇u(τ1)2 ∥+ t32|θ2| ∥∇(u

(τ1)
2 − u

(τ2)
2 )∥

by Cauchy-Schwartz on Rd.

≤ C

[
|t31 − t32|+ |θ1 − θ2|+ |θ1 − θ2|

]
by Step 4b.

≤ C

[
|t1 − t2|+ |θ1 − θ2|

]
. (2.132)

Next, the LHS gives

(−(∇+ iτ1)
2v, v)L2(Q) −

(
2i(τ1 − τ2) · ∇R(τ2) + (t21 − t22)R

(τ2), v

)
L2(Q)

. (2.133)

The second term is brought to the RHS and estimated by

C[|t21 − t22|+ |τ1 − τ2|] ∥∇v∥L2(Q).

61



We apply integration by parts to the first term to get

∥(∇+ iτ1)v∥2L2(Q) −
∫
Γ

[
∂v

∂n
+ i(τ1 · n)v

]
v̄. (2.134)

For second term (2.134), we write∫
Γ

[
∂R(τ1)

∂n
− ∂R(τ2)

∂n
+ i(τ1 · n)R(τ1) − i(τ2 · n)R(τ2)

+ i(τ2 · n)R(τ2) − i(τ1 · n)R(τ2)

]
v̄, (2.135)

and bring it over to the RHS. The bottom row is estimated by C|τ1 − τ2| ∥∇v∥L2(Q), by the

Trace theorem and Poincaré inequality. By the problem (2.130), the top row equals∫
Γ

{
µ(τ2)

(
1 + (it2)u

(τ2)
1 + (it2)

2u
(τ2)
2 +R(τ2)

)
− (it2)

2α
(τ2)
2

(
1 + i(τ2 · n)u(τ2)2

)
−µ(τ1)

(
1 + (it1)u

(τ1)
1 + (it1)

2u
(τ1)
2 +R(τ1)

)
+ (it1)

2α
(τ1)
2

(
1 + i(τ1 · n)u(τ1)2

)}
v̄. (2.136)

Excluding the term
∫
{µ(τ2)−µ(τ1)+µ(τ2)R(τ2)−µ(τ1)R(τ1)}v̄, the rest are once again estimated

by C[|t1 − t2| + |θ1 − θ2|] ∥∇v∥L2(Q), using the cancellation trick. The excluded term may be

estimated by the cancellation trick applied to the third and fourth term as follows:∫
Γ

{
µ(τ2)−µ(τ1) + µ(τ2)R(τ2) − µ(τ1)R(τ1)

}
v̄

≤ C|µ(τ2) − µ(τ1)| ∥∇v∥L2(Q) + Ct21∥∇v∥2L2(Q)

≤ C

[
|θ2 − θ1|+ |t2 − t1|

]
∥∇v∥L2(Q) + Ct1∥∇v∥2L2(Q). (2.137)

What is left of the LHS is just ∥(∇+ iτ1)v∥2L2(Q). Since this equals

∥∇v∥2L2(Q) +

∫
Q
2Re(i∇v · τ1v̄) + t21∥v∥2L2(Q),

the second and third term may be absorbed into the term Ct1∥∇v∥2L2(Q) on the RHS. Overall,

we obtain

(1− Ct1)∥∇v∥2L2(Q) ≤ C

[
|θ2 − θ1|+ |t2 − t1|

]
∥∇v∥L2(Q) (2.138)

⇔ ∥∇v∥L2(Q) ≤ Cτ1

[
|θ2 − θ1|+ |t2 − t1|

]
. (2.139)

The equivalence is only valid when Cτ1 > 0, which is the case whenever |τ1| = t1 is small

enough. We have therefore verified the local Lipschitz property (2.99), for small values of τ1.

(Step 4f: R(τ2) − R(τ1), for τ1 bounded away from zero.) Fix t0 > 0 and τ0 with
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|τ0| = t0. Given τ = tθ, propose a power series expansion for u(τ) about τ0:

u(tθ) = u0 +
(
i(|τ| − |τ0|)

)
u1 +

(
i(|τ| − |τ0|)

)2
u2 + · · · =

∞∑
j=0

uj
(
i(t− t0)

)j
. (2.140)

And similarly for µ(τ). Let us write τ1 = (t1− t0)θ1 and τ2 = (t2− t0)θ2. Note that most of the

arguments follows through with minor to no modifications, until (2.137):

• Step 2: No change as we are equating powers of (it − it0), so the arguments involved do

not depend on t.

• Step 3: Just replace t with t− t0.

• Step 4a and 4b: No changes to the estimates, which are estimates by only |θ2 − θ1|.

• Step 4c: No changes to the uniform bound on R and µ, however we now crucially have

that

0 ≤ −µ(τ) ≤ C(t− t0)
2,

and have assumed henceforth that any τ = (t− t0)θ we work with must be small enough.

• Step 4d: (Global) Lipschitz continuity of τ 7→ µ(τ) can be obtained with no modifications.

At (2.137) we have to replace t1 by t1 − t0. We hence arrive at a version (2.138) centered at τ0:

(1− C(t1 − t0))∥∇v∥2L2(Q) ≤ C

[
|θ2 − θ1|+ |t2 − t1|

]
∥∇v∥L2(Q). (2.141)

To obtain (2.139), we just have to assume that |τ1| = t1 − t0 is small enough. This means that

we have proven the local Lipschitz property for all τ̃1 = t1θ1 residing in a neighbourhood of τ0,

and therefore verifying (2.99). This concludes our discussion on the term ∥u2 − w∥ in (2.97).

The term ∥u1 − w∥. We shall show that

∥u1 − w∥L2(Q⋆) ≤ Cτ1 |τ2 − τ1| (locally Lipschitz at τ1.)

Firstly, u1 − w solves the following BVP−(∇+ iτ2)
2(u1 − w) +

[
(∇+ iτ2)

2 − (∇+ iτ1)
2

]
u1 = 0 in Q⋆,

u1 − w = 0 on Γ•,

(2.142)

with periodic BCs on ∂Q, if Q⋆ = Qstiff-ls. By testing the above BVP against u1−w ∈ H1(Q⋆),

the weak formulation gives

∥(∇+ iτ2)(u1 − w)∥2L2(Q⋆)

=

(
(∇+ iτ2)u1, (∇+ iτ2)(u1 − w)

)
−
(
(∇+ iτ1)u1, (∇+ iτ1)(u1 − w)

)
= (∇u1,−iτ2w + iτ1w + iτ2u1 − iτ1u1)
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+ (iτ1u1 − iτ2u1,∇w) + (iτ2u1 − iτ1u1,∇u1)

+ (iτ2u1, iτ2u1)− (iτ1u1, iτ1u1)− (iτ2u1, iτ2w) + (iτ1u1, iτ1w)

≤ |τ2 − τ1| (|∇u1|, |u1 − w|) + |τ2 − τ1| (|u1|, |∇(w − u1)|) +
∫
Q

[
(|τ2|2 − |τ1|2) |u1| |u1 − w|

]
by Cauchy-Schwarz on Rd.

≤ C|τ2 − τ1|
[
∥∇u1∥ ∥u1 − w∥+ ∥u1∥ ∥∇(w − u1)∥+ ∥u1∥ ∥u1 − w∥

]
by Cauchy-Schwarz on L2(Q⋆).

≤ C|τ2 − τ1|
[
∥∇u∥L2 + ∥u∥L2

]
∥∇(u1 − w)∥L2 ,

by the Poincaré inequality applied to u1 − w, which has zero trace.

≤ Cτ1 |τ2 − τ1| ∥∇(u1 − w)∥L2

as u1 ∈ H1. Note that the BVP for u1 depends on τ1.

≤ Cτ1 |τ2 − τ1|
(
∥(∇+ iτ1)(u1 − w)∥L2 + |τ1| · ∥u1 − w∥L2

)
≤ 1

4ε′
∥(∇+ iτ1)(u1 − w)∥2L2 + ε′C2

τ1 |τ2 − τ1|2 + Cτ1 |τ2 − τ1| |τ1| ∥u1 − w∥L2 . (2.143)

Rearrange,(
1− 1

4ε′

)
∥(∇+ iτ1)(u1 − w)∥2L2(Q) ≤ Cτ1 |τ2 − τ1| ∥u1 − w∥L2 + Cτ1ε

′|τ2 − τ1|2. (2.144)

On the other hand, since u1 − w has trace zero, the Poincaré inequality with τ for H1
0

functions applies to give a lower bound on the LHS. Therefore, by picking a suitable ε′ > 0,

we arrive at

C1∥u1 − w∥2L2 ≤ C2|τ2 − τ1| ∥u1 − w∥L2 + C3|τ2 − τ1|2, C1, C2, C3 > 0 depends on τ1 only.

(2.145)

This is a quadratic inequality in ∥u1 − w∥L2 , with positive coefficients. We therefore conclude

that

0 ≤ ∥u1 − w∥L2 ≤ 1

2C1

[
C2|τ2 − τ1|+

√
(C2|τ2 − τ1|)2 + 4C1C3|τ2 − τ1|2

]
≤ C|τ2 − τ1|, where C depends on τ1 but not τ2.

(2.146)

This completes the proof.

Remark. In the proof of Proposition 2.3.5, we have used variants of the Poincaré inequality.

In total, we have used a “Poincaré inequality with τ” (i.e. for the operator −(∇+ iτ)2) for

• u ∈ H1
0 , for all τ ∈ Q′. This is a consequence of Proposition 2.2.4.

• u ∈ H1,
∫
u = 0, for small τ. This is the Poincaré-Writinger inequality for τ = 0, and can

be extended to a neighborhood of τ = 0 by a continuity argument similar to Step 4d. ◦
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2.4 Identifying a suitable homogenized operator

The task now is to identify an operator Âβ0,β1 that is O(ε2) close to A
(τ)
ε = Â0,I in the norm-

resolvent sense, by using Theorem 2.3.4. To ensure that Âβ0,β1 is well defined, we need to check

that (i) β0 and β1 satisfies the domain considerations, and (ii) β0 + β1M
(τ)
ε (z) is boundedly

invertible. Here we record a useful observation that is used for checking (ii):

Lemma 2.4.1. For z ∈ Kσ, we have

−
(
P(τ)
⊥ + P(τ)M

(τ)
ε (z)

)−1

P(τ) = −P(τ)
(
P(τ)M (τ)

ε (z)P(τ)
)−1

P(τ). (2.147)

Proof. Note that P(τ)
⊥ and P(τ)M

(τ)
ε (z) are bounded operators, hence the sum is closed. That

P(τ)
⊥ + P(τ)M

(τ)
ε (z) is boundedly invertible follows from the second equality of (2.77), as

−
(
P(τ)
⊥ + P(τ)M (τ)

ε (z)
)−1

= −

(
P(τ)M

(τ)
ε P(τ) P(τ)M

(τ)
ε P(τ)

⊥
0 I

)−1

= −

(
A−1 −A−1B
0 I

)
,

(2.148)

which is bounded by Theorem 2.3.4. Now applying P(τ) on the right, we obtain

−
(
P(τ)
⊥ + P(τ)M (τ)

ε (z)
)−1

P(τ) = −

(
A−1 0

0 0

)
. (2.149)

This is precisely the RHS of (2.147), completing the proof.

Remark. We have abused notation when writing P(τ) in (2.147). To be precise,

−
(
P(τ)
⊥︸︷︷︸

E→E

+P(τ)M (τ)
ε (z)︸ ︷︷ ︸

E→E

)−1 P(τ)︸︷︷︸
E→E

= − P(τ)︸︷︷︸
P(τ)E→E

(
P(τ)M (τ)

ε (z)P(τ)︸ ︷︷ ︸
P(τ)E→P(τ)E

)−1 P(τ)︸︷︷︸
E→P(τ)E

. ◦

Our first attempt on identifying a suitable homogenized operator is

Theorem 2.4.2. There exist C > 0, independent of ε > 0 (assumed to be small enough),

z ∈ Kσ, and τ ∈ Q′, such that∥∥∥∥∥(A(τ)
ε − z)−1 −

(
Â

(τ)

ε,P(τ)
⊥ ,P(τ)

− z

)−1
∥∥∥∥∥
H→H

≤ Cε2. (2.150)

The operator Â
(τ)

ε,P(τ)
⊥ ,P(τ)

is constructed relative to the triple (A
(τ)
ε,0,Λ

(τ)
ε ,Π(τ)) with H = L2(Q)

and boundary space E = L2(Γint)⊕ L2(Γls). Furthermore, Â
(τ)

ε,P(τ)
⊥ ,P(τ)

is self-adjoint.

Proof. The inequality follows by Krein’s formula (Theorem 2.2.16), the estimate on M
(τ)
ε (z)

(Theorem 2.3.4), and the identity (2.147). Self-adjointness of Â
(τ)

ε,P(τ)
⊥ ,P(τ)

follows from [47,

Corollary 5.8].
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Remark. This is exactly the same formula as in [35, Theorem 3.1]. In other words, we have

managed to push through the analysis of [35] for our setup, with P(τ) now being two-dimensional,

corresponding to the two stiff components. ◦

While the operator Â
(τ)

ε,P(τ)
⊥ ,P(τ)

satisfies the first criterion (self-adjointness) of a homogenized

operator, it is unclear what the action of Â
(τ)

ε,P(τ)
⊥ ,P(τ)

is, since it requires us to convert the

boundary condition P(τ)
⊥ Γ

(τ)
0 + P(τ)Γ

(τ)
ε,1 = 0 into the action of Â

(τ)

ε,P(τ)
⊥ ,P(τ)

. The goal now is to

build on our result and identify other O(ε2)-close operators whose actions can be more easily

written down.

2.4.1 An “observer” in the soft component

We begin this section by making the following definitions

Definition 2.4.3. M
stiff,(τ)
ε (z) :=M

stiff-int,(τ)
ε (z)Pint +M

stiff-ls,(τ)
ε (z)Pls.

Definition 2.4.4. For z ∈ ρ(A
(τ)
ε ), set R

(τ)
ε (z) := Psoft(A

(τ)
ε − z)−1Psoft.

We will refer to R
(τ)
ε (z) as the generalized resolvent of A

(τ)
ε at z, with respect to L2(Qsoft).

The term “generalized resolvent” refers to the fact that it is the resolvent of some operator on

a larger space. This is not to be confused with pseudoresolvents in Theorem 2.2.16. Let us give

an interpretation of R
(τ)
ε (z).

The resolvent (A − z)−1 takes f ∈ L2 to u = (A − z)−1f , which is the unique

solution to the BVP (A − z)u = f . Since f can be viewed as a forcing term for

our system, we may interpret R
(τ)
ε (z) as an observer living in L2(Qsoft): The goal of

the observer is to figure out what happens to the output u of the system, for each

input f . However, the observer only has partial information of the system, due to

the constraint that the input f must lie in L2(Qsoft), and is only able to observe the

part of u which lie in L2(Qsoft).

This point of this section is to demonstrate we can draw conclusions on the full system using

the partial information provided by R
(τ)
ε (z), as the missing pieces can be attributed to “error”.

Let us begin with an easy but important computation, which says that R
(τ)
ε is itself a solution

operator for some abstract BVP on L2(Qsoft):

Proposition 2.4.5. We have,

R(τ)
ε (z) =

(
Â

soft,(τ)

M
stiff,(τ)
ε (z),I

− z

)−1

, (2.151)

where Â
soft,(τ)

M
stiff,(τ)
ε (z),I

is constructed from the triple (A
soft,(τ)
0 ,Λsoft,(τ),Πsoft,(τ)) with L2(Qsoft) and

boundary space L2(Γint)⊕L2(Γls). In other words R
(τ)
ε (z) is the solution operator of the BVP:

(
−(∇+ iτ)2 − z

)
u = f in Qsoft,

∂
(τ)
nsoftu = −M stiff-int,(τ)

ε (z)u on Γint,

∂
(τ)
nsoftu = −M stiff-ls,(τ)

ε (z)u on Γls,

(2.152)
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which is to be rigorously interpreted in terms of the following system(Âsoft,(τ) − z)u = f,

Γ
soft,(τ)
1 u = −M stiff,(τ)

ε (z)Γ
soft,(τ)
0 u.

(2.153)

Here, f ∈ L2(Qsoft). (Note the z-dependent boundary conditions.)

Proof. We have

R(τ)
ε (z) = Psoft(A

(τ)
ε,0 − z)−1Psoft − PsoftS

(τ)
ε (z)

(
M (τ)
ε (z)

)−1 (
S(τ)
ε (z̄)

)∗
Psoft

= (A
soft,(τ)
0 − z)−1 − Ssoft,(τ)(z)

(
M (τ)
ε (z)

)−1 (
Ssoft,(τ)(z̄)

)∗
= (A

soft,(τ)
0 − z)−1 − Ssoft,(τ)(z)

(
M stiff,(τ)
ε (z) +M soft,(τ)(z)

)−1 (
Ssoft,(τ)(z̄)

)∗
. (2.154)

The first equality follows by Corollary 2.2.17. For the second equality, Psoft(A
(τ)
ε,0 − z)−1Psoft =

(A
soft,(τ)
0 − z)−1 follows directly by construction, and PsoftS

(τ)
ε (z) = Ssoft,(τ)(z) by (2.63). The

final equality follows by Proposition 2.2.18. The assertion on the solution operator then follows

by Theorem 2.2.16.

Remark. In moving from the L2(Q) to L2(Qsoft), our boundary conditions changed from (β0,

β1) = (0, I) to (β0, β1) = (M stiff(z), I). Using again the analogy of an observer, this means that

the observer living in L2(Qsoft) is able to feel the effect of the “stiff” part of the system through

the (z-dependent) boundary conditions. ◦

Recall the computations in Lemma 2.4.1: when converting −(P(τ)
⊥ + P(τ)M

(τ)
ε (z))−1P(τ) to

−P(τ)(P(τ)M
(τ)
ε (z)P(τ))−1P(τ), we are only interested in the left column of the block matrix.

This suggests that we could modify the top right entry to our desire. (The bottom right entry

should be kept as I to ensure invertibility of the matrix.) In particular,(
P(τ)M

stiff,(τ)
ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ) P(τ)M

(τ)
ε (z)P(τ)

⊥
0 I

)−1

P(τ)

=

(
P(τ)M

stiff,(τ)
ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ) P(τ)M soft,(τ)(z)P(τ)

⊥
0 I

)−1

P(τ) =

(
A−1 0

0 0

)
.

(2.155)

This suggests us to make the following definition:

Definition 2.4.6. R
(τ)
ε,eff(z) :=

(
Â

soft,(τ)

P(τ)
⊥ +P(τ)M

stiff,(τ)
ε (z)P(τ),P(τ)

− z

)−1

.

To check that the choice β0 and β1 for R
(τ)
ε,eff(z) is valid, we note that (i) β0 + β1M

soft(τ)(z)

is a sum of bounded operators with maximal domain hence it is closed, (ii) the invertibility of

the matrix follows because it is upper triangular, (iii) boundedness of the inverse follows from

the estimate for A−1 in Theorem 2.3.4. The observation on the equality of matrices is used in

the following result:
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Proposition 2.4.7. We have the following estimate, uniform in z ∈ Kσ and τ ∈ Q′:

R(τ)
ε (z)−R

(τ)
ε,eff(z) = O(ε2).

Proof. See Appendix D.

Remark. • We have two triples: one on the full space L2(Q) and one on the soft component

L2(Qsoft). It is Krein’s formula (Theorem 2.2.16) and our specific setup (in particular the

results from Section 2.2.3) that enables us to easily pass between the two sets of triples.

• A byproduct of the proof of Proposition 2.4.7 is that

Psoft

(
Â

(τ)

ε,P(τ)
⊥ ,P(τ)

− z

)−1

Psoft =

(
Â

soft,(τ)

P(τ)
⊥ +P(τ)M

stiff,(τ)
ε (z),P(τ)

− z

)−1

=

(
Â

soft,(τ)

P(τ)
⊥ +P(τ)M

stiff,(τ)
ε (z)P(τ),P(τ)

− z

)−1

= R
(τ)
ε,eff(z).

We have discussed extensively why we could discard P(τ)M
stiff,(τ)
ε (z)P(τ)

⊥ , but the reason

for doing so is so that we can work with an operator on a finite-dimensional space P(τ)E ,
this is crucial in our proof of self-adjointness of the operatorA(τ)

ε,hom (to be defined later). ◦

We now turn our attention to discuss dilations of R
(τ)
ε,eff(z). We would like to guess an

operator R(τ)
ε,eff(z) (note the use of calligraphic font) on the full space L2(Q) that is O(ε2) close

to (A
(τ)
ε −z)−1. The hope is that R(τ)

ε,eff(z) is the resolvent of a self-adjoint operator whose action

depends on ε in a clear way. One necessary condition is R(τ)
ε,eff(z)

∗ = R(τ)
ε,eff(z̄). The guess is as

follows:

Definition 2.4.8. Let R(τ)
ε,eff(z) be the operator on L

2(Q) defined by the following formula with

respect to the decomposition H = L2(Qsoft)⊕ L2(Qstiff-int)⊕ L2(Qstiff-ls):

R(τ)
ε,eff(z) =

R
(τ)
ε,eff(z) a12 a13

a21 a22 a23

a31 a32 a33

 (2.156)

where

a21 = Πstiff-int,(τ)k(τ)(z)
[
R

(τ)
ε,eff(z)− (A

soft,(τ)
0 − z)−1

]
a31 = Πstiff-ls,(τ)k(τ)(z)

[
R

(τ)
ε,eff(z)− (A

soft,(τ)
0 − z)−1

]
a12 =

(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-int,(τ)

)∗
a22 = Πstiff-int,(τ)k(τ)(z)

(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-int,(τ)

)∗
a32 = Πstiff-ls,(τ)k(τ)(z)

(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-int,(τ)

)∗
a13 =

(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-ls,(τ)

)∗
a23 = Πstiff-int,(τ)k(τ)(z)

(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-ls,(τ)

)∗
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a33 = Πstiff-ls,(τ)k(τ)(z)
(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-ls,(τ)

)∗
where k(τ)(z) := Γ

soft,(τ)
0 |D(A

soft,(τ)
0 )+̇ran(Πsoft,(τ)P(τ))

.

Proposition 2.4.9. We have the following estimate, uniform in z ∈ Kσ and τ ∈ Q′:

(A(τ)
ε − z)−1 −R(τ)

ε,eff(z) = O(ε2).

Proof. This is verified entry-wise, and only requires minimal modifications to the proof in [35,

Theorem 3.9]. See Appendix D.

Recall that for R
(τ)
ε,eff(z) we have β0 = P(τ)

⊥ + P(τ)M
stiff,(τ)
ε (z)P(τ). We can further simplify

the term P(τ)M
stiff,(τ)
ε (z)P(τ) by using Lemma 2.2.21 and (2.62):

P(τ)M stiff,(τ)
ε (z)P(τ) = P(τ)M stiff-int,(τ)

ε (z)PintP(τ) + P(τ)M stiff-ls,(τ)
ε (z)PlsP(τ)

= P(τ)
stiff-intM

stiff-int,(τ)
ε (z)P(τ)

stiff-int ⊕ P(τ)
stiff-lsM

stiff-ls,(τ)
ε (z)P(τ)

stiff-ls

=
(
P(τ)
stiff-intΛ

stiff-int,(τ)
ε P(τ)

stiff-int + zP(τ)
stiff-int(Π

stiff-int,(τ))∗Πstiff-int,(τ)P(τ)
stiff-int

)
⊕
(
P(τ)
stiff-lsΛ

stiff-ls,(τ)
ε P(τ)

stiff-ls + zP(τ)
stiff-ls(Π

stiff-ls,(τ))∗Πstiff-ls,(τ)P(τ)
stiff-ls

)
+O(ε2)

= P(τ)
(
Λstiff-int,(τ)
ε ⊕ Λstiff-ls,(τ)

ε

)
P(τ)

+ zP(τ)
(
(Πstiff-int,(τ))∗Πstiff-int,(τ) ⊕ (Πstiff-ls,(τ))∗Πstiff-ls,(τ)

)
P(τ) +O(ε2)

= P(τ)
(
Λstiff-int,(τ)
ε ⊕ Λstiff-ls,(τ)

ε

)
P(τ)

+ zP(τ)
(
(Πstiff-int,(τ) ⊕Πstiff-ls,(τ))∗(Πstiff-int,(τ) ⊕Πstiff-ls,(τ))

)
P(τ) +O(ε2). (2.157)

This is helpful as it separates the term that depends on ε−2 (the stiff DtN maps), from the

terms that are uniformly bounded (the stiff harmonic lifts). We therefore define:

Definition 2.4.10. We define R
(τ)
ε,hom(z) as the following operator on L2(Qsoft):(

Â
soft,(τ)

P(τ)
⊥ +P(τ)

[(
Λ
stiff-int,(τ)
ε ⊕Λ

stiff-ls,(τ)
ε

)
+z(Πstiff-int,(τ)⊕Πstiff-ls,(τ))∗(Πstiff-int,(τ)⊕Πstiff-ls,(τ))

]
P(τ),P(τ)

− z

)−1

,

and set R(τ)
ε,hom(z) as the operator on L

2(Q) defined by (2.156), but with all the terms involving

“R
(τ)
ε,eff” to be replaced by R

(τ)
ε,hom.

For the validity of the choice (β0, β1), we use: the validity of (β0, β1) for R
(τ)
ε,eff(z), and the

observation that A is bounded below uniformly in ε, τ, and z. (Details are provided in the proof

of Theorem 2.4.20 later (“top left entry”).)

We conclude this section with the following result:

Theorem 2.4.11. We have the following estimate, uniform in z ∈ Kσ and τ ∈ Q′:

(A(τ)
ε − z)−1 −R(τ)

ε,hom(z) = O(ε2).
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Proof. This follows from R
(τ)
ε,eff(z)−R

(τ)
ε,hom(z) = O(ε2), which can be checked, for instance by the

resolvent identity applied to −(β0 + β1M(z))−1 (this is boundedly invertible by construction).

2.4.2 Self-adjointness of A(τ)
ε,hom (Preliminaries)

In the previous section, we have identified a candidate operator R(τ)
ε,hom(z) on L2(Q) which

could serve as the resolvent of some self-adjoint operator which will be denoted later by A(τ)
ε,hom.

However, the term k(τ)(z) has finite-range, since P(τ)E is finite dimensional. This implies that

self-adjointness on L2(Q) is impossible, as we will be left with non-zero defect indices. (Zero

defect indices are a requirement for self-adjointness, see [22, Proposition 3.8].) We may still

pursue the question of self-adjointness, but on some subspace of L2(Q). This motivates us to

define:

Definition 2.4.12. Write Ĕ(τ) := P(τ)E for the truncated boundary space. Now introduce the

following truncated operators:

Π̆soft,(τ) := Πsoft,(τ)|Ĕ(τ) , Λ̆soft,(τ) := P(τ)Λsoft,(τ)|Ĕ(τ) ,

Π̆stiff-int,(τ) := Πstiff-int,(τ)|Ĕ(τ) , Λ̆stiff-int,(τ)
ε := P(τ)Λstiff-int,(τ)

ε |Ĕ(τ) ,

Π̆stiff-ls,(τ) := Πstiff-ls,(τ)|Ĕ(τ) , Λ̆stiff-ls,(τ)
ε := P(τ)Λstiff-ls,(τ)

ε |Ĕ(τ) .

Set Π̆stiff,(τ) := Π̆stiff-int,(τ) ⊕ Π̆stiff-ls,(τ) and Λ̆
stiff,(τ)
ε := Λ̆

stiff-int,(τ)
ε ⊕ Λ̆

stiff-ls,(τ)
ε . By the truncated

DtN maps Λ̆, we mean its continuous extension to the full subspace Ĕ . (Recall Lemma 2.3.2

and the comment thereafter.)

Remark. As the goal of this section is to prove self-adjointness for each ε and τ, the dependence

on ε and τ is not important here and we will drop them where convenient. ◦

As P(τ) is a spectral projection with respect to the stiff DtN maps, we immediately see that

Λ̆stiff-int and Λ̆stiff-ls are self-adjoint. In fact, Λ̆soft is self-adjoint too, as it is symmetric on the

finite dimensional space Ĕ .
The lifts Π̆soft, Π̆stiff-int, and Π̆stiff-ls are injective and bounded since they are restrictions of

operators that are so. We can turn it into a surjective map by restricting its codomain to:

Definition 2.4.13. Introduce the following subspaces of H = L2(Q):

H̆soft,(τ) := ran(Π̆soft,(τ)), H̆stiff-int,(τ) := ran(Π̆stiff-int,(τ)), H̆stiff-ls,(τ) := ran(Π̆stiff-ls,(τ)),

and set H̆stiff,(τ) = H̆stiff-int,(τ) ⊕ H̆stiff-ls,(τ). (The orthogonality is a consequence of our setup.)

We use the ingredients above to define the following triple on the soft component with its

auxiliary operators:

Definition 2.4.14. Consider the (A
soft,(τ)
0 , Λ̆soft,(τ), Π̆soft,(τ)) on L2(Qsoft) and boundary space

Ĕ(τ). Construct the following operators in accordance with Definition 2.2.12:

˘
Âsoft,(τ) : D(A

soft,(τ)
0 )+̇H̆soft,(τ) → L2(Qsoft),
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Γ̆
soft,(τ)
0 : D(A

soft,(τ)
0 )+̇H̆soft,(τ) → Ĕ(τ),

Γ̆
soft,(τ)
1 : D(A

soft,(τ)
0 )+̇Π̆soft,(τ)D(Λ̆soft,(τ)) → Ĕ(τ),

S̆soft,(τ)(z) : Ĕ(τ) → L2(Qsoft),

M̆ soft,(τ)(z) : D(Λ̆soft,(τ)) → Ĕ(τ).

Definition 2.4.12 implies D(Λ̆soft,(τ)) = Ĕ(τ). This means that the domains of
˘

Âsoft, Γ̆soft
0 , and

Γ̆soft
1 coincide. This is a key assumption of the classical triple, which is not required here.

Remark. The following truncated triple is also available: (A
stiff-int,(τ)
ε,0 ⊕Astiff-ls,(τ)

ε,0 , Λ̆
stiff,(τ)
ε , Π̆stiff,(τ))

on L2(Qstiff-int)⊕ L2(Qstiff-ls) with boundary space H̆stiff,(τ), but we do not need them. ◦

We record some properties of the truncated triple in relation to its original counterpart.

Proposition 2.4.15.

1. Π̆soft,(τ) : Ĕ(τ) → H̆soft,(τ) and (Π̆stiff-int,(τ) ⊕ Π̆stiff-ls,(τ)) : Ĕ(τ) → H̆stiff,(τ) are both bounded

and boundedly invertible.

2.
˘

Âsoft,(τ) is densely defined and closed.

3. S̆soft,(τ)(z) = Ssoft,(τ)(z)|Ĕ .

4. M̆ soft,(τ)(z) = P(τ)M soft,(τ)(z)|Ĕ , that is, M̆ soft,(τ)(z) is the compression of its original

operator.

5. Γ̆
soft,(τ)
0 and Γ̆

soft,(τ)
1 are surjective mappings from D(

˘
Âsoft,(τ)) to Ĕ(τ). Furthermore, their

restrictions to D(A
soft,(τ)
0 ) are also surjective.

6. Γ̆
soft,(τ)
0 = Γ

soft,(τ)
0 |D(A

soft,(τ)
0 )+̇H̆soft,(τ) and Γ̆

soft,(τ)
1 = P(τ)Γ

soft,(τ)
1 |D(A

soft,(τ)
0 )+̇H̆soft,(τ) .

Proof. (1) We have already discussed the boundedness and invertibility of Π̆soft. The bounded-

ness of (Π̆soft)−1 follows from the fact that Ĕ is finite dimensional. The same argument holds for

(Π̆stiff-int,(τ) ⊕ Π̆stiff-ls,(τ)). (2) Density follows from the assumption that Asoft
0 is densely defined.

Closedness follows from the observation that the graph of
˘

Âsoft,(τ) is the union of the graph of

Asoft
0 with H̆soft,(τ) × {0}, both of which are closed. (3) follows from the formula for S(z) in

Proposition 2.2.13(4) and the definition Π̆soft = Πsoft|Ĕ . Similarly, (4) follows from Proposition

2.2.13(5) and the definitions Π̆soft = Πsoft|Ĕ and Λ̆soft = P(τ)Λsoft|Ĕ . (5) Surjectivity of Γ̆soft
0

follows from the observation that Γ̆soft
0 is defined as the null extension of (Π̆soft)−1 (left inverse.)

But (Π̆soft)−1 is in fact a two-sided inverse thanks to (1). Surjectivity of Γ̆soft
1 follows from: If

f ∈ L2(Qsoft), ϕ ∈ Ĕ , then

Γ̆soft
1 ((Asoft

0 )−1f + Π̆softϕ) = (Π̆soft)∗f + Λ̆softϕ.

Surjectivity of Γ̆soft
1 is hence a consequence of surjectivity of (Π̆soft)∗, which was established in

(1). For (6), the claim on Γ̆soft
0 is immediate from the definitions. As for Γ̆soft

1 , we can continue

the computation above, to see that

Γ̆soft
1 ((Asoft

0 )−1f + Π̆softϕ) = P(τ)(Πsoft)∗f + P(τ)ΛsoftP(τ)ϕ = P(τ)
[
(Πsoft)∗f + ΛsoftP(τ)ϕ

]
.
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The latter is precisely the action of PΓsoft
1 on D(Asoft

0 )+̇H̆soft. This completes the proof.

Remark. The closedness of
˘

Âsoft,(τ) relies crucially on the fact that H̆soft,(τ) = ran(Π̆soft,(τ)) is

finite dimensional. For general triples, Â is not necessarily closed nor closable. ◦

To conclude the section, let us write down R(τ)
ε,hom(z) with respect to the truncated objects.

We will do this with respect to the decomposition H = L2(Qsoft)⊕ (L2(Qstiff-int)⊕L2(Qstiff-ls)):

R(τ)
ε,hom(z) =

 R
(τ)
ε,hom(z)

Π̆stiff,(τ)k(τ)(z)
[
R

(τ)
ε,hom(z)− (A

soft,(τ)
0 − z)−1

]
(
k(τ)(z̄)

[
R

(τ)
ε,hom(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗
Π̆stiff,(τ)∗

Π̆stiff,(τ)k(τ)(z)
(
k(τ)(z̄)

[
R

(τ)
ε,hom(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗
Π̆stiff,(τ)∗


(2.158)

where we recall, R
(τ)
ε,hom(z) is defined in Definition 2.4.10, k(τ)(z) = Γ

soft,(τ)
0 |D(A

soft,(τ)
0 )+̇H̆soft,(τ)

and Π̆stiff,(τ) = Π̆stiff-int,(τ)⊕Π̆stiff-ls,(τ). With this in hand, we may view R(τ)
ε,hom(z) as an operator

on L2(Qsoft)⊕ H̆stiff,(τ) = L2(Qsoft)⊕ Π̆stiff,(τ)E .

Remark. Recall also that Λ̆
stiff,(τ)
ε = Λ̆

stiff-int,(τ)
ε ⊕ Λ̆

stiff-ls,(τ)
ε . Then by the Krein’s formula,

R
(τ)
ε,hom(z) = (A

soft,(τ)
0 − z)−1

− S̆soft,(τ)(z)

[
Λ̆stiff,(τ)
ε + zΠ̆stiff,(τ)∗Π̆stiff,(τ) + M̆ soft,(τ)(z)

]−1 (
S̆soft,(τ)(z̄)

)∗
.

(2.159)

Therefore, R
(τ)
ε,hom(z) = (

˘
Â

soft,(τ)
β0,β1

− z)−1, where β1 = I and

β
(τ)
ε,0(z) = Λ̆stiff,(τ)

ε + zΠ̆stiff,(τ)∗Π̆stiff,(τ). (2.160)

For the validity of the choice (β0, β1), we refer to the proof of Theorem 2.4.20 below (“top left

entry”.) Compare this with Definition 2.4.10. We see that we have two different parameteriza-

tions of the boundary conditions (β0, β1), arising from two different choices of boundary triples.

Formulas (2.158) and (2.159) will serve as quick reference for the subsequent sections. ◦

2.4.3 Self-adjointness of A(τ)
ε,hom

In this section, will use [35, Section 4.1] and in the process supply further details to the argu-

ments provided. Recall the notations for Π̆stiff,(τ) and Λ̆
stiff,(τ)
ε . It will be convenient to set:

Definition 2.4.16. B(τ)
ε := −(Π̆stiff,(τ)∗)−1Λ̆

stiff,(τ)
ε (Π̆stiff,(τ))−1.

Using the truncated “soft” triple (A
soft,(τ)
0 , Λ̆soft,(τ), Π̆soft,(τ)) and its auxiliary operators we

define
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Definition 2.4.17. Let A(τ)
ε,hom be the operator on L2(Qsoft)⊕ H̆stiff,(τ) defined by

D(A(τ)
ε,hom) :=

{(
u

û

)
∈ L2(Qsoft)⊕ H̆stiff,(τ) : u ∈ D(

˘
Âsoft,(τ)), û = Π̆stiff,(τ)Γ̆

soft,(τ)
0 u

}
,

(2.161)

A(τ)
ε,hom

(
u

û

)
:=

(
˘

Âsoft,(τ)u

−(Π̆stiff,(τ)∗)−1Γ̆
soft,(τ)
1 u+ B(τ)

ε û

)
. (2.162)

Linearity of the subspace D(A(τ)
ε,hom) and the operator Ahom follows from the linearity of all the

operators involved.

Let us discuss some basic properties of A(τ)
ε,hom and B(τ)

ε , for each fixed ε and τ (we will

therefore drop ε and τ where convenient).

Lemma 2.4.18. Ahom is densely defined.

Proof. u ∈ D(
˘

Âsoft) can be expressed as u = (Asoft
0 )−1f + Π̆softϕ, for some f ∈ L2(Qsoft) and

ϕ ∈ Ĕ . But recall that D(
˘

Âsoft,(τ)) = D(A
soft,(τ)
0 )+̇H̆soft,(τ) is a (vector space) direct sum, so we

may vary (Asoft
0 )−1f independently of Π̆softϕ. Since D(A

soft,(τ)
0 ) is dense in L2(Qsoft), and

û = Π̆stiffΓ̆soft
0 u = Π̆stiffϕ,

ranging through ϕ ∈ Ĕ implies that the second component of D(Ahom) equals (!) H̆stiff.

Lemma 2.4.19. Ahom is symmetric if and only if B is self-adjoint.

Proof. For (⇐), we use the Green’s identity (Theorem 2.2.14): If (u, û)T , (v, v̂)T ∈ D(Ahom),

then(
Ahom

(
u

û

)
,

(
v

v̂

))
=
(
u,

˘
Âsoftv

)
−
(
Γ̆soft
0 u, Γ̆soft

1 v
)
+
(
Π̆stiffΓ̆soft

0 u,B∗Π̆stiffΓ̆soft
0 v

)
, (2.163)((

u

û

)
,Ahom

(
v

v̂

))
=
(
u,

˘
Âsoftv

)
−
(
Γ̆soft
0 u, Γ̆soft

1 v
)
+
(
Π̆stiffΓ̆soft

0 u,BΠ̆stiffΓ̆soft
0 v

)
. (2.164)

We omit the details as these are exactly the same as [35, Lemma 4.3]. Comparing both equations

gives us the result. For (⇒), we use the above equations to arrive at

(û,Bv̂) = (û,B∗v̂). (2.165)

Since û and v̂ are taken from a dense set of H̆stiff, B∗ = B.

By Proposition 2.4.15, B is a bounded self-adjoint operator on H̆stiff. As explained in [35,

Section 4.1], the point of singling out the operator B is because the self-adjointness of B implies

the self-adjointness of Ahom.
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An initial explanation is as follows: B features in the boundary condition β0 for Rhom(z),

with respect to the truncated triple. To be precise, continuing from (2.160),

β0 = (Π̆stiff)∗(B − z)Π̆stiff, β1 = I. (2.166)

Expressing β0 in this way is helpful as we see that there are two bounded self adjoint

operators (Π̆stiff)∗BΠ̆stiff (thanks to the self-adjointness of B), and (Π̆stiff)∗Π̆stiff. Furthermore

(Π̆stiff)∗Π̆stiff ≥ 0. The full explanation is contained in the proof of the following result:

Theorem 2.4.20. Fix ε > 0 (small enough) and τ ∈ Q′. Suppose that B is self-adjoint. Then

Ahom is self-adjoint. Furthermore its resolvent (Ahom − z)−1 is defined for all z ∈ C \ R by the

following block matrix decomposition with respect to L2(Qsoft)⊕ H̆stiff:

(Ahom − z)−1

=

(
R(z)

(
k(z̄)

[
R(z̄)− (Asoft

0 − z̄)−1
])∗

(Π̆stiff)∗

Π̆stiffk(z)
[
R(z)− (Asoft

0 − z)−1
]

Π̆stiffk(z)
(
k(z̄)

[
R(z̄)− (Asoft

0 − z̄)−1
])∗

(Π̆stiff)∗

)
,

(2.167)

where we define k(z) := Γ̆soft
0

Prop 2.4.15(6)
= Γsoft

0 |D(A
soft,(τ)
0 )+̇H̆soft,(τ) and

R(z) :=
(

˘
Âsoft,(τ)

(Π̆stiff)∗(B−z)Π̆stiff,I − z
)−1

. (2.168)

Remark. By Proposition 2.4.15(6), k(z) as defined in this theorem coincides with the one in

(2.156). Thus (2.167) is preciselyR(τ)
ε,hom(z). Also, we remind the reader that ran(Ssoft,(τ)(z)P(τ))

⊂ D(A
soft,(τ)
0 )+̇H̆soft,(τ), which we will need in the proof below. ◦

Proof of Theorem 2.4.20. See Appendix D. The proof is taken [35, Theorem 4.4], and we supply

it with further details.

2.5 Homogenization result

This section summarizes the results thus far into a fibre-wise (for each τ) homogenization result.

To begin, we collect the key ingredients of Sections 2.3 and 2.4 required for stating the result.

We have the following spaces

Ĕ(τ) = P(τ)E = P(τ)
stiff-intE ⊕ P(τ)

stiff-lsE = span{ψstiff-int,(τ)
1 } ⊕ span{ψstiff-ls,(τ)

1 }, (2.169)

H̆stiff,(τ) = H̆stiff-int,(τ) ⊕ H̆stiff-ls,(τ) = ran(Πstiff-int,(τ)|Ĕ(τ))⊕ ran(Πstiff-ls,(τ)|Ĕ(τ)). (2.170)

We denote by Ψ1 the lifts of ψ1 into their respective stiff spaces. That is,

Ψ
⋆,(τ)
1 := Π̆⋆,(τ)ψ

⋆,(τ)
1 = Π⋆,(τ)ψ

⋆,(τ)
1 , (•,⋆) ∈ {(int, stiff-int), (ls, stiff-ls)}. (2.171)
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The homogenized operator A(τ)
ε,hom is defined to have domain

D(A(τ)
ε,hom) =

{(
u

û

)
∈ L2(Qsoft)⊕ H̆stiff,(τ) :

u ∈ D(A
soft,(τ)
0 ) +̇ ran(Πsoft,(τ)|Ĕ(τ)), û = Π̆stiff,(τ)Γ̆

soft,(τ)
0 u

}
. (2.172)

Remark. D(A
soft,(τ)
0 ) = H2(Qsoft) ∩H1

0 (Qsoft), which is independent of τ. ◦

Definition 2.5.1. We write −(∇ + iτ)2 to mean the operator of
˘

Âsoft,(τ), that is, −(∇ + iτ)2

is the magnetic Laplacian on Qsoft with (zero) Dirichlet BCs, extended by zero on H̆stiff,(τ).

For its action, we first note that a typical u ∈ D(−(∇+ iτ)2) may be written as

u = (A
soft,(τ)
0 )−1f +Πsoft,(τ)(aψ

stiff-int,(τ)
1 + bψ

stiff-ls,(τ)
1 ), f ∈ L2(Qsoft), a, b ∈ C. (2.173)

If we further expand û ∈ H̆stiff,(τ) into (ûstiff-int, ûstiff-ls) ∈ H̆stiff-int,(τ) ⊕ H̆stiff-ls,(τ), then by the

definition of Γ0, the condition on û in (2.172) may be written as

û =

(
ûstiff-int

ûstiff-ls

)
=

(
aΠstiff-int,(τ)ψ

stiff-int,(τ)
1

bΠstiff-ls,(τ)ψ
stiff-ls,(τ)
1

)
=

(
aΨ

stiff-int,(τ)
1

bΨ
stiff-ls,(τ)
1

)
,

Therefore, the action of A(τ)
ε,hom may be written in with respect to the decomposition L2(Qsoft)⊕

H̆stiff-int,(τ) ⊕ H̆stiff-ls,(τ) as

A(τ)
ε,hom

 u

ûstiff-int

ûstiff-ls

 =


−(∇+ iτ)2u

−(Π̆stiff-int,(τ)∗)−1P(τ)
stiff-int

[
Γ
soft,(τ)
1 u+ Γ

stiff-int,(τ)
ε,1

(
aΨ

stiff-int,(τ)
1

)]
−(Π̆stiff-ls,(τ)∗)−1P(τ)

stiff-ls

[
Γ
soft,(τ)
1 u+ Γ

stiff-ls,(τ)
ε,1

(
bΨ

stiff-ls,(τ)
1

)]


(2.174)

=


−(∇+ iτ)2u

−(Π̆stiff-int,(τ)∗)−1P(τ)
stiff-intΓ

soft,(τ)
1 u

−(Π̆stiff-ls,(τ)∗)−1P(τ)
stiff-ls

[
Γ
soft,(τ)
1 u+ ε−2µ

stiff-ls,(τ)
1

(
bψ

stiff-ls,(τ)
1

)]
 .

(2.175)

To deduce this from Definition 2.4.17, we have used: In the first equality, that Λ = Γ1Π

and Π is boundedly invertible. In the second equality, that Λ̆stiff-ls
ε acts as multiplication by

ε−2µ
stiff-ls,(τ)
1 , and similarly for Λ̆stiff-int

ε , but recall that µ
stiff-int,(τ)
1 = 0 by Proposition 2.2.10.

Lemma 2.5.2. The action of (Π̆⋆,(τ)∗)−1 : span{ψ⋆,(τ)
1 } → ran(Π⋆,(τ)|

span{ψ⋆,(τ)
1 }) is given by

ψ
⋆,(τ)
1 7→ ∥Ψ⋆,(τ)

1 ∥−2Ψ
⋆,(τ)
1 .

Proof. We will drop •, ⋆, and τ where convenient. It suffices to figure out its action on ψ1.

75



Since (Π̆∗)−1 = (Π̆−1)∗,(
(Π̆−1)∗ψ1,Ψ1

)
L2(Q⋆)

=
(
ψ1, (Π̆)

−1Ψ1

)
L2(Q⋆)

= (ψ1, ψ1)L2(Γ•)
= 1.

But (Π̆−1)∗ψ1 ∈ ran(Π|Ĕ) is a multiple of Ψ1, say (Π̆−1)∗ψ1 = cΨ1. By the above calculation,

we must have c = 1/∥Ψ1∥2.

We are now in the position to state the homogenization result.

Theorem 2.5.3 (Fibre-wise homogenization result). With the homogenized operator A(τ)
ε,hom

as defined above, we have that:

• A(τ)
ε,hom is asymptotically close to our main model operator A

(τ)
ε in the norm-resolvent

sense, with an O(ε2) estimate. This estimate is uniform in z ∈ Kσ and τ ∈ Q′.

• The resolvent (A(τ)
ε,hom − z)−1 is given by R(τ)

ε,hom(z) (see Definition 2.4.10 or (2.158) or

(2.167)).

• A(τ)
ε,hom is self-adjoint on L2(Qsoft) ⊕ H̆stiff,(τ), and its null-extension to the full space

L2(Q) = L2(Qsoft) ⊕ L2(Qstiff-int) ⊕ L2(Qstiff-ls), which we will still denote by A(τ)
ε,hom,

is symmetric.

• A(τ)
ε,hom depends on ε only through its action on the third component H̆stiff-ls,(τ).

Proof. The only point that remains to be shown is why the operator R(τ)
ε,hom(z), while initially

defined for z ∈ C \ R (Theorem 2.4.20), can be extended to the whole resolvent set ρ(A(τ)
ε,hom).

This is due to the analyticity of the resolvent (Ahom − z)−1: Given z0 ∈ ρ(A(τ)
ε,hom) ∩ R, we can

always find an open ball B(z, εz), with z ∈ C \ R, and z0 ∈ B(z, εz), such that the formula

(2.167) holds.

Remark. Explicit expressions for Π̆ are available for the case Qstiff-int (for all τ) and for Qstiff-ls

(for τ = 0). See Proposition 2.2.10 for the formulas for the eigenfunction ψ1. ◦
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Chapter 3

The homogenized description

From Chapter 2, we know that A(τ)
ε,hom serves as a simplified description of the high-contrast

composite, in the sense that it acts only on a 2D subspace of L2(Qstiff-int ∪Qstiff-ls). However,

this is rather unsatisfactory as we have to contend with auxiliary objects arising from boundary

triples. Indeed, how do formulas in Section 2.5 inform the effective properties of our composite?

In this chapter, we take a closer look at the homogenized description A(τ)
ε,hom. We would

like to learn about the effective transport/scattering properties of our composite, and from this

perspective, we ask the following questions:

• What are the “dispersion functions” K(τ, z) for the stiff-soft-stiff model? That is, can we

show that the resolvent (A(τ)
ε,hom− z)−1 is unitarily equivalent to a multiplication operator

by some function (K(τ, z)− z)−1?

• How does the norm-resolvent asymptotics look like on the full space? That is, compute∫ ⊕
Q′ A(τ)

ε,homdτ.

• Can we provide a reasonable characterization of the spectrum σ(
∫ ⊕
Q′ A(τ)

ε,homdτ) and its

decomposition?

While these questions are non-trivial in the high contrast case, they are readily answered

in the moderate contrast case: Recall from Sections 1.1 and 1.4, that norm-resolvent limit of

Aε = −div(aε∇·), when aε is positive definite and bounded, is given by Ahom = −div(ahom∇·),
where ahom is positive definite and constant in space. Using the Fourier transform F , we have

Ahom = F−1Mahomξ·ξF , thus σ(Ahom) = [0,∞), and is purely absolutely continuous. Also,

(Ahom−z)−1 = F−1M(ahomξ·ξ−z)−1F , so the mapping ξ 7→ ahomξ ·ξ encodes dispersion of waves:

In the context of the wave equation (1.1), we set z = ω2, and the dispersion relation becomes

ahomξ · ξ = ω2.

We will investigate the three bullet points in Sections 3.1, 3.2, and 3.3 respectively. In Section

3.1, we focus on the 2× 2 matrix PH̆stiff,(τ)(A(τ)
ε,hom − z)−1PH̆stiff,(τ) , and express each entry as an

operator of multiplication by some constant depending on τ and z. Moreover, we show that for

the diagonal entries, this constant can be written in the form (K(τ, z) − z)−1. In Section 3.2,

we write down formulas for the full space operator for Models I and II (Figure 1-2), and the

stiff-soft-stiff model.
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In Section 3.3, we conduct a spectral analysis of
∫ ⊕
Q′ A(τ)

ε,homdτ. This section only contains

the author’s preliminary results, and hence does not completely answer the third bullet point.

In particular, we give partial results on the spectrum and its decomposition for Models I and

II, and a short discussion on the difficulties of extending these arguments to the stiff-soft-stiff

model.

3.1 A closer look at the homogenized operator

In Chapter 2, we have tried as much as possible to separate the computations on Qstiff-int and

Qstiff-ls. But intuitively, we would expect the two stiff components to have influence on each

other. Indeed, this is evidenced by the following:

• From (2.174), we see that the second and third components contains the term Γ
soft,(τ)
1 u.

This takes u which lives on the annulus Qsoft, and then applying the co-normal derivative

of u at the boundaries Γint (for the second component) and Γls (for the third component).

Clearly the two stiff components are “communicating” through u.

• From (2.167), we see that the bottom right entry of (Ahom − z)−1, when expanded out

as a 2× 2 matrix with respect to the decomposition H̆stiff-int,(τ) ⊕ H̆stiff-ls,(τ), is not block-

diagonal.

In this section, we study the bottom right entry of (Ahom − z)−1, i.e.

PH̆stiff,(τ)(Ahom − z)−1PH̆stiff,(τ)

(2.156)
=

H̆stiff-int,(τ) H̆stiff-ls,(τ)

H̆stiff-int,(τ) a22 a23

H̆stiff-ls,(τ) a32 a33

, (3.1)

with a particular focus on the diagonal entries a22 and a33. To begin, we first apply an isomor-

phism H̆stiff-int,(τ)⊕H̆stiff-ls,(τ) ∼= C2 so that we do not have to deal with a varying space. Let us

define:

Definition 3.1.1. Set j
(τ)
stiff-int : ran(Π

stiff-int,(τ)|P(τ)
stiff-intE

) → C to be the unitary mapping

Ψ
stiff-int,(τ)
1 7→ ∥Ψstiff-int,(τ)

1 ∥L2(Qstiff-int).

(Note: H̆stiff-int,(τ) = ran(Πstiff-int,(τ)|P(τ)
stiff-intE

)) And similarly for j
(τ)
stiff-ls. Set j(τ) = j

(τ)
stiff-int ⊕

j
(τ)
stiff-ls.

In this case, the operator j
(τ)
stiff-intΠ

stiff-int|Ĕ(τ) : Ĕ 7→ C is a mapping taking ψ
stiff-int,(τ)
1 to

(Ψ
stiff-int,(τ)
1 , and then to) ∥Ψstiff-int,(τ)

1 ∥. For the reader’s convenience we compute the inverse of

its adjoint:

Lemma 3.1.2. Let ⋆ ∈ {stiff-int, stiff-ls}. The action of ((j
(τ)
⋆ Π̆⋆,(τ))∗)−1 : span{ψ⋆,(τ)

1 } → C
is given by

ψ
⋆,(τ)
1 7→ ∥Ψ⋆,(τ)

1 ∥−1.
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Proof. We drop ⋆ and τ. We simply have to note that ((jΠ̆)∗)−1 = (j∗)−1(Π̆∗)−1. Since j is

unitary, (j∗)−1 = j. The result now follows from Lemma 2.5.2.

Under this identification, we may view our homogenized operator as an operator on L2(Qsoft)⊕
C2, which we will still denote by A(τ)

ε,hom. Let us write Cstiff-int ⊕ Cstiff-ls to distinguish between

the copies of C. In that case, our homogenized operator may be written as

D(A(τ)
ε,hom) := {(u, βstiff-int, βstiff-ls) ∈ L2(Qsoft)⊕ Cstiff-int ⊕ Cstiff-ls : u ∈ D(Asoft

0 ) +̇ ran(Πsoft,(τ)P(τ)),

βstiff-int = j
(τ)
stiff-intΠ

stiff-int,(τ)Γ
soft,(τ)
0 u, βstiff-ls = j

(τ)
stiff-lsΠ

stiff-ls,(τ)Γ
soft,(τ)
0 u},

(3.2)

A(τ)
ε,hom

 u

βstiff-int

βstiff-ls

 =


−(∇+ iτ)2u

−((j
(τ)
stiff-intΠ̆

stiff-int,(τ))∗)−1P(τ)
stiff-intΓ

soft,(τ)
1 u

−((j
(τ)
stiff-lsΠ̆

stiff-ls,(τ))∗)−1P(τ)
stiff-ls

[
Γ
soft,(τ)
1 u+ ε−2µ

stiff-ls,(τ)
1 (j

(τ)
stiff-lsΠ̆

stiff-ls,(τ))−1βstiff-ls

]


=:

 −(∇+ iτ)2u

T
(τ)
ε,stiff-int(u, βstiff-int, βstiff-ls)

⊤

T
(τ)
ε,stiff-ls(u, βstiff-int, βstiff-ls)

⊤

 . (3.3)

Before proceeding with the investigation of the entries aij of (Ahom − z)−1, we record two

facts that we will use without mention throughout the chapter.

Lemma 3.1.3. There exist constants c, C > 0, which do not depend on τ, such that c <

∥Ψstiff-ls,(τ)
1 ∥L2(Qstiff-ls) < C.

Proof. This follows from two facts: (i) the mapping Q′ ∋ τ 7→ Ψ
stiff-ls,(τ)
1 ∈ L2(Qstiff-ls) is

continuous (Proposition 2.3.5), and (ii) ∥Ψstiff-ls,(τ)
1 ∥ ≠ 0 (as Πstiff-ls,(τ) is injective).

While Lemma 3.1.3 is also true for Ψ
stiff-int,(τ)
1 , the situation is even better:

Lemma 3.1.4. ∥Ψstiff-int,(τ)
1 ∥L2(Qstiff-int) =

√
|Qstiff-int|

|Γint| , which does not depend on τ.

Proof. Since ψ
stiff-ls,(τ)
1 = |Γint|−

1
2 e−iτ·x (Proposition 2.2.10), we must therefore have Ψ

stiff-int,(τ)
1

= |Γint|−
1
2 e−iτ·x.

3.1.1 Stiff-interior to stiff-interior

Let us now figure out the action of PCstiff-int
(Ahom − z)−1PCstiff-int

, which is a multiplication by

a constant. We will drop ε and τ where convenient. We will also assume that z ∈ Kσ.

The operator in question takes δ ∈ C, solves the system
−(∇+ iτ)2u− zu = 0,

Tstiff-int(u, βstiff-int, βstiff-ls)
⊤ − zβstiff-int = δ,

Tstiff-ls(u, βstiff-int, βstiff-ls)
⊤ − zβstiff-ls = 0,

(3.4)

and then outputs βstiff-int. (Recall Definition 2.5.1 for the notation −(∇+ iτ)2.) Our goal is to

write Tstiff-int(u, βstiff-int, βstiff-ls)
T as a constant times βstiff-int. To assist us, we define
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Definition 3.1.5. v := Πsoft,(τ)(ψ
stiff-int,(τ)
1 , 0), and w := Πsoft,(τ)(0, ψ

stiff-ls,(τ)
1 ).

Observe that if u = (A
soft,(τ)
0 )−1f +Πsoft,(τ)(aψ

stiff-int,(τ)
1 + bψ

stiff-ls,(τ)
1 ) for some f ∈ L2(Qsoft)

and a, b ∈ C, then u = (Asoft
0 )−1f + av + bw. That means ũ := u − av − bw ∈ D(Asoft

0 ). So

(−(∇+ iτ)2 − z)ũ = (Asoft
0 − z)ũ. In fact,

(−(∇+ iτ)2 − z)ũ =(((((((((
(−(∇+ iτ)2 − z)u︸ ︷︷ ︸

By (3.4)

−( ������−(∇+ iτ)2︸ ︷︷ ︸
Since Â(Πϕ) = 0

−z)av − ( ������−(∇+ iτ)2︸ ︷︷ ︸
Since Â(Πϕ) = 0

−z)bw = zav + zbw.

This implies that

ũ = za(Asoft
0 − z)−1v + zb(Asoft

0 − z)−1w.

The key is that a and b are related to βstiff-int and βstiff-ls respectively by

βstiff-int = a∥Ψstiff-int
1 ∥, βstiff-ls = b∥Ψstiff-ls

1 ∥.

This is a consequence of the computation of û in the previous section, and the definition of the

isomorphism j. This allows us to write

Tstiff-int

 u

βstiff-int

βstiff-ls

 = Tstiff-int

az(A
soft
0 − z)−1v + bz(Asoft

0 − z)−1w + av + bw

βstiff-int

βstiff-ls



= Tstiff-int


βstiff-int

∥Ψstiff-int
1 ∥

z(Asoft
0 − z)−1v +

βstiff-ls

∥Ψstiff-ls
1 ∥

z(Asoft
0 − z)−1w +

βstiff-int

∥Ψstiff-int
1 ∥

v +
βstiff-ls

∥Ψstiff-ls
1 ∥

w

βstiff-int

βstiff-ls



= Tstiff-int


βstiff-int

∥Ψstiff-int
1 ∥

z(Asoft
0 − z)−1v +

βstiff-int

∥Ψstiff-int
1 ∥

v

βstiff-int

0

+ Tstiff-int


βstiff-ls

∥Ψstiff-ls
1 ∥

z(Asoft
0 − z)−1w +

βstiff-ls

∥Ψstiff-ls
1 ∥

w

0

βstiff-ls


=

βstiff-int

∥Ψstiff-int
1 ∥

Tstiff-int

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

+
βstiff-ls

∥Ψstiff-ls
1 ∥

Tstiff-int

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

 .

(3.5)

Can we write βstiff-ls in terms of βstiff-int? Yes: By using the third equation of the system (3.4),

and (3.5) with Tstiff-int replaced by Tstiff-ls, we obtain

βstiff-ls =
1

z
Tstiff-ls

 u

βstiff-int

βstiff-ls


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=
βstiff-int

z∥Ψstiff-int
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

+
βstiff-ls

z∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

 .

(3.6)

Rearranging and plugging this back into (3.5),

Tstiff-int

 u

βstiff-int

βstiff-ls

 = βstiff-int

{
1

∥Ψstiff-int
1 ∥

Tstiff-int

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0



+
1

z∥Ψstiff-int
1 ∥∥Ψstiff-ls

1 ∥
Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

Tstiff-int

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

×

×

1− 1

z∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥




−1}
(3.7)

=: βstiff-int {Ka,stiff-int(τ, z) +Kb,stiff-int(τ, z)} (3.8)

=: βstiff-intKstiff-int(τ, z). (3.9)

The derivation above suggests the following:

Theorem 3.1.6. For ε > 0 small enough, independently of z ∈ Kσ and τ ∈ Q′,

PCstiff-int
(A(τ)

ε,hom − z)−1PCstiff-int
is the operator on Cstiff-int of multiplication by the number

(Kstiff-int(τ, z)− z)−1. In the notation of Section 1.3.1, this means that

PCstiff-int
(A(τ)

ε,hom − z)−1PCstiff-int
=M(Kstiff-int(τ,z)−z)−1 . (3.10)

Proof. To ensure that Kstiff-int(τ, z) is well-defined, we need to show that the denominator of the

second term in (3.7) is non-zero. We will do this by showing that it has a non-zero imaginary

component. This requires us to uncover the action of Tstiff-ls. First, we observe that

z(A
soft,(τ)
0 − z)−1w + w = (I + z(A

soft,(τ)
0 − z)−1)w

= (I + z(A
soft,(τ)
0 − z)−1)Πsoft,(τ)(0 + ψ

stiff-ls,(τ)
1 )

= Ssoft,(τ)(z)(0 + ψ
stiff-ls,(τ)
1 ). (3.11)

In the action of Tstiff-ls, we need to apply to the above, Γ
soft,(τ)
1 , then P(τ)

stiff-ls, and then ((jΠ̆)∗)−1:

((jΠ̆)∗)−1P(τ)
stiff-lsΓ

soft,(τ)
1 Ssoft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 )

= ((jΠ̆)∗)−1P(τ)
stiff-lsM

soft,(τ)(z)(0 + ψ
stiff-ls,(τ)
1 )

= ((jΠ̆)∗)−1
〈
M soft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉
L2(Γint)⊕L2(Γls)

ψ
stiff-ls,(τ)
1

=
〈
M soft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉
E

1

∥Ψstiff-ls,(τ)
1 ∥

. (3.12)
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Also we need to apply to ∥Ψstiff-ls,(τ)
1 ∥, the operator (jΠ̆)−1, then a multiplication by ε−2µ

stiff-ls,(τ)
1 ,

then P(τ)
stiff-ls, and then ((jΠ̆)∗)−1:

((jΠ̆)∗)−1P(τ)
stiff-lsε

−2µ
stiff-ls,(τ)
1 (jΠ̆)−1∥Ψstiff-ls,(τ)

1 ∥

= ε−2µ
stiff-ls,(τ)
1 ((jΠ̆)∗)−1P(τ)

stiff-lsψ
stiff-ls,(τ)
1

= ε−2µ
stiff-ls,(τ)
1 ((jΠ̆)∗)−1

〈
(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉
L2(Γint)⊕L2(Γls)

ψ
stiff-ls,(τ)
1

= ε−2µ
stiff-ls,(τ)
1 ((jΠ̆)∗)−1ψ

stiff-ls,(τ)
1

= ε−2µ
stiff-ls,(τ)
1

1

∥Ψstiff-ls,(τ)
1 ∥

. (3.13)

Using these two computations, we observe that the denominator of the second term in (3.7) is

1− 1

z∥Ψstiff-ls,(τ)
1 ∥

T
(τ)
ε,stiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥


= 1 +

1

z∥Ψstiff-ls,(τ)
1 ∥2

[
ε−2µ

stiff-ls,(τ)
1 +

〈
M soft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉]
(3.14)

= 1 +
(Re z)− i(Im z)

|z|2∥Ψstiff-ls,(τ)
1 ∥2

[
ε−2µ

stiff-ls,(τ)
1 +

〈
M soft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉]
.

(3.15)

Focusing on the imaginary part of (3.15), it suffices to show that the following expression is

non-zero for every τ (Note that |Im z| > 0, since z ∈ Kσ.):

−i(Im z)

[
ε−2µ

stiff-ls,(τ)
1 +

〈
Re M soft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉
− (Re z)

〈
Ssoft,(τ)(z)∗Ssoft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉]
= −i(Im z) [A+B + C] (3.16)

where we have used the identity Im M(z) = (Im z)S(z)∗S(z) (Proposition 2.2.13(7)). Recall

that Re M soft,(τ)(z) was defined in the beginning of the proof of Theorem 2.3.4. The terms B

and C are real, and independent of ε. In fact, they can be bounded uniformly in τ:

• For B, use the identity

M(z) = Λ + zΠ∗(I − zA−1
0 )−1Π

(Proposition 2.2.13(5)). Now apply Proposition 2.2.7 to Πsoft,(τ), and apply the arguments

of Proposition 2.3.3 (see (2.74)) to ⟨Λsoft,(τ)(0, ψ
stiff-ls,(τ)
1 ), (0, ψ

stiff-ls,(τ)
1 )⟩.

• For C, apply Lemma 2.2.20 to Ssoft,(τ)(z), followed by Proposition 2.2.7.

If τ ̸= 0, Proposition 2.2.10 says that A = ε−2µ
stiff-ls,(τ)
1 is a negative real number. If τ = 0, we

have A = 0 (Proposition 2.2.10). Nonetheless, the expression (3.14) non-zero. Indeed, we first
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compute 〈
M soft,(0)(z)(0 + ψ

stiff-ls,(0)
1 ), (0 + ψ

stiff-ls,(0)
1 )

〉
. (3.17)

To do this, we first write down the BVP that u := Ssoft,(0)(z)(0 + ψ
stiff-ls,(0)
1 ) solves:

−∆u = zu in Qsoft,

u = 0 on Γint,

u = ψ
stiff-ls,(0)
1 = |Γls|−

1
21Γls

on Γls.

(3.18)

Then, we compute

⟨M soft,(0)(z)(0 + ψ
stiff-ls,(0)
1 ), (0 + ψ

stiff-ls,(0)
1 )⟩

= −
∫
Γint

...︸ ︷︷ ︸
=0

−
∫
Γls

∂u

∂n
ψ
stiff-ls,(0)
1 =

∫
Qsoft

z|u|2 −
∫
Qsoft

|∇u|2. (3.19)

We note that ∥∇u∥ ̸= 0, or else u will be a constant function on the connected set Qsoft,

contradicting the fact that u has different traces on Γint and Γls. Since Im z ̸= 0 and ∥∇u∥ ≠ 0,

(3.19) implies that (3.14) non-zero.

Thus far, we have shown that for each τ, we may pick ε small enough such that (3.14) is

non-zero. This is not enough, as we would like to pick ε small enough independently of τ. To

achieve this, we will have to enhance the above argument argument as follows: Since (3.14) is

continuous in τ and non-zero at τ = 0, it must be bounded away from zero in a neighbourhood

of τ = 0. Furthermore, the expression (3.14) allows us to pick this neighbourhood independently

of ε. Now combine these facts with the arguments of the τ ̸= 0 case, which says that ε > 0 can

be chosen small enough, independently of τ ∈ Q′ outside this neighborhood, such that (3.14) is

non-zero.

We have therefore shown that for ε > 0 small enough, the mapping τ 7→ Kstiff-int(τ, z) is

well-defined. This concludes the proof.

Definition 3.1.7. We call Kstiff-int(τ, z) the dispersion function with respect to Qstiff-int.

Remark. To justify Kstiff-int which describe wave propagation on the stiff-interior region, we

have relied crucially on the properties of the stiff-landscape region, namely the eigenvalue

µ
stiff-ls,(τ)
1 . ◦

To conclude the section, let us make a few important observations.

1. The function Kstiff-int(τ, z) consists of two terms, Ka,stiff-int(τ, z) and Kb,stiff-int(τ, z).

The first term,Ka,stiff-int(τ, z), is what we would have if there were only one stiff component

(See [35, Section 5.3], for Model II). In our case with two stiff components, we have to

compensate using the second “correction” term Kb,stiff-int(τ, z).

2. The dependence of Kstiff-int(τ, z) on ε falls solely on the Tstiff-ls terms with a non-zero
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third component. In particular, we observe that ε appears in the term ‘A’ of (3.16), and

nowhere else. So the correction term becomes small as ε→ 0. To be precise, we have

Corollary 3.1.8. If τ ̸= 0, then Kb,stiff-int(τ, z) = O(ε2), uniformly in z ∈ Kσ. If we

assume further that τ is uniformly bounded away from 0, then the estimate is also uniform

in τ.

3.1.2 Stiff-landscape to stiff-landscape

We now turn our attention to PCstiff-ls
(Ahom − z)−1PCstiff-ls

. We will use the functions v and w

as defined in the previous section. We omit the analogous derivation of Kstiff-ls(τ, z), and jump

straight to the result:

Definition 3.1.9. The dispersion function Kstiff-ls(τ, z) with respect to Qstiff-ls is given by

Kstiff-ls(τ, z) := Ka,stiff-ls(τ, z) +Kb,stiff-ls(τ, z) (3.20)

:=
1

∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥



+
1

z∥Ψstiff-int
1 ∥∥Ψstiff-ls

1 ∥
Tstiff-int

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

×

×

1− 1

z∥Ψstiff-int
1 ∥

Tstiff-int

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0




−1

. (3.21)

Theorem 3.1.10. For ε > 0 small enough, independently of z ∈ Kσ and τ ∈ Q′,

PCstiff-ls
(Ahom − z)−1PCstiff-ls

is the operator on Cstiff-ls of multiplication by the number

(Kstiff-ls(τ, z)− z)−1. That is,

PCstiff-ls
(A(τ)

ε,hom − z)−1PCstiff-ls
=M(Kstiff-ls(τ,z)−z)−1 . (3.22)

Proof. The first part of the proof proceeds analogously to the proof of Theorem 3.1.6, so we

omit this. In place of (3.14), we now have

1 +
1

z∥Ψstiff-int,(τ)
1 ∥2

〈
M soft,(τ)(z)(ψ

stiff-int,(τ)
1 + 0), (ψ

stiff-int,(τ)
1 + 0)

〉
, (3.23)

and now we would like to show that the following expression〈
M soft,(τ)(z)(ψ

stiff-int,(τ)
1 + 0), (ψ

stiff-int,(τ)
1 + 0)

〉
(3.24)

is a non-zero constant that does not depend on τ. The argument is a generalization of the case

τ = 0 in Theorem 3.1.6. To begin, we write down the BVP that u := Ssoft,(τ)(z)(ψ
stiff-int,(τ)
1 +0)
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solves: 
−(∇+ iτ)2u = zu in Qsoft,

u = ψ
stiff-int,(τ)
1 = e−iτ·x on Γint,

u = 0 on Γls.

(3.25)

(Ignore the normalization constant as it will not affect the arguments.) Now define w(x) =

eiτ·xu(x). Then in Qsoft, we have that

−(∇+ iτ)2u = −e−iτ·xdiv
(
eiτ·x(∇+ iτ)u

)
= −e−iτ·xdiv

(
eiτ·x(∇+ iτ)(e−iτ·xw)

)
= −e−iτ·xdiv

(
eiτ·x

[
e−iτ·x∇w +�������

w(−iτ)e−iτ·x +������
(iτ)e−iτ·xw

])
= −e−iτ·x∆w.

(3.26)

Since e−iτ·x cannot be zero, we deduce that w solves the BVP:
−∆w = zw in Qsoft,

w = 1Γint on Γint,

w = 0 on Γls.

(3.27)

Back to our goal, we compute

⟨M soft,(τ)(z)(ψ
stiff-int,(τ)
1 + 0), (ψ

stiff-int,(τ)
1 + 0)⟩

= −
∫
Γint

[
∂u

∂n
+ i(τ · n)u

]
ψ
stiff-int,(τ)
1 −

∫
Γls

...︸ ︷︷ ︸
=0

=

∫
Qsoft

z|u|2 −
∫
Qsoft

|(∇+ iτ)u|2

=

∫
Qsoft

z|e−iτ·xw|2 −
∫
Qsoft

|e−iτ·x∇w|2 =
∫
Qsoft

z|w|2 −
∫
Qsoft

|∇w|2. (3.28)

Since (3.27) does not depend on τ, the same is true for w, and thus for (3.28). Since Im z ̸= 0

and ∥∇w∥ ≠ 0, (3.28) implies that (3.24) is a non-zero constant.

Similarly to Kstiff-int(τ, z), we make a few important observations for Kstiff-ls(τ, z).

1. Again, Kstiff-ls(τ, z) consists of two terms, Ka,stiff-ls(τ, z) and Kb,stiff-ls(τ, z).

The first term, Ka,stiff-ls(τ, z), corresponds to the dispersion function for Model I of [35,

Section 5.3] (one stiff component). In our case with two stiff components, we have a

second “correction” term Kb,stiff-ls(τ, z).

2. Ka,stiff-ls(τ, z) depends on ε while Kb,stiff-ls(τ, z) does not.
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3.1.3 Stiff-interior to stiff-landscape

We now turn our attention to PCstiff-ls
(Ahom − z)−1PCstiff-int

. The operator in question takes

δ ∈ C, solves the system (3.4), and then outputs βstiff-ls.

Once again, replacing Tstiff-int by Tstiff-ls in (3.5) gives us

Tstiff-ls

 u

βstiff-int

βstiff-ls

 =
βstiff-int

∥Ψstiff-int
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0



+
βstiff-ls

∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

 . (3.29)

Using this, along with βstiff-int = δ(Kstiff-int(τ, z) − z)−1 (Theorem 3.1.6), we see that the

third equation of the system (3.4), becomes 1

∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

− z

βstiff-ls

= − δ

(Kstiff-int(τ, z)− z)∥Ψstiff-int
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

 . (3.30)

This prompts us to make the following definition

Definition 3.1.11. For z ∈ Kσ and τ ∈ Q′, let Fstiff-int→stiff-ls(τ, z) be the number

Fstiff-int→stiff-ls(τ, z) := − 1

(Kstiff-int(τ, z)− z)∥Ψstiff-int
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

×

×

 1

∥Ψstiff-ls
1 ∥

Tstiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

− z


−1

. (3.31)

Theorem 3.1.12. For ε > 0 small enough, independently of z ∈ Kσ and τ ∈ Q′,

PCstiff-ls
(Ahom − z)−1PCstiff-int

: Cstiff-int → Cstiff-ls is the operator of multiplication by the number

Fstiff-int→stiff-ls(τ, z). That is,

PCstiff-ls
(A(τ)

ε,hom − z)−1PCstiff-int
=MFstiff-int→stiff-ls(τ,z). (3.32)
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Proof. We just have to observe that the expression

1

∥Ψstiff-ls,(τ)
1 ∥

T
(τ)
ε,stiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

− z (3.33)

is non-zero if and only if

1− 1

z∥Ψstiff-ls,(τ)
1 ∥

T
(τ)
ε,stiff-ls

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

 (3.34)

is non-zero. The latter is shown to be true in the proof of Theorem 3.1.6, for ε small enough,

independently of z ∈ Kσ and τ ∈ Q′.

By a closer inspection of the proofs of Theorems 3.1.6 and 3.1.10, we can say more about

PCstiff-ls
(Ahom − z)−1PCstiff-int

:

Corollary 3.1.13 (The case of large τ). Suppose that τ is uniformly bounded away from 0,

i.e. that |τ| > c > 0 for some constant c independent of ε and z, then

PCstiff-ls
(A(τ)

ε,hom − z)−1PCstiff-int
= O(ε2), (3.35)

in the operator norm. This estimate is uniform over all τ with |τ| > c and z ∈ Kσ.

Proof. In the proof of Theorem 3.1.6, we have already shown that if τ is uniformly bounded

away from zero, then the denominator of the number Fstiff-int→stiff-ls(τ, z), i.e. the expression

(3.33), is of order O(ε−2), uniformly over τ and z ∈ Kσ.

It remains to show that the numerator of Fstiff-int→stiff-ls(τ, z) is of order O(1), uniformly over

τ and z ∈ Kσ. We check this in two steps:

Step 1: Similarly to the proof of Theorem 3.1.6, we may compute the action of Tstiff-ls on

the vector (z(Asoft
0 − z)−1v + v, ∥Ψstiff-int

1 ∥, 0)T :

Tstiff-ls

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

 = − 1

∥Ψstiff-ls,(τ)
1 ∥

〈
M soft,(τ)(z)(ψ

stiff-int,(τ)
1 + 0), (ψ

stiff-int,(τ)
1 + 0)

〉
.

(3.36)

Recall from the proof of Theorem 3.1.10, that this expression does not depend on ε, and may

be bounded above by a constant, uniformly in τ ∈ Q′ and z ∈ Kσ.

Step 2: We next compute:

|(Kstiff-int(τ, z)− z)−1| = ∥M(Kstiff-int(τ,z)−z)−1∥op

≤ ∥(A(τ)
ε,hom − z)−1∥op By Theorem 3.1.6.

=
1

dist(z, σ(A(τ)
ε,hom))

≤ σ−1 As z ∈ Kσ. (3.37)
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This completes the proof.

3.1.4 Stiff-landscape to stiff-interior

We now turn our attention to PCstiff-int
(Ahom − z)−1PCstiff-ls

. Once again, we omit the analogous

derivation of Fstiff-ls→stiff-int(τ, z) and jump straight to the result:

Definition 3.1.14. For z ∈ Kσ and τ ∈ Q′, let Fstiff-ls→stiff-int(τ, z) be the number

Fstiff-ls→stiff-int(τ, z) := − 1

(Kstiff-ls(τ, z)− z)∥Ψstiff-ls
1 ∥

Tstiff-int

z(A
soft
0 − z)−1w + w

0

∥Ψstiff-ls
1 ∥

×

×

 1

∥Ψstiff-int
1 ∥

Tstiff-int

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

− z


−1

. (3.38)

Theorem 3.1.15. For ε > 0 small enough, independently of z ∈ Kσ and τ ∈ Q′,

PCstiff-int
(Ahom − z)−1PCstiff-ls

: Cstiff-ls → Cstiff-int is the operator of multiplication by the number

Fstiff-ls→stiff-int(τ, z). That is,

PCstiff-int
(A(τ)

ε,hom − z)−1PCstiff-ls
=MFstiff-ls→stiff-int(τ,z). (3.39)

Proof. Similarly to Theorem 3.1.12, we note that the expression

1

∥Ψstiff-int
1 ∥

Tstiff-int

z(A
soft
0 − z)−1v + v

∥Ψstiff-int
1 ∥
0

− z (3.40)

is non-zero if and only if (3.23) is non-zero, which is indeed the case by Theorem 3.1.10.

Corollary 3.1.16 (The case of large τ). Suppose that τ is uniformly bounded away from 0,

i.e. that |τ| > c > 0 for some constant c independent of ε and z, then

PCstiff-int
(A(τ)

ε,hom − z)−1PCstiff-ls
= O(ε2), (3.41)

in the operator norm. This estimate is uniform over all τ with |τ| > c and z ∈ Kσ.

Proof. This follows from the identity

PCstiff-int
(A(τ)

ε,hom − z)−1PCstiff-ls
=
(
PCstiff-ls

(A(τ)
ε,hom − z)−1PCstiff-int

)∗
, (3.42)

and an application of Corollary 3.1.13, where we note that the O(ε2) estimate remains even

after the set Kσ is enlarged to Kσ ∪ {z : z ∈ Kσ}.
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3.2 The homogenized operator on the full space, Aε,hom

The homogenization result that we have provided in Chapter 2 (Theorem 2.5.3) are stated

fibre-wise (for each τ). In this section, we pass from the unit cell back to the full space, and

provide formulas for the operator

Aε,hom := G∗
(∫ ⊕

Q′
A(τ)
ε,homdτ

)
G, (3.43)

where G := G1 is the unscaled Gelfand transform. We will begin with Model I in Section 3.2.1,

then Model II in Section 3.2.2, and finally discuss the stiff-soft-stiff model in Section 3.2.3.

Remark. In [35, Section 5.4], the authors obtained a full space description of the resolvent of

homogenized operator, for Model I, when restricted to the stiff component. To be precise, if we

denote the fibre-wise homogenized operator by A
(τ)
ε,hom-I (see Section 3.2.1 for definition), then

the authors showed that the operator∫ ⊕

Q′

(
Pstiff(A

(τ)
ε,hom-I − z)−1Pstiff

)
dτ, z ∈ Kσ

is unitarily equivalent to a pseudo-differential operator with symbol

a(x, θ) = 1ε−1Q′(θ)(KI(εθ, z)− z)−1.

See Definition 3.3.4 for the definition of the dispersion function KI . In the following subsection

(Section 3.2.1), we seek (3.43) for Model I, thus extending the result of [35, Section 5.4]. ◦

3.2.1 Model I

We begin by adapting the notation of Section 2.5 to Model I. In accordance with Figure 1-2,

we have H = L2(Q) = L2(Qstiff)⊕ L2(Qsoft) and E = L2(Γ). Our boundary triples are

• (Full cube) (A
(τ)
ε,0,Λ

(τ)
ε ,Π(τ)) w.r.t. H and E .

• (Stiff component) (A
stiff,(τ)
ε,0 ,Λ

stiff,(τ)
ε ,Πstiff,(τ)) w.r.t. L2(Qstiff) and E .

• (Soft component) (A
soft,(τ)
0 ,Λsoft,(τ),Πsoft,(τ)) w.r.t. L2(Qsoft) and E .

These are defined similarly to Section 2.2.1. For example, we have Λ
(τ)
ε = Λ

stiff,(τ)
ε + Λsoft,(τ),

which is a self-adjoint operator on E with domain H1(Γ). For each of the triples, we introduce

auxiliary operators in accordance with Definition 2.2.12, keeping a similar notation to Chapter

2. We omit the details.

Let (µ
stiff,(τ)
1 , ψ

stiff,(τ)
1 ) be the first eigenvalue-eigenfunction pair with respect to Λ̃stiff,(τ) =

ε2Λ
stiff,(τ)
ε . In the current setting, Λ̃stiff,(τ) share the same properties as Λ̃stiff-ls,(τ) of Proposition

2.2.10. We set Ψ
stiff,(τ)
1 = Πstiff,(τ)ψ

stiff,(τ)
1 . Our truncated spaces are

Ĕ(τ) = P(τ)E = span{ψstiff,(τ)
1 } and H̆stiff,(τ) = ran(Πstiff,(τ)|Ĕ(τ)). (3.44)
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By [35], the fibre-wise homogenized operator A(τ)
ε,hom-I is given by

D(A(τ)
ε,hom-I) =

{(
u

û

)
∈ L2(Qsoft)⊕ H̆stiff,(τ) :

u ∈ D(A
soft,(τ)
0 ) +̇ ran(Πsoft,(τ)|Ĕ(τ)), û = Π̆stiff,(τ)Γ̆

soft,(τ)
0 u

}
, (3.45)

A(τ)
ε,hom-I

(
u

û

)
=

(
−(∇+ iτ)2u

−(Π̆stiff,(τ)∗)−1P(τ)
[
Γ
soft,(τ)
1 u+ ε−2µ

stiff,(τ)
1

(
c(τ)ψ

stiff,(τ)
1

)]) , (3.46)

where u = (A
soft,(τ)
0 )−1f +Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 ) for some f ∈ L2(Qsoft) and c

(τ) ∈ C.
With these notation at hand, the goal for this section is to find the domain and action of

Aε,hom-I := G∗
(∫ ⊕

Q′
A(τ)
ε,hom-Idτ

)
G. (3.47)

In the case of Model I, Qsoft is of positive distance away from the boundary of the cube ∂Q,

and so

G∗
(∫ ⊕

Q′
A

soft,(τ)
0 dτ

)
G =

⊕
n∈Zd

A
soft,(0)
0,n , (3.48)

where on the RHS, A
soft,(0)
0,n refers to the Dirichlet Laplacian on the soft part of [0, 1)d + n.

The domain of Aε,hom-I

The first component of D(Aε,hom-I) consists of v ∈ L2(Rd) such that the function Gv ∈ L2(Q×
Q′) satisfies Gv(·, τ) ∈ D(A

soft,(τ)
0 ) +̇ ran(Πsoft,(τ)|Ĕ(τ)) for almost every τ. By (3.45) and (3.48),

we know that

v ∈

D
⊕
n∈Zd

A
soft,(0)
0,n

 +̇ G∗
(
Πsoft,(τ)(span{ψstiff,(τ)

1 })
)⋂L2(Rd). (3.49)

That is,

v =
∑
n∈Zd

vn +G∗
(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
, (3.50)

subject to the conditionsvn ∈ D(A
soft,(0)
0,n ) = H2(Qsoft + n) ∩H1

0 (Qsoft + n) and ∥
∑
vn∥L2(Rd) <∞.

c ∈ L2(Q′).
(3.51)

The requirement that Q′ ∋ τ 7→ c(τ) ∈ C belongs to L2(Q′) follows from the fact that the

mapping Q′ ∋ τ 7→ Πsoft,(τ)ψ
stiff,(τ)
1 is continuous, and hence belongs to L∞(Q′).

Having determined v, the second component of D(Aε,hom-I) is now fixed by (3.45): In the
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notation of (3.50), these are the ṽ such that

ṽ = G∗Πstiff,(τ)Γ
soft,(τ)
0 Gv

= G∗Πstiff,(τ)
((((((((((
Γ
soft,(τ)
0 GG∗Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 ) = G∗

(
c(τ)Ψ

stiff,(τ)
1

)
. (3.52)

The action of Aε,hom-I

Let us now compute the action of Aε,hom-I. We already know its action on the soft component,

by (3.48). As for its action on the stiff component, we perform two separate computations.

Computation 1: Fix τ, and let u(τ) ∈ D(Γ
(τ)
1 ) ⊂ L2(Q). Then

−(Π̆stiff,(τ)∗)−1P(τ)Γ
soft,(τ)
1 u(τ) =− (Π̆stiff,(τ)∗)−1

〈
∂(τ)n u(τ), ψ

stiff,(τ)
1

〉
L2(Γ)

ψ
stiff,(τ)
1

Lemma 2.5.2
= −

〈
∂(τ)n u(τ), ψ

stiff,(τ)
1

〉
L2(Γ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 . (3.53)

Computation 2: Let c ∈ L2(Q′). Then

− (Π̆stiff,(τ)∗)−1P(τ)Γ
stiff,(τ)
ε,1

(
c(τ)Ψ

stiff,(τ)
1

)
= −(Π̆stiff,(τ)∗)−1ε−2µ

stiff,(τ)
1 c(τ)

������������〈
ψ
stiff,(τ)
1 , ψ

stiff,(τ)
1

〉
L2(Γ)

ψ
stiff,(τ)
1 By Λ = Γ1Π.

= −ε−2µ
stiff,(τ)
1 c(τ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 . By Lemma 2.5.2. (3.54)

Conclusion

We summarize our results for Model I. The domain of Aε,hom-I consists of pairs (v, ṽ) ∈
L2(∪n(Qsoft + n))⊕ L2(∪n(Qstiff + n)) such thatv ∈ D

(⊕
n∈Zd A

soft,(0)
0,n

)
+̇
{
G∗
(
Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 )

)
: c ∈ L2(Q′)

}
,

ṽ = G∗Πstiff,(τ)Γ
soft,(τ)
0 Gv.

(3.55)

Equivalently, (v, ṽ) ∈ D(Aε,hom-I) if and only if

• v can be written in the form (3.50), under the conditions (3.51).

• ṽ is determined by v, through the formula (3.52).

The action of Aε,hom-I, with respect to the decomposition L2(∪n(Qsoft+n))⊕L2(∪n(Qstiff+

n)), and in the notation of (3.50), is given by

Aε,hom-I

(
v

ṽ

)
=

 −∆(
∑
vn)

G∗

[(
−
〈
∂
(τ)
n (Gv)(τ), ψ

stiff,(τ)
1

〉
L2(Γ)

− ε−2c(τ)µ
stiff,(τ)
1

)
1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1

] .

(3.56)
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Aε,hom-I is symmetric on L2(Rd), and is self-adjoint on the subspace

L2(∪n∈Zd(Qsoft + n))⊕
{
G∗
(
Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 )

)
: c ∈ L2(Q′)

}
. (3.57)

3.2.2 Model II

Most of Section 3.2.1 carries over to Model II, so we will keep our discussion fairly brief. We

keep the same notation for the spaces H, E , the boundary triples, and the truncated spaces.

We note that Λ̃stiff,(τ) now share the same properties as Λ̃stiff-int,(τ) of Proposition 2.2.10, and in

particular µ
stiff,(τ)
1 ≡ 0. As a result, the fibre-wise homogenized operator A(τ)

hom-II for Model II,

does not depend on ε, and by [35] is given by

D(A(τ)
hom-II) =

{(
u

û

)
∈ L2(Qsoft)⊕ H̆stiff,(τ) :

u ∈ D(A
soft,(τ)
0 ) +̇ ran(Πsoft,(τ)|Ĕ(τ)), û = Π̆stiff,(τ)Γ̆

soft,(τ)
0 u

}
, (3.58)

A(τ)
hom-II

(
u

û

)
=

(
−(∇+ iτ)2u

−(Π̆stiff,(τ)∗)−1P(τ)Γ
soft,(τ)
1 u

)
, (3.59)

where u = (A
soft,(τ)
0 )−1f +Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 ) for some f ∈ L2(Qsoft) and c

(τ) ∈ C. Now set

Ahom-II := G∗
(∫ ⊕

Q′
A(τ)

hom-IIdτ

)
G. (3.60)

In the case of Model II, we have

G∗
(∫ ⊕

Q′
A

soft,(τ)
0 dτ

)
G = −∆D (3.61)

where −∆D denotes the Dirichlet Laplacian on L2(∪n∈Zd(Qsoft + n)). In contrast to Model I,

∪n∈Zd(Qsoft + n) is now a connected set.

The domain of Ahom-II consists of pairs (v, ṽ) ∈ L2(∪n(Qsoft + n)) ⊕ L2(∪n(Qstiff + n))

such that v ∈ D(−∆D) +̇
{
G∗
(
Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 )

)
: c ∈ L2(Q′)

}
.

ṽ = G∗Πstiff,(τ)Γ
soft,(τ)
0 Gv.

(3.62)

Equivalently, (v, ṽ) ∈ D(Ahom-II) if and only ifv = vD +G∗
(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
, where vD ∈ D(−∆D) and c ∈ L2(Q).

ṽ = G∗
(
c(τ)Ψ

stiff,(τ)
1

)
.

(3.63)

The action of Ahom-II, with respect to the decomposition L2(∪n(Qsoft+n))⊕L2(∪n(Qstiff+
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n)), and in the notation of (3.63), is given by

Ahom-II

(
v

ṽ

)
=

 −∆vD

G∗

[
−
〈
∂
(τ)
n (Gv)(τ), ψ

stiff,(τ)
1

〉
L2(Γ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1

] . (3.64)

Ahom-II is symmetric on L2(Rd), and is self-adjoint on the subspace

L2(∪n∈Zd(Qsoft + n))⊕
{
G∗
(
Πsoft,(τ)(c(τ)ψ

stiff,(τ)
1 )

)
: c ∈ L2(Q′)

}
. (3.65)

3.2.3 Stiff-soft-stiff model

Finally, we compute the domain and action of Aε,hom, as defined in (3.43). In the present case,

the annulus Qsoft is of positive distance away from ∂Q, thus

G∗
(∫ ⊕

Q′
A

soft,(τ)
0 dτ

)
G =

⊕
n∈Zd

A
soft,(0)
0,n , (3.66)

where A
soft,(0)
0,n refers to the Dirichlet Laplacian on the soft part of [0, 1)d + n.

The domain of Aε,hom consists of triples

(v, ṽstiff-int, ṽstiff-ls) ∈ L2(∪n(Qsoft + n))⊕ L2(∪n(Qstiff-int + n))⊕ L2(∪(Qstiff-ls + n))

such that

v ∈ D
(⊕

n∈Zd A
soft,(0)
0,n

)
+̇
{
G∗
(
Πsoft,(τ)(a(τ)ψ

stiff-int,(τ)
1 , b(τ)ψ

stiff-ls,(τ)
1 )

)
: a, b ∈ L2(Q′)

}
,

ṽstiff-int = G∗Πstiff-int,(τ)Γ
soft,(τ)
0 Gv,

ṽstiff-ls = G∗Πstiff-ls,(τ)Γ
soft,(τ)
0 Gv.

(3.67)

Remark. While the condition v ∈ L2 only asks that a(τ) + b(τ) ∈ L2(Q′), we have to impose

the stronger condition a(τ), b(τ) ∈ L2(Q′), as we also want ṽstiff-int ∈ L2 and ṽstiff-ls ∈ L2. ◦

Equivalently, (v, ṽstiff-int, ṽstiff-ls) ∈ D(Aε,hom) if and only if

• v can be written in the form

v =
∑
n∈Zd

vn +G∗
(
Πsoft,(τ)(a(τ)ψ

stiff-int,(τ)
1 , b(τ)ψ

stiff-ls,(τ)
1 )

)
, (3.68)

subject to the conditionsvn ∈ H2(Qsoft + n) ∩H1
0 (Qsoft + n) and ∥

∑
vn∥L2(Rd) <∞.

a, b ∈ L2(Q′).
(3.69)

93



• ṽstiff-int and ṽstiff-ls are determined by v, through

ṽstiff-int = G∗
(
a(τ)Ψ

stiff-int,(τ)
1

)
and ṽstiff-ls = G∗

(
b(τ)Ψ

stiff-ls,(τ)
1

)
. (3.70)

The action of Aε,hom, with respect to the decomposition

L2(∪n(Qsoft + n))⊕ L2(∪n(Qstiff-int + n))⊕ L2(∪n(Qstiff-ls + n)),

and in the notation of (3.68), is given by

Aε,hom

 v

ṽstiff-int

ṽstiff-ls



=


−∆(

∑
vn)

G∗

[
−
〈
∂
(τ)
n (Gv)(τ), ψ

stiff-int,(τ)
1

〉
L2(Γ)

1

∥Ψstiff-int,(τ)
1 ∥2

Ψ
stiff-int,(τ)
1

]

G∗

[(
−
〈
∂
(τ)
n (Gv)(τ), ψ

stiff-ls,(τ)
1

〉
L2(Γ)

− ε−2b(τ)µ
stiff-ls,(τ)
1

)
1

∥Ψstiff-ls,(τ)
1 ∥2

Ψ
stiff-ls,(τ)
1

]
 .

(3.71)

Aε,hom is symmetric on L2(Rd), and is self-adjoint on the subspace

L2(∪n∈Zd(Qsoft + n))⊕
{
G∗
(
Πsoft,(τ)(a(τ)ψ

stiff-int,(τ)
1 , b(τ)ψ

stiff-ls,(τ)
1 )

)
: a, b ∈ L2(Q′)

}
. (3.72)

3.3 Spectral analysis of Aε,hom, first steps

In this section, we embark on the task of identifying the spectrum and spectral decomposition

of Aε,hom (defined in (3.43)). We follow the approach of the two-scale strong resolvent case [53],

proceeding in three steps:

1. Find the eigenvalues of Aε,hom.

2. Characterize σ(Aε,hom) in terms of the dispersion functions Kstiff-int(τ, z) and Kstiff-ls(τ, z).

3. Prove the absence of singular continuous spectrum.

As mentioned at the start of the chapter, we do not complete the program in this thesis.

We will only discuss steps 1 and 2 for Aε,hom-I (Model I) and Ahom-II (Model II), and include

a short discussion on the stiff-soft-stiff case Aε,hom. A list of unfinished tasks can be found in

Chapter 4.

3.3.1 Model I

We use the notation of Section 3.2.1. We will write c(τ) to also mean the function c(τ) in (3.50).
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The eigenvalues of Aε,hom-I

We begin with a preparatory lemma.

Lemma 3.3.1 (Model I). Let c ∈ L2(Q′). Suppose that(
⟨Λsoft,(τ)ψ

stiff,(τ)
1 , ψ

stiff,(τ)
1 ⟩L2(Γ) + ε−2µ

stiff,(τ)
1

)
c(τ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 (x) = 0 (3.73)

for a.e. x ∈ Q and τ ∈ Q′, then c(τ) = 0 for almost every τ.

Proof. In the case of Model I, we have
⟨Λsoft,(τ)ψ

stiff,(τ)
1 , ψ

stiff,(τ)
1 ⟩ ≤ 0 for every τ ∈ Q′,

µ
stiff,(0)
1 = 0,

µ
stiff,(τ)
1 < 0 for every τ ∈ Q′ \ {0}.

(3.74)

Moreover, by the same arguments as Lemma 3.1.3, we also know that

0 < c < ∥Ψstiff,(τ)
1 ∥ < C <∞, for constants c, C which do not depend on τ. (3.75)

Let us abbreviate the LHS of (3.73) as f(τ)c(τ)∥Ψstiff,(τ)
1 ∥−2Ψ

stiff,(τ)
1 (x), and compute the

square of its norm in L2(Q×Q′):

0 =

∫
Q′

∫
Q

∣∣∣∣∣f(τ)c(τ) 1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 (x)

∣∣∣∣∣
2

dxdτ

=

∫
Q′

∣∣∣∣∣f(τ)c(τ) 1

∥Ψstiff,(τ)
1 ∥2

∣∣∣∣∣
2 ∫

Q

∣∣∣Ψstiff,(τ)
1 (x)

∣∣∣2 dxdτ =

∫
Q′

|f(τ)|2|c(τ)|2 1

∥Ψstiff,(τ)
1 ∥2

dτ. (3.76)

The result now follows from (3.75) and (3.74).

Let us now find the eigenvalues of Aε,hom-I.

Proposition 3.3.2. 0 is not an eigenvalue of Aε,hom-I.

Proof. Let (v, ṽ) ∈ D(Aε,hom-I) and suppose that

Aε,hom-I

(
v

ṽ

)
=

(
0

0

)
. (3.77)

This is a system of two equations. The first equation implies that v must be of the form

v = G∗
(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
, for some c ∈ L2(Q′), (3.78)

as the Dirichlet Laplacian A
soft,(0)
0 on the soft component of Q has trivial kernel. Substituting

this into the second equation of the system (3.77), and we have(〈
Γ
soft,(τ)
1 (Gv)(τ)

〉
+ ε−2c(τ)µ

stiff,(τ)
1

) 1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 (x) = 0, (3.79)

95



for a.e. x and τ. Equivalently,(
⟨Λsoft,(τ)ψ

stiff,(τ)
1 , ψ

stiff,(τ)
1 ⟩+ ε−2µ

stiff,(τ)
1

)
c(τ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 (x) = 0, (3.80)

for a.e. x and τ. By Lemma 3.3.1, we obtain c = 0. Thus (v, ṽ) = (0, 0).

Let us now turn to the non-zero eigenvalues of Aε,hom-I. Let λ ̸= 0, and consider the

eigenvalue equation

Aε,hom-I

(
v

ṽ

)
= λ

(
v

ṽ

)
. (3.81)

We enumerate the possibilities where (v, ṽ) could be an eigenfunction for Aε,hom-I w.r.t eigen-

value λ.

Case 1: v is of the form

v = G∗
(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
, for some non-zero c ∈ L2(Q′). (3.82)

Then, by definition of Aε,hom-I, the first component of Aε,hom-I(v, ṽ)
T is zero. This implies that

the first equation of the system (3.81) is 0 = λv. Since λ ̸= 0, we get 0 = v, and thus ṽ = 0. In

other words, it is not possible to have eigenfunctions of the form (3.82).

Case 2: v is of the form

v =
∑

vn ̸= 0, where vn satisfies (3.45). (3.83)

Then ṽ = 0, and the eigenvalue equation (3.81) becomes −∆(
∑
vn)

G∗

[
−
〈
∂
(τ)
n (G(

∑
vn))

(τ), ψ
stiff,(τ)
1

〉
L2(Γ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1

] = λ

(∑
vn

0

)
. (3.84)

By the first equation of the system (3.84), this is only possible if λ ∈ σ(A
soft,(0)
0 ). Moreover,

v =
∑
vn must be constructed from eigenfunctions of A

soft,(0)
0 with respect to the eigenvalue λ

of A
soft,(0)
0 . We will now investigate how the eigenfunctions of A

soft,(0)
0 can be used to create an

eigenfunction v of Aε,hom-I.

Assume for the moment, that λ is a simple eigenvalue of A
soft,(0)
0 , corresponding to the

eigenfunction w ∈ L2(Qsoft). If we set v = w (i.e. take v = w on Q, and extend by zero to the

whole of Rd), then a direct computation gives us

(Gv)(x, τ) =
1

(2π)d/2
w(x)e−iτ·x.

Thus, if
∑
vn = c1w(·+ n1) + c2w(·+ n2) for some c1, c2 ∈ C and n1, n2 ∈ Zd, then

(Gv)(x, τ) =
1

(2π)d/2
w(x)e−iτ·x

(
c1e

−iτ·n1 + c2e
−iτ·n2

)
.
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In general, we can take

v =
∑
n∈Zd

vn =
∑
n∈Zd

cnw(·+ n), where cn ∈ C, and v ∈ L2(Rd). (3.85)

This is equivalent to

(Gv)(x, τ) =
1

(2π)d/2
w(x)e−iτ·xa(τ), for some a ∈ L2(Q′). (3.86)

Let us put (3.86) into the second equation of the system (3.84). We note that G is unitary,

and we take the L2(Q×Q′) norm for the expression in the square brackets (see the argument

of Lemma 3.3.1). This gives us the condition for λ to be an eigenvalue for Aε,hom-I:〈
Γ
soft,(τ)
1 (w(x)e−iτ·x), ψ

stiff,(τ)
1

〉
a(τ) = 0, for some non-zero a ∈ L2(Q′).

Equivalently, if ∣∣∣{τ ∈ Q′ :
〈
Γ
soft,(τ)
1 (w(x)e−iτ·x), ψ

stiff,(τ)
1

〉
= 0
}∣∣∣ > 0. (3.87)

Remark. The condition (3.87) should be thought of as the norm-resolvent analogue of the two-

scale strong resolvent case in [53]. For instance, when τ = 0, the equation in (3.87) becomes〈
− ∂w

∂nsoft

∣∣∣∣
Γ

,1Γ

〉
L2(Γ)

= 0.

(Recall that ψ
stiff,(0)
1 = |Γ|−

1
21Γ by Proposition 2.2.10.) That is, the Neumann trace of the

Dirichlet eigenfunction (on Qsoft) has zero mean. Compare this with [53], where the author

looked at whether the eigenspace of A
soft,(0)
0 w.r.t λ contains eigenfunctions of zero mean,

i.e. ⟨w,1⟩L2(Qsoft) = 0. ◦

The above argument may be enhanced to include the case when the eigenvalue λ of A
soft,(0)
0

has multiplicity K > 1. We omit the details and jump straight to the criterion: Write the K

linearly independent eigenfunctions as w1, · · · , wK . Then λ is an eigenvalue for Aε,hom-I if∣∣∣{τ ∈ Q′ :
〈
Γ
soft,(τ)
1 (wk(x)e

−iτ·x), ψ
stiff,(τ)
1

〉
= 0
}∣∣∣ > 0 for some k ∈ {1, · · · ,K}. (3.88)

Case 3: v is of the form

v =
∑

vn +G∗
(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
, (3.89)

where where c and vn satisfies (3.45), and both c and
∑
vn are non-zero.

Then, the first component of eigenvalue equation is∑
−∆vn =

∑
λvn + λG∗

(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
, (3.90)
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and the second component of eigenvalue equation is〈
Γ
soft,(τ)
1 (G(

∑
vn))

(τ), ψ
stiff,(τ)
1

〉 1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1

+
[〈

Λsoft,(τ)ψ
stiff,(τ)
1 , ψ

stiff,(τ)
1

〉
+ ε−2µ

stiff,(τ)
1

]
c(τ)

1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 = λc(τ)Ψ

stiff,(τ)
1 . (3.91)

To keep the notation compact, let us setg(τ) =
〈
Γ
soft,(τ)
1 (G(

∑
vn))

(τ), ψ
stiff,(τ)
1

〉
,

f(τ) =
〈
Λsoft,(τ)ψ

stiff,(τ)
1 , ψ

stiff,(τ)
1

〉
+ ε−2µ

stiff,(τ)
1 ,

(3.92)

so that after rearranging (3.91), we obtain[
g(τ) +

(
f(τ)− λ∥Ψstiff,(τ)

1 ∥2
)
c(τ)

]
Ψstiff,(τ)(x) = 0, (3.93)

for a.e. x and τ. By taking the L2(Q×Q′) norm (see the argument of Lemma 3.3.1) we arrive

at the condition

g(τ) +
(
f(τ)− λ∥Ψstiff,(τ)

1 ∥2
)
c(τ) = 0, for almost every τ. (3.94)

To summarize the present case:

v taking the form (3.89) is an eigenfunction for Aε,hom-I w.r.t eigenvalue λ, if (3.90)

and (3.94) are satisfied.

Unfortunately, (3.90) and (3.94) are a pretty unwieldy set of conditions. At the time of

writing, the author is unsure if these conditions could be simplified further. Nonetheless, we

attempt to address this concern by unpacking aspects of (3.90) and (3.94) (The following bullet

points are not critical to our discussion.):

• We focus on λ > 0, since Aε,hom-I is asymptotically close to the main model operator Aε,

which are non-negative. So let λ > 0. Then the expression f(τ)− λ∥Ψstiff,(τ)
1 ∥2 is zero at

τ = 0, and is strictly negative if τ ̸= 0. This allows us to rearrange (3.94) into

− g(τ)

f(τ)− λ∥Ψstiff,(τ)
1 ∥2

= c(τ). (3.95)

(Note that f(τ)−λ∥Ψstiff,(τ)
1 ∥2 does not depend on v.) Moreover, by a continuity argument,

we know that τ 7→ f(τ) − λ∥Ψstiff,(τ)
1 ∥2 belongs to L∞(Q′). So if c ∈ L2(Q′), then g ∈

L2(Q′). The converse does not hold, as f(τ) − λ∥Ψstiff,(τ)
1 ∥2 is not bounded away from

zero.

Note that to construct v (3.89), we make a choice on vn and c, which in turn determines

g(τ) and c(τ) respectively (colored in blue in (3.95)). Thus, (3.95) says that once vn has

been picked, c is also fixed.
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• As for the first condition, let us rearrange (3.90) into(
⊕Asoft,(0)

0,n − λ
)
(
∑
vn) = λG∗

(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
. (3.96)

This shows that if v takes form (3.89) and is an eigenfunction for Aε,hom-I, then
∑
vn /∈

C∞
c (∪(Qsoft + n)). Indeed, if

∑
vn were so, then the LHS of (3.96) lies in D(⊕Asoft,(0)

0,n ),

which has trivial intersection with the subspace {G∗(Πsoft,(τ)c(τ)ψ
stiff,(τ)
1 ) : c ∈ L2(Q′)}.

• In fact, it is rather unlikely that a positive λ ∈ ρ(A
soft,(0)
0 ) = ρ(⊕Asoft,(0)

0,n ) is an eigenvalue

for Aε,hom-I. This is because ⊕Asoft,(0)
0,n − λ is now a bijection, and combining (3.95) with

(3.96) and (3.48), we require that
∑
vn satisfy

(∫ ⊕

Q′
(A

soft,(τ)
0 − λ)dτ

)
G(
∑
vn) =

λ
〈
Γ
soft,(τ)
1 (G(

∑
vn))

(τ), ψ
stiff,(τ)
1

〉
f(τ)− λ∥Ψstiff,(τ)

1 ∥2
Πsoft,(τ)ψ

stiff,(τ)
1 .

(3.97)

In other words, a positive λ ∈ ρ(A
soft,(τ)
0 ) is an eigenvalue for Aε,hom-I if and only if there

exists v of the form (3.89) (Case 3), where the LHS of (3.95) belongs to L2(Q′), and
∑
vn

satisfies (3.97). While unlikely, it remains to be proven that this cannot happen.

• We do not exclude the possibility that eigenfunctions of the form (3.83) (Case 2) and

(3.89) (Case 3) contribute to the same eigenvalue λ.

We summarize our findings in the proposition below:

Proposition 3.3.3 (Eigenvalues of Aε,hom-I). λ ∈ R is an eigenvalue for Aε,hom-I if and only if

λ ̸= 0 and if either one of the following (not mutually exclusive) criterion is satisfied:

• λ ∈ σ(A
soft,(0)
0 ) = σ(⊕Asoft,(0)

0,n ) is such that (3.88) holds.

• There exist v of the form (3.89) satisfying (3.90) and (3.94).

The dispersion function for Model I

Before we proceed to Step 2 of our analysis (locating σ(Aε,hom-I)), we have to recall the dispersion

function KI(τ, z) for Model I defined in [35].

Identify H̆stiff,(τ) = ran(Πstiff,(τ)|P(τ)E) with C using the isomorphism

j(τ) : ran(Πstiff,(τ)|P(τ)E) −→ C

j(τ)Ψ
stiff,(τ)
1 = ∥Ψstiff,(τ)

1 ∥L2(Qstiff),
(3.98)

so that our homogenized operator may now be viewed as an operator on L2(Qsoft)⊕ C, which
we will still denote by A(τ)

ε,hom-I (and similarly for Aε,hom-I). In that case, A(τ)
ε,hom-I is now given

by

D(A(τ)
ε,hom-I) = {(u, β) ∈ L2(Qsoft)⊕ C :
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u ∈ D(A
soft,(τ)
0 ) +̇ ran(Πsoft,(τ)P(τ)), β = j(τ)Πstiff,(τ)Γ

soft,(τ)
0 u}, (3.99)

A(τ)
ε,hom-I

(
u

β

)
=

(
−(∇+ iτ)2u

−((j(τ)Π̆stiff,(τ))∗)−1P(τ)
[
Γ
soft,(τ)
1 u+ ε−2µ

stiff,(τ)
1 (j(τ)Π̆stiff,(τ))−1β

])

=:

(
−(∇+ iτ)2u

T
(τ)
ε,I (u, β)

⊤

)
. (3.100)

Definition 3.3.4. The dispersion function for Model I, is the mapping KI,ε ≡ KI given by

KI : Q
′ ×Kσ −→ C

KI(τ, z) =
1

∥Ψstiff,(τ)
1 ∥

T
(τ)
ε,I

(
z(A

soft,(τ)
0 − z)−1wI + wI

∥Ψstiff,(τ)
1 ∥

)
,

(3.101)

where wI = Πsoft,(τ)ψ
stiff,(τ)
1 .

We make some comments on KI(τ, z) in relation to the dispersion functions of the stiff-soft-

stiff model in Section 3.1. First, it was proven in [35, Sect 5.3], that

PC(A
(τ)
ε,hom-I − z)−1PC =M(KI(τ,z)−z)−1 , for all τ ∈ Q′ and z ∈ Kσ. (3.102)

Second, we recall an earlier remark, that Ka,stiff-ls(τ, z) of the stiff-soft-stiff model is simply

the function KI(τ, z) extended by zero on the complementary 1D subspace Cstiff-int.

Finally, the most important point: We note that the resolvent equation for A(τ)
ε,hom-I, when

the RHS is restricted to (f, δ) ∈ 0⊕ C, is−(∇+ iτ)2u− zu = 0,

T
(τ)
ε,I (u, β)

⊤ − zβ = δ,
(3.103)

and this can be written in terms of KI(τ, z) as−(∇+ iτ)2u− zu = 0,

(K(τ, z)− z)β = δ,
(3.104)

as long as z ∈ ρ(A
soft,(τ)
0 ). In other words, we may extend KI to include real-valued z, provided

that z does not lie in σ(A
soft,(τ)
0 ) for some τ, or equivalently (by (3.48)), if z /∈ σ(A

soft,(0)
0 ).

Locating the spectrum of Aε,hom-I

Motivated by the two-scale strong resolvent case [53], we characterize σ(Aε,hom-I) (for a fixed,

small ε) in terms of KI(τ, z). The key ingredient for this step is the following result:

Proposition 3.3.5 (A partial decoupling for Model I). Fix τ ∈ Q′. Suppose that z ∈
ρ(A

soft,(0)
0 ), so that KI(τ, z) is well-defined. Then the resolvent equation for A(τ)

ε,hom-I

(
A(τ)
ε,hom-I − z

)(u
ũ

)
=

(
f

f̃

)
, (3.105)
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has a unique solution in D(A(τ)
ε,hom-I) for every f ∈ L2(Qsoft), f̃ ∈ C if and only if the system−(∇+ iτ)2u− zu = g,

(KI(τ, z)− z)ũ = g̃,
(3.106)

has a unique solution in D(A(τ)
ε,hom-I) for every g ∈ L2(Qsoft), g̃ ∈ C.

Remark. • The significance of this result is that we have partially “decoupled” the system

(3.105), so that the operator in the second equation (3.106), namely KI(τ, z) − z, does

not depend on u. Note that u and ũ are still connected by the identity

ũ = j(τ)Πstiff,(τ)Γ
soft,(τ)
0 u. (3.107)

• To simplify the notation, we will write a typical u ∈ D(A
soft,(τ)
0 )+̇ran(Πsoft,(τ)P(τ)) as

u = ua + ub, where ua ∈ D(A
soft,(τ)
0 ) and ub ∈ ran(Πsoft,(τ)P(τ)). Furthermore, we write

ũb = j(τ)Πstiff,(τ)Γ
soft,(τ)
0 ub, (3.108)

and note that ũa = j(τ)Πstiff,(τ)Γ
soft,(τ)
0 ua = 0. ◦

Proof of Proposition 3.3.5. (⇒) Let g ∈ L2(Qsoft) and g̃ ∈ C be given. Since z ∈ ρ(A
soft,(0)
0 ),

(A
soft,(τ)
0 − z) is invertible. So take ua = (A

soft,(τ)
0 − z)−1g. Then ũa = j(τ)Πstiff,(τ)Γ

soft,(τ)
0 ua = 0,

and we have

(
A(τ)
ε,hom-I − z

)(ua
0

)
=

(
g

TI(ua, 0)
⊤ − z · 0

)
=

(
g

TI(ua, 0)
⊤

)
, (3.109)

and (ua, 0) solves (3.109) uniquely by our assumption.

Next, pick f = 0 and f̃ = g̃ in (3.105). Let (ub, ũb) be the solution to

(
A(τ)
ε,hom-I − z

)(ub
ũb

)
=

(
0

g̃

)
, (3.110)

which exists and is unique by our assumption. Note that the first equation of the system

(3.110) implies that ub ∈ ran(Πsoft,(τ)P(τ)), since (A
soft,(τ)
0 − z) is invertible. Note also, that by

the definition of KI(τ, z), the second equation of (3.110) is

(KI(τ, z)− z)ũb = g̃. (3.111)

Therefore, u = ua + ub and ũ = ũa + ub = ũb solves(−(∇+ iτ)2 − z)u = (−(∇+ iτ)2 − z)ua = g,

(KI(τ, z)− z)ũ = (KI(τ, z)− z)ũb = g̃.
(3.112)

It is clear that the choice ua ∈ D(A
soft,(0)
0 ) has to be unique. Similarly, (ub, ũb) must also be

unique.
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(⇐) Let f ∈ L2(Qsoft) and f̃ ∈ C be given. As (A
soft,(τ)
0 − z) is invertible by assumption, we

can take ua = (A
soft,(τ)
0 − z)−1f . Then ũa = j(τ)Πstiff,(τ)Γ

soft,(τ)
0 ua = 0, and we have

(
A(τ)
ε,hom-I − z

)(ua
0

)
=

(
f

TI(ua, 0)
⊤ − z · 0

)
=:

(
f

f̃ua

)
. (3.113)

We now show that there exist a unique ub ∈ ran(Πsoft,(τ)P(τ)) solving

(
A(τ)
ε,hom-I − z

)(ub
ũb

)
=

(
0

f̃ − f̃ua

)
. (3.114)

Indeed, by definition of KI(τ, z), the second equation of (3.114) is

(KI(τ, z)− z)ũb = f̃ − f̃ua , (3.115)

so the system (3.114) is the same as (3.106) with RHS (0, f̃ − f̃ua), which we know has a unique

solution (ub, ũb), by our assumption on (3.106). Here, ub and ũb are related by (3.108). Moreover

the first equation of (3.114) implies that ub ∈ ran(Πsoft,(τ)P(τ)), since (A
soft,(τ)
0 − z) is invertible.

Back to the proof of the proposition, if we set u = ua + ub, then ũ = 0+ ũb, and (u, ũ) solve

(
A(τ)
ε,hom-I − z

)(ua + ub

0 + ũb

)
=

(
f

f̃ua + f̃ − f̃ua

)
=

(
f

f̃

)
. (3.116)

Once again, it is clear that the choice ua ∈ D(A
soft,(0)
0 ) here is unique. This in turn fixes f̃ua ,

and as a consequence (ub, ũb) must also be unique. This completes the proof.

Remark. While the (3.108) says that fixing ub determines ũb, we can proceed in the reverse

direction: If we know ũb and we assume that ub ∈ ran(Πsoft,(τ)P(τ)), then ub is completely

determined. Indeed, since ub = Πsoft(cψ
stiff,(τ)
1 ) for some c, the identity (3.108) implies that

ũb = c∥Ψstiff,(τ)
1 ∥. Hence

ub = 0 + Πsoft,(τ)

(
ũb

∥Ψstiff,(τ)
1 ∥

ψ
stiff,(τ)
1

)
. (3.117)

This is useful for the proof below. ◦

With the “decoupling” result (Proposition 3.3.5), we can now characterize σ(Aε,hom-I):

Corollary 3.3.6. If z ∈ ρ(A
soft,(0)
0 ) is such that KI(τ, z)− z ̸= 0 for all τ, then z /∈ σ(Aε,hom-I).

Proof. By definition, (Aε,hom-I − z) is unitarily equivalent to
∫ ⊕
Q′

(
A(τ)
ε,hom-I − z

)
dτ, so we can

equivalently look at the resolvent equation for A(τ)
ε,hom-I, i.e. (3.105). Since z /∈ σ(A

soft,(0)
0 ), we

may apply Proposition 3.3.5, and check that the system−(∇+ iτ)2u− zu = g,

(KI(τ, z)− z)ũ = g̃,
(3.118)
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has a unique solution in D(Aε,hom-I) for every g ∈ L2(Qsoft) and g̃ ∈ C. We remind the reader

that ũ = j(τ)Πstiff,(τ)Γ
soft,(τ)
0 u.

In fact, under the hypothesis of this corollary, we can show that the system (3.118) is solved

uniquely by

u = (A
soft,(τ)
0 − z)−1g +Πsoft,(τ)

(
(KI(τ, z)− z)−1g̃

∥Ψstiff,(τ)
1 ∥

ψ
stiff,(τ)
1

)
=: ua + ub. (3.119)

Indeed, it is clear that ua is the unique element in D(A
soft,(τ)
0 ) that gives (−(∇+iτ)2−z)ua =

g, due to the assumption z /∈ σ(A
soft,(0)
0 ). Meanwhile, by setting

ũa = j(τ)Πstiff,(τ)Γ
soft,(τ)
0 ua = 0, and ũb = j(τ)Πstiff,(τ)Γ

soft,(τ)
0 ub, (3.120)

we see that

(KI(τ, z)− z)ũ = (KI(τ, z)− z)ũb

=
hhhhhhh(KI(τ, z)− z)

hhhhhhhh(KI(τ, z)− z)−1 g̃

�����
∥Ψstiff,(τ)

1 ∥ ((((((((((((((((

j(τ)Πstiff,(τ)Γ
soft,(τ)
0 Πsoft,(τ)ψ

stiff,(τ)
1 = g̃. (3.121)

Hence u does indeed solve the second equation of (3.118). We argue further that the choice ub

is unique: By the assumption (KI(τ, z)− z) ̸= 0, ũb is uniquely determined by g̃ by the formula

(KI(τ, z)− z)−1g̃ = ũb. Having fixed ũb, we observe that ub as defined in (3.119) is the unique

element in ran(Πsoft,(τ)P(τ)) satisfying (3.120) (see (3.117)).

Corollary 3.3.7. If z ∈ ρ(A
soft,(0)
0 ) is such that KI(τ, z)− z = 0 some τ, then z ∈ σ(Aε,hom-I).

Proof. This means that there is some τ such that the system−(∇+ iτ)2u− zu = g,

(KI(τ, z)− z)ũ = g̃,
(3.122)

does not have a unique solution for every g ∈ L2(Qsoft) and g̃ ∈ C. (Just consider a RHS (g, g̃)

with g̃ ̸= 0.) The result now follows from Proposition 3.3.5.

Proposition 3.3.8. σ(A
soft,(0)
0 ) ⊂ σ(Aε,hom-I).

Proof. Let z ∈ σ(A
soft,(0)
0 ). So z ̸= 0. Let ua ∈ D(A

soft,(0)
0 ) be an eigenfunction for A

soft,(0)
0

w.r.t. the eigenvalue z. We will construct a non-zero u ∈ D(A
soft,(0)
0 ) +̇ ran(Πsoft,(0)P(0)) such

that (u, ũ) ∈ ker(A(0)
ε,hom-I − z). We remind the reader that ũ = j(0)Πstiff,(0)Γ

soft,(0)
0 u.

Let ub ∈ ran(Πsoft,(0)P(0)), so that we may write ub = cΠsoft,(0)ψ
stiff,(0)
1 for some c ∈ C. Then,

with ũa and ũb defined by the formula (3.120), we have

ũa = 0, and ũb = c∥Ψstiff,(0)
1 ∥. (3.123)
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With ua and ũa = 0 at hand, we can compute

(
A(0)
ε,hom-I − z

)(ua
ũa

)
=

(
0

TI(ua, 0)
⊤

)
=:

(
0

f̃ua

)
. (3.124)

Let us show that we can always find (ub, ũb) such that

(
A(0)
ε,hom-I − z

)(ub
ũb

)
=

(
0

TI(ub, ũb)
⊤ − zũb

)
=

(
0

−f̃ua

)
. (3.125)

To see this, we first note that the setup of Model I gives us

⟨Λsoft,(0)ψ
stiff,(0)
1 , ψ

stiff,(0)
1 ⟩ = 0, and ε−2µ

stiff,(0)
1 = 0. (3.126)

This means that TI(ub, ũb)
⊤ ≡ T

(0)
ε,I (ub, ũb)

⊤ = 0, and thus

TI(ub, ũb)
⊤ − zũb = −zũb = −zc∥Ψstiff,(0)

1 ∥. (3.127)

Since z and ∥Ψstiff,(0)
1 ∥ are non-zero, we can always pick c ∈ C so that (3.125) holds.

In other words, by setting u := ua+ub, which gives ũ = ũa+ ũb = ũb, the pair (u, ũ) belongs

to the kernel of (A(0)
ε,hom-I − z), hence

z ∈ σ(A(0)
ε,hom-I) ⊂ σ(Aε,hom-I).

Remark. Proposition 3.3.8 does not imply that λ ∈ σ(A
soft,(0)
0 ) is an eigenvalue for σ(Aε,hom-I).

λ is an eigenvalue for Aε,hom-I if and only if |{τ : λ is an eigenvalue for A(τ)
ε,hom-I}| > 0 (see [20,

Theorem XIII.85(e)]). ◦

3.3.2 Model II

We will use the notation of Section 3.2.2. We first modify Lemma 3.3.1 to the case of Model II.

Lemma 3.3.9 (Model II). Let c ∈ L2(Q′). Suppose that

⟨Λsoft,(τ)ψ
stiff,(τ)
1 , ψ

stiff,(τ)
1 ⟩L2(Γ)c

(τ) 1

∥Ψstiff,(τ)
1 ∥2

Ψ
stiff,(τ)
1 (x) = 0 (3.128)

for a.e. x ∈ Q and τ ∈ Q′, then c(τ) = 0 for almost every τ.

Proof. In the case of Model II, ∥Ψstiff,(τ)
1 ∥ is a non-zero constant that does not depend on τ

(Lemma 3.1.4). Similarly to the proof of Lemma 3.3.1, we compute the L2(Q×Q′) norm of the

LHS of (3.128), and it remains to show that

⟨Λsoft,(τ)ψ
stiff,(τ)
1 , ψ

stiff,(τ)
1 ⟩L2(Γ) < 0 (3.129)

for almost every τ (note the strict inequality). For this, we note that Λsoft,(τ) (of Model II)

satisfies the same properties as Λ̃stiff-ls,(τ) (of the stiff-soft-stiff model). Recall from Proposition

2.2.10, that this means Λsoft,(τ) is strictly negative when τ ̸= 0.
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Proposition 3.3.10. 0 is not an eigenvalue of Ahom-II.

Proof. We just have to note that −∆D, the Dirichlet Laplacian on the (connected) set ∪n∈Zd

(Qsoft + n), has trivial kernel. This follows from (3.61). The rest of the proof proceeds in the

same manner as Proposition 3.3.2, using Lemma 3.3.9 in place of Lemma 3.3.1.

For the rest of the section, we will keep the discussion brief, since most of the details are

similar to Model I in Section 3.3.1.

For the non-zero eigenvalues λ ̸= 0 of Ahom-II, consider the eigenvalue equation

Ahom-II

(
v

ṽ

)
= λ

(
v

ṽ

)
. (3.130)

Once again, enumerating the possibilities for an eigenfunction (v, ṽ), we have that

• Case 1: v = G∗(c(τ)Πsoft,(τ)ψ
stiff,(τ)
1 ), where c ∈ L2(Qsoft) and c ̸= 0, cannot give rise

to an eigenfunction for Ahom-II.

• Case 2: v = vD ∈ D(−∆D), where vD ̸= 0. This is only possible if λ is an eigenvalue

of −∆D, and there exist an eigenfunction vD,λ of −∆D corresponding to the eigenvalue λ

such that 〈
Γ
soft,(τ)
1 (GvD,λ)

(τ), ψ
stiff,(τ)
1

〉
L2(Γ)

= 0 for almost every τ. (3.131)

(It is possible that −∆D has no eigenvalues, and in that case (vD, 0) cannot be an eigen-

function for Ahom-II.)

• Case 3: v is of the form

v = vD +G∗(c(τ)Πsoft,(τ)ψ
stiff,(τ)
1 ), (3.132)

where c and vD satisfies (3.63), and both c and vD are non-zero. Then, the first

component of (3.130) is

−∆vD = λvD + λG∗
(
c(τ)Πsoft,(τ)ψ

stiff,(τ)
1

)
. (3.133)

Setting g2(τ) =
〈
Γ
soft,(τ)
1 (GvD)

(τ), ψ
stiff,(τ)
1

〉
,

f2(τ) =
〈
Λsoft,(τ)ψ

stiff,(τ)
1 , ψ

stiff,(τ)
1

〉
,

(3.134)

the second component of (3.130) gives us the condition

g2(τ) +
(
f2(τ)− λ∥Ψstiff,(τ)

1 ∥2
)
c(τ) = 0, for almost every τ. (3.135)

To summarize,

105



Proposition 3.3.11 (Eigenvalues of Ahom-II). λ ∈ R is an eigenvalue for Ahom-II if and only if

λ ̸= 0 and if either one of the following (not mutually exclusive) criterion is satisfied:

• λ is an eigenvalue of −∆D is such that (3.131) holds.

• There exist v of the form (3.132) satisfying (3.133) and (3.135).

The dispersion function for Model II

Next, let us quickly recall the dispersion function KII(τ, z) for Model II, defined in [35]. Intro-

duce the isomorphism j(τ) : ran(Πstiff,(τ)|P(τ)E) → C in the same way as we did for Model I. Now

the fibre-wise homogenized operator may be viewed as an operator on L2(Qsoft)⊕C, which we

will still denote by A(τ)
hom-II (and similarly for Ahom-II). A

(τ)
hom-II is now given by

D(A(τ)
hom-II) = {(u, β) ∈ L2(Qsoft)⊕ C :

u ∈ D(A
soft,(τ)
0 ) +̇ ran(Πsoft,(τ)P(τ)), β = j(τ)Πstiff,(τ)Γ

soft,(τ)
0 u}, (3.136)

A(τ)
ε,hom-II

(
u

β

)
=

(
−(∇+ iτ)2u

−((j(τ)Π̆stiff,(τ))∗)−1P(τ)Γ
soft,(τ)
1 u

)
=:

(
−(∇+ iτ)2u

T
(τ)
II (u, β)⊤

)
. (3.137)

Definition 3.3.12. The dispersion function for Model II, is the mapping KII given by

KII : Q
′ ×Kσ −→ C

KII(τ, z) =
1

∥Ψstiff,(τ)
1 ∥

T
(τ)
II

(
z(A

soft,(τ)
0 − z)−1vII + vII

∥Ψstiff,(τ)
1 ∥

)
,

(3.138)

where vII = Πsoft,(τ)ψ
stiff,(τ)
1 .

Once again we make three remarks: First, in [35, Sect 5.3], the authors proved that

PC(A
(τ)
hom-II − z)−1PC =M(KII(τ,z)−z)−1 , for all τ ∈ Q′ and z ∈ Kσ. (3.139)

Second, we recall an earlier remark, that Ka,stiff-int(τ, z) of the stiff-soft-stiff model is simply

the function KII(τ, z) extended by zero on the complementary 1D subspace Cstiff-ls. Finally, we

emphasize that KII(τ, z) may be extended to real-valued z, provided z /∈ σ(A
soft,(τ)
0 ) for any τ,

or equivalently (by (3.61)), if z /∈ σ(−∆).

Locating the spectrum of Ahom-II

Much of our discussion here follows with minimal modifications to the case of Model I. We

remind the reader that by (3.61), we have

σ(−∆D) =
⋃
τ∈Q′

σ(A
soft,(τ)
0 ).

We also have a decoupling result for Model II:
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Proposition 3.3.13 (A partial decoupling for Model II). Fix τ ∈ Q′. Suppose that z ∈
ρ(−∆D), so that KII(τ, z) is well-defined. Then the resolvent equation for A(τ)

hom-II

(
A(τ)

hom-II − z
)(u

ũ

)
=

(
f

f̃

)
, (3.140)

has a unique solution in D(A(τ)
hom-II) for every f ∈ L2(Qsoft), f̃ ∈ C if and only if the system−(∇+ iτ)2u− zu = g,

(KII(τ, z)− z)ũ = g̃.
(3.141)

has a unique solution in D(A(τ)
hom-II) for every g ∈ L2(Qsoft), g̃ ∈ C.

In the same vein, Proposition 3.3.13 gives us the following two results:

Corollary 3.3.14. If z ∈ ρ(−∆D) is such that KII(τ, z)− z ̸= 0 for all τ, then z /∈ σ(Ahom-II).

Corollary 3.3.15. If z ∈ ρ(−∆D) is such that KII(τ, z)− z = 0 some τ, then z ∈ σ(Ahom-II).

We state some partial results on whether an element λ of σ(−∆D) belongs to σ(Ahom-II):

Proposition 3.3.16. σ(A
soft,(0)
0 ) ⊂ σ(Ahom-II).

Proposition 3.3.17. If τ ̸= 0 and z ∈ σ(A
soft,(τ)
0 ) is such that − |Γ|

|Qstiff|f2(τ) ̸= z, where f2 is

defined in (3.134), then z ∈ σ(A(τ)
hom-II) ⊂ σ(Ahom-II).

The first proposition follows by the same argument as Proposition 3.3.8. For the second

proposition, we follow the proof of Proposition 3.3.8, and a computation on TII(ub, ũb)
⊤ − zũb

will give us the criterion − |Γ|
|Qstiff|f2(τ) ̸= z. We omit the details of this short computation. Note

that 1

∥Ψstiff,(τ)
1 ∥2

= |Γ|
|Qstiff| (Lemma 3.1.4).

3.3.3 Stiff-soft-stiff model

In the final section of this chapter, we highlight some differences in the spectral analysis of

Models I (Section 3.3.1) and II (Section 3.3.2) with the stiff-soft-stiff setting.

Regarding the point spectrum, we can adapt Lemma 3.3.1 to the stiff-soft-stiff case, and we

will encounter the following two expressions:〈
Λsoft,(τ)(a(τ)ψ

stiff-int,(τ)
1 + b(τ)ψ

stiff-ls,(τ)
1 ), (a(τ)ψ

stiff-int,(τ)
1 + b(τ)ψ

stiff-ls,(τ)
1 )

〉
, (3.142)

ε−2b(τ)µ
stiff-ls,(τ)
1 . (3.143)

We see that by picking a(τ) = −b(τ), and letting supp a be away from a neighbourhood of τ = 0,

we may construct non-zero a, b ∈ L2(Q′) such that the two expressions above sum to zero. As

a consequence, 0 is an eigenvalue of Aε,hom (compare this with Proposition 3.3.2 of Model I).

The analysis of the non-zero eigenvalues of Aε,hom, should closely follow Section 3.3.1 (Model

I), since the annulus Qsoft is at a positive distance from the boundary of the cube.
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Key difficulties arise when we discuss attempt to characterize the spectrum of Aε,hom in

terms of the dispersion functions obtained in Section 3.1. The first is to prove a decoupling

result in the sense of Proposition 3.3.5: What would the system (3.106) be for the stiff-soft

stiff model? Should this be a system of three equations (involving −(∇ + iτ)2, Kstiff-int(τ, z),

and Kstiff-ls(τ, z)), or five equations (involving the previous three, plus Fstiff-int→stiff-ls(τ, z) and

Fstiff-ls→stiff-int(τ, z))?

The second and most critical point, is with regards to the extension of Kstiff-int(τ, z) and

Kstiff-ls(τ, z) to real-valued z: Just like in Models I and II, we have to exclude the case

z ∈
⋃
τ∈Q′

σ(A
soft,(τ)
0 ) = σ(A

soft,(0)
0 ),

so thatKstiff-int(τ, z) andKstiff-ls(τ, z) are well-defined, and deal with this case afterwards. In the

present setting, there are more that needs to be excluded (see Section 3.1.1). For Kstiff-int(τ, z),

these are:

• The case z = 0. This is actually a rather harmless case, as the derivation in Section 3.1.1

may be suitably modified, and in many instances simplified (e.g. the terms zβstiff-int and

z(Asoft
0 −z)−1 = 0 are absent). Note that 0 is always an eigenvalue, as discussed above, but

it might also belong to the absolutely continuous spectrum. That is, the intersection of the

closed sets σac(Aε,hom) and σp(Aε,hom) may be non-empty due to embedded eigenvalues.

• The case z ∈ R \ {0}, where z satisfies

1 +
1

z∥Ψstiff-ls,(τ)
1 ∥2

[
ε−2µ

stiff-ls,(τ)
1 +

〈
M soft,(τ)(z)(0 + ψ

stiff-ls,(τ)
1 ), (0 + ψ

stiff-ls,(τ)
1 )

〉]
= 0

(3.144)

for some τ (see (3.14)). In this case we do not have Kstiff-int(τ, z), but we do have an extra

equation (3.144). Nonetheless this splits into further sub-cases, and in each instance we

have to check if the system (3.4) is uniquely solvable.

Lastly, we point out that if Kstiff-int(τ, z) is undefined at some z ∈ R, it does not necessarily
mean that z ∈ σ(Aε,hom) — it just means that the second equation of (3.4) cannot be written

in the form (Kstiff-int(τ, z)− z)β = δ, and we have to deal with (3.4) as it is.
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Chapter 4

Conclusion and next steps

In this thesis, we looked at a high-contrast εZd periodic composite, consisting of a “soft” and a

“stiff” material, and arranged in a stiff-soft-stiff setup (Figure 2-1). Under the Gelfand transform

and rescaling operators, we arrived at a family of operators {A(τ)
ε }τ∈Q′ on L2(Q), where the

period cell Q and A
(τ)
ε are roughly described by Figure 4-1 below.

Stiff interior, 𝒪(𝜀−2)

Soft annulus, 𝒪(1)

Stiff landscape, 𝒪(𝜀−2)

Figure 4-1: The period cell Q = [0, 1)d.

Our investigation on the stiff-soft-stiff composite was broken into two stages:

Summary of Chapter 2

In Chapter 2, we homogenized the composite. More precisely, we identified the (uniform in

τ) norm-resolvent asymptotics of the family {A(τ)
ε }. As we saw in the thesis, the analysis of

high-contrast composites depends greatly on how the two materials are configured. We perform

the analysis using the method of boundary triples, following [35]. This is a novel approach

introduced by Cherednichenko, Ershova, and Kiselev in the context of homogenization. In

short, this is a tool that brings the problem on the unit cell Q to a problem on the soft-stiff

interfaces, and in turn we may rely on the spectral properties of the Dirichlet-to-Neumann

operators on these interfaces. By adapting the framework of [35] to our setting, we obtained:

• A homogenization result for the stiff-soft-soft composite. This is Section 2.5. We give

an effective description of the composite by identifying the norm-resolvent asymptotics of

A
(τ)
ε , namely the operator A(τ)

ε,hom.

• Moreover, we supplement the asymptotic argument in [35] with additional details. These

are meant to explain how the estimates obtained are uniform over τ and z. (See Proposi-

tion 2.3.3 and Theorem 2.3.4.)
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Summary of Chapter 3

The second stage of our investigation is detailed in Chapter 3. We passed to the norm-resolvent

asymptotics, and studied the family {A(τ)
ε,hom}τ∈Q′ . As our homogenized operator A(τ)

ε,hom is

defined using objects from boundary triples, there is some work to be done to uncover the

effective transport/scattering properties of our composite. We explored three aspects of the

homogenized description:

• In Section 3.1, we focused on the bottom right entry of the resolvent for A(τ)
ε,hom. This

is a 2 × 2 matrix, due to the two stiff components. We wrote each entry in terms of an

operator of multiplication on C by a constant. For the diagonal entries, we were able to

express this constant as (K(τ, z) − z)−1, in which we refer to K(τ, z) as the “dispersion

function”. In particular, our results are

– Cstiff-int → Cstiff-int: Theorem 3.1.6,

– Cstiff-ls → Cstiff-ls: Theorem 3.1.10,

– Cstiff-int → Cstiff-ls: Theorem 3.1.12 and Corollary 3.1.13,

– Cstiff-ls → Cstiff-int: Theorem 3.1.15 and Corollary 3.1.16.

• In Section 3.2.3, we wrote down the homogenized description of our composite on the full

space, i.e. the operator

Aε,hom = G∗
(∫ ⊕

Q′
A(τ)
ε,homdτ

)
G.

• In Section 3.3, we performed a spectral analysis ofAε,hom-I andAhom-II (the norm-resolvent

asymptotics for Models I and II on the full space L2(Rd), as obtained in [35]), with an eye

towards treating the stiff-soft-stiff case Aε,hom. Our results are

– For Model I: Proposition 3.3.3 (eigenvalues), Corollaries 3.3.6 and 3.3.7 (character-

ization of σ(Aε,hom-I) in terms of the dispersion function KI(τ, z)), and Proposition

3.3.8 (when KI(τ, z) is undefined).

– For Model II: Proposition 3.3.11 (eigenvalues), Corollaries 3.3.14 and 3.3.15 (char-

acterization of σ(Ahom-II) in terms of the dispersion function KII(τ, z)). We only

provided partial results when KII(τ, z) is undefined (Propositions 3.3.16 and 3.3.17).
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Next steps

We mention some open problems and possible directions for future work.

First, we have some unfinished tasks from Chapter 3, namely Section 3.3, the spectral analysis

of Aε,hom, Aε,hom-I, and Ahom-II. Here are a list of them:

• On eigenfunctions of Case 3, (3.89) and (3.132): Can we simplify the conditions (3.90)

and (3.95) for Model I? (And similarly for Model II.)

• Find the singularly continuous spectrum of Aε,hom, Aε,hom-I, and Ahom-II. We expect that

these are all empty, since they arise from the dilation of an operator that is asymptotically

close to Psoft(A
(τ)
ε − z)−1Psoft.

• In the case of Model II, what is σ(−∆D)? Does σ(−∆D) contain eigenvalues? When does

λ ∈ σ(−∆D) belong to the spectrum of Ahom-II?

• Extend the arguments of Sections 3.3.1 (Model I) and 3.3.2 (Model II) to Aε,hom. See

Section 3.3.3 for a discussion on the difficulties of this task.

Here are some directions for future work:

• Investigate the norm-resolvent asymptotics with respect to other scaling choices εα, α > 0,

starting with Models I and II.

• Adapt the boundary triple approach to unbounded domains. This will be a step towards

treating non-periodic and even random high-contrast composites.

• An example of a random high-contrast composite: Consider the stiff-soft-stiff setup (Fig-

ure 1-1), where the coefficient matrix ãε2 = ãε2,ω is random on the soft annulus, and equals

ε−2I on the stiff regions. What is the norm-resolvent asymptotic of the corresponding

operator Aε,ω = −div(aε,ω·)? What is its spectrum?

• Establish a precise connection between the dispersion relation of the pre-limit (i.e. Aε for

very small ε) and the dispersion functions K(τ, z).

This is not immediate from norm-resolvent asymptotic equivalence, as σ(Aε) is purely ab-

solutely continuous, while σ(Aε,hom) may contain eigenvalues. It is expected that K(τ, z)

captures the absolutely continuous part of the spectrum (e.g. Corollaries 3.3.6 and 3.3.7),

but as mentioned above, this has yet to be shown.
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Appendix A

A heuristic explanation of the

phrase “resonant inclusions”

In this appendix, we provide an informal justification of the term “resonant inclusions”, which

we use to describe the soft annular regions of the stiff-soft-stiff model (Figure 2-1).

We do this in two steps. Step 1: Consider the matrix A(x) ≡ Aε(x), given by

A(x) =

ε2I if x lies in the soft regions,

I if x lies in the stiff regions.
(A.1)

For a fixed wavenumber k ∈ Rd, let us find u = u(x), made up of standing waves, such that

−∇ ·A(x)∇u(x) = |k|2u(x). (A.2)

To find u, we have a useful computation−∇ · ε2∇ei
k
ε
·x = |k|2ei

k
ε
·x,

−∇ · ∇eik·x = |k|2eik·x,
(A.3)

so that u is given by

u(x) =

ei
k
ε
·x if x lies in the soft regions,

eik·x if x lies in the stiff regions.
(A.4)

Thus, when u(x) enters the soft region, it has wavelength of the order O(ε), which coincides

with the size of the (width of the) soft inclusions. In this case we say that the soft inclusions

act as “resonators”.

Step 2: Returning to the wave equation

(∂tt −∇ ·A∇)U(x, t) = 0, (A.5)

we would like to find plane wave solutions that oscillates at a specified frequency ω. Moreover,

we ask that the wave keeps its direction of propagation as it passes through the soft and stiff
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regions. In this case, we have

U(x, t) = u(x)e−iωt. (A.6)

Here, ω is fixed, and u(x) is made up of standing waves. For instance, let us write

u(x) =

eiksoft·x if x lies in the soft regions,

eikstiff·x if x lies in the stiff regions.
(A.7)

Our requirement for a constant direction of travel gives us cksoft = kstiff.

Since U(x, t) solves (A.5), we require that −∇ · A∇u(x) = ω2u(x). And in this case, it is

clear from Step 1 that we must have c = 1
ε . In other words, our solution is

U(x, t) =

ei
kstiff

ε
·xe−iωt if x lies in the soft regions,

eikstiff·xe−iωt if x lies in the stiff regions,
(A.8)

where we can pick any kstiff ∈ Rd so long as |kstiff|2 = ω2 (the dispersion relation for the wave

equation (∂tt −∆)U = 0).

To summarize, we call the soft inclusions in Figure 2-1 “resonators”, because of the heuris-

tic that if U(x, t) is a plane wave propagating through the full medium, solves (A.5), oscillates

at a specific frequency ω, and travels in a single direction, then as U enters the soft region, its

wavelength will be comparable to the size of (the width) of the inclusion.

Figure A-1 below provides a sketch of U(x, t), in the setup of Model I (Figure 1-2, soft

inclusions in a stiff medium).

soft regionstiff region

𝒪(𝜀)

𝒪(1)

𝑘

Figure A-1: A picture of U(x, t), in the 2D case, for Model I. The wave is
oscillating into and out of the paper with frequency ω, and is travelling in the
direction k

|k| ∈ S1 (to the right). The wavelength is O(1) in the stiff regions,

and becomes O(ε) as it enters the soft inclusions. U(x, t) has amplitude O(1)
throughout the medium.
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Appendix B

Comparing various notions of

convergence for sets

In this appendix, we will look at various notions of convergence for sets on a metric space X.

The main example we have in mind is the case X = C.
First, we look at convergence with respect to the Hausdorff distance dH . We repeat the

definition of dH here for the reader’s convenience:

dH(M,N) := max

{
sup
x∈M

inf
y∈N

|x− y|, sup
y∈N

inf
x∈M

|x− y|

}
(B.1)

= inf {ε > 0 :M ⊂ Uε(N) and N ⊂ Uε(M)} , (B.2)

where Uε(M) = {x ∈ X : infy∈N |x− y| ≤ ε} is the ε-fattening of the set M . It is assumed here

that the sets M and N are non-empty. For simplicity, let us assume further that M and N are

closed.

Definition B.1. [1, Definition 4.4.11] Let Mn and M be non-empty and closed subsets of X.

We write Mn
H−→M or M = H− limn→∞Mn (“Hausdorff”) to mean that

dH(Mn,M) → 0, as n→ ∞. (B.3)

In this case, we say that Mn converges to M in the Hausdorff metric.

Second, we introduce a new notion of convergence:

Definition B.2. [1, Definition 4.4.13] Let Mn and M be non-empty and closed subsets of X.

We write Mn
K−→ M or M = K − limn→∞Mn (“Kuratowski”) if the following two conditions

are satisfied:

(i) If x = limk→∞ xnk
for some subsequence {xnk

} of a sequence {xn} such that xn ∈ Mn,

then x ∈M .

(ii) If x ∈M , then there exist a full sequence {xn}, with xn ∈Mn, such that limn→∞ xn = x.

In this case, we say that Mn convergence to M in the sense of Kuratowski.
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The two conditions in Definition B.2 can be written in terms of “upper closed limits” and

“lower closed limits” respectively. For this we follow [4, Section 5.2], restricting ourselves to the

case of a metric space X.

Definition B.3. Let X be a metric space and {Mn} be a sequence of subsets of X. Define

Li Mn := {x ∈ X : for all open neighbourhoods U of x, U ∩Mn ̸= ∅ for n large enough},

Ls Mn := {x ∈ X : for all open neighbourhoods U of x, U ∩Mn ̸= ∅ for infinitely many n}.

We call the set Li Mn the lower closed limit of Mn, and Ls Mn the upper closed limit of Mn.

In other words, Li Mn is the set of limit points for {Mn}, and Ls Mn is the set of cluster

points for {Mn}. As the name suggests, we always have Li Mn ⊂ Ls Mn, and Li Mn and Ls Mn

are closed. Using upper and lower closed limits, we can write the two conditions in Definition

B.2 as

(i) Ls Mn ⊂M ,

(ii) M ⊂ Li Mn.

We can also do the same for limit set convergence (Definition 1.3.6). This gives us an

equivalent way of defining limit set convergence:

Definition B.4. Let Mn and M be non-empty and closed subsets of X. We write Mn
ls−→M

or M = ls− limn→∞Mn (“limit set”) if the following two conditions are satisfied:

(i) Li Mn ⊂M ,

(ii) M ⊂ Li Mn

That is, if M = Li Mn.

Remark. Clearly, Mn always has a limit in the sense of Definition B.4, namely Li Mn. But

it is another question if a candidate set M equals this limit. For example, we are interested

in the case Mn = σ(An) and M = σ(A) for self-adjoint operators An and A. We know that

ls− limσ(An) exist, but it is another question if σ(A) = ls− limσ(An) holds. ◦

In this way, we can now easily compare the four notions of set convergence. To remind the

reader, the four notions are:

• Hausdorff convergence (Definition B.1),

• Hausdorff convergence on compact subsets of X (Definition 1.3.5),

• Kuratowski convergence (Definition B.2),

• limit set convergence (Definition 1.3.6).

Clearly, if Mn converges in the sense of Hausdorff, then Mn must also converge in the sense

of Hausdorff on compact subsets of X, and the two limits must coincide.

As for Hausdorff convergence on compact subsets of X and Kuratowski convergence, we

quote the following result:
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Proposition B.5. [1, Proposition 4.4.14] Assume that Mn and M are non-empty and closed

subsets of X, then Mn
K−→M if and only if Mn

HC−→M .

Finally, for Kuratowski convergence and limit set convergence, we have

Lemma B.6. Assume thatMn are non-empty and closed subsets of X. If the Kuratowski limit

K− limn→∞Mn exists, then it must coincide with ls− limn→∞Mn, i.e.

K− lim
n→∞

Mn = ls− lim
n→∞

Mn. (B.4)

Proof. The conditions (i) and (ii) for the Kuratowski limit K− limn→∞Mn means that

Ls Mn ⊂ K− lim
n→∞

Mn ⊂ Li Mn. (B.5)

Together with Li Mn ⊂ Ls Mn, this means that

K− lim
n→∞

Mn = Ls Mn = Li Mn. (B.6)

Meanwhile, we recall that ls− limn→∞Mn is just another notation for Li Mn.

Remark. In fact, the author of [4] defines Kuratowski convergence by (B.6). As LiMn ⊂ LsMn

is always true, this is equivalent to Definition B.2 (which we took from [1]). ◦

To summarize, Hausdorff convergence implies Hausdorff convergence on compact subsets

of X, the latter is equivalent to Kuratowski convergence, and Kuratowski convergence implies

limit set convergence. Moreover, if one limit exist, so does the next, and the limits must coincide

(as an equality of sets).

To make things concrete, let us provide several examples to show that these notions of set

convergence are indeed distinct. We focus on the case X = C.

Example B.7 (Limit set vs Kuratowski).

Mn =

{0, 1} if n is odd,

{0,−1} if n is even.
(B.7)

Then Li Mn = {0} and Ls Mn = {−1, 0, 1}. So ls − limn→∞Mn = Li Mn = {0}. Since

Li Mn ̸= Ls Mn, K− limn→∞Mn does not exist. We may use Proposition B.5 to conclude that

HC− limn→∞Mn does not exist (alternatively a direct check would suffice). Similarly, it is clear

that Mn does not convergence with respect to the Hausdorff metric dH . ◦

Example B.8 (Kuratowski vs Hausdorff, with unbounded sets).

M = N and Mn = N ∪ {n+ 1
2}. (B.8)

Then dH(Mn,M) = 1
2 for all n, and thus Mn does not converge to M in the Hausdorff sense.

In fact, dH(Mn,Mm) ≥ 1 if n ̸= m, so Mn does not have a Hausdorff limit. On the other hand,

we may check directly from the definitions, that Mn
HC−→M , Mn

K−→M , and Mn
ls−→M . ◦

116



As discussed in Section 1.3.3, if Tn and T are self-adjoint operators on a Hilbert space H,

then Tn
nr−→ T implies σ(Tn)

HC−→ σ(T ). The following example shows that this cannot be

upgraded to “σ(Tn)
H−→ σ(T )”:

Example B.9. Let H = L2([0,∞);C). Define the functions fn, f : [0,∞) → C by

f(x) :=
∞∑
m=1

m1[m−1,m)(x),

fn(x) :=
∞∑
m=1

m1[m−1,m)(x) +
1

2
1[n+ 1

2
,n+1)(x)

=

n∑
m=1

m1[m−1,m)(x) + n1[n,n+ 1
2
)(x) +

(
n+

1

2

)
1[n+ 1

2
,n+1)(x) +

∞∑
m=n+2

m1[m−1,m)(x).

(The second line of fn views the function as sum of four terms with disjoint support.) Now

consider the multiplication operators Mfn and Mf on H. We have

σ(Mf ) = ranf = N and σ(Mfn) = ranfn = N ∪ {n+ 1
2}.

In particular 0 lies in the resolvent sets of Mf and Mfn . Let us compute the difference of the

resolvents for Mf and Mfn at the point z = 0:

(Mf )
−1 − (Mfn)

−1 =Mf−1 −Mf−1
n

=Mf−1−f−1
n
.

Figure B-1 shows a graph of f−1 − f−1
n .

𝑥

𝑔(𝑥)

1
𝑛 −

1
𝑛 + 1/2

𝑛 𝑛 + 1
2 𝑛 + 1

Figure B-1: The graph of g = f−1 − f−1
n .

We may now compute

∥Mf−1−f−1
n

∥op = ∥f−1 − f−1
n ∥∞ =

1

n
− 1

n+ 1
2

=
�n+ 1

2 −�n

n(n+ 1
2)

−→ 0, as n→ ∞.

Thus, Mfn
nr−→Mf . Meanwhile, Example B.8 tells us that

dH(σ(Mfn), σ(Mf )) ̸→ 0, while σ(Mfn)
HC−→ σ(Mf ). ◦
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Appendix C

Preparatory results for estimating

the first Steklov eigenvalue with

respect to the stiff landscape

The following result is a slight modification of [46, Proposition A.7]:

Proposition C.1. There exists a constant C > 0 such that for every u ∈ H1
per(Q), τ ∈ Q′ we

have the following estimates:

|τ| ∥u∥L2(Q) ≤ C ∥(∇+ iτ)u∥L2(Q;Cd) , (C.1)

∥∇u∥L2(Q;Cd) ≤ C ∥(∇+ iτ)u∥L2(Q;Cd) , (C.2)∥∥∥∥u−
∫
Q
u

∥∥∥∥
L2(Q)

≤ C ∥(∇+ iτ)u∥L2(Q;Cd) . (C.3)

Proof. Fix u ∈ H1
per(Q) and consider its Fourier series decomposition:

u =
∑
k∈Zd

ake
2πik·y, ∇u =

∑
k∈Zd

(2πik)ake
2πik·y, u−

∫
Q
u =

∑
k∈Zd\{0}

ake
2πik·y.

Plancherel’s formula yields

∥u∥2L2(Q) =
∑
k∈Zd

|ak|2, ∥∇u∥2L2(Q;Cd) =
∑
k∈Zd

|2π|2|ak|2|k|2,
∥∥∥∥u−

∫
Q
u

∥∥∥∥2
L2(Q)

=
∑

k∈Zd\{0}

|ak|2.

(C.4)

Furthermore, we have

(∇+ iτ)u =
∑
k∈Zd

(2πik + iτ) ake
2πik·y. (C.5)

Now we calculate

∥(∇+ iτ)u∥2L2(Q;Cd) =
∑
k∈Zd

|ak (2πik + iτ) |2 =
∑

k∈Zd\{0}

|ak|2|2πik + iτ|2 + |a0|2|τ|2. (C.6)
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Since τ ∈ Q′ = [−π, π)d, if at least one (k)j ≥ 1, it is clear that

|2πik + iτ|2 ≥ C, (C.7)

where the constant C > 0 does not depend on τ and k ∈ Zd \ {0}. This gives us

∥(∇+ iτ)u∥2L2(Q;Cd) =
∑

k∈Zd\{0}

|ak|2|2πik + iτ|2 + |a0|2|τ|2

≥
∑

k∈Zd\{0}

C|ak|2 = C

∥∥∥∥u−
∫
Y
u

∥∥∥∥2
L2(Q)

.

(C.8)

Moreover, we have

∥(∇+ iτ)u∥2L2(Q;Cd) =
∑

k∈Zd\{0}

|ak|2|2πik + iτ|2 + |a0|2|τ|2 ≥
∑
k∈Zd

C|τ|2|ak|2 = C|τ|2 ∥u∥2L2(Q) ,

(C.9)

and also

∥(∇+ iτ)u∥2L2(Q;Cd) ≥
∑
k∈Zd

C|ak|2|2π|2|k|2 = C ∥∇u∥2L2(Q;Cd) . (C.10)

This concludes the proof.

We are interested in using the above inequalities to estimate the eigenvalue µ
stiff-ls,(τ)
1 .

Corollary C.2. There exist constants C1, C2 > 0 independent of τ such that

C1|τ|2 ≤ −µstiff-ls,(τ)1 ≤ C2|τ|2. (C.11)

Proof. Fix u ∈ H1
per(Qstiff-ls), since ∂Qstiff-ls = Γls is smooth, u may be extended to a function

in H1
per(Q), which we will still denote as u, such that

∥(∇+ iτ)u∥L2(Q;Cd) ≤ C∥(∇+ iτ)u∥L2(Qstiff-ls;Cd), (C.12)

where the constant C > 0 only depends on Qstiff-ls [28]. Combine this with (C.1) and (C.2),

and we get

|τ|∥u∥H1(Qstiff-ls) ≤ C|τ|∥u∥H1(Q) ≤ C∥(∇+ iτ)u∥L2(Q;Cd) ≤ C∥(∇+ iτ)u∥L2(Qstiff-ls;Cd). (C.13)

By the Trace theorem, this implies that

|τ|∥u|Γls
∥L2(Γls) ≤ C∥(∇+ iτ)u∥L2(Qstiff-ls;Cd), (C.14)

which in turn gives us the lower bound of (C.11) by the min-max principle. The upper bound

follows by testing 1Qstiff-ls
in the variational characterization of µ

stiff-ls,(τ)
1 (similar to Step 4c in

the proof of Proposition 2.3.5).
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Appendix D

Proofs for Section 2.4

Proof of Proposition 2.4.7. Consider the generalized resolvent Psoft(Â
(τ)

ε,P(τ)
⊥ ,P(τ)

−z)−1Psoft, which

we know is O(ε2) close to R
(τ)
ε (z) = Psoft(A

(τ)
ε − z)−1Psoft by Theorem 2.4.2. This can be ex-

pressed as

Psoft(Â
(τ)

ε,P(τ)
⊥ ,P(τ)

− z)−1Psoft

= Psoft(A
(τ)
ε,0 − z)−1Psoft − PsoftS

(τ)
ε (z)

(
P(τ)
⊥ + P(τ)M

(τ)
ε (z)

)−1

P(τ)
(
S(τ)
ε (z̄)

)∗
Psoft

= (A
soft,(τ)
0 − z)−1 − Ssoft,(τ)(z)

(
P(τ)
⊥ + P(τ)M

(τ)
ε (z)

)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗
= (A

soft,(τ)
0 − z)−1 − Ssoft,(τ)(z)P(τ)

(
P(τ)M stiff,(τ)

ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗
.

(D.1)

The second equality follows by the same reasoning as Proposition 2.4.5. The final equality uses

Lemma 2.4.1. On the other hand, by the Krein’s formula, we have

R
(τ)
ε,eff(z) = (A

soft,(τ)
0 − z)−1

− Ssoft,(τ)(z)

(
P(τ)
⊥ + P(τ)M

stiff,(τ)
ε (z)P(τ) + P(τ)M soft,(τ)(z)

)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗
= (A

soft,(τ)
0 − z)−1

− Ssoft,(τ)(z)P(τ)
(
P(τ)M stiff,(τ)

ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗
.

(D.2)

The second equality follows from the observation made before the proposition.

Proof of Proposition 2.4.9. We will verify this entry-wise. The top left entry is done in Propo-

sition 2.4.7. For the remaining entries, we will compare this with (Â
(τ)

ε,P(τ)
⊥ ,P(τ)

− z)−1 since it is

O(ε2) close to (A
(τ)
ε − z)−1 by Theorem 2.4.2. In the computations below, we will use

ran
(
Ssoft,(τ)(z)P(τ)

)
⊂ D(A

soft,(τ)
0 )+̇ran(Πsoft,(τ)P(τ)), (D.3)
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which is a consequence of the identity S(z) = (I + z(A0 − z)−1)Π. The argument for a21 and

a31 are the same. For a21, we have

Pstiff-int(Â
(τ)

ε,P(τ)
⊥ ,P(τ)

− z)−1Psoft

= −Sstiff-int,(τ)
ε (z)P(τ)

(
P(τ)M stiff,(τ)

ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗
By a similar argument to (D.1).

= −Sstiff-int,(τ)
ε (z)Γ

soft,(τ)
0 Ssoft,(τ)(z)P(τ)

(
P(τ)M stiff,(τ)

ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗
By Proposition 2.2.13(2), Γ

soft,(τ)
0 Ssoft,(τ)(z) = I.

= −Sstiff-int,(τ)
ε (z)k(τ)(z)

[
Ssoft,(τ)(z)P(τ)

(
P(τ)M stiff,(τ)

ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z̄)

)∗]
= Sstiff-int,(τ)

ε (z)k(τ)(z)
[
R

(τ)
ε,eff(z)− (A

soft,(τ)
0 − z)−1

]
By (D.2).

= Πstiff-int,(τ)k(τ)(z)
[
R

(τ)
ε,eff(z)− (A

soft,(τ)
0 − z)−1

]
+O(ε2)

By Lemma 2.2.20. The remaining terms equals P(τ)A−1P(τ)
(
Ssoft,(τ)(z̄)

)∗
, which is O(1).

The argument for a12 and a13 are the same. For a12, we have

Psoft(Â
(τ)

ε,P(τ)
⊥ ,P(τ)

− z)−1Pstiff-int

= −Ssoft,(τ)(z)P(τ)
(
P(τ)M stiff,(τ)

ε (z)P(τ) + P(τ)M soft,(τ)(z)P(τ)
)−1

P(τ)
(
Sstiff-int,(τ)
ε (z̄)

)∗
Similarly to (D.1). The decoupling term (A

(τ)
ε,0 − z)−1 vanishes as L2(Qsoft) and

L2(Qstiff-int) are orthogonal, and are invariant subspaces for A
(τ)
ε,0.

=

(
−P(τ)

(
P(τ)M (τ)

ε (z̄)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z)

)∗)∗ (
Sstiff-int,(τ)
ε (z̄)

)∗
Take adjoint twice. Use Proposition 2.2.13(5).

=

(
k(τ)(z̄)Ssoft,(τ)(z̄)P(τ)

(
P(τ)M (τ)

ε (z̄)P(τ)
)−1

P(τ)
(
Ssoft,(τ)(z)

)∗)∗ (
Sstiff-int,(τ)
ε (z̄)

)∗
By Proposition 2.2.13(2), Γ

soft,(τ)
0 Ssoft,(τ)(z̄) = I, and Γ

soft,(τ)
0 may be restricted to k(τ)(z̄).

=
(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Sstiff-int,(τ)
ε (z̄)

)∗
=
(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-int,(τ)

)∗
+O(ε2).

The second last equality follows by (D.2). The final equality follows by Lemma 2.2.20.

The argument for a22 is the same as a33 are the same. For a22, we have

Pstiff-int(Â
(τ)

ε,P(τ)
⊥ ,P(τ)

− z)−1Pstiff-int

= (A
stiff-int,(τ)
ε,0 − z)−1 − Sstiff-int,(τ)

ε (z)P(τ)
(
P(τ)M (τ)

ε (z)P(τ)
)−1

P(τ)
(
Sstiff-int,(τ)
ε (z̄)

)∗
Similarly to (D.1).
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= (A
stiff-int,(τ)
ε,0 − z)−1 − Sstiff-int,(τ)

ε (z)k(τ)(z)Ssoft,(τ)(z)P(τ)
(
P(τ)M (τ)

ε (z)P(τ)
)−1

P(τ)
(
Sstiff-int,(τ)
ε (z̄)

)∗
By Proposition 2.2.13(2), Γ

soft,(τ)
0 Ssoft,(τ)(z) = I, and Γ

soft,(τ)
0 may be restricted to k(τ)(z).

= (A
stiff-int,(τ)
ε,0 − z)−1 + Sstiff-int,(τ)

ε (z)k(τ)(z)
(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Sstiff-int,(τ)
ε (z̄)

)∗
By the arguments of a12.

= Πstiff-int,(τ)(z)k(τ)(z)
(
k(τ)(z̄)

[
R

(τ)
ε,eff(z̄)− (A

soft,(τ)
0 − z̄)−1

])∗ (
Πstiff-int,(τ)(z̄)

)∗
+O(ε2)

By Lemma 2.2.20 and Proposition 2.2.4.

Finally, the argument for a23 and a32 is similar to that of a22, the only difference being that

the decoupling term (A0 − z)−1 is now absent. This completes the proof.

Proof of Theorem 2.4.20. We will start with the top left entry of (2.167). To qualify as a

resolvent of Ahom at z, the operator on the top left entry must take any given f ∈ L2(Qsoft)

to u, where u is the first entry of (u, û)T ∈ D(Ahom), and (u, û) is the unique solution to the

problem

(Ahom − z)

(
u

û

)
=

(
f

0

)
⇐⇒


˘

Âsoftu− zu = f,

−(Π̆stiff ∗)−1Γ̆soft
1 u+ Bû− zû = 0.

(D.4)

But we may rearrange the second line of the latter system:

(Π̆stiff ∗)−1Γ̆soft
1 u− (B − z)û = 0

⇔ Γ̆soft
1 u− (Π̆stiff)∗(B − z)û = 0

⇔ I︸︷︷︸
β1:=

Γ̆soft
1 u−(Π̆stiff)∗(B − z)Π̆stiff︸ ︷︷ ︸

β0:=

Γ̆soft
0 u = 0. (D.5)

That is, the mapping f 7→ u as described above, is precisely that of (
˘

Âsoft
β0,β1

− z)−1 ≡ R(z),

provided it exist. This means to check the conditions on β0 + β1M̆
soft(z) so that Theorem

2.2.16 applies: The condition on the domains of β0 and β1 are immediate as these are bounded

operators. The boundedness also implies that β0 + β1M̆
soft(z) (with its maximal domain) is

closed.

As for the boundedness of the inverse, it suffices to check that it is bounded below, since we

are working on a finite dimensional space H̆stiff. Just like in Theorem 2.3.4, it suffices to show

that the imaginary part is bounded below: Let ϕ ∈ Ĕ , then∣∣∣(Im [−(Π̆stiff)∗(B − z)Π̆stiff + M̆ soft(z)
]
ϕ, ϕ

)
Ĕ

∣∣∣
=
∣∣∣(Im [z(Π̆stiff)∗Π̆stiff + M̆ soft(z)

]
ϕ, ϕ

)
Ĕ

∣∣∣ as (Π̆stiff)∗BΠ̆stiff is self-adjoint.

=
∣∣∣Imz ((S̆soft(z̄))∗S̆soft(z̄)ϕ+ (Π̆stiff)∗Π̆stiffϕ, ϕ

)
Ĕ

∣∣∣ by Proposition 2.2.13(7).

= |Imz|
(
(S̆soft(z̄))∗S̆soft(z̄)ϕ, ϕ

)
Ĕ
+ |Imz|

(
(Π̆stiff)∗Π̆stiffϕ, ϕ

)
Ĕ

both operators are positive.

≥ |Imz| ∥Π̆stiffϕ∥2H̆stiff both operators are positive.
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≥ |Imz| ∥(Π̆stiff)−1∥−2

H̆stiff→Ĕ
∥ϕ∥2Ĕ . (D.6)

We have shown that R(z) exists, and equals Psoft(Ahom−z)−1Psoft. Next, we check the bottom

left entry of (2.167). This is the mapping f 7→ û, where (u, û) solves the system (D.5). But

we defined û = Π̆stiffΓ̆soft
0 u and have just shown that u = R(z)f , therefore

û = Π̆stiffΓ̆soft
0 R(z)f

= Π̆stiffΓ̆soft
0

[
R(z)− (Asoft

0 − z)−1
]
f as D(Asoft

0 ) = ker(Γ̆soft
0 ) by definition.

= Π̆stiffk(z)
[
R(z)− (Asoft

0 − z)−1
]
f.

The final equality holds by exactly the same argument as Proposition 2.4.9 (the term a21),

since the Krein’s formula is now applicable to R(z). We have shown that PH̆stiff(Ahom−z)−1Psoft

equals the bottom left entry of (2.167).

Next, we discuss the top right entry of (2.167). Similarly to R(z), this must take any

given f̂ ∈ H̆stiff to u, where u is the first entry of (u, û)T ∈ D(Ahom), and (u, û) is the unique

solution to the problem

(Ahom − z)

(
u

û

)
=

(
0

f̂

)
⇐⇒


˘

Âsoftu− zu = 0,

I︸︷︷︸
β1=

Γ̆soft
1 u = (Π̆stiff)∗(B − z)Π̆stiff︸ ︷︷ ︸

−β0=

Γ̆soft
0 u− (Π̆stiff)∗f̂ . (D.7)

We would like to put the system into the form (2.61), forcing us address the term (Π̆stiff)∗f̂ .

Using Proposition 2.4.15(5) (“furthermore” part), we find some v
f̂
∈ D(Asoft

0 ) satisfying

Γ̆soft
1 v

f̂
= (Π̆stiff)∗f̂ .

Now consider the function v = R(z)(Asoft
0 − z)v

f̂
. By applying Theorem 2.2.16 to R(z), we

know that v ∈ D(
˘

Âsoft,(τ)), and furthermore v solves the following system uniquely:(
˘

Âsoft − z)v = (Asoft
0 − z)v

f̂
,

β0Γ̆
soft
0 v + β1Γ̆

soft
1 v = 0.

Using the first line of the system, v
f̂
∈ D(Asoft

0 ), and Asoft
0 ⊂ ˘

Âsoft,

(
˘

Âsoft − z)(v − v
f̂
) = (Asoft

0 − z)v
f̂
− (

˘
Âsoft − z)v

f̂
= 0.

Using the second line of the system, v
f̂
∈ D(Asoft

0 ), and D(Asoft
0 ) = ker(Γ̆soft

0 ),

β0Γ̆
soft
0 (v − v

f̂
) + Γ̆soft

1 (v − v
f̂
) = −β0Γ̆soft

0 v
f̂
− Γ̆soft

1 v
f̂
= −Γ̆soft

1 v
f̂
= −(Π̆stiff)∗f̂ . (D.8)

In other words, if we define u ∈ D(
˘

Âsoft,(τ)) by u := v − v
f̂
= R(z)(Asoft

0 − z)v
f̂
− v

f̂
, then u

is a solution to the system (D.7). To show that the solution is unique, we consider the fully
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homogeneous case, f = 0 and f̂ = 0. But this can be viewed as a special case of (D.4), for

which uniqueness has been established by Theorem 2.2.16. We further compute

u =
[
R(z)− (Asoft

0 − z)−1
]
(Asoft

0 − z)v
f̂

= −Ssoft(z)P(τ)
(
β0 + M̆ soft(z)

)−1
P(τ)

(
Ssoft(z̄)

)∗
(Asoft

0 − z)v
f̂

By Krein’s formula.

= −Ssoft(z)P(τ)
(
β0 + M̆ soft(z)

)−1
P(τ)Γ̆soft

1 v
f̂

By Proposition 2.2.13(4)

= −Ssoft(z)P(τ)
(
β0 + M̆ soft(z)

)−1
P(τ)(Π̆stiff)∗f̂ Definition of v

f̂
.

=
(
k(z̄)

[
R(z̄)− (Asoft

0 − z̄)−1
])∗

(Π̆stiff)∗f̂ , (D.9)

where the last equality is proven in the same way as in Proposition 2.4.9(the term a12). Therefore

the expression for u does not depend on the choice v
f̂
, and coincides with the top right entry

of (2.167).

Next, we discuss the bottom right entry of (2.167). Similarly to the bottom left entry, we

use û = Π̆stiffΓ̆soft
0 u, and that u is given by (D.9) to see that

û = Π̆stiffΓ̆soft
0

(
k(z̄)

[
R(z̄)− (Asoft

0 − z̄)−1
])∗

(Π̆stiff)∗f̂

= Π̆stiffk(z)
(
k(z̄)

[
R(z̄)− (Asoft

0 − z̄)−1
])∗

(Π̆stiff)∗f̂ as D(Asoft
0 ) = ker(Γ̆soft

0 ).

Finally the show the self-adjointness of Ahom. Notice that the arguments provided above

implies that (Ahom − z) is surjective for all z ∈ C \R. As Ahom is symmetric by Lemma 2.4.19,

the conclusion follows from [22, Proposition 3.11].
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[17] McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge

University Press, Cambridge (2000)

[18] Oleinik, O. A., Shamaev, A. S., and Yosifian, G. A.: Mathematical Problems in Elasticity

and Homogenization. Vol. 26. Studies in Mathematics and its Applications. North-Holland

(1992)

[19] Oliveira, C. R.: Intermediate Spectral Theory and Quantum Dynamics. Vol. 54. Progress

in Mathematical Physics. Birkhäuser Basel (2009)
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