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Abstract—   The general purpose of this document is to develop a 

lightweight, portable ultrasound computer tomography system that 

enables non-invasive imaging of the inside of the human head with 

high resolution. The goal is to analyze the benefits of using a deep 

neural network containing CNN and LSTM layers compared to 

deterministic methods.  In addition to the CNN+LSTM and LSTM 

networks, the following methods were used to create tomographic 

images of the inside of the human head: Truncated Singular Value 

Decomposition, Linear Back Projection, Gauss-Newton with 

Regularization Matrix, Tikhonov Regularization, and Levenberg-

Marquardt. A physical model of the human head was made. Based 

on synthetic and real measurements, images of the inside of the brain 

were reconstructed. On this basis, the CNN+LSTM and LSTM 

methods were compared with deterministic methods. Based on the 

comparison of images and quantitative indicators, it was found that 

the proposed neural network is much more tolerant of noisy and non-

ideal synthetic data measurements, which is manifested in the lack 

of the need to apply filters to the obtained images. Significance: An 

important finding confirmed by hard evidence is the confirmation of 

the greater usefulness of neural models in medical ultrasound 

tomography, which results from the generalization abilities of the 

deep hybrid neural network. At the same time, research has shown a 

deficit of these abilities in deterministic methods. Considering the 

human head's specificity, using hybrid neural networks containing 

both CNN and LSTM layers in clinical trials is a better choice than 

deterministic methods. 

 
Index Terms— Brain imaging, speed of sound imaging, ultrasound 

computed tomography, neural networks, brain phantom  

I. INTRODUCTION 

HE quest for non-invasive, early, easily accessible, and 

effective diagnosis of various diseases has been a long-

standing challenge in the medical field. It is particularly critical 

for conditions that affect the human head, where the early 

detection of diseases can significantly improve patient 

outcomes. Among the conditions that can be diagnosed using 

tomography are hematomas, brain tumors, and cerebral 

hemorrhages. 

A. Motivation 

According to the World Health Organization (WHO), 

neurological disorders, which include various head diseases, are 

responsible for 12% of total deaths globally [1]. In 2019, stroke 

was the second leading cause of death, accounting for 

approximately 11% of all deaths. In absolute numbers, this 
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means 6.1 million people (WHO, Fact Sheets, 2020). This 

statistic underscores the importance of developing effective 

diagnostic tools for these conditions.  

B. Objective and Novelties 

The general aim of the research presented in this paper is to 

develop a lightweight, portable ultrasound computer 

tomography (USCT) system that enables non-invasive imaging 

of the inside of the human head in real time with a resolution 

that allows reliable identification of lesions. 

Hardware and software are the novelties that bring an 

original scientific contribution to the general state of 

knowledge. The first innovation is a prototype of a lightweight 

and portable hardware system that enables ultrasound 

tomography measurements without the need to transport the 

patient to the tomograph device. The second innovation is an 

algorithm based on a unique architecture of neural networks of 

various types. Thanks to the skillful combination of 

Convolutional Neural Network (CNN) layers and the Long 

Short-Term Memory (LSTM) layers, a noise-resistant 

algorithm with a high tolerance to interference was obtained, 

enabling the transformation of measurements into high-fidelity 

images [2]. The superiority of the new CNN+LSTM model was 

demonstrated through a comparative analysis of its 

reconstruction capabilities against those of a basic LSTM 

network [3], [4] and deterministic methods [5]. This evaluation 

encompassed the utilization of both synthetic and real data. 

It is important to acknowledge that the primary purpose of 

the study was not to construct a predictive model that 

outperforms all existing methods in terms of accuracy. The 

emphasis was placed on empirically validating the hypothesis 

that machine learning-based methods exhibit superior 

performance in comparison to deterministic approaches within 

the domain of USCT. Furthermore, the objective of the study 

was to clarify the precise characteristics that contribute to the 

aforementioned superiority that was observed. 

The results of the study suggest that the quality of raw images 

obtained using deterministic methods is notably lower in 

comparison to those acquired through the utilization of a 

combined approach involving Convolutional Neural Networks 

and Long Short-Term Memory networks (CNN+LSTM). While 

it is possible to implement customized filters in order to 

improve the quality of images in controlled laboratory settings, 
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achieving the same level of intervention may be impractical in 

real-world measurements. The aforementioned statement 

highlights the superiority of machine learning techniques, 

specifically the heterogeneous CNN+LSTM network, as 

supported by the empirical findings presented in this research. 

In short, this paper describes two new ideas: a prototype of a 

portable and light USCT system that gets rid of the need to 

move the patient to a stationary tomograph, and a special 

algorithm that combines CNN with LSTM layers to make high-

fidelity image reconstruction possible. 

II. LITERATURE ANALYSIS 

A. Foundational Research and Applications in USCT  

In recent years, ultrasound tomography has emerged as a 

promising technique for diagnosing head diseases. A 

pioneering study by Dines (1981) demonstrated the potential of 

computed tomography ultrasound to image the human head [6]. 

This pioneering work laid the groundwork for subsequent 

research in this field. Further advancements in this field have 

been made by integrating ultrasound tomography with other 

imaging techniques. For instance, Escott discussed the protocol 

for combining positron emission tomography with computed 

tomography for head and neck cancer imaging [7]. Moreover, 

in 2017 Tutschek et al. explored the use of computed 

tomography and ultrasound to determine fetal head station [8]. 

Although this study focused on obstetric applications, the 

techniques developed could potentially be adapted to diagnose 

head diseases. Research on ultrasound tomography for brain 

diseases has also been conducted. Von Ramm et al. discussed 

the application of ultrasound tomography for imaging the adult 

brain [9]. This work represents a significant step towards 

developing ultrasound-based techniques for diagnosing brain 

diseases.  

B. Technical Advancements and Methodological Refinements 

in USCT 

USCT is a rapidly evolving field with significant potential in 

medical imaging, particularly for diagnosing conditions 

affecting the human head. In "Ultrasound Modulated 

Bioluminescence Tomography," Guillaume Bal and John C 

Schotland propose a method to reconstruct the density of a 

luminescent source in a highly-scattering medium from 

ultrasound-modulated optical measurements [10]. This 

innovative approach leverages the interaction between 

ultrasound and light to enhance the imaging capabilities of 

USCT. Michel Gross, Philippe Goy, and Mohamed Al-Koussa 

further enhance the detection capabilities of USCT in their 

work, "Shot-noise detection of ultrasound-tagged photons in 

ultrasound-modulated optical imaging" [11]. Using a CCD 

camera, they propose a new method that allows for parallel 

speckle detection with optimum shot-noise sensitivity. This 

method could significantly improve the image quality and 

speed of USCT. In the paper titled "Acousto-electrical Speckle 

Pattern in Lorentz Force Electrical Impedance Tomography," 

Pol Grasland-Mongrain et al. explore the phenomenon of 

acousto-electrical speckle patterns within the context of Lorentz 

force electrical impedance tomography [12]. This phenomenon, 

driven by acoustic parameters but due to electrical impedance 

inhomogeneities, could provide new insights into interpreting 

USCT images. Tran Quang-Huy and colleagues propose a 

novel approach to image reconstruction in their work, 

"Deterministic Compressive Sampling for High-Quality Image 

Reconstruction of Ultrasound Tomography" [13]. They use 

chaos measurements in the detection geometry configuration 

and implement the image reconstruction process using L1 

regularization. This approach could enhance the quality of 

USCT images while reducing the computational complexity of 

the reconstruction process. In "Ultrasound modulated 

bioluminescence tomography and controllability of the 

radiative transport equation," Guillaume Bal, Francis J. Chung, 

and John C. Schotland propose a method to reconstruct the 

density of an optical source in a highly scattering medium from 

ultrasound-modulated optical measurements [14]. This work 

further demonstrates the potential of combining ultrasound with 

other modalities to enhance the capabilities of USCT. In 2021 

Carlos Cueto and colleagues introduced Stride, an open-source 

Python library for the solution of large-scale ultrasound 

tomography problems, in their work "Stride: a flexible platform 

for high-performance ultrasound computed tomography" [15]. 

This tool could significantly facilitate the development and 

application of USCT methods. In "Whole-Body Human 

Ultrasound Tomography," David C. Garrett and colleagues 

discuss the development of reflection and transmission modes  

[16]. This work represents a significant step towards the broad 

application of USCT in medical diagnostics. Ashkan 

Javaherian, Felix Lucka, and Ben Cox introduce finite-

frequency travel time tomography to medical ultrasound in their 

work "Refraction-corrected ray-based inversion for three-

dimensional ultrasound tomography of the breast" [17]. This 

method could enhance the accuracy of USCT and expand its 

applications. In "3D Wave-Equation-Based Finite-Frequency 

Tomography for Ultrasound Computed Tomography," N. Korta 

Martiartu, C. Boehm, and A. Fichtner introduce a robust 

framework for large-scale bent-ray ultrasound tomography in 

3D for a hemispherical detector array [18]. This work could 

significantly improve the spatial resolution and accuracy of 

USCT. Finally, in "Ultrasound Modulated Bioluminescence 

Tomography With A Single Optical Measurement," Francis 

Chung, Tianyu Yang, and Yang Yang propose an alternative 

solution for this inverse problem which requires only a single 

optical measurement in order to reconstruct the isotropic source 

[19]. This approach could simplify the USCT process and 

enhance its accessibility. These publications highlight the 

ongoing efforts in the scientific community to refine and 

improve the methods used in USCT. The paper [20] evaluates 

the ability of convolutional neural networks (CNNs) to classify 

and recognize ultrasound imaging of the hip joint in the 

diagnosis of pediatric dysplasia. The study used transfer 

learning CNNs such as GoogleNet, SqueezeNet, and AlexNet, 

with GoogleNet showing the most optimal results. Another 

example of the use of transfer learning in CNN can be found in 

[21]. In the publication [22], the LSTM network is used for the 

remaining useful life (RUL) prediction. The authors propose a 

health indicator construction method based on Stacked Sparse 
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Autoencoder (SSAE) and combine SSAE with the LSTM 

network to predict the remaining RUL. The paper adopts a 

multi-faceted approach to feature extraction and selection, 

ultimately integrating it with predictive modeling for enhanced 

accuracy and robustness. 

C. Integration of Machine Learning and Computational 

Methods in USCT 

As these methods continue to evolve, the potential of USCT 

as a non-invasive, accessible, and effective diagnostic tool 

becomes increasingly apparent. In "Neural Operator Learning 

for Ultrasound Tomography Inversion" (2023) by Dai et al., the 

authors apply neural operator learning to ultrasound computed 

tomography, specifically focusing on time-of-flight data [23]. 

They effectively learn the mapping between this data and the 

heterogeneous sound speed field, bypassing the need for 

computationally intensive iterative inverse problem-solving. 

The work "Interpretable and Intervenable Ultrasonography-

based Machine Learning Models for Pediatric Appendicitis" by 

Marcinkevičs et al. presents interpretable machine learning 

models for predicting the diagnosis, management, and severity 

of suspected appendicitis using ultrasound images [24]. This 

approach provides a valuable tool for clinicians to diagnose and 

manage this common pediatric condition. Noda et al., in their 

publication "Blind Signal Separation for Fast Ultrasound 

Computed Tomography," propose a method named FastUSCT 

to acquire high-quality images faster than traditional methods 

for ultrasound tomography [25]. This method concerns 

transmitting multiple ultrasound waves simultaneously to 

reduce imaging time and using UNet to separate overlapping 

waves. Shan et al.'s "Simultaneous reconstruction of the initial 

pressure and sound speed in photoacoustic tomography using a 

deep-learning approach" develops a novel data-driven method 

integrating an advanced deep neural network through model-

based iteration [26]. This approach allows for simultaneous 

photoacoustic tomography reconstruction of initial pressure and 

sound speed. Lastly, "Amortized Normalizing Flows for 

Transcranial Ultrasound with Uncertainty Quantification" by 

Orozco et al. presents a novel approach to transcranial 

ultrasound computed tomography that utilizes normalizing 

flows [27]. This method improves imaging speed and quantifies 

Bayesian uncertainty, offering the potential for real-time 

predictions.  

The publication [28] by Islam et al. serves as evidence that 

the idea of combining CNN and LSTM layers is present in the 

literature. The authors propose a deep learning-based approach 

for the detection of COVID-19 using X-ray images. The 

architecture combines CNN for feature extraction and LSTM 

for sequence analysis, achieving high diagnostic metrics 

including an accuracy of 99.4%. Another example of this idea 

is the paper [29] by Agga et al., which addresses the issue of 

short-term photovoltaic power prediction through a hybrid deep 

learning architecture consisting of CNN and LSTM layers. 

Utilizing a dataset from Rabat, Morocco, the paper 

demonstrates superior predictive performance in comparison to 

traditional machine learning and single deep learning models, 

as gauged by error metrics such as MAE, MAPE, and RMSE. 

The study [30] by Liu et al. delves into the problem of video 

decolorization, focusing on maintaining temporal consistency 

and local contrast in grayscale video frames. The research 

integrates CNNs and LSTMs in a novel architecture that not 

only encodes local semantic content but also refines it using bi-

directional LSTMs to mitigate flicker phenomenon and other 

temporal inconsistencies. The paper [2] by Kłosowski et al. 

(2023) presents research on the utilization of machine learning 

algorithms for moisture detection in building walls through 

Electrical Impedance Tomography (EIT). The study evaluates 

three separate neural network models—CNN, LSTM, and a 

hybrid model (CNN+LSTM)—using metrics such as MSE and 

correlation coefficient, concluding that the hybrid model offers 

significant advantages in solving the tomographic inverse 

problem. 

This work consists of five sections. Section I, Introduction, 

includes considerations such as motivation, the objective of the 

research, and novelties. Section II is a literature review 

concerning such topics as foundational research in USCT, 

technical advancements, and the integration of machine 

learning methods in USCT. Section III describes the technical 

details of the USCT device, transducers, and human head 

model. The method of transforming USCT measurements into 

images is also explained. Creating the training set used for 

neural network training is discussed. The deterministic methods 

used are described, and the architecture of the CNN+LSTM and 

LSTM models is outlined [28]. In Section IV, the results are 

presented in the form of reconstructions based on both synthetic 

and real data. Additionally, tabulated quality indicators for 

various reconstruction cases are presented. The conclusions 

included in Section V assume the paper. 

III. USCT DEVICE AND METHODS 

In medical imaging, USCT has potential to take a key 

position due to its non-invasive nature and potential for high-

resolution imaging. USCT constitutes a system comprising 

various key elements: transducers, an electronic setup 

facilitating data acquisition and processing, and the 

accompanying software designed for solving the inverse 

problem of transforming measurements into comprehensible 

images. This synthesis of hardware and software within the 

USCT system exemplifies an intricate balance, where the 

quality of the system's output is significantly dependent on the 

performance of its least efficient component. 

Transducers, the primary hardware components, act as the 

system's sensory organs, converting energy forms to generate 

and receive ultrasonic waves. The electronic subsystem of the 

USCT is another pivotal component. It enables the collection of 

raw data and initiates preliminary processing. Software, the 

final significant component, has the complex task of solving the 

inverse problem. It transforms the raw data acquired and 

initially processed by the electronic system into coherent, visual 

representations of the body's internal structures.  

A. USCT Hardware 

In the research and development laboratory of Netrix SA, 

our team designed and built a prototype USCT tomograph. The 
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ultrasonic tomograph is a robust, versatile tool configurable to 

work in two principal modes: full-waveform and transmission. 

The full-waveform mode provides raw data, while the 

transmission mode delivers processed time-of-flight (TOF) and 

pulse amplitude values. Transmission mode, with its reduced 

data size, offers a more expedient temporal frequency of 4 

frames per second (fps), compared to the full-waveform mode's 

0.08 fps. This efficiency makes it an ideal choice for real-time 

monitoring applications. 

When the tomograph operates in transmission mode, it 

measures the signal's travel time and amplitude. The minimum 

and maximum signal values are auto-detected, and the Analog-

Digital Converter (ADC) uses these values to convert the 

percentage value to a numerical one. A measurement window 

opens once the signal surpasses a set comparator threshold, 

within which the largest amplitude value is selected for 

processing to compute its time-of-flight. Conversely, when in 

full-waveform mode, the tomograph provides the complete 

waveform with an adjustable sampling frequency option. The 

USCT device block diagram is shown in Fig. 1. 

The USCT system's hardware design comprises 84 channels 

distributed over eight four-channel measurement cards. These 

cards are connected through an FD CAN bus to a measurement 

module, which is the interface between the microprocessor 

measuring system and the touch panel or an external control 

application. In this instance, the touch panel utilizes a 

Raspberry Pi 4B 2GB RAM board and a 7-inch capacitive touch 

screen. 

Each sensor within the system has its signal conditioning 

and measurement circuit. This arrangement allows for 

concurrent measurements for each excitation. The measuring 

cards can sample at a maximum rate of 4 Mega Bytes per 

Second (MBPS) per channel. Moreover, each channel has a 

separate generator for Alternating Current (AC) rectangular 

waveforms. This generator has an amplitude of up to 144V 

peak-to-peak (Vp-p) and an instantaneous current capacity of 3 

Amperes (A). 

Harmonic filtering is managed effectively within each 

channel through three eight-order filters. In addition, a two-

stage gain control is present in each channel: the first stage 

varies from +7.5dB to +55.5dB (as managed by the AD8331 

component), and the second stage offers a range of +6dB to 

+36dB, facilitated by the STM32's built-in Programmable Gain 

Amplifier (PGA). 

The device also houses a four-channel high-rectangular-

voltage generator capable of generating a three-stage square 

wave signal (Vpp–GND–Vnn) ranging from +100 Volts (V) to 

−100 V. This generator circuit comprises four–channel Metal–

Oxide–Semiconductor Field–Effect Transistor (MOSFET) 

drivers connected to double H bridges (component TC8220). 

The STM32G474 microcontroller within the device manages 

the synchronization of the converters and controls the 

generation of appropriate waveforms. 

The analog module is a subsystem designed to amplify the 

ultrasonic transmitting signal. It houses an integrated AD8331 

amplifier with gain control via an external Digital-Analog 

Converter (DAC), a system converting the AC signal to 

ADL5511 envelopes, and two THS4521 differential amplifiers. 

The output from this module is a symmetrical differential 

signal, which reduces noise due to the high-voltage generator 

being on the same Printed Circuit Board (PCB). The ADC 

converter speed sets the sampling frequency at 0.25 samples per 

micro-second. Finally, an integrated envelope converter 

converts an analogue acoustic signal into the envelope. 

The tomograph has small dimensions and is housed in a 

suitcase, which allows it to be transported in a car (Fig. 2). 

 

Fig. 2. Prototype of the portable ultrasonic tomograph device connected to 

the model of the human head 

An adult mannequin was used to design a human head 

model. Fig. 3 shows the head model with marked contact points 

for the USCT transducers. 

 

Fig. 3. Phantom head with markers 

 
Fig. 1. Ultrasonic tomograph block diagram 
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Fig. 4 shows the phantom head with a transmitter-receiver 

ultrasonic transducer generating a wave with a frequency of 40 

kHz. 

 

Fig. 5 shows the transducer with a plastic housing. 

B. Method of Image Reconstruction 

The software in the USCT system needs to be robust and 

advanced enough to manage and interpret vast volumes of 

complex data efficiently. The limitations of the software could 

potentially lead to inaccurate or low-quality imaging, despite 

the high functionality of the other components. Thus, each of 

the components above—electrodes, electronics, and software—

plays integral roles in the overall efficacy of the USCT system. 

The quality of the system is considerably dependent on the 

performance of its weakest component. Therefore, to ensure 

optimal functionality, each component within the USCT system 

must accomplish its respective tasks with high efficiency. 

In this study, transmission tomography was used, and the 

measurement data included time-of-flight (TOF) data. The 

differential measurement data 𝑇𝑂𝐹 is derived from the 

subtraction of the measurement values of the object containing 

phantoms 𝑇𝑂𝐹𝑖𝑛𝑐 from the background measurements 𝑇𝑂𝐹𝑏𝑎𝑐𝑘 

(object without inclusions). Moreover, the time data is 

expressed in microseconds (µs) [31]. 

𝑇𝑂𝐹 = 𝑇𝑂𝐹𝑖𝑛𝑐 − 𝑇𝑂𝐹𝑏𝑎𝑐𝑘  (1) 

In situations involving a travel-time delays model, it is 

possible to utilize a practical parameterization for the rays that 

relies on the ray-approximation methodology. 

𝛥𝑇 = ∫ 𝛥𝑡(𝑟) 𝑑𝑙
𝑟𝑎𝑦

 (2) 

The integral defined above is fundamentally reliant on a 

solitary ray trajectory, whereby 𝛥𝑇 corresponds to the measured 

delays in travel time (for instance, the discrepancies derived 

from subtracting reference data from actual experimental data), 

while 𝛥𝑡(𝑟) signifies the distribution of travel-time delays. 

Detailed explanations for Eq. (2) can be found in Section 2.2, 

'Simulation Forward Model,' in the paper [32].  

The Eq. (2) can be written as 𝛥𝑇 = ∫(𝛿𝑐(𝑙) 𝑐⁄ ) 𝑑𝑙 where 

𝛿𝑐(𝑙) is the slowness perturbation at arc length 𝑙 along the ray 

trajectory and 𝑐 is the average sound speed in the medium. This 

formula states that the TOF perturbation is equal to the integral 

of the slowness perturbation along the ray trajectory. The 

slowness perturbation is a measure of how much the sound 

speed is changed at a given point in the medium. 

The equation provided below succinctly explains the 

linearized representation of the quandary above. 

𝛥𝑇𝑚 =  ∑ 𝐽𝑚,𝑛

𝑁

𝑛=1

 𝛥𝑡𝑛 (3) 

Within Eq. (3), 𝛥𝑇𝑚 represents the temporal lags 

engendered by each nth transducer, where 1 <  𝑛 < 𝑁. 𝐽𝑚,𝑛 

indicates a weighted quantity that elucidates the influence of 

each distinct wave-ray on every pixel, a phenomenon termed as 

ray-pixel conjunction. 𝐽𝑚,𝑛 undergoes normalization between 0 

and 1, driven by the summative value across each pixel within 

the domain. Ultimately, 𝑡𝑛 demarcates the territory of the 

temporal lag distribution. This archetype exhibits simplicity 

when juxtaposed with the sound-speed model, as it eschews 

considerations related to the length of the rays and consequently 

bypasses transformation into the sound-speed domain. To 

decipher the inverse conundrum embedded in ultrasound 

tomography, we resort to the sound-speed schema, employing 

as our measurement the time-of-flight data 𝛥𝑇. Amplitude data 

can be uniformly employed to yield an acoustic attenuation 

map. The linear inverse dilemma in travel-time ultrasound 

tomography could be construed as the extraction of the 

alteration in pulse travel time 𝑦 = 𝛥𝑇, precipitated by a 

deviation in the measured boundary acoustic velocity x = 𝛥𝑠. 

Eq. (4) presents a linear equation that embodies the 

principal notion of the forward problem. The system matrix 𝐽 is 

calculated on the tenets of ray propagation in space, as 

expounded in the preceding discourse [32]. 

𝑦 =  𝐽 𝑥 + 𝑒 (4) 

In Eq. (4) 𝐽 constitutes the forward function and 𝑒 

encapsulates the noise infiltrating the measurements, 𝑥 is 

delineated as the changes in acoustic velocity schematic of the 

region under scrutiny across distinct, discrete instances. Here y 

represents the changes in measured TOF values.  The inverse 

predicament could be structured as follows: 

𝑥 ≈  𝐽−1 𝑦 (5) 

 

Fig. 4. Phantom head with 40kHz ultrasonic transducer 

 

Fig. 5. Ultrasonic transducer 40kHz with housings 
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In the conventional realm, acoustic tomography yields a 

markedly reduced tally of assessments to the quantity of image 

pixels destined for reconstruction. Hence, the sensitivity matrix 

denoted as 𝐽 diverges from a square matrix and lacks 

invertibility. Accordingly, the issue transmutes into a non-linear 

and ill-conditioned quandary, with a routine resolution strategy 

encompassing J's transpose matrix. This approach earns the 

appellation of 'linear back-projection reconstruction [33]. 

𝑥 ≈  𝐽𝑇 𝑦 (6) 

For image reconstruction, each transposed sensitivity matrix 

is subjected to multiplication by the corresponding sensor's 

attenuation value, individually projecting back onto the image 

plane. Subsequently, the aggregation of these matrices yields 

the back-projected acoustic speed or travel-time or dissipation 

distributions [34]. 

C. Forward Problem and Dataset Preparation 

An in-depth examination of the ultrasound measurement 

process is depicted in Fig. 6. The apparatus employed in this 

study could both emit and capture sound waves using individual 

transducers. 

Consequently, a comprehensive series of measurements was 

conducted to ascertain the flight time of sound waves between 

all transducers. It is important to note that each transducer was 

excluded from receiving its own signal during these 

measurements. Following this criterion, the total number of 

measurements required for a system 

comprising 16 transducers amounted 

to 162 – 16 = 240. However, by 

assuming that the TOF of sound 

waves remains unaffected by the 

direction of propagation (i.e., 𝑡𝑖,𝑗 =

𝑡𝑗,𝑖 where i,j are the numbers of 

transducers), the overall number of 

measurements can be halved, 

resulting in (256 − 16)/2 = 120. 

This calculation is determined by 

formula 𝑀 = (𝑛2 − 𝑛) 2⁄ , where n 

represents the number of transducers. USCT measurements are 

transformed into a finite element mesh with a resolution of 2811 

pixels. Each pixel gets a specific value in the form of a real 

number (regression problem). The value of a pixel is correlated 

with the speed of sound characteristic of the material medium 

to which a given pixel belongs. Matlab software with the 

EIDORS (eidors3d.sourceforge.net) toolbox was used to 

transform USCT measurements into finite element tomographic 

images. 

The visualization presented in Fig. 6 portrays the 

measurement grid density juxtaposed against the backdrop of 

the cross-section of the tested model resembling a human head. 

Within the realm of ultrasonic tomography, a remarkable 

phenomenon is leveraged: the dynamic variability of sound 

wave propagation speed contingent upon the surrounding 

environment. It is worth emphasizing that this propagation 

speed is intricately linked to time, thereby obviating the need 

for the USCT system to engage in the arduous task of directly 

calculating wave propagation speed. Instead, the focus lies on 

estimating the precise time required for the sound wave to 

traverse the space between individual transducers. An aspect 

illustrated in Fig. 6 is the presence of a phantom situated within 

the sculp, acting as a conduit through which the sound wave 

traverses, with profound implications for the measurement 

process.  

Fig. 7 shows a single simulation case in which, solving a 

forward problem, a 120-value measurement vector was 

assigned to a random phantom plotted on a finite element mesh 

[35]. A total of 35,000 synthetic training cases were created, 

with 4,000 of these specifically set aside for validation 

purposes. 

D. Deterministic Methods of Transforming Measurements 

Into Images 

In order to assess the effectiveness of the proposed neural 

network architecture containing both CNN and LSTM layers, 

images were reconstructed using a homogenous LSTM model 

and popular deterministic methods: Truncated Singular Value 

Decomposition (TSVD), Linear Back Projection (LBP), Gauss-

Newton (GN) with Regularization Matrix, Tikhonov 

Regularization (TR), and Levenberg-Marquardt (LM). 

Singular Value Decomposition (SVD) is a mathematical 

technique that can decompose a matrix into three other 

matrices. In the context of tomography, TSVD is used to solve 

the inverse problem. The main idea is to truncate or ignore the 

 

Fig. 6.  The way of creating the UST measurements 

 

 
 (a) (b) 

Fig. 7. An observation created with the simulation method of UST: (a) – a random phantom plotted on a 

finite element mesh, (b) – 120 TOF measurements between different pairs of transducers 
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smaller singular values, which often correspond to noise. The 

general SVD decomposition of a matrix 𝐽  can be represented 

as follows [36]: 

𝐽 = 𝑈Σ𝑉𝑇 (7) 

where 𝑈  and 𝑉  are orthogonal matrices, and Σ is a diagonal 

matrix containing the singular values of 𝐽 . The truncated SVD 

solution to the inverse problem 𝐽𝑥 = 𝑦  can be represented as: 

𝑥𝑇𝑆𝑉𝐷 = 𝑉Σ𝑡𝑟𝑢𝑛𝑐
† 𝑈𝑇𝑦 (8) 

where Σ𝑡𝑟𝑢𝑛𝑐
† 

 is the inverse of the truncated singular value 

matrix. 

Linear Back Projection (LBP) is a simple and intuitive 

method used in tomography. The basic idea is evenly 

distributing the measured projection value along the projection 

line. This method can be computationally efficient but often 

results in blurred images, the same as equation (6), 

normalization of the Jacobian matrix helps with more stable 

LBP reconstruction. The formula for the implemented back-

projection is [37]: 

𝑥 = ( 𝐽𝑛)𝑇 𝑦 (9) 

where 𝐽𝑛  is the column-normalized sensitivity matrix, and 𝑦  is 
the residual vector (differences between two TOF values). 

The Gauss-Newton (GN) algorithm is used for non-linear 

least squares problems. In the context of tomography, a 

regularization term is often added to stabilize the solution. 

The Gauss-Newton update rule with a regularization matrix 

𝑅 can be written as [38]: 

𝑥 = ( 𝐽𝑇𝐽 + 𝜆𝑅 )−1 𝐽𝑇𝑦 (10) 

where 𝐽 is the Jacobian matrix, 𝜆 is the regularization parameter, 

𝑦  is the residual vector, and 𝑥  is the update to the parameter 

vector. 

Tikhonov Regularization (TR) is a method used to stabilize 

inverse problems. The idea is to balance fitting the data and 

keeping the solution smooth. The solution to the TR problem 

can be written as [39]: 

𝑥𝑟𝑒𝑔 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

{ ‖𝐽𝑥 − 𝑦‖2
2 + 𝜆2‖𝐿𝑥‖2

2 } (11) 

where 𝐽  is the system matrix, 𝑦  is the measured data, 𝜆 is the 

regularization parameter, and  𝐿  is the regularization matrix, in 

this case a Laplacian operator. 

The Levenberg-Marquardt (LM) method is an algorithm 

used for solving non-linear least squares problems. It can be 

seen as a combination of the Gauss-Newton method and the 

method of gradient descent. The Levenberg-Marquardt update 

rule can be written as [40]: 

𝑥 = ( 𝐽𝑇𝐽 + 𝜆𝐼)−1 𝐽𝑇𝑦 (12) 

where 𝐽  is the Jacobian matrix, 𝐼 is the identity matrix, 𝜆 is the 

damping factor, 𝑦  is the residual vector, and 𝑥  is the update to 

the parameter vector. 

E. Neural network CNN+LSTM approach 

The structure of the considered CNN+LSTM neural network 

is listed in Table I. The network has as many as 57.2 million 

total learnables. 

The deep and varied network architecture is a comprehensive 

combination of multiple layers, each playing a vital role in 

processing and learning from the input data. The network starts 

with a sequence input layer, which accommodates sequence 

inputs with 120 measurements. This approach enables the 

network to handle sorted data or any sequence-based data 

effectively, potentially enhancing its performance on such data 

types.  

The first transformation applied to the input is a 1-D 

Convolution, involving 64 filters of size 3×120, with a stride of 

1, and a 'same' padding, which ensures the output has the same 

width as the original input. This layer extracts local features 

through convolution operations, with two instances escalating 

the complexity of learned features. Their kernel size and 

padding ensure a receptive field adept at capturing local 

patterns without altering the spatial dimensions. This layer's 

output is normalized by the batch normalization layer with 64 

channels. This normalization process improves the network's 

speed, performance, and stability. After normalization, the 

network employs a ReLU (rectified linear unit) activation 

function, which is a popular choice for introducing nonlinearity 

without impacting the receptive fields of the convolution layer. 

The first dropout layer drops out 20% of the input data to 

prevent overfitting. Dropout is a well-known regularization 

technique that randomly nullifying some of the layer's outputs 

to make the model more robust and less prone to overfitting. 

Following the same pattern, the next layers consist of another 

1-D Convolution with 128 filters of size 3×64, a stride of 1, and 

'same' padding, followed by batch normalization with 128 

channels, another ReLU activation, and another dropout at 

20%. The model then transitions to the LSTM (Long Short-

Term Memory) layer with 2048 hidden units. LSTM layers are 

excellent for handling sequence data over long periods of time, 

as they can remember important information and forget 

irrelevant data, making them especially useful for sequence 

prediction tasks. A subsequent dropout layer with a 20% 

TABLE I 

CNN+LSTM NETWORK ARCHITECTURE 

No Layer Description 

1 Sequence Input Sequence input with 120 dimensions 

2 1-D Convolution 
64 3x120 convolutions with stride 1 and 
padding 'same' 

3 
Batch 
Normalization 

Batch normalization with 64 channels 

4 ReLU ReLU 

5 Dropout 20% dropout 

6 1-D Convolution 
128 3x64 convolutions with stride 1 and 
padding 'same' 

7 
Batch 
Normalization 

Batch normalization with 128 channels 

8 ReLU ReLU 

9 Dropout 20% dropout 

10 LSTM LSTM with 2048 hidden units 

11 Dropout 20% dropout 

12 LSTM LSTM with 2048 hidden units 

13 Dropout 20% dropout 

14 Fully Connected 2811 fully connected layer 

15 Regression Output mean-squared-error as the Loss function 
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dropout rate follows the first LSTM layer.  

Another LSTM layer with 2048 hidden units is present, 

followed by a corresponding dropout layer, maintaining the 

pattern of alternation between computational and regularization 

layers. Two LSTM layers, with differing output modes, ensure 

a robust comprehension of temporal dynamics. The penultimate 

layer is a fully connected layer with 2811 units, integrating the 

learning from previous layers to perform more complex 

decisions. This layer consolidates learned features into a format 

amenable to the regression task. The architecture concludes 

with a regression output layer, which uses mean squared error 

as the loss function to optimize the model's performance. This 

final layer minimizes the average squared difference between 

the actual and predicted output. 

This architecture has been crafted to effectively process 

sequence-based inputs, with convolution layers catering to 

localized features and LSTM layers to sequential dependencies. 

Dropout layers interspersed throughout the network help 

mitigate overfitting, making this model both robust and capable 

of handling complex patterns in data. The tradeoff between 

depth and breadth, local feature learning, sequence learning, 

and overfitting prevention all potentially contribute to the 

network's effectiveness. However, the model's performance is 

ultimately data-dependent, so it has been validated through 

actual reconstructions obtained from measurements from a 

physical object. 

The training of the described neural network follows a 

meticulous and well-defined process using the Adam 

optimization algorithm, which combines the advantages of two 

other extensions of stochastic gradient descent: AdaGrad and 

RMSProp [41]. Adam is known for handling sparse gradients 

on noisy problems, making it a suitable choice. The number of 

epochs was large, enabling the network to learn complex 

patterns from the data, given sufficient diversity in the dataset.  

The data is divided into mini-batches of size 64 for each 

iteration of training. This approach, known as mini-batch 

gradient descent, compromises computational efficiency and 

the reliable convergence characteristics of stochastic gradient 

descent. Validation data is provided and used to evaluate the 

model's performance on unseen data at every 100 epochs. The 

training algorithm shows validation patience of 20 epochs, i.e., 

the training will stop if the validation loss does not decrease for 

20 consecutive validation checks. This approach is a type of 

early stopping and effectively prevents overfitting and 

unnecessary continuation of training.  

The initial learn rate is set to 0.001, which determines the 

step size at each iteration while moving towards a minimum 

loss function. The learning rate is modulated according to a 

'piecewise' schedule, where it drops by a factor of 0.2 every 5 

epochs. This approach allows the model to make large changes 

to the weights at the beginning and gradually smaller changes 

as the training progresses. The data is shuffled after every 

epoch, which contributes to the model's robustness by ensuring 

that the gradient descent does not settle into a local minimum 

based on the order of the input data. The described training 

process is optimized to ensure effective training of the model.  

The Adam optimizer, mini-batch gradient descent, many 

epochs, early stopping, learning rate scheduling, and data 

shuffling contribute to robust and potentially successful 

training. However, the effectiveness depends on the nature and 

complexity of the data and the task at hand. 

When designing the architecture of the neural network, 

previous experience was taken into account, which showed that 

both one-dimensional convolutional layers and recurrent LSTM 

networks work well for tomographic problems. In order to 

combine the advantages of both of these structures, the 

CNN+LSTM network was created. The order and number of 

layers were selected experimentally. In order to optimize 

hyperparameters such as "probabilities" in dropout layers, the 

number of filters in convolutional layers, and the number of 

hidden units in LSTM layers, the Experiment Manager 

application, which is part of the Matlab package, was used. An 

optimization strategy called exhaustive sweep was used. The 

exhaustive sweep strategy in MATLAB is a technique used to 

search the hyperparameter space during machine learning or 

deep learning. When using this strategy, MATLAB executes 

the experiment for each possible combination of 

hyperparameter values specified in the hyperparameter table. 

F. LSTM approach 

 The provided information in Table II illustrates the structural 

composition of a homogeneous neural network, wherein LSTM 

layers are exclusively employed, and convolutional layers are 

absent. These are the same LSTM layers used in the 

CNN+LSTM model, but the network has been simplified by 

removing the 1-D Convolution, Batch Normalization and ReLU 

layers. Both the training data and the learning process 

parameters are the same as those used in the previous 

CNN+LSTM model.  

 

IV. RESULTS AND DISCUSSION 

In order to assess the quality of the CNN+LSTM and LSTM 

neural models using quantitative criteria, synthetic 

measurements are necessary. Comparison of the obtained 

reconstruction images with the model (reference) images 

enables the use of indicators considered standard in 

tomographic examinations. 

A. Reconstructions from synthetic measurements 

Fig. 8 shows reconstructions based on synthetic test 

measurements. The first column, labelled "Patterns", displays 

randomly generated pattern images, from which measurements 

were computed to tackle a forward problem. The second 

column shows the results of the CNN+LSTM network, while 

TABLE II 

LSTM NETWORK ARCHITECTURE 

No Layer Description 

1 Sequence Input Sequence input with 120 dimensions 

2 LSTM LSTM with 2048 hidden units 

3 Dropout 20% dropout 

4 LSTM LSTM with 2048 hidden units 

5 Dropout 20% dropout 

6 Fully Connected 2811 fully connected layer 

7 Regression Output mean-squared-error as the Loss function 
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the next six columns show the USCT reconstructions made 

using homogenous LSTM and deterministic methods (Gauss-

Newton, LBP, LM, Tikhonov, and TSVD). Only one 

measurement case is shown in Fig. 8. Other reconstructions 

containing different numbers of phantoms look very similar, so 

the case shown in Fig. 8 can be treated as representative. The 

top row shows the raw images obtained directly by converting 

the measurements to tomograms. In the bottom row of Fig. 8, 

the same images are improved by data filtering. The 

reconstructions obtained by deterministic methods were tried to 

be improved using Gaussian filtering and Mexican Hat filtering, 

with better results obtained using the latter method [42]. It is 

clear that, in the case of unfiltered images, the CNN+LSTM 

method definitely and indisputably outperforms the 

homogenous LSTM and deterministic methods. In the case of 

filtered reconstructions, the differences are less noticeable. 

Since the human eye is not a reliable and unambiguous 

measure of image fidelity, four quantitative measures were 

used. The inaugural metric used for the assessment of the 

tomographic reconstructions was the mean square error (MSE) 

computed by Eq. (13) 

MSE =  ∑
(𝑥𝑖 − 𝑥𝑖

∗)2

𝑘

𝑘

𝑖=1

 (13) 

where 𝑥𝑖 symbolizes the pattern image composed of 𝑛 pixels, 𝑥 

represents the reconstructed image. The image resolution 𝑘 =
2811.  

The subsequent metric was the peak signal-to-noise ratio 

(PSNR), delineated by Eq. (14). 

PSNR = 10 ∙ log10(𝑅2/𝑀𝑆𝐸) (14) 

For this investigation, we selected 𝑅 = 1, where 𝑅 

signifies the maximum permissible fluctuation in the 

pixel value utilized to generate the input image. PSNR 

gauges the signal emanating from the noise in the ultimate 

reconstructed image. A superior PSNR value indicates a 

higher-quality image. 

An additional indicator employed to evaluate the 

proposed method is the structural similarity index (SSIM) 

[43]. SSIM is distinctive in that it amalgamates three 

features into a singular indicator. Quantities such as 

contrast, local image structure, and luminance are 

compiled into one synthetic measure. The feature referred 

to as “structure” is the intensity patterns of the finite elements 

of the FEM mesh, which consider the adjacent pixels. 

Structures are normalized in terms of luminance and contrast. 

The human visual system is adapted to observe structural 

differences, which is why the SSIM index aligns with human 

assessment. In the context of tomography, this is a specific 

advantage. The indicator is defined by Eq. (15) 

SSIM =
(2𝜇𝑥∗𝜇𝑥 + C1)(2𝜎𝑥∗𝑥 + C2)

(𝜇𝑥∗
2 + 𝜇𝑥

2 + C1)(𝜎𝑥∗
2 + 𝜎𝑥

2 + C2)
 (15) 

where 𝜇𝑥∗ , 𝜇𝑥, 𝜎𝑥∗ , 𝜎𝑥 𝑎𝑛𝑑 𝑥 are the local means, standard 

deviations, and cross-covariances for images 𝑥∗, 𝑥; 𝐶1 =
(0.01 ∙ 𝐿)2 and 𝐶2 = (0.03 ∙ 𝐿)2. If the pixel values are within 

the range (0,1), as is the case here, then 𝐿 = 1. 

The final measure utilized in this research is the image 

correlation coefficient (ICC), which is calculated according to 

Eq. (16) 

ICC =
∑ (𝑥𝑖 − 𝑥̅)(𝑥∗

𝑖 − 𝑥∗̅̅ ̅)𝑘
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑘
𝑖=1 ∑ (𝑥∗

𝑖 − 𝑥∗̅̅ ̅)2𝑘
𝑖=1

 
(16) 

where 𝑥∗̅̅ ̅ and 𝑥̅ are the distributions of the average values of the 

reconstructed and reference images, respectively. 

Table III displays the mean values of the metrics (MSE, 

PSNR, SIMM, and ICC) for a dataset consisting of 4,000 

validation cases. These cases were not utilized in the process of 

training the neural network.  

The index values for the variant of unfiltered reconstructions 

are placed in the upper rows of Table III. The bottom four rows 

show indicators for enhanced images. Bold values indicate how 

the given indicator achieved the best value. For MSE, the 

smaller the value, the better the reconstruction. The higher the 

 

Pattern CNN+LSTM LSTM Gauss-Newton LBP LM Tikhonov TSVD 

 

no filtering 

       
after filtering 

       
Fig. 8. Comparison of reconstructions from synthetic measurements; images made with deterministic methods (GN, LBP, LM, Tikhonov, and TSVD)  

were filtered with the Mexican Hat method; CNN+LSTM and LSTM images have been enhanced with a simple cutoff filter. 

 

TABLE III 

COMPARISON OF THE RECONSTRUCTIONS THROUGH INDICATORS 

Variant Metrics 
CNN+ 
LSTM 

LSTM 
Gauss-
Newton 

LBP LM 
Tikho-

nov 
TSVD 

no 
filtering 

MSE 0.002 0.003 0.006 0.008 0.007 0.006 0.006 

PSNR 26.98 25.86 21.95 20.87 21.64 22.09 22.24 
SIMM 0.707 0.516 0.300 0.212 0.283 0.300 0.292 

ICC 0.901 0.874 0.665 0.608 0.649 0.662 0.671 

after 
filtering 

MSE 0.002 0.003 0.008 0.010 0.008 0.007 0.007 

PSNR 27.10 26.96 21.32 20.28 21.01 21.51 21.84 
SIMM 0.772 0.723 0.721 0.676 0.699 0.735 0.755 

ICC 0.904 0.898 0.935 0.889 0.929 0.917 0.913 
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PSNR, SIMM, and ICC indicators, the better. For ICC, a special 

case of the Pearson correlation coefficient for images, high 

values (close to +1) indicates a strong agreement between two 

images, while values close to −1 indicate inverse solid 

relationships. Values near 0 suggest a lack of correlation. 

In evaluating image processing techniques using the 

provided dataset, we observed distinct performance 

characteristics under two scenarios: images without filtering 

and images post-filtering. For unfiltered images, two methods, 

namely CNN+LSTM and LSTM, demonstrated superior 

performance concerning Mean Squared Error (MSE), all 

yielding the lowest values. It suggests that these methods 

exhibit the least amount of error. Regarding the Peak Signal-to-

Noise Ratio (PSNR), the CNN+LSTM method outperformed 

all other methods, indicating the highest signal-to-noise ratio. 

For the SIMM metric, the CNN+LSTM method also ranked 

highest. This is significant because SIMM is the metric most 

akin to human perception. In terms of ICC, the CNN+LSTM 

method showed the second most optimal performance, which 

does not change the fact that in the overall comparison, the 

heterogeneous CNN+LSTM model turned out to be the clear 

winner. 

In the scenario involving filtered images, both the 

CNN+LSTM and LSTM methods maintained the lowest MSE 

values, thereby continuing to exhibit the least amount of error. 

In the case of PSNR, the CNN+LSTM method retained its 

superior performance, providing the highest signal-to-noise 

ratio. When evaluating the SIMM metric, the CNN+LSTM 

method again ranked highest. However, we observed a slight 

deviation from the previous trend with the ICC metric. The 

Gauss-Newton method demonstrated the highest performance, 

although the differences with the Levenberg-Marquardt, 

Tikhonov, TSVD, and CNN+LSTM methods are insignificant. 

The CNN+LSTM method showed the second most optimal 

performance, which does not change the fact that in the overall 

comparison, the heterogeneous CNN+LSTM model turned out 

to be the clear winner. All deterministic methods achieved 

𝐼𝐶𝐶 > 0.9, so the results can be considered correct. LSTM also 

showed high quality, obtaining an ICC close to 0.9. 

In conclusion, an overarching analysis of the performance 

metrics across filtered and unfiltered images suggests that the 

CNN+LSTM method consistently demonstrates robust 

performance across all metrics. Nevertheless, it is noteworthy 

that the Levenberg-Marquardt method exhibits significant 

competence with the ICC metric in the context of filtered 

images. These findings underscore the importance of method 

selection in image processing, which is contingent upon the 

specific requirements of the task, the metrics prioritized, and 

the nature of the images, whether filtered or unfiltered. 

In light of the obtained results, the CNN+LSTM method 

demonstrates substantial resilience to noise, coupled with a 

significant capacity for generalization. This robustness enables 

it to process and interpret data effectively, even when it 

considerably deviates from the training dataset. Such an 

attribute is particularly beneficial in image processing, where 

the ability to adapt to various data is paramount. Contrarily, 

deterministic methods do not appear to exhibit the same 

adaptability or effectiveness without image filtering. Their 

performance seems to be reliant on the precondition of image 

filtering, without which their utility is limited. These findings 

highlight the inherent distinction between machine learning 

methods such as CNN+LSTM, which can learn and adapt from 

data, and deterministic methods, whose performance is more 

rigid and constrained by their predefined rules and assumptions. 

Therefore, in scenarios that involve diverse and noisy 

datasets, the use of adaptable machine learning methods like 

CNN+LSTM may be more favorable than deterministic 

methods, emphasizing the importance of selecting the 

appropriate method based on the specific characteristics of the 

data and the task at hand. 

B. Reconstructions from actual measurements 

Figs. 9 and 10 show three identical measurement cases, 

respectively. However, Fig. 9 shows unfiltered reconstructions, 

while Fig. 10 shows images subjected to methods improving 

their readability. As in the case of synthetic measurements, the 

high efficiency of the CNN+LSTM network for imaging raw, 

unfiltered tomograms is noteworthy. Since the reconstructions 

in question were made based on actual measurements obtained 

using a physical model of the human head, it is not possible to 

compare the obtained results with reference measurements. In 

the case of a real object, such as a human head, performing a 

reference (background) measurement is impossible. In the case 

of a physical model, you can perform a reference measurement 

by removing all phantoms from the head model. This results in 

a differential measurement (∆𝑥 = 𝑥𝑟𝑎𝑤 − 𝑥𝑟𝑒𝑓), where 𝑥𝑟𝑎𝑤  is 

a raw measurement and 𝑥𝑟𝑒𝑓  is the reference measurement 

vector, so theoretically, the phantom-free reconstruction pixels 

have zero values while the inclusion pixels are non-zero. In this 

case ∆𝑥 = 𝑇𝑂𝐹 (see Eq. 1), so if the phantoms are used to slow 

down the sound waves relative to the surrounding medium, then 

the phantom pixels in the tomograms will have positive values 

(TOFphantom > 0), and the inclusions will be red in the images. 

If (TOFphantom < 0), the phantoms would be blue. The 

phantoms in the images are red, which means that the gel 

contained in the balloons slows down the sound waves relative 

to the tap water. The Matlab Parula colormap was used in this 

study but can be changed based on subjective choice. 

It should be considered that it is impossible to make a 

reference measurement of a living human head. A synthetic 

reference measurement should be used to obtain a tomographic 

reconstruction performed in clinical conditions, which will 

certainly not perfectly reflect the physical conditions of the 

human head. For this reason, the CNN+LSTM neural network 

with a high generalization ability, tolerating deviations from the 

data on which it was trained, has a much greater potential for 

generating faithful reconstructions than deterministic methods. 

V. CONCLUSION 

This research conducted a comparative analysis of machine 

learning and deterministic methods in medical applications 

related to ultrasonic brain tomography. A deep neural network 

model, comprising both Convolutional Neural Network (CNN) 
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and Long Short-Term Memory (LSTM) layers, was compared 

with five popular deterministic methods (Gauss-Newton, LBP, 

Levenberg-Marquardt, Tikhonov, and TSVD) and a 

homogenous LSTM network. The development of a properly 

functioning neural model requires the tuning of numerous 

parameters. Learnables are variables determined by the network 

architecture and optimized during training. However, more 

critical are the preparation of an appropriate training set, the 

development of network architecture, and the establishment of 

the training process workflow. 

The current study demonstrated that it is possible to train a 

heterogenous neural model containing CNN and LSTM layers 

that outperforms both homogenous LSTM and deterministic 

methods. Particularly noteworthy is that reconstructions 

obtained by the five deterministic methods differed little from 

each other. The CNN+LSTM model's greatest advantage was 

its resilience to measurement disturbances and values deviating 

from the ideal training data derived mathematically. It is 

particularly relevant because in the subsequent phase, which 

will involve clinical trials, it will not be possible to precisely 

determine the background measurement vector. In such a case, 

the generalization ability of the CNN+LSTM model will gain 

importance. 

Ultrasound tomography holds great promise for the non-

invasive, early, easily accessible, and effective diagnosis of 

various head diseases. Continued research in this field is 

necessary to refine these techniques further and expand their 

clinical applications. Future research will focus on using multi-

network models capable of selecting (categorizing) the optimal 

neural network for use in a specific measurement case. 
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