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Abstract

Several studies have reported that task instructions influence eye-movement behavior during static image observation. In
contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’
beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched
short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual
attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the
clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to
judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that
observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the
goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic
amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s
beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily
correlate with eye-movement behavior.
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Introduction

Eye-movements are involved in virtually all human activities.

Because of limited retinal resolution and limited processing

resources, seeking out information in a dynamic visual scene to

support ongoing cognitive and behavioral activities requires

constant redirection of gaze and attention. Indeed, there is strong

empirical support showing a correspondence between eye-

movements and a variety of demanding cognitive tasks [1–3].

The key concern of the present study is to address the following

question: Given the need to redirect attention to ongoing tasks in

visual scenes, how do we prioritize visual information that may be

of relevance to the task at hand given the wealth of potentially

relevant information that can be attended to at any one time?

Thus far, there have been two distinct theories of human

attentional allocation and eye-movement control, and they make

different claims about how prioritization of visual information

processing is achieved. This can either be through top-down, goal-

driven attentional selection or else via bottom-up stimulus-driven

attentional selection. In the latter case, in its most extreme

formulation, this approach proposes that eye-movements are

purely stimulus-driven [4–10]. Influential computational models

built on this premise implement the idea that our eyes are

automatically attracted toward the most visually salient regions in

a scene [4–6]. This implies the existence of topographically-

organized ‘saliency maps’ of the scene which assign salience values

to low-level visual features (image intensity, edge orientation,

color, and motion). The contrary extreme top-down account

instead proposes that observer’s fixations are purely controlled by

goal oriented, top-down mechanisms [11–14]. Support for the

latter hypothesis comes from evidence that eye-movements are

strongly influenced by cognitive factors, such as contextual

meaning, the observer’s knowledge, and the demands of the task

[2,3,11–22]. In particular, for complex natural scene viewing, the

claim is that visual saliency has a limited role in the guidance of

our gaze, and that our gaze is directed toward sites that are

important for understanding the meaning of the scene in the

context of the ongoing task [11–13].

Given these competing approaches to understanding attentional

allocation and eye-movement control, the primary concern of the

present study is to investigate the effects of goal specificity on gaze

control during natural, complex, dynamic scene-observation.

Some work has already shown that task instructions can modulate

observers’ eye-movement behavior [15–22]. For example, observ-

ers were told to either 1) memorize a scene for a later memory test,

2) search for a target object, or 3) freely view the scene without a

particular goal in mind (free viewing). Contrasting with the

memorizing task and the free viewing instruction, gaze allocation

was specifically directed towards target objects only during the

target objet search, i.e. when instructed to locate a specific object

in the scene. More generally this implies that the specificity of the
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goal influences the way in which observers focus their gaze in a

scene. However, to date, evidence indicating the influence of goal-

specificity on gaze control is limited to studies using static scenes as

visual stimuli [15–21], which leaves open the question as to

whether this generalizes to dynamic scenes.

One reason that may limit the extent to which findings from

static scenes generalize to dynamic scenes is that motion and

temporal changes are strong predictors of eye-movement behavior

e.g. [8,23,24]. This implies that a bottom-up mechanism driven by

motion signals may play a dominant role in controlling gaze in

dynamic scenes, in which case we would not expect to find goal

specificity influencing eye-movements in dynamic natural scenes.

In addition, dynamic scenes also differ from static scenes in

consequence of the potential for temporal changes of location of

task-relevant information. For instance, eye-movements have been

recorded while observers are engaged in natural visuomotor tasks

such as driving, walking, sports, making tea or making sandwiches

[25–32]. These natural dynamic environments reveal an impor-

tant aspect of eye-movement control, namely that eye-movements

are tightly linked in time to the onset of the task. In general, these

studies show that eyes are directed towards points in the scene that

are most important for the spatiotemporal demands of the ongoing

motor task. One concern with these studies is, however, that the

changes in location of contextually-relevant points in the visual

scene are entirely under the control of the observers taking part in

the visuomotor tasks. This raises the question of how we adapt our

gaze behavior with respect to the ongoing task in situations in

which the task-relevant location changes independently from

observer’s intention.

To bring clarity to the issues raised here concerning the

influence of goal specificity on the processing of sequential

information acquisition in dynamic natural scene viewing, the

present study sets out to manipulate the goal-specificity of visual

tasks in the context of the specific dynamic environment of

recorded sport video. Eye-movements were thus recorded during

the observation of video clips of singles tennis matches. In contrast

to the types of static images used in previous studies to examine

eye movement behavior in complex scenes, the tennis clips used in

the present study included strong motion signals (ball and players).

In addition there are several points where the ball’s motion

changes abruptly either from a player’s hit or a bounce on the

court/net, both of which are meaningful in the game context. We

examined how the specificity of the goal modulates gaze guidance

in a dynamic scene where contextually meaningful sites which can

rapidly change in location over time. Goal specificity was

manipulated in the following manner. We firstly presented

observers with instructions simply to observe the scene, which

we hypothesized would encourage purely stimulus-based process-

ing of the scene (Non specific goal - NSG). We secondly presented

observers with instructions to observe the scene with the purpose

of answering a specific question at the end of the observation,

which we hypothesized would encourage task-based top-down

processing (Specific goal - SG).

The experiment was divided into two blocks (Figure 1). The first

block (Block 1) consisted of 40 trials and was directly followed by

the second block (Block 2) consisting of 20 trials. For both blocks,

in every trial observers were presented with a short clip of a singles

tennis match in which a point was played (25 Hz, 7206576 pix-

els/frame, mean 6 SD = 9.361.7 s, with audio footage). In Block

1, 10 clips were presented four times in a blocked random order.

In Block 2, 20 clips were presented once in random order. In Block

2, four out of 20 clips were selected from the clips presented in

Block 1 and so were familiar to observers (familiar footage), and the

remaining 16 clips were unfamiliar to observers (unfamiliar footage).

In Block 1 as well as Block 2, after every clip presentation

observers were asked to order items from the scene that they

attended to (i.e. the NSG task). Observers were required to order

the nine items; i.e. Ball, Player A (top of the display), Player B

(bottom of the display), Net, Vertical court lines, Horizontal court

lines, Ball boy/girl, Umpire, Audience, from the most attended to

the least attended. These items were presented in a list box with an

instruction that read, ‘‘From the list of options presented in the

box, select them in order starting with the item you looked at most

through to the item you looked at the least’’. It was emphasized

that ‘‘looked at’’ referred to the paying of attention to. In Block 2,

along with the ranking task, observers were also required to

indicate which of the two players had won the point (i.e. the SG

task). Twenty observers took part in the experiment (test group).

As a control, an additional 20 observers were also recruited and

simply performed the NSG task both in Block 1 and Block 2

(control group). The primary goal of this study was to see whether

the SG task could alter observers’ eye-movement behavior in

dynamic scene observation. If goal specificity significantly mod-

ulates eye-movement behavior, then the between-block difference

would be located only in the test group.

By using the NSG task (subjective ranking) we also consider a

further issue concerning whether task specificity effects meta-

attentional allocation. Recent studies have demonstrated that

observers could not correctly monitor where they allocated their

attention [33,34]. For example Kawahara has shown that

observers overestimate the area that they attended to in a static

picture (e.g., a still image of traffic scene) [34]. However, the

connection between observer’s belief about where they look and

where they actually look is unclear. Therefore, we investigate the

following question: Does the specificity of the goal of a task change

meta-attentional loci, eye-movement pattern, or both?

Results

Effects of the Goal Specificity on Subjective Ranking
Figure 2A shows the changes in subjective ranking between

Block 1 and Block 2 (i.e. Block 1 - Block 2). Here the nine items

were grouped into ‘central items’ (Ball, Player A, Player B), ‘point-

related items’ (Net, Vertical court lines, Horizontal court lines),

and ‘peripheral items’ (Ball boy/girl, Umpire, Audience) on the

basis of the result of a cluster analysis (using Ward’s method [35]

with squared Euclidean distances). The cluster analysis was

conducted on the 40 observers’ average rank for the nine items.

The three clusters were defined by the lowest level of chunking of

the items in a hierarchical dendrogram implemented in IBM

PASW Statistics 18 statistical package. As seen in Figure 2A, the

test group observers ranked the ‘point-related items’ higher and

ranked the ‘peripheral items’ lower in Block 2 than in Block 1,

while the control group showed no between-block difference in the

ranking for any of the item categories. A Mann-Whitney U test

revealed a significant difference between the two groups based on

‘peripheral items’ (p = .041), but no significant difference between

groups in ranking judgments for ‘central items’ and ‘point-related

items’ (p..2). By calculating the changes in ranking for the four

clips which were presented both in Block 1 and Block 2 (i.e.

familiar footage, Figure 2B), the between-group difference is

significant in the ‘point-related items’ (p = .021) and the ‘peripheral

items’ (p = .013), but again non-significant in terms of group

difference in the ‘central items’ (p..6). These results suggest that,

according to an immediate retrospective recalling, participants

observing the game with SG believed that they allocated more

attention to items relevant to making a point decision, and

allocated less attention to items irrelevant to making that decision.

Meta-Attention and Eye Movement
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Saccadic Amplitudes
In order to test the effect of SG on eye-movement behavior, we

first examined saccadic eye-movements. Saccadic eye-movements

are important for rapid and sequential information acquisition and

therefore may play an important role in dynamic scene

observation [27,29,30]. However, it is well established that our

visual sensitivity is considerably impaired during saccades (i.e.

saccadic suppression, [36]). This implies that our visual system

Figure 1. Stimuli and sequence of the current experiment.
doi:10.1371/journal.pone.0039060.g001

Figure 2. Results of the subjective ranking task. (A) The results of all pieces of footage. (B) The results of ‘familiar footage’. The plots show the
between-block difference (i.e. Block 1 - Block 2) of the ranked order for each item category; i.e. ‘central items’ (Ball, Player A, Player B), ‘point-related
items’ (Net, Vertical court lines, Horizontal court lines), and ‘peripheral items’ (Ball boy/girl, Umpire, Audience). Error bars are 1 standard error of the
mean (N = 20). Note that in the ranking task the more an item attended, the smaller value (rank) would be assigned - thus if an item was attended
more in Block 2 than Block 1, the difference (Block 1 - Block 2) would be positive, and vice versa.
doi:10.1371/journal.pone.0039060.g002

Meta-Attention and Eye Movement
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needs to control saccades so that we can maximize the information

gain by utilizing rapid saccadic eye-movements while minimizing

information loss caused by the saccadic suppression. Taking into

account this trade-off, we expected that if the observers are

carrying out a specific goal task, in order to minimize information

loss they will generally make smaller saccades. It is also plausible

that observers make smaller saccades in order to impinge their

gaze onto a target location more precisely. Indeed, recent studies

have reported that saccadic amplitudes varied according to the

task requirements during static scene observation [20] (but see also

[18]).

Saccades were defined when eye velocity or acceleration

exceeded a threshold, i.e. velocity .50 deg/s or acceleration

.8000 deg/s2. The distribution of saccadic amplitudes is shown in

Figure 3A. As shown in this figure, the distributions of saccadic

amplitudes in the two groups almost overlap, suggesting no effect

of SG on the saccadic amplitudes. To quantitatively assess the

difference between the test group and the control group, we

calculated the between-block difference of saccadic amplitudes (i.e.

Block 2 - Block 1) for each group (Figure 3B). A Mann-Whitney U

test on the calculated values between the two groups revealed no

difference in the changes in saccadic amplitudes between the two

groups (p..3).

Only 20% of clips in Block 1 were also presented in Block 2

(familiar footage). This means that the contents of video clips (i.e.

number of rallies, ball speed, and player’s movements etc) in the

two blocks were very different. Thus simple comparison between

two blocks might be affected by the difference in content. To avoid

contamination by this effect, and in order to directly assess the

effect of SG, we extracted data from familiar clips only (Figure 3C

and 3D). Again, we found no difference in saccadic amplitudes

between the two groups (p..2, by Mann-Whitney U test).

Inter-saccadic Intervals
Previous studies have indicated that measures of fixation

durations can also be used as an index of the effect of ongoing

tasks on eye movements e.g. [18,20]. However, implementing a

traditional fixation parsing algorithm for eye-tracking data with

dynamic scene viewing is problematic. This is mainly because

moving objects in a dynamic scene cause smooth pursuit eye-

movements which can result in artificially elongated fixation

durations [23,24]. Instead of using fixation durations, we

calculated inter-saccadic intervals (ISIs), i.e. the duration between

one saccade-end to the next saccade-start. This measure would not

only include fixations but also all other non-saccadic eye-

movements (e.g. pursuit and optokinetic nystagmus). Thus, the

measure would provide us a way of indexing how long eyes

remained in a relatively small area (see below) between two

consecutive saccades. Also, the measure allowed us to examine

whether SG affected the duration of this eye movement behavior.

We calculated the ISIs from all of the saccades defined above.

The mean of the eye-movement distance between one saccade-end

and the next saccade-start was 0.71 deg (SD = 0.64) in visual angle

for the test group observers and 0.74 deg (SD = 0.78) for the

control group observers. About 85% of the inter-saccadic eye-

movement distances were smaller than 1.2 deg (i.e. within the

fovea) and 97% of them were less than 2.4 deg, thus eyes were kept

in a small area between two consecutive saccades in most cases.

The distribution of ISIs is shown in Figure 4A. The overlapped

empirical calmative distribution functions (ECDFs) in the figure

suggests that SG did not have an effect on this eye-movement

measure. We also calculated the ISIs during observer’s exposure to

the familiar clips only, and again found that they overlapped with

ECDFs (Figure 4C). This means that the SG did not affect ISIs

after having controlled for the content of the video clips. We

conducted a Mann-Whitney U test on between-block difference of

ISIs (Block 2 - Block 1) between the two groups, which also showed

no statistical difference between the two groups either in the data

from all clips (Figure 4B, p..2) or just from familiar clips

(Figure 4D, p..2).

Gaze Coherence
Next, we tested the effect of goal specificity on inter-observer

coherence of the eye-movement pattern. This analysis was

motivated by previous investigations that have conducted eye-

movement recording during dynamic scene observation. Dorr et

al. [24] showed that when watching a naturalistic movie (e.g.

videos of everyday scenes and Hollywood action movie trailers),

the inter-observer coherence of gaze location increased when

isolated objects in the scene started to move. This suggests that

motion is a strong bottom-up determiner of where we look. On the

other hand, inter-observer gaze coherence was higher in

Hollywood action movie trailers than non-professional edited

videos of everyday scenes. This is probably because the location

attracting observer’s interest in the non-professional videos was

more dispersed than the professional videos. This result suggests

that top-down factors such as motivational interest can modulate

gaze similarity in dynamic scenes. We wanted to know whether the

goal specificity could affect similarity of gaze pattern when

watching short clips of a tennis game, which are likely to have a

strong bottom-up motion signal (e.g. ball and players). We expect

that the gaze of observers in the test group should be more

attracted toward the goal-related contents, which should lead to an

increase in eye-movement coherence. The gaze of observers in the

control group should deviate because of individual differences in

the interest points, which in turn should lead to lower inter-

observer coherence of gaze location.

To calculate inter-observer gaze coherence we identified the

‘foveation’ locations [23], which include all non-saccadic eye-

movements as an index of the center of gaze. The foveation

location was identified using a method similar to that used in a

previous study [23]. The 1000-Hz raw data were down-sampled

into 25 Hz records of coordinates to obtain the gaze location for

each frame. Meanwhile, the SR Research saccade parsing

algorithm was used on the original 1000-Hz raw data to identify

blinks and saccades. The frame-based samples were then labeled

as foveation if the corresponding sample in the 1000-Hz raw data

was not identified as either blinks or saccades.

We evaluated the inter-observer gaze coherence by adopting the

method called Normalized Scanpath Saliency [10,24,37] on the

foveation data. The NSS value for the test group and the control

group was calculated independently. In essence, this method

calculates gaze similarity based on the Gaussian-weighted distance

between two gaze locations in a frame of footage. The NSS value

for each frame was calculated in the following manner. First, we

used the foveation data obtained from a single observer from one

of the groups (we here refer to this observer the ‘reference

observer’) in order to create a frame-based ‘foveation map’. In a

foveation map, values were assigned for each one of a total of

7206576 pixels via the centering of a 2D Gaussian filter of 1.2 deg

d (size of fovea) on the foveation location. Second, the foveation

map was normalized to a mean of 0 and a standard deviation of 1

to obtain a NSS map. Third, the foveation locations of the

remaining 19 observers from the same group were mapped onto

the obtained NSS map, and the sum of the values in the map for

all of these locations was calculated. The same procedure was then

repeated 20 times so that every observer was used as the reference

observer. Finally, the mean of the 20 values obtained was

Meta-Attention and Eye Movement
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calculated and used as the NSS value for a given frame. These

procedures were repeated for all frames and all clips.

Figure 5A plots the NSS averaged across all frames and all clips.

In this figure, the NSS of the first 20 frames were omitted because

a fixation point was presented every time before the start of

footage, which strongly directed gaze to the center of the display in

the earlier period of the video clip. Overall, it was the case, not

only in the test group but also in the control group, that the

average NSS value was larger in Block 2 than Block 1, despite the

differences in task requirements between groups in Block 2: two-

way mixed design ANOVA (group 6block) revealed a significant

main effect of block (F1,38 = 48.46, p,.001), but the main effect of

group and interaction were non-significant (F1,38 = 0.33, p = .6;

F1,38 = 3.72, p = .06, respectively). The larger NSS value in Block 2

may have been influenced by the difference in the video clip

contents between the two blocks. To test this assumption, we

calculated the average NSS value for clips appearing in both

blocks (i.e. familiar footage) and indeed found no significant effects

(Figure 5B): the main effect of block, main effect of group and

interaction were non-significant (F1,38 = 1.24, p = .27; F1,38 = 1.06,

p = .31; F1,38 = 3.66, p = .06, respectively).

In their natural dynamic scene observation study Dorr et al.

reported that inter-observer gaze coherence gradually decreased

with repetitive viewing of the same video clips [24]. However we

Figure 3. Distribution of saccadic amplitudes. (A) Empirical cumulative distribution functions (ECDFs) of saccadic amplitudes obtained with the
eye-tracking data from all footage and (C) that obtained with the eye-tracking data from the ‘familiar footage’. (B) Group average (red circles) and
individual data (open circles) of the between-block difference of saccadic amplitudes (Block 2 average - Block 1 average), calculated with the eye
tracking data from all pieces of footage, and (D) that calculated with the eye-tracking data from the ‘familiar footage’.
doi:10.1371/journal.pone.0039060.g003

Meta-Attention and Eye Movement
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did not find this tendency in our results. Figure 6 plots the NSS

value in Block 1 as a function of the number of repetitions. As

shown in this figure the inter-observer coherence is constant across

four-time presentations (one-way repeated measures ANOVA:

F3,117 = 2.49, p = .06). One reason for this is that observer’s interest

may be largely influenced by the context of the clips we used. That

is, observing racket sports (e.g. two players are competing for a

point) may have lead to high convergence of observers’ gaze onto

ball events (e.g. location of hit, or bounce of the ball). Through a

repetitive presentation of the same footage observers can predict

the location of such events more precisely, which could result in a

higher inter-observer coherence of gaze pattern. Thus, under this

hypothesis, repetition of videos of the same type maintained gaze

coherence because the viewing strategies that observers used

converged, rather than diverged, across repetitions.

Discussion

This study is the first of its kind to investigate the effects of goal

specificity on eye-movement behavior during natural dynamic

scene observation. To date, knowledge of the effects of task

instruction on eye-movement behavior comes mostly from studies

of eye-movement recordings taken during static scene observation.

In contrast to previous studies that have reported the effects of

task goals on eye-movements [15–20], we did not find evidence of

an influence of task instructions on eye-movement behavior. One

Figure 4. Distribution of inter-saccadic intervals (ISIs). (A) Empirical cumulative distribution functions (ECDFs) of ISIs obtained with the eye-
tracking data from all footage and (C) that obtained with the eye-tracking data from the ‘familiar footage’. (B) Group average (red circles) and
individual data (open circles) of the between-block difference of ISIs (Block 2 average - Block 1 average), calculated with the eye tracking data from all
pieces of footage, and (D) that calculated with the eye-tracking data from the ‘familiar footage’.
doi:10.1371/journal.pone.0039060.g004

Meta-Attention and Eye Movement
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possible reason for the discrepancy between previous findings and

the present study is based on how well-defined the region of

interest is. In previous studies eye-movement behaviors were

compared under very different task sets [15–20]. For example,

eye-movements were recorded for a group in which observers

were asked to memorize the contents in a scene, and this was

compared with a group of observers that were searching for a

target item in a scene. The observers required to memorize the

scene may have continued to move their eyes around the scene

until the end of its presentation in order to maintain an accurate

representation of as many features in the scene as possible. Those

asked to search for a specific item in a scene would likely stop

moving their eyes over the whole scene once they found the target.

In this case the nature of the task goal is likely to have changed the

region of interest in terms of ongoing processing of the scene. We

speculate that, in the present study, the region of interest from

moment to moment was defined by the context itself, and so this

was likely to be the same for both groups while they observed the

tennis clips. In other words, the key instructional difference

induced by the SG task concerned increasing interest in game-

point-related locations on screen, and not the intrinsically

interesting locations in the presented scene. However, in every

clip, it was likely that what was interesting and what was of interest

converged on the same scene information for both groups because

the context of the game is game-point-allocation and the events in

the scene are structured around this.

On a related note, previous studies have demonstrated that

visual features of motion are strong gaze attracters [8,23,24].

Therefore, another possible reason for the differences between

previous findings and the current results is that the visual scene

presented in the current experiment included a very rapidly

moving object (ball) throughout the duration of each clip

presentation. This clearly would have defined a region of interest

in all the clips, and so it may be that the continuous movement of

the ball may override the effect of goal-specificity. Note that this

does not indicate that eye-movements are predominantly deter-

mined by bottom-up salient features as proposed by a theory based

on visual feature saliency. In the clips we used in our study, the

objects which had strong motion features were also contextually

meaningful (i.e. ball and players); therefore it is difficult to separate

the bottom-up factor and the top-down factor in the present

stimulus set we used.

In addition to the aforementioned factors, the presence of sound

may also explain why eye-movement parameters did not change

despite the differences in goal specificity. Several studies have

demonstrated that sound facilitates the detection of visual stimuli

[38–42]. Among them, a study conducted by Burg et al. is most

relevant to the current results [41]. They asked observers to locate

a target in a jumbled, and continuously changing, visual search

display. Finding targets in such complex displays is normally very

difficult and time consuming. However, when the temporal

changes of a target feature was synchronized with an auditory

pip, then observers quickly found the target irrespective of the

display size. Thus, the findings suggested that visual attention can

be automatically directed to a target location via auditory cues. In

Figure 5. Inter-observers coherence of gaze location. (A) Normalized Scanpath Saliency (NSS) obtained with the eye-tracking data from all
pieces of footage and (B) that obtained with the eye-tracking data from the ‘familiar footage’. Error bars indicate 1 standard error of the mean
(N = 20).
doi:10.1371/journal.pone.0039060.g005

Figure 6. Inter-observers coherence of gaze location plotted as
a function of repeated presentation of the same footage in
Block 1. Error bars indicate 1 standard error of the mean (N = 40).
doi:10.1371/journal.pone.0039060.g006

Meta-Attention and Eye Movement
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the current experiment, audio footage of the tennis match was

presented in synchrony with the tennis videos. Thus, the sounds of

ball bounces and hits were synchronized with the visual ball

events, and this might have automatically cued observer’s

attention to the location of particular ball events. Therefore, in

the present study the SG task could not compete with the

audiovisual synchronization, which may have created powerful

attention capture.

In contrast with the results of eye-tracking, the results from the

subjective ranking task suggests that observers believed that they

changed their attentional target as if they adopted efficient

attention allocation strategies to deal with the different demands

for processing information as a function of goal specificity.

Although we measured the meta-attentional allocation, observers’

beliefs concerning their attention allocation strategy is concordant

with previous studies which have reported that attention allocation

can be adaptively changed in response to task demands [43–45].

The discrepancy between subjective reports and eye-movement

analysis suggests that changes in meta-attentional allocation can

take place without changing eye-movement behavior.

The current results suggest that changes detected while

internally monitoring attention allocation do not necessarily reflect

the changes that are actually occurring in eye-movement behavior.

However, we take great caution in drawing this conclusion

because the eye-movement parameters that were analyzed here

did not directly assess where observers actually looked. We

originally hypothesized that by making point-winner judgments,

observers would necessarily focus more on the point-critical

locations in the scene and that would result in a higher NSS value

in the SG trials, which was not borne out in our results. To a first

approximation the result suggests that SG did not change the

locations of where observers looked. However, it might be that the

frequency of looking at point-related items was actually different

between SG and NSG trials (i.e. Block 1 vs. Block 2 in the test

group). NSS measures how gaze locations are clustered among

observers. Thus even if SG did change the most fixated locations,

if the fixations in the SG trial were clustered comparably to the

fixations in the NSG trial, the difference will not lead to a NSS

difference between Block 1 and Block 2. A parsimonious

conclusion we can derive from the NSS analysis would be

therefore that goal specificity did not change the clustering of

observer’s gaze locations. Nevertheless, the effect of goals on

subjective reports and the lack of effect of goals on eye-movement

measures indicate that changes in meta-attentional loci in response

to a goal directed tasks can take place without a change to major

eye-movement parameters (e.g., saccadic amplitudes, inter-sac-

cadic intervals, and gaze coherence).

Materials and Methods

Ethics Statement
The experiment was approved by the local ethics committee of

the University of Surrey. Written informed consent was obtained

from each observer prior to the experiment.

Observers
Forty volunteers from the University of Surrey took part in the

experiment: 20 in the test group and 20 in the control group. All

were naı̈ve to the experiment’s purpose. Before the main

experimental session started, observers answered a questionnaire

regarding their knowledge and experiences of tennis and other

racket sports (see Questionnaire S1). The answers to the pre-

experimental questionnaire were used to make equivalent the

observer’s knowledge and familiarity of tennis game between the

two groups. They received payment and/or partial course credit

for their participation.

Stimuli
The stimuli were presented on a 19-inch CRT monitor, 60 cm

in front of the observer. The clip subtended 32.7624.8 deg in

visual angle on the screen. Stimulus presentation and data

acquisition were controlled by Experimental Builder (SR Re-

search) running on a PC.

Thirty video clips were selected and cut from commercial

DVDs from four major titles (1993 Wimbledon Championships

ladies’ singles, 2008 Wimbledon Championships ladies’ singles,

2008 French Open women’s singles, 2008 Wimbledon Champi-

onships gentlemen’s singles). Each clip included only ‘play shots’ of

the game in which a camera faced down the whole tennis court

from behind the center mark. Interpolated closed shots or replays

were not included in the selected clips. Camera edits (scene cuts)

were not included in all of the selected clips because they could

have significant effects on eye-movements [8,23,46]. Sound files

(.wav) were also extracted from the DVDs and presented in

synchronization with each clip via stereo speakers. In Block 1 ten

clips were selected from the 1993 Wimbledon women’s game and

presented four times in a blocked random order. The mean

duration of the Block 1 clips was 8.8 sec (61.8 SD). In Block 2,
eight clips were selected from 1993 Wimbledon women’s final

(four of which were the same clips presented in Block 1) and 12

clips were selected from three other competitions (four from each).

Each of the 20 test clips was presented once in random order

during the second block. The mean duration of the Block 2 clips

was 9.4 sec (61.5 SD).

Experimental Procedure
At the start of Block 1 an instruction screen was presented. After

which, in each trial, a clip was presented. When it was over a new

screen appeared, in which two list boxes were presented on the

left-side and the right-side of the screen. The left box included nine

items, while the right box was vacant. The items listed in the left

box were (1) Player A (top of the screen), (2) Player B (bottom of

the screen), (3) Ball, (4) Net, (5) Horizontal line, (6) Vertical line, (7)

Ball boy/girl, (8) Audience, and (9) Umpire. The initial ordering of

these items was randomized for each trial. A single mouse click

moved each item from the left box to the right box (or vice versa),

and the moved item was placed from top to bottom in the right

box. The observer’s task was to rank the items from the most

attended to the least attended (higher on the list indicated more

attended). After all items were ordered, observers clicked the

‘submit’ button to initiate the next trial. After all 40 trials in Block

1 were presented observers received instructions for Block 2. As

with Block 1, a series of clips were presented, and after each clip

the ranking screen appeared. In addition, for the test group, a

check box was also presented in which observers were required to

indicate which of the two players was awarded the point by

clicking Player A, or Player B.

Eye-movements Recording
Observer’s eye-movements were monitored while they were

observing the tennis clips. An infrared video-based eye-tracker

sampling at 1000-Hz (Eyelink 1000, SR Research) was used for

eye tracking. Viewing was binocular, but only the left eye was

tracked. A chin-and-forehead rest was used to stabilize observer’s

head. At the start of each block calibration and validation were

performed using a series of nine dots arranged in a square grid. At

the start of each trial a bull’s eye was presented at the center of the

screen. Observers were asked to fixate on this fixation marker and
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if the deviation between the measured eye position and the fixation

maker was too large a recalibration was conducted.

Supporting Information

Questionnaire S1 Questionnaire for knowledge and experi-

ments about tennis/racket sports. Preceding the experiment we

asked participants following questions to equalize their knowledge

and experiments about tennis/racket sports between the test group

and the control group. We assigned 1 pt for ‘‘yes’’ answers to each

question. The average score was 4.5 (63.4 SD) for the test group

and 4.4 (63.1 SD) for the control group, p..1 by two-tailed t-test.

(DOC)
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