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Abstract

The solution of partial differential equations modelling water infiltration into
soil poses many challenges. The multi-scale and nonlinear nature of soil
makes the design of robust and accurate numerical schemes particularly dif-
ficult. In addition, error estimation is complicated by low solution regularity.
In this thesis, we investigate the mathematical and numerical aspects of the
approximation of problems related to subsurface flow by the finite element
method. We begin with a variational inequality as a simplified model (albeit
of significant interest and complexity in its own right) of a seepage problem.
The so-called Signorini problem includes many of the key difficulties, namely
nonlinear boundary conditions and lack of dual regularity. We derive rig-
orous and computable a posteriori error estimates using duality arguments
that require careful analysis of primal and dual problems. Crucial in this ar-
gument is the design of a novel nonlinear bound-preserving interpolant that
respects various inequalities related to the weak form of the problem. These
estimates are used to implement a mesh adaptive routine. We then study
a physically realistic seepage problem complete with nonlinear coefficients
and mixed boundary conditions and inequality constraints. This time, we
apply the dual-weighted residual framework of a posteriori error estimation
and derive error estimates that are used to optimise the computational mesh
for a quantity of interest. The estimates are tested on realistic groundwater
scenarios that utilise field data. We conclude with a numerical study of a
time-dependent and nonlinear model of two-dimensional subsurface flow. We
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introduce a method to regularise the nonlinearity in the soil porosity function
and derive a posteriori error estimates that account for this approximation in
linear elliptic and parabolic cases. We show that in the nonlinear parabolic
case, this regularisation mitigates the commonly observed failure of nonlinear
solvers for Richards’ equation.
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Chapter 1

Introduction

The work in this thesis is broadly concerned with the adaptive solution of
nonlinear partial differential equations by the finite element method. In each
case, the problem to be solved shares key characteristics with models of
fluid flow in porous media. Several rather different aims and approaches are
considered in the chapters that make up this thesis. For this reason, some
of the later chapters will contain a detailed literature review specific for the
material studied within.

1.1 A posteriori error estimation and adaptiv-

ity

To begin, we give a broad overview of a posteriori estimation and adaptive
strategies for finite element methods.

Finite element methods are well suited to adaptive strategies due to their
ability to handle unstructured meshes without difficulty, allowing meshes to
be updated dynamically during a calculation. In addition, the mathematical
framework of finite element methods provides theoretical basis for a posteriori
error estimation. Finite element methods are used to approximate solutions
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to weak problems posed in Hilbert spaces using numerically tractable sub-
spaces such as piecewise polynomial spaces. This allows the use of results
from functional analysis and PDE theory to analyse the full problem and
to be combined with results on polynomial approximation to quantify er-
ror. In keeping with the finite element philosophy of approximating solution
spaces rather than PDE operators, we can thus view an adaptive finite el-
ement method as a sequence of subspaces which approximate the Hilbert
space containing the true solution more and more closely.

The theory of a posteriori error estimation and adaptive methods is now
rather well developed for elliptic problems but there are still many gaps for
related problems such as variational inequalities based upon elliptic opera-
tors. A broad overview of the many different approaches is given in [110],
and a rather comprehensive collection on results for elliptic problems is given
in [2]. We discuss a brief selection here.

There are several ways that adaptivity can be incorporated into compu-
tations. Broadly speaking, one can use a priori knowledge in mesh design,
heuristic ‘smoothness’ indicators, or error bounds obtained by a posteriori
analysis. One must use one of the latter methods if automatic mesh refine-
ment is required with no input from the user.

Broadly speaking, in finite element computations, automatic adaptivity
means either altering the local approximation order (p-adaptivity) typically
done by enriching approximation spaces with higher order polynomial, mov-
ing mesh nodes to alter the local resolution and capture solution features
(r-adaptivity) to optimise for a specified error metric, or adding and remov-
ing degrees of freedom to change the local resolution (h-adaptivity). In this
thesis we will only consider h-adaptivity.

As an example of a priori mesh design, in aerofoil problems meshes are
often designed with high resolution around the wing to resolve the boundary
layer and coarse resolution in the laminar flow away from the wing. Ex-
amples of heuristic error indicators include the popular Kelly indicator [63]
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which uses the size of the jump of the flux across element boundaries as a
measure of smoothness, norms of vorticity or pressure gradient in computa-
tions with fluids [14]. Estimates of the solution gradient obtained via patch
recovery can be used to inform refinement around sharp interfaces, and per-
form well in numerical simulations [56]. Many of these heuristic indicators
are prompted by a posteriori analysis on some level, for example the Kelly
indicator gives an upper bound on the error for Laplace’s equation up to
higher order pertubation terms [29].

A common way to test numerical solutions to PDEs for accuracy when no
exact solution is available is to compare to a ‘better’ solution. Here, ‘better’
usually means approximation on a finer mesh or with a higher order method.
This leads to the idea of hierarchical error estimation (see [42, 2]). Using the
standard error equation in terms of the residual, a Galerkin approximation
of the error is sought in an enriched (i.e. larger) function space. Since this
would involve solving a larger problem than the original calculation, the finer
solution is not actually calculated but approximated to reduce the amount
of computation needed. The original finite element space is extended via a
direct sum, and the error is estimated in the orthogonal component to the
original space to simplify calculations, ignoring any coupling between the
two spaces. For this to be a reasonable approximation, assumptions must be
made on the degree of orthogonality on the spaces. The reader is referred
to [10] for more details on this form of error estimation, and also to [99] for
an approach based more upon applicability to a wide variety of problems
without having to derive PDE-specific estimates.

More recently, goal-oriented a posteriori error estimation (also known as
the dual-weighted residual technique) has become a popular and successful
technique, especially in CFD [87]. Here, the focus turns away from estimat-
ing global measures of error (such as norms) and towards a specific quantity
of interest (or ‘goal’). The technique uses the solution to an adjoint PDE
to set up an error representation consisting of residuals of the finite element
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solution weighted by the dual solution. This is then evaluated by approxi-
mately solving the dual problem and inserting this numerical solution into
the error representation to obtain a computable estimate. The key difference
in this case is that the result is not necessarily an upper bound. The method
of approximation does not guarantee anything, however the additional infor-
mation given by values of the dual solution can often provide more accurate
information on where to refine, and in addition is capable of targeting mesh
refinement in areas that specifically increase accuracy in the target quantity.
It is for this reason that goal-oriented adaptivity has proven effective in a va-
riety of computations. For the theory and some applications of this method,
see for example [54, 15, 14, 8, 37].

For time dependent problems the difficulties are greater, both analytically
and computationally. While in stationary problems one can refine until a
tolerance is met, this becomes more difficult when solving for many time
steps, as the amount of data that must be stored can become prohibitive.
Singularities that are relatively easily resolved in the stationary case can
move in space. In addition, errors can arise from changing the mesh, since
when evaluating difference quotients needed for the discretisation of unsteady
problems, we must compare approximate solutions defined upon different
meshes. One must therefore be transferred to the newer mesh, and if the
newer mesh has been coarsened, information is lost as degrees of freedom are
removed.

An important work in the literature of a posteriori techniques for parabolic
problems is the series of papers beginning with [46], where a dual problem
is used to quantify error propagation in simulations. In simple cases (linear,
constant coefficients) it was shown that analytical stability bounds can be
obtained for the dual problem which are then used to derive sharp bounds
on the error. However, for more complex problems it is not always possi-
ble, and the authors acknowledge that a certain degree of computation may
be needed to fill in the theoretical gaps, such as computational estimates of
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stability constants.
Estimates for parabolic problems can sometimes be obtained by utilising

results from the elliptic theory and exploiting the fact that many parabolic
problems are of the form

ut −Au = f (1.1)

where A is an elliptic operator, f is problem data and u is the solution,
chosen to be in a suitable function space. This is known as the elliptic recon-
struction technique of [70], see also [104]. The technique was introduced to
circumvent the shortcoming of energy methods for parabolic problems, which
provide a posteriori error estimates of suboptimal order in L∞−L2. The er-
ror bound one obtains from an elliptic reconstruction argument involves a
spatial elliptic estimator which accumulates in time and a contribution from
the initial condition. These temporal accumulations will inevitably grow ren-
dering it impossible to control error in general, and so a common approach
is to work in an L∞ norm in time [79, 104, 46].

The goal-oriented approach has also been applied to parabolic problems,
but in this case the analysis and implementation are more difficult. The
adjoint (backward in time) problem in this case needs to be solved over
the entire time domain before error estimates can be calculated, which is a
huge computational burden. In addition, it is not known how to prove well-
posedness of the dual problem in many cases [46] (nor indeed if it is even
true). Nevertheless, very good results can be obtained for relatively short
simulations [96].

The computational costs may be amplified again for nonlinear problems,
where many linear problems may have to be solved at each time step as part
of a nonlinear iteration scheme. There are a posteriori results on nonlinear
elliptic problems, but these often have to make assumptions on the problem
that are violated in practice, see the discussion of regular solutions in §5.1.2 of
[110]. The dual-weighted residual (DWR) approach is applicable to nonlinear

13



problems, albeit with the same issues with well-posedness of the dual problem
[8].

1.2 Aims of the thesis

The motivation for the work in this thesis stems from collaboration with
CEMADEN (National Centre for Natural Disaster Monitoring and Alerts),
Brazil. Their broad aim is to develop a landslide prediction mechnism based
upon models of soil infiltration combined with data measured in the field.
The broader physics and design principles are fully described in the forth-
coming book [6]. Much of the underlying mathematical theory is developed
here. In particular, we investigate the application of adaptive techniques to
problems relevant to groundwater flow. Much of the the work on a posteriori
error estimation outlined above is not directly applicable to such problems.
For the variational inequlities of chapters 3 and 4, the loss of Galerkin or-
thogonality and dual regularity complicate matters. Richards’ equation with
constitutive relations that are highly nonlinear lead to practical problems
such as convergence failure or spurious oscillations.

1.3 Structure of thesis

The rest of the thesis is structured as follows. In chapter 2, we present mate-
rial that is required for later chapters. We fix notation and introduce elliptic
boundary value problems and variational inequalities, with the fundamental
theoretical results for each.

In chapter 3, we study a relatively simple variational inequality for which
the nonlinearity of the problem arises from inequality constraints at the
boundary. Our motivation is that similar constraints arise from the interac-
tion of subsurface water with the atmosphere and bodies of water. We use
recent work on a priori analysis of finite element solutions to this problem in
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low order norms given in [34] to derive a rigorous a posteriori error estimate
which is, to the best of our knowledge, new.

The standard machinery for deriving bounds in low order norms is the
so called Aubin-Nitsche duality argument, which is not immediately applica-
ble to the Signorini problem, as the dual solution is not sufficiently regular.
In addition, the usual Galerkin orthogonality does not hold for variational
inequalities, and an analogous result must be derived to quantify the interac-
tion of the error u−uh and the finite element space - in this case an inequality.
Recent regularity results for the Signorini problem and an appropriate dual
problem provide just enough regularity to eliminate the dual solution from
the error representation, giving a computable estimate in L4.

Numerical experiments verify the validity of this error estimate, which is
then used as a criterion for adaptive mesh refinement. The resulting adaptive
algorithm is shown to give better accuracy per degree of freedom than solving
on uniform grids. We also investigate the performance or the error estimate in
cases where the theory is not applicable due to decreased regularity, namely
in three dimensions and on non-convex domains. Although optimal rates
of convergence are lost in this case (as expected) the error estimate is still
shown to be useful at reducing computational effort.

In chapter 4 we introduce a more complete version of the practical applica-
tion that motivates the previous theoretical study of variational inequalities
in chapter 3. The problem is variably saturated subsurface flow of water
around a well. This is modelled by a nonlinear and possibly degenerate el-
liptic problem with boundary constraints analogous to those in the Signorini
problem. In this case the constraints represent the interaction of the pore
water with that in the well. The problem specification includes surface and
bedrock conditions, which necessitates the ability to include a mixture of
Neumann, Dirichlet and Signorini boundary conditions. Another key dif-
ficulty is the permeability function of the subsurface. This is commonly
modelled with a strongly nonlinear and possible non-Lipschitz diffusion co-
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efficient. This function may also vary by several orders of magnitude across
the domain due to heterogeneity in the subsurface. Due to all of these factors
we do not have the same regularity results as before. It is however crucial to
resolve features of the solution such as contact sets (which are known as seep-
age faces for this application) and areas of strong permeability gradients such
as layers in the subsurface and regions which are approaching saturation.

We utilise the dual-weighted residual framework for a posteriori error es-
timation to derive an error bound on a key quantity of interest. We make
use of a pseudo-linearised dual problem that is able to capture the problem
behaviour around the contact set, and use this to set up an error inequality
that replaces the usual dual error representation in duality-based error anal-
ysis. We then make use of an intermediate function which satisfies an elliptic
problem without the constraints on the boundary, allowing the introduction
of the problem data into the error bound.

Our numerical experiments demonstrate the need for adaptivity by com-
puting a quantity of interest from the discrete solution in a range of realistic
test cases including heterogeneous soil structures. In this case it is partic-
ularly important to balance mesh refinement around the seepage face with
resolving the heterogeneity in the soil.

In the final part of the thesis, chapters 5 and 6, we move on to study time-
dependent subsurface flow modelled with Richards’ equation. The equation
is one of the most widely used to model the flow of a water-air mixture
in a porous medium and has a large range of practical applications. How-
ever, solving it numerically in practical situations still has many difficulties
associated with it. Even with modern computing, the nonlinear nature of
the equation can be vastly expensive or even impossible to solve, due to
the resolution required to represent singularities in the nonlinear terms, slow
nonlinear solver convergence or failure to converge at all. The purpose of the
work in this part of the thesis is to try to isolate the reasons for these prob-
lems and propose tools to mitigate against them. The hydraulic conductivity
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function, which in certain cases of practical interest is not even Lipschitz con-
tinous, is observed to be a principal factor in slow convergence or failure. A
regularisation of this function is proposed, controlled by a parameter that
allows it to be applied locally based on an indicator.

In chapter 6, error analysis is conducted for simple model problems to
investigate the effect of this regularisation. Error indicators are derived which
combine the usual finite element error with ‘model’ error that arises from the
regularisation of the coefficient.

This motivates an indicator can be combined with more standard error
indicators for Richards’ equation, commonly referred to spatial and tempo-
ral indicators, to implement a space-time adaptive algorithm that increases
computational efficiency and protects against convergence failure.
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Chapter 2

Elliptic partial differential
equations and variational
inequalities

2.1 Abstract

In this chapter we present the necessary material for later chapters. We use
the opportunity to introduce elliptic boundary value problems and related
variational inequalities. Since it will be important for later analysis to be
able to quantify the regularity of solutions, we discuss elliptic regularity and
analogous results for variational inequalities. We also include some technical
results on finite element approximation here for convenience. We finally
present a simple case of a posteriori error estimation via duality to illustrate
the key ideas of this approach and introduce the reader to the difficulties in
the case of a variational inequality.
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2.2 Function spaces

In this section we introduce Lebesgue and Sobolev spaces. Sobolev spaces
are the appropriate choice in which to seek weak solutions of the partial
differential equations studied in this thesis under minimal regularity require-
ments (see e.g. 5.1 of [49] or the discussion in 1.1 of [52]). We also take the
opportunity to introduce notation that will be used throughout.

Throughout this work, we let Ω ⊆ RN , N = 2 or 3 be a bounded, convex
domain with boundary ∂Ω which we assume to be polygonal.

Definition 2.2.1 (Lebesgue spaces). Let 1 6 p < ∞. We denote by Lp(Ω)

the Lebesgue space consisting of measurable functions v such that

‖v‖Lp(Ω) :=

(∫
Ω

|v|p dx

)1/p

<∞. (2.1)

The space Lp(Ω) is a normed vector space with norm ‖·‖Lp(Ω) defined in
(2.1).

We also define the space L∞(Ω) to be the space of measurable functions v
such that

‖v‖L∞(Ω) := inf{M > 0, s.t. |v| 6M almost everywhere in Ω}. (2.2)

For all p, Lp(Ω) is a Banach space, and Lp(Ω) is a Hilbert space if and
only if p = 2 with inner product

〈u, v〉 =

∫
Ω

uv dx

for u, v ∈ L2(Ω). Let A be a measurable subset of Ω. Then we define

〈u, v〉A =

∫
A

uv dx.
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If A is a subset of the boundary ∂Ω we interpret 〈u, v〉A as a line integral
if N = 2 and a surface integral if N = 3.

Remark 2.2.2 (Dual spaces of Lebesgue spaces). For 1 < p <∞, we define
the Hölder conjugate of p to be the number q such that 1/p+1/q = 1. Then the
dual space of Lp(Ω) is isomorphic to Lq(Ω). Via the natural isomorphism, an
element v ∈ Lq(Ω) maps to the functional on Lp(Ω) defined by w 7→

∫
Ω
w v dx.

This integral represents a duality pairing between Lp(Ω) and Lq(Ω) which will
be exploited in our error estimates. The situation is more subtle with the pair
p = 1, q =∞, and will not be discussed here.

Definition 2.2.3 (Sobolev spaces). Let 1 6 p 6 ∞ and let k be a non-
negative integer. Then we introduce the Sobolev space

Wk,p(Ω) = {v ∈ Lp(Ω) | ∂αv ∈ Lp(Ω) for |α| 6 k}, (2.3)

where α = (α1, ..., αN) is a multi-index, |α| =
∑

i αi and ∂
α = ∂α1

x1
...∂αNxN is

a (weak) derivative of order |α|.
We equip the Sobolev spaces with the norm

‖u‖Ws,p(Ω) =

∑
|α|6s

‖∂αu‖pLp(Ω)

1/p

(2.4)

and the seminorm

|u|Ws,p(Ω) =

∑
|α|=s

‖∂αu‖pLp(Ω)

1/p

(2.5)

With the norm above, Ws,p(Ω) is a Banach space. In the case p = 2,
Ws,p(Ω) is a Hilbert space, and it is customary to define special notation,
namely

Hs(Ω) := Ws,2(Ω). (2.6)

20



Let C0(Ω) denote the space of continuous functions, and for integer k > 1,
Ck(Ω) is the space of functions that are continuously differentiable k times.
We also let C∞c (Ω) denote the space of infinitely differentiable functions which
are compactly supported in Ω.

Definition 2.2.4 (Hölder spaces). We define C0, α(Ω) for 0 6 α 6 1 to be
the space of functions v that are Hölder continuous with exponent α, which
means that v is continuous and that

sup
x, y∈Ω

|v(x)− v(y)|
|x− y|α

<∞.

Being a member of a Sobolev space and therefore having integrable deriva-
tives is a strong condition, and guarantees membership in certain other
Sobolev, Lebesgue or Hölder spaces depending on the order of derivatives,
exponent, spatial dimension and sometimes properties of the domain. The
fundamental theorems of Sobolev and Morrey give the various embeddings
of Sobolev and Lebesgue spaces needed for later work, and are summarised
in the following theorem. Proofs of the theorems can be found in [98] and
[22] respectively.

Theorem 2.2.5 (Sobolev embeddings). Let p, q > 1, and let p∗ be the num-
ber such that 1

p∗ = 1
p
− 1

N
. If either

• p < N and p 6 q 6 p∗;

• p = N and p 6 q <∞;

then
W1,p(RN) ⊂ Lq(RN)

with continuous embedding. That is, there exists a constant CSob > 0 such
that

‖v‖W1,p(RN ) 6 CSob ‖v‖Lq(RN ) . (2.7)
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If Ω is a bounded domain with Lipschitz boundary, s > 1 is an integer
and if p > s

N
then

Ws,p(Ω) ⊂ L∞(Ω) ∩ C0, α(Ω̄)

with continuous embedding, where α = 1 − N
sp
. This latter result is known

as Morrey’s inequality, while (2.7) is a special case of Sobolev’s embedding
theorem.

Remark 2.2.6. The final statement gives sufficient conditions for members
of Sobolev spaces to have a continuous representative. In this case, we can
consider these functions to have point values, so that it makes sense to talk
of level sets of a function. In addition, we will need well-defined point values
later in this chapter to define the Lagrange interpolant.

Any function that is continuous on Ω̄ has well-defined boundary values.
The operator that maps a function to its boundary values in a classical sense
can be extended continuously to W1,p(Ω), giving meaning to the boundary
values of a function (the trace) even though W1,p(Ω) may not embed into
the continuous functions for N > 1. The trace operator construction is
demonstrated in [49], section 5.5 for smooth domains.

Definition 2.2.7 (Sobolev space of functions with compact support.). Ws,p
0 (Ω)

is defined to be the closure of C∞c (Ω) in Ws,p(Ω). The trace theorem as pre-
sented in [48] (Theorem B.52) characterises W1,p

0 (Ω) as the space of functions
in W1,p(Ω) whose trace is zero. As an important special case, we mention
H1

0(Ω), whose dual with respect to the L2(Ω) inner product is denoted H−1(Ω).

2.3 Elliptic boundary value problems

With the necessary function spaces outlined above, we may now introduce
an elliptic Dirichlet problem and its weak form.
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We first state the strong form of an elliptic partial differential equation.
We seek a function u ∈ H2(Ω) ∩ H1

0(Ω) such that

−∆u+ u = f in Ω

u = 0 on ∂Ω.
(2.8)

The regularity requirement u ∈ H2(Ω) is not always appropriate, and in
many cases there is no solution in this space, for example if the domain Ω

has a reentrant corner. We obtain the weak form of (2.8) by testing with
v ∈ H1

0(Ω) and integrating by parts. The problem becomes: seek u ∈ H1
0(Ω)

such that ∫
Ω

(∇u · ∇v + uv) dx =

∫
Ω

fv dx ∀v ∈ H1
0(Ω). (2.9)

We now note that the minimum regularity requirements on problem data
for the above equation to make sense are f ∈ H−1(Ω). We write the problem
in a more compact form by defining

a(u, v) :=

∫
Ω

(∇u · ∇v + uv) dx. (2.10)

Hence the problem becomes: find u ∈ H1
0(Ω) such that

a(u, v) = 〈f, v〉 ∀v ∈ H1
0(Ω). (2.11)

Remark 2.3.1 (Equivalence of formulations). It can be shown that if u solves
(2.11), and is sufficiently regular then it satisfies (2.8) almost everywhere.
The regularity can be guaranteed by making assumptions on the data f and
the domain Ω. Indeed, for N = 2, f ∈ L2(Ω) and Ω a convex polygon, we
have u ∈ H2(Ω).
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2.3.1 Well-posedness and regularity

Scalar elliptic problems such as (2.9) have a coercivity property, which is a
key component of their solubility and stability analysis, as well as numerical
analysis.

Definition 2.3.2 (Coercivity and boundedness). Let V be a Hilbert space,
and a(·, ·) a bilinear form on V. We say that a(·, ·) is bounded if there exists
a constant C1 > 0 such that for all u, v ∈ V

a(u, v) 6 C1 ‖u‖V ‖v‖V ,

and that a is coercive if there exists C0 > 0 such that for all v ∈ V

a(v, v) > C0 ‖v‖2
V .

Remark 2.3.3. It is easy to see that the choice

a(u, v) :=

∫
Ω

(∇u · ∇v + uv) dx (2.12)

is bounded and coercive on H1
0(Ω). Indeed, for boundedness, we calculate

a(u, v) =

∫
Ω

uv +∇u · ∇v dx

6 ‖u‖L2(Ω) ‖v‖L2(Ω) + ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)

6
(
‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)1/2 (
‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω)

)1/2

= ‖u‖H1(Ω) ‖v‖H1(Ω)

(2.13)

so that a(·, ·) is bounded with C1 = 1. We also have

‖u‖2
H1(Ω) =

(
‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω)

)
= a(u, u)

(2.14)
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and therefore a(·, ·) is coercive with C0 = 1.

The coercivity and boundedness properties of a(·, ·), as well as the regu-
larity on f allows the application of the Lax-Milgram lemma to problem (2.9)
(see for example Theorem 1.1.3 of [35]). This ensures that problem (2.9) has
a unique solution.

Proposition 2.3.4 (Elliptic regularity). Let u be the solution of (2.11)
and let m be a non-negative integer. Suppose that f ∈ Hm(Ω). Then
u ∈ Hm+2(Ω) (see [49, §6.3.1] for smooth domains, with many results ex-
tended to nonsmooth domains in [52, eq (4.1.2)]). That is, there exists a
constant Creg = Creg(m,Ω) such that

‖u‖Hm+2(Ω) 6 Creg ‖f‖Hm(Ω) . (2.15)

2.4 Elliptic variational inequalities

Variational inequalities are a generalisation of the variational problems of the
previous section. In this section, we give a brief discussion of where these
problems arise from physics, then present a mathematical formulation.

The classical Signorini problem arises in elasticity. In this case the so-
lution variable is vector displacement of an elastic body. Let us consider a
linearly elastic solid body resting on a foundation that we assume to be rigid.
The rigid foundation limits the deformation of the body (since it cannot pass
through). At the contact boundary (which is unknown a priori) the stress
in the body must satisfy conditions of equilibrium. These conditions are lin-
earised under the assumption that any displacements of the body are small
to arrive at inequality constraints at the boundary.

In this section, we will present a simplified version of the Signorini prob-
lem which encapsulates the key analytical difficulties compared to the anal-
ysis and approximation of boundary value problems. The problem is some-
times referred to as the scalar Signorini problem [34] or the unilateral problem
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[24], however these terms are rather flexible in the literature and can refer
to scalar obstacle problems where inequalities must be satisfied on the whole
domain, or on the boundary only.

We are motivated by the case where the constraints are present on the
boundary, not only because it is a well-studied prototype in the mathematical
literature, but also because such problems can arise in porous media flow
problems which will be the focus of §4.

2.4.1 The scalar Signorini problem

We choose to first present an abstract variational form of the Signorini prob-
lem, then show equivalence with a concrete strong form.

Set V = H1(Ω), and as above let a(·, ·) be the coercive and bounded
bilinear form on V defined by (2.12).

Let K be a closed, convex subset of H1(Ω) and f ∈ L2(Ω). We consider
the variational inequality for u ∈ K,

a(u, v − u) > 〈f, v − u〉 ∀v ∈ K. (2.16)

It is well known that this problem has a unique solution (see [68]).

Remark 2.4.1. Variational inequalities generalise variational problems in
the sense that if K = V, the problem reduces to that of finding u ∈ V such
that

a(u, v) = 〈f, v〉 ∀v ∈ V .

In [68] the proof is given under minimal assumptions, and the bilinear form
a is not required to be symmetric. In our applications, though it will be.

We now specialise to a particular variational inequality. Let K be the
convex set

K := {v ∈ H1(Ω) | v > 0 on ∂Ω}.
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Then (2.16) is the weak form of the following problem known as the scalar
Signorini problem - a partial differential equation with inequality constraints
on the boundary.

−∆u+ u = f in Ω, (2.17)

coupled with boundary conditions

u > 0, ∇u · n > 0, u∇u · n = 0 on ∂Ω. (2.18)

Proposition 2.4.2 (Equivalence of weak and strong forms). If u solves
(2.17) - (2.18) almost everywhere, then it solves (2.16). Conversely, if u
solves (2.16) and is sufficiently smooth, then it solves (2.17) - (2.18).

Proof. We begin by supposing that u solves the strong form (2.17) - (2.18).
Testing (2.17) with arbitrary v and subtracting the result of testing with u,
one obtains

a(u, v − u) = 〈f, v − u〉+

∫
∂Ω

(v − u)∂nu dS. (2.19)

Since v ∈ K and u satisfies (2.18), the integral term on ∂Ω must be non-
negative, and therefore for any v ∈ K we have

a(u, v − u) > 〈f, v − u〉 .

Conversely, suppose now that u is the solution of the weak problem (2.16).
Let w be a smooth function compactly supported in Ω. Then u + w is a
member of K and we may choose v = u + w in (2.16), and since u ∈ H2(Ω)

we may integrate a(u,w) by parts to see that∫
Ω

w (−∆u+ u− f) dx > 0, (2.20)

where we note that the boundary terms vanish due to the properties of w.
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After taking u− w as test function, we also have∫
Ω

w (−∆u+ u− f) dx 6 0, (2.21)

and therefore equality must hold. Since this is true for all smooth w com-
pactly supported on Ω, −∆u+ u = f almost everywhere in Ω.

We now observe that the constraint u > 0 at the boundary is automat-
ically satisfied due to the choice of function space in the weak formulation.
Further, if a smooth function w satisfies w > 0 then u + w ∈ K and we can
make this choice as test funtion in (2.16). After integrating by parts and
using the fact that −∆u+ u− f = 0 almost everywhere, we are left with∫

∂Ω

w∂nu dS > 0,

which is true for any smooth w > 0. We therefore must have ∂nu > 0.
We finally suppose that at some point x0 ∈ ∂Ω we have u > 0. We let w

be a smooth, non-positive function such that w(x0) < 0 but u + w > 0 on
∂Ω and (u+w)(x0) > 0, so that we can again choose v = u+w in (2.16) to
see that ∫

∂Ω

w∂nu dS 6 0.

Thus, ∂nu = 0, and we have shown that u∂nu = 0 on ∂Ω.

It will be important in our analysis to quantify the regularity of the
solution of this problem. To state the key result, we must make the following
definitions, and reformulate the nonlinear boundary condition.

Definition 2.4.3 (Subdifferential). Suppose that ϕ is a convex function,
ϕ : R → (−∞,∞], and let D(ϕ) = {x ∈ R | ϕ(x) < ∞}. Then the
subdifferential ∂ϕ(x) at x ∈ D(ϕ) is the set

∂ϕ(x) = {y ∈ R | ϕ(z)− ϕ(x) > y(z − x)∀z ∈ D(ϕ)}. (2.22)
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Definition 2.4.4 (Monotone operator on the real line.). Let E be a mapping
from R to 2R, the set of all subsets of R. E is said to be monotone if (y1 −
y2)(x1−x2) > 0 for all x1, x2 ∈ R such that Ex1, Ex2 6= ∅ and any y1 ∈ Ex1,
y2 ∈ Ex2. Moreover, E is said to be maximal monotone if there does not
exist a monotone operator whose graph properly contains the graph of E. Any
maximal monotone operator on R is the subdifferential of a convex function,
but this statement does not hold over more general Hilbert spaces.

We are now ready to state a regularity result for the solution u when Ω

is a bounded convex domain is provided by Theorem 3.2.3.1 in [52]. The
result is rather general, but we state it in full to clarify when it is applicable.
Indeed, we shall encounter variational inequalities in later chapters for which
this result does not hold.

Theorem 2.4.5 (Regularity). With Ω a bounded convex domain and f ∈
L2(Ω), consider the following problem.

−∆u+ u = f in Ω,

−∇u · n ∈ β(u) a.e. on ∂Ω
(2.23)

where n is the unit outward normal to ∂Ω. Suppose that β is a maximal
monotone operator on R with 0 ∈ β(0). Then (2.23) has a unique solution
u ∈ H2(Ω).

Proof. For a detailed proof of this theorem, the interested reader is referred
to chapter 3 of [52].

Remark 2.4.6. Theorem 2.4.5 is valid for problems whose boundary condi-
tions can be represented as in (2.23). We give here further details on theorem
2.4.5, and formulate the Signorini problem in a form suitable for its applica-
tion. We note that this material is covered in detail in section 3.3.2 in [52].
First, let j : R → (−∞,∞] be an arbitrary convex function, which we now
use to construct a convex functional ϕ to reformulate problem (2.23).
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ϕ(v) =


1
2

∫
Ω
|∇v|2 dx+

∫
∂Ω
j(v) dS

if v ∈ H1(Ω) and j(v) ∈ L1(Ω)

∞ otherwise.

(2.24)

It is then shown that solving problem (2.23) is equivalent to minimising
v 7→ ϕ(v) + 1

2

∫
Ω
|v|2 dx −

∫
Ω
fv dx, where j is a convex function such that

β = ∂j, the subdifferential of j. The existence of such a function is guaranteed
for maximal monotone operators on the real line (see section 3.2.2 in [52]).

This theorem is sufficiently general to include certain linear and nonlinear
boundary conditions. If we set

j(x) =

∞ x 6= 0

0 x = 0,
(2.25)

which gives

ϕ(v) =

1
2

∫
Ω
|∇v|2 dx if v ∈ H1

0(Ω)

∞ otherwise.
(2.26)

so that the boundary condition is that (u,−∇u · n) lies on {x = 0} ⊆ R2,
giving precisely a homogeneous Dirichlet boundary condition. One can think
of the function j penalising boundary values that deviate from 0.

Finally, to see that problem (2.17)-(2.18) fits into this framework, we
instead start from the choice of j, selecting

j(x) =

∞ x < 0

0 x > 0.
(2.27)

This choice of j in equation (2.24) gives
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ϕ(v) =


1
2

∫
Ω
|∇v|2 dx

if v ∈ H1(Ω) and v > 0 a.e. on ∂Ω

∞ otherwise.

(2.28)

For β = ∂j, the condition −∇u · n ∈ β(u) a.e. on ∂Ω is that almost
everywhere on ∂Ω, we have (u,−∇u · n) must be in the graph of β. This
gives precisely the boundary conditions (2.18).

2.5 Finite element methods

The key idea of finite element methods is to use an approximation of a
function space that contains the solution of the problem at hand. This is
as opposed to finite difference methods which approximate the differential
operator itself. See [20, 48] for detailed introductions to the fundamental
concepts. In this section we describe the fundamental principles of the finite
element method. We begin with definitions of meshes and mesh regularity.
Finite element spaces on meshes, the afforementioned approximation spaces,
are then introduced and their approximation properties are stated. Finally,
we state some standard results from the analysis of finite element methods
for elliptic problems.

2.5.1 Triangulations

Suppose that Ω ⊆ R2 has polygonal boundary, and let T to be a conforming
triangulation of Ω, namely, T is a finite family of sets such that

1. K ∈ T implies K is an open simplex or box,

2. for anyK, J ∈ T we have thatK∪J is a full lower-dimensional simplex
(i.e., it is either ∅, a vertex, an edge or the whole of K and J) of both
K and J and
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3.
⋃
K∈T K = Ω.

Further, we let hK be the diameter of K, and define h : Ω → R to be the
piecewise constant meshsize function of T given by

h(x) := max
K3x

hK . (2.29)

We let E be the skeleton (set of common interfaces) of the triangulation
T and say e ∈ E if e is on the interior of Ω and e ∈ ∂Ω if e lies on the
boundary ∂Ω and set he to be the diameter of e.

The patch of an element K is denoted by K̃, and is defined to be the
union of all elements sharing at least one vertex with K. For example, in a
uniform mesh consisting of squares, K̃ can consist of up to 9 elements. We
refer to figures 2.1 and 2.2 for illustrations of element patches on triangular
and quadrilateral meshes respectively.

K

Figure 2.1: The patch of the elementK is highlighted in blue on a nonuniform
triangular mesh.

From this point on, we will use the terms mesh, partition and triangu-
lation interchangeably. A mesh is said to be quasi-uniform if there exists a
constant Cqu > 0 such that

maxK∈T hK
minK∈T hK

6 Cqu. (2.30)

We will make the assumption throughout this work that meshes are shape
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K

Figure 2.2: The patch of the element K is highlighted in blue on a uniform
quadrilateral mesh.

regular. This notion is defined as follows. For triangular meshes, the regu-
larity of an element is defined as

σK :=
hK
ρK

where ρK is the diameter of the largest circle that can be inscribed in K (see
figure 2.3).

K

ρK

hK

Figure 2.3: Shape regularity parameters of a triangular element. σK is min-
imised when K is an equilateral triangle and can become arbitrarily large if
poor refinement decisions are made.

For quadrilateral elements we consider the four triangles that can be
formed by choosing three of the four vertices of the square, as shown in figure
2.4. Each triangle Ti has ρiK and hiK as defined above. For the quadrilateral
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element we set

σK =
maxi h

i
K

mini ρiK
. (2.31)

T1

T2

T3

T4

Figure 2.4: For a quadrilateral element, the four triangles shown above are
used to define its shape regularity. Note that in this case, large aspect ratio
can lead to large σK , but also the case where one side is much shorter than
the other three.

A family of triangulations {Ti}i∈I is said to be shape regular if there is a
constant σ > 0 such that

sup
K∈Ti,i∈I

σK 6 σ (2.32)

Remark 2.5.1. Since interpolation estimates and therefore error analysis of
finite element methods depend on shape regularity of elements, it is important
that as meshes are refined, the shape regularity does not degenerate. This
issue will be discussed in §2.7 where the practicalities of mesh refinement are
addressed.

2.5.2 Finite element spaces

Let P (K) be a vector space of polynomials defined on the element K. We
will set P (K) = P1(K) or P (K) = Q1(K), which are the spaces of piecewise
linear polynomials over a triangle or quadrilateral respectively, and introduce
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the finite element space

Vh := {φ ∈ C0(Ω) : φ|K ∈ P (K)} (2.33)

to be the usual space of continuous piecewise affine polynomial functions.
We make the following observations about Vh.

Remark 2.5.2. Vh is a subspace of H1(Ω). We say such a space is a con-
forming finite element space. Functions in Vh are fully determined by their
values at the vertices of the elements K ∈ T . One can define different finite
element spaces by choosing P (K) to be a space of higher order polynomials,
P (K) = Pk(K) or P (K) = Qk(K) for triangular and quadrilateral meshes
respectively, which in some cases can give improved approximation properties
for sufficiently smooth functions. Occasionally in what follows we will refer
to k as the degree of the finite element space. The approximation order of the
space depends on the degree, and is quantified for the spaces Vh in theorem
2.5.6.

Finite element functions on a triangulation T may have discontinuous
gradient. We will therefore need to consider jumps of functions that are
discontinuous over the edges of a finite element space, and we introduce the
following general notation below.

Definition 2.5.3 (Jump operator). Consider an interface e ∈ E bordering
elements K1 and K2 with outward normal vectors nK1 and nK2 respectively.
We define jump operators as JvK = v|K1nK1 + v|K2nK2 for scalar valued func-
tions and JvK = v|K1 · nK1 + v|K2 · nK2 for vector valued functions.

Proposition 2.5.4 (Trace estimates in Lp, [1, 110].). Suppose that K is
an element of a shape regular partition T of Ω, and let v ∈ W1,p(K) with
p ∈ (1,∞). Then, there exists a constant Ctr depending only on p and K
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such that

‖v‖Lp(∂K) 6 Ctr

(
h
−1
p

K ‖v‖Lp(K) + h
1−1

p
K ‖∇v‖Lp(K)

)
. (2.34)

2.5.3 Interpolation operators

The Lagrange interpolant is perhaps the most natural way to choose a poly-
nomial to approximate a function in a Sobolev space. Assume for now that
our Sobolev space is continuously embedded in C0(Ω). This means that
point values are well-defined and we can construct a Lagrange interpolant of
functions v using its nodal values. We will only consider the piecewise linear
case here but refer to any major finite element text for details of the higher
order case (such as [20, 35, 48]).

Definition 2.5.5 (Lagrange interpolant onto piecewise linear finite element
space). Let V be a sobolev space that is continuously embedded in C0(Ω).
Denote the vertices of the mesh T as x1, ..., xNvert. For any v ∈ V , the
lagrange interpolant Iv is the unique element of Vh such that v(xi) = Iv(xi)

for all i = 1, 2, ..., Nvert.

Function approximation properties of finite element spaces are a key ingre-
dient required in the error analysis of finite element methods. The following
is a quasi-optimality result for the Lagrange interpolant.

Theorem 2.5.6 (Quasi-optimal approximation). Let k be the degree of the
finite element space and suppose that 0 6 l 6 k. For v ∈ Wl+1,p(Ω), for all
elements K ∈ T , there exists a constant CI depending only upon the shape
regularity of the mesh such that for m ∈ {0, 1, ..., l + 1},

|v − Iv|Wm,p(K) 6 CIh
l+1−m
K |v|Wl+1,p(K). (2.35)

Remark 2.5.7 (Regularity). The bound (2.35) tells us that we gain powers
of hK in the approximation order by using higher dimensional polynomials
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(i.e. increasing k). Note that interpolation onto higher order spaces requires
higher regularity. This means that the higher approximation order that one
expects when using higher order approximations will not be realised if the
solution is not sufficiently regular, and therefore lower order finite element
approximations are commonly used in such situations.

Remark 2.5.8 (Lagrange interpolant is not well defined on H1). We note
that in some cases the weak solution of a PDE will not have point values, and
this construction is not applicable. For example, the elliptic problem (2.41)
with f ∈ H−1 has a solution which can only be expected to be in H1. Domains
with reentrant corners also result in solutions that lack regularity. In this
case an interpolant based upon local averaging is required (see for example
[36] or [93]). Analogous approximation properties can be proved.

Definition 2.5.9 (Clément interpolant). Here we define the piecewise linear
Clément interpolant into the finite element space Vh, although it can be de-
fined more generally [36]. Let {xi}Ni=1 denote the nodes of the triangulation
T and let φi ∈ Vh be the i-th canonical basis function, with φi(xj) = δij for
i, j = 1, . . . , N . Let

ŵj := supp(φj). (2.36)

Let u ∈ L1(Ω) and let pi be the L2-projection of u onto linear polynomials on
ŵj, that is, pi is the unique linear polynomial such that

〈u,Φ〉ŵj = 〈pi,Φ〉ŵj ∀Φ ∈ P(ŵj) (2.37)

Then the Clément interpolant of u, denoted ΠCu is given by

ΠCu(x) =
N∑
i=1

pi(xi)φi(x). (2.38)

Theorem 2.5.10 (Approximation properties of the Clément interpolant).
Let k be the degree of the finite element space, 0 6 l 6 k, and let s 6 l + 1.
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Then for v ∈Wl+1,p(Ω), for all elements K ∈ T and all edges e ⊂ ∂K, there
exists a constant Cclem depending only upon the shape regularity of the mesh
such that

|v − Iv|Ws,p(K) 6 Cclemh
l+1−s
K |v|Wl+1,p(K̃). (2.39)

|v − Iv|Ws,p(e) 6 Cclemh
l+1−s−1/p
K ‖v‖Wl+1,p(K̃) . (2.40)

Remark 2.5.11. The Clément interpolant is constructed by local averaging
to compensate for lack of regularity. In §3.5-§3.6, we have sufficient regularity
to guarantee point values, but we require bilateral bound-preserving properties
that standard interpolation operators do not have. To address this, as in the
construction of the Clément interpolant, we will work on node stars ŵj and
locally adjust the Lagrange interpolant, resulting in a nonlinear interpolant
that has the desired bound-preserving properties.

We are now ready to define the finite element approximation to (2.11).
We let V0

h be the subspace of Vh consisting of functions that have zero trace
on ∂Ω. Then we seek U ∈ V0

h such that

a(U,Φ) = 〈f,Φ〉 ∀Φ ∈ V0
h. (2.41)

A simple but important observation is Galerkin orthogonality. Due to the
conforming nature of the finite element method, one has immediately from
(2.11) and (2.41) that

a(u− U,Φ) = 0 ∀Φ ∈ V0
h. (2.42)

This property leads readily to a quasi-optimality result. Indeed, using
Galerkin orthogonality and using the boundedness and coercivity of the bi-
linear form, we have for any Φ ∈ V0

h,
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‖u− U‖2
H1(Ω) = a(u− U, u− U)

= a(u− U, u− Φ)

6 ‖u− Φ‖H1(Ω) ‖u− U‖H1(Ω) .

(2.43)

Dividing by ‖u− U‖H1(Ω) yields Céa’s lemma

‖u− U‖H1(Ω) 6 inf
Φ∈V0

h

‖u− Φ‖H1(Ω) . (2.44)

Setting Φ to be the Clément interpolant of u, we can use optimal approxi-
mation (2.39) to obtain an a priori error bound:

‖u− U‖H1(Ω) 6 CIh|u|H2(Ω). (2.45)

2.5.4 FE for variational inequalities

Now let Kh be a closed and convex subset of K. For example, in chapters
3 and 4, we will set Kh = K ∩ Vh. However, it is not strictly required that
Kh ⊆ K.

We can now write the discrete form of problem (2.16): find U ∈ Kh such
that

a(U,Φ− U) > 〈f,Φ− U〉 ∀Φ ∈ Kh. (2.46)

We remark that unlike the finite element approximation (2.41) to a bound-
ary value problem, equation (2.46) does not reduce to a linear algebraic sys-
tem. Due to the nonlinear nature of the problem, the finite element solution
is found through an iterative procedure. One can apply quadratic program-
ming to the discrete equations as is done in [34], projection methods as used
in [83] or adjust boundary conditions within the nonlinear iteration procedure
as in [94] (see also [38] for more details on this approach). Implementation
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will be discussed in more detail in the following two chapters.
Error estimates in H1(Ω) for obstacle problems of various types have

been standard for some time (see [72, 73, 51, 24] for some early works). The
optimal rate of convergence for finite element approximations does indeed
hold as in the boundary value case. We summarise this result in the following
theorem.

Theorem 2.5.12 (Error estimate for variational inequality, [51]). Let u be
the solution of (2.16), and U the finite element approximation, satisfying
(2.46). Then there exists a constant C depending upon the regularity of the
triangulation and the data f such that

‖u− U‖H1(Ω) 6 C
(
‖u− V ‖2

H1(Ω) + ‖f − Au‖L2(Ω)

[
‖U − v‖L2(Ω) + ‖u− V ‖L2(Ω)

])
(2.47)

for all v ∈ K and for all V ∈ kh, where Au is defined by 〈Au, v〉 = a(u, v) for
all v ∈ H1(Ω). Consequently, after introducing an interpolant and bounding
these terms:

‖u− U‖H1(Ω) 6 Ch (2.48)

2.6 A posteriori estimates via duality methods

In this section, we introduce duality techniques for a posteriori error estima-
tion of finite element approximation of boundary value problems. The use of
an appropriately defined dual problem allows error estimates to be derived
in Lp-norms rather than the usual energy norms. We present a rigorous and
fully computable upper bound on the approximation error.

The material in this section is known, but serves as a useful illustration
of the Aubin-Nitsche duality argument, a modification of which will be an
integral part of chapter 3.

Let p > 2. We recall that the Hölder conjugate, q, of p is the unique q
such that
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1

p
+

1

q
= 1.

Definition 2.6.1 (Dual problem). We now define the dual problem to (2.11).
For p > 2, find z ∈ H1

0(Ω) such that

a(ϕ, z) =
〈
|u− U |p−2(u− U), ϕ

〉
∀ϕ ∈ H1

0(Ω). (2.49)

Theorem 2.6.2. Let u solve (2.11) and let U be its finite element approx-
imation. We assume either that 2 6 p < ∞ for N = 2 or 2 6 p 6 6 for
N = 3. Then there exists C > 0 depending on the Lebesgue exponent p and
the shape regularity of the mesh such that

‖u− U‖pLp(Ω) 6 C
∑
K∈T

(
ηpK +

1

2
ηpJ

)
, (2.50)

where

ηK = h2
K ‖f + ∆U − U‖Lp(K)

ηJ = h
2−1/q
K ‖J∇UK‖Lp(∂K) .

(2.51)

Remark 2.6.3 (Restriction on p.). The key part of the Aubin-Nitsche duality
argument is the use of dual stability to write the error representation in terms
of the primal error in Lp. We require z ∈ W2,q(Ω), which is guaranteed by
elliptic regularity (see proposition 2.3.4) if |u−U |p−2(u−U) ∈ Lq(Ω), noting
the restrictions on p if N=3. Equivalently, we require u− U ∈ Lq(p−1)(Ω) =

Lp(Ω).
Now, we have u − U ∈ H1(Ω), and we can use sobolev embeddings to

determine values of p sufficient to meet the above requirement. In two spatial
dimensions, H1(Ω) ⊂ Lp(Ω) for all finite p > 2, and therefore u−U satisties
the above requirement. In higher dimensions the condition is more restrictive,
for example when N = 3 we have H1(Ω) ⊂ Lp(Ω) if 2 6 p 6 6.
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Proof. We first use the dual problem to set up an Lp error representation.
We may take ϕ = u− U in (2.49) to obtain

‖u− U‖pLp(Ω) = a(u− U, z). (2.52)

Using the Galerkin orthogonality property of the primal problem, we
subtract the Lagrange interpolant of z:

a(u− U, z) = a(u− U, z − Iz)

= a(u, z − Iz)− a(U, z − Iz).
(2.53)

We now use the weak form (2.9) on the first term, and integrate the
second term by parts element-wise. This yields

‖u− U‖pLp(Ω) =
∑
K∈T

(∫
K

(f + ∆U − U) (z − Iz) dx

−
∫
∂K

∇U · n(z − Iz) dS

)
:= R1 +R2.

(2.54)

We now proceed to bound the terms individually. We begin by applying
Hölder’s inequality to R1:

R1 6
∑
K∈T

∥∥h2(f + ∆U − U)
∥∥

Lp(K)

∥∥h−2(z − Iz)
∥∥

Lq(K)
(2.55)

Applying proposition 2.5.6 on approximation properties of the Lagrange
interpolant, we see that

|R1| 6 CI
∑
K∈T

∥∥h2(f + ∆U − U)
∥∥

Lp(K)
|z|W2,q(K) (2.56)

Similarly for R2,
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|R2| 6
1

2

∑
K∈T

∑
e⊆∂K

∥∥h2−1/q J∇UK
∥∥

Lp(e)

∥∥h−2+1/q(z − Iz)
∥∥

Lq(e)
. (2.57)

Then using the interpolation estimate in proposition 2.5.6, we obtain

|R2| 6
1

2
CI
∑
K∈T

ηJ ‖z‖W2,q(K̃) . (2.58)

Combining with (2.56) we have

‖u− U‖pLp(Ω) 6 CI
∑
K∈T

(ηK + ηJ) ‖z‖W2,q(K̃) . (2.59)

We now apply a discrete Hölder inequality to bound the above further:

∑
K∈T

(ηK + ηJ) ‖z‖W2,q(K̃) 6 2(p−1)/p

(∑
K∈T

(ηpK + ηpJ)

)1/p(∑
K∈T

‖z‖q
W2,q(K̃)

)1/q

6 2(p−1)/pCT

(∑
K∈T

(ηpK + ηpJ)

)1/p

‖z‖W2,q(Ω) ,

(2.60)

Where CT is a constant to quantify the overlap between element patches.
By elliptic regularity, we have

‖z‖W2,q(Ω) 6 Creg
∥∥(u− U)p−1

∥∥
Lq(Ω)

. (2.61)

We can also exploit the relationship between p and q as follows
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∥∥(u− U)p−1
∥∥

Lq(Ω)
=

(∫
Ω

|u− U |(p−1)q dx

)1/q

=

(∫
Ω

|u− U |p dx

)1/q

= ‖u− U‖p/qLp(Ω)

= ‖u− U‖p−1
Lp(Ω) ,

(2.62)

so that we finally have

‖(u− U)‖pLp(Ω) 6 2(p−1)/pCICT Creg (ηpK + ηpJ)1/p ‖(u− U)‖p−1
Lp(Ω) , (2.63)

from which the result follows immediately.

Remark 2.6.4 (p = ∞). We note that the constant in the bound of theo-
rem 2.6.2 depends on p and blows up as p → ∞ due to the factor of 2p−1.
Pointwise bounds on the error are available however, but require a different
method of proof. In this case, the construction of an error representation re-
quires Green’s functions, which are used to express point values as integrals.
Estimates and inequalities involving norms of the Green’s functions are then
used to bound the result. Since this is not relevant for the work in later
chapters, we refer the interested reader to [41, 45, 80] for error estimates in
L∞(Ω) for elliptic PDEs and [82] for variational inequalities.

2.6.1 Lower bound

To complete the analysis, we now show an a posteriori lower bound. This
result takes a slightly different form to theorem 2.6.2 in that it bounds the
local error indicator by the error localised to a patch. This is in contrast to
theorem 2.6.2 which is an estimate of the global error, but gives no guarantee
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that the local error is bounded from above by the local indicator. Together,
the two results show equivalence of error and estimate, which indicates that
the error estimate is both reliable (i.e. provides an upper bound for the
error) and optimal in the sense that the lower bound precludes heavy over-
estimation. The following theorem combines ideas from the presentation of
chapter 10 in [48] and section 2.3 of [2].

Theorem 2.6.5 (A posteriori lower bound). Let u solve (2.11) and let U
be its finite element approximation. Let ηK and ηJ be as defined in theorem
2.6.2. Then for all elements K,

C (ηK + ηJ) 6 h2 ‖e‖Lp(K̃) + h ‖e‖W1,p(K̃) + h2 ‖f − fh‖Lp(K̃) . (2.64)

To prove theorem 2.6.5, we will need bubble functions. These functions
are smooth, locally defined on an element or pair of elements, are zero outside
the element (or pair) and preserve norms in a sense that will be made precise
below. Since our computations are done using quadrilateral meshes, we define
bubble functions on the reference quadrilateral, which are then mapped to
the physical elements in the standard way.

Definition 2.6.6 (Bubble function). Let the reference element, K̂ be the
unit square with corners at (0, 0) and (1, 1), and let x̂, ŷ denote the reference
coordinates. Then the element bubble function is given by

b̂K :=
1

2
(1− x̂2)(1− ŷ2). (2.65)

There are four edge bubble functions. For brevity, we just give one, and
the others follow by symmetry. If e is the edge along the x̂-axis, then

b̂e :=
1

2
(1− x̂2)(1 + ŷ) (2.66)

Then we have 0 6 b̂K , b̂e 6 1. We note also that when the reference cell
is mapped to a mesh cell, bK is supported on K, and be is supported on the
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pair of elements K+, K−.

Some useful properties follow from equivalence of norms on the refer-
ence element. We note here that analogous results hold for similarly defined
bubble function on triangular meshes, see for example section 10.1 of [48].

Proposition 2.6.7 (properties of bubble functions, proposition 3.37 in [110]).
For all elements K ∈ T and for all edges e ∈ K, for all polynomials v and
w defined respectively on K and e, there exist constants C1

Inv, C2
Inv, Cinv,

C4
Inv > 0 depending on the shape regularity of T , the polynomial degree of

the finite element method and the Lebesgue exponent p such that

‖v‖Lp(K) 6 C1
Inv

∥∥∥∥∥b1
p
Kv

∥∥∥∥∥
Lp(K)

(2.67)

∥∥∥b1/p
K v

∥∥∥
Lp(K)

6 C2
Invh

1
p
K ‖v‖Lp(e) (2.68)

‖∇(bKv)‖Lp(K) 6 C3
Inv h

−1
K ‖v‖Lp(K) (2.69)

‖∇(bKv)‖Lp(K) 6 C4
Inv h

1
p
−1

K ‖v‖Lp(e) . (2.70)

In what follows, we shall denote all constants above by a generic CInv.

Proof of theorem 2.6.5. We write r := f + ∆U −U for the element residual,
and for any fh (which in practice will be an approximation of f), we write
rh := fh + ∆U − U . We begin by noting that by the triangle inequality,

‖r‖Lp(K) 6 ‖rh‖Lp(K) + ‖f − fh‖Lp(K) . (2.71)

Now,

‖rh‖Lp(K) 6 C1
Inv

∥∥∥b1/p
K rh

∥∥∥
Lp(K)

(2.72)
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where bK is the element bubble function defined above. Now

∥∥∥b1/p
K rh

∥∥∥p
Lp(K)

=

∫
K

bK |rh|p dx

=

∫
K

rbK |rh|p−2rh dx+

∫
K

(f − fh)bK |rh|p−2rh dx.

(2.73)

Dealing with the terms separately, we see after applying Holder’s inequality
that

∫
K

(f − fh)bK |rh|p−2rh dx 6 ‖bK‖L∞ ‖f − fh‖Lp

∥∥|rh|p−1
∥∥

Lq

= ‖f − fh‖Lp ‖rh‖
p−1
Lp .

(2.74)

We also have from the weak form of the problem and integration by parts,
noting that due to the bubble function vanishing on the cell boundary, edge
terms are zero,

∫
K

rbK |rh|p−2rh dx =

∫
K

(∇u−∇U) · ∇(bK |rh|p−2rh) dx

+

∫
K

(u− U)bK |rh|p−2rh dx.

(2.75)

By the same steps as above,∫
K

(u− U)bK |rhrh|p−2rh dx 6 ‖u− U‖Lp ‖rh‖
p−1
Lp . (2.76)

We now use the inverse inequality (2.69) and Holder’s inequality in the same
way as above to obtain
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∫
K

(∇u−∇U)·∇(bK |rh|p−2rh) dx

6C2
Invh

−1
K |u− U |W1,p ‖rh‖p−1

Lp .

(2.77)

We finally arrive at

C ‖rh‖Lp(K) 6 h−1
K |u− U |W1,p + ‖u− U‖Lp + ‖f − fh‖Lp . (2.78)

We therefore have the bound

CηK 6 hK |u− U |W1,p + h2
K (‖u− U‖Lp + ‖f − fh‖Lp) (2.79)

We now proceed to bound the edge residual. We introduce the function
R := − J∇uK, defined on E , the set of interior edges of the triangulation. We
begin with the residual equation, i.e. for any v we have

a(e, v) =
∑
K∈T

∫
K

rv +

∫
∂K

Rv dx. (2.80)

Letting e ∈ E , the choice v = be|R|p−1, where v is understood to be zero
outside the support of be, localises the residuals to ẽ, and gives

a(e, be|R|p−1) =

∫
ẽ

ber|R|p−1 dx+

∫
e

be|R|p dS. (2.81)

It follows that ∫
e

be|R|p dS = a(e, be|R|p−1)−
∫
ẽ

ber|R|p−1 dx. (2.82)
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Bounding the terms separately, we begin with∫
ẽ

ber|R|p−1 dS 6 ‖r‖Lp(ẽ)

∥∥be|R|p−1
∥∥

Lq(ẽ)

= ‖r‖Lp(ẽ) Cinvh
1
q ‖R‖p−1

Lp(ẽ) .

(2.83)

Now, we have

a(e, be|R|p−1) 6 ‖e‖W1,p(ẽ)

∥∥be|R|p−1
∥∥

W1,q(ẽ)

6 ‖e‖W1,p(ẽ) Cinvh
1
q
−1 ∥∥|R|p−1

∥∥
Lq(e)

= ‖e‖W1,p(ẽ)Cinvh
1
q
−1 ‖R‖p−1

Lp(e) .

(2.84)

It finally follows that

‖R‖Lp 6 C

(
h

1
q ‖r‖Lp(ẽ) + h

1
q
−1 ‖e‖W1,p(ẽ)

)
. (2.85)

Combining with (2.79) completes the proof.

2.7 Adaptive mesh refinement

In this section we detail the practical aspects of adaptive algorithms used to
optimise a computational mesh for the solution of elliptic problems by the
finite element method. We discuss the use of local error indicators to select
which parts of the mesh that we wish to refine, how refinement of elements
is conducted in practice, and how to ensure that mesh regularity does not
degenerate in the process.

We begin with an outline of a general adaptive algorithm. An initial
mesh T 0 satisfying the conditions outlined in §2.5.1 is generated over the
computational domain. During the solution process, T l+1 is obtained from
T l by adapting the mesh so that the local mesh size is smaller around cells
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marked for refinement and larger around cells marked for coarsening. This
is generally achieved by adding or removing degrees of freedom and forming
new mesh elements. The problem is then solved again on the new mesh, and
the process is repeated until some stopping criterion is met. The high-level
structure of the algorithm by which T l+1 is obtained from T l is summarised
as: SOLVE→ESTIMATE→MARK→REFINE (see e.g. [92] for a detailed
description of the design of adaptive algorithms):

1. SOLVE the discretisation on the current mesh;

2. Calculate the local error ESTIMATE ηk;

3. Use ηk to MARK a subset of cells that we wish to refine or coarsen
based on the size of the local indicator;

4. REFINE the mesh.

For residual-type error estimates such as the one given in Theorem 2.6.2,
the ESTIMATE step is straightforward once the discrete solution has been
found, while for other estimates that are not so explicit, more sophisticated
techniques may be required (see §4.6.3 where the error estimate must be
approximately computed). In the MARK step, the algorithm must choose
which cells are to be refined. This is the most crucial step as it interprets the
information given by the error estimate. Marking strategies have parameters
that can be tuned by the user to suit the problem at hand. Here we summarise
two of the most common marking strategies.

Maximum marking strategy

Let 0 < β 6 1. The maximum marking strategy marks all elements K such
that

ηK > β max
K′∈T

ηK′ (2.86)
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The extremal case β = 1 refines only those elements whose local error
indicator is maximal, while for small β, almost all elements will be refined.
The aim of this rather simple algorithm is to approximately equidistribute
error across all elements in the mesh, and was suggested in [26], where it is
proven that, in a one-dimensional elliptic case, the approximation error tends
to zero upon refinement using the marking strategy above. An analogous
marking strategy for coarsening can be defined. For γ > 1 mark element K
for coarsening if

ηK 6 γ min
K′∈T

ηK′ . (2.87)

Dörfler marking strategy

The Dörfler marking strategy was used in [44] to guarantee error reduction
in adaptive approximation of the solution to the Poisson problem, and was
crucial in proving convergence of the adaptive algorithm. Choose β, γ ∈
(0, 1), representing the proportion of the error to which refined and coarsened
cells contribute respectively. If the estimate for the error is given by η =∑

K∈T ηK , we mark for refinement all elements K ∈ M, where M is a
minimal collection of elements such that

∑
K∈M

ηK > βη. (2.88)

Analogously, we mark for coarsening a maximal collectionM′

∑
K∈M′

ηK 6 γη. (2.89)

Implementation of mesh refinement

In the numerical work that follows, we use quadrilateral meshes since it
allows for efficient refinement as detailed below. If an element is marked for
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refinement it is quadrisected by placing new degrees of freedom at the centre
of mass of the element, and the midpoints of the element edges, and adding
edges by joining the centre to the edge midpoints.

K

T i T i+ 1

Figure 2.5: Adapting a mesh by refining the central element K. This results
in hanging nodes shown in red. The only way to remove hanging nodes
entirely by refining additional elements is to refine uniformly.

Thus, none of the existing degrees of freedom need to be moved meaning
that the change of mesh is rather efficient. Moreover, we ensure that the
shape of the elements will not degenerate as the mesh is refined.

This does, however, result in hanging nodes. It is impractical to refine
additional neighbourng cells to avoid hanging nodes, since in the simplest
example of such a mesh (uniform squares) all elements would have to be
refined at once to avoid hanging nodes.

We therefore allow hanging nodes in our computations, and constrain
function values at hanging nodes to ensure that the finite element method
is still conforming, that is, discrete functions still lie in H1(Ω). Algebraic
constraints on the degrees of freedom associated with hanging nodes are
required to ensure that finite element functions remain continuous.

The result is a mesh where neighbouring cells could theoretically differ
by any number of grid levels. It is therefore advantageous to allow a small
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amount of mesh smoothing such as setting a maximum difference of grid
levels between adjacent cells to preserve the regularity of the mesh. In our
computations, we insist that the difference in refinement level across a cell
boundary is allowed to be at most one. In practice, this is achieved by refining
some extra cells that were not originally marked to ‘smooth’ the mesh. For
a more detailed explanation of the implementation of mesh refinement, we
refer the reader to the extensive deal.ii documentation available online [5].

With regards to coarsening, due to the hierarchical structure of the meshes
that result from this process, cells that have been refined ‘parent’, that is, a
quadrilateral in T i for some i 6 l in which it is fully contained. If all four
‘children’ elements are marked for coarsening, the vertex at the middle of the
four elements is removed and the parent cell is restored resulting in a locally
coarser mesh. Note that it is not possible to coarsen beyond an initial macro
triangulation or coarse mesh on which the computation is initiated.

Remark 2.7.1 (Hanging nodes). We note that a finite element function with
hanging nodes is no longer the solution of a problem of the form (2.41) due
to the constraints of the degrees of freedom that correspond to hanging nodes.
It seems that this introduces an inconsistency to the problem. In this work,
we will neglect errors that arise from this, but quantification of the effects of
hanging nodes would be an interesting subject of further work.

Interpolation onto new meshes

We observe that if a function U lies in a continuous piecewise polynomial
finite element space defined on T l, and that T l+1 is obtained by refinement
only, then U also lies in the finite element space defined on T l+1, as we have
introduced degrees of freedom. This is not the case when coarsening occurs,
and U needs to be interpolated onto the new mesh. This introduces new
errors in the simulation of problems where solutions or data from one mesh
is required on another. Typical examples are iterative solvers for nonlinear
problems and time-dependent problems. In the former case, when the mesh
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changes the current iterate of the procedure needs to be transferred to the
new mesh and used to calculate the next iterate. In the latter case, the finite
element solution at one time-step is needed at following time-steps, again
leading to calculations involving functions defined on different meshes. We
note that the errors introduced by coarsening can be estimated a posteriori
along with other sources of error (see e.g. [67]).

2.8 Conclusions

We have introduced the necessary notation, tools and results to conduct the
analysis of later chapters, including foundational results from PDE theory
and finite element approximation. We derived in detail an example of an
a posteriori error estimate using the Aubin-Nitsche duality argument. For
the boundary value problem studied in this section, we have the best-case
scenario of rigorous upper and lower bounds on the error. While the upper
bound is global, the cell-wise contributions can serve as useful indicators
or error to drive mesh adaptivity, as will be seen in later sections. Lower
bounds are an important measure of sharpness but are not always available.
We concluded the chapter with a description of mesh adaptivity, including
algorithmic aspects and practical concerns.
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Chapter 3

Duality based error control for
the Signorini problem

3.1 Abstract

In this chapter we study the a posteriori bounds for a conforming piecewise
linear finite element approximations of the Signorini problem. We prove new
rigorous a posteriori estimates of residual type in the L4 norm, fully com-
putable up to constants which are independent of discretisation parameters.
This new analysis treats the positive and negative parts of the discretisation
error seperately, requiring a novel sign- and bound-preserving interpolant,
which is shown to have optimal approximation properties. The estimates
rely on the sharp dual stability results on the problem in W2,(4−ε)/3 in a two-
dimensional domain. We summarise extensive numerical experiments aimed
at testing the robustness of the estimator to validate the theory.

3.2 Introduction & literature review

Let Ω ⊂ R2 be open and convex with polygonal boundary ∂Ω. Let n denote
the outward pointing normal to ∂Ω. We consider a variational inequality
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derived from the PDE (2.17), re-stated here for convenience.

−∆u+ u = f in Ω, (3.1)

coupled with boundary conditions

u > 0, ∇u · n > 0, u∇u · n = 0 on ∂Ω. (3.2)

Note that the structure of the conditions implies that if u > 0 on I ⊂ ∂Ω

then ∇u · n = 0 over I and vice versa.
This problem and its variants has a wide range of application including

elasto-plasticity (the initial motivation for the study of the Signorini prob-
lem), fluid flow in porous media [23] and finance [116]. After its formulation
as a variational inequality, the problem was comprehensively analysed in [68]
where existence and uniqueness of solutions for a wide class of such problems
was established.

A priori error estimates for finite element approximations to variational
inequalities have been obtained of optimal order in energy norms [24, 51, 73,
91], and in L∞(Ω) [77]. Results in other norms are far less common; [72] gives
an a priori bound in L2(Ω) but only in one spatial dimension. Other results
include bounds on trace norms measuring error along the Signorini boundary
[100]. More recently bounds in several low-order global norms were proved
in [34].

The theory of a posteriori error estimation for elliptic variational inequal-
ities is significantly less well-developed than that for elliptic boundary value
problems. Nonetheless, there have been several works on the Signorini prob-
lem as well as the related problem where the obstacle is interior to the domain
rather than on the boundary (usually referred to as the obstacle problem).
In [58], hierarchical estimates are used under the assumption that quadratic
finite elements give better approximation than linears. Error estimates for
variational inequalities with nontrivial boundary data are given in [66], es-

56



timates for an alternative form using Lagrange multipliers are given in [18,
114], with results for the discontinuous Galerkin method given in [112].

Rigorous a posteriori error bounds of residual type were derived for the
variational inequality of the first kind for the Signorini problem in [32] for
piecewise linear finite elements. Here, the authors give an upper bound in
H1(Ω). Several other works have considered a posteriori control in energy
norms, see [57]. Pointwise error control was established in [82]. Recent
regularity results for the problem in which constraints only apply at the
boundary [34] show that better rates can be achieved in this case, paving the
way for a posteriori error estimates in lower order norms.

We remark that error estimates have been derived for this problem us-
ing the dual-weighted residual methodology (see for example [103]) to esti-
mate the error in a target quantity. In particular, estimates follow for the
L2(Ω)-error, however the necessary stability of the dual problem enters as an
assumption.

A priori and a posteriori error estimates in low order norms are established
using duality arguments, and the resulting error bounds in for example L2(Ω)

are standard in the literature for boundary value problems . The Aubin-
Nitsche duality argument allows a priori and a posteriori bounds of higher
order than in energy norms or L∞(Ω), see [2] and the references therein. See
also section 2.6 for a derivation of a posteriori bounds in Lp(Ω) for an elliptic
problem. Application of this methodology has proved to be a challenge in the
case of variational inequalities since the dual problem can lack the necessary
regularity. Indeed, even given smooth data, solutions of the dual Signorini
problem are smooth away from the boundary, but suffer from singular points
at the boundaries of the contact set, that is, the set of points at which the
boundary change type.

Using the ideas of an a priori argument recently given in [34], it is possible
to use W2,p(Ω)-regularity of the primal solution for p > 2 to compensate for
this fact. The approach taken in [72] in which different dual problems are
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considered for the positive and negative parts of the error is adapted for the
a posteriori setting and combined with a two-sided approximation that takes
the place of the usual Lagrange interpolant. The novelty in this work is
that we are able to prove rigorous a posteriori error control in L4(Ω). The
results in [34] suggest that the exponent 4 is a critical value in the sense that
piecewise linear finite element approximations achieve orders of convergence
in W1,p(Ω) of 1−ε for any ε > 0, for p = 4, but with increasingly suboptimal
order for p > 4.

The rest of the chapter is set out as follows: In §3.3 we introduce notation,
formalise the model problem and describe the finite element approximation.
In §3.4, we summarise recent work on a priori analysis of finite element
approximation in non-energy norms. This material helps to motivate the
approach taken in later sections. We introduce a new interpolant that in-
corporates bilateral bounds on its values in §3.5, and detail results on this
two-sided approximation in §3.6, to be used in §3.7 where we state and prove
the key estimates and main results. These are then tested numerically in
§3.8.

3.3 Problem setup

This section contains a summary of the problem at hand, as well as a brief
review of the current state of the art for regularity of the variational inequality
and its finite element approximation. We note that the article [34] considers
the problem on the unit square. For this chapter, to make use of their results,
we will do the same, but remark that arguments can be extended to convex
polygonal domains.

We define the test and trial space

K = {v ∈ H1(Ω) : v > 0 on ∂Ω} ⊂ H1(Ω) (3.3)

that is appropriate to define the weak form of (3.1)–(3.2). It reads: Find
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u ∈ K such that

a(u, v − u) := 〈∇u,∇v −∇u〉+ 〈u, v − u〉 > 〈f, v − u〉 =: l(v − u) ∀v ∈ K.
(3.4)

This leads us to state some well known properties of the problem (3.1)–
(3.2) as well as some more recent regularity results. The following result
holds on convex domains, and is therefore true for Ω as defined above. It is
an application of the general result to our specific case.

Proposition 3.3.1 (Regularity of the primal problem [52], Theorem 3.2.3.1.).
Given f ∈ L2(Ω) there exists a unique solution u ∈ H2(Ω) of (3.4). More-
over, there exists a constant C > 0 such that

‖u‖H2(Ω) 6 C ‖f‖L2(Ω) . (3.5)

Remark 3.3.2. There are variants of the Signorini problem for which this
regularity result cannot be applied. For example, if the boundary also con-
tains portions where Neumann and/or Dirichlet conditions are applied, then
the boundary conditions can not be expressed in the correct form to apply
proposition 3.3.1. In this case we are not guaranteed u ∈ H2(Ω). Such prob-
lems do arise in practical applications. Indeed they are studied in [17, 7] as
well as in §4 of this thesis.

Proposition 3.3.3. [Improved Regularity of the Primal Problem [34].] Sup-
pose that u solves (3.4). Then if f ∈ Lp(Ω) for 2 < p < 4, then u ∈W2,p(Ω).

Remark 3.3.4. [p = 4.] Proposition 3.3.3 says nothing about the regularity
of the solution in the case where p = 4. This is because W2,4−ε(Ω) is a
regularity limit for the solution, no matter how smooth the datum f , so that
if f ∈ L4(Ω), we still have at most u ∈ W2,4−ε(Ω), as remarked in [34] and
[100], with examples to demonstrate.
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Finite element discretisation

We recall that T is a conforming triangulation of Ω, namely, T is a finite
family of sets such that satisfies the conditions enumerated in §2.5. We will
make the assumption that the triangulation is shape-regular.

Recalling notation from §2.5.2, we let P (K) denote the space of piecewise
linear polynomials over a triangular or quadrilateral mesh element K, and
recall the finite element space

Vh := {φ ∈ H1(Ω) : φ|K ∈ P (K)}, (3.6)

the usual space of continuous piecewise affine polynomial functions. We also
define a discrete analogue of K as

Kh := {v ∈ Vh : v > 0 on ∂Ω} = K ∩ Vh ⊂ H1(Ω). (3.7)

We are now in a position to state the finite element approximation of
(3.1)–(3.2) which is to find U ∈ Kh such that

a(U,Φ− U) > l(Φ− U) ∀Φ ∈ Kh, (3.8)

Note that we restrict our attention to either piecewise linear finite element
spaces on triangular meshes or piecewise bilinear spaces on quadrilateral
meshes. This is because we will need to use a one-sided polynomial approx-
imation of the dual solution. In particular, we must ensure that positivity
is preserved. There are alternative ways to do this, that is, by design of
bound-preserving finite element methods, see [11] for a recent review of such
methods, but we shall not consider this here.

Proposition 3.3.5 (The discrete problem is well posed [65, Thm 2.1]). For
all h > 0 there exists a unique solution U of (3.8).

Remark 3.3.6. We remark that proposition 3.3.5 is exactly the same the-
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orem that gives existence and uniqueness of a solution and stability for the
continuous problem. There is an analogy with Lax-Milgram, which gives exis-
tence and uniqueness for continuous and discrete solutions of the associated
boundary value problem.

Definition 3.3.7 (Contact Set). Let u be the unique solution of problem
(3.4). Since we have u ∈ H2(Ω) from Proposition 3.3.1, u has a continuous
representative on Ω which we may use to define the contact set

A := {x ∈ ∂Ω | u(x) = 0},

with Å the relative interior of this set, that is, the interior with respect to the
boundary. The discrete contact set is defined analogously:

AU = {x ∈ ∂Ω | U(x) = 0}.

Remark 3.3.8. The stronger regularity results for the solution of (3.4) given
in 3.3.3 follow from recently proven results on the structure of A given in [4],
where it is shown that A consists of finitely many connected components and
isolated points, and in particular this set of isolated points does not contain
accumulation points. This means that Å is a union of open intervals in ∂Ω.

3.4 A priori error control

The a posteriori analysis in this work was motivated by a priori error control
in L4(Ω) proven in [34]. Here, we outline the main ideas and results of that
work. The authors make use of the Ritz projection Rh : H1(Ω) → Vh such
that equation

a(Rhu,Φ) = a(u,Φ) (3.9)

holds for all Φ ∈ Vh which corresponds to an approximation of an uncon-
strained problem. Classical estimates are available for the Ritz projection
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which are modified by the authors for rectangular domains. Using the ob-
servation that Rh(u) solves the discrete form (3.8) of an obstacle problem
where the obstacle is Rh(u) − u instead of the zero function in (3.2), they
show that Rh(u) − U is controlled in H1 by discrete functions wh satisfying
Rh(u)− u 6 wh 6 Rh(u) on the boundary. The construction of such a func-
tion provides a priori error control in various norms. In particular, for any
ε ∈ (0, 1/2),the bounds

‖u− U‖W1,4(Ω) = O(h1−ε)

‖u− U‖W1,∞(Ω) = O(h1/2−ε)

‖u− U‖L∞(Ω) = O(h3/2−ε).

(3.10)

hold as h→ 0.
To obtain optimal rates of convergence in lower order norms, a duality

argument is used in combination with the above estimates. In the usual
duality argument for elliptic PDEs, a test function for the dual problem
is chosen to obtain a representation of the primal error (see §2.6). The
required function in their case is not admissible, and is modified nodally by
adding contributions to ensure that the inequality constraints are satisfied.
The extra terms that result are controlled by the estimate in W1,∞(Ω) and
absorbed into the other terms. A careful quantification of the regularity of
the dual problem allows a bound of optimal order to be derived, which is
summarised in the following theorem.

Theorem 3.4.1 (Error control [34, Thm 6.1]). Let u solve (3.4) for f ∈
L∞(Ω), and let U ∈ Vh be the solution of (3.8). Then for all ε ∈ (0, 1/2) we
have as h→ 0, ∥∥(u− U)+

∥∥
L4(Ω)

= O(h2−ε), (3.11)

where the notation g+ := max(g, 0) and g− := min(g, 0) for a real-valued
function g. If we additionally assume that the discrete solution satisfies a
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technical but not particularly restrictive assumption on the topology of the
discrete contact sets (see condition (Ah) in [34]), then we also have

∥∥(u− U)−
∥∥

L4(Ω)
= O(h2−ε), (3.12)

and therefore full a priori error control in L4(Ω).

Remark 3.4.2 (Condition (Ah)). Here for completeness we state condition
(Ah) as given in [34]. The condition is satisfied if there exist points di ∈ ∂Ω

and numbers δi such that the open balls Bδi(di) ∩ ∂Ω have nonzero distance
from each other and the corners of the domain, and such that for sufficiently
small h > 0,

1. The sets Bδi(di)∩∂Ω cover ∂Ω and each of these sets contains precisely
one element of the relative boundary of AU .

2. Every connected component of AU has non-empty interior.

This condition is required to prove the stability result for the dual problem
based on the negative part of the error in [34], and we quote their result in
theorem 3.7.10.

3.5 Unilateral approximation

Let {xi}Ni=1 denote the nodes of the triangulation T and let φi ∈ Vh be the
i-th canonical basis function, with φi(xj) = δij for i, j = 1, . . . , N . Let

x̂j := ∪{K ∈ T : supp(φj) ∩K 6= ∅}. (3.13)

We also recall I(z) is the nodal Lagrange interpolant.
Assume we have a function 0 6 z ∈ W2,q(Ω) then the aim of this sec-

tion is to examine the question of existence of an interpolation operator
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Π̂ : W2,q(Ω)→ Vh satisfying both

0 6 Π̂(z) 6 z and∥∥∥z − Π̂(z)
∥∥∥

Lq(Ω)
6 Ch2 ‖z‖W2,q(Ω) .

(3.14)

In other words, we wish to show that there exists a two-sided approxi-
mation that also has the optimal approximation properties enjoyed by the
Lagrange interpolant (see proposition 2.5.6). This form of approximation
theory arises in many areas of finite element analysis. In particular, the op-
timal approximation of non-smooth functions is a non trivial task relying on
local averaging, as done by Clément originally and extended to zero boundary
values in Scott-Zhang.

3.5.1 From below

In this section we examine the design of functions that are positivity pre-
serving. This means, for a function z > 0, the approximation also satisfies
Π(z) > 0. Point values are well defined in W2,q(Ω) spaces if 2q > n (see
remark 2.2.6). Also if q = 1 and n = 2 we have point values. If either of
these cases are true, one can simply consider the Lagrange interpolant, this
has the properties

Π(z) > 0 if z > 0, (3.15)

see Figure 3.1a, as well as optimal approximation

‖z − Π(z)‖Lq(Ω) 6 Ch2 ‖z‖W2,q(Ω) . (3.16)

If q and n don’t satisfy these conditions and point values do not exist,
the approximation is considerably more involved, although has been tackled
in [33] where an interpolant is constructed through local mean-values of the
function. It was shown in [33] that the constructed interpolant is Lq stable,
second order accurate and linear. See also [108, 109] for related ideas using

64



a

0

b

max(z)

(a) Approximation with
the piecewise linear La-
grange interpolant, I(z).
Notice it is positive.

a

0

b

max(z)

(b) Approximation with
a nonlinear interpolant
Π(z). Notice it is
bounded above by the
function, but is no longer
bounded below by zero.

a

0

b

max(z)

(c) Approximation
with the modified
bilateral approxima-
tion Π̂(z). Notice
that 0 6 Π̂(z) 6 z.

Figure 3.1: An illustration of three piecewise linear operators, black, applied
to the same function, blue, that satisfies z > 0. The Lagrange interpolant,
I(z) > 0, the nonlinear interpolant Π(z) 6 z and the bilateral approximation
0 6 Π̂(z) 6 z.

a nonlinear interpolation operator [43].

3.5.2 From above

In this section we examine the design of interpolants that are bounded above
by specific functions. This means, for a function z ∈ W2,q(Ω) with 2q > n,
the interpolant satisfies Π(z) 6 z. In the case we can see the Lagrange
interpolant does not satisfy the requirements, see Figure 3.1a. Indeed, any
strictly convex function will see the Lagrange interpolant violate this bound.
It can, however, be modified. Indeed, consider the function:

Π(z)(x) =
N∑
i=1

(
Iz(xi)−max

y∈x̂i
(I(z)(y)− z(y))

)
φi(x) =: I(z)(x)−R(x),

(3.17)

65



where we recall from definition 2.5.5 that the points xi are the vertices of the
mesh, that is, the nodes from which point values are taken for interpolation.

Lemma 3.5.1. For 0 6 z ∈ W2,q(Ω) the approximation Π(z) defined in
(3.17) satisfies

Π(z) 6 z in Ω. (3.18)

Proof. Note that by definition of R we have

Π(z) = I(z)−R 6 I(z)− (I(z)− z) = z. (3.19)

This is a nonlinear interpolant since for general u, v ∈W2,q(Ω)

Π(u+ v) 6= Π(u) + Π(v). (3.20)

This means we cannot directly apply Bramble-Hilbert to obtain optimal ap-
proximation under minimal regularity. Instead we must take a different ap-
proach.

Theorem 3.5.2 (Optimal approximation). Suppose z ∈ W2,q(Ω), where
2q > n, then the approximation Π(z) defined through (3.17) satisfies

‖z − Π(z)‖Lq(Ω) 6 Ch2 |z|W2,q(Ω) . (3.21)

Proof. To begin, we note

‖z − Π(z)‖Lq(Ω) 6 ‖z − I(z)‖Lq(Ω) + ‖R‖Lq(Ω) . (3.22)

we have from theorem 2.5.6 that

‖z − I(z)‖Lq(Ω) 6 Ch2 |z|W2,q(Ω) . (3.23)
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To control the 2nd term, notice that since R ∈ Vh, for aK ∈ T with vertices,
x1,2,3 we can write a lumped Lq-norm to see that (cf. [47, proposition 12.5])

‖R‖qLq(K) 6 Chn
3∑
i=1

|R(xi)|q

6 Chn
3∑
i=1

‖I(z)− z‖qL∞(x̂i)
.

(3.24)

Now, note a further property of the Lagrange interpolant (see [20, corollary
4.4.7]) is

‖z − I(z)‖L∞(K) 6 Ch
2−n

q |z|W2,q(K) . (3.25)

Hence substituting into (3.24) we have

‖R‖qLq(K) 6 Ch2q |z|q
W2,q(K̂)

. (3.26)

Now

‖R‖qLq(Ω) =
∑
K∈T

‖R‖qLq(K) 6
∑
K∈T

Ch2q |z|q
W2,q(K̂)

6 Ch2 |z|q
W2,q(Ω)

. (3.27)

completing the proof, where we have used 2q > n to infer the final step:
assuming that h 6 1, h2q < hn = h2.

Remark 3.5.3. Note the restriction on q in Theorem 3.5.2. For the appli-
cation we have in mind we wish to work in q = 4

3
which restricts n = 1, 2.

For n = 3 the appproximation would no longer be optimal.

3.6 Bilateral approximation

There is much less in the literature on the design of off two sided approxi-
mations. The only arguments date back to Mosco and Strang [74, 101, 102]
where the authors consider piecewise linear approximations for n = 1, 2, 3
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and q = 2. Unfortunately these arguements do not appear to extend to this
case.

The difficulty in this problem can bee seen by examining Figure 3.1b
around where z ∼ 0. To keep a bilateral constraint on the approximation,
any appropriate function is squeezed and the only mechanism is to force it
to zero on a surrounding patch.

3.6.1 Optimal approximation over P (K)

We modify Π (defined in equation (3.17)) in the following way by requiring
at the degrees of freedom:

Π̂(z)(xi) =

Π(z)(xi) if Π(z) > 0 on x̂i

0 otherwise,
(3.28)

as illustrated in Figure 3.1c.

Lemma 3.6.1. Let 0 6 z ∈W2,q(Ω), and define

Zh := {zh ∈ Vh : 0 6 zh 6 z}. (3.29)

Then Π̂(z) ∈ Zh. Further, for n < 2q we have∥∥∥z − Π̂(z)
∥∥∥

Lq(Ω)
6 Cbh

2 |z|W2,q(Ω) . (3.30)

Proof. To begin, notice that due to the regularity of z we can find a constant
C independent of h such that∥∥∥z − Π̂(z)

∥∥∥
Lq(Ω)

6 ‖z − Π(z)‖Lq(Ω) + C ‖S‖Lq(Ω) , (3.31)

where
S = max(−Π(z), 0) . (3.32)

68



Control of the first term is given in Theorem 3.5.2. For the second, notice that
S only has support when I(z) > z in a vicinity of when z vanishes. This can
only happen if z is locally convex. Further, since I(z) > 0 whenever z > 0

we have that
|max(−Π(z), 0)| 6 |R| (3.33)

and hence
‖S‖Lq(Ω) 6 ‖R‖Lq(Ω) 6 Ch2 |z|W2,q(Ω) , (3.34)

concluding the proof.

Remark 3.6.2. Two sided bounds are conjectured in [74] for higher dimen-
sion, at least with q = 2, although their results only seem to hold with n 6 3.
Indeed, it certainly cannot be generalised to n > 5 since there exists a non-
trivial function z > 0 vanishing on a dense set (according to [73], though the
authors do not provide it) ensuring the only bilateral approximation in Zh is
zh ≡ 0 .

The conjecture we make is that optimal bilateral approximations in Lq(Ω)

are only possible when 2 − n
q
> 0, hence we believe our operator is a con-

structive example of that studied in [74], i.e., is valid for n = 3 and q = 2.

3.7 A posteriori error control

The dual problem used in [34] worked with the modification because a priori
bounds in W1,∞(Ω) were available to replace norms in this space by powers of
the mesh size, giving optimal rates in the a priori case. However, the bound is
not computable, and is therefore not available in the a posteriori framework.
We must choose the dual problem so that we are able to select a test function
that will lead to a bound that is fully computable up to constants. Motivated
by the approach used in [72] to derive a priori L2(Ω) estimates, we therefore
define the following space
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M = {v ∈ H1(Ω) | v 6 0 on Å}, (3.35)

and consider the problem of finding z ∈M such that

a(z, v − z) >
〈
max(0, u− U)3, v − z

〉
∀v ∈M. (3.36)

Remark 3.7.1. Note the similarity with the dual elliptic boundary value
problem (2.49), and observe that z + u − U lies in the space M, since by
the definition of Å, u vanishes there and U > 0 on ∂Ω by definition of Kh,
(3.7). The disadvantage of using this space is that in general the Lagrange
interpolant does not preserve the boundary constraints, forcing us to use an
alternative approximation.

To derive a posteriori error bounds, we require results on the stability and
regularity of the dual problem (3.36). The key difference between the primal
and dual problems is that in the primal case the inequality constraints are
posed on the whole boundary, whereas the dual problem has a mixed condi-
tion, which generally involve more difficult analysis. In the primal case, one
can derive a weak formulation based upon the minimisation of a functional
defined by a convex function that determines the boundary conditions as in
theorem 2.4.5. Based upon this weak formulation, regularity and stability
is shown in [52]. In the dual case, this formulation cannot be applied. In-
deed, examination of the dual problem gives weaker regularity, as we will
now quantify.

Before presenting the necessary results, we make the following definitions
regarding the corners of the domain and the boundary conditions.

Definition 3.7.2. We let {x1, ..., xNp} be the union of the set of points that
make up the boundary of Å and the set of vertices of the polygonal domain
boundary. Note that this is a finite set consisting of the vertices of the domain
boundary and the points at which there is a change in boundary condition.
We let ωk denote the angle at the boundary at xk, that is, ωk = π at a change
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of boundary conditions or 0 < ωk < π at the corners of the domain, since
we assume that the domain is convex. We will denote by rk, θk the polar
coordinates centred at point xk, ζk a smooth cut-off function identically equal
to 1 in a neighbourhood of xk, and φk = φk(θk) a trigonometric function.
These functions are the key tool in quantifying the behaviour of the solution
around the points xk.

The properties of the dual problem that we will need are summarised in
the following lemma. Our argument is simpler than the one given in [34]
as their dual problem is mesh-dependent, whereas ours only depends on the
contact set of the continuous problem. However, we note that since in both
cases the portion of the boundary on which inequality constraints are imposed
are unions of open intervals, the argument given in [34] is still applicable to
our problem.

Proposition 3.7.3 (Properties of the dual problem [34]). Let u solve (3.4)
for some f ∈ L2(Ω), and U ∈ Vh solve (3.8). Then the dual problem (3.36)
is uniquely solvable in H1(Ω). In addition, we have z > 0 in Ω and z = 0

on A, and for any ε ∈ (0, 1/2) there exists C > 0 independent of h such that
the stability bound

‖z‖H1(Ω) 6 C
∥∥max(0, u− U)3

∥∥
L(4−ε)/3(Ω)

(3.37)

holds. Furthermore, we have the following regularity result for any ε ∈ (0, 1
2
)

‖z‖W2,(4−ε)/3(Ω) 6 C
∥∥max(0, u− U)3

∥∥
L(4−ε)/3(Ω)

. (3.38)

Proof. We first claim that a(z+, z−) = 0. To see this, note that by definition
we have z = z+ + z−.

a(z+, z−) =

∫
Ω

∇z+ · ∇z− + z+z− dx (3.39)

It is clear that z+z− ≡ 0 since z cannot be both positive and negative.
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Further, we can write Ω = {x ∈ R2 : z < 0}∪ {x ∈ R2 : z > 0}. Note that in
each set, precisely at least one of z+ and z− is identically the zero function,
and therefore if the set has nonzero measure, its weak gradient must be zero
there. Contributions to the integral (3.39) must therefore be zero and the
claim is proved.

Since z ∈ M, z 6 0 on A, its positive part must be zero there, and we
may take v = z+ as test function in (3.36), which yields

− ‖z−‖2
H1(Ω) = a(z,−z−) >

〈
max(0, u− U)3,−z−

〉
. (3.40)

In other words, since max(0, u − U)3 is non-negative and z− is non-
positive,

0 6 ‖z−‖2
H1(Ω) 6

〈
max(0, u− U)3, z−

〉
6 0, (3.41)

so that z− ≡ 0, which proves that z > 0. This in turn gives z = 0 on Å.
The bound (3.37) follows after noting that we can take v = 0 in (3.36) to

see

a(z,−z) >
〈
max(0, u− U)3,−z

〉
(3.42)

and v = 2z in (3.36), yielding

a(z, z) >
〈
max(0, u− U)3, z

〉
. (3.43)

Therefore,

‖z‖2
H1(Ω) =

〈
max(0, u− U)3, z

〉
6
∥∥max(0, u− U)3

∥∥
L(4−ε)/3(Ω)

‖z‖L(4−ε)/(1−ε)(Ω)

6 CSob
∥∥max(0, u− U)3

∥∥
L(4−ε)/3(Ω)

‖z‖H1(Ω) ,

where we have used the embedding of H1(Ω) in L(4−ε)/(1−ε)(Ω). The result
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now follows after dividing by ‖z‖H1(Ω).
Now, z is the weak solution of the boundary value problem

−∆z + z = max(0, u− U)3, (3.44)

with zero Dirichet boundary condition on A and zero Neumann condition on
the remainder of the boundary. The problem therefore fits into the framework
of [52, thm 4.4.3.7], which allows us to quantify the regularity of z to the
following extent. With the notation of definition 3.7.2, there exist unique
real numbers ck,m such that

z −
∑

16k6Np
−2/q<λk,m<0
λk,m 6=−1

ck,mr
−λk,mζkφk ∈W2,p(Ω) (3.45)

where λk,m are eigenvalues of a Laplacian operator which depends upon ωk
(see section 4.4 of [52] for complete enumeration of the λk,m in all cases).
In our case where Ω is a convex polygonal domain, the regularity of z is
determined by the term in (3.45) with the lowest power of r, which is r1/2ηkφk.
The singularity of type r1/2 occurs at points where the boundary condition
changes (compare with [4, §3] on this point).

Now, we observe that r1/2ηkφk ∈ Ws,t(Ω) if and only if s − 2
t
< 1

2
. This

gives a limit on the regularity of the second derivatives of z: z ∈ W2,t(Ω)

only if t < 4
3
.

The proof of the stability bound in W2,(4−ε)/3(Ω) is a technical argument
that we will not reproduce here, but can be found in full in lemma 5.2 of [34].

Remark 3.7.4 (Smoothness of the dual problem). It is important to note
that the limit on regularity for the dual problem is imposed by the assumption
of convexity of the domain and the nature of the boundary conditions, not the
regularity of the problem data f . Indeed, the left hand side of equation (3.45)
posesses higher regularity depending on the problem data, but the regularity of
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the singular components of u is limited by the geometry. For certain boundary
conditions including the Signorini condition (3.2), H2(Ω)-regularity follows
from proposition 3.3.1 which implies that the singular part of the solution
vanishes. For the mixed boundary condition, this result does not apply, and
the regularity is therefore constrained by the least regular of the components
in (3.45).

Remark 3.7.5 (Choice of norm for a posteriori error estimation.). Proposi-
tion 3.7.3 also motivates a posteriori error estimation in L4(Ω). Comparing
to the situation in §2.6, where we derive error estimates in Lp(Ω) by using
dual stability in W2,q(Ω), we see that we can only take this approach here for
q < 4

3
, whose Hölder conjugate is 4. Thus, L4(Ω) is the strongest space in

which estimates of the traditional residual form can be established.

Remark 3.7.6. Let u be the solution of (3.1)-(3.2) and suppose that w ∈
H1(Ω) has tr(w) = 0 on Å. Then

a(u,w) = 〈f, w〉 (3.46)

In light of the structure of the contact set, described in remark 3.3.8, it
can be seen (see [34, thm 2.3]) that u solves the boundary value problem

−∆u+ u = f ∈ Ω,

u = 0 onΓi, i = 1, ..., N,

∇u · n = 0 onΓi, i = N + 1, ..., N +M.

(3.47)

Here, Γi ⊂ Ω are disjoint open line segments such that
⋃N+M
i=1 Γ̄i = ∂Ω, and

such that there is a set R of measure zero such that

A =
N⋃
i=1

Γ̄i ∪R.
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The claim now follows immediately by testing (3.47) with w and integrating
by parts.

Lemma 3.7.7. Let u be the solution of (3.1)-(3.2), U be the finite element
approximation satisfying (3.8), z be the dual solution of (3.36) and Π̂(z) be
the bilateral approximation of z. Then

a
(

Π̂(z), u− U
)
6 0 (3.48)

Proof. By equation (3.46) and since 0 6 Π̂(z) 6 z = 0 on Å, we have
immediately that

a
(
u, Π̂(z)

)
=
〈
f, Π̂(z)

〉
. (3.49)

Since Π̂(z) > 0, we may take Φ = U + Π̂(z) in (3.8), giving

a
(
U, −Π̂(z)

)
6 −

〈
f, Π̂(z)

〉
. (3.50)

The result then follows after combining (3.49) and (3.50).

We are now ready to state and prove the main result of this chapter, a
rigorous a posteriori bound in L4(Ω) for the problem (3.1) - (3.2). We prove
this in two parts, bounding seperately the quantities ‖(u− U)+‖L4(Ω) and
‖(u− U)−‖L4(Ω).

Theorem 3.7.8 (A posteriori upper bound for the positive part of the error).
Let u solve the variational inequality and U be the finite element approxima-
tion. Let

p :=
4− ε
1− ε

q :=
4− ε

3
,

(3.51)
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for ε > 0. Then

∥∥(u− U)+
∥∥4

L4(Ω)
6 η(U, f, h) := C

∑
K∈T

(
ηpK +

1

2
ηpJ

)
, (3.52)

where

ηK = h2 ‖−∆U + U − f‖Lp(K)

ηJ = h2−1/q ‖J∇UK‖Lp(∂K) .
(3.53)

Proof. We may select v = z + u − U in (3.36); this function is shown to
belong toM in remark 3.7.1. We therefore have∫

Ω

(u− U)4
+ dx 6 a(z, u− U). (3.54)

We may use lemma 3.7.7 to introduce Π̂(z) as follows:∫
Ω

(u− U)4
+ dx 6 a

(
z − Π̂(z), u− U

)
. (3.55)

Since z and Π̂(z) both have zero trace on A, we can use remark 3.7.6 to
arive at ∫

Ω

(u− U)4
+ dx 6 l

(
z − Π̂(z)

)
− a
(
z − Π̂(z), U

)
.

The rest of the argument follows standard a posteriori techniques.

l
(
z − Π̂(z)

)
− a
(
U, z − Π̂(z)

)
=

∫
Ω

f
(
z − Π̂(z)

)
+∇U ·

(
∇z −∇Π̂(z)

)
− U

(
z − Π̂(z)

)
dx

=

∫
Ω

(f + ∆U − U)
(
z − Π̂(z)

)
dx−

∫
E

J∇UK
(
z − Π̂(z)

)
dS

=: R1 +R2.

(3.56)
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Splitting the integral elementwise and making use of the Cauchy-Schwarz
inequality, we see that

R1 =

∫
Ω

(f + ∆U − U)
(
z − Π̂(z)

)
dx

6
∑
K∈T

∥∥h2(f + ∆U − U)
∥∥

Lp(K)

∥∥∥h−2
(
z − Π̂(z)

)∥∥∥
Lq(K)

.
(3.57)

Invoking the optimal approximation result of lemma 3.6.1, we obtain

R1 6 Cb
∑
K∈T

∥∥h2(f + ∆U − U)
∥∥

Lp(K)
|z|W2,q(K). (3.58)

Similarly, we bound R2,

R2 = −
∑
e∈E

∫
e

J∇UK
(
z − Π̂(z)

)
6

1

2

∑
K∈T

(∑
e∈∂K

∥∥h2−1/q J∇UK
∥∥

Lp(e)

∥∥∥h−2+1/q
(
z − Π̂(z)

)∥∥∥
Lq(e)

.

) (3.59)

Using again the optimal approximation result in lemma 3.6.1 combined with
trace estimates (see proposition 2.5.4) we arrive at

R2 6 CbCtr
1

2

∑
K∈T

∥∥h2−1/q J∇UK
∥∥

Lp(∂K)
‖z‖W2,q(K̂) . (3.60)

Collecting (3.58)–(3.60), we have

l
(
z − Π̂(z)

)
− a
(
U, z − Π̂(z)

)
6 C

∑
K∈T

(
ηK +

1

2
ηJ

)
‖z‖W2,q(K̂) . (3.61)

Hence, the result follows from a discrete Cauchy-Schwarz inequality and
the regularity bound on z given in equation (3.38).
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We now prove that the negative part of the error also satisfies a bound
of the form (3.52).

Once again taking an analogous approach to that in [72], we define a
second dual problem as follows. Let M̄ = {v | v > 0 on AU} where we recall
that AU is the discrete contact set. Find z̄ ∈ M̄ such that

a(z̄, v − z̄) >
〈
min(0, u− U)3, v − z̄

〉
∀v ∈ M̄. (3.62)

Key properties follow in a manner analogous to proposition 3.7.3, and are
summarised in the following proposition.

Proposition 3.7.9 (Properties of dual problem for the negative part of the
error.). Let u solve (3.4) for some f ∈ L2(Ω), and U ∈ Vh solve (3.8). Then
the dual problem (3.62) is uniquely solvable in H1(Ω). In addition we have
z̄ 6 0 in Ω and z̄ = 0 on AU . For any ε ∈ (0, 1/2) there exists C > 0

independent of h such that the stability bound

‖z̄‖H1(Ω) 6 C
∥∥(min(0, u− U)3

∥∥
L(4−ε)/3(Ω)

(3.63)

holds. In addition, for sufficiently small h, we have the following regularity
result for any ε ∈ (0, 1/2)

‖z̄‖W2,(4−ε)/3(Ω) 6 C
∥∥min(0, u− U)3

∥∥
L(4−ε)/3(Ω)

. (3.64)

We may now once again use the two-sided approximation. Let Π̂(z̄) be a
finite element function such that z̄ 6 Π̂(z̄) 6 0.

Theorem 3.7.10 (A posteriori upper bound for the negative part of the
error). Let u solve the variational inequality and U be the FE approximation.
Let

p :=
4− ε
1− ε

q :=
4− ε

3
,

(3.65)
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for ε > 0. Then

∥∥(u− U)−
∥∥4

L4(Ω)
6 η(U, f, h) := C

∑
K∈T

(ηpK + ηpJ) , (3.66)

where

ηK = h2 ‖−∆U + U − f‖Lp(K)

ηJ = h2−1/q ‖J∇UK‖Lp(∂K) .
(3.67)

Proof. We begin by assuming that condition Ah) holds, see remark 3.4.2).
We may immediately take v = z̄ + u − U in the dual problem since U = 0

and u > 0 on AU . We therefore have∫
Ω

min(0, u− U)4 6 a(u− U, z̄). (3.68)

Since we know that U = 0 on AU and non-negative on ∂Ω, and since
we also have z̄ = 0 on AU and non-positive on Ω, we can choose sufficiently
small s > 0 so that U ± sΠ̂(z̄) ∈ Kh. Taking Φ = U ± sΠ̂(z̄) as test functions
in the discrete problem (3.8) gives

a
(
U, Π̂(z̄)

)
>
〈
f, Π̂(z̄)

〉
a
(
U,−Π̂(z̄)

)
> −

〈
f, Π̂(z̄)

〉 (3.69)

and therefore we must have

a
(
U, Π̂(z̄)

)
=
〈
f, Π̂(z̄)

〉
. (3.70)

Choosing v = u− Π̂(z̄) ∈ K in (3.4) we also have

a
(
u,−Π̂(z̄)

)
> −

〈
f, Π̂(z̄)

〉
. (3.71)
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Together with (3.68), we have shown∫
Ω

min(0, u− U)4 6 a
(
u− U, z̄ − Π̂(z)

)
. (3.72)

To introduce the problem data, f , of the primal problem, we choose
v = u + Π̂(z̄) − z̄ as test function in (3.4). Since Π̂(z̄) lies between the
(non-positive) z̄ and zero, this function lies in K, and we obtain

a
(
u, Π̂(z̄)− z̄

)
>
〈
f, Π̂(z̄)− z̄

〉
, (3.73)

or, equivalently.

a
(
u, z̄ − Π̂(z̄)

)
6
〈
f, z̄ − Π̂(z̄)

〉
. (3.74)

Inserting this in (3.72), we now have∫
Ω

min(0, u− U)4 6
〈
f, z̄ − Π̂(z̄)

〉
− a
(
U, z̄ − Π̂(z̄)

)
(3.75)

The proof now proceeds exactly as in Theorem 3.7.8.

Remark 3.7.11 (A posteriori lower bound). We remark here with interest
that in light of remark 3.7.6, the derivation of the lower bound in §2.6.1
for the analogous boundary value problem goes through here with no modifi-
cations. Indeed, the argument does not require detailed regularity analysis,
does not use a dual problem and since u satisfies a weak form as shown in
3.7.6, is not hindered by the inequality constraints at the boundary and can
proceed in exactly the same fashion. We therefore have two-sided bounds on
the error.

3.8 Numerical Experiments

In this section, we present numerical results to demonstrate the effectiveness
of the error estimate and adaptive routine against an exact solution within
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the framework of sections 3.3 and 3.7, that is, convex Ω ⊆ R2 with polygonal
boundary. We then present some more challenging situations in which theory
of the preceding sections may fail, but in which the error estimate may still
prove useful. In particular, we test the estimate on a non-convex domain in
R2 with a re-entrant corner as well as a three-dimensional example.

All simulations presented here are conducted using deal.II, an open
source C++ software library providing tools for adaptive finite element com-
putations [5]. We note here that deal.II uses quadrilateral meshes. Since
all coarse meshes are uniform meshes consisting of squares, and refinement
is by quadrisection, regularity of the mesh does not degrade under heavy re-
finement. At each stage of the iterative process used to solve the variational
inequality, a preconditioned conjugate gradient method is used to solve the
algebraic problem. As the mesh is refined, hanging nodes are created, and
are constrained so that the resulting numerical solution is continuous.

3.8.1 Example 1

For our first example, we choose the exact solution used by the authors of
[34]. Let r, θ denote polar coordinates centred at (0.5, 0), that is

r(x, y) = ((x− 0.5)2 + y2)1/2 (3.76)

θ(x, y) = arccos

(
x− 0.5

r

)
(3.77)

We define the function

ũ(r, θ) := −r3/2 sin(3
2
θ), (3.78)

and define ψ to be a ninth order spline defined by endpoint values and gra-
dients as follows (see also section 6 of [34]). We impose the following values
to determine ψ.
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ψ(0) = 1, ψ′(0) = ... = ψ′′′′(0) = ψ(0.45) = ψ′(0.45) = ... = ψ′′′′(0.45) = 0,

(3.79)
and ψ(x) = 0 for any x < 0 or x > 0.45. Then if we choose f accordingly,
10ψũ solves (3.4).

The problem is initialised on a coarse uniform mesh with h = 1/8. For
the adaptive algorithm we use Dörfler marking (see §2.7) with refine fraction
β = 0.9 and no coarsening. A numerical approximation to problem (3.4)
with datum f chosen so that 10ψũ is the exact solution is shown in figure
3.2a, represented on the final mesh T 15 produced by the adaptive algorithm,
consisting of around 80,000 degrees of freedom. The progression of the L4(Ω)-
error, ‖u− uh‖L4(Ω), and error estimate η1/4 as defined in equation (3.52)
under adaptive mesh refinement is shown in figure 3.2b. For a given number
of degrees of freedom, the adaptive algorithm reduces the error and appears
to give a slightly better convergence rate than uniformly refining the mesh in
terms of degrees of freedom. We observe that the over-estimation factor (or
effectivity index as it is often called) of the error estimate, is approximately
20. As expected from the theory, this factor is approximately constant once
the asymptotic regime is reached. The two-sided bounds on the error ensure
that the the true error decreases at the same rate as the error estimate.
Comparing with figure 3.4a, we see that asymptotically, error is lower under
adaptive refinement than uniform in terms of degrees of freedom, although
both exceed the optimal rate.

A selection of adaptive meshes are shown in figures 3.2c-3.2f. These
meshes show refinement around the main features of the solution. In partic-
ular, the mesh is heavily refined around large gradients, along with significant
refinement where the boundary conditions change type and constraints are
active. We remark here that accurate resolution early on in the adaptive pro-
cess is particularly important due to the assumptions made on the discrete
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contact set in theorem 3.7.10.

(a) Contour plot of adaptive approx-
imation.

(b) Behaviour of error estimate.

(c) T 4 (d) T 8 (e) T 12 (f) T 15

Figure 3.2: Example 1 §3.8.1, contour plot and various iterations of the
adaptive mesh T i of an approximation to a function u ∈ H2(Ω). Figure 3.2b
shows a double-logarithmic plot comparing the error in L4(Ω) (black line)
with the error estimate (red line).

3.8.2 Example 2: Re-entrant Corner

To test the estimate in the presence of a geometric singularity, we introduce a
re-entrant corner to the domain. In this example, data f is chosen to ensure
that both boundary constraints are active. The problem data is selected to
try and force the solution to be close to
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w := sin(2π(r − b)2)− 0.5, (3.80)

where r = (x2 + y2)
1
2 and b can be varied to force different behaviours of the

solution. For this example we make the choice b = 0.91 and set f = ∆w+w.
A numerical solution to this problem is shown in figure 3.3a. Under

uniform mesh refinement, the error estimate converges to zero at a subopti-
mal rate. Optimality is restored using an adaptive routine utilising Dörfler
marking with refinement fraction of 0.8 and no coarsening. A sample of the
meshes produced is given in figures 3.3b-3.3e. The behaviour of the error
estimate under uniform and adaptive refinement is shown in figure 3.5. The
slopes of the error-reduction curves reveal suboptimal convergence in the uni-
form case which is somewhat recovered by adaptive mesh refinement, but to
different degrees. This time we see most refinement around gradients and
features in the solution. Interestingly, there is little refinement around the
re-entrant corner where the solution is expected to lose regularity. Instead,
the error estimate prioritises resolution of the solution near where the bound-
ary constraints are active. This simulation was performed with the Dörfler
marking criterion with refine fraction 0.8 and no coarsening. The algorithm
was initialised on a coarse uniform mesh with h = 1/16.

3.8.3 Example 3, d = 3.

Working in three dimensions and in spherical polar coordinates, centred at
(0.5, 0, 0.5), we now consider a test analogous to example 1. Let (r, θ, φ)

denote spherical polar coordinates centred at (0.5, 0, 0). We note that the
function

u = −10ψ(r)r3/2 sin

(
3

2
ϕ

)
sin

(
3

4
θ

)
(3.81)

satisfies appropriate constraints on the boundary and so solves (3.1), (3.2) for
appropriately defined f . Contours of (3.81) are shown in figure 3.6. Again
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(a) Contour plot of numerical solu-
tion to the Signorini problem on a
domain with a re-entrant corner. The
gradient appears to be discontinuous
at the corner.

(b) T 3 (c) T 8 (d) T 12 (e) T 15

Figure 3.3: Example 2 §3.8.2, contour plot and various iterations of the adap-
tive mesh T i of an approximation to a function u ∈W2,(4−ε)/3(Ω)\H2(Ω). In
this case the mesh refines around the reentrant corner as well as along qual-
itative features of the solution and where the boundary conditions change
type.

we use Dörfler marking with refine fraction of 0.8 and no coarsening.
Adaptive meshes from several stages of the adaptive algorithm are dis-

played in 3.7 (note that these are slices of a three-dimensional mesh). We
observe that mesh resolution is greater close to the boundary where the
Signorini constraints are active (in this case the plane defined by y = 0)
and provides good resolution of the contact set. Refinement is also present
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(a) Example 1. Expected slope from
theory is -1.

(b) Example 3. Expected slope from
theory is −2

3 .

Figure 3.4: Comparison of L4(Ω) error computed against exact solutions for
uniform and adaptive meshes for those examples for which an exact solution
is available. The orders of convergence of the error estimate in each case
(that is, the slope of the error values) is approximated from the log-scaled
data by performing standard least squares linear regression.

around key features of the solution, as obsered for example 1, figures 3.2a
and 3.2c-3.2f

3.9 Conclusions & discussion

In this chapter, we derived rigorous error estimates for the scalar Signorini
problem in a non-energy norm using a duality argument. The error estimates
were benchmarked against known exact solutions and shown to have optimal
order, and to be sharp to a satisfactory degree (overestimation factor of
order 10). Adaptive mesh refinement was shown to decrease error for a given
number of degrees of freedom compared to uniform meshes, particularly for
a challenging three-dimensional problem. The error estimate was tested on
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(a) Example 2. Expected slope from
theory is −1.

(b) Example 3. Expected slope from
theory is −2

3 .

Figure 3.5: Double logarithmic plot of error estimate against number of
degrees of freedom under uniform and adaptive mesh refinement for examples
2 and 3, that is, the examples that do not meet the necessary assumptions for
the theory above to hold. The orders of convergence of the error estimate in
each case is approximated from the log-scaled data by performing standard
least squares linear regression.

more challenging test cases, both in situations where the assumptions of
the main theorem were satisfied, and in a case where they were not (three
spatial dimensions, re-entrant corners). In the three-dimensional case where
the theory does not hold (see section 3.8.3 and figure 3.5b, we remark that the
error estimate is too optimistic in the sense that the error estimate decreases
at the expected rate under uniform refinement, whereas the error does not
(see figure 3.4b). This means that although adaptivity did produce superior
error reduction in this case, we cannot use the error estimate as a means to
meet a given tolerance.
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Figure 3.6: Left: contours of the numerical solution to example 3 §3.8.3,
Right: slices of the numerical solution parallel to planes y = c for c = 0.1, 0.2
and 0.3. Note that for visualisation purposes the right hand plot is not to
scale; the planes have been translated along the y-axis.
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Figure 3.7: Adaptively generated meshes for example 3. The slices shown
are the intersections of the mesh with the planes y = 0.01 (top row), y = 0.1,
(middle row) and y = 0.2 (bottom row) and show the mesh after refinement
cycles 2 (left hand column), 5 (middle column) and 8 (right hand column).
The mesh is heavily refined along the z axis due to both active boundary
constraints and gradient singularities in the solution.
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Chapter 4

Adaptive modelling of variably
saturated seepage problems

4.1 Abstract

This chapter is adapted from the paper [7] published during the candidate’s
PhD studies. In this chapter we present a goal-oriented adaptive finite ele-
ment method for a class of subsurface flow problems in porous media, which
exhibit seepage faces. We focus on a representative case of the steady state
flows governed by a nonlinear Darcy-Buckingham law with physical con-
straints on subsurface-atmosphere boundaries. This leads to the formulation
of the problem as a variational inequality similar in form to those intro-
duced in §2.4 and analysed in §3 with the additional complications of mixed
boundary conditions and nonlinear coefficients. The solutions to this prob-
lem are investigated using an adaptive finite element method based on a
dual-weighted a posteriori error estimate, derived with the aim of reduc-
ing error in a specific target quantity. The quantity of interest is chosen
as volumetric water flux across the seepage face, and therefore depends on
an a priori unknown free boundary. The key contributions of this chapter
are the application of the dual-weighted residual methodology to variably
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saturated seepage problems and its application to challenging numerical ex-
amples. These example include specific case studies, from which this research
originates, illustrating the major difficulties that arise in practical situations.
We summarise extensive numerical results that clearly demonstrate the de-
signed method produces rapid error reduction measured against the number
of degrees of freedom.

4.2 Introduction

The modelling of subsurface flows in porous media presents a multitude of
mathematical and numerical challenges. Heterogeneity in soils and rocks as
well as sharp changes of several orders of magnitude in hydraulic properties
around saturation are the multi-scale phenomena that are particularly diffi-
cult to capture in numerical models. In addition, physically realistic domains
include a wide variety of boundary conditions, some of which depend upon
a free (phreatic) surface and therefore also upon the problem solution itself.
These boundary conditions are described by inequality constraints. At points
where the active constraint switches from one to the other, gradient singular-
ities in the solution can arise which must be resolved well to avoid polluting
the accuracy of the solution. The situation is analogous to a thin obstacle
problem, for which gradient discontinuities arise around the thin obstacle
[71]. For these reasons, such problems are good candidates for h-adaptive
numerical methods, where a computational mesh is automatically refined
according to an indicator for the numerical error. It is the aim of such meth-
ods to provide the necessary spatial resolution with greater efficiency than is
possible with structured meshes.

A common model for steady flow in porous media in the geosciences is a
free surface problem where the medium is assumed to be either saturated with
flow governed by Darcy’s law or dry with no flow at all. The free surface
is the boundary between the two regions with a no-flow condition applied
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across it. Some authors solve this as a pure free boundary problem where
the computational domain is unknown a priori such as in [39]. However,
this means that as the domain is updated, expensive re-meshing must take
place, allowing fewer of the data structures to be re-used from one iteration
to the next. To avoid the difficulties of this approach, in [21], the problem
formulation is modified to a fixed domain in which flow can take place (such as
a dam) and the pressure variable defined on the whole domain, removing the
need for changes in problem geometry and costly re-meshing during numerical
simulations. The theory of this type of formulation is described in detail in
[83]. A good approximation theory is available for finite element methods
applied to such problems. It should be noted though that this model is a
simplification, owing to the fact that it does not allow for unsaturated effects.

To avoid the computational complexities of a changing domain, in this
work we consider the porous medium to be variably saturated, and therefore
we solve for pore pressure over the entire domain (cf [117]). The results
presented in [90] suggest that this approach is in fact necessary to accurately
represent the subsurface. It is also expected that this framework will allow
relatively easy extension to unsteady cases where unsaturated effects are
extremely important for the dynamics.

Although there has been much study of this problem, there are rela-
tively few examples of adaptive finite element techniques being used. This is
because the partial differential equation governing subsurface flow presents
difficulties for the traditional theory of a posteriori estimation. This stems
from the behaviour of the coefficient of hydraulic conductivity, which de-
pends on the solution itself and approaches zero in the dry soil limit, leading
to degeneracy of the PDE problem. This violates the standard assumption
of stability in elliptic PDE problems.

Traditional residual a posteriori estimation for finite element methods
such as those described in §2 and §3 gives upper bounds of the form
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‖u− U‖E 6 Cε(U, h, f) (4.1)

where u is the exact solution to some partial differential equation, C is a
positive constant, U is the numerical solution, h is the mesh function and f
is problem data. C is usually only computable for the simplest domains and
meshes, and can be large. The norm, ‖ · ‖E, is a global measure chosen so
that the asymptotic convergence rate of the method is optimal. In practical
computations, however, the user is often not interested in asymptotic rates
that may never be reached, but would prefer a sharp estimate of the error to
give confidence in the approximation.

The dual-weighted residual framework for error estimation was inspired
by ideas from optimal control as a means to estimate the error in approxi-
mating a general quantity of interest. Pursuing this analogy, the objective
functional to be minimised is the error in numerically approximating a solu-
tion to the PDE problem, the constraints are the PDE problem and boundary
conditions, and the control variables are local resolution in the spatial dis-
cretisation.

There has been a huge amount of work on error estimation and adaptivity
using the dual-weighted approach and it has shown to be extremely effective
in computing quantities which depend upon local features in steady-state
problems in [53], heterogeneous media [37] and variable boundary conditions
in variational inequalities [17, 103]. In almost all cases the performance of the
goal based algorithm cannot be bettered in efficiency. The goal-based frame-
work also extends to time dependent problems, where it has been applied
to the heat equation by [96] and the acoustic wave equation by [9] among
others.

A common feature of numerical methods for seepage problems in the
literature is that they are designed around getting a good representation of
the phreatic surface, namely the level set of zero pressure head that divides
saturated from unsaturated soil. There are however many other possible
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quantities of interest such as flow rate over a seepage face that could represent
the productivity of a well. In this work, correct representation of the phreatic
surface is prioritised only if it is important for the calculation of the quantity
of interest, and we let local mesh refinement do the work for us, rather than
expensive re-meshing of the free surface. Indeed, in the current framework,
mesh refinement is rather simple to implement and relatively cheap.

The dual-weighted residual method has been applied to linear problems
with similar characteristics. In [17], a simplified version of the Signorini
problem is solved. The authors of [37] consider a groundwater flow problem in
which the focus is to estimate the error in the nonlinear travel time functional.
In both cases, the underlying PDE operator is linear.

The key step in deriving an a posteriori error bound for this variational
inequality is the introduction of an intermediate function that solves the unre-
stricted PDE corresponding to the inequality. This allows the removal of the
exact solution from the resulting bound. Finally, the unrestricted solution al-
lows the problem data to enter into the problem, allowing a fully computable
a posteriori error bound. In this chapter, we apply these cutting edge tech-
niques of a posteriori error estimation and adaptive computing to complex
and relevant problems informed by geophysical applications. We demonstrate
that the error bound is sharp and allows for highly efficient error reduction in
the target quantity in a variety of situations which include geometric singu-
larities, multi scale effects in layered media and complex boundary conditions
at the seepage face.

The remainder of the chapter is set out as follows. In section 4.3, we
describe the seepage problem and derive a weak formulation. The problem
is discretised with a finite element method in section 4.4. Section 4.5 is de-
voted to the derivation of a dual-weighted a posteriori estimate for the finite
element error. Sections 4.6 and 4.6.3 describe the particulars of the adaptive
algorithm and our implementation of it. Section 4.7 contains numerical ex-
periments, to illustrate the performance of the error estimate and adaptive
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routine in two test cases. Finally, section 4.8 contains the application of
our adaptive routine to two case studies with experimental data chosen to
illustrate some of the most difficult cases that arise in practice.

4.3 Description of Problem

In this section, we give the mathematical formulation of the seepage problem
and derive its weak form. We note that the notation is slightly different to
previous chapters to emphasise the flux and therefore the physical motivation
for this problem. Let u denote the pressure head of fluid flowing in a porous
medium in a bounded, convex domain Ω ⊆ RN , N = 2 or 3 with boundary
∂Ω. The flow of the fluid is described by the flux density vector q(u). Note
that q(u) is not the fluid velocity v, but is related to it by

v =
q(u)

φ
, (4.2)

where φ is the porosity of the medium, that is, the proportion of the medium
that may be occupied by fluid. Flux density is related to the pressure field
by

q(u) := −k(u)∇ (u+ hz) , (4.3)

where hz is the vertical height above a fixed datum representing the action
of gravity upon the fluid and k is a nonlinear function that characterises the
hydraulic conductivity of the medium. We refrain from defining k precisely
here as our analytic results only require abstract assumptions on the specific
form of k. For our computational experiments we will make use of a van
Genuchten model [106], which is defined in (4.56) and illustrated in Figure
4.2. The modification of Darcy’s law following the observation that hydraulic
conductivity depends upon the capillary potential u is due to [27], and is a
generalisation of the standard Darcy law that applies to soil that is completely
saturated. In this case, the coefficient k introduces strong nonlinearity into
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the problem.
Now consider the steady state and suppose that f is a source/sink term.

Then we can combine (4.3) with the mass balance equation

∇ · q(u) = f (4.4)

to obtain the equation of motion for steady-state variably saturated flow

−∇ · (k(u)∇(u+ hz)) = f. (4.5)

To complete the above system and solve it, boundary conditions must be
specified. We briefly review the most relevant here and point an interested
reader to [13] for a more complete list.

Boundaries that are in contact with a body of water can be modelled by
enforcing a Dirichlet boundary condition u = g, where g is some function
chosen based upon the assumption that the body has a hydrostatic pressure
distribution. The boundary condition therefore enforces continuity of pres-
sure head across the boundary. A hydrostatic condition can also be used to
set the water table, and can represent the prevailing conditions far from the
soil-air boundary.

The flow of water across a boundary is given by the component of the
Darcy flux, (4.3), that is normal to the boundary. We will set q(u) · n = 0

where n is the unit outward normal vector to ∂Ω to represent an impermeable
boundary.

At subsurface-air boundaries, a set of inequality constraints must be sat-
isfied. The ambient atmospheric pressure is set as the zero point, and the
pressure of water in the soil at such a boundary can therefore not exceed
zero. When this pressure is reached, water is forced out of the soil, creating
a flux out of the domain. The portion of a subsurface-air boundary at which
there is outward flux is known as a seepage face, and it is characterised by
the following conditions:
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u 6 0, q(u) · n > 0, q(u) · nu = 0. (4.6)

We note the similarity in structure, but different signs involved when com-
pared with the Signorini boundary conditions in (3.2).

We are now ready to state the full problem. We divide the boundary of
Ω, ∂Ω, into ΓA, ΓN and ΓD such that ∂Ω = ΓA ∪ ΓN ∪ ΓD. Here ΓA stands
for the portion of the boundary at which a seepage face may form, and ΓN

and ΓD respectively denote portions of the boundary where it is known a
priori that Neumann (respectively Dirichlet) boundary conditions are to be
applied. The problem is to find u such that

∇ · q(u) := −∇ · k(u)∇(u+ hz) = f in Ω (4.7)

q(u) · n = 0 on ΓN (4.8)

u = g on ΓD (4.9)

u 6 0, q(u) · n > 0, q(u) · nu = 0 on ΓA, (4.10)

where f denotes a source/sink and g = g(hz) is an affine function representing
hydrostatic pressure. We also define the contact set to be the portion of the
boundary along which the constraint u 6 0 is active which is precisely the
seepage face

A := {x ∈ ΓA | u(x) = 0}. (4.11)

We refer to figure 4.1 for a visual explanation.

4.3.1 Weak Formulation

In this section, we write the seepage problem (4.7) - (4.10) in weak form. To
that end, we define the following function sets:
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ΓA

A

ΓD
Water

u = 0

u > 0

u 6 0

ΓN

ΓN

ΓD

Impervious boundary

ΓN

Figure 4.1: A typical seepage problem. The upper part of the left lateral
boundary is in contact with the atmosphere, while the lower part is under-
water. The height at which the level set u = 0 meets the boundary (marked
with a dashed line) is a key unknown in seepage problems.

Vg = {v ∈ H1(Ω) | v = g on ΓD} (4.12)

Kg = {v ∈ Vg | v 6 0 on ΓA} (4.13)

V0 = {v ∈ H1(Ω) | v = 0 on ΓD} (4.14)

K0 = {v ∈ V0 | v 6 0 on ΓA}, (4.15)

where boundary values are to be understood in the trace sense.
We seek a weak solution u ∈ Kg satisfying (4.7) - (4.10). To that end,

multiplying (4.7) by a test function v ∈ K0 and integrating by parts, taking
into account (4.8) gives
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〈q(u),n v〉ΓA − 〈q(u),∇v〉 = 〈f, v〉 ∀v ∈ K0. (4.16)

By the boundary conditions and the definition of the space K0, the boundary
integral is negative so that (4.16) can be written as:

〈−q(u),∇v〉 > 〈f, v〉 ∀v ∈ K0. (4.17)

We now extend the boundary data g to a function ḡ ∈ Kg by imposing that
ḡ ≡ 0 on ΓA. We will address the choice of function ḡ in Remark 4.4.1 but
for now it is sufficient to assume such a choice with this property exists. We
may therefore set v = u− ḡ ∈ K0 in (4.16) to give

〈q(u),n (u− ḡ)〉ΓA − 〈q(u),∇(u− ḡ)〉 = 〈f, u− ḡ〉 . (4.18)

Note that by (4.10) and the fact that ḡ vanishes on ΓA, the boundary contri-
bution of (4.18) is zero. This result can be subtracted from (4.17) to obtain
the variational inequality in the standard and more compact form for such
problems. The problem is then to seek u ∈ Kg such that

〈−q(u),∇(v + ḡ − u)〉 > 〈f, v + ḡ − u〉 ∀v ∈ K0. (4.19)

In the seminal paper [68], existence and uniqueness of solutions is proved
for problem (4.19) in the case where k(u) ≡ 1, see also [64]. This is extend-
able to monotone nonlinear operators, however note the coefficient k that
parametrises the soil properties is often such that the operator does not sat-
isfy this assumption as can be seen by the sharp gradients in Figure 4.2,
although the coefficients can be regularised to mitigate this [12]. We will
explore this idea further in chapter 6.

In the case k(u) ≡ 1, the obstacle problem on a convex domain where
ΓA = ∂Ω is studied in [21] (see also §3) and the regularity result u ∈ H2(Ω)

is established. To the authors’ knowledge, no such result is available for van

99



Genuchten type nonlinearities, and in practical situations the nature of the
domain and boundary conditions mean this level of regularity is unlikely.
Indeed, our numerical results indicate this cannot be the case as the problem
lacks regularity around the boundary of the contact set, shown in figure
4.1 as the boundary between A and ΓA\A. This is precisely the form of the
singularity that occurs in the dual problems of §3.7, which suggests regularity
is not guaranteed beyond W2,(4−ε)/3(Ω).

4.4 Finite Element Method

In this section, we introduce a finite element method to discretise (4.19). Let
us assume that the domain Ω is polyhedral and introduce a shape regular
triangulation T . We assume that ΓA aligns with the mesh in the sense that
for all K ∈ T , ∂K ∩ ∂Ω is either fully contained in ΓA or else intersects
ΓA in at most one point (N = 2) or one edge (N = 3). We make a similar
assumption on elements lying on ΓD. For this choice of T define the space

Vgh = {v ∈ Vg | v ∈ P (K)K ∈ T } (4.20)

and the subset
Kgh = {v ∈ Vgh | v 6 0 on ΓA}. (4.21)

Here we make use of the fact that g is affine so that Vgh is a subset of Vg.

Remark 4.4.1 (Choice of the function ḡ). Now we are in a position to
describe the construction of an appropriate extension ḡ of g. We define the
space

Vg, 0 = {v ∈ Vg | v = 0 on ΓA} (4.22)

and corresponding finite element space

Vg, 0h := Vgh ∩ V
g, 0 (4.23)
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and let ḡ be the solution to the following finite element problem: Find ḡ ∈ Vg, 0h

〈∇ḡ,∇Φ〉 = 0 ∀Φ ∈ V0, 0
h (4.24)

ḡ therefore has H1 regularity over Ω, satisfies the boundary condition on ΓD

in the trace sense, and vanishes on ΓA. We remark that this ensures also
ḡ ∈ Kg. In the following sections as an abuse of notation, we will identify g
with ḡ to simplify the exposition.

We are now ready to state the finite element approximation to this prob-
lem. We seek U ∈ Kgh such that

〈−q(U),∇(Φ + g − U)〉 > 〈f,Φ + g − U〉 ∀Φ ∈ K0
h. (4.25)

4.5 Automated error control

In this section we describe the derivation of an error indicator for the problem
(4.7) - (4.10). In doing so we make use of a dual problem that is related to
the linearised adjoint problem commonly used for nonlinear problems, but we
keep only the zeroth order component of the linearisation. We then proceed
in a similar manner to [17], where the authors consider a linear problem, to
obtain a bound for the error in the quantity of interest.

4.5.1 Definition of Dual Problem

The definition of the dual problem is interwoven with the primal solution u
as well as the finite element approximation U . To begin, we recall that the
discrete contact set is defined as:

AU := {x ∈ ΓA | U(x) = 0}. (4.26)

We let
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G = {v ∈ V | v 6 0 on AU and
∫

ΓA

−q(u)(v + U) · n dS 6 0}, (4.27)

and suppose J is a form whose precise structure will be discussed later, and
let z ∈ G be the solution to the following variational inequality:

〈k(u)∇(ϕ− z),∇z〉 > J(ϕ− z) ∀ϕ ∈ G. (4.28)

Application of duality arguments to derive error bounds in non-energy
norms require assumptions of well-posedness on the dual problem which may
not hold. Sharp regularity bounds on the dual problem with k(u) ≡ 1 were
only recently proven in [34] (see also §3) by a non-standard choice of dual
problem. This motivates us to make the following assumption which we will
use in the a posteriori analysis, the proof of which is currently the topic of
ongoing research.

Assumption 4.5.1 (Convergence in L2). With u solving (4.7) - (4.10) and
U as defined in (4.25), there are constants C > 0 and s > 1 such that

‖u− U‖L2(Ω) 6 Chs. (4.29)

Remark 4.5.2 (Assumption 4.5.1). We are motivated to make this assump-
tion by the results of chapters 2, 3 where we saw two sided a posteriori bounds
on the approximation error of a similar problem in non-energy norms. In
addition, a priori convergence results in L4(Ω) for approximation of the Sig-
norini problem are given in [hristof1754finite].

Definition 4.5.3 (Unrestricted solution). We define a function Ũ to be the
solution of the elliptic problem analogous to problem (4.7)-(4.9) but without
the inequality constraint (4.10). That is, Ũ ∈ Vg satisfies〈

−q(Ũ),∇w
〉

= 〈f, w〉 ∀w ∈ V0. (4.30)
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The omission of a boundary term in the weak form indicates that Ũ satisfies
q(Ũ) · n = 0 on ΓA.

4.5.2 Error Bound

Observe that by construction the function z + u − U is a member of the
set G. Indeed, by (4.10) we have u 6 0 on AU , by definition of AU and G
respectively we have U = 0 and z 6 0 on AU . Further, we calculate

∫
ΓA

−q(u)((z + u− U) + U) · n dS =

∫
ΓA

−q(u)z · n dS 6 0, (4.31)

since q(u)u · n = 0 on ΓA by the boundary conditions (4.10), and because
z ∈ G. We may therefore take ϕ = z + u− U in (4.28) to obtain

J(u− U) 6 〈k(u)∇(u− U),∇z〉 . (4.32)

Writing

〈k(u)∇(u− U),∇z〉 = 〈q(U)− q(u),∇z〉 − 〈(k(u)− k(U))∇(U + hz),∇z〉 ,
(4.33)

and expanding

k(u)− k(U) =

∫ 1

0

k′(U + s(u− U))(u− U) ds, (4.34)

we note that with the a priori assumption 4.5.1, we can assume that the
second term on the right hand side of (4.33) is higher order in the error u−U
than the first term, and can therefore be neglected when the computation
error becomes small. We will therefore focus on the first term in the following
analysis.

In the following lemmata, we prove bounds on differences between the
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functions u, U and Ũ .

Lemma 4.5.4 (Properties of the unrestricted solution). With u the primal
solution defined through (4.17), U the finite element approximation to u given
by (4.25), and Ũ the unrestricted solution defined in (4.30), we have, for any
v ∈ K0 and Φ ∈ K0

h,〈
q(u)− q(Ũ),∇(v + g − u)

〉
6 0 ∀v ∈ K0 (4.35)

and

〈
q(U)− q(Ũ),∇(Φ + g − U)

〉
6 0 ∀Φ ∈ K0

h. (4.36)

Proof. We choose test functions w = v+g−u and w = Φ+g−U respectively
in (4.30) where v ∈ K0 and Φ ∈ K0

h are arbitrary to see that

〈−q(U),∇(v + g − u)〉 = 〈f, v + g − u〉 ∀v ∈ K0 (4.37)

and

〈
−q(Ũ),∇(Φ + g − U)

〉
= 〈f,Φ + g − U〉 ∀Φ ∈ K0

h. (4.38)

Subtracting (4.19) from (4.37) and (4.25) from (4.38), we arrive at the desired
result.

Definition 4.5.5 (Restricted solution set). We define the set

Wg
h = {v ∈ Vgh | v 6 0 on AU}. (4.39)

Note that Wg
h is a slightly larger set than Kgh, but that U ∈ W

g
h. This means

that U in fact satisfies〈
q(U)− q(Ũ),∇(Φ + g − U)

〉
6 0 ∀Φ ∈ W0

h. (4.40)
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Lemma 4.5.6 (Galerkin orthogonality). With u the primal solution defined
through (4.17) and U the finite element approximation to u given by (4.25)
we have

〈q(U)− q(u),∇zh〉 6
〈
q(Ũ)− q(u),∇(zh + U − u)

〉
∀zh ∈ W0

h, (4.41)

in analogy to the usual Galerkin orthogonality result.

Proof. We can write

〈q(U)− q(u),∇zh〉 =
〈
q(Ũ)− q(u),∇(zh + U − u)

〉
+
〈
q(U)− q(Ũ),∇zh

〉
+
〈
q(Ũ)− q(u),∇(u− U)

〉
.

(4.42)

Now suppose zh ∈ W0
h. By setting Φ = U + zh− g in (4.36), the second term

on the right hand side of (4.42) is negative. Similarly, choosing v = U − g in
(4.35), the final term is also negative, and the result follows.

Lemma 4.5.7 (Property of the dual solution). Let u be the primal solution
defined through (4.17), z be the dual solution from (4.28) and U the finite
element approximation to u given by (4.25). Then, we have〈

q(Ũ)− q(u),∇(z + U − u)
〉
6 0. (4.43)

Proof. By the definition of Ũ we have〈
−q(Ũ),∇(z + U − u)

〉
= 〈f, z + U − u〉 (4.44)

and by (4.16),

〈−q(u),∇(z + U − u)〉 = 〈f, z + U − u〉 − 〈q(u),n(z + U − u)〉ΓA , (4.45)
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and therefore, noting that (k(u)∇u)u = 0 on ΓA,

〈
q(Ũ)− q(u),∇(z + U − u)

〉
=

∫
ΓA

−q(u) · n(z + U − u) dS

=

∫
ΓA

−q(u) · n(z + U) dS 6 0,

(4.46)

by the definition of the space G.

We now state the main result of this section.

Theorem 4.5.8 (Error bound). Let u be the solution of (4.19) and U the
finite element approximation to u. Let Ũ be the solution of the unrestricted
problem (4.30), z the dual solution of (4.28) and zh ∈ W 0

h an arbitrary
function. Then to leading order, we have

J(u− U) .
〈
q(U)− q(Ũ),∇(z − zh)

〉
. (4.47)

Proof. Starting from (4.33) and neglecting the higher order term, justified
by Assumption 4.5.1,

J(u− U) 6 〈q(U)− q(u),∇z〉

= 〈q(U)− q(u),∇(z − zh)〉+ 〈q(U)− q(u),∇zh〉 .
(4.48)

Combining with Lemma (4.5.6) gives
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〈q(U)− q(u),∇(z − zh)〉+ 〈q(U)− q(u),∇zh〉

6 〈q(U)− q(u),∇(z − zh)〉+
〈
q(Ũ)− q(u),∇(zh + U − u)

〉
= 〈q(U)− q(u),∇(z − zh)〉+

〈
q(Ũ)− q(u),∇(z + U − u)

〉
+
〈
q(Ũ)− q(u),∇(zh − z)

〉
=
〈
q(U)− q(Ũ),∇(z − zh)

〉
+
〈
q(Ũ)− q(u),∇(z + U − u)

〉
,

(4.49)

upon rearranging. The second term is negative by Lemma 4.5.7, completing
the proof.

To illustrate the usefulness of this result, we state the following corollary
to theorem 4.5.8.

Corollary 4.5.9 (A posteriori error indicator). With the notation of theorem
4.5.8, we have the local error estimate

J(u− U) 6
∑
K∈T

〈f −∇ · q(U), z − zh〉K + 〈q(U) · n, z − zh〉∂K . (4.50)

Proof. Since Ũ solves (4.30), we can replace it in the right hand side of (4.47)
and introduce the problem data:〈

q(U)− q(Ũ),∇(z − zh)
〉

= 〈f, z − zh〉+ 〈q(U) · n,∇(z − zh)〉 . (4.51)

After integrating by parts over each element we obtain the stated result.

Equation (4.50) gives a local quantity that we can approximately evaluate
to give an estimate of the local numerical error. Given a suitable approx-
imation of the dual error z − zh, this quantity can be computed and used
to inform adaptive mesh refinement. The approximate computation of the
error estimate will be addressed in section 4.6.3.
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Remark 4.5.10. The analysis above allows the choice of J to be made by
the user depending on the problem at hand. The resulting estimate used in
an adaptive algorithm will prioritise the accurate computation of J . For
example,

1. Fix x0 ∈ Ω and set J1(ϕ) = ϕ(x0) for all ϕ lying in a suitable test
space. An adaptive routine based upon the resulting estimate would
prioritise accurate computation of the point value of the solution at x0.

2. Setting J2(ϕ) = 〈u− U,ϕ〉 for all ϕ lying in a suitable test space would
give an estimate of the error in the global error in L2(Ω). Using suitable
approximations, such an approach can be used in practice, see section
4 of [14].

3. In seepage problems, a common quantity of interest is the volumetric
flow rate of water through the seepage face. Since by definition the soil
is saturated along the seepage face, the hydraulic conductivity takes the
constant value Ks (see section 4.6). The fluid velocity is given by (4.2)
and therefore the volumetric flow rate is given by

J(u) := −
∫

ΓA

Ks

φ
∇(u+ hz) · n dS =

∫
ΓA

q(u)

φ
· n dS, (4.52)

where we recall that φ is the porosity of the soil.

4.6 Implementation Details

In this section we discuss various aspects of the practical solution of problem
(4.7) - (4.10). We first discuss the choice of parametrisation of k in (4.7),
then present the iterative numerical algorithm used to solve the nonlinear
problem. Finally, we discuss aspects of the adaptive routine and the tools
required to approximately evaluate the error estimate.
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4.6.1 Hydrogeological Properties of the Medium

We make use of the popular model of [75] and [106] to parametrise the un-
saturated hydraulic properties of the soil. Consider a volume V of a porous
medium of total volume Vtotal. V is made up of the solid matrix and air- or
fluid-filled pores. If Vwater is the total volume of water contained in V , the
volumetric water content θ is Vwater/Vtotal, and therefore takes values between
0 and the porosity of the soil. Point values of water content can be defined in
the usual way of taking the water content over a representative elementary
volume around the point (we refer to section 1.3 of [13] for details). Water
content is related to the pressure head in the soil, and can be modelled as a
nonlinear function θ(u). The dimensionless water content Θ was defined by
van Genuchten [106] as

Θ(u) =
θ(u)− θR
θS − θR

, (4.53)

where θR and θS are respectively the minimum and maximum volumetric
water contents supported by a soil. Then the normalised water content Θ

takes values between 0 and 1 with 1 corresponding to saturation. Hydraulic
conductivity, that is the nonlinear coefficient k in (4.7) is modelled similarly,
and takes strictly positive values reaching its maximum value at saturation.
The shapes of the functions k and Θ are dictated by choice of dimensional
parameters KS and α, and non-dimensional parameter n. The units are
[KS] = ms−1 and [α] = m−1. The soil parameters are often fitted following
laboratory experiments for a given soil. The saturated hydraulic conductiv-
ity KS is the maximum value that k can take. Finally, α and n are shape
parameters whose physical meaning is less clear. The parameter m, intro-
duced for ease of presentation, is defined by m = (n− 1)/n. This model has
been shown to give good predictions in most soils near saturation by [107].
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Figure 4.2: The permeability coefficient as a function of pressure head u for
different soil types. Note that k(u) → 0 as u → −∞ but KR > 0 for all
u. Further, observe the smoothness of KR is quite different at u = 0 for
different soil types. This lack of regularity makes the numerical simulation
of, say clay, particularly challenging. We also note that these functions are
scaled by the saturated hydraulic conductivity, KS, which varies enormously
between different soils. The mean value for different soil types is 5×10−6ms−1

(sand), 5× 10−9ms−1 (slate) and 1× 10−8ms−1 (clay).

Θ(u) =

 1
[1+(−αu)n]m

u < 0

1 u > 0
(4.54)

KR(Θ(u)) =

Θ(u)
1
2

[
1−

(
1−Θ(u)

1
m

)m]2

u < 0

1 u > 0
(4.55)

from which k is then obtained by scaling by the saturated hydraulic conduc-
tivity:

k(u) = KSKR(Θ(u)). (4.56)
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Examples of hydraulic behaviour of different soils are shown in figure 4.2.
The smoothness of the function KR as it approaches saturation is largely de-
termined by the parameter n, with larger n resulting in a smoother transition
from unsaturated to saturated soil.

4.6.2 Solution Methods

To solve the nonlinear problem, we use a Picard iterative technique, com-
mon in the literature for computations in variably saturated flow [84]. As
described in [94], we choose to implement the seepage face boundary condi-
tion using a type of active set strategy in a way that allows it to be updated
within the Picard iteration during the solution process of the PDE. This has
clear benefits for the accurate resolution of the seepage face, and it is espe-
cially important in the adaptive framework that the exit point be allowed
to move to take advantage of increasing resolution during the adaptive pro-
cess. A practical way of achieving this within the nonlinear iteration was
first presented in [76], but its focus on representing a single seepage face in
an a priori assumed part of the boundary limits the range of applicability.
The procedure was generalised in [38] to allow any number of seepage faces
by checking for unphysical behaviour at boundary nodes. This is essentially
the method used here, but assignment is element-wise. Pressure and flux is
checked along boundary faces which are then assigned as being on the seepage
face or not, determining the boundary condition to be enforced at the next
iteration. It was observed that this approach resulted in less oscillation of the
exit point through the iterative process. This process can be thought of as
a physically motivated version of a projection method for solving variational
inequalities, as described in section 2 of [83]. The algorithm is illustrated
below (see Algorithm 1).

The nonlinear iteration is controlled by monitoring the difference in L2(Ω)-
norm between successive iterates normalised by the norm of the newest iter-
ate. Since we are concerned with the error in the finite element approxima-
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Algorithm 1 An Iterative Scheme for the Seepage Problem
Require: u0, TOL, N
Ensure: U , the approximation to the solution of the variational inequality
1: Set i = 1;
2: while i < N do
3: Set AU := {x ∈ ΓA | U i−1(x) = 0};
4: for degrees of freedom, xq, over ΓA do
5: if U i−1(xq) > 0 and xq /∈ AU then
6: Constrain U i(xq) = 0;
7: else if (q(U i) · n)(xq) < 0 and xq ∈ AU then
8: Constrain (q(U i) · n)(xq) = 0;
9: else

10: Leave boundary conditions unchanged;
11: Find U i such that:

∫
Ω
k(U i−1)∇(U i + hz) · ∇Φ =

∫
Ω
fΦ for all Φ over

a space with boundary conditions as above;
12: if e := ‖U i − U i−1‖L2(Ω) < TOL then
13: Set U := U i;
14: Break;
15: i++;
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tion, a very small iteration tolerance is set to ensure that the nonlinear error
is small compared to discretisation error. The iteration registers a failure
if this tolerance is not met within 30 steps, but in practice no convergence
failures occurred.

4.6.3 Adaptive Algorithm

As described in section 2.7, we adapt the mesh using SOLVE→ ESTIMATE
→ MARK → REFINE. Cells are marked for refinement using Dörfler mark-
ing. It remains to describe the approximate evaluation of the error estimate.

Evaluating the Estimate

Recall the error estimate of corollary 4.5.9:

η =
∑
K∈T

ηK , (4.57)

where

ηK = 〈f −∇ · q(U), z − zh〉K +
1

2
〈Jq(U)K , z − zh〉∂K . (4.58)

Note that ηK can only be approximately calculated since the exact dual
solution z is not available. There are several strategies for doing this which
produce similar results [8]. For computational efficiency, we choose a cheap
averaging interpolation to obtain a higher order approximation of the dual
solution as follows.

The dual problem is solved on the same finite element space as the primal
problem to obtain an approximation zh. A function z̄h is then constructed
from zh in the following manner. Consider the mesh T̄ l such that refining
every element of T̄ l produces T l. In the simplest case of uniform meshes,
each element of this new mesh corresponds to four elements of the original
mesh, with nine nodal values of zh. These values are sufficient to define a
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biquadratic finite element function z̄h on the mesh T̄ l. We note that zh and
z̄h coincide at degrees of freedom of the original mesh, but differ away from
them. We also emphasise that this computation is possible on locally refined
grids. Similar techniques are sometimes used as post-processors to improve
the quality of finite element approximations [40]. Since both zh and z̄h are
piecewise polynomial, we can integrate their difference exactly, and we make
the approximation

ηK ≈ 〈f −∇ · q(U), z̄h − zh〉K +
1

2
〈Jq(U)K , z̄h − zh〉∂K . (4.59)

Remark 4.6.1. We remark here that there are alternate ways to compute an
approximation z̄h. One could compute on the same mesh but with piecewise
quadratic finite elements, however this is significantly more expensive than the
solving the primal problem whereas computational complexity is comparable
for our approach. If the dual solution is smooth, the coarse mesh approxima-
tion is better as increasing polynomial degree gives higher order approxima-
bility in light of theorem 2.5.6. The different options availble are discussed
in section 4.1 of [8].

Remark 4.6.2 (Approximation of the space G). We finally remark that in the
practical implementation, we must solve the dual problem in the setWg

h which
may or may not be a subset of G. This is due to the fact that the exact contact
set is not available, and so we do not have access to G. In fact, the authors
of [17] further suggest approximating G by G0 := {v ∈ V0 | v = 0 on AU},
and we also take this approach. This reduces the dual problem to a linear
elliptic PDE, thereby simplifying the adaptive process.

4.7 Numerical Benchmarking

In this section, we present numerical results to demonstrate the effectiveness
of the error estimate and adaptive routine in a range of realistic situations of
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interest in the analysis of subsurface flow. In this sense, we aim to benchmark
our work to justify its use in the next section where we tackle specific case
studies.

All simulations presented here are conducted using deal.II, an open
source C++ software library providing tools for adaptive finite element com-
putations [5]. These were run on a Viglen Genie desktop computer with an
Intel i7 processor and 16Gb RAM. All simulations were completed within an
hour on this hardware. A high order quadrature formula (order 8) is used
in the assembly of the finite element system for each linear solve to attempt
to capture some of the variation in the coefficients. To avoid any possible
issues with convergence of linear algebra routines, an exact solver, provided
by UMFPACK, is used to invert the system matrix. This software is an
implementation of multifrontal LU factorisation.

In all simulations we take as our quantity of interest the volumetric flow
rate of water through the seepage face given in equation (4.52).

4.7.1 Example 1: Aquifer Feeding a Well

As a first two-dimensional example, let Ω = (0, 1)2 represent a vertical section
of a subsurface region. Spatial dimensions are given in metres. We refer to
Figure 4.1 for a visual representation of this problem, and give the specifics
here. The upper surface {(x, hz) | hz = 1} represents the land surface while
{(x, hz) | hz = 0} is impermeable bedrock. In both cases no-flux boundary
conditions are enforced. We remark that in certain cases the land surface
could exhibit seepage faces, as we will see in Example 2, but we assume
that this will not be the case here. On {(x, hz) | x = 1}, a hydrostatic
Dirichlet condition is enforced for the pressure with the water table height
set at 0.8m, that is, we set u = 0.8− hz along this portion of the boundary.
This corresponds to setting the groundwater table far from the well. Finally,
{(x, hz) | x = 0} is the inner wall of the well. The well is filled with water
up to a fixed level Hw, and a hydrostatic Dirichlet condition for the pressure
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is applied along the portion of the boundary that is in contact with the
body of water. Above Hw, the seepage face boundary conditions apply. For
the simulations presented here, we choose Hw = 0.25m. We remark that
this simple setup and variations of it are common benchmarks for works on
seepage problems [83, 38, 62, 118].

For the soil parametrisation, we make the choices n = 2.06, α = 1m−1,
KS = 1ms−1. This results in a soil that has the characteristics of silt whose
hydraulic conductivity has been scaled to have magnitude 1. Since we have
taken the datum f to be zero in this example, scaling the diffusion coefficient
by a constant has no effect on the pressure head.

Figure 4.3a shows an approximation to the solution of the problem in
this case, with the associated adjoint solution in Figure 4.3b. Notice the
adjoint solution takes its largest values along the seepage face along which
the quantity of interest is evaluated, with values increasing along streamlines
that terminate there. This is to be expected as it demonstrates that the flow
upstream of the seepage face has the greatest influence upon the quantity of
interest.

The simulation is initialised on a coarse mesh of 256 elements and uses
the goal-based estimate as refinement criterion. A selection of meshes gen-
erated by the adaptive algorithm is given in figure 4.3c–4.3f. The solution is
qualitatively comparable to those found for example in [38].

4.7.2 Example 2: Sloping Unconfined Aquifer with Im-

peding Layer

The second test case is taken from [94]. Its relevance was shown in [90]
where the location of impeding layers was shown to have large effects on the
saturation conditions of the soil. The domain setup is illustrated in Figure
4.4. This configuration leads to water flowing down the slope due to gravity,
and allows multiple seepage faces to form. We introduce a forcing term,
representing an underground spring, above the layer to force extra seepage
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(a) Contours of pressure. Level set
U = 0 marked with red line.

(b) Contours of adjoint variable, zh.
Note that by definition zh > 0.

(c) T 1 (d) T 4 (e) T 7 (f) T 11

Figure 4.3: Example 1, flow through a single layered, silty soil. We show
the pressure, adjoint solution and a sample of adaptively generated meshes
showing refinement upstream of the seepage face. The primal variable U and
the adjoint variable zh are both represented on T 11 which has approximately
66000 degrees of freedom.

faces. It is defined by:

f(x) =

10 if dist(x, (9, 1.15)) < 0.2

0 otherwise.
(4.60)

We make the same choice of soil parameters as in example 1, that is

117



ΓN

ΓD

ΓA

ΓN

ΓAΓA

Figure 4.4: The domain models a slope lying on a layer of bedrock with a
downstream external boundary. The domain is a parallelogram with corners
(0, 1), (0, 2), (10, 1) and (10, 0) where all dimensions are in metres. The
lower extent of the domain represents an impermeable boundary, as does a
layer of rock parallel to the land surface towards the right hand side of the
domain. This layer is 0.1m thick with corners (5, 0.95), (5, 1.05), (10, 0.45)
and (10, 0.55). The water table is fixed with a Dirichlet boundary condition
on the left hand boundary of the domain.

n = 2.06, α = 1m−1, KS = 1ms−1.
The results of this are given in Figure 4.5. As can be seen in Figure 4.5a,

three disjoint seepage faces arise from this simulation, two on the right hand
face, one above and one below the impermeable barrier, and another at the
land surface. It should be noted that the seepage face at the land surface
would generate surface run-off. This process is not taken into account by the
model we use.

The simulation is initialised on a coarse mesh of 4036 elements. An
adaptive simulation using the dual-weighted estimate produced the meshes
in figure 4.5. The algorithm refines heavily around the source and all seepage
faces, as well as resolving the corners around the impeding layer.

4.7.3 Estimator Effectivity Summary

In Examples 1 and 2 above we compute a reference value for J(u) obtained
from a simulation on a very fine grid. This was taken as the ‘true’ value to
perform analysis of the behaviour of the estimate. In Figures 4.6a–4.6b, we
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(a) Simulation of hillside with water leak. Level set U = 0 marked with
red line. Forcing is applied in the region which is highlighted green.

(b) Contours of adjoint variable, zh. Note the extreme clustering of con-
tours around the three seepage faces as well as high density around the
source.

(c) T 7 (d) T 10

(e) T 14 (f) T 17

Figure 4.5: Example 2, flow through a sloped aquifer with impeding layer.
We show the pressure, adjoint solution and a sample of adaptively refined
meshes that capture multiple seepage faces as well as potential singularities
in the pressure at the corner in the domain. The primal and adjoint variable
are both represented on T 17 which has approximately 7 × 105 degrees of
freedom.
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see that as the simulation progresses the effectivity of the estimate, defined
as the ratio of the error to the estimate, becomes very close to 1.

(a) Example 1. (b) Example 2.

Figure 4.6: Sharpness of error estimates during adaptive mesh refinement.
Notice that the dual-weighted estimate significantly over-estimates the error
for the first few refinement cycles but as the simulation progresses the ef-
fectivity moves closer to one. This is a well known feature of this class of
algorithm further described in [78]

4.7.4 Adaptive vs Uniform Comparison

To illustrate the gains obtained through adaptive refinement, we make a
comparison between the uniformly refined simulation and the adaptive one.
In each case uniform meshes perform extremely poorly with small and un-
predictable reductions in error where the adaptive scheme produces fast and
monotonic error reduction on all but the coarsest meshes. For comparison,
two lines illustrating different rates are included in figure 4.7a illustrating
that convergence of J(U) is suboptimal for uniform meshes, and that in terms
of degrees of freedom, this optimality can be restored using the goal-based
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estimate.

(a) Example 1. (b) Example 2.

Figure 4.7: Comparison of orders of convergence in terms of number of de-
grees of freedom (NDOFS) on uniform and adaptive grids. Notice the rate of
error reduction is considerably slower for uniform simulations in all cases.
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4.8 Case Studies with Layered Inhomogeneities

We present results making use of borehole data provided by CPRM (Brazilian
Geological Survey) by the Siagas system 1. The wells are used to supply
water to two different cities in São Paulo State, Brazil, one in Ibirá and the
other in Porto Ferrreira. Both cities are located over the Paraná Sedimentary
Basin, but in places with different shallow geology. There are two different
problem setups that we consider. In both cases the domain is a vertical
section illustrated in Figure 4.8. We assumed the soil is in homogeneous
layers, where there is no variation in the physical properties in the horizontal
direction. The soil parameters used for the simulation are given in Table 4.1.
The water table height far from the well is known and applied as a Dirichlet
boundary condition for the pressure on the right hand lateral boundary. In
both cases, the height of the water in the well gives the left lateral boundary
condition, and water is continually pumped out of the well in such a way
that the water height remains constant.

We work in cylindrical coordinates with the (r, φ, hz) with the hz-axis
aligned with the centre of the well. The aim is to calculate the total flux into
the well. We therefore use the functional J2 to account for flux of water over
the inner boundary below the water level, defined as follows.

J2(u) := 2πr0

∫
r=r0

q(u) · n dhz, (4.61)

where r0 denotes the radius of the well, that is, we integrate over the entire
inner wall of the well, above and below the water.

1http://siagasweb.cprm.gov.br/layout/
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m

Water

Sandy loam

Fine sandstone

(a) Case study 1, well within a two
layered soil.

46
m

Water

Sandy loam

Medium sandstone

Slate
Coarse sandstone

Diabase

(b) Case study 2, well within a five
layered soil.

Figure 4.8: Geometric setup of the industrial case study problems. Black
shading represents an impermeable boundary. In case study two, the gaps
between impermeable regions on the inner wall of the well are the filter
locations. The far field boundary conditions are analogous to those given in
Figure 4.1 and water is continually pumped out to maintain constant water
height.

4.8.1 Case Study 1 - 2 layered well in Ibirá (CPRM

reference 3500023601)

For these case studies, all lengths are given in metres. In the first case we
set Ω = {(r, φ, hz) | 0.0762 6 r 6 50, 0 6 hz 6 60}. The medium consists
of sandy loam for 38 6 hz 6 60 and fine sandstone for 0 6 hz 6 38. We
refer to Table 4.1 for details of the parametrisations of these soils. Again,
the base of the well is assumed to consist of impervious rock, and a no-flow
boundary condition is enforced. There is assumed to be no water flow at
the land surface. The water table has been measured in the vicinity of the
well to be 49.8m, so we set a hydrostatic boundary condition at r = 50 to
represent the far field conditions around the well. The height of water in the
well is 42.7m. The initial mesh is aligned with the layers in the soil. The
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Table 4.1: Case study soil parameters. Parameters used in the van
Genuchten-Mualem model for hydraulic conductivity in each of the several
types of soil and rock. Note the differences of several orders of magnitude in
the parameters Ki

S, causing strong discontinuities in the coefficient k.

Layer KS (ms−1) n α (m−1)
sandy loam 5E-6 1.65 0.66

med. sandstone 9E-6 1.36 0.012
slate 5.0E-9 6.75 0.98

fine sandstone 1.15E-6 1.361 0.012
diabase 2E-5 1.523 1.066

solution, together with a selection of adaptive meshes are given in Figure
4.9. The computed flux as a function of degrees of freedom is given in Figure
4.11a showing that the mathematical model is in good agreement with the
experimental data.

4.8.2 Case study 2 - 5 layered well in Porto Ferreira

(CPRM reference 3500009747)

The second case study is a challenging setup with five layers of highly varying
hydraulic properties, as well as complex boundary conditions due to the fact
that in this case the inner wall of the well is impermeable apart from two
filters to allow water to flow into the well. One is below and one above the
water, meaning that the former allows flow into the subsurface and the other
allows flow out. Along the inner wall, filters cover the part of the wall with
5 6 hz 6 17 and 19 6 hz 6 23. The water level in the well is set at 17.44,
with the other boundary conditions as in case study 1, with the water table
at the far boundary set at 33.9. Once again we assume a radially symmetric
solution. The domain is given by Ω = {(r, φ, hz) | 0.1585 6 r 6 50, 0 6 hz 6

46}. The medium consists of five layers. In order, with the top layer first, the
layers consist of sandy loam, medium sandstone, slate, coarse sandstone and
diabase. The boundaries between the layers are at hz = 34, hz = 18, hz = 16
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(a) Contours of pressure. (b) Contours of adjoint pressure,
zh.

(c) T 15 (d) T 20 (e) T 30 (f) T 35

Figure 4.9: Case study 1, flow through a two layered soil. We show the
pressure, the adjoint solution and a sample of adaptively generated meshes.
The boundary between the soil layers is marked with a white line. Both
solutions are represented on T 35 which has approximately 1.5 million degrees
of freedom.
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and hz = 8. We refer to Figure 4.8 for a visual description. The slate layer in
particular causes this to be a difficult problem to simulate numerically due to
its hydraulic conductivity being several of orders of magnitude smaller than
those of the other soils and rocks. The initial mesh is aligned with the layers
as well as the filter locations and the water level in the well. The solution,
together with a selection of adaptive meshes are given in Figure 4.10. The
computed flux as a function of degrees of freedom is given in Figure 4.11b
showing a comparison between the mathematical model and the experimental
data.

4.9 Conclusions & Discussion

In this chapter, we applied techniques from goal-oriented a posteriori error
estimation to a challenging nonlinear problem involving a groundwater flow.
For this class of problem, fine uniform meshes do not perform well. Indeed, in
Figure 4.7 we see that convergence can be extremely slow on uniform meshes.
By comparison, the dual-weighted error estimate was shown to perform well
under a variety of conditions. It has been observed in previous studies (see for
example [78]) that due to the approximations that must be made to evaluate
the error representation numerically, the error estimate can perform poorly
if the initial mesh in simulations is too coarse. In this particular case, we
expect that the problem originates in the approximation of the dual prob-
lem. Since the dual solution must satisfy homogeneous Dirichlet boundary
conditions on the seepage face defined by the primal solution, and since the
forcing from the quantity of interest is largest here, there is a sharp bound-
ary layer at the seepage face which is inevitably poorly resolved by a coarse
mesh. Notwithstanding, the algorithm produces rapid error reduction with
effectivity close to 1 once the mesh is sufficiently locally refined. This means
that numerical error can be quantified with a high degree of confidence, and
that the dual-weighted error estimate can be used as a termination criterion
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(a) Contours of pressure. (b) Contours of adjoint pressure, zh.

(c) T 20 (d) T 25 (e) T 35 (f) T 45

Figure 4.10: Case study 2, flow through a 5 layer soil. Level set u = 0
marked with red line. The boundaries between the soil layers are marked
with white lines. See table 4.1 for a detailed description of the properties of
each layer. Both solutions are represented on T 45 which has approximately
500,000 degrees of freedom. Note that in this case the dual problem is much
more interesting due to the structure of the inner wall of the well. The meshes
appear to show that the soil layers have very different influences on solution
accuracy. In particular, the slate layer shows little mesh refinement due to
its low permeability relative to the other layers.

for an adaptive routine.
The case studies most clearly demonstrate the need for adaptive tech-

niques in solving problems such as this. The multi-scale nature of inhomo-
geneous soil results in a problem which is extremely challenging to solve by
conventional numerical methods. Indeed, the error remains large on uniform
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(a) Case study 1. Note that the fully
resolved model is within a 5% relative
error of the experimental results with
a 10% relative error at around 90000
degrees of freedom.

(b) Case study 2. The fully resolved
model is around 25% relative error.
This is already achieved with 20000
degrees of freedom.

Figure 4.11: Plots displaying the computed value of the water flux into the
well under successive refinement cycles of the adaptive finite element method.
This allows to infer the maximal amount of water pumped from the well
whilst leaving the surrounding water table unchanged.

meshes even as the mesh approaches 105 degrees of freedom where in the
adaptive case a steep and consistent reduction in error can be observed with
successively refined meshes, see Figure 4.7. Applying these robust, computa-
tionally efficient methods to the case studies allows the accurate quantifica-
tion of solutions to the variational inequality. Note, however, that these case
studies are still extremely challenging. The assumption of layered soil, for ex-
ample, may not always be physically meaningful. Indeed, we believe it is this
assumption that affects the performance of case study 2. For highly variable
soils we must use further information, for example those provided through
resistivity methods. This is the subject of ongoing research, as explored in
[6].
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Chapter 5

Modelling of unsteady infiltration

5.1 Abstract

In this chapter we consider an unsteady model of water infiltration - Richards’
equation. Richards’ equation is known to be difficult to solve numerically,
particularly in many cases of practical interest such as instense rainfall sce-
narios, fine grained soils and heterogeneous soil structure. We introduce
Richards’ equation, describe its weak formulation and discuss its solution
by the finite element method, including linearisation and time discretisation.
We present the results of numerical benchmark simulations to verify the per-
formance of the scheme. This is followed by an application to more difficult
problems including realistic soil parametrisations, illustrating the situations
in which numerical schemes may fail to converge. The reasons for this failure
are explored, and a regularisation of the nonlinear relations that describe
permeability of the soil is suggested, and shown to mitigate the solver con-
vergence problems.
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5.2 Introduction

The use of potentials in a way analogous to the study of electric fields was one
of the milestones in the introduction of mathematics into soil science. This
methodology was introduced by Buckingham in a seminal work on soil science
[27] which aimed to derive a theory for water flow in soil analogous to those
for the movement of electricity and heat, respectively Ohm’s and Fourier’s
laws. This methodology was taken up by Richards in [89], where the author
made the case for studying unsaturated flow using negative values of the
potential, backed up by the observation that in unsaturated soil the pressure
of the fluid is less than that of the atmosphere. The capillary potential u
was introduced as

u =
p

ρd
, (5.1)

where p is the pressure of the fluid in the soil pores and ρd is the density of
the fluid. This paper also presented experimental results showing what later
became known as water retention curves, that is the relationship between
the capillary potential and the amount of water held by the soil.

Following a few years later in [88], the author gives one of the earliest full
descriptions of variably saturated flow of water in a porous medium in the
form of a nonlinear partial differential equation, which subsequently became
known as Richards’ equation. His paper followed the observation that within
certain ranges, unsaturated flow could be modelled with Darcy’s law, but
with variable permeability that depends on the water content of the soil.

There are three common formulations of Richards’ equation. We shall be
concerned with the mixed form, so-called because it contains both pressure
and saturation.

∂θ(u)

∂t
−∇ · {k(u)∇ (u+ hz)} = 0, (5.2)

where hz denotes the vertical height against a fixed datum, θ = θ(u) is a
function giving water content in terms of the capillary potential u = u(x, t),
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and k = k(θ(u)) is the hydraulic conductivity, a nonlinear function of capil-
lary potential. Here for example we may have in mind the functional forms
of the van Genuchten-Mualem model described in §4.6.1.

We remark that there are other forms of Richards’ equation, but we choose
(5.2) as it is more applicable to heterogeneous soils, arises naturally from a
conservation argument, and avoids the introduction of other functional forms
such as diffusivity or specific moisture capacity which may not be well-defined
in the saturated limit. Since our key regime of interest is infiltration, it is
crucial that we are able to model variably saturated flows effectively.

Much of the difficulty associated with solving Richards’ equation in prac-
tical contexts stems from the models of k and θ described in §4.6.1. It is not
possible to capture all properties of the subsurface, as measurement is often
performed indirectly with limited accuracy. Electroresistivity methods are
commonly used to infer subsurface structure. They provide a non-invasive
way to obtain resistivity profiles which can then be converted to other soil
properties using empirical relationships [95]. These methods have several
limitations. They typically produce a resistivity field at one moment in time,
and therefore cannot contain information about how resistivity changes in
time, meaning that it can be difficult to separate effects from soil properties
and water content. They can however be very effective when combined with
geological information to infer for example layered soil and rock structures,
as well as obstacles such as pipes and other man-made structures that can
inform models.

Soil also exhibits hysteresis, meaning that in general a drying soil will
contain more water than a wetting soil at the same pressure. In this work,
we will not consider hysteresis, that is, we will select a single function to
describe the pressure-saturation relationship. For a review on models of
hysteresis in soils, we refer the reader to [85].

We now turn our attention to modelling of hydraulic properties of indi-
vidual soil types. Such models form the building blocks of more involved
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simulations such as those with soils consisting of homogeneous layers, or ho-
mogeneous soils with obstacles. Many models have been proposed for the
hydraulic conductivity curve k and water retention curve θ. One group uses
a power law to relate hydraulic conductivity to the dimensionless water con-
tent:

KR = Θα, (5.3)

see for example [25]. Another approach derives an expression for the hy-
draulic conductivity assuming knowledge of the water retention curve (see
[75]). This was then combined with a flexible class of models for the water
retention curve in [106] to give the popular van Genuchten-Mualem model.
The model parameters are chosen by a curve fitting algorithm.

For certain types of soils (particularly fine-textured soils) the hydraulic
conductivity function can be very steep, and can cause numerical instability,
especially when combined with rapid infiltration or internal boundaries in
the soil between clay and a more conductive soil [59]. In soil science, some
authors modify the van Genuchten model in an attempt to obtain more
physically correct parametrisations (see e.g. [111], where the modification
seems to mitigate some numerical difficulties is specific test cases). This is
an ongoing research area with new soil models still being proposed to replicate
physical behaviour in very dry or very wet soils [113]. Later in this chapter,
we develop a novel approximation to the original van Genuchten model that
can potentially be applied more generally to problems with highly nonlinear
coefficients.

One feature common to all models of the water retention curve and hy-
draulic conductivity is strong nonlinearity. Richards’ equation is therefore
expensive to solve numerically, and ensuring computational efficiency be-
comes very important.

Despite these challenges, this equation has proved a popular model for
transient variably-saturated subsurface flow in numerical studies [12, 69, 115],
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practical engineering applications [94] and coupled with other processes as
part of larger projects [28].

The rest of this chapter is set out as follows. We begin with an intro-
duction to the numerical solution of Richards’ equation by finite element
methods in §5.3, where we discuss different linearisation approaches and
time discretisation. These methods are applied to numerical examples in
§5.4, and the situations in which standard methods can fail are addressed.
In §5.5, we introduce a regularisation of the hydraulic conductivity model
of van Genuchten and Mualem. Finally, this regularisation and its effect
on the performance of nonlinear iterative schemes for Richards’ equation is
investigated numerically in §5.6.

5.3 Finite element methods for evolution prob-

lems

In this section we describe the finite element method and its application to
solving Richards’ equation. We first introduce the basic concepts necessary
to formulate equation (5.2) weakly. We then give an overview of theoretical
results that have been achieved for Richards’ equation and related problems.
We then discuss the time discretisation and linearisation of the strong form
of the problem. Finally, the linearised problem is discretised in space using
a finite element method.

To fix ideas, we seek solutions to the mixed boundary value problem
given by (5.2) on a finite time interval [0, T ], augmented by the boundary
and initial conditions

u(x, t) = u0(x)

u = gD on ΓD

k(u)∇(u+ hz) · n = gN on ΓN ,

(5.4)
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with ΓD ∪ ΓN = ∂Ω.
To formulate this problem weakly, we will need to define additional func-

tion spaces. We first consider spatial boundary conditions, and define

H1
g,ΓD

(Ω) := {v ∈ H1(Ω) : v|ΓD = g}, (5.5)

for a function g defined on ΓD.
Now let

W := {v ∈ L2(0, T ; H1
gD,ΓD

(Ω)) : ∂tθ(v) ∈ L2(0, T ; H−1
ΓD

(Ω))} (5.6)

where H−1
ΓD

(Ω) is understood as the dual of H1
0,ΓD

(Ω).

Y := L2(0, T ; H1
0,ΓD

(Ω)) (5.7)

We are now ready to state the weak formulation of Richards’ equation.
Seek u ∈ W such that

∫ T

0

〈∂tθ(u), v〉+ 〈k(u)∇(u+ hz),∇v〉 dt =

∫ T

0

〈f, v〉 dt ∀v ∈ Y . (5.8)

Remark 5.3.1 (Existence and uniqueness of solutions to (5.8)). Due to
the structure of the nonlinearities in the problem, the proof of existence of
a solution to (5.8) is significantly more technical than some of its linear
parabolic siblings, and will not be given here. The interested reader is referred
to [3] for a detailed analysis.

We will now define the finite element solution of (5.8). We recall the
finite-dimensional space Vh from (2.33) and modify it to take account of the
boundary conditions. We assume here the finite element partition aligns with
the problem data in the sense that all edges e ⊆ ∂Ω are wholly contained in
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either ΓD or ΓN , and that gD is piecewise polynomial so that elements of Vh
may satisfy the boundary conditions exactly. Then we define

VgDh := {vh ∈ Vh : vh|ΓD = gD} (5.9)

and
V0
h := {vh ∈ Vh : vh|ΓD = 0}. (5.10)

Then the (semidiscrete) finite element solution is U ∈ C1(0, T ;VgDh ) such
that

〈∂tθ(U),Φ〉+ 〈k(U)∇(U + hz),∇Φ〉 = 〈f,Φ〉 ∀Φ ∈ V0
h, ∀t ∈ [0, T ]. (5.11)

where we make the assumption that θ(U) ∈ C1([0, T ]).
The result is a finite dimensional system of ODEs, and after choosing a

basis for VgDh becomes an algebraic problem, as described in §2.

5.3.1 Time-stepping and linearisation

In this section we work with a strong form of the problem to present the
various linearisations we will consider for Richards’ equation. We begin with
a brief overview of the different iterative schemes used to solve Richards’
equation. Newton’s method is a popular choice for variably saturated flow,
with versions of the method used in [12, 69] but is far from universal. Picard,
or fixed-point iteration is the simplest choice, and has been used successfully
in realistic dynamic case studies such as [94], but can be unstable. An alter-
native stable scheme is presented in [61]. It converges independently of the
initial guess but requires an additional computational overhead.

There are several schemes that lie between Picard and Newton meth-
ods that are essentially stabilised fixed point iteration. The modified Picard
method developed in [30] includes gradient information for the water con-
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tent function but not hydraulic conductivity, since the former is generally
smoother. In place of this gradient, the L-method (see [97]) uses a posi-
tive constant for stabilisation. In [97], the author proves convergence of a
weak form of Richards’ equation for arbitrary initial guess, making it a ro-
bust choice. In many cases the condition number of the linear system that
must be solved at each iteration of the nonlinear solver is lower, however this
improvement is often balanced by the fact that many outer iterations are
needed for the nonlinear solver to reach convergence.

A detailed comparison of these schemes is conducted in [69] in which it is
observed that, when it converges, Newton is the fastest, with the L-method
generally being the slowest. However the authors registered convergence
failures for Picard and Newton in challenging scenarios, suggesting that the
L-method could be a useful tool in soils with particularly steep characteristic
curves.

We now select a time-stepping scheme. A common choice for solving
Richards’ equation is the backward Euler scheme (see [69, 12, 94]) in view of
its favorable stability properties, though others are available (cf. [115]). We
utilise the backward Euler scheme for our simulations to help minimise the
effect of the large variations in k as this scheme is more dissipative than the
original problem.

Consider (5.2) on the time interval [0, T ]. We define a subdivision of the
time domain [0, T ] into a partition of N consecutive adjacent subintervals
with endpoints denoted 0 = t0 < t1 < · · · < tN = T . We denote the n-th
timestep as τn = tn−tn−1 and consistently use the shorthand F n(·) = F (·, tn)

for a time dependent function. Given u0, for n = 1, . . . , N we define at each
time level an approximate temporally semidiscrete un as the solution of

θ(un)− θ(un−1)− τn∇ · k(un)∇(un + hz) = τnfn. (5.12)

This is then an iterative family of nonlinear problems, indexed by the timestep.
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We define for each time step the nonlinear residual function evaluated at v

F n(v) = θ(v)− θ(un−1)− τn∇ · k(v)∇(v + hz)− τnfn, (5.13)

allowing us to formulate the nonlinear problem (5.12) as seeking un such that

F n(un) = 0. (5.14)

Let DF n(v, w) denote the directional derivative of F n at v in direction
w:

DF n(v, w) = lim
ε→0

(
F n(v + εw)− F n(v)

ε

)
. (5.15)

Further, let δj be the update to the current iterate. Then Newton’s method
applied to solve (5.14) starting from an initial guess un0 = un−1 and, assuming
for now that θ and k have well-defined derivatives, is given by seeking δj for
j = 0, . . . such that:

DF n(unj , δj) = −F n(unj ) (5.16)

and
unj+1 = unj + δj. (5.17)

Under the assumptions above on the differentiability of k and θ, one
calculates

DF n(v, w) = θ′(v)w −∇ · (k(v)∇w + wk′(v)∇(v + hz)) (5.18)

We now use the fact that unj+1 = unj + δj to write (5.16) as follows. Given
un0 , u

n
1 , ...u

n
j , find unj+1 solving

τnfn = θ(unj )− θ(un−1) + θ′(unj )(unj+1 − unj )

−τn∇ ·
[
k(unj )∇(unj + hz) + (unj+1 − unj )k′(unj )∇(unj + hz)

]
.

(5.19)
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Thus, we obtain a sequence of functions which will converge to the solu-
tion under assumptions on the initial guess and the regularity of the coeffi-
cients. At each stage, we can monitor the convergence of the method using
the residual F n(unj ).

5.3.2 Alternatives to Newton’s method

Newton’s method is quadratically convergent once within its convergence ra-
dius, and so is an attractive choice when it can safely be applied. It is however
only locally convergent, and requires the calculation of derivatives of both θ
and k. As we have seen in §4.6.1 however, some of the most widely applied
parametrisations for these coefficients do not have the necessary regularity.

Picard or fixed point iteration

The simplest possible iterative scheme is the Picard method, which at time
level n is to find un solving

θ(unj )− θ(un−1) + τn∇ ·
[
k(unj )∇(unj+1 + hz)

]
= τnfn. (5.20)

All terms involving derivatives are omitted leaving a fixed-point iterative
scheme in which the nonlinear coefficients are evaluated at the previous iter-
ate. Although convergence will typically be first order and therefore slower
in terms of number of iterations, each iteration will be cheaper due to the
fact that there is no need to compute derivatives, and this scheme has been
used successfully for realistic simulations of variably saturated flow [94].

Modified Picard method

It is often the case that the water retention curve, θ is smoother than the
hydraulic conductivity, k, and so we can improve (5.20) by including a higher
order approximation to the nonlinearity in θ to obtain the scheme given in
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[30], essentially a Newton approximation for θ and a Picard approximation
for k,

θ(unj )− θ(un−1) + θ′(unj )(unj+1 − unj ) + τn∇ ·
[
k(unj )∇(unj+1 + hz)

]
= τnfn.

(5.21)
This comes at the modest expense of having to calculate a derivative

of the water retention curve, but the cost is mitigated by the stabilisation
effect gained from including it. The term θ′(unj )(unj+1 − unj ) acts in a similar
manner to the L term in the L-method presented below, but the modified
Picard method lacks the guaranteed convergence enjoyed by the L-method.

L-method

Finally, another stabilised Picard method has been designed specifically for
Richards’ equation and analysed in [97],

θ(unj )− θ(un−1) +L(unj+1−unj ) + τn∇·
[
k(unj )∇(unj+1 + hz)

]
= τnfn. (5.22)

Here L > 0 is a parameter that, if chosen correctly, guarantees convergence
of this scheme.

A detailed comparison of these schemes is conducted in [69] in which it is
observed that, when it converges, Newton is the fastest, with the L-method
generally being the slowest. However the authors registered convergence
failures for Picard and Newton in challenging scenarios, suggesting that the
L-method could be a useful tool in soils with particularly steep characteristic
curves.

5.3.3 Fully discrete form

We are now ready to define a fully discrete form as a spatial discretisation
of (5.21) using finite elements. Let U0 denote a discrete approximation of
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the initial condition u0. We then define Un
j iteratively for n = 1, . . . , N ,

j = 1, . . . , J with Un
0 = Un−1 where Un−1 is the final iterate from the previous

time step, as the element of VgDh such that

〈
θ(Un

j−1),Φ
〉

+
〈
θ′(Un

j−1)(Un
j − Un

j−1),Φ
〉

+ τn
〈
k(Un

j−1)∇(Un
j + hz),∇Φ

〉
=〈

θ(Un−1),Φ
〉

+ τn 〈fn,Φ〉 ∀Φ ∈ V0
h.

(5.23)

We have therefore defined a sequence of problems whose solutions Un
J

converge to the finite element approximation of the time-discrete solution
un. Since the finite element method converges with order h, and backward
Euler exhibits linear convergence in τ , assuming convergence of the nonlinear
iteration, we should hope for ‖u− Un‖H1 6 C(τ + h) and ‖u− Un‖L2 6

C(τ + h2).
We also state below the Newton’s method for this problem to show the

difficulties in fully linearising k. It is similar to (5.23), but with a derivative
of the coefficient k included also. Find Un

j ∈ V
gD
h such that

〈
θ(Un

j−1),Φ
〉

+
〈
θ′(Un

j−1)(Un
j − Un

j−1),Φ
〉

+ τn
〈
k(Un

j−1)∇(Un
j + hz),∇Φ

〉
+

τn
〈
k′(Un

j−1)∇(Un
j−1 + hz)(U

n
j − Un

j−1),∇Φ
〉

=
〈
θ(Un−1),Φ

〉
+ τn 〈fn,Φ〉 ∀Φ ∈ V0

h.

(5.24)

Notice that the linearisation in k appears as a convection term. For k defined
for clay, for example as shown in figure 4.2, the problem could bcome heavily
convection dominant, resulting in unstable solutions.
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5.4 Numerical examples

In this section we present a collection of examples to introduce standard test
cases for Richards’ equation and observe the performance of the numerical
scheme in some challenging cases.

5.4.1 Benchmarking covergence rates: Hornung-Messing

problem

To verify correctness of the scheme and test convergence rates, we begin with
a standard test case known as the Hornung-Messing problem ([19, 50, 97]).
It is a two-dimensional problem in the horizontal plane, and therefore gravity
has no effect on the flow. The problem does however retain many of the key
difficulties of the problem, namely its double nonlinearity and degenerate
parabolic-elliptic character and therefore serves as an appropriate benchmark
for numerical schemes.

We consider the problem

∂tb(u)−∇ · (Kb(u)∇u) = f in Ω (5.25)

u = g on ΓD (5.26)

u(0, x, z) = u0, (5.27)

where ΓD ≡ ∂Ω and

b(s) =


π2

2
− 2 arctan(s)2 s < 0

π2

2
s > 0

(5.28)

Kb(s) =


2

1 + s2
s < 0

2 s > 0.
(5.29)

Then if we let s = x− y− t, one may check that with appropriate boundary
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and initial data, problem (5.25)-(5.27) is satisfied exactly by

uexact(x, y, t) =


−s

2
s < 0

− tan

(
es − 1

es + 1

)
s > 0.

(5.30)

We should note here that uexact has two continuous derivatives and is therefore
smoother than we can expect in general for solutions of Richards’ equation.
Simulations were conducted on the domain Ω = (0, 10)2 for t ∈ [0, 2]. Uni-
form meshes consisting of square elements were used. The initial condition is
taken to be the Lagrange interpolant of u0. The problem is linearised using
Newton’s method (5.24) since in this case the coefficients are continuously
differentiable, and in any case we are interested in the discretisation error. A
tolerance of 10−9 is chosen as a stopping criterion for the Newton iteration
to ensure that the linearisation error is small compared to the discretisation
error.

The results of the suite of test simulations are shown in figure 5.1. They
show that the numerical error in the pressure head measured in the L2(Ω)-
norm is O(h2 + τ), which is the theoretical rate for piecewise linear finite
elements combined with the backward Euler scheme for linear parabolic PDE
problems such as the heat equation (see for example [105]).

5.4.2 Aquifer Recharge

In this section we present the results of simulations of Richards’ equation in a
standard benchmark test case ([12, 69, 115]). This is a relatively difficult and
realistic problem in the sense that we do not expect a smooth solution, both
due to the boundary conditions and the lack of regularity of coefficients.
No exact solution is available. In addition, the scheme is presented with
the difficult scenarios of steep infiltration and the joining of the infiltrating
front with the water table. In both cases, rapid variation of the hydraulic
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(a) The L2(Ω) norm of the pressure
head error against mesh size, each line
having fixed time step.

(b) The L2(Ω) norm of the pressure
head error against time step, each line
having fixed mesh size.

Figure 5.1: Test 1, §5.4.1. Second order convergence in space and first order
convergence in time is observed. This is optimal for the discretisation used.

conductivity can occur, and cause instability of the method. This test case
is therefore a useful tool to evaluate robustness.

Let Ω = {(x, hz) | 0 < x < 2, 0 < hz < 3} represent a vertical section
of a subsurface region. For the purposes of this example, we assume that Ω

is filled with homogeneous soil or rock. The upper portion of the boundary
{(x, hz) | hz = 3} represents the land surface while {(x, hz) | hz = 0} is
impermeable bedrock. To clearly describe the setup, we define the following
sections of the boundary. Let ΓD1 = {(x, hz) | x = 2 and 0 6 hz 6 1},
ΓD2 = {(x, hz) | hz = 3 and 0 6 x 6 1}, and ΓN be the remainder of the
boundary so that ∂Ω = ΓD1 ∪ ΓD2 ∪ ΓN . On ΓD1 a hydrostatic Dirichlet
condition is enforced for the pressure with the water table height set at 1.
This corresponds to setting the groundwater table in the surrounding soil.

We assume initially that the system has reached an equilibrium, that
is, the initial condition is hydrostatic pressure consistent with the boundary
condition on {(x, hz) | x = 2}. The full problem specification is given below
in equations (5.31) - (5.35).

143



Water table

ΓN

ΓN

ΓN

ΓD1

Impervious boundary

ΓD2 ΓN

Land surface

Figure 5.2: The aquifer recharge problem. The upper boundary is in contact
with the atmosphere, with water pooling on the left hand part, while the
lower boundary is assumed to be impermeable.

∂tθ(u)−∇ · (k(u)∇(u+ hz)) = f in Ω (5.31)

k(u)∇(u+ hz)(u) · n = 0 on ΓN (5.32)

u = Ψ0(1− hz) on ΓD1 (5.33)

u = min(−2Ψ0 + 2(Ψ0 + Ψ1)t/tD, 2Ψ1) on ΓD2 , (5.34)

u(0, x, hz) = Ψ0(1− hz) (5.35)
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The boundary condition on ΓD2 is consistent with the initial condition
at t = 0 . Thereafter, the pressure head on ΓD2 is increased smoothly up
to a maximum of 2Ψ1 at a speed determined by the constant tD to drive
the flow. The constants Ψ0, Ψ1 and tD allow the timescales and boundary
conditions of the problem to be adjusted to allow for a wide range of soil
types and infiltration intensities. Physically, this problem can be interpreted
as water collecting in a drainage trench. We refer to figure 5.2 for a visual
explanation.

The solutions have very different characteristics depending upon the choices
of parametrisation. Below we present the results of simulations of homoge-
neous subsurface domains filled with sand, silt and clay.

5.4.3 Infiltration into sand

Following [12], we use a parametrisation of the water retention curve and
hydraulic conductivity from [55], given in equations (5.36)-(5.37).

θ(u) = θR + (θS − θR)(1 + (−αu)n)−1, (5.36)

k(u) = KS + (1 + (−βu)m)−1. (5.37)

For this section only, time is measured in seconds. We select problem
parameters Ψ0 = 3, Ψ1 = 0.6 and tD = 50s to force a strong infiltration over
a short time. The soil parameters are chosen to be θR = 0.075, θS = 0.3,
α = 2.71, n = 3.96, β = 2, m = 4.74, KS = 10−4ms−1. Plots of the pressure
head are shown in figure 5.3.

Infiltration into sand attains a steady state after a little over half an
hour. At the point where the domain becomes fully saturated, ∂tθ = 0 and
the problem becomes elliptic, and the solution will not change in the absence
of further forcing from boundary conditions or sources.
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(a) t = 50s (b) t = 100s (c) t = 200s (d) t = 500s

(e) t = 1000s (f) t = 1250s (g) t = 2000s (h) t = 2200s

Figure 5.3: Infiltration into sand - §5.4.3. Level set u = 0 shown with green
line. The gradient of u at the wetting front is initially large, but rapidly
reduces due to relatively large permeability values. The saturated region
joins the area below the water table at approximately t = 1300s, and the
domain becomes fully saturated at approximately t = 2200s.

5.4.4 Infiltration into silt loam

We now simulate infiltration into silt loam. The soil is parametrised by
θR = 0.131, θS = 0.396, α = 0.423, n = 2.06, KS = 4.96−2md−1. We choose
parameters τ = 0.02d, tD = 0.1d, Ψ0 = 1, Ψ1 = 0.1. Selected plots at various
times ae shown in figure 5.4.

In this case, the forcing at the surface is not sufficient to fully saturate
the medium, and the solution tends asymptotically to a steady state. After
approximately 1.5 days, the solution appears to have reached a steady state.
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(a) t = 0.05d (b) t = 0.1d (c) t = 0.2d (d) t = 0.3d

(e) t = 0.4d (f) t = 0.5d (g) t = 1d (h) t = 1.5d

Figure 5.4: Infiltration into silt-§5.4.4. Level set u = 0 shown with green
line. Silt soil exhibits a relatively smooth infiltrating front compared to the
steeper fronts in figures 5.3 and 5.5. Figure 5.4h shows steady state after 1.5
days, but in this case the domain is not fully saturated.

5.4.5 Infiltration into clay

We now select Ψ0 = 1, Ψ1 = 0.1 and tD = 1 day. We again use the van
Genuchten model with parameters for Beit Natofa clay taken from [106] and
converted to our units, namely θS = 0.446, θR = 0, α = 0.152, n = 1.17 and
KS = 8.2 × 10−4md−1. This is by far the most difficult case, since the van
Genuchten parametrisation of hydraulic conductivity for clay has unbounded
derivative as the saturation approaches its maximum value. In addition, the
initial infiltrating front has very steep gradients which persist for longer times
than in silt and sand due to the form of the hydraulic conductivity for clay.

147



For this problem, convergence failures of the nonlinear scheme were observed
for Newton, modified Picard and L schemes. Depending on the time step
and mesh size, failure occured reliably at one of two points in the simulation.
The first is at around t = 1d when the infiltrating front has fully developed.
The second is at around t = 10d when the infiltrating front meets the water
table, and the topology of the saturated region changes. These scenarios
cause instability of the numerical scheme manifesting around the wetting
front, and the nonlinear iteration fails to converge. This leads us to consider
a regularisation of the hydraulic conductivity function that will be discussed
in the next section.

(a) t = 1d (b) t = 2d (c) t = 3d (d) t = 4d

(e) t = 5d (f) t = 7d (g) t = 8d (h) t = 10d

Figure 5.5: Infiltration into clay - §5.4.5. Level set u = 0 marked with green
line.
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5.4.6 Wetting front re-forming after passing obstacle

To elicit challenging solution behaviour, we place an impermeable obstacle
in the path of the wetting front to obstruct the flow. As the two parts of the
wetting front pass the obstacle and coalesce on the other side, the resulting
singularity causes oscillations within the nonlinear iteration loop, and conver-
gence failure results. The non-lipschitz nature of the hydraulic conductivity
around saturation leaves the scheme unstable, as illustrated in figure 5.6.
The profiles in figure 5.6 display unphysical oscillatory behaviour, as can be
seen by the relatively large changes in hydraulic conductivity over very small
time scales. This is caused by rapid oscillation in the hydraulic conductiv-
ity k as the two saturated regions (infiltrating front and groundwater zone)
meet.

(a) t = 11.44 days (b) t = 11.46 days (c) t = 11.48 days (d) t = 11.50 days

Figure 5.6: Evolution of the hydraulic conductivity field for infiltration past
an obstacle in clay soil.

5.5 Regularisation of the hydraulic conductiv-

ity

The instability of iterative schemes applied to challenging problems parametrised
with the van Genuchten model was demonstrated in the numerical exam-
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ples above. In this section we describe a method for regularising the van
Genuchten hydraulic conductivity function. It is not uncommon for this re-
lation to be modified to reduce instability in numerical calculations. For
example, in [12], a spline approximation replaces k when the saturation
exceeds 99%. We note that this actually requires modification of k for
u ∈ [−0.6911, 0], a relatively large range that makes the problem signifi-
cantly easier to solve. The character of the solution is also changed when the
hydraulic conductivity is altered (see figure 5.7).

We wish to construct an approximation that retains the shape of the
curve, doesn’t create numerical artefacts in the solution, and is able to be
controlled by a regularisation parameter ε. When solving Richards’ equation,
the instability occurs for small negative pressure values where the hydraulic
conductivity can oscillate rapidly. We set ε > 0 and define a function kε by
modifying k in the interval [−ε, 0].

kε(u) =

k(u), for u > 0, u 6 −ε

p(u) for − ε < u < 0
(5.38)

where p is the unique quadratic polynomial such that p(0) = k(0), p(−ε) =

k(−ε) and p′(−ε) = k′(−ε). In other words, we match derivatives at u = −ε,
and ensure that the function kε is continuous. The result is a function that
is not differentiable at u = 0, but is Lipschitz continuous for any ε > 0.
Examples of kε are shown in figure 5.7e for three different values of ε.

Remark 5.5.1 (Choice of quadratic approximation.). When selecting a method
of approximating the hydraulic conductivity k close to saturation, linear,
quadratic and cubic approximations were considered. A linear approxima-
tion was discounted due to the non-matching derivative at u = −ε, which
caused visual artefacts in the solution. A cubic spline would have been able
to match derivatives at −ε and 0, but as ε→ 0, this causes instability in the
spline, leading to poor approximation. By contrast, the quadratic approach is
well-behaved for small ε and respects the shape of the model curve.
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To investigate the effect of altering the hydraulic conductivity function,
we conduct simulations of the aquifer recharge test case of §5.4.2 into clay
soil for three choices of hydraulic conductivity. We choose a very small value
of ε = 0.04 as the reference value, and compare with kε for ε = 0.4 and the
cubic spline approximation used in [12]. Comparisons between pressure fields
that result from these choices are shown in figure 5.7. We note that as more
regularisation is used, the boundary between saturated and unsaturated soil
lags behind, and gradients at the wetting front lessened. In the numerical
examples of §4, it was demonstrated that the location of this boundary is an
important feature that needs be well resolved.

5.6 Numerical study of the effect of regularisa-

tion of k on a nonlinear solver for Richards’

equation

In this section we investigate numerically the extent to which our modifi-
cation of the nonlinear diffusion coefficient k above is able to improve the
stabiliy of numerical solvers for Richards’ equation. We perform numerical
simulations of the aquifer recharge test case described in §5.4.2 for clay soil,
and for different values of the regularisation parameter ε. Different time
steps are used to demonstrate that smaller time steps do improve matters,
but only up to a point, and that the principal issue is the rapid variation of
k. All other problem parameters are kept constant.

The results are shown in figure 5.8. We see that the conditioning of the
problem degenerates rapidly, and the timestep required becomes smaller and
smaller. The behaviour of the nonlinear solver becomes unpredictable as ε→
0, indicating a clear problem with robustness. Note also that when ε becomes
small, reducing the time step to improve stability becomes impractical due
to the extremely small values required.
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5.7 Conclusions & discussion

In this chapter we introduced key concepts in numerical solution of parabolic
partial differential equations, including time stepping and dealing with non-
linearity. We illustrated a key difficulty in the simulation of infiltration into
soils with a steep hydraulic conductivity curve: the large variation in hy-
draulic conductivity between time steps can cause instability in nonlinear
schemes, leading to convergence failure. This motivated the regularisation
of the hydraulic conductivity. It was shown that this regularisation allows
the nonlinear solver to converge, albeit to the solution of an approximate
problem. To be useful in practice, it would be advantageous to quantify the
error introduced by our regularisation. To this end, in the next chapter we
conduct a posteriori analysis to determine how the regularisation should be
used to obtain approximate solutions that converge to the correct solution
upon sending h, τ and ε to zero.
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(a) Parametrised by kε,
ε = 0.04

(b) Parametrised by kε,
ε = 0.5

(c) Parametrised with
cubic spline.

(d) Exact van Genuchten model,
quadratic approximation and spline
approximation used in [12].

(e) Comparison of quadratic approx-
imations for several values of ε.

Figure 5.7: Pressure profiles at T = 5 days using three different models for
the hydraulic conductivity. The regularised coefficient with small regularisa-
tion parameter ε = 0.04 in 5.7a serves as a reference solution for comparison.
Approximating k results in a slightly spread out front but makes the problem
easier to solve (i.e. nonlinear solver doesn’t fail and no timestep adaptivity
is required). The profile in 5.7c resulting from the regularised coefficient
explains the difference between the simulations in clay soil presented here
and those presented in [12]. Quadratic approximation of hydraulic conduc-
tivity model for clay soil retain the qualitative shape of the model, but have
bounded derivative at zero for an ε > 0.
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(a) ε = 0.25 (b) ε = 0.125 (c) ε = 0.1

(d) ε = 0.08 (e) ε = 0.06125 (f) ε = 0.05

(g) ε = 0.04 (h) ε = 0.030625

Figure 5.8: Comparison of the numbers of iterations required to solve the
nonlinear problem at each time step. All axes use the same scale, each
experiment uses the same spatial mesh and the same set of different time
steps, the regularisation parameter ε is decreasing from left to right. A
convergence failure was registered if the nonlinear solver had not reached
tolerance within 400 iterations.
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Chapter 6

Adaptive regularisation applied to
Richards’ equation

6.1 Abstract

In this chapter we investigate the regularisation of problem data in elliptic
and parabolic PDE problems. We derive a posteriori error estimates that
take account of the error due to the approximation of the coefficients for lin-
ear elliptic and parabolic cases. Motivated by convergence issues in nonlinear
iterative solvers for Richards’ equation detailed in the previous chapter, we
apply indicators based on those derived in the linear cases to the nonlin-
ear and time-dependent case. Here we are particularly concerned with the
diffusion coefficient, which is a nonlinear and non-Lipschitz function of the
solution.

6.2 Introduction

It is well known that numerical methods for solving Richards’ equation
are prone to suffering convergence failure in the nonlinear iteration, a phe-
nomenon that was observed in chapter 5. The nonlinear coefficient of perme-
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ability changes rapidly with changes in soil pressure head, and therefore can
rapidly oscillate from iteration to iteration, leading to the numerical solution
blowing up or getting stuck in a loop. In the previous chapter, we introduced
a regularisation of the permeability coefficient to stabilise the iteration and
improve robustness of the numerical scheme. This came at the expense of ac-
curacy, as around infiltrating fronts a small change in permeability can have
a large effect. The goal is therefore to be able to control this regularisation
locally, and obtain a sequence of stable approximations that converge to the
solution.

In this chapter, we work towards a space-time adaptive scheme for Richards’
equation in the following steps. We begin with a rigourous a posteriori error
estimate for an elliptic problem with approximate coefficients. This takes
the form of the usual residual estimate augmented by a term that quanti-
fies the effect of approximating the coefficient. The latter term allows us to
choose the regularisation parameter to be compatible with the mesh size to
ensure that it does not negatively affect the convergence rate of the scheme
as h → 0. The analysis is then extended to a parabolic analogue for which
the elliptic reconstruction is used to obtain a bound that takes the form
of time-integrated error in an elliptic problem. This allows direct applica-
tion of the previous result to obtain a rigorous bound in the parabolic case.
Although we were unable to obtain an analogous bound in the degenerate,
nonlinear Richards’ equation case, we investigate the potential use of local
error indicators inspired by the error estimate for the linear problem to com-
bine mesh refinement with variable regularisation to increase the robustness
of our simulations.

The elliptic reconstruction technique was introduced in [70] and used to
address the suboptimality of a posteriori bounds in L∞(0, T,L2) obtained
via energy arguments. It has proven rather flexible in that bounds of various
forms may be used in time-dependent analogues. In [67], gradient recovery
estimators are used to construct parabolic a posteriori estimates, while in
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[60], the elliptic reconstruction is used in combination with techniques for
hyperbolic conservations laws. The energy framework has been extensively
developed for a posteriori error analysis of parabolic problems, with residual
based estimates derived in [86, 31, 16]. We prefer in this case to use the
elliptic reconstruction for its flexibility.

Many works analysing numerical schemes for Richards’ equation work
with the Kirchoff transformed problem. While this does have the advan-
tage of reducing issues that arise from steep pressure gradients at infiltrating
fronts, the transformed variable is not readily interpreted in a physical sense,
and due to the fact that the water content has vanishing derivative in satu-
rated soil, it has to be regularised. In this work we prefer to use one of the
more standard formulations that arises from a conservation argument, leave
the water content function unaltered and regularise the permeability instead.

We also mention here [59] where it is suggested that the van Genuchten
curve for hydraulic conductivity is adjusted close to saturation for improved
reproduction of experimental results. This would have the effect of lessening
the steep gradients that occur and in a way regularise the problem. The
regularisation would however not be controllable (it would be fixed for a given
soil). We therefore pursue a more flexible approach that allows us to control
the amount of regularisation on the fly to allow for the closest approximation
to the true model that a given discretisation can handle. We also note that
this could potentially be applied to other problems, for example the Stefan
problem, studied in [81].

6.3 A posteriori analysis of a regularised ellip-

tic problem

To illustrate ideas and provide analytical motivation for later sections, we
consider first the following elliptic problem in weak form.
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−∇ · (A∇u) = f in Ω

u = 0 on ∂Ω.
(6.1)

We assume Ω is subdivided into a triangulation satisfying the same as-
sumptions laid out in §2.5.1 and recall the finite element space Vh from §2.5.2.
We assume that f ∈ H−1(Ω) and that A ∈ L∞(Ω) is uniformly positive def-
inite, that is, there exists a constant CA > 0 such that for all v ∈ RN we
have

vTAv > CA|v|2.

For exposition, let us consider a situation where A is discontinuous and
Aε represents a smoothed coefficient with smoothing parameter ε > 0 that is
Lipschitz continuous. We consider a model linear elliptic problem, together
with its regularisation, and a finite element approximation to the regularised
problem. We seek u, uε ∈ H1

0(Ω) and Uε ∈ Vh such that

〈A∇u,∇ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ H1
0(Ω), (6.2)

〈Aε∇uε,∇ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ H1
0(Ω), (6.3)

〈Aε∇Uε,∇Φ〉 = 〈f,Φ〉 ∀Φ ∈ Vh. (6.4)

Remark 6.3.1. We have in mind that (6.2) is the exact problem we are
trying to solve, but for computational reasons we approximate this with (6.4).
However, note that (6.4) is the approximation of a perturbed problem (6.3).

Remark 6.3.2. For later problems, we have in mind a diffusion tensor of
the form

A = A(u) = K(x)k(u)I
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where I is the identity tensor, k is a non-Lipshitz function such as a model of
hydraulic conductivity in a fine-grained soil, and K is a spatially dependent
function that represents variations in the domain. For example, for uniform
soil, K ≡ 1 or for layered soil we could take K piecewise constant. We remark
that regularity of the coefficient tensor A is not so crucial in the linear case,
but that less regular functions will still be more difficult to represent accurately
within a finite element method.

We begin with a standard stability result.

Lemma 6.3.3 (Stability). Let u be the solution of (6.2). Under the assump-
tions on A stated above, we have the stability bound

∥∥A1/2∇u
∥∥

L2(Ω)
6
∥∥A−1/2

∥∥
L∞(Ω)

‖f‖H−1(Ω) . (6.5)

Proof. To begin, set ϕ = u in (6.2) with and use the H1
0(Ω)-H−1(Ω) duality

splitting to arrive at∥∥A1/2∇u
∥∥2

L2(Ω)
6 ‖∇u‖L2(Ω) ‖f‖H−1(Ω)

6
∥∥A−1/2

∥∥
L∞(Ω)

∥∥A1/2∇u
∥∥

L2(Ω)
‖f‖H−1(Ω) ,

(6.6)

and the result follows.

We continue by showing that the difference between the true solution u
and the approximate solution to the regularised problem Uε can be controlled
a posteriori by the sum of a standard residual based term and an extra
term that depends on the error committed by introducing the approximate
diffusion tensor.

Proposition 6.3.4 (A posteriori result for Uε). Let u and Uε solve respec-
tively (6.2), and (6.4). Let e = u − Uε. Then we have the following a
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posteriori bound.

∥∥A1/2∇e
∥∥2

L2(Ω)
6 C

∥∥A−1/2
∥∥

L∞(Ω)

∑
K∈T

(η2
K + γ2

K), (6.7)

where

η2
K = h2

K ‖f +∇ · (Aε∇Uε)‖2
L2(K) +

1

2
hK ‖JAε∇UεK‖2

L2(∂K)

γ2
K = ‖(Aε − A)∇Uε‖2

L2(K)

(6.8)

Remark 6.3.5. The result of proposition 6.3.4 bounds the error u − Uε in
terms of a standard residual term and a data approximation, or regularisa-
tion term. We assume that our regularisation Aε is such that the latter is
controlled by ε in the sense that∑

K∈T

γ2
K 6 Cεβ, (6.9)

and therefore ∥∥A1/2∇e
∥∥2

L2(Ω)
6 O(εβ + h2). (6.10)

By sending ε → 0 at an appropriate rate, we can ensure the usual order h
convergence for this problem. This is investigated further in the numerical
examples below, see figure 6.1.

Proof of proposition 6.3.4. Due to the inconsistency in the discrete problem,
we do not have the usual Galerkin orthogonality. Instead, we have

〈A∇(u− Uε),∇Φ〉 = 〈(Aε − A)∇Uε,∇Φ〉 ∀Φ ∈ Vh. (6.11)

We can therefore write
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∥∥A1/2∇e
∥∥2

L2(Ω)
= 〈A∇(u− Uε),∇e〉

= 〈A∇(u− Uε),∇(e− Φ)〉+ 〈(Aε − A)∇Uε,∇Φ〉 .
(6.12)

Using (6.2), this becomes

∥∥A1/2∇e
∥∥2

L2(Ω)
= 〈f, e− Φ〉 − 〈A∇Uε,∇(e− Φ)〉

+ 〈(Aε − A)∇Uε,∇Φ〉

= 〈f, e− Φ〉 − 〈Aε∇Uε,∇(e− Φ)〉

+ 〈(Aε − A)∇Uε,∇e〉 .

(6.13)

Upon integrating by parts on each element, we obtain

∥∥A1/2∇e
∥∥2

L2(Ω)
=
∑
K∈T

〈f +∇ · (Aε∇Uε), e− Φ〉K − 〈JAε∇UεK , e− Φ〉∂K

+ 〈(Aε − A)∇Uε,∇e〉K
(6.14)

An application of the Cauchy-Schwarz inequality gives

∥∥A1/2∇e
∥∥2

L2(Ω)
6
∑
K∈T

‖f +∇ · (Aε∇Uε)‖L2(K) ‖e− Φ‖L2(K)

+
∑
e⊆K

‖JAε∇UεK‖L2(e) ‖e− Φ‖L2(e)

+
∑
K∈T

‖(Aε − A)∇Uε‖L2(K) ‖∇e‖L2(K)

:= R1 +R2 +R3.

(6.15)

We now set Φ to be the Clément interpolant of e in R1 and R2 and bound
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using theorem 2.39:

R1 6 Cclem

∑
K∈T

hK ‖f +∇ · (Aε∇Uε)‖L2(K) ‖∇e‖L2(K)

6 Cclem

(∑
K∈T

h2
K ‖f +∇ · (Aε∇Uε)‖2

L2(K)

)1/2(∑
K∈T

‖∇e‖2
L2(K)

)1/2

= Cclem

(∑
K∈T

h2
K ‖f +∇ · (Aε∇Uε)‖2

L2(K)

)1/2

‖∇e‖L2(Ω) ,

(6.16)

where Cclem is the interpolation constant in theorem 2.39 that depends upon
the shape regularity of the mesh. Similarly,

R2 6 Cclem

∑
K∈T

h
1/2
K

∑
e⊆K

‖JAε∇UεK‖L2(e) ‖∇e‖L2(K̂)

6 Cclem

(∑
K∈T

hK ‖JAε∇UεK‖2
L2(∂K)

)1/2(∑
K∈T

‖∇e‖2
L2(K̂)

)1/2

6 CclemCT

(∑
K∈T

hK ‖JAε∇UεK‖2
L2(∂K)

)1/2

‖∇e‖L2(Ω) .

(6.17)

Here, CT is a constant that quantifies the overlap of element patches,
that is, depending upon the shape regularity of the mesh. For example, on
a mesh consisting of uniform squares, CT = 9. The result now follows after
bounding R3 with the Cauchy-Schwarz inequality and noting that due to the
coercivity of the problem, we have

‖∇e‖L2(Ω) 6
∥∥A−1/2

∥∥
L∞(Ω)

∥∥A1/2∇e
∥∥

L2(Ω)
. (6.18)
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We finally have

∥∥A1/2∇e
∥∥

L2(Ω)
6Cclem

∥∥A−1/2
∥∥

L∞

(∑
K∈T

h2
K ‖f +∇ · (Aε∇Uε)‖2

L2(K)

)1/2

+CclemCT

∥∥A−1/2
∥∥

L∞

(∑
K∈T

hK ‖JAε∇UεK‖2
L2(∂K)

)1/2

+
∥∥A−1/2

∥∥
L∞

(∑
K∈T

‖(Aε − A)∇Uε‖L2(K)

)1/2

(6.19)

Remark 6.3.6. The result of proposition 6.3.4 gives some insight into how
the inconsistency affects the numerical approximation. In particular, the
difference Aε − A is weighted by gradients of the approximate solution. We
can therefore expect this term to have a significant effect in problems with
large gradients.

Remark 6.3.7 (Definition of energy norm). Proposition 6.3.4 gives a bound
on the error in an energy norm for (6.2), that is, the norm given by v 7→∥∥A1/2∇v

∥∥
L2(Ω)

. One could also consider the error measured by a different

choice of energy, namely v 7→
∥∥∥A1/2

ε ∇v
∥∥∥

L2(Ω)
. This is the subject of the next

proposition. We shall see that using this alternative notion of energy leads to
a bound which is not directly computable, and depends on less well behaved
constants.

Proposition 6.3.8 (Alternative error bound). Under the same hypotheses
as proposition 6.3.4, we also have, for 0 < C,C(f, A,Aε),∥∥A1/2

ε ∇e
∥∥

L2 6 C(f, A,Aε) ‖f‖H−1(Ω) + CT Cclem ‖‖L∞(Ω)

∑
K∈T

η2
K . (6.20)
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where

C(f, A,Aε) =
∥∥A−1/2A−1/2

ε (Aε − A)
∥∥

L∞(Ω)

∥∥A−1/2
∥∥

L∞(Ω)
(6.21)

Proof. In analogy with proposition 6.3.4, we begin by writing, with Φ ∈ V ,∥∥A1/2
ε ∇e

∥∥2

L2(Ω)
= 〈Aε∇(u− Uε),∇e〉

= 〈A∇u− Aε∇Uε,∇e〉+ 〈(Aε − A)∇u,∇e〉

= 〈A∇u− Aε∇Uε,∇(e− Φ)〉+ 〈(Aε − A)∇u,∇e〉

(6.22)

The first term can be bounded analogously as in proposition 6.3.4 to see
that

〈A∇u− Aε∇Uε,∇(e− Φ)〉 6∑
K∈T

〈f +∇ · (Aε∇Uε), e− Φ〉K − 〈JAε∇UεK , e− Φ〉∂K
(6.23)

which is precisely the first two terms on the right hand side of (6.14), and is
bounded in exactly the same way.

For the second, we can obtain an estimate by using the stability result:

〈(Aε − A)∇u,∇e〉 =
〈
A−1/2A−1/2

ε (Aε − A)A1/2∇u,A1/2
ε ∇e

〉
6
∥∥A−1/2A−1/2

ε (Aε − A)
∥∥

L∞(Ω)

∥∥A1/2∇u
∥∥

L2(Ω)

∥∥A1/2
ε ∇e

∥∥
L2(Ω)

6
∥∥A−1/2A−1/2

ε (Aε − A)
∥∥

L∞(Ω)

∥∥A−1/2
∥∥

L∞(Ω)
‖f‖H−1(Ω)

∥∥A1/2
ε ∇e

∥∥
(6.24)

We note that this is not directly computable due to the negative Sobolev
norm that appears, and must be approximated (as is done for example in
[67]).
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6.4 A parabolic model problem

In this section we aim to prove a result analogous to proposition 6.3.4 for
evolution problems. We show that, at least in the case where k is depen-
dent on space only, an a posteriori bound that makes use of proposition 6.3.4
can be derived using the elliptic reconstruction technique. In this section, we
work in semidiscrete form, that is, discretised in space but not time. This is a
common approach when analysing finite element methods for parabolic prob-
lems (e.g. [105, 70]) and reduces the technicality for clarity of presentation.
Such arguments are not diffucult to extend to the fully discrete case, and
the reader is referred to for example [31, 104] for examples of fully discrete
analysis.

6.4.1 Error estimates using the elliptic reconstruction

We now consider a parabolic problem and its regularisation analogous to
(6.2)-(6.4). We consider a model linear parabolic problem, together with its
regularisation, and a finite element approximation to the regularised problem.
In weak form, they are given by

〈∂tu, ϕ〉+ 〈k(x)∇u,∇ϕ〉 = 0 ∀ϕ ∈ H1
0(Ω), (6.25)

〈∂tuε, ϕ〉+ 〈kε(x)∇uε,∇ϕ〉 = 0 ∀ϕ ∈ H1
0(Ω), (6.26)

〈∂tUε,Φ〉+ 〈kε∇Uε,∇Φ〉 = 0 ∀Φ ∈ Vh. (6.27)

As in the elliptic case, we remark that (6.25) is exact, (6.26) is its regular-
isation and (6.27) is the finite element approximation of a pertrbed parabolic
problem.

Theorem 6.4.1. Let u be the solution of (6.25), with Uε the solution of
(6.27). Let e = u− Uε. Then
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∫ T

0

∥∥k1/2∇e
∥∥2

dt+ ‖e(T )‖2
L2(Ω) 6 ‖e(0)‖2

L2(Ω) + 2

∫ T

0

∑
K∈T

(η̄2
K + γ2

K) dt,

(6.28)

where γK is as defined in proposition 6.3.4, and η̄K is defined to be

η̄2
K = h2

K ‖∂tUε −∇ · (Aε∇Uε)‖
2
L2(K) (6.29)

Before proving theorem 6.4.1, we take the opportunity to introduce key
tools in the finite element analysis of parabolic problems.

Definition 6.4.2. Discrete elliptic operator. For any χ ∈ Vh, Aεχ is defined
to be the element of Vh such that

− 〈Aεχ,Φ〉 = 〈kε∇χ,∇Φ〉 ∀Φ ∈ Vh. (6.30)

Definition 6.4.3 (Elliptic reconstruction.). We define the operator R : Vh →
H1(Ω) as follows. For an element χ ∈ Vh, we define the elliptic reconstruction
Rχ by

〈k∇Rχ,∇v〉 = −〈Aεχ, v〉 ∀v ∈ H1
0(Ω). (6.31)

Remark 6.4.4 (Relationship between Uε and its elliptic reconstruction.).
The elliptic reconstruction as defined above allows us to use the a posteriori
result given in proposition 6.3.4. To see this, we note that equation (6.31)
frames the elliptic reconstruction as the solution to a variational problem
with data in Vh. After regularising and discretising this problem in exactly
the same way as §6.3, the result is precisely equation (6.30) viewed as a
discrete problem for Uε.

Proof of theorem 6.4.1. We use the elliptic reconstruction approach. We
therefore begin by noting that Uε solves the following problem in H1

0(Ω):
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〈∂tUε − AεUε, ϕ〉 = 0 ∀ϕ ∈ H1
0 (Ω). (6.32)

By the definition of the elliptic reconstruction, we write this as

〈∂tUε, ϕ〉+ 〈kε∇RUε,∇ϕ〉 = 0 ∀ϕ ∈ H1
0 (Ω). (6.33)

Combined with (6.25), this yields an error equation

〈∂t(u− Uε), ϕ〉+ 〈k∇(u−RUε),∇ϕ〉 = 0. (6.34)

Now, with ρ := u−RUε and ω := RUε−Uε, we can choose ϕ = e = u−Uε
to obtain

〈et, e〉+ 〈k∇ρ,∇(ρ+ ω)〉 = 0. (6.35)

Now, integrating (6.35) over the interval [0, T ] gives

1

2

(
‖e(T )‖2

L2(Ω) − ‖e(0)‖2
L2(Ω)

)
+

∫ T

0

∥∥k1/2∇ρ
∥∥2

L2(Ω)
dt =

−
∫ T

0

〈k∇ρ,∇ω〉 dt.
(6.36)

Applying elementary inequalities gives

∫ T

0

∥∥k1/2∇ρ
∥∥2

dt+ ‖e(T )‖2
L2(Ω) 6

1

2
‖e(0)‖2

L2(Ω)

+
1

2

∫ T

0

∥∥k1/2∇ρ
∥∥2

L2(Ω)
dt+

1

2

∫ T

0

∥∥k1/2∇ω
∥∥ dt

(6.37)

i.e.,
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∫ T

0

∥∥k1/2∇ρ
∥∥2

dt+ ‖e(T )‖2
L2(Ω) 6 ‖e(0)‖2

L2(Ω)

+

∫ T

0

∥∥k1/2∇ω
∥∥2

L2(Ω)
dt.

(6.38)

Since we have bounded ρ in terms of ω, we may now use the triangle
inequality to write

∫ T

0

∥∥k1/2∇e
∥∥2

dt+ ‖e(T )‖2
L2(Ω) 6 ‖e(0)‖2

L2(Ω)

+ 2

∫ T

0

∥∥k1/2∇ω
∥∥2

L2(Ω)
dt.

(6.39)

Remark 6.4.5. This becomes a computable bound in light of remark 6.4.4.
Indeed, in proposition 6.3.4, the quantity

∥∥k1/2∇ω
∥∥2

L2(Ω)
is bounded a poste-

riori.

6.5 Numerical examples - elliptic case

We now investigate the behaviour of the error estimate derived in proposition
6.3.4 using a numerical example. We consider problem (6.2)-(6.4) on Ω =

(−1, 1)2 with the following choice for the exact and approximate diffusion
tensors:

A =

(
k(2x) 0

0 1

)
(6.40)

Aε =

(
kε(2x) 0

0 1

)
, (6.41)
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where kε is the approximation defined in equation (5.38) for the hydraulic
conductivity model for clay defined in §4.6.1. We enforce homogeneous
Dirichlet boundary conditions on ∂Ω and set f ≡ 1. A plot of the solu-
tion is shown in figure 6.1. The rate of convergence of the approximation
error ‖k − kε‖L2([−ε,0]) is numerically determined to be approximately of or-
der ε0.63. We therefore couple regularisation to mesh refinement by selecting
ε ∝ h1.6 to ensure that the approximation error does not pollute the conver-
gence rate of the finite element method. Indeed, if ε ∝ h1.6, then we should
have ‖k − kε‖L2([−ε,0]) ∝ (h1.6)0.63, that is, the data approximation term and
residual terms have the same asymptotic order in equation (6.8). See also
remark 6.3.5. Results are shown in figure 6.1. This figure shows that the
order h convergence is preserved and that, with the correct coupling, the
approximation error in A does not adversely affect the convergence rate of
the finite element method (figure 6.1b).

6.6 Numerical examples - nonlinear parabolic

case

Motivated by the results of section 6.4, we define the following error indica-
tors.

EK,n :=

∫
∂K

Jk(Un)∇(Un + hz)K (6.42)

ϑn :=
∥∥k(Un)∇(Un + z)− k(Un−1)∇(Un−1 + hz)

∥∥
L2(Ω)

, (6.43)

γn := ‖(kε(Un)− k(Un))∇(Un + hz)‖L2(Ω) , (6.44)
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(a) Approximate solution and con-
tours

(b) Plot of the two components of the
error estimate (6.7)

(c) Plot of ηk (d) Plot of γk

Figure 6.1: Figures 6.1c and 6.1d show the spatial distribution of the error
indicators.
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where ϑn and γn are localised to cells in the obvious way. EK,n represents
spatial contribution to the error, ϑ the temporal contribution, and γn repre-
sents the effect of regularising the hydraulic conductivity. We remark that
in this case the data approximation term is weighted by ∇(Un + hz). It
therefore approximates the difference in flux of water that results by making
the approximation in the coefficient k.

As in example 1, §6.5, we couple regularisation to mesh refinement by
selecting ε ∝ h1.6 and run a sequence of simulations of the aquifer recharge
problem in clay soil §5.4.5. The discretisation parameters for the simulations
are τ = 0.02 days, and h =

(
1
2

)i+1, i = 1, 2, 3, 4 with ε = 1.25∗
(

1
2

)i−1. We keep
the time step fixed as our primary focus is on capturing spatial phenomena.
We also run the simulations on the smaller time interval t ∈ [0, 15] since
the key phenomena in this test case occur earlier (i.e. the initial infiltrating
front and the join with the water table). Visualisations of the error indicators
(6.42)-(6.44) are shown in figures 6.2b-6.2d. The plots show that the spatial
indicator is localised to the wetting front, as well as the singularity at the
land surface caused by change of boundary condition, the data indicator lies
just ahead of the front where the regularisation takes effect, and the temporal
indicator is concentrated ahead of the front where the solution changes most
rapidly.

The behaviour of the error indicators as h and ε are decreased is shown
in figure 6.3.

The results shown in figure 6.3 present, as expected, a more complex
picture than in the linear case. In figures 6.3b and 6.3c we see that the shape
of the graph of the indicators γ and E changes as the ε→ 0. This is because
smaller ε results in steeper gradients in the solution. We do however observe
approximately the expected orders of decrease for both indicators.
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(a) Pressure field (b) EK,n (c) γn (d) ϑn

Figure 6.2: Spatial distributions of error indicators, t = 2 days. Level set
u = 0 indicated with green line.

6.7 Conclusions & discussion

In this chapter, error estimates were derived for linear elliptic and linear
parabolic problems to take into account the approximation error resulting
from regularisation of the problem data. In the elliptic case, we note that
the correct choice of energy is crucial for obtaining useful bounds, compare
propositions 6.3.8 and 6.3.4. In the latter case, the constants depend on the
essential suprema of A−1/2 and A−1/2

ε , which will blow up in degenerate cases.
The resulting bounds provided the appropriate coupling of regularisation
with mesh refinement to ensure that asymptotic rates of convergence are
maintained despite the approximations made in the coefficients. In addition,
when applied to Richards’ equation, a stable sequence of approximations to
regularised problems was obtained, with the behaviour of the error indicators
suggesting that optimal convergence rates are preserved.

We remark that in figure 6.3d we still see a degree of instability in the
nonlinear iteration, and that convergence is not guaranteed by our scheme.
We saw however in §5 that our regularisation does help the scheme to con-
verge, and the data in figure 6.3 suggests that the data approximation term
is not likely to pollute the overall simulation error. Design of a scheme that is
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(a) Data approximation indicator
γn.

(b) Zoomed in plot to illustrate
more clearly that rate of decrease
of γn with refinement in h and ε

(c) Spatial indicator En.
(d) Iterations required to reach
convergence at each time step.

Figure 6.3: Plots of the indicators and iteration data for the numerical ex-
periment §6.6.
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guaranteed to converge for a given regularisation level is a subject for further
research.
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Chapter 7

Conclusions, discussion and
future work

In this thesis, we have explored the application of a posteriori error analysis
and adaptive schemes for finite element methods.

In this short chapter, we summarise the main results and discuss future
directions for development of the work in this thesis.

7.1 Summary of results

Following a review of literature in chapter 1, we discussed the background
material and presented some key known results, most importantly an a pos-
teriori error bound for a finite element method for a linear elliptic problem.
The bound, given in theorem 2.6.2 is in Lp(Ω) for general p and we made use
of duality arguments, a key tool in later chapters.

The first novel results appeared in chapter 3, where a rigorous a posteriori
bound analogous to that given in theorem 2.6.2 was proved for the Signorini
problem with p = 4. This work was in part inspired by new insights from
the paper [34] where limitations on dual regularity for the Signorini problem
were discussed. A crucial part of the proof is a result on the approximation
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properties of a new bound-preserving interpolation operator that we proposed
specifically for this problem. We proved that the approximation error of this
interpolant converges at the optimal rate with respect to the finite element
mesh size as well as preserving key inequalities.

This bound was benchmarked using a suite of numerical test problems
and its practical performance was evaluated. Adaptive meshes generated
using the local error indicators (3.52) as refinement criteria were shown to
out-perform uniform grids in terms of lower error and/or improved rates of
error reduction in terms of number of degrees of freedom in the mesh (see
figures 3.4a and 3.4b respectively).

We also tested on problems that did not have the necessary regularity to
apply our theoretical results (§3.8.2 and §3.8.3), since the work in this thesis
was motivated by practical applications where such assumptions may not be
met, and observed good performance, in the case of §3.8.3, optimal rates of
convergence with respect to degrees of freedom were not reached, but rates
were improved by using an adaptive scheme, see particularly figure 3.5.

As a final note on this work, we point to the assumption on the discrete
contact set, condition Ah (see remark 3.4.2). This assumption essentially
relates to resolution of the contact set by the discrete solution, and is re-
quired to prove stability of the dual problem (which depends on the discrete
contact set). For our numerical examples, this assumption is rather mild
as the solution has simple topology, however we must acknowledge that for
more pathological examples, this may require a long pre-asymptotic regime
in convergence behaviour until the required resolution is achieved. How this
would affect the error estimate is unknown, and is a potential subject of
further investigation.

In chapter 4, we moved on to a more realistic seepeage problem related
to the Signorini problem via its nonlinear boundary conditions. Study of
this problem was motivated by data collected by our industrial partners CE-
MADEN, as well as the aim of developing our earlier work on the Signorini
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problem to more realistic problems.
This time we did not have necessary regularity in the dual problem to

apply the same methodology as in chapter 3. Instead, we developed an er-
ror estimate using the dual weighted residual methodology, our contribution
being the extension of the result to a problem with nonlinear diffusion coef-
ficient, and extensive numerical tests and case studies.

Once again, we tested the error estimate with a range of simulations.
The estimate was seen to perform very well in the standard seepage problem
setup (see §4.7.1 and figure 4.7).

The most interesting numerical examples were the case studies of §4.8,
where real data is combined with geolocial information to simulate wells in
São Paulo State, Brazil. These test cases were made particularly difficult by
the presence of inhomogeneity in the subsurface structure with differences of
several orders of magnitude in hydraulic conductivity between layers of soil/
rock. As a result, we found that high levels of local refinement were required
to obtain accurate result. In particular, figure 4.11 shows that very high
resolution was required before the computation of flux across the seepage face
reached a stable value. These test cases also showed some of the limitations
of our work. It is expected that measurement error and lack of detail in the
subsurface structure will contribute to significant computation errors.

In chapters 5 and 6, we move on to Richards’ equation: a time-dependent
model of infiltration. Our focus here was to study the instabilities that
are observed when simulating Richards’ equation with certain difficult soil
models (see the numerical results of chapter 5, particularly figure 5.8). In
§5.5 we introduce a regularisation for the hydraulic conductivity that can
be controlled by a positive parameter ε, with ε = 0 corresponding to the
exact model and larger positive values corresponding to reduced steepness
at the saturation point. In figure 5.8 we see that regularising the hydraulic
conductivity in this manner does indeed stabilise the iterative solver used
to solve Richards’ equation, and reduce convergence failures. This of course
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comes with a penalty of being further from the true model, the effect of
which is demonstrated in figure 5.5, where we display pressure fields that
result from different values of ε.

The discussion in chapter 5 was rather heuristic and qualitative, so in
chapter 6, we aim to quantify the effect of our regularisation on numerical
errors, and quantify the relative convergence rates of discretisation and reg-
ularisation error. To this end, we develop an a posteriori error bound for
a linear elliptic problem in proposition 6.3.4 that takes account of the error
induced by approximating the coefficient. The result is the augmentation of
a residual error bound with a term including the data error weighted by the
gradient of the numerical solution. This bound is further developed into a
bound for the parabolic version using the elliptic reconstruction (see theorem
6.4.1).

The error estimates developed in chapter 6 are benchmarked under uni-
form grid refinement and demonstrate the expected rates of convergence.

7.2 Further work

As previously noted, more accurate problem data is required for accurate
simulation of the subsurface well problems studied in §4.8. It is a subject of
ongoing research to extract as much useful information as possible from data
provided by resistivity methods for subsurface measurement, explored in [6].
Further work could also make use of efficient numerical routines such as the
adaptive schemes of chapter 4 as the forward model in an inverse problem to
infer subsurace structure. Since forward models must be solved many times,
efficiency is cricual, and adaptive methods come into their own.

In chapter 6, analysis was provided only for a linear problem. Further
research could investigate the analysis of Richards’ equation or a similar non-
linear problem, including the possible extension of the elliptic reconstruction
technique to parabolic problems with nonlinearity in the time derivative.
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The combination of local adaptive mesh refinement and regularisation,
possibly combined with adaptivity in the time step is an interesting avenue
of future research. In this case, one must be careful to ensure that the reg-
ularisation parameter does not become too small for the current mesh to
handle. In this thesis, we provided an improvement in iteration stability us-
ing regularisation, but an ideal outcome would be a full space-time adaptive
algorithm that could provide efficient solution of Richards’ equation in chal-
lenging scenarios, and guarantee convergence of nonlinear iterative solvers.
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