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Abstract 

 

 

 

 

 

In the urban scaling hypothesis, it has been noted that cities exhibit self-similar behaviour. Much of 

the scaling literature focuses on cities, whilst not including rural regions. Initially, rural-urban 

population density scaling was investigated using a diverse set of indicators (crime, property, 

mortality and age) in England and Wales. These were fitted using either a single or segmented power-

law (PL) model where preference was chosen using a Davies test and confirmed using both Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). In this study, it was found that 

most indicators exhibited a change point between rural-urban regions typically around 27 people per 

hectare. Mortality, for example, declined above the change point showing that urban regions have a 

‘protective’ effect influenced by age demographics. Residuals obtained from the preferred PL model 

were analysed using methods such as hierarchical clustering and self-organising maps (SOM) 

displaying regional clusters, strong extensive correlations and disparities. The most interesting finding 

was that age demographics break the self-similarity behaviour that is a fundamental and underlying 

part of the urban scaling hypothesis. Scaling is usually cumulatively data over a large timeframe. 

Finer granularity of data is not easily accessible, although the COVID-19 pandemic was a unique 

opportunity to obtain and explore the scaling of daily data. It is thought that scaling exponent is slow 

changing and exhibited little fluctuation. However, it was found that COVID-19 cases revealed that 

the scaling exponents along with residual variance and skew varied with considerable complexity. 

Scaling exponents continually evolved and reversed where preference of propagation between rural-

urban regions switched 6 times. Regional homogeneity occurred in periods with low variance where 

regions are located close to the PL. Contrary, regional heterogeneity occurred in periods with high 

variance where regions are located further away from the PL. Skew also exhibited both positive and 
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negative skew; both important features of propagation where the latter is not appreciated in the 

modelling of community propagation. Positive skew indicates a long tail of ‘hotspots’ and ‘super-

spreading’ events whilst negative skew indicates a long tail of ‘cold spots’ and ‘super-isolators’. In 

contrast, COVID-19 deaths exhibit near constant scale, variance and skew despite the extended 

studied timeframe, government intervention, different testing regimes and the national vaccination 

programme. This was also evident in the regions position relative to the PL where it remained either 

below or above the expectation throughout the pandemic. In the initial study of COVID-19, residual 

variance did not meet the conditions of standard linear regression. The variance expanded and 

contracted over time and residual distributions included both positive and negative skew, thus, 

normality and homoscedasticity assumptions of standard linear regression were not always met. This 

investigation stimulated the development of the generalised logistic distribution (GLD) within a 

Bayesian framework to model expectation and dispersion using Markov chain Monte Carlo (MCMC) 

methods. The advantage of the GLD is its flexibility when looking at skewed or otherwise non-

normally distributed data. The GLD regression model and its key features are demonstrated using 

COVID-19 data. However, the proposed framework will benefit a range of systems with linear 

structure. The additional dispersion regression coefficients account for heteroscedasticity together 

with the parameters of the GLD to provide more realistic shapes (e.g., skew). The normal regression 

model assumes a normally distributed homoscedastic system, producing relatively large model bias, 

relative to the improved GLD regression model. Gelman-Rubin diagnostics and deviance information 

criterion (DIC) was included in the proposed framework showing good convergence and data were 

explained well by the fitted GLD regression model. 
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Chapter 1: Overall Introduction 

 

 

 

 

 

The work in urban scaling dates back to the early 1900s [1] and inspired others to explore how city 

sizes are distributed by rank order [2–4]. Inspired by some of this work, Nordbeck [5] 

comprehensively presents a generalisation of allometric growth (power-laws) which has formed the 

foundations of urban scaling [6]. The mathematics of allometric growth and ideas of urban scaling has 

become a feature of modern urban studies. During a similar time period, fluctuation scaling, first 

explored in agriculture [7], noted in a logarithmic presentation that a variance and area relationship 

forms a linear relationship, now known as the Taylor’s Law (TL) [8,9]. The scaling relationship (TL) 

in logarithmic mean-variance plots has been found in a host of studies, beyond agriculture, linked to a 

range of different disciplines [10–14]. 

 

It has been observed that cities have agglomeration economies [15,16]. The historical 

framework [17,18] showcasing the evolution of agglomeration economies, indicates this was first 

identified over a century ago [19]. Since, this development of cities [20] has partly motivated the 

research leading to the work in urban scaling. Conventionally, in urban scaling, power laws (PL) are 

used to investigate the relationship between population and city indicators (e.g., GDP). The value of 

the PL scaling exponent indicates the type of scaling relationship. Studies have shown that super-

linear scaling happens in desirable urban indicators, such as patents and total employment [21–23]. 

Similarly, undesirable urban indicators, such as homicide, general crime and AIDs cases, have also 

been shown to exhibit increasing returns with population scale [21,24–27]. It has also been previously 

observed that some urban indicators, such as number of petrol stations and road surfaces, exhibit sub-

linear scaling indicative of economies of scale [21]. 
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Much of the scaling literature has focused on urbanised systems and population linking them 

to a host of indicators  [21–28]. Spatial coverage and the definition of regional boundaries is varied 

and in many scaling studies [21–23,25,28,29] there has been a missed opportunity to study rural 

environments. Although global urban population is large, rural land mass still dominates the world 

[30] and it is unclear whether rural-urban regions are fundamentally different. Temporal coverage is 

usually cumulatively over a large timeframe (monthly, yearly) since finer granularity of data are 

difficult to find. Thus, a finer evolution of scaling metric has not yet been well explored. A 

fundamental and underpinning part of the work in scaling is the self-similar behaviour of regions that 

is well approximated using PL models [31]. Population has long been used as the predictor in PL 

models, but more studies of crime and property proceeding this thesis have shown population density 

to be a better fit [26,27,32]. In either case (population or population density) the corresponding PL 

model parameters are estimated using simple linear regression techniques such as the least square 

method [33]. These techniques rely on assumptions of normality, homoscedasticity, independent 

errors and linearity [33–36] which overall are underappreciated assumptions in the scaling literature. 

This is an important consideration as it can influence the fitting of the estimated model parameters 

and if not considered carefully can cause model bias. This indicates a need for an alternative 

methodology that is more flexible and reliable. 

 

Least square methods have been applied to estimate model parameters when fitting single and 

segmented PL models to log-transformed data in chapters 3 and 4. However, it is worth noting some 

limitations leading to bias in estimated model parameters caused when following a set of strict linear 

regression assumptions. These are important considerations not usually accounted for in the scaling 

field. These are as follows: 1) data are assumed independent, 2) variance around the mean are 

assumed Gaussian and independent to the mean, 3) the system is assumed homoscedastic (constant 

variance) and 4) the log-transformed data is assumed to be linear. Furthermore, statistical analysis 

such as 𝑅𝑅2 values only provide insight into the amount of variation explained by the model and does 

not consider the statistical significance that the data was generated by the model. Leitão et al [37] 
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proposes a probabilistic framework where fluctuations are accounted for explicitly: a more robust 

approach to fitting estimated model parameters in scaling. Specifically, the models proposed have 

different assumed noise (Gaussian, lognormal, person) and are evaluated using a range of different 

datasets. Leitão et al [37] estimate the exponents using maximum likelihood estimations (MLEs), 

bootstrap (with replacement) confidence intervals, test whether the reported scaling is valid by 

computing p-values (p-value > 0.05 indicated that the model is not rejected), test for non-linear 

scaling (i.e. when 𝛽𝛽 ≠ 1) and use BIC scores to inform of the best performing model. Strikingly they 

found that most reported scaling using PLs were rejected. In some cases, the reported exponents 

between models was so extreme that scaling relationships changed entirely (e.g. the reported exponent 

for EU cinema using the lognormal model with fixed fluctuation was 1.46 (0.19) indicating super 

linear scaling, whilst with free fluctuation was 1.00 (0.30) indicating linear scaling [37]). 

 

This thesis is presented in 7 chapters. Chapter 1 is a broad overview of the establishment of 

behaviour relating to urban growth and PL models to predict urban indicators. Many current scaling 

studies focus on urbanized regions whilst neglecting rural regions. The current methodology uses 

standard linear regression with normality, homoscedasticity, independence and linearity assumptions. 

The data explored in scaling is usually cumulative spanning across a large timeframe. Chapter 2 

comprehensively presents the current mathematics of PL models along with the familiar logarithmic 

presentation of urban scaling laws using normality methods. 

 

Chapter 3 expands on previous studies of crime and property, exploring additional indicators 

using population density PL models to better understand the inter-relationships between indicator 

residuals and to explore regional variation. The applied indicators included mortality (cancer, 

dementia, suicide, homicide etc) and age to determine whether these behaved in a similar way to 

crime and property and continue to explore the density scaling framework. The key findings were 

published in the journal Scientific Reports [38] and presented within this thesis in chapter 3. In 

reflection of the Leitão et al [37] study, the lognormal model with fixed and free variance was applied 
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to all 67 indicators of crime, property, mortality and age. These results are compared to least squared 

methods to highlight any differences, explore the effect of variance and to validate whether the 

scaling holds for all reported single and segmented relationships.  

 

Chapter 4 is a study of COVID-19 using case and death metrics. Initially the goal was to 

consider population density as a proxy for infectious interaction. It became a unique opportunity to 

investigate a contagious transmissible disease during a worldwide pandemic and the first to analysis 

the daily evolution of scale along with other descriptive statistics such as variance and skew. It also 

piloted the use of the generalised logistic distribution (GLD) to model residuals. The normal 

distribution was not always a good fit whilst the GLD was able to capture realistic shapes including 

positive and negative skew. The latter is indicative of ‘cold spots’ and ‘super-isolated’ regions which 

is a feature of the pandemic that is underappreciated in the modelling of COVID-19. The key findings 

up to day 446 were published in PLoS ONE [39] and presented within this thesis in chapter 4- 

updated to the full 759 days of data availability. The analysis of COVID-19 case residuals in chapter 4 

demonstrated that the current methodology underpinning PL models in scaling are unsatisfactory. In 

the current framework simple linear regression techniques such as the least squares method are 

applied to fit PL model parameters. It is assumed that residuals are linear, normally distributed, 

independent and homoscedastic. In the study of COVID-19 these assumptions were often violated and 

in large parts of the studied timeframe were better characterized using a GLD opposed to a normal 

fitting. The GLD is a three-parameter distribution consisting of: location, scale and shape parameters. 

This makes the GLD a flexible, versatile and applicable framework to model complex shapes 

including positive and negative skew. This motivated the development of an alternative methodology 

improving current methods. Similar to chapter 3, in view of the Leitão et al [37] study, the lognormal 

model with fixed and free fluctuations have been applied to the daily COVID-19 cases and deaths 

data to see how least square methods compare. Leitão et al [37] present an initial insight into the 

effect of variance to PLs when considering it as either fixed or free. Meanwhile, modelling variance in 

a unified framework has been further developed in chapters 5 and 6, where other distributions, other 

than the normal, have been considered in response to results found in the COVID-19 study. 
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Chapter 5 presents a generalised expectation and dispersion regression model where the 

response 𝑌𝑌 follows a GLD in a Bayesian framework. It begins by demonstrating why the GLD is a 

good candidate distribution and its wide applicability. A Bayesian approach was adopted to 

incorporate non-informative priors with mean zero and a large variance to express prior ignorance. 

This yielded a complicated non-analytically tractable joint posterior distribution. A Markov Chain 

Monte Carlo (MCMC) method was applied; specifically, the walking Metropolis Hasting (MH) 

algorithm was implemented to fit the proposed model parameters over 20,000 iterations disregarding 

the first fifty percent as ‘burn-in’ and using Gelman convergence diagnostics to monitor whether the 

chains depart from the initial values and converge. Deviance information criterion (DIC) is a Bayesian 

version of the Akaike information criterion (AIC) score [40] and within this framework, the GLD 

model will be compared with normal regression models and monitor goodness-of-fit. 

 

Chapter 6 is the application of the developed Bayesian GLD regression model in chapter 5 to 

demonstrating the key features of the model using the COVID-19 data. Although the method was 

applied to PL models and data from the pandemic, it is general to a wide range of systems currently 

using linear regression. Expectation and dispersion parameters generally converge well across the 

entire 759 days. A significant benefit of the proposed model are the additional parameters such as a 

dispersion regression coefficient accounting for heteroscedasticity together with the additional 

parameters of the GLD to provide more realistic shapes (e.g., skew). Since the same data from the 

study of COVID-19 in chapter 4 was applied using normality methods a comparison between 

Bayesian GLD regression model, where possible, were compared with the previous standard normal 

regression model to examine the variations between the two models highlighting model bias created 

by the latter. Leitão et al [37], first proposed an alternative to PL scaling ,providing a more robust 

framework to fitting PL model parameters. The modelling is built around the Gaussian distribution 

where different variations of the model are considered. This includes fixed and free fluctuations along 

with a case when the exponent is restricted to 1 (assuming linearity). Chapter 5 expands on these 

contributions where the modelling process is not assumed Gaussian. Instead, modelling is built around 
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the GLD in reflections of observations seen in chapter 4. The main difference is that the proposal in 

chapters 5 and 6 allows for complex shapes such as positive and negative skew and recognises 

features of heteroscedasticity in the data. Furthermore, the modelling is developed within a Bayesian 

framework, opposed to Leitão et al methods who adapt to a frequentist approach. Considering the 

problem at hand, a Bayesian framework, allows for external information and the use of elicitation 

techniques. The rewards of adapting to a more flexible framework is showcased using COVID-19 

data and are compared to previous methods. 

 

Chapter 7 summarises the main findings of the thesis along with an outline of the novelty and 

additional knowledge gained during this PhD research. The new proposed methodology presented in 

this research has been shown to be a significant improvement to previous methods and can be applied 

to a wide range of applications. The limitations and future opportunities are also acknowledged within 

this chapter to ensure for the continuation and development of this research in future work. 

 

The initial analysis and discussions of COVID-19 [38] (chapter 4) contributed to the 

published work on the study of city size and the spreading of COVID-19 in Brazil [41] using 

conventional population data. At the earlier stages of the pandemic, discussions led to the notion that 

population density is a proxy for interaction and opportunity for spreading. For example, in highly 

dense regions such as a city, more person-to-person interaction is expected and therefore a greater 

opportunity for spread compared to a rural region where there are fewer interactions and opportunity 

for spreading the disease is significantly reduced. In contrast to the snapshot presented of Brazilian 

cities using conventional population centres, chapter 4 reveals population density was not as simple 

proxy for interaction and instead exhibited considerable complexities throughout the pandemic. 

Instead, in the extended timeseries in the case of the UK rural-urban regions preference of spread 

switched 6 times throughout the 25-month studied timeframe. The exploration of population density 

as a proxy , contributed to the work, available in [41], and was initially motived by discussions 

involving myself,  but the analysis was primarily conducted by others. Because of this, the discussions 
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leading to this work is mentioned, but an in-depth presentation of this work is not available within this 

thesis. 
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Chapter 2: Standard Power-law (PL) Methodology 

 

 

 

 

 

2.1 Introduction 

 

Initially, motivated by the observations of agglomerations, studies in urban scaling have been long 

linked with PL connecting urban indicators with population in the most urbanised environments 

(cities). However, recent studies include rural regions and PL models have since been adapted using 

densities opposed to discrete values [26,27]. This is an area normalising approach to rural-urban 

scaling and has been shown to be a better fit: two regions of equal population but different area might 

not be expected to have equal behaviour. The inclusion of rural regions in some metrics causes 

segmentation but PL with a change point can accommodate these relationships and with model 

preference based on AIC and BIC Information Criteria scores. The log transformation of the models 

forms a simple linear regression structure and model parameters are fitted using conventional least 

squares methods. The scaling exponent obtained from the model indicates the scaling behaviour and 

whether it is sub-linear, linear or super-linear. Residuals obtained from the preferred model are used 

to better understand correlation between metrics after removal of per capita bias and to explore 

regional variation. 

 

2.2 Theory 

 

In this section the rural-urban scaling framework is presented, first by introducing conventional 

approaches using discrete data. The data are then transformed by considering an area normalization 
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process that converts raw values into densities. Many of the methods in this section are adapted from 

studies of crime and property [26,27] and a host of other scale adjusted metrics [42] and were used in 

the analysis of crime, property, mortality and age data in chapter 3 and later on in the analysis of 

COVID-19 data in chapter 4. 

 
2.2.1 Scaling Framework 
 
The agglomeration economies effect has inspired the works of urban scaling. The ambitions to model 

city behaviour have led to a simple PL in the form of: 

 

𝑌𝑌 = 𝑌𝑌0𝑃𝑃𝛽𝛽10𝜀𝜀  2.1 
 

where, 𝑌𝑌 is an indicator, 𝑌𝑌0 is a pre-exponential factor, 𝑃𝑃 is the population, 𝛽𝛽 is the scaling exponent 

and 𝜀𝜀 are residuals that are independent and identically distributed (IID) with common 𝑁𝑁(0,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 ) 

where 10 is a consequence to base 10 log transformation. The value of 𝛽𝛽 indicates the type of scaling 

relationship and whether it is sublinear, linear or super-linear. When 𝛽𝛽 < 1, the scaling relationship is 

sub-linear (Fig 2.1 (a)), when 𝛽𝛽 = 1, the scaling relationship is linear (Fig 2.1 (b)) and when 𝛽𝛽 > 1, 

the scaling relationship is super-linear (Fig 2.1(c)). The agglomeration economies are observed when 

𝛽𝛽 > 1 indicative of increased returns in larger populated regions. This is advantageous in indicators of 

innovation, but also includes a host of other, disadvantageous indicators, such as serious crimes [21]. 

However, there is some evidence [43] that some indicators within the industry sector reporting super 

linearity (𝛽𝛽 > 1) will not always be long lasting and depends on the level of maturity of the sector. 

After the initial period of innovation usually occurring in big cities, the exponent becomes linear 

indicating that the productivity has moved beyond the urbanised environment. 
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(a) (b) (c) 

Fig 2.1. Scaling Relationships. (a) 𝛽𝛽 < 1 illustrating sub-linear scaling, (b)  𝛽𝛽 = 1 illustrating linear 
scaling and (c) 𝛽𝛽 > 1 illustrating super-linear scaling. The dashed line is a complete linear 
relationship. 
 

Population density scaling is an area normalised approach to scale adjusted metrics [42] 

which has been shown to better predict a host of indicators when using arbitrary urban and rural 

regions to define boundaries. This adaptation to equation 2.1 is now in the form given by: 

 

𝑌𝑌𝐷𝐷 = 𝑌𝑌0𝑃𝑃𝐷𝐷𝛽𝛽10𝜀𝜀  
 

2.2 

 

where 𝑌𝑌𝐷𝐷 = 𝑌𝑌/𝐴𝐴 and 𝑃𝑃𝐷𝐷 = 𝑃𝑃/𝐴𝐴 is the population and indicator density respectively where 𝐴𝐴 are 

regional areas. The residuals, 𝜀𝜀, have the same definition to equation 2.1. Similar to population 

scaling, the exponent, 𝛽𝛽, provides insight into the types of scaling relationships exhibited such as 

whether it is sub-linear, linear or super-linear (Fig 2.1). In the context of rural-urban scaling, in the 

case of sub-linear scaling, rural regions are preferentially affected by acceleration. In the case of 

super-linear scaling, urban regions are preferentially affected by acceleration. Linear scaling indicates 

constant return despite the density of a region. The log transformation of equation 2.2 is given by: 

 

log(𝑌𝑌𝐷𝐷) = log(𝑌𝑌0) + 𝛽𝛽 log(𝑃𝑃𝐷𝐷) + 𝜀𝜀 2.3 
 

which is useful such that the least squares method can be applied to obtain PL model parameters. The 

estimated parameter �̂�𝛽 is obtained using the following [44]: 

 



33 
 

�̂�𝛽 =
∑ (log (𝑃𝑃𝐷𝐷,𝑖𝑖) − log (𝑃𝑃�𝐷𝐷))(log (𝑌𝑌𝐷𝐷,𝑖𝑖) − log (𝑌𝑌�𝐷𝐷))𝑝𝑝
𝑖𝑖=1

∑ (log (𝑃𝑃𝐷𝐷,𝑖𝑖) − log (𝑃𝑃�𝐷𝐷))2𝑝𝑝
𝑖𝑖=1

 
 

 

and the estimated parameterlog�𝑌𝑌�0� is obtained by: 

 

log�𝑌𝑌�0� = log(𝑌𝑌�𝐷𝐷)− �̂�𝛽 log (𝑃𝑃�𝐷𝐷)  
 

where log (𝑃𝑃�𝐷𝐷) is the population density sample mean and log(𝑌𝑌�𝐷𝐷) is the indicator density sample 

mean in logarithmic space and 𝑛𝑛 is the number of complete pairwise observations. It has been shown 

that empirically a density change point, 𝑑𝑑∗,  between rural-urban regions appear consistently in the 

range of 10-70 people per hectare [26,27]. To account for this change point, equation 2.3, needs 

adjusting such that: 

 

log(𝑌𝑌𝐷𝐷) = �log(𝑌𝑌0) + 𝛽𝛽𝐿𝐿 log(𝑃𝑃𝐷𝐷) + 𝜀𝜀 𝑃𝑃𝐷𝐷 < 𝑑𝑑∗
log(𝑌𝑌1) + 𝛽𝛽𝐻𝐻 log(𝑃𝑃𝐷𝐷) + 𝜀𝜀 𝑃𝑃𝐷𝐷 ≥ 𝑑𝑑∗ 

2.4 

 

where 𝛽𝛽𝐿𝐿 and log(𝑌𝑌0) are the exponent and intercept below the critical density, 𝑑𝑑∗, and 𝛽𝛽𝐻𝐻 and 

log(𝑌𝑌1) are the exponent and intercept above the critical density, 𝑑𝑑∗. 

 

Then residuals, 𝜀𝜀𝑖𝑖, are the difference between the observation and expected values and where 

model parameters (�̂�𝛽,  𝑌𝑌�0) minimise the variance ∑𝜀𝜀𝑖𝑖2 such that: 

 

𝜀𝜀𝑖𝑖 = log�𝑌𝑌𝐷𝐷,𝑖𝑖� − log (𝑌𝑌�𝐷𝐷,𝑖𝑖) 2.5 
 

for 𝑖𝑖 = 1, … , 𝑛𝑛 and log (𝑌𝑌�𝐷𝐷,𝑖𝑖) is the estimate of log�𝑌𝑌𝐷𝐷,𝑖𝑖�. Residuals are obtained from the preferred 

model, whether that being a single or segmented PL model. If the residual value 𝜀𝜀𝑖𝑖 is negative, then a 

region is below the expectation. Contrary, if the residual value 𝜀𝜀𝑖𝑖is positive then the region is above 

the expectation. 
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This standard approach has limitations depending on the data set due to normality, 

homoscedasticity, linear and independent assumptions. Chapter 3 presents an example of the 

conventional analysis expanding the scope of population density analysis to include 67 indicators of 

analysis. Chapter 4 makes clear that while useful; the assumptions of classical least squares are 

extensively violated. Chapter 5 is a developed Bayesian GLD regression framework that improves the 

conventional methodologies that were applied in chapters 3 and 4. This developed approach is 

extremely useful in a scaling setting, but the proposal is more general to other disciplines. Overall, the 

developed methodology is a flexible approach and assumptions of standard linear regression are no 

longer necessary. 
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Chapter 3: Rural-urban Scaling of Age, Mortality, Crime 
and Property 
 

 

 

 

 

3.1 Introduction 
 
Human activity has become increasingly concentrated in urban regions. Although more people live in 

highly dense regions like cities; rural regions still make up most of the land mass [45–48]. There is an 

inherent bias when studying cities in the scaling literature as a consequence of neglecting rural 

regions. Thus, it is not clear whether urban systems are fundamentally different to rural systems. 

Recent studies [26,27] of crime and property revealed a critical population density between rural-

urban regions around which some crime and property types accelerated (e.g. Bike Theft, Robbery, 

Flats) and others declined (e.g. Anti-social behaviour, Shop-lifting, Semi-detached) in urban regions.  

This critical density delineating rural-urban transitions exhibited typically in the range of 10-70 

people per hectare, but the statistical mechanics underlying this behaviour is unclear. 

 

The application of PL has improved the understanding of scaling. However, per-capita 

models remain in many policies and resource allocation. Policy makers need to understand that these 

models are bias and rural-urban regions are fundamentally different in a host of indicators. For 

example, the distribution of health care resource in the UK is conducted by the clinical 

commissioning groups (CCGs). The allocation is based on per-capita adjusted for mortality, market 

forces and a range of other factors based on nutrition, obesity, smoking, drug use etc [49–51]. The PL 

scaling framework is an opportunity to better understand the taxonomy of a variety of metrics. 

Regional clustering and allocation is also thought as a north-south divide appearing in discussions of 

economic and social issues [52–54]. 
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The definition of rural varies. Examples of regions that are considered rural include one or 

some of: 1) not an urbanized environment [55], 2) areas with a low population, 3) indicators of rural 

life [56], 4) density/area mass and/or 5) heat island intensity [57]. In this thesis rural and urban 

regions are on a spectrum from very low population density to very high population density. The 

regions position relative to population density provides a quantitative metric along that spectrum. 

 

This chapter investigates a range of mortality, crime, property and age indicators throughout 

England and Wales using unitary authorities, non-metropolitan districts, metropolitan boroughs and 

London boroughs to define regional boundaries. This will be explored to determine if mortality 

behaves similarly to previous work [26,27]. The key advance in this study is the introduction of 26 

mortality indicators along with 18 age categories. This is a diverse dataset and the first to attempt to 

explore an extensive set of indicators, including 67 metrics in total, within the population density 

framework. The additional age categories are shown to break the self-similarity underlying the urban 

scaling hypothesis and a fundamental part of the acceleration and decline in urban regions. In 

addition, this scaling study is the first to introduce SOMs used to observe regional similarity and 

explore age demographics. 

 

3.2 Theory 
 
In this section the framework defined in section 2.2 is applied and residuals from the preferred single 

(equation 2.3) or segmented (equation 2.4) PL model are analysed using techniques such as 

bootstrapping (section 3.2.1), networks (section 3.2.2), SOMs (section 3.2.3) and various similarity 

measures (section 3.2.4). The work extends the studies of crime and property [26,27] by including 

mortality and age metrics to explore whether these behave in a similar way. 

 

3.2.1 Bootstrapping 
 
Bootstrapping is a class of Monte Carlo methods that randomly resample from a distribution with 

replacement to assign measures of accuracy to sample estimates [58–63]. These techniques can be 
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applied in a regression setting to assess correlation and uncertainties of pairwise data. Consider some 

sample residuals 𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 = (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 1,𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 2, … , 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) and 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 = (𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 1,𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 2, … , 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) where 𝑛𝑛 is 

the number of complete pairwise data. To compute an estimate of the correlation and the bootstrap 

estimate of the standard error of that correlation between pairwise residuals, 𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 and 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖, the 

bootstrap algorithm is applied [58,63–65] and proceeds as: 

 

1. For each bootstrap replicate, indexed 𝑏𝑏 = 1, … ,𝐵𝐵: 

a) Generate pairwise samples between 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐
∗(𝑏𝑏) = 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 1

∗ , … ,𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝
∗  and 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐

∗(𝑏𝑏) = 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 1
∗ , … , 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝

∗  

with replacement from the observed samples (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 1,𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 2, … , 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) and 

(𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 1, 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 2, … ,𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) 

b) Compute the 𝑏𝑏𝑐𝑐ℎ replicate 𝜃𝜃�𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛
(𝑏𝑏)  from the 𝑏𝑏𝑐𝑐ℎ bootstrap sample where 𝜃𝜃�𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 is the sample 

correlation 𝑅𝑅 between(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐). 

 

2. The bootstrap estimate of the standard error 𝑠𝑠𝑆𝑆(𝑅𝑅) is the sample standard deviation of the 

replicates 𝜃𝜃�𝑛𝑛𝑝𝑝𝑐𝑐
(1),𝜃𝜃�𝑛𝑛𝑝𝑝𝑐𝑐

(2), … ,𝜃𝜃�𝑛𝑛𝑝𝑝𝑐𝑐
(𝐵𝐵) = 𝑅𝑅(1),𝑅𝑅(2), … ,𝑅𝑅(𝐵𝐵). 

 

Here, this algorithm will be used to bootstrap, with 2000 replications, all the pairwise residual 

correlations, between indicators of age, mortality, crime and property to identify and construct 

networks with Pearson’s correlation coefficients that are significant at 99% confidence. 

 

3.2.2 Networks 
 
Networks have a wide range of application [66–70]. It can be used as a tool to visualise and understand 

large complex multivariate data. A network 𝑁𝑁 = (𝑉𝑉,𝐸𝐸) is a set of nodes and edges that connects them 

such that 𝑉𝑉 = 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑝𝑝∗ is a set of 𝑛𝑛∗ nodes and 𝐸𝐸 = 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛∗ is a set of 𝑚𝑚∗ edges between 

nodes [71,72]. A simple undirected connected network containing no loops or multiple edges in the 

form of an adjacent matrix 𝐴𝐴 ∈ ℝ𝑝𝑝∗×𝑝𝑝∗ is defined as: 
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𝑎𝑎𝑖𝑖,𝑗𝑗 = �1                      𝑖𝑖~𝑗𝑗,
0          𝑜𝑜𝑡𝑡ℎ𝑆𝑆𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑆𝑆

 3.1 

 

where 𝑖𝑖~𝑗𝑗 denotes that the nodes 𝑖𝑖 and 𝑗𝑗 are connected. An example of an adjacent matrix is given by: 

 

𝐴𝐴 =

⎝

⎜
⎛

0 1 0 1 0
1 0 0 1 0
0 0 0 1 1
1 1 1 0 1
0 0 1 1 0⎠

⎟
⎞

 

 

which produces the following network: 

 

 
Fig 3.1. An example of a simple undirected network. Black circles represent nodes and red lines 
between nodes represent the edges that connects them. 
 

3.2.2.1 Modularity 
 
The modularity measure indicates community structure within a network [71,73,74]. This means that 

subsets of nodes are densely connected and sparsely connected to other communities in the network. 

There exist several algorithms [66,74,75] involving the partitioning of nodes 𝑉𝑉 where a collection of 

sets 𝑉𝑉𝑖𝑖 ⊂ 𝑉𝑉 such that 𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑗𝑗 = ∅ and ∀𝑖𝑖 ≠ 𝑗𝑗. The measure of modularity [66,75–77] is given by 

 

𝑄𝑄 = ��
|𝐸𝐸𝑘𝑘|
𝑚𝑚

−
1

4𝑚𝑚2 �� 𝑘𝑘𝑗𝑗
𝑗𝑗𝑗𝑗𝑉𝑉𝑘𝑘

�

2

�

𝑝𝑝𝑝𝑝

𝑘𝑘=1

 
3.2 
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where |𝐸𝐸𝑘𝑘| is the number of links between nodes in the 𝑘𝑘𝑐𝑐ℎ partition of the network, 𝑉𝑉𝑘𝑘 and 𝑛𝑛𝑝𝑝 is the 

number of partitions. The value of 𝑄𝑄 is then optimised over all possible partitions. A network with high 

community structure (Fig 3.2) shows nodes forming dense intra-connections within clusters and clusters 

form sparse inter-connections with other clusters in the network. 

 

 
Fig 3.2. An illustration of community structure. Blue shaded areas represent individual 
communities. Black lines represent inter-connections (connections within communities) and red lines 
represent intra-connections (connections between communities). 
 

In this network nodes represent indicators and edges between nodes represent significant 

correlation using bootstrapping methods (section 3.2.1). A current limitation of this network is a 

discontinuous representation of correlation as this will form two separate networks: one for all 

significant positive correlation and another for all significant negative correlation. The Pearson 

correlation was selected in correspondence to previous work on crime and property [26,27] although 

other similarity and correlation  measures were explored (Appendix A1). In this thesis, the modularity 

score obtained using equation 3.2 is based on the Girvan-Newman algorithm [78]. To identify groups 
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of communities, the algorithm iteratively removes edges from the network with the highest 

betweenness centrality and recalculates until in breaks down the network into small hubs. 

 
3.2.3 Self-Organising Maps 
 
Self-Organising Maps (SOMs) [79,80] are introduced to analyse residuals for any potential regional 

clustering based on the value of the residuals. In general, this method allows high dimensional space 

to be represented in an array of pre-defined nodes, 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆. The arrangement of nodes can vary in size 

and geometrically (either hexagonal or rectangular) (Fig 3.3). These are both important predetermined 

aspects of the model. It has been proposed that these considerations depend on size and the dispersion 

of the input data [81] and ideally the resulting SOM should not have any empty nodes. The basic idea 

is each node in the SOM is examined to calculate the weight vectors that are most like the input 

vector. The winning node is commonly referred to as the best matching unit (BMU) [79]. This is 

performed iteratively and the resulting map is a low dimensional model providing information about 

how the input data is related [79,82]. The SOM algorithm [79] is as follows: 

 

1. Randomize the node weight vectors in a map. 

 

2. For each iteration 𝑡𝑡: 

 
a) Obtain the Euclidean distance between all the nodes in the map and calculate the 

similarity between each node and the input data. This is given by [83]: 

 

𝐷𝐷(𝑗𝑗) = � � (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖𝑗𝑗 − 𝑤𝑤𝑖𝑖𝑗𝑗)2
𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆

𝑗𝑗=1

𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆

𝑖𝑖=1

 

 

where 𝑖𝑖 = 1, 2, … , 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆 is the size of the input vector and 𝑗𝑗 = 1, 2, . . . ,𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 is the number of 

nodes in the SOM.  

b) Then assign the input vector to the node 𝑗𝑗 that has the minimum Euclidean distance. 
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c) Update the weight vectors of the ‘winning’ node and all the neighbourhood nodes such 

that [79]: 

𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) = 𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡) + 𝜏𝜏(𝑡𝑡)(𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐(𝑡𝑡) −𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡)) 

 

where in the context of this chapter the input vector 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐(𝑡𝑡) will be residuals for each region 

at iteration 𝑡𝑡. Thus, 𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡) is the old weight and 𝑤𝑤𝑖𝑖𝑗𝑗(𝑡𝑡 + 1) is the new weight. Finally, the 

parameter 𝜏𝜏(𝑡𝑡) in the model is known as the learning rate parameter, usually in the interval 

[0,1]. The value of 𝜏𝜏(𝑡𝑡) decreases with 𝑡𝑡. This will ensure that the model network (Fig 3.3) 

guarantees convergence. In the above, step 1 is the initialisation stage and steps in 2 is the 

learning phase. After the learning phase has completed, the resulting SOM will have 

positioned all input residuals into a node (Fig 3.3). The residuals positioned in the same node 

are similar and due to the algorithm above neighbouring SOM nodes will also have some 

degree of similarity. Clustering analysis will be applied to find all the neighbouring nodes in 

SOM that are also similar. 

 

 
 

Fig 3.3. Self-Organising Map Architecture. Nodes are represented in blue and lines between the 
input vector and the nodes represent the iterative learning phase of the SOM algorithm. 
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Considering that the weights of the neighbouring nodes in the SOM are influenced by the BMU, 

a gap statistic was introduced to account for any clusters in the SOM [84]. The gap statistic [84] is given 

by: 

 

𝐺𝐺𝑎𝑎𝑝𝑝𝑝𝑝(𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝐸𝐸𝑝𝑝∗�log�𝑊𝑊𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�� − log�𝑊𝑊𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� 3.3 
 

 

where 𝐸𝐸𝑝𝑝∗ is the expectation and 𝑛𝑛 is the sample size from the reference distribution. The reference 

distribution must meet one criterion. The distribution must have no structure and clusters. An obvious 

and the most common choice is the uniform distribution since this is a randomly distributed. The 

log (𝑊𝑊𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) is the pooled within-cluster sum of squares around the cluster mean where 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the 

number of clusters. In each case 𝐸𝐸𝑝𝑝∗�log �𝑊𝑊𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�� is estimated by an average of samples of 

log �𝑤𝑤𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∗ �. These are generated using Monte Carlo techniques where the sample 𝑋𝑋1∗, . . . ,𝑋𝑋𝑝𝑝∗  is drawn 

from the uniform distribution assuming that this is the chosen reference distribution. The value of the 

gap statistics indicates whether the clustering structure resembles the reference distribution. If it is large, 

then it does resemble the reference distribution. Contrary, if it is small then it does not resemble the 

reference distribution. After the completion of the algorithm, it can be found that the optimal number 

of clusters, denoted as 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , is found when 𝐺𝐺𝑎𝑎𝑝𝑝(𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ≥ 𝐺𝐺𝑎𝑎𝑝𝑝(𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1) − 𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+1 where 𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

is the simulation error in 𝐸𝐸𝑝𝑝∗�log �𝑊𝑊𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��. 

 

3.2.4 Similarity Measures 
 
Similarity measures were explored to assess the similarity or dissimilarity between all pairs of 

indicator scale adjusted metrics. Residuals were obtained from all indicators and regions using the 

preferred single or segmented PL model. Suppose there are some pairs of residuals represented as 

𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 = (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 1,𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 2, … , 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) and 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐 = (𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 1, 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 2, … , 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) where 𝑛𝑛 is the number of 
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complete pairwise data. Then, the Pearson correlation between two sets of residuals is the covariance 

divided by the product of the standard deviations: 

 

𝜌𝜌(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) =
𝐶𝐶𝑜𝑜𝑣𝑣(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐)
𝜎𝜎𝑋𝑋𝑟𝑟𝑟𝑟𝑐𝑐𝜎𝜎𝑌𝑌𝑟𝑟𝑟𝑟𝑐𝑐

 
3.4 

 

where −1 ≤ 𝜌𝜌(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) ≤ 1. The correlation coefficient satisfies the relation −1 ≤ 𝜌𝜌(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) ≤

1 with the extremes indicating a perfect negative or positive linear relationship. If 𝜌𝜌(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) = 0 

there is no linear relationship; either the scatter of the residuals is random, or some form of non-linear 

relationship holds. A computationally convenient form [85] of equation 3.4 usually denoted as 𝑟𝑟 is 

given by: 

 

𝑟𝑟 =
∑ (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 − �̅�𝑥𝑛𝑛𝑝𝑝𝑐𝑐)(𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 − 𝑦𝑦�𝑛𝑛𝑝𝑝𝑐𝑐)𝑝𝑝
𝑖𝑖=1

�∑ (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 − �̅�𝑥𝑛𝑛𝑝𝑝𝑐𝑐)2𝑝𝑝
𝑖𝑖=1 �∑ (𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 − 𝑦𝑦�𝑛𝑛𝑝𝑝𝑐𝑐)2𝑝𝑝

𝑖𝑖=1
 

3.5 

 

The correlation coefficient is one way of measuring how good a straight line fits the data. 

Other similarity measures exist and several of these were explored (e.g., Spearman, Kendall, Cosine 

and Jaccard). The Spearman correlation is the Pearson correlation coefficient between the rank 

variables. Thus, the residuals 𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 are converted to 𝑟𝑟𝑟𝑟𝑋𝑋𝑟𝑟𝑟𝑟𝑐𝑐 𝑖𝑖 , 𝑟𝑟𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟𝑐𝑐 𝑖𝑖 and the covariance is 

divided by the product of the standard deviations: 

 

𝑆𝑆�𝑟𝑟𝑟𝑟𝑋𝑋𝑟𝑟𝑟𝑟𝑐𝑐, 𝑟𝑟𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟𝑐𝑐� =
𝐶𝐶𝑜𝑜𝑣𝑣(𝑟𝑟𝑟𝑟𝑋𝑋𝑟𝑟𝑟𝑟𝑐𝑐, 𝑟𝑟𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟𝑐𝑐)
𝜎𝜎𝑛𝑛𝑟𝑟𝑋𝑋𝑟𝑟𝑟𝑟𝑐𝑐𝜎𝜎𝑛𝑛𝑟𝑟𝑌𝑌𝑟𝑟𝑟𝑟𝑐𝑐

 
3.6 

 

The Kendall correlation between residuals is the difference between concordant pairs and discordant 

pairs divided by the binomial coefficient for the number of ways to choose two items from 𝑛𝑛 items: 
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𝐾𝐾(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) =
𝑛𝑛𝑐𝑐 − 𝑛𝑛𝑑𝑑
�𝑛𝑛2�

 3.7 

 

The cosine similarity between residuals is the dot product of the two vectors divided by the product of 

the two vectors’ magnitude: 

 

𝑐𝑐(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) = cos (𝜃𝜃) =
𝑿𝑿𝒓𝒓𝒓𝒓𝒓𝒓 ⋅ 𝒀𝒀𝒓𝒓𝒓𝒓𝒓𝒓

‖𝑿𝑿𝒓𝒓𝒓𝒓𝒓𝒓‖‖𝒀𝒀𝒓𝒓𝒓𝒓𝒓𝒓‖
 

3.8 

 

The Jaccard similarity which is a measure of dissimilarity between residuals is the size of the 

intersection divided by the size of the union: 

 

𝐽𝐽(𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) =
|𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ∩ 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐|
|𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ∪ 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐| =

|𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ∩ 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐|
|𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐| + |𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐| − |𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 ∩ 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐| 

3.9 

 

3.3 Materials and Methods 
 

3.3.1 Datasets 
 

The data obtained in this chapter includes a diverse range of indicators. It includes 26 mortality 

categories and 18 age ranges obtained from NOMIS (https://www.nomisweb.co.uk) website. This is a 

database service run by the University of Durham on behalf of the UK Office of National Statistics 

(ONS). It also included 14 crime types and 9 property types obtained by UKCrimeStats 

(https://www.ukcrimestats.com) website. This data is formatted and aligned by UKCrimeStats to 

regions using data from the UK Home Office and Land Registry and geographic shape files obtained 

from the Ordinance Survey Boundary Line dataset. UKCrimeStats also provided population and land 

area. The collective data (67 indicators) explored is aligned to 348 England and Welch regions 

https://www.nomisweb.co.uk/
https://www.ukcrimestats.com/
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consisting of 239 non-metropolitan districts, 36 metropolitan boroughs, 32 London boroughs and 58 

unitary authorities. 

 

It is worth noting some data processing operated by NOMIS effecting the mortality and age 

data. To anonymise regions reporting low or missing values of mortality there are some conditions 

that slightly distort the data. If there are regions with mortality, ≤ 2 then the following regions will 

report a 0. Similarly, if regions have 3 or 4 mortalities then these are reported as 5. In addition, age is 

model adjusted for a particular year based on the most recent census. In this case, during this study 

this was the 2011 UK census covering the period between 2013-17 captured on 20/03/2019. The 

collection of data explored in this chapter is available in Table 3.1. 
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Crime Types 
Anti-Social Behaviour (ASB) Bike Theft Burglary 
Criminal Damage and Arson 
(CD & A) 

Drugs Order 

Other Crime Other Theft Robbery 
Shoplifting Theft from Person Vehicle Crime 
Violent Crime Weapons  
Property Types 
Detached Flats Freehold 
Leasehold New Old 
Semi-detached Terraced Other Property 
Mortality Types 
Accidents Bladder Cancer Brain Cancer 
Colon, sigmoid, rectum and 
anus Cancer (CSR&A) 

Gallbladder Cancer Kidney Cancer 

Larynx Cancer Liver Cancer Oesophagus Cancer 
Ovary Cancer Pancreas Cancer Prostate Cancer 
Stomach Cancer Lung Cancer Uterus Cancer 
Bone Cancer Breast Cancer Lymphoid Cancer 
Skin Cancer Cardiac arrhythmias Cardiomyopathy 
Dementia Diabetes Suicide 
Homicide Other Mortality  
Age Categories 
Aged 0-4 Aged 5-9 Aged 10-14 
Aged 15-19 Aged 20-24 Aged 25-29 
Aged 30-34 Aged 35-39 Aged 40-44 
Aged 45-49 Aged 50-54 Aged 55-59 
Aged 60-64 Aged 65-69 Aged 70-74 
Aged 75-79 Aged 80-84 Aged 85+ 

Table 3.1. Comprehensive list of indicators studied. Sixty-seven indicators were studied: 14 
indicators of crime, 9 indicators of property, 26 indicators of mortality and 18 indicators of age. Table 
available in Ref. [38]. 
 
 

3.3.2 Statistical Analysis 
 
The data were analysed using the statistical software R version (3.6.2) [86] with the Segmented (0.5-

3.0) [87–90], proxy (0.4-2.3) [91], boot (1.3-2.4) [65,92], kohonen (3.0.1) [93,94], factoextra (1.0.6) 

[95], moments (0.14) [96], gplots (3.0.3) [97], ggplots (3.3.1) [98], car (3.0-8) [99], nortest (1.0-4) 

[100], RColorbrewer (1.1-2) [101], NbClust (3.0) [102], tidyverse (1.3.0) [103], cowplot (1.0.0) [104], 

psych (1.9.12.31) [105], sf (0.8-1) [106], raster (3.0-12) [107], dplyr (0.8.3) [108], spData (0.3.3) [109], 

tmap (2.3-2) [110], leaflet (2.0.3) [111], mapview (2.7.0) [112], shiny (1.4.0.2) [113] and png (0.1-7) 
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[114] packages. These R packages are identical to the ones used in Ref. [38]. The network were 

constructed using Gephi version (0.9.2) [115]. 

 

3.4 Results and Discussions 
 
 
3.4.1 Overview of Regions 
 
In total, 348 regions in England and Wales were explored consisting of 239 non-metropolitan 

districts, 36 metropolitan boroughs, 32 London boroughs and 58 unitary authorities ranging from 289 

ha (City of London, England) up to 518,037 (Powys, Wales) and have populations between 2158 

(Isles of Scilly, England) to 1,070,912 (Birmingham, England). Population densities vary from 0.25 

people per hectare (p/ha) (Eden, Cumbria, England) up to 139 p/ha (Islington, England). These 

regions are the same regions described in Ref. [38]. The wide range or rural and urban regions 

ensured that all environment types were explored in this study. An overview of area (a), population 

(b) and population density (c) are provided in figure 3.4. 
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(a) (b) 

 
(c) 

Fig 3.4. Map of England and Wales consisting of unitary authorities, non-metropolitan districts, 
metropolitan boroughs and London boroughs. The shades of red indicate (a) Area (Hectares), (b) 
Population and (c) Population Density. The darker the red the higher the value. 
 

Crime, property, mortality and age metrics were fitted to either the single (equation 2.3) or 

segmented (equation 2.4) PLs depending on Davies test along with AIC and BIC scores (Fig 3.5, 

Appendices A2-A4). All regions distributed closely around the expectation of PLs except the City of 

London which deviates from the PL in 23 separate metrics. The deviation is some cases is so extreme 
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(e.g., Fig 3.5) this particular region was interrogated in isolation to better understand why the City of 

London is an extreme outlier. It is the smallest region explored in this chapter with an area of 289-

hectare and a resident population of 7355. Strikingly, it has a much higher day time population which 

can exceed as much as 350,000 people. It is worth noting that in some scaling studies it has been 

documented that PLs change depending on the meaning of population such as whether it is defined as 

a resident or floating population [116]. In the scaling plots, the City of London is an extreme outlier 

for most crime metrics where it tended to positively deviate from the PL. On the other hand, the City 

of London is an extreme outlier for dementia where it negatively deviates from the PL. The negative 

deviation in dementia in the City of London can be explained by the age demographic since it has a 

much lower older population. However, the magnitude of deviation is almost a factor of 10 below the 

PL making this region exceptional. Future studies of dementia risk should consider these findings and 

investigate the City of London in more detail to better understand the factors involved in the reduction 

of dementia mortality. 
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Fig 3.5. Scaling plot between dementia and Alzheimer’s disease and total population densities. 
The red solid line and the dotted green line represent the scaling relationship before and after the change 
point respectively. The black circle is the change point. The city of London is shown to have 
exceptionally low incidence of Dementia. This figure was published in Ref. [38]. 
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3.4.2 Rural-urban scaling 
 
Crime, property, mortality and age scaling exponents obtained from either single (grey) or segmented 

PL models (red and blue) appear in figure 3.6. In the case of segmentation, some metrics decline in 

highly dense regions (e.g., shop lifting) and others accelerate (e.g., Drugs). 

 

In general, crime and property exponents (Figs 3.6(a, b); Appendix A2-4) are similar to 

previous work [38]. In 8 metrics a single PL (equation 2.3) was the preferred model: ASB, Burglary, 

Vehicle Crime, Violent Crime, Other Crime, Bike Theft, Weapons and Order. Remaining crimes 

exhibited a segmented relationship and thus the double PL (equation 2.4) was the preferred model: 

Drugs, Other Theft, CD&A, Shoplifting, Theft from the Person and Robbery. Drugs, Other Theft, 

Theft from the Person and Robbery accelerated whilst Shoplifting and CD&A declined above a 

critical population density. The heterogeneity of behaviour in crime challenges the crime opportunity 

[117,118] and the situational actions theories [119,120]. Crimes that follow a single PL suggest a 

uniformly increasing opportunities or criminogenic settings with population density. A clearer 

understanding of both acceleration and decline above a critical density needs further attention to 

understand what these opportunities and criminogenic setting might represent. For example, this will 

help understand the conditions within high density regions that seemingly present better opportunities 

for crimes such as theft from person and to a slightly lesser extent robbery. The notion of designed 

environments [121] is careful planning usually deployed in cities aimed at reducing crime. A subset of 

crimes where preference is towards a single PL model (e.g., Burglary) challenges the designed 

environment concept since it is shown that certain crime increase with scale. 
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(a) (b) 

  
(c) (d) 

Fig 3.6. Allometric scaling exponents for crime (a), property transactions (b), mortality (c) and 
age (d) using density metrics. The black symbol represents the exponent obtained from a single PL 
model. Red and blue symbols represent exponents obtained from a segmenting PL model where red is 
the exponent below the change point and blue is the exponent above the change point. Error bars 
represent the 95% confidence intervals for 𝛽𝛽,𝛽𝛽𝐿𝐿,𝛽𝛽𝐻𝐻 based on the standard errors of regression (1.96 ∗
 standard error). The vertical black dotted line indicates linear scaling. This figure was published in Ref. 
[38]. 
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Almost all mortality metrics (Figs. 3.6(c); Appendix A2-4) exhibited linear to sub-linear 

scaling except for 7 different cancer types (liver, stomach, lung, larynx and uterine cancer), homicide, 

diabetes, cardiomyopathy and suicide. Linear scaling occurred in bone cancer, gallbladder cancer, 

diabetes, cardiomyopathy and suicide. Homicide and uterus cancer was the only mortality type to 

exhibit linear to super-linear scaling. To better understand the improved mortality in high density 

regions the scaling of the age groups is investigated to see whether this produces the ‘protective’ 

effect. 

 

Examination of the 18 different age groups (ranging from 0-4 to 85+) shows that population 

density has a profound influence on age demographics (Fig 3.6(d); Appendix A2-4). The ordered age 

groups exbibits significant structure revealing that young people aged 25-39 accelerate in highly 

dense regions whilst people aged 45 and above preferentially leave. The strength of the super linear 

behaviour above the critical population density seen in young people (𝛽𝛽𝐻𝐻 = 1.46 for people aged 30-

34) could be a leading factor that possibly explains almost all reported super-linear economic 

indicators [21,22,122]. This can be seen when observing robbery and restricting total population to the 

30-34 age group (Fig 3.7; Appendices A5-A6). The acceleration in highly dense regions disappears 

and a critical population density is no longer present. Instead, robbery is defined as a single PL with a 

high degree of super linear behaviour throughout all rural-urban regions (𝛽𝛽 = 1.42). Furthermore, this 

effect can be seen in mortality where exponents can be seen to significantly change when targeting 

certain age groups opposed to the general population. For example, kidney cancer and dementia when 

observing for the total population, show that highly dense regions exhibit sub-linear scaling (Fig 3.5 

and 3.6; Appendix A2-A4). Other variation of restricting age groups opposed to conventional total 

population were explored and available in Appendices A5-A6. The findings suggest that age groups 

break the self-similarity behaviour underpinning the urban scaling hypothesis and that age group do 

not exhibit the same scaling behaviour. 
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Fig 3.7. Scaling plot between Robbery and the age group 30 to 34 years old. Conventional scaling 
use total population. The acceleration seen in the total population in high density previous seen for 
Robbery is no longer present. This figure was published in Ref. [38]. 
 

These results are significant from a policy point of view and suggest that some current 

resource allocation is not fit for purpose and needs reconsideration. As noted previously, formula, 

applied to the UK National Health Service funding is done through a per-capita model [49,123,124] 

which evidently is not always appropriate for many health related metrics. The per-capita approach 

lacks an appreciation of the deceleration of care costs in urban regions where the age demographic is 

much lower. Thus, there is not an appreciation of the diseconomies of scale in low population regions 

(rural). This rural-urban divide exhibited in mortality is an underappreciated feature in the scaling 

literature. 

 

3.4.3 Critical Densities 
 
A segmented PL (equation 2.4) is the preferred model in fifty-one of the metrics examined in this 

study (6 crime, 8 property, 21 mortality and 16 age) out of a possible sixty-seven. The critical 

population density distributed around a median of 27 p/ha (Fig 3.8) similar to a previous study [26] 

where it was documented that the average critical population density for 19 crimes and property was 

30 p/ha. Strikingly, almost all critical population densities fit a single distribution (Fig 3.8(b)) despite 

the diverse range of metrics including crime, property, mortality and age. The few metrics that do not 
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conform to the single distribution are four different age groups (aged 5-9, aged 10-14, aged 40-44 and 

aged 45-49) along with uterus cancer and drugs which are located left to the main distribution. 

Interestingly, the age range 40-49 is the boundary between young people that are super-linearly 

attracted to highly dense regions and older people that exhibit sub-linear behaviour and thus 

preferentially seem to leave. This provides a reason why 40- 44 and 45-49 age groups have a 

significantly different critical population density compared most metrics. The difference in the 

remaining two age groups (aged 5-9 and aged 10-14), mortality (uterus cancer) crime types (drugs) is 

still an unexplained observation. In addition, there is no clear explanation of the remaining 45 metrics 

with a critical population density that forms a unimodal distribution and why it pivots consistently 

around the same position (27 p/ha). To understand the persisting change point and the mechanics that 

cause it, percolation theory may offer some insight [125]. These techniques have been applied to the 

clustering of regions [126] to better understand regional variation. Overall, it is unclear whether there 

is a unifying statistical mechanics that predicts human behaviour (crimes), health (mortality) 

economics (property transaction values) and age demographics at a critical density. 
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Fig 3.8. The critical densities (change point) in models with segmenting behaviour. In panel (a) 
critical densities are the ranked ordered values from smallest to biggest. The horizontal dashed black 
line is the median. In panel (b) the histogram of critical densities form a bimodal distribution. This 
figure was published in Ref. [38]. 
 
3.4.4 Correlation and hierarchical clustering of residuals by category 
 
Residuals using equation 2.5 were obtained from the preferred model (either equations 2.3 for single 

or equation 2.4 for segmented relationships) for each metric. This is a simple difference between the 
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actual observed data and the expectation given in the PL model. All pairs of residuals for all 67 

metrics were assessed for correlation and clusters (Appendix A7). The correlation using Pearson’s 

correlation coefficient and hierarchical clustering of residuals (Fig 3.9) separated metrics into three 

main clusters. 

 

 
 
Fig 3.9. Indicator clustering and heatmap between all pairs of indicators. The colour in the heatmap 
represents the Pearson’s correlation coefficient (𝜌𝜌𝑖𝑖,𝑗𝑗) between all pairs (i and j) of indicators. The red 
represents positive correlation and blue represents negative correlation. The darker the colour the 
stronger the correlation. Hierarchical cluster performed and results of these are in the upper and left 
panels. This figure was published in Ref. [38]. 
 
 

The biggest cluster consisted of mortality and old age groups (Fig 3.9; Appendix A7). 

Correlations were above 0.5 with values reaching as high 0.72 (e.g., Fig A7.2 in Appendix A7: 

Lymphoid Cancer vs. Prostate Cancer) with the exception of bone cancer, larynx cancer and 

homicide. Mortality, however, separated into two clusters. A subset of mortalities (CSR&A cancer, 

bladder cancer, dementia, ovary cancer, cardiac arrhythmias, brain cancer, prostate cancer, lymphoid 
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cancer, pancreas cancer, breast cancer and skin cancer) clustered with older people (above 55). This 

subset of mortalities and older people also tended to be positively correlated with most property types. 

The second subset of mortalities did not cluster with any other type of indicator. It consisted of 

Accidents, Liver cancer, diabetes, lung cancer, stomach cancer, oesophagus cancer, kidney cancer, 

uterus cancer, homicide, suicide and larynx cancer. This subset of mortalities has some degree of 

preventable cause of death where most are connected to certain lifestyle choices (smoking, obesity, 

alcohol etc). Contrary to the other group of mortalities, this group of preventable deaths exhibited 

anti-correlation with property (Fig A7.7 in appendix A7: Flat Residuals vs. Lung Cancer Residuals) 

meaning that above expectation in property value resulting in below expectation in preventable deaths 

and vice versa. The protective effect of the property transaction value above the scaling expectation 

extends to a wide range of mortalities including homicide and suicide. These conclusions were 

generally reinforced using a range of other correlation measures (Appendix A1: Kendall and 

Spearman’s rank correlation coefficient and appendix A8. Other similarity measures were explored 

(Appendix A1: Cosine and e-jaccard similarity) which were less informative. 

 

The second cluster consisting of crimes and younger people (aged 15-34) also exhibited 

positive correlation with Pearson’s correlation reaching as high as 0.83 (e.g., Appendix A7: Burglary 

vs. Vehicle Crime). The third cluster consisting of property types along with the very young and the 

middle-aged groups also exhibited very strong correlation such as Freehold vs. Old properties (Fig 

A7.5 in Appendix A7) which had a Pearson’s correlation coefficient = 0.95. However, this cluster, in 

comparison to others, exhibited far more anti-correlation. This occurred between property types and 

very young age groups (aged 0-14).  

 

The pairwise structure in the heatmap is a limitation as it considers and displays all 

correlation despite whether it is statistically significant or not. To account for this limitation, the 

bootstrapped (section 3.2.1) Pearson’s correlation coefficients between all pairs of residuals with 2000 

replications were used to identify correlation significant at 99% confidence (section 3.2.2). 

Correlation meeting this condition are presented as two networks: one network for all positive 
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connections and another for all negative connections (see section 3.2.2 for methods). The resulting 

positive network (Fig 3.10) has 66 nodes with 784 significant connections connecting them (out of 

2211 possible connections).  The network excludes bone cancer which was the only metric to have no 

statistically significant correlation of residuals with any other metric. The optimal modularity (see 

section 3.2.2.1) applying the Girvan-Newman algorithm [78] to detect community structure was 

0.472. This algorithm partitioned the network into 3 hubs. The hubs are similar to the clusters 

identified in the heatmap (Fig 3.9). These are elderly and mortality; children, middle-aged people and 

property; young people and crime. Suicide and larynx cancer are an exception as this subset of 

mortalities clustered with the young adults and crime. This result was also confirmed in the clustering 

analysis (Fig 3.9). Studies of larynx cancer have found links with alcohol [127] and smoking [128]. 

The associations between Suicide and Larynx cancer along with positive correlation with several anti-

social crimes and preventable deaths (e.g. ASB, CD&A, violence, accidents, diabetes, liver and lung 

cancers) suggests that intervention and prevention strategies are needed to focus on health care that 

will help with mental health [129,130] and community safety [131]. 
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Fig 3.10. A complex network representing significant positive correlation between all residuals. 
Nodes represent indicators of crime, property, mortality and age. Edges between nodes represent 
significant positive correlation. The colours of the node represent hubs which is maximized using 
modularity methods. Edge thicknesses are proportional to the correlation. Node sizes are proportional 
to their degrees. This figure was published in Ref. [38]. 
 
 

A network of significant anti-correlation (Fig 3.11) has 67 nodes with 604 significant anti-

correlation connections (out of 2211 possible connections).  The network includes all metrics which 

means that all metrics have at least one statistically significant connection. The optimal modularity 

score (0.234) was reduced in comparison to the positive network (Fig 3.10) which partitioned the 

network into 3 communities. The orange community in figure 3.11 includes all property types along 

with several mortalities: oesophagus cancer, liver cancer, accidents, diabetes, lung cancer, stomach 

cancer, homicide, gallbladder cancer, suicide and larynx cancer. This result was also seen in the heatmap 

(Fig 3.9). It reveals that if property exceeds the scaling law expectation, then deaths such as homicide, 

accidents and suicide are below the scaling law expectation. Specifically, higher transaction of property 

occurring in regions are less affected by some deaths. Many of these deaths (e.g., diabetes, suicide, lung 

cancer) have been linked to certain lifestyle choices and associations with environmental factors such 

as smoking and poor mental health. This suggests a need for targeted approach so that the most affected 

regions such as those with a deflated property economy are supported with additional resources (i.e., 

mental health support). 
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Fig 3.11. A complex network representing significant negative correlation between all residuals. 
Nodes represent indicators of crime, property, mortality and age. Edges between nodes represent 
significant negative correlation. The colours of the node represent hubs which is maximized using 
modularity methods. Edge thicknesses are proportional to the correlation. Node sizes are proportional 
to their degrees. This figure was published in Ref. [38]. 
 
3.4.5 Analysis of residuals by region 
 
To further understand regional differences, the indicator residual matrix was transposed to obtain a 

regional residual matrix. This presented as a regional heatmap (Fig 3.12) opposed to the indicator 

heatmap (Fig 3.9) to access correlation and hierarchical clustering between all pairs of regions. This 

broadly clustered the regions into two main groups with universal anti-correlation at the two extreme 

ends. If a region in one group has excess mortality and crime above the PL, then a region in the other 
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group is below the PL. A geomap of the two main clusters is available in appendix A9 which divided 

England and Wales into two large whole clusters with some exceptions. Generally, with a few 

exceptions, the map shows that North England, Wales and the Midlands regions cluster together and 

Southern England regions cluster together. 

 

 
Fig 3.12. Regional heatmap and clustering. Format and colour coding are the same as figure 3.9. The 
hierarchical cluster divides England Wales into two separate divisions. A geomap of the two divisions 
is available in Appendix A9. This figure was published in Ref. [38]. 
 
3.4.6 Self-organizing maps 
 
The heterogeneity in the clusters presented in the heatmap (Fig 3.12) does not provide sufficient 

understanding of the specific types of indicators that are most effecting the divide and the role of age 

demographics is also not clear. To explore this further, a SOM was constructed (section 3.2.3). After 

completion, the 348 regions distributed onto an 8 by 8 hexagonal self-organising map (Appendix A9). 

As described in the methods, nodes in the self-organising map are influenced by similar weights in 

neighbouring nodes. To account for this, clustering algorithms were sampled including hierarchical 

clustering, total within sum of squares and the gap statistic to expose any potential clusters in the 
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SOM (Appendix A9). Broadly, the clustering algorithms agreed in separating the SOM into 4 clusters. 

The results from the gap statistic indicated 4 clusters containing 2, 95, 190 and 61 regions (coloured 

orange, red, blue and green respectively (Fig 3.13)). 

 

 

 

Fig 3.13. Self-organising map (SOM) structure. The SOM had a hexagonal 8 by 8 structure with 4 
clusters chosen using the gap statistic. The nodes are orange, red, blue and green which represent 
clusters 1, 2, 3 and 4 respectively. The black dots within the nodes represent all 348 Unitary 
Authorities, non-metropolitan districts, metropolitan boroughs and London boroughs. If they are 
close, they are similar and if they are far apart, they are dissimilar in terms of the residuals. Figure 
available in Ref. [38]. 
 

The clusters in the SOM were identified and represented in a geomap (Fig 3.14; Appendix 

A9) to better understand regional heterogeneity in England and Wales. The 4 clusters, also 

represented in Ref. [38] broadly represent: (i) 61 mostly coastal areas (green) with some urban inland 

exceptions consisting of St. Helens, Stoke-on-Trent, Wyre Forest, Malvern Hills, Strafford-on-Avon, 
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Dacorum, Ipswich, Kensington and Chelsea, Hammersmith and Fulham, City of Westminster, 

Islington and Camden; (ii) 2 regions (orange) consisting of City of London and St. Edmundsbury; (iii) 

95 regions (red) mostly within the south of England (exceptions are: Richmondshire, Leeds, Bradford, 

Preston, Chorley, Blackburn with Darwen, Rosendale, Trafford and Manchester); and (iv) 190 more 

rural regions (blue) primarily in the north of England and Wales. 

 

 Classification (Normalised), Residuals 

 
 

(a) (b) 
Fig 3.14. Map of England and Wales. The colour represents the 4 different clusters identified by 
the self-organising map. (a) The 348 regions are defined by unitary authorities, non-metropolitan 
districts, metropolitan boroughs and London boroughs. (b) The mean residuals for each of the clusters 
are normalized for comparison purposes. The un-normalized versions are available in appendix A9. 
This figure was published in Ref. [38]. 
 

The regions City of London and St. Edmundsbury form the yellow cluster and are incomparable 

to other regions explored in this study. The average of the residuals in these two regions are extremely 

low for a large selection of mortalities (exceptions include larynx and liver cancer). They also exhibited 

extremely high property value and crime types. Neither of the regions had any homicide within the 
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studied timeframe hence the lack of representation in figure 3.14. To interrogate these exceptional 

regions further, correlation of indicators between the City of London and St. Edmundsbury were 

explored. The similarity is shown to be related to high crime and property residuals and low mortality 

residuals (see Fig A9.5 in Appendix A9). It is worth noting that the methodology of the SOM model is 

not related to the correlation. It is instead related to the similarity of the residual vectors between 

regions. The green cluster, representing mostly coastal regions, were characterised by an excess of 

mortality and an elderly demographics (people aged 60 +). Contrary, the red cluster, representing mostly 

South of England regions were characterised by younger age demographic and excess property value. 

Finally, the blue cluster, forming a large part of England and Wales were characterised average and 

close to the PL expectations for age, crime and mortality indicators whilst property indicators are below 

the PL expectation. 

 

3.5 Summary 
 
The key novelty in this chapter was exploration of morality, similarity and SOMs. This results in a 

fundamental challenge to the urban scaling hypothesis. It has previously been thought that urban 

regions exhibit self-similar behaviour. This study challenges this concept underpinning the urban 

scaling hypothesis and sets out the problems with per-capita models which is the cornerstone of many 

health-related policies. In addition, conventional urban scaling considers that the people that make up 

the general population, despite age, are treated equally in the acceleration of life in cities. This study 

contradicts this hypothesis and is shown that the acceleration depends on the age demographic in 

urban regions. Although many indicators accelerate in urban regions there are many others that 

decline. In either case of acceleration or decline, this occurs consistently around a critical population 

density in the range of 25-30 people per hectare. The position of the critical population density also 

defines most of the age demographic behaviour between rural-urban regions. Young people accelerate 

in urbanise environments whilst the elderly preferentially decline. Many scaling studies 

[21,26,42,132,133] show fundamental bias when applying linear per-capita measures. This is also 

true in the diverse set of non-transmissible disease and age demographics explored in this study. A 
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widely discussed UK phenomenon is a north-south divide attributed to various inequalities and 

significant differences relative to a regions north-south location. Although this behaviour is not solely 

a north-south problem and epidemiologist researching this excess death need to be aware of the 

limitations and bias of per-capita models. The northern regions, forming a large part of the blue 

regions contributed to the biggest cluster within the SOM. The analysis of these residuals in this group 

indicated that they did not have exceptional mortality. A per-capita framework is skewed in favour of 

population dense regions. However, in this study cumulative mortalities exhibited economies of scale 

beyond a critical population density that define the most urbanised regions. This behaviour relates to 

the scaling of different age groups and the scaling behaviour across all population densities along with 

the urbanised conditions that provide protection (e.g., dementia). 

 

The consistent and robust critical population density demonstrates that studying rural regions 

along with urban regions remains a missed opportunity. The existence and consistent position of the 

critical population density defining a segmented relationship is still an unexplained and important 

phenomenon that needs further exploration. Analysis of residuals exhibited extensive inter-correlation 

in a diverse set of metrics relating to crime, property, mortality and age. Residuals appear to distribute 

around a PL randomly. This is not true and instead they exhibit extensive correlation and persistent 

structure. The analysis of residuals also provided a clear and more definitive picture of UK variation 

and an understanding of regional clustering. 

 

3.5.1 Lognormal Method for Crime, Property, Mortality and Age 
 

There are many limitations discussed in scaling when applying traditional linear regression methods. 

Amongst others, this includes following a set of strict assumptions that if not validated will lead to 

bias in estimated model parameters [134]. Data in this chapter are indicator densities and log-

transformed, thus, it was opted that comparisons of exponents in this chapter are compared to methods 

proposed by Leitão et al [37] using the lognormal model with fixed (𝜔𝜔 = 2) and free (𝜔𝜔 𝜖𝜖[1,3]) 
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fluctuations where 𝜔𝜔 denotes the fluctuation. The lognormal model was applied to all 67 indicators 

and compared to the least squared method for all reported single (𝛽𝛽) and segmented (𝛽𝛽𝐿𝐿,𝛽𝛽𝐻𝐻) PL 

model parameters. A summary of these are available in Table 3.2 along with computed bootstrapped 

confidence intervals and p-values (indicating statistical significance of the scaling) using methods 

described by Leitão et al [37]  and using corresponding Python code [135]. The bold text and asterisk 

in Table 3.2 indicates a p-value > 0.05 signifying that that the applied model is not rejected. The 

choice of the fluctuations is a conscious decision such that a fixed fluctuation 𝜔𝜔 = 2 is generally 

accepted in scaling whilst the general form 𝜔𝜔 𝜖𝜖[1,3] aims to capture different effects such as the 

variability in human activity and imprecisions in the collection of data [12,37]. 

 

Generally, exponents obtained from either least square or Leitão methods agree for crime, 

mortality and age (except for Theft From Person, Kidney Cancer and Dementia) indicators. This was 

found to be true if confidence intervals computed in the least squared method overlap with point 

estimate exponents generated by the Leitão method. The largest discrepancies between methods are 

found in property indicators (except for Freehold, Terraced and Other Property) and in PL exponents 

above the critical density (𝑑𝑑∗) corresponding to regions with a higher population density. The likely 

reason for the differences in upper PL (𝛽𝛽𝐻𝐻) is that there are not many orders of magnitude of data 

above the critical density (𝑑𝑑∗) representing higher population densities. 

 

To test for statistical significance of the exponents, p-values obtained using Leitão methods 

for all single (𝛽𝛽) and double (𝛽𝛽𝐿𝐿,𝛽𝛽𝐻𝐻) PL models were computed. Almost all lognormal with fixed 

and free fluctuations agree when reported as statistically significant. There are 12 mortality (out of a 

possible 26), 3 crime (out of a possible 14), 5 age categories (out of a possible 18) and 0 property 

indicators reporting statistical significance (p-value > 0.05) in both lower and upper PL models. 

Although there are many incidences in segmented models where either one of the lower or upper PL 

model is statistically significant. This exercise highlights bias in many reported exponents and a need 
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to consider fluctuations explicitly in future studies when using PL models. Some of these issues 

highlighted here are addressed later in chapters 5-6.  However, the interesting aspect of the consistent 

critical density still holds and requires further investigation to understand the statistical mechanics that 

causes this phenomenon. 

Indicator 
 

Model 

 Least squared method Leitão lognormal model 
  Fixed fluctuations 𝜔𝜔 = 2 Free fluctuations 𝜔𝜔 𝜖𝜖[1,3] 
 𝛽𝛽,𝛽𝛽𝐿𝐿  

(Single or 
Low 

Density) 

𝛽𝛽𝐻𝐻 
(High 

Density) 

𝛽𝛽,𝛽𝛽𝐿𝐿  
(Single or 

Low 
Density) 

𝛽𝛽𝐻𝐻 
(High 

Density) 

𝛽𝛽,𝛽𝛽𝐿𝐿  
(Single or 

Low 
Density) 

𝛽𝛽𝐻𝐻 
(High 

Density) 

Crime Type       
ASB 1.13 (0.03) - 1.13 (0.03) - 1.13 (0.03) - 
Bike Theft 1.35 (0.05) - 1.35 (0.05) - 1.37 (0.06) - 
Burglary 1.16 (0.02) - 1.16 (0.02) - 1.16 (0.03) - 
CD & A 1.16 (0.03) 0.71 (0.15) 1.16 (0.03)* 0.72 (0.09)* 1.17 (0.03)* 0.74 (0.12) * 
Drugs 0.96 (0.12) 1.33 (0.06) 0.93 (0.13)* 1.32 (0.06)* 0.91 (0.13) * 1.32 (0.06) 
Order 1.27 (0.04) - 1.27 (0.03)* - 1.25 (0.03) - 
Other Crime 1.14 (0.03) - 1.14 (0.02)  1.16 (0.04) - 
Other Theft 1.14 (0.03) 2.04 (0.61) 1.14 (0.03) 2.00 (0.27) 1.15 (0.03) 2.00 (0.42) 
Robbery 1.51 (0.06) 2.20 (0.27) 1.52 (0.06)* 2.00 (0.04) 1.56 (0.07) * 2.00 (0.09) 
Shoplifting 1.28 (0.04) 0.73 (0.25) 1.28 (0.05) 0.73 (0.24)* 1.28 (0.06) 0.73 (0.24) * 
Theft From Person 1.31 (0.06) 2.32 (0.25) 1.31 (0.06)* 2.00 (0.09) 1.32 (0.06) * 2.0 (0.05) 
Vehicle Crime 1.27 (0.03) - 1.27 (0.02)* - 1.26 (0.02) * - 
Violent Crimes 1.17 (0.02) - 1.17 (0.02) - 1.17 (0.02) - 
Weapons 1.24 (0.03) - 1.24 (0.04) - 1.24 (0.05) - 
Property Types       
Detached 0.80 (0.08) -0.27 

(0.29) 
0.80 (0.50) 0.5 (0.0) 0.61 (0.29) 0.52 (0.10) 

Flats 1.08 (0.15) 2.62 (0.44) 1.08 (0.14) 2.00 (0.17) * 1.35 (0.35) 2.00 (0.00) 
Freehold 0.95 (0.04) - 0.95 (0.62) - 0.83 (0.16) - 
Leasehold 1.31 (0.09) 2.94 (0.66) 1.29 (0.09) 2.00 (0.16) 1.38 (0.28) 2.00 (0.00) 
New 0.95 (0.06) 2.92 (0.98) 0.95 (0.07) 2.0 (0.03) * 0.92 (0.15) 2.00 (0.09) * 
Old 0.97 (0.05) 1.92 (0.39) 0.97 (0.74) 1.91 (0.51) * 0.82 (0.22) 1.95 (0.30) * 
Semi-detached 1.03 (0.04) -0.14 

(0.49) 
1.03 (0.43) 0.5 (0.12) 1.04 (0.16) 0.50 (0.47) 

Terraced 1.01 (0.07) 1.67 (0.22) 1.01 (0.11) 1.67 (0.24) * 1.02 (0.20) 1.70 (0.22) * 
Other Property 0.98 (0.08) 1.83 (0.26) 0.98 (0.07) 1.85 (0.29) 1.01 (0.12) * 1.77 (0.39) 
Mortality Type       
Accidents 0.96 (0.03) 0.59 (0.14) 0.96 (0.02) * 0.62 (0.13) * 0.96 (0.02) * 0.67 (0.15) * 
Bladder Cancer 0.95 (0.02) 0.43 (0.12) 0.95 (0.02) * 0.5 (0.02) * 0.95 (0.02) * 0.5 (0.01) * 
Brain Cancer 0.94 (0.03) 0.56 (0.09) 0.94 (0.02) * 0.56 (0.09) * 0.94 (0.02) * 0.56 (0.09) * 
CSR and A 0.93 (0.02) 0.52 (0.10) 0.93 (0.02) * 0.52 (0.07) 0.93 (0.02) * 0.54 (0.08) * 
Gallbladder Cancer 0.91 (0.04) - 0.91 (0.04) - 0.92 (0.05) - 
Kidney Cancer 0.93 (0.02) 0.30 (0.14) 0.93 (0.03) 0.5 (0.00) 0.94 (0.02) 0.5 (0.01) 
Larynx Cancer 1.06 (0.07) 0.67 (0.19) 1.06 (0.07) * 0.71 (0.08) * 1.06 (0.07) * 0.66 (0.21) * 
Liver Cancer 0.99 (0.02) 0.71 (0.10) 0.99 (0.03) * 0.71 (0.08) * 0.99 (0.03) * 0.71 (0.08) * 
Oesophagus Cancer 0.94 (0.02) 0.32 (0.13) 0.94 (0.02) * 0.5 (0.00) 0.95 (0.02) 0.5 (0.00) 
Ovary Cancer 0.93 (0.03) 0.47 (0.13) 0.93 (0.02) * 0.50 (0.07) * 0.93 (0.02) * 0.5 (0.04) * 
Pancreas Cancer 0.93 (0.02) 0.58 (0.10) 0.93 (0.02) 0.58 (0.13) * 0.93 (0.02) 0.58 (0.13) * 
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Prostate Cancer 0.89 (0.02) 0.45 (0.12) 0.89 (0.02) *  0.50 (0.08) 
* 

0.89 (0.02) * 0.50 (0.07) * 

Stomach Cancer 1.02 (0.04) 0.74 (0.12) 1.02 (0.04) 0.74 (0.12) 1.02 (0.04) 0.74 (0.10) 
Lung Cancer 1.03 (0.03) 0.62 (0.10) 1.03 (0.02) * 0.62 (0.09) 1.02 (0.03) * 0.63 (0.11) 
Uterus Cancer 1.38 (0.38) 0.91 (0.02) 1.38 (0.42) * 0.91 (0.02) 1.40 (0.61) * 0.91 (0.02) 
Bone Cancer 0.89 (0.06) - 0.89 (0.07) * - 0.92 (0.11)  
Breast Cancer 0.94 (0.02) 0.58 (0.10) 0.94 (0.02) * 0.58 (0.12) * 0.94 (0.02) * 0.58 (0.12) * 
Lymphoid Cancer 0.92 (0.02) 0.61 (0.10) 0.92 (0.02) 0.61 (0.10) * 0.92 (0.02) 0.61 (0.10) * 
Skin Cancer 0.89 (0.03) 0.35 (0.17) 0.89 (0.03) 0.5 (0.02) * 0.90 (0.03) 0.5 (0.04) * 
Cardiac 
arrhythmias 

0.89 (0.02) 0.29 (0.20) 0.89 (0.03) * 0.5 (0.05) * 0.90 (0.03) * 0.50 (0.03) * 

Cardiomyopathy 0.95 (0.04) - 0.95 (0.04) - 0.93 (0.04) - 
Dementia 0.95 (0.02) 0.25 (0.15) 0.95 (0.03) 0.50 (0.01) 0.97 (0.03) 0.5 (0.00) 
Diabetes 0.92 (0.02) - 0.92 (0.02) * - 0.92 (0.02) * - 
Suicide 0.97 (0.01) - 0.97 (0.02) - 0.98 (0.02) * - 
Homicide 1.05 (0.06) 1.57 (0.33) 1.06 (0.08) * 1.60 (0.31) * 1.06 (0.07) * 1.60 (0.37) * 
Other Mortality 0.95 (0.02) 0.47 (0.10) 0.95 (0.02) * 0.50 (0.02) 0.95 (0.02) * 0.5 (0.03) 
Age Categories       
Aged 0-4 1.08 (0.01) - 1.08 (0.01) - 1.08 (0.01) - 
Aged 5-9 1.09 (0.03) 1.02 (0.01) 1.09 (0.03) 1.02 (0.02) 1.09 (0.03) 1.02 (0.01) 
Aged 10-14 1.06 (0.03) 0.98 (0.01) 1.06 (0.02) 0.98 (0.02) 1.06 (0.02) 0.98 (0.02) 
Aged 15-19 1.02 (0.01) 0.75 (0.13) 1.06 (0.02) 0.75 (0 

17) 
1.02 (0.01) 0.74 (0.18) 

Aged 20-24 1.11 (0.02) - 1.11 (0.02) - 1.10 (0.02) - 
Aged 25-29 1.08 (0.02) 1.39 (0.07) 1.08 (0.02) 1.39 (0.09) 1.08 (0.02) 1.39 (0.10) 
Aged 30-34 1.10 (0.02) 1.46 (0.08) 1.10 (0.01) 1.46 (0.07) 1.10 (0.02) 1.46 (0.08) 
Aged 35-39 1.07 (0.01) 1.32 (0.08) 1.07 (0.01) 1.32 (0.06) 1.07 (0.01) 1.29 (0.07) 
Aged 40-44 1.13 (0.06) 1.02 (0.01) 1.13 (0.07) 1.02 (0.01) 1.14 (0.09) 1.02 (0.01) 
Aged 45-49 1.05 (0.03) 0.96 (0.01) 1.05 (0.03) 0.96 (0.01) 1.05 (0.03) 0.96 (0.01) 
Aged 50-54 0.98 (0.01) 0.88 (0.03) 0.98 (0.01) 0.88 (0.03) 0.98 (0.01) 0.87 (0.04) 
Aged 55-59 0.96 (0.01) 0.82 (0.03) 0.96 (0.01) 0.82 (0.04) 0.96 (0.01) 0.82 (0.04) 
Aged 60-64 0.93 (0.01) 0.75 (0.04) 0.93 (0.01) 0.75 (0.06) 0.93 (0.01) 0.75 (0.05) 
Aged 65-69 0.90 (0.01) 0.63 (0.06) 0.90 (0.02) 0.63 (0.08) 0.90 (0.02) 0.63 (0.09) 
Aged 70-74 0.90 (0.02) 0.61 (0.07) 0.90 (0.02) 0.63 (0.09) 0.90 (0.01) 0.63 (0.08) 
Aged 75-79 0.92 (0.02) 0.62 (0.07) 0.91 (0.02) 0.61 (0.09) 0.91 (0.02) 0.61 (0.09) 
Aged 80-84 0.92 (0.02) 0.52 (0.09) 0.92 (0.02) 0.52 (0.07) 0.92 (0.02) 0.52 (0.07) 
Aged 85 + 0.91 (0.02) 0.46 (0.13) 0.91 (0.02) 0.50 (0.06) 0.91 (0.02) 0.5 (0.07) 

Table 3.2. Summary of exponents (to 2 dp) using the least squared and Leitão methods [37] 
reported for single (𝜷𝜷) and double PL (𝜷𝜷𝑳𝑳, 𝜷𝜷𝑯𝑯) models. The first two columns are exponents, also 
documented in Fig 3.6, using the least squared method. The last four columns correspond to the 
Leitão methods using the lognormal model with assumed fixed (𝜔𝜔 = 2) and free (𝜔𝜔 𝜖𝜖[1,3]) 
fluctuations where 𝜔𝜔 denotes the fluctuation. Methods to obtain confidence intervals using 
bootstrapping techniques and computed p-values are described in the Leitão et al paper [37]. p-values 
greater than 0.05 are indicated using an asterisk and bold font. This indicates that the null hypothesis 
that the data was generated by the model is accepted. The python code used to generate exponents, 
confidence intervals and p-values in this table using Leitão methods are available in ref [135]. 
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Chapter 4: Population Density and Spreading of COVID-

19 in England and Wales 

 

 

 

 

 

4.1 Introduction 

 
SARS-CoV-2 has been an opportunity to explore the scaling behaviour of a very transmissible 

disease. SARS-CoV-2 was first identified in China in late 2019 and was later declared a worldwide 

pandemic on 13 March 2020. It is thought that the main transmittance is through aerosols between 

people that can be either symptomatic or asymptomatic [136–139]. To deal with the spread of the 

disease many countries across the world deployed mitigating strategies such as distancing measures 

such as meeting size restrictions to reduce the number of infectious interactions along with various 

other strategies such as the use of face coverings. Many governments have based these mitigating 

decisions on cases, deaths and various healthcare (hospital admittance, patience on mechanical 

ventilation bed etc) data which at the very beginning of the pandemic was very sparse. At this stage it 

was hypothesized that population density might be a proxy for infectious interactions. A high 

population density would mean that there is more opportunity for spread and consequently more 

opportunity to being infected. For example, someone who lives in a city where there is a high 

population density is expected to have a greater number of interactions compared with someone who 

lives in a rural setting [140]. 

 

Separately the propagation of COVID-19 has been modelled using the Weibull [141], Poisson 

[142], Gamma [143] and Normal [144] distributions. The Weibull (Fig 4.1 (a)), Poisson (Fig 4.1 (b)) 
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and Gamma (Fig 4.1 (c)) distributions only allow for positive skew whilst the normal (Fig 4.1 (d)) 

distribution is entirely symmetrical. Their use may be inherently biased by the inability to show 

negative skew [41,145–147]. 

 

  
(a) (b) 

  
(c) (d) 

  
Fig 4.1. Illustrations of the (a) Weibull, (b) Poisson, (c) Gamma and (d) Normal distribution that 
are used to model the propagation of COVID-19 under various model parameter conditions. 
 

Previous studies of population density using a variety of indicators (health, crime etc) have a 

limited number of time points that are usually aggregated over a month or year 

[21,26,27,38,133,147,148] whilst finer granularity (e.g. daily, weekly) data are much less common 

and very difficult to access. Due to the COVID-19 pandemic, Public Health England 

(https://coronavirus.data.gov.uk/) (PHE) provided a dataset that is updated and made available to the 

public on a daily basis. This is the first opportunity to explore scaling, spanning across an extended 

timeframe, of a contagious disease during a worldwide pandemic. The data available has been 

https://coronavirus.data.gov.uk/
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paramount to the policy and government interventions in attempts to control the spread of the disease, 

lessen the burden on health care resources and to reduce excess deaths. Free public access to this data 

has helped shape public perceptions of the disease and assisted in data-driven informed decisions. 

 

Here the daily scaling of COVID-19 cases and deaths was investigated using population 

density. England and Wales Lower Tier Local Authorities (LTLAs) were used as regional boundaries 

to document explore scaling behaviour along with residual variance and skew to explore how 

residuals that represent regions distribute over an extended time series. This is to provide an 

understanding how regions distribute during different times of the pandemic and present a general 

overview of the impact that policy and changing human behaviour has on propagation. This will also 

confirm whether or not if the Weibull, Poisson, Gamma or Normal distributions are sufficient to 

model disease. In recognition that age is an important consideration in the pandemic age categories 

ranging from 0-4 years old to 85+ years old were included to explore whether age demographics were 

similar to previous scaling of general non-transmissible disease [38]. 

 

4.2 Theory 
 
In chapter 2, single (equation 2.3) and segmented (equation 2.4) PL models were defined. Residuals 

obtained using these models are a simple difference between the observed and estimated data 

(equation 2.5) and can be considered to be scale adjusted. Throughout the pandemic, cases and 

mortality are well described by a single PL for each day. As noted in chapter 2, some age indicators 

are better defined by a segmented fit. The following section defines some similarity measures and 

distributions used to the analysis of the residuals. 

 
4.2.1 Similarity Measures 
 
There exist several different measures to access the correlation and similarity between complete 

paired data (e.g., Kendall, Pearson, Spearman) (Appendix A1). The type of similarity measure is an 

important consideration and can depend on the structure of the data and whether they contain outliers. 
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For example, Kendall rank correlation coefficient [149] is used to measure the ordinal association 

between two measured quantities, Pearson’s correlation assesses linearity, whilst Spearman 

correlation assesses monotonic relationships: whether that is linear or not [150]. To demonstrate the 

different results between Pearson’s and Spearman’s correlation coefficient, data are simulated to 

document the correlation of similarity. It is found that linear data (4.2(a)) and random data (4.2(b)) 

report a similar Spearman’s and Pearson’s correlation coefficient. Spearman’s correlation coefficient 

is reported as 1 in data with a perfectly monotonically relationship, indicating a perfect fit with 

slightly reduced Pearson’s coefficient (4.2(c)). In data with outliers (Figure 4.2 (d)) Spearman’s 

correlation coefficient is slightly elevated compared to Pearson correlation. This is due to the ordering 

of the data where Spearman’s correlation limits the outlier to the value of its rank, thus, it is less 

sensitive to outliers. 

 

  
(a) (b) 

  
(c) (d) 

Fig 4.2. Pairwise simulated data. (a) linear Data with small amounts of noise, (b) linear data with 
large amounts of noise, (c) perfect monotonic data and (d) linear data with a few outliers. 
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After obtaining residual from the preferred model (equations 2.3 and 2.4), Pearson’s correlation and 

Spearman’s rank correlation coefficient was computed between pairs of residuals. Similar to methods 

in chapter 3 residuals are represented as 𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 = (𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 1, 𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 2, … ,𝑥𝑥𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) and 𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐 𝑖𝑖 =

(𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 1, 𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 2, … ,𝑦𝑦𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝) for each  complete set of 𝑛𝑛 pairs (𝑋𝑋𝑛𝑛𝑝𝑝𝑐𝑐,𝑌𝑌𝑛𝑛𝑝𝑝𝑐𝑐) of residuals (Appendix A1). 

 

4.2.2 Residual and Case Density Models 
 
The distribution of residuals was fitted using either a normal (equation 4.3) or generalised logistic 

(GL) (equation 4.4) distribution. The normal distribution [151] is given by: 

 

𝑁𝑁(𝑥𝑥; 𝜇𝜇,  𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛) =
1

𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛√2𝜋𝜋
𝑆𝑆−

1
2�

𝑥𝑥−𝜇𝜇
𝜎𝜎𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛

�
2

 
4.3 

 
where 𝜇𝜇 and 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 are mean and standard deviation respectively such that 𝜇𝜇 ∈ ℝ is the location 

parameter and 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 ∈ ℝ>0 is the squared scale parameter and as illustrated in figure 4.3, is a perfect 

symmetrical distribution. 

 

  
(a) (b) 

Fig 4.3. The normal distribution. (a) the probability distribution function (PDF) and (b) cumulative 
distribution function (CDF) with varying mean 𝜇𝜇 and SD 𝜎𝜎 parameters. 
 

The type I generalised logistic distribution (GLD) [152,153] is given by: 
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𝐺𝐺𝐺𝐺(𝑥𝑥; 𝜃𝜃, 𝜎𝜎,𝛼𝛼) =
𝛼𝛼
𝜎𝜎

𝑆𝑆− 𝑥𝑥−𝜃𝜃𝜎𝜎

�1 + 𝑆𝑆−
𝑥𝑥−𝜃𝜃
𝜎𝜎 �

𝛼𝛼+1 
4.4 

 

where 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼 are the location, shape and scale parameters such that 𝜃𝜃 ∈ ℝ, 𝛼𝛼 > 0, 𝜎𝜎 > 0 and 

−∞ < 𝑥𝑥 < +∞. Like the normal distribution, the generalised logistic (GL) distribution can be 

symmetrical when (𝜃𝜃,𝜎𝜎, 𝛼𝛼) = (0,1,1). This parameterization reduces equation 4.4 to the standard 

logistic distribution in the form: 

 

𝐺𝐺𝐺𝐺(𝑥𝑥; 0, 1, 1) =
𝛼𝛼𝑆𝑆−𝑥𝑥

(1 + 𝑆𝑆−𝑥𝑥)𝛼𝛼+1 
4.5 

 

The type I GL distribution (equation 4.4) is a very flexible, versatile and widely applicable 

distribution. It can also exhibit negative and positive skew (Fig 4.4) by adjusting the shape parameter, 

𝛼𝛼. If 𝛼𝛼 < 1, the distribution is left-skewed and, if 𝛼𝛼 > 1, the distribution is right-skewed. Thus, the 

type I GL distribution is a good candidate distribution since it has that capacity to model data with a 

range of different shapes under a single mathematical framework. 

 

  
(a) (b) 

Fig 4.4. The generalised logistic distribution. (a) the probability distribution function (PDF) and (b) 
cumulative distribution function (CDF) with location (𝜃𝜃 = 0), scale (𝜎𝜎 = 1) and varying shape (𝛼𝛼 =
2, 1, 0.5) parameters. 
 
 

The type I GL distribution has been shown to have nice statistical properties [152–155] 

corresponding to the Expectation 𝐸𝐸(𝑋𝑋), variance 𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) and 𝑆𝑆𝑘𝑘𝑆𝑆𝑤𝑤(𝑋𝑋) given by 
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𝐸𝐸(𝑋𝑋) =  𝜃𝜃 + 𝜎𝜎(𝜓𝜓(𝛼𝛼) − 𝜓𝜓(1)) 4.6 

 
𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) = 𝜎𝜎2�𝜋𝜋2 6⁄ + 𝜓𝜓′(𝛼𝛼)� 4.7 

 

𝑆𝑆𝑘𝑘𝑆𝑆𝑤𝑤(𝑋𝑋) =
𝜓𝜓′′(𝛼𝛼) − 𝜓𝜓′′(1)

(𝜓𝜓′(𝛼𝛼) + 𝜓𝜓′(1))
3
2
 

4.8 

 
respectively where 𝜓𝜓( . ) is the 𝜓𝜓′( . ) and 𝜓𝜓′′( . ) are the first three derivatives of the function 

𝑙𝑙𝑜𝑜𝑟𝑟𝛤𝛤( . ) where 𝛤𝛤 denotes the gamma function. 

 

4.3 Materials and Methods 
 

4.3.1 Datasets 
 
The datasets explored in this chapter are similar to Ref. [39] representing the first 446 days of the 

pandemic. In this chapter, the data has since been updated to include an additional 313 days. Public 

Health England (PHE) (https://coronavirus.data.gov.uk/) provided a host of datasets relating to 

COVID-19. It has throughout the pandemic evolved with several updates and provided additional data 

(Cases, Deaths, Hospital Admissions etc.) In this chapter, English and Welsh data are used on the 

number of COVID-19 cases but only English deaths for LTLAs. For the death data, English regions 

were included since Wales have a different methodological approach in collecting death data. In the 

data set, English deaths that were obtained are people who had a positive test result for COVID-19 

and die within 28 days. Alike to the range of datasets available there are also a range of time and 

spatial scales from both PHE and the UK ONS. PHE and ONS provided data at middle super output 

area (MSOA) (7,210 regions), but this data are updated weekly compared to PHE LTLA (337 regions) 

data which was updated daily. ONS also survey the prevalence of COVID-19, however, like their 

MSOA data, are only updated weekly. After taking all this information into consideration, the PHE 

daily data by LTLA was selected to define regional boundaries as a trade-off between temporal and 

spatial coverage as well as allowing for the most up-to-date coverage. 

 

https://coronavirus.data.gov.uk/
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The England and Wales population estimates along with the 19 age categories of age ranging 

from 0-4 years old to 85+ years old were obtained using the 2011 census. At the time of writing this 

was the most up-to-date census data. Population and age estimates were obtained from NOMIS 

(https://www.nomisweb.co.uk) along with regional land area. Shape files were obtained from either 

the open geography portal (http://geoportal.statistics.gov.uk) (provided by the UK Office for National 

Statistics) and UK Data service (https://census.ukdataservice.ac.uk). LTLAs for COVID-19 cases (in 

England and Wales), COVID-19 morality (England alone), LTLA population, LTLA area were 

aligned in a daily time series covering the period from 01/03/2020 to 29/03/2022. All data in this 

study are publicly available under Crown Copyright. 

 

The COVID-19 data were obtained from PHE. Throughout the pandemic the format and 

reporting of COVID-19 changed several times. On some days regions with missing data have been 

reported as 0 and in other periods of time it has been reported as NULL. In each circumstance these 

have been treated as 0 COVID-19 cases or deaths for those regions. The presence and dealing with 0 

values have been a long-lasting issue within scaling [156] due to the log transformation of the data 

which is necessary in the scaling methods to obtain model parameters. The exclusion of 0 values 

using these methods means that regions that do not report any COVID-19 cases or deaths on a 

particular day are excluded in the analysis. The limitations of zero-inflated values have been discussed 

at length [134,156]. This can be detrimental in PL estimated parameters, thus, similar to chapter 3, 

Leitão methods are applied to compare exponents and verify whether the scaling is not rejected. This 

analysis will be a particularly interesting in periods of times where there are lots or regions reporting 0 

cases or deaths. In extreme cases of zero-inflated regions in PL models, it has been shown that scaling 

exponents are misleading. Consequently, regions may be shown as over-performing or under-

performing for a population density [134]. At the beginning of the pandemic absences are frequent. 

PHE also decided the collate some regions together that are considered to have a small population. 

This included combining City of London (a small 289-hectare region within the greater London 

metropolitan area with a small resident population [38,39]) with Hackney and the Isles of Scilly with 

Cornwall. Daily analysis is restricted to the information provided at the time. Specifically, testing 

https://www.nomisweb.co.uk/
http://geoportal.statistics.gov.uk/
https://census.ukdataservice.ac.uk/
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regimes drastically changed throughout the pandemic and death reporting was limited. For example, 

at the beginning of the pandemic, testing was limited due to little availability. Thus, the mechanisms 

were not in place to identify as many cases of COVID-19 in comparison to when mass testing was 

introduced. Death reported by PHE earlier in the pandemic were restricted to those occurring within 

28 days of a positive test. The above data processing is inherent in the data set. The R code to obtain 

the PHE data are available in appendix H3. 

 

4.3.2 Statistical Analysis 
 
The data were analysed using the statistical software R version (3.6.2) [157] with the sf (0.9-1) [158], 

raster (3.0-12) [107], dplyr (0.8.5) [108], spData (0.3.5) [109], tmap (2.3-2) [110], ggplot2 (3.3.0) 

[98,159–161], xlsx (0.5.7) [162], gplots (3.0.4) [97] , httr (1.4.2) [163], plyr (1.8.5) [164], png (0.1-7) 

[114], rgdal (1.5-19) [165], rgeos (0.5-5) [166], lubridate (1.7.9.2) [167], fitdistrplus (1.1-3) [168], 

fgarch (3042.83.2) [169], glogis (1.0-1) [170], segmented (1.3-1) [87], moments (0.14) [171], nortest 

(1.0-4) [100], proxy (0.4-24) [172], RColorBrewer (1.1-2) [101], psych (2.0.12) [173], car (3.0-10) and 

plotrix (3.7-8) [174] packages. The R packages used in this study are also documented in the publication 

in Ref. [39]. 

 

4.4 Results and Discussions 
 
In the following section, the findings from the analysis of COVID-19 case and death metrics using PL 

models are reported following the methodology described in chapter 2. The daily exponents are 

presented along with residual variance and skew along with results from age demographics. 

Separately, residuals are examined to observe daily dispersion using normal and GL residual models. 

This chapter concludes with an examination of regional persistence exhibited throughout the 

pandemic. 
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4.4.1 Overview of regions, cases and number of observations 
 
England and Wales have 337 LTLAs (315 English LTLAs and 22 Welsch LTLAs) which range in 

area (Fig 4.5(a)) from 1213 ha (Kensington and Chelsea) up to 518,037 ha (Powys) and have 

populations (Fig 4.5(b)) between 37,340 (Rutland) up to 1,070,912 (Birmingham). Population 

densities (Fig 4.5(c)) vary from 0.25 people per hectare (p/ha) (Eden) to 138 p/ha (Islington). 

Although the timeframe of the data has been updated since the publication of this work, the regions 

used are identical [39]. 
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(a) (b) 

(c) 
Fig 4.5. Map of England and Wales using LTLAs to define boundaries. The shade of red indicates 
the strength of the (a) Area (Hectares), (b) Population and (c) Population Density. The darker the red 
the higher the value. 

COVID-19 cases and deaths were recorded daily and not all LTLA regions reported cases or 

deaths on each day. The variability in the observations tracks the general progress of the pandemic 
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(Fig 4.6). It can be observed that fewer regions reported cases is predominant at the very beginning of 

the pandemic, summer 2020 and spring 2021. Regions reporting no deaths are also predominant at the 

very beginning of the pandemic, summer 2020 and spring 2021; thereafter stays at a much lower level 

for the remaining time studied. Some of the behaviour is likely due to the variability of testing which 

was at a minimal capacity at the very beginning of the pandemic and significantly increased over the 

25-month period. In recognition of this, daily scaling, variance and skew reflect the processes on a

day-to-day basis and were not in correspondence with testing and the number of observations. 

(a) 

(b) 
Fig 4.6. Time series of the number of LTLA regions reporting (a) cases or (b) deaths. The 
timeframe is between 01/03/2020 and 29/03/2022. Figure updated from Ref. [39] with additional 
data. 

Per-capita cases presented as histograms (Fig 4.7) exhibited variable shapes with some 

periods of the pandemic showing negative skew (Fig 4.7(a)) whilst other periods included positive 

skew (Fig 4.7(b)). All daily per-capita case histograms can be found in Appendix B1. 
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(a) (b) 
Fig 4.7. Histogram of per-capita cases. Red dashed line represents the fitted normal distribution and 
the solid black line represents the fitted GLD on (a) 28/03/2020 and (b) 14/06/2020. The GLD was able 
to capture both negative and positive skew. This figure was published in Ref. [39]. 

4.4.2 Daily Progression of COVID-19 

Throughout the pandemic, daily scaling of COVID-19 cases and deaths were well approximated using 

a single PL model. Plots of log(COVID-19 cases) vs. log(Population Density) (Fig 4.8 a-d) show the 

distribution of the observed data around the single PL and the variability of residuals obtained using 

equation 2.5 at points during the pandemic. For example, the variability of residuals in September 

2020 (Fig 4.8(b)) is far greater than it was in the December 2020 holidays (Fig 4.8(c)). The low 

variance periods indicate homogeneity of cases across the regions whilst high variance periods were 

indicative of more heterogeneity of cases across regions. All daily scaling plots and corresponding 

geomaps for case residuals (specifically in Appendices B2 and B4 respectively) and death residuals 

(specifically in Appendices B3 and B5 respectively) can be found in Appendix B. 
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 Residual Key 

Fig 4.8. Plots of 𝒍𝒍𝒍𝒍𝒍𝒍(𝑪𝑪𝑪𝑪𝒓𝒓𝒓𝒓 𝑫𝑫𝒓𝒓𝑫𝑫𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫)𝒗𝒗𝒓𝒓. 𝒍𝒍𝒍𝒍𝒍𝒍(𝑷𝑷𝒍𝒍𝑷𝑷𝑷𝑷𝒍𝒍𝑪𝑪𝑫𝑫𝑫𝑫𝒍𝒍𝑫𝑫 𝑫𝑫𝒓𝒓𝑫𝑫𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫) with corresponding 
geomap of residuals on a selection of days using LTLAs. These are recorded on the (a and e) 
08/06/2020. (b and f) 16/09/2020. (c and g) 25/12/2020. (d and h) 04/04/2021. Regions that are red 
are above the PL and regions that are blue are below the PL. Higher deviations from the PL are 
indicated by the darker shades. This figure was published in Ref. [39]. 

4.4.3 Daily Exponent, Variance and Skewness for Cases 

The daily scaling exponent, (Fig 4.9(a)) residual variance (Fig 4.9(b)) and skew (Fig 4.9(c)) metrics 

were analysed using the LTLA data for cases. The exponent obtained in equation 2.3 via the least 

squares method using COVID-19 cases and population densities, were examined to explore the 

scaling behaviour. If 𝛽𝛽 < 1, scaling behaviour is sub-linear and less populated regions (rural) were 

preferentially affected by the propagation of COVID-19. If 𝛽𝛽 = 1, the scaling is linear and all regions 

despite whether they are rural or urban were proportionately affected. Lastly, if 𝛽𝛽 > 1 the scaling is 

super-linear and cases accelerated with population density. Initially, at the very beginning of the 

pandemic, the scaling exponent reached a high level and peaked near to the start of the first national 
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lockdown (announced on 23/03/2020) in England and Wales. Thereafter, the scaling exponent 

gradually declined until restrictions were eased towards the end of May and early June. Throughout 

the pandemic peaks occurred when 𝛽𝛽 > 1 indicating super-linear scaling, but this scaling relationship 

was not universal and preference for cases between rural vs. urban reversed six times. These 

transitions (Fig 4.9(a)) are seen when the trajectory of the exponent crossed the red horizonal line at 

𝛽𝛽 = 1 in early March 2020, late April 2020, late July 2020, late August 2021, early December 2021 

and late February 2022. Overall, during the studied period, the exponent varied from a low near 0.7 to 

a high near 1.25 indicating that population density was not a simple proxy for infectious interactions. 
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 (a)  
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Lockdown 

2) Phased Ending of 
First Lockdown 

3) Eat Out to Help Out 4) Return to schools 
(1) 

5) University return 
period 

6) Second National 
Lockdown 

7) Ending of Second 
Lockdown and the 
beginning of a strict 
three-tier system 

8) Third National 
Lockdown 

9) Phased Ending of 
Third National 
Lockdown 

10) Return to schools 
(2) 

11) Easter Holidays, 
School and University 
Term Break 

12) End of Term 
break. 

13) Delta becomes the 
dominating Variant 

14) No longer required 
to report a positive test 
nor isolate in any way 
with COVID-19 

  

    
 (b) 

 
(c) 

Fig 4.9. Daily time series of (a) scaling exponents and (b) residual variance and (c) skewness for 
cases between 01/03/2020 and 29/03/2022. In (a) blue dots represent daily exponents, the red 
horizontal dashed line indicates linear scaling and the bar chart is the number of raw daily cases. In (b) 
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black dots represent daily variance. Red arrows and curly brackets mark key events listed in the lower 
panel. In (c) black dots represent skewness. The horizontal red dashed line indicates no skew. Above 
the line indicates positive skew whilst below the line indicates negative skew. The green shade indicates 
all the periods of negatively skew residuals. The grey shading in all the plots indicates periods of 
homogenisation. The national restrictions in Wales preceded England beginning on 20/10/2020. Figure 
updated from Ref. [39] with additional data. 
 

 

Daily residual variance indicates the variation in the residuals to the scaling PL model 

(equation 2.3). High residual variance indicates a large amount of variation in all the LTLA regions 

and conversely low residual variance indicates small variations in all the LTLA regions. Overall, the 

residual variance throughout the pandemic (Fig 4.9(b)) has a clear structure and changed by over a 

factor of 10. Some of the structure in the residual variance can be explained by certain regional 

events.  

 

The variance exhibited at the very beginning of the pandemic remained relatively constant. 

However, in late April and later stages of the first national lockdown residual variance increased. An 

increase in residual variance indicates a heterogeneous presentation of regions whilst low residual 

variance reduced the distance from the PL and represents a homogeneous presentation of regions. For 

example, periods of time with restrictions (e.g., national lockdown) tended to increase the distance of 

regions to the PL whilst released restrictions tended to reduce the distance of regions to the PL. More 

specifically, regional lockdowns that occurred in the summer 2020 (late June) in greater Manchester 

and Leicester increased the variance and regional heterogeneity. This also occurred in the January 

2021 lockdown where variance increased and continues to increase for 2 months peaking near late 

March. After the relaxation on restrictions residual variance tended to decrease. Although the re-

opening of schools is an exception to this general behaviour seen across the pandemic. Instead, this 

event homogenised and reduced the distance of regions to the PL. The reopening of schools in 

England a Wales is a little staggered across regions, but in general, schools re-opened in early 

September. In this period of re-opening, residual variance doubled in a relatively short period of time 

which saw an increase from approximately 0.1 to 0.2. This rapid increase is due to an intra-regional 

spreading (within regions) which did not lead to an inter-regional spreading between regions. During 
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the time of re-opening schools and fewer restrictions an expected ‘surge’ in cases was not seen and 

residual variance continues to increase starting in late August and throughout September. This 

increasing trend stopped approximately towards the end of September and began to decrease to a very 

low level, reaching a minimum at the beginning of November corresponding to second national 

lockdown (05/11/2020) which as previous seen in other lockdowns increased the variance. Studies 

[175,176] on the mobility during restricting periods show a significant reduction in movement and 

regionally heterogeneity. These results are consistent and correspond with the observations seen in 

this study. 

  

Another key event during the studied period was the returning of student to UK universities in 

2020. This produced a significant correspondence to a reduction in variance and regional 

homogeneity. To put into context there are approximately 164 universities and approximately 2.4 

million university students along with large amount of university employees. This event involves a 

huge migration of people across the UK and students arriving from abroad. It is worth noting, like 

schools, there is some variation in the university start dates. Following a week of orientation and 

social activities teaching typically begins between the end of September and beginning of October. 

Strikingly, this event, caused reduced variance and regional homogeneity, changing propagating 

dynamics of cases across the England and Wales. There are many other events in the studied 

timeframe that caused declining variance such as ending of national restrictions imposed on the 

general public (03/12/2020), businesses reopening in the second national lockdown (12/04/2021), the 

emergence of the delta-omicron variants (late spring 2021) and the ending of all COVID-19 

restrictions (24/02/2022). Noticeably, surges in cases were only seen after the ending of national 

restrictions and during the period delta-omicron propagation.  

 

Strikingly, residual variance significantly decreases to a very low level towards the end of 

May 2021 and persists at a low level for the remaining studied period. This significant drop coincides 

with a change of variant causing most of the propagation in the UK. The delta variant (first identified 

in May 2021) spread more easily than the earlier alpha variant causing regions to homogenise during 
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rapid increases in cases [177,178] and during a timeframe where most restrictions were removed (July 

2021). This observation is the first major variation of the disease different to the alpha variant that 

warranted extra precaution from the UK government and caused the dynamics of propagation to 

change. Furthermore, the Omicron (first identified on the 27 November 2021) is also another 

concerning variant occurring during the studied period which was also closely monitored by the UK 

government [179]. Omicron is also a more transmissible version of the disease compared to the earlier 

variants [180]. The higher transmission of the disease during the delta-omicron phase of the pandemic 

caused regions to homogenise (Fig 4.10) and regions remained close to the PL for the remaining 

studied period. 
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 (a)  (b) 

Fig 4.10. Scaling plots showing differences in variation of residuals occurring on (a) 01/05/2021 
(an example pre-delta) and (b) 31/08/2021 (during delta propagation) after release of most 
restrictions. 
 

Skewness provides extra information in addition to the case counts, scaling exponents and 

variance. Skew metrics were used to create a time series (Fig 4.9(c)) on the scaling law residuals 

using the GLD third moment (equation 4.8) which is capable of capturing periods of time that exhibit 

positive and negative skew. Overall, the distribution of residuals and how they are characterised 

during the pandemic drastically changed like behaviour seen in the per capita case distributions (Fig 

4.7). In the period between March 2020 and May 2021 the isolation periods correspond to negatively 

skewed residuals whilst time periods dominated with spreading correspond to positively skewed 

residuals.  This means that the periods of time where residuals follow a distribution with a strong 
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positive skew, the long positive tail of the skewed distribution is indicative of propagation with ‘hot 

spots’ and ‘super-spreading’ events. Whilst periods of time where residuals are negatively skewed is 

indicative of a distribution better characterised by a long tail of ‘cold spots’ and ‘super-isolated 

regions’. This general behaviour ended during the delta-omicron period (circa. May 2021) when 

negatively skewed residuals with a homogenised presentation of residuals persisted for the remaining 

studied period. Some of this presentation is likely due to a different government stance on testing and 

public health measures which changed several times during the later stages of the pandemic. In the 

very latter stages of the studied period (February 2022) testing was no longer compulsory and free 

public testing came to an end entirely causing some regions to deviate below the PL. An example (Fig 

4.11) of this occurred on the 18/02/2022 where several regions break away from the PL. The ordered 

most deviated regions from the PL featuring the long-left tail of the GLD (Fig 4.11(c)) occurred in the 

regions of Pembrokeshire (0.75 p/h), Powys (0.26 p/h), Gwynedd (0.48 p/h), Ceredigion (0.42 p/h) 

and Carmarthenshire (0.77 p/h); all of which are Welsh low-density regions. 
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Fig 4.11. An example of residuals on 18/02/2022. (a) scaling plot, (b) histogram of residuals and (c) 
ordered residuals from lowest to highest value. In (c) blue indicates negative and red indicates 
positive residuals. The darker the colour the further away from expectation.  
 
4.4.4 Daily Exponent, Variance and Skewness for Deaths 
 
The daily scaling exponent, variance and skewness previous seen for COVID-19 cases was structured 

and reactive to certain events. This was the complete opposite when observing this for COVID-19 

deaths (Fig 4.12). Remarkably, deaths exhibited almost constant behaviour throughout the pandemic 

despite government intervention, different testing regimes and a national vaccination programme. It is 

worth noting that there were days during the pandemic where there are low numbers of regions with 

either low or zero reported deaths which minimally distorts the overall presentation. Similar to cases, 

when the scaling exponent is greater than 1 (𝛽𝛽 > 1) deaths have a greater impact in urbanised 

regions, whilst when the scaling exponent is less than 1 (𝛽𝛽 < 1) it preferentially affects rural regions. 
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At the very beginning of the pandemic super-linear scaling was exhibited indicating that deaths 

preferentially affected urban regions for a short period of time. However, this scaling behaviour soon 

inverted (circa 10/04/2020) such that regions exhibited constant sub-linear scaling. There are 

approximately 25 days that are in exception to this general behaviour corresponding to fewer regions 

reporting cases (Fig 4.6). Thus, for the remaining part of the time series (beyond 10/04/2020) 

economies of scale was persistent and consistent throughout England. This indicates that the 

behaviour of deaths corresponds to a consistent regional homogeneity throughout England. These 

results are in agreement with the age demographics results in chapter 3 [38] where it was found that 

population dense regions have a younger demographic whilst rural regions had an older demographic 

and was preferentially affect by general non-transmissible death. To understand this better, age 

metrics are explored and integrated into this COVID-19 study. 
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(c) 

Fig 4.12. Daily time series of (a) scaling exponents and (b) residual variance and (c) skewness for 
deaths between 01/03/2020 and 29/03/2022. In (a) blue dots represent daily exponents, the red 
horizontal dashed line indicates linear scaling and the bar chart is the number of raw daily deaths. In (b) 
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black dots represent daily variance. Red arrows and curly brackets mark key events listed in the lower 
panel. In (c) black dots represent skewness. The horizontal red dashed line indicates no skew. Above 
the line indicates positive skew whilst below the line indicates negative skew. The national restrictions 
in Wales preceded England beginning on 20/10/2020. Figure updated from Ref. [39] with additional 
data. 
 

4.4.5 Age Demographics 
 
Age demographics have been shown to play an important role in the scaling behaviour of general 

mortality (chapter 3). To understand this better in the context of COVID-19 and to see whether this 

trend continues, 18 age groups were included in this study ranging from 0-4 years to 85+ years old 

and aligned these to the English LTLA population, area and death data. For the reasons previously 

discussed (section 4.3.1) Welsh regions are excluded in this part of the analysis leaving the remaining 

315 English LTLA regions. The density scaling models were fitted using PL (Fig 4.13(a) and 

Appendix B7). The preference of a single PL (equation 2.3) was fitted to the young and middle age 

groups, whilst preference for a segmenting PL model (equation 2.4) was fitted to 10 remaining age 

groups. Acceleration in urban region was exhibited in the 24-44 age groups whilst decline in urban 

regions was exhibited in the people aged 45 and over. The remaining age groups were better fitted 

using a single PL. These behaviours across all age groups are consistent with previous analysis of age 

metrics in chapter 3. To explore correlation and clustering between residuals, Spearman’s rank 

correlation coefficient was selected and the hierarchical clustering algorithm. The results (Fig 4.13(b)) 

showed that the age categories split into two main clusters separating the young groups (0-49 years 

old) and older groups (aged 50+). The two main clusters exhibited almost universal anti-correlation 

with values reaching as low as -0.64(Aged 30-34 vs. Aged 75-79 (Fig 4.13(c)) and Aged 30-34 vs. 

Aged 80-84 (Fig 4.13(d))). In contrast, within the main clusters, residuals are mostly correlated with 

each other where Spearman’s correlation coefficient values reach as high as 0.94 (Aged 70-74 vs. 

Aged 75-79 (Fig 4.13(e)). In context, this means that a region below the PL (negative residual) in 

young people have an excess of older people. Similarly, if a region is above the PL (positive residual) 

in older people there is fewer younger people. This is consistent with results observed in chapter 3. 

Conversely, relating to the age groups within the same cluster, a region with a high deviation from the 
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PL results in a high deviation of all the other member within that cluster. All Spearman’s rank 

correlation coefficient values between all age categories are provided in Appendix B8. 

 

Fig 4.13. PL scaling exponents, correlation heatmap and hierarchical clustering for 18 
categories of age. In (a) format and colour coding are the same as figure 3.6. In (b) format and colour 
coding are the same as figure 3.9 although Spearman’s correlation was chosen for this heatmap 
opposed the Pearson correlation. Examples of residual relationships displayed in the heatmap include 
(c) Aged 75-79 vs. Aged 30-34, (d) Aged 80-84 vs. Aged 30-34 and (e) Aged 75-79 vs. Aged 70-74. 
This figure was published in Ref. [39]. 
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Daily scaling of COVID-19 deaths was well approximated using a single PL, however, when 

considering the cumulative of COVID-19 deaths across the entire studied period a segmented 

relationship is established indicative that high population density has a ‘protective’ effect (Fig 

4.14(a)). The estimated fitted model parameters using equation 2.4 are: 𝛽𝛽𝐿𝐿 = 1.15,𝛽𝛽𝐻𝐻 = 0.80,𝑑𝑑∗ =

1.09. This ‘protective’ effect is an artefact of age demographics since when restricting total 

population density to only older age groups the segmented relationship is less prominent and in some 

circumstances is removed in its entirety. For example, restricting total population to the age group 80-

84 the segmented relationship is no longer present and a single PL model is the preferred model (Fig 

4.14(b)). The estimated fitted model parameters for this age group using equation 2.3 is 𝛽𝛽𝑑𝑑 = 1.18. 

Thus, the apparently ‘protective’ effect of COVID-19 that exists in urbanised regions disappears and 

outcome appear to be worse (super-linear) (Fig 4.14). 
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Fig 4.14. Scaling plots for cumulative COVID-19 death density vs. (a) total population density 
and (b) 80-84 age group. In (a) segmenting PL model. Format and colour coding are the same as figure 
3.5. In (b) the segmentation is removed and instead is better fitted with a single PL. This figure was 
published in Ref. [39]. 
 

4.4.6 Dispersion of COVID-19 Case Residuals over Time 
 
To better understand the distribution of residuals, the normal and GLD were explored. This is an 

important consideration because in a simple linear regression framework it is assumed that residuals 

are normally distributed, independent, homoscedastic and linear. Section 4.2.2 shows that the normal 
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distribution is a symmetrical distribution whilst a GLD has three parameters including a shape 

parameter. The GLD is capable to produce more realistic shapes such as positive and negative skew. 

AIC and BIC were used to decide whether the normal or GLD was the preferred model for each day 

during the 25-month studied period. A smaller AIC and BIC score signals a better model. The AIC 

and BIC differences on each day between the two models are presented in figure 4.15 indicating the 

model preference for cases (Fig 4.15(a)) and deaths (Fig 4.15(b)). A negative difference corresponds 

to a GLD (e.g., Fig 4.16(a)) as the preferred model whilst a positive value corresponds to a normal 

distribution (e.g., Fig 4.16(b)) as the preferred model. All daily histograms of residuals along with a 

fitted normal and GLD for cases and deaths are available in Appendices B9 and B10 respectively. 

 

 
(a) 

 
(b) 

Fig 4.15. Time series of AIC and BIC differences. (a) COVID-19 cases and (b) COVID-19 death. 
Positive AIC/BIC indicates GL is a better fit and a negative AIC/BIC indicates normal is a better fit. 
Figure updated from Ref. [39] with additional data. 
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(a) (b) 

Fig 4.16. Histograms of residuals with example on the (a) 26/03/2022 and (b) 13/04/2021. The red 
dashed line represents the normal distribution and the solid black line represents the GLD. This figure 
was published in Ref. [39]. 
 
 

The preference between the normal and GL distributions change for both COVID-19 cases 

(Fig 4.15(a)) and deaths (Fig 4.15(b)). Apart from some noise, the contrast between cases and deaths 

is again clear. In the initial periods of lockdowns (March 2020, November 2020 and January 2021) 

and almost entirely post mid-May 2021 (delta-omicron phase), cases were associated with a GL 

distribution and negative skew. In contrast, time frames associated with fewer restrictions (August 

2020, September 2020, October 2020 and April 2021) with the exception of the delta-omicron phase 

is associated with a normal distribution. A number of studies have documented a fat tailed and/or 

positive skewing in superspreading incidents [143,181–183]. In the delta-omicron timeframe, 

dynamics of spread is different and, although cases surged, this period is better characterised by a 

negatively skewed GLD featuring a long tail of regions below the PL expectation corresponding to a 

change in testing regimes such as fewer conditions to get a test later in the pandemic followed by no 

requirements at all. 

 

4.4.7 Regional Persistence of COVID-19 Case Residuals 
 
To understand regional persistence, the pairwise correlation of residuals for all days was assessed. 

The resulting heatmap, exhibiting almost universal dark red (Pearson’s correlation: Fig 4.17 and 

Spearman’s correlation: Appendix B6) indicated that a regions position and whether it is below or 

above the PL, remained there for almost the entire pandemic. Although there is some expectation that 

days relatively close to each other should have some degree of strong correlation this behaviour was 
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also observed in days that are very far apart. Some examples of strong correlation were observed for 

day 400 vs. day 50 (Fig 4.17 (b)), day 400 vs. day 100 (Fig 4.17 (c)) and day 400 vs. day 370 (Fig 

4.17 (d)). The persisting behaviour remained across all 759 days despite a multitude of government 

interventions, different testing regimes and a national vaccination programme. In chapter 3 it was 

found that the inter-relationship between a host of health, well-being and age metric were relating in 

complex ways. This behaviour observed in chapter 3 and persisting behaviour observed in this study 

led to the hypothesis that the position of a region relative to the PL is pre-determined and governed by 

the existing socio-economic characteristics. Further, more direct study, is needed to understand and 

test this behaviour. 
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 (a) 

   
(b) (c) (d) 

Fig 4.17. Heatmap of Pearson’s correlation coefficient between all days during the pandemic 
between 01/03/2020 and 29/03/2022. In (a) the orange to dark red indicates moderate to strong positive 
correlation. White to grey indicates no to moderate correlation and black indicates negative correlation. 
Example of the correlation from the heatmap are provided between (b) day 400 vs. day 50, (c) day 400 
vs. day 100 and (d) day 400 vs. day 370. Figure updated from Ref. [39] with additional data. 
 
 

4.5 Summary 
 
The regional per-capita measures and scaling law residual distributions are generally 

underappreciated in the scaling literature. They are often thought of as linear, homoscedastic and 

normally distributed which is often not true and still needs further consideration. For example, in the 

context of modelling COVID-19 it has been understood that the ‘super-spreading’ and ‘hot spot’ are 
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characterised with positive skew, however this was insufficient to characterise the full timeframe of 

the COVID-19 pandemic. Cases and to, a much lesser extent deaths, exhibited both positive and 

negative skew. Timeframes of negative skew coincided with isolation (lockdowns) and regions that 

account for the long-left tail of the distribution are better regarded as ‘super-isolators’ and ‘cold-

spots’. Later stages of the pandemic also exhibit negative skew and it was almost completely 

universally better characterised by a GLD. This is a feature coinciding with the delta-omicron phase 

and a change in testing regimes causing several rural regions to break away from the PL. 

 

The COVID-19 pandemic has been a unique opportunity to observe the daily evolution of the 

scaling exponent which are often thought of as being constant or very slow changing. In the case of 

COVID-19 cases, the scaling exponent exhibited complex structure and varied over relatively short 

periods of time. The scaling exponent reached a maximum of 1.27 on 25/12/2020 exhibiting super-

linear scaling and reach as low as 0.70 on 03/03/2020 exhibiting sub-linear scaling. The type of scale 

(sub-linear and super-linear) reversed 6 times where preference of spread between rural and urban 

regions switched. Super-linear scaling indicates a preference of urban propagation whilst sub-linear 

indicates a preference of rural propagation. Contrastingly, COVID-19 mortality exhibited near 

constant economies of scale. In the 25-month studied period the mortality exponent is consistently 

below 1 and approached linear scaling in two periods occurring in March-April 2020 and in January 

2021. These brief moments of linear scaling coincide with peaks in deaths. There is a higher older 

demographic in low population dense regions and thus, deaths preferentially affected rural 

environments throughout the pandemic. There are no equivalent reports in any prior scaling literature 

and no equivalent study of time series. Daily granularity is difficult to find. Thus, this was an 

opportunity to observe scaling exponents along with variance and skew in daily intervals. It is the first 

to report a wide variability in the scaling exponent and never been conducted over such as extended 

timeframe. 

 

Variance for COVID-19 cases relative to the PL produced a considerable amount of structure 

and complexity throughout the pandemic. Heterogeneity (higher variance) was produced during 
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lockdowns across regions while reducing the number of cases. Other events during the pandemic 

contributed to the observed heterogeneity. For example, regional heterogeneity was seen when 

schools were reopened. This also caused the highest recorded residual variance during local outbreaks 

of case growth. Whilst homogenisation (low variance) mostly occurred during less restrictive 

timeframes allowing for county scale mixing. This occurred, for example, in the holiday periods (e.g., 

Christmas). The delta-omicron phase of the pandemic also caused the homogenisation of regions. It 

caused residual variance to significantly decrease and remained low during a period of significant 

case growth. This is an important observation. Not only does the implementation of country scale 

health policies and events cause changes to residual variance, but this is also affected by the variants 

propagating at the time. The statistical mechanics characterising COVID-19 mortality in England 

behaved consistent throughout the pandemic. These results were influenced by the age demographic 

in rural and urban regions. Rural regions featuring an older demographic are disproportionately 

affected by COVID-19 deaths whilst urban regions featuring a younger demographic are much less 

likely to be affected by COVID-19 deaths. From a policy point of view, these observations are 

important for future intervention and resource allocation. It also provides an underlying understanding 

of the potential risk of certain events and better allocation of resources to regions needing it most. In 

this case, it was low population density regions (rural communities). There are no prior timeseries or 

consideration of residual variance and skew in any prior scaling study. This shows that the statistical 

assumptions of standard linear regression are not met and demonstrates a need for a more flexible 

approach. 

 

The dispersion of COVID-19 case and death residuals are complex and change throughout the 

pandemic. They exhibit positive and negative skew which are features generally underappreciated in 

the scaling literature. Consequently, in large parts of the studied period residuals are better 

characterised by a GLD which iS flexible framework and allows for more realistic shapes. This needs 

further consideration and demonstrates a need for a generalisation of population PL models to 

accommodate the complexities observed in this study. There is no equivalent statistical analysis of 

residuals. This study is the first to analyse the residual distributions and show that they are not always 
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normally distributed. Residuals are better modelled using a more flexible distribution such as the GLD 

allowing for skew, or otherwise, non-normal continuous data. 

 

In the current literature, the modelling of COVID-19 propagation, have only considered 

positively skewed distributions. This includes the Weibull [141], Poisson [142]  and Gamma [184]  

distributions. These distributions have been shown to be inadequate to characterise the full sweep of 

the pandemic due to their inability to exhibit negative skew behaviour. It has been shown that both 

positive and negative skew are important features of propagation and the current range of distributions 

in consideration are unable to capture both types of skews whilst completely disregarding the latter 

entirely. Negative skew was exhibited in approximately 14 months featuring a long-left tail of ‘cold 

spots’ and ‘super isolating’ events. The remaining timeframes are better characterised by positive 

skew featuring a long right tail of ‘hot spots’ and ‘super spreading’ events. This study is the first to 

acknowledge that both positive and negative skew are important features of propagation. Current 

distributions are unable to be fully appreciate and allow for negative skewed distributions. It has been 

shown that the GLD can uniformly capture both positive and negative behaviour: a flexible 

distribution able to model a range of complex shapes. 

 

The residual behaviour relative to the PL, persisted throughout the pandemic, across all 759 

days. In other words, if a residual (region) was above the PL it remained there for the entire pandemic. 

Similarly, if a residual (region) was below the PL it would remain. This persisting behaviour endured 

multiple national and local lockdowns, different testing regimes and a national vaccination 

programme. Such robust regional persistence has never been discovered before. 

 

4.5.1 Limitations 
 

The modelling of dispersion is not considered in chapter 4. It is observed in the timeseries that 

residual variance exhibited complex behaviour, expanding and contracting throughout the pandemic. 

To consider these complexities further, it is highly desirable to have a unified model that can 
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automatically adapt to the underlying dispersion and that can be easily implemented in practice. In 

chapter 5, a GLD regression model in Bayesian framework is developed, able to adapt in a simple 

way to different types of dispersions allowing for complex shapes such as positive and negative skew, 

and heteroscedasticity. 

 

In a standard linear regression framework, it is assumed that residuals are normally 

distributed, homoscedastic, independent and linear. It has been shown that after fitting the COVID-19 

datasets that it does not meet the requirements of standard linear regression. The GLD is a more 

flexible framework allowing for skewed, otherwise, non-normally distributed residuals. In this 

chapter, the fitting of the GLD was applied to residuals after using a standard regression model. 

Residuals have already been affected by model bias using normality methods and following a pre-set 

of assumptions that have been shown to be violated. To reduce model bias and to obtain better defined 

residuals, chapter 5 develops an alternative methodology, taking into account residual behaviour 

within the framework opposed to disregarding them and fitting them to a GLD after obtaining them 

from an inadequate normal model. 

 

 

4.5.2 Lognormal Methods for Cases 
 

Leitão methods were applied to daily COVID-19 cases to investigate whether PL exponents are 

different to exponents obtained using least square estimates and to find whether the scaling is 

statistically significant (Fig 4.18). It was found that exponents documented using Leitão methods (Fig 

4.18; panel (a)) correspond to previous reported scaling (Fig 4.9) regarding the relationships identified 

(i.e., sublinear, linear or super linear scaling) and the daily trajectory. The daily scaling using Leitão 

methods were also tested for statistical significance. If exponents are indicated in blue, this suggests 

that reported scaling is statistically significant (i.e., p-value > 0.05). Otherwise, non-statistically 

significant scaling was indicated in red. It was found that only 288 daily scaling models (out of a 

possible 759 days) were statistically significant. Differences in exponents were also computed to 
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explore the variation between methods (Fig 4.18; panel (b)). Specifically, a positive difference (i.e., 𝛽𝛽 

difference > 0), indicated that Leitão reported exponents are larger compared to the least square 

method. While a negative difference (i.e., 𝛽𝛽 difference < 0), indicated that the Leitão reported 

exponents are smaller. It was found that larger differences between methods occurred in periods with 

fewer reported cases (e.g., summer 2020). 

 

These results further highlight the need for an alternative methodology that deals with the 

limitations of least squared methods when assuming a normally distributed and homoscedastic 

system. For example, residual distributions (Fig 4.16) are found to be highly skewed. Leitão and least 

squared methods are built around a gaussian distribution which are unable to appreciate any features 

of skew, causing model bias in estimated PL exponents. It was shown that the GLD distribution can 

model positive and negative skewed distributions (Fig 4.16). For this reason, a GLD regression model 

is developed in chapter 5 to address these issues. Furthermore, the developed GLD regression model, 

like Leitão et al, models variance, but in a more flexible framework to allow features of 

heteroscedasticity. 
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(a) 

 
(b) 

Fig 4.18. Daily time series of (a) reported exponents using Leitão methods and (b) computed 
differences between Leitão and least squared methods (i.e., difference = Leitão beta – least 
squared beta). In (a) blue dots represent statistically significant scaling (p-value > 0.05) while red 
dots represent non-statistically significant scaling. Also, in (a), the black dashed horizonal line 
represents linear scaling. In (b), black dots represent the magnitude of the difference between Leitão 
and least squared methods. Further distances away from 0 indicates a greater amount of variation in 
reported exponents. Also, in (b), the black dashed horizontal line indicates no differences between 
methods. Leitão methods used in this analysis are available in ref [37] and corresponding python code 
is available in ref [135]. 
 

4.5.3 Lognormal Methods for Deaths 
 

Leitão methods were also applied to daily COVID-19 deaths (Fig 4.19). Similar to the presentation in 

Fig 4.18, blue exponents indicate daily scaling models that are statistically significant (i.e., p-value > 

0.05) while red indicate non-statistical significance (Fig 4.19; panel (a)). In contrast to cases, it was 

found that 590 daily death models (out of a possible 759) using Leitão methods were statistically 

significant. Differences were also computed to explore the variation in exponents between Leitão and 

least squared methods (Fig 4.19; panel (b)). In contrast to cases the differences were found to be 

minimal between methods throughout the pandemic. Although, similar to cases, the largest computed 

differences correspond to periods with fewer reported deaths. However, it is worth noting that daily 
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deaths drastically change throughout the pandemic (Fig 4.6; panel (b)) affecting the stability of daily 

reported exponents. For example, in the summer 2020 and spring 2021, scaling exponent fluctuates 

from sub linearity to super linearity in a couple of days. These contradictory results indicate that the 

model is not behaving as expected and this is certainly to the lack of data in these time periods. 

 

 
(a) 

 
(b) 

Fig 4.19. Daily time series of (a) reported exponents using Leitão methods and (b) computed 
differences between Leitão and least squared methods (i.e., difference = Leitão beta – least 
squared beta). In (a) blue dots represent statistically significant scaling (p-value > 0.05) while red 
dots represent non-statistically significant scaling. Also, in (a), the black dashed horizonal line 
represents linear scaling. In (b), black dots represent the magnitude of the difference between Leitão 
and least squared methods. Further distances away from 0, indicates a greater amount of variation in 
reported exponents. Also, in (b), the black dashed horizontal line indicates no differences between 
methods. Leitão methods used in this analysis are available in ref [37] and corresponding python code 
is available in ref [135]. 
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Chapter 5: Generalised Logistic Regression Model 

 

 

 

 

 

5.1 Introduction 

 

The relationship between two variables modelling the response 𝑌𝑌 in terms of some predictor 𝑋𝑋 can be 

seen extensively in many different applications in such fields as engineering [185], medicine [38,186], 

energy [187] and crime [26,27,38]. In a standard linear regression framework [33,188], classical 

regression assumes residuals are linear, independent, homoscedastic and normally distributed. 

However, in many cases these assumptions are not valid or appreciated leading to model bias. In 

chapter 4, these techniques, in a PL setting using data from the COVID-19 pandemic, have been 

shown to have extensive flaws such as the violation of many of the assumptions of standard linear 

regression. Residuals are better characterized by a GLD and residual variance exhibited complex 

behavior, expanding and contracting throughout the pandemic. Fortunately, there are techniques 

available extending the standard linear regression allowing for a more flexible approach [189] 

commonly referred to as a generalized linear model (GLM). These techniques usually consider a 

distribution from the exponential family although other distributions can be considered where context 

compels another choice. In the most common distributions within the exponential family there are 

very few that exhibit both positive and negative skew. There are none that exhibit both positive and 

negative skew mapped to continuous data in −∞ < 𝑥𝑥 < ∞. Thus, there is a need to consider other 

continuous distributions in a GLM-style framework outside the distributions that are mentioned in 

table 5.1 to model real and both positive and negative skewed data.  
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Distribution pdf 𝒇𝒇(𝒙𝒙) Range 

Normal 1
𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛√2𝜋𝜋

𝑆𝑆𝑥𝑥𝑝𝑝 �
−(𝑥𝑥 − 𝜇𝜇)2

2𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2
� 

−∞ < 𝑥𝑥 < ∞ 

Poisson 𝜇𝜇𝑥𝑥exp (−𝜇𝜇)
𝑥𝑥!

 
𝑥𝑥 = 0,1,2, … 

Binomial �𝑛𝑛𝑥𝑥� �
𝜇𝜇
𝑛𝑛�

𝑥𝑥
�1−

𝜇𝜇
𝑛𝑛
�
𝑝𝑝−𝑥𝑥

 𝑥𝑥 = 0,1, … ,𝑛𝑛 

Gamma 1
𝛤𝛤(𝑣𝑣)

�
𝑣𝑣
𝜇𝜇�

𝑣𝑣
𝑥𝑥𝑣𝑣−1exp �−

𝑣𝑣𝑥𝑥
𝜇𝜇
� 𝑥𝑥 > 0 

Inverse Gaussian 
�

𝛾𝛾
2𝜋𝜋𝑥𝑥3

𝑆𝑆𝑥𝑥𝑝𝑝 �
𝛾𝛾(𝑥𝑥 − 𝜇𝜇)2

2𝜇𝜇2𝑥𝑥
� 

𝑥𝑥 > 0 

Exponential 𝜆𝜆exp (−𝜆𝜆𝑥𝑥) 𝑥𝑥 ∈ [0,∞) 

Pareto 𝛼𝛼𝑥𝑥𝑛𝑛𝛼𝛼

𝑥𝑥𝛼𝛼+1
 

𝑥𝑥 ∈ [𝑥𝑥𝑛𝑛 ,∞) 

Weibull 
�
𝑘𝑘
𝜆𝜆
�
𝑥𝑥
𝜆𝜆
�
𝑘𝑘−1

exp �−�
𝑥𝑥
𝜆𝜆
�
𝑘𝑘
� 𝑥𝑥 ≥ 0

  
0 𝑥𝑥 < 0

 
𝑥𝑥 ∈ [0, +∞) 

Beta 𝑥𝑥𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1

𝐵𝐵(𝛼𝛼,𝛽𝛽)
 𝑤𝑤ℎ𝑆𝑆𝑟𝑟𝑆𝑆 𝐵𝐵(𝛼𝛼,𝛽𝛽)

=
𝛤𝛤(𝛼𝛼)𝛤𝛤(𝛽𝛽)
𝛤𝛤(𝛼𝛼 + 𝛽𝛽)

 𝑎𝑎𝑛𝑛𝑑𝑑 𝛤𝛤 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑆𝑆 𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎 𝑓𝑓𝑃𝑃𝑛𝑛𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 

𝑥𝑥 ∈ [0,1] 𝑜𝑜𝑟𝑟 𝑥𝑥 ∈ (0,1] 

Table 5.1. A selection of common distributions that belong to the family of exponential 
distributions. These are available in Refs. [190–192]. Distribution definitions and notation used 
in this table are common in the statistics literature and do not correspond to the list of Latin 
and Greek symbols at the beginning of this thesis. 
 

In the current literature there are a few proposed regression models, other than the normal 

approach. The closest to the proposed regression model in section 5.2.3 is a regression model where 

the response 𝑌𝑌 assumes a form of the GLD, different to the form considered in this chapter. 

Specifically, the distribution under consideration is an exponential-logistic {generalized Weibull} (E-

L {GW}) distribution with a specific purpose of modelling life-time data using a survival function 

[193]. Although the distribution is mapped to −∞ < 𝑥𝑥 < ∞, the application in this study only 
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considers positive valued data. This is particularly useful with application to lifetime data, but there is 

still a need for an approach that allows for a wider application. 

 

There are many variations of the GLD [194–196]. It is an extensively studied distribution in 

various disciplines that can be found in (Johnson et al. [153]) and the references therein. The form 

considered in this chapter is the type I GLD [152–155,197]. It consists of three parameters including a 

location, scale and shape allowing it to be an extremely versatile and flexible distribution. The main 

advantage of the type I GLD is that it can accommodate a wider range of shapes including positive 

and negative skew, otherwise, non-normal continuous data. It is a mathematically a simple 

distribution; in that it is a closed form distribution under a single mathematical expression. The GLD 

also has been shown to have nice statistical properties using method of moments (MOM) 

corresponding to the expectation, variance and skew [154] and parameters have been shown to be 

well approximated using maximum likelihood estimates (MLE) [152,197]. 

 

In this chapter a Bayesian duel GLM has been developed where the response, 𝑌𝑌, assumes a 

type I GLD is proposed. In the Bayesian GLD regression model, it will allow for non-linear and non-

normal data modelling both the expectation and dispersion through a range of linear regression 

functions, including but not limited to, null (Appendix C1), simple (Appendix C2), polynomial 

(Appendix C3) and multiple linear regression structures (Appendix C4)). The resulting joint posterior 

distribution includes a complicated normalizing constant and was not proven to be analytically 

tractable thus, MCMC methods are applied to fit each of the Bayesian estimate model parameters. The 

intractable form, in a regression setting has never been seen the statistics literature, thus, the Bayesian 

framework developed in this chapter will propose suitable methods to deal with such forms. The 

additional dispersion parameters are indicative of heteroscedasticity along with the GLD model 

parameters indicative of positive and negative skew. To monitor convergence, Gelman-Rubin 

convergence diagnostics were applied along with deviance information criterion (DIC) scores to see 

how this model compares with other regression models using normality methods. Overall, this 

developed Bayesian GLD regression model is a flexible framework capable of modelling skewed and 
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heteroscedastic data sets. A normality approach to skewed and heteroscedastic data produces 

fundamental and systematic model bias relative to the improved methodology proposed in this 

chapter. 

 

In the final section of this chapter, suggestions and concluding remarks are made about how 

the Bayesian GLD regression model can be adapted to make further improvements and outline the 

limitations of the proposed model which offers an opportunity for future continual development. In 

general, the dual GLD expectation and dispersion regression model is a less restrictive framework, 

accessible to a wide range of systems and accounts for a wide range of different shapes and 

heteroscedasticity. 

 

5.1.1 Introducing the Generalized Logistic Distribution 
 
Several forms of the logistic distribution have been proposed in the statistics literature [153,197–202]. 

To recall, the type I logistic distribution has a probability distribution function (pdf) and cumulative 

distribution function (cdf) given by: 

 

𝑓𝑓(𝑥𝑥;𝛼𝛼) =
𝛼𝛼𝑆𝑆−𝑥𝑥

(1 + 𝑆𝑆−𝑥𝑥)𝛼𝛼+1
 

5.1 

 

and 
 

𝐹𝐹(𝑥𝑥;𝛼𝛼) =
1

(1 + 𝑆𝑆−𝑥𝑥)𝛼𝛼
, 5.2 

 

respectively where 𝛼𝛼 > 0 and −∞ < 𝑥𝑥 < +∞. The distribution is negatively skewed for 0 < 𝛼𝛼 < 1 

and positively skewed for 𝛼𝛼 > 1. In the cases where 𝛼𝛼 = 1 this reduces the type I logistic distribution 

to the standard logistic distribution [153]. 

 

An extension of the type I logistic distribution has been proposed [152,153,197,199], 

considering a three-parameter form, by introducing location 𝜃𝜃 and scale 𝜎𝜎 parameters. This is 
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commonly known as the type I generalised logistic distribution (GLD). The probability density 

function (pdf) and the cumulative density function (cdf) of this form is as follows: 

 

𝑓𝑓(𝑥𝑥; 𝜃𝜃,𝜎𝜎,𝛼𝛼) =
𝛼𝛼
𝜎𝜎

𝑆𝑆  −(𝑥𝑥−𝜃𝜃)
𝜎𝜎

�1 + 𝑆𝑆
−(𝑥𝑥−𝜃𝜃)

𝜎𝜎 �
𝛼𝛼+1 

5.3 

 

and 

 

𝐹𝐹(𝑥𝑥; 𝜃𝜃, 𝜎𝜎,𝛼𝛼) =
1

(1 + 𝑆𝑆−(𝑥𝑥−𝜃𝜃)/𝜎𝜎)𝛼𝛼
 5.4 

 

where 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼 are the location, scale and shape parameters respectively. 𝜃𝜃 ∈ ℝ, 𝛼𝛼 > 0, 𝜎𝜎 > 0 and 

−∞ < 𝑥𝑥 < +∞. If 𝛼𝛼 < 1 the distribution is left-skewed and if 𝛼𝛼 > 1 the distribution is right-skewed. 

If 𝜃𝜃 = 0, 𝜎𝜎 = 1 and 𝛼𝛼 = 1, the equation in 5.3 reduces to the standard logistic distribution in 5.1 

[153]. It is possible to derive the parameters, 𝜃𝜃 , 𝜎𝜎 and 𝛼𝛼 using the MOMs which have been shown to 

be asymptotically unbiased and consistent [197] by equating the first 𝑘𝑘 sample moments to their 

theoretical moments and solving these 𝑘𝑘 simultaneous equations for the parameter estimates. Let 

𝑥𝑥1, … ,𝑥𝑥𝑝𝑝 be a random sample from 𝐹𝐹( ∙ ; 𝜃𝜃, 𝜎𝜎,𝛼𝛼) and let �̅�𝑥 = 𝑛𝑛−1 ∑ 𝑥𝑥𝑖𝑖𝑝𝑝
𝑖𝑖=1 . The 𝑅𝑅′𝑡𝑡ℎ moment for the 

GLD is given by: 

 

𝜇𝜇𝑅𝑅′ = 𝐸𝐸[𝑋𝑋𝑅𝑅] = � 𝑥𝑥𝑅𝑅𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥; 𝜃𝜃,𝜎𝜎,𝛼𝛼)𝑑𝑑𝑥𝑥
+∞

−∞
 

5.5 

 

where 𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥; 𝜃𝜃,𝜎𝜎,𝛼𝛼) is the type I GLD. Thus, the first three moments of the GLD correspond to the 

expectation, variance and skew are well defined as: 

 

𝐸𝐸(�̅�𝑥) = 𝐸𝐸(𝑋𝑋) = 𝜃𝜃 + 𝜎𝜎(𝜓𝜓(𝛼𝛼) −𝜓𝜓(1)) 5.6 
 

𝐸𝐸 �
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑝𝑝
𝑖𝑖=1
𝑛𝑛 − 1

� = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) = 𝜎𝜎2(𝜋𝜋2 6⁄ + 𝜓𝜓′(𝛼𝛼)) 
5.7 
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Also, the sample skewness coefficient is given by: 

𝑏𝑏1 =
(𝑛𝑛 − 1)−1 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)3𝑝𝑝

𝑖𝑖=1

�(𝑛𝑛 − 1)−1 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑝𝑝
𝑖𝑖=1 �

3
2�
 

 

 

and satisfies: 

 

𝑏𝑏1 = 𝑆𝑆𝑘𝑘𝑆𝑆𝑤𝑤(𝑋𝑋) =
𝜓𝜓′′(𝛼𝛼)− 𝜓𝜓′′(1)

(𝜓𝜓′(𝛼𝛼) + 𝜓𝜓′(1))
3
2
 

5.8 

 
where the functions 𝜓𝜓(∙), 𝜓𝜓′(∙) and 𝜓𝜓′′(∙) are the digamma function and its first and second 

derivatives, respectively. 

 

5.1.1.1 GLD Maximum Likelihood Estimation 
 
To obtain the maximum likelihood estimation (MLE) for the GLD, it begins by defining the 

likelihood function which is given by: 

 

𝐺𝐺(𝜃𝜃, 𝜎𝜎,𝛼𝛼|𝑥𝑥1, … ,𝑥𝑥𝑝𝑝) = 𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝;𝜃𝜃,𝜎𝜎,𝛼𝛼)

= 𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥1; 𝜃𝜃, 𝜎𝜎,𝛼𝛼) × 𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥2;𝜃𝜃,𝜎𝜎,𝛼𝛼) × 𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥𝑝𝑝; 𝜃𝜃,𝜎𝜎,𝛼𝛼)

= �𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥𝑖𝑖;𝜃𝜃,𝜎𝜎,𝛼𝛼)
𝑝𝑝

𝑖𝑖=1

 

 

 

where 𝑖𝑖 = 1, 2, … . ,𝑛𝑛  are the number of independent observations, 𝜃𝜃 is the location, 𝜎𝜎 is the scale and 

𝛼𝛼 is the shape parameter. Thus, by taking a logarithm of 𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝; 𝜃𝜃, 𝜎𝜎,𝛼𝛼) and using the GLD 

equation given in 5.3 the GLD log likelihood is as follows: 

 

log𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝;  𝜃𝜃,𝜎𝜎,𝛼𝛼) = 𝑙𝑙𝑜𝑜𝑟𝑟 �
𝛼𝛼
𝜎𝜎
� −�

𝑥𝑥𝑖𝑖 − 𝜃𝜃
𝜎𝜎

− (𝛼𝛼 + 1)
𝑝𝑝

𝑖𝑖=1

�𝑙𝑙𝑜𝑜𝑟𝑟 �1 + 𝑆𝑆
−(𝑥𝑥𝑖𝑖−𝜃𝜃)

𝜎𝜎 �
𝑝𝑝

𝑖𝑖=1

 
5.9 
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The MLE exist if 𝜃𝜃 ∈ ℝ, 𝜎𝜎� > 0 and 𝛼𝛼� > 0 which simultaneously maximize the log 

likelihood function. 

 

To obtain parameter estimates, let the log likelihood estimate of (𝜃𝜃, 𝜎𝜎,𝛼𝛼) be denoted by 

(𝜃𝜃�,𝜎𝜎�,𝛼𝛼�) and find (𝜃𝜃�,𝜎𝜎�,𝛼𝛼�) that maximizes 𝐺𝐺. For example, to estimate the shape parameter 𝛼𝛼�, 

differentiate (w.r.t 𝛼𝛼�), and set this to equal zero such that: 

 

𝜕𝜕 log𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥;  𝜃𝜃,𝜎𝜎,𝛼𝛼))
𝜕𝜕𝛼𝛼�

=
𝑛𝑛
𝛼𝛼�
−� log �1 + 𝑆𝑆

−�𝑥𝑥𝑖𝑖−𝜃𝜃��
𝜎𝜎� � = 0

𝑝𝑝

𝑖𝑖=1

 
 

 

and then finally solving for 𝛼𝛼�: 

 

𝛼𝛼� =
𝑛𝑛

∑ log �1 + 𝑆𝑆
−�𝑥𝑥𝑖𝑖−𝜃𝜃��

𝜎𝜎� �𝑝𝑝
𝑖𝑖=1

 5.10 

 
from which it can be seen that 𝛼𝛼� → ∞ if 𝜃𝜃 → −∞ and that 𝛼𝛼� → 0 if 𝜎𝜎� → 0 [152]. 

 

5.1.1.2 GLD Graphical Presentation 
 
The behaviour of a random variable 𝑋𝑋 following the GLD with different values of 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼 is 

illustrated in this section. The three-parameter type I GLD can be reduced to the symmetrical standard 

logistic distribution with the following values 𝜃𝜃 = 0 and 𝜎𝜎 = 𝛼𝛼 = 1 (Fig 5.1(a)). The effect of 𝜎𝜎 with 

fixed 𝜃𝜃 = 0 and 𝛼𝛼 = 1 still retains the symmetrical shape of the logistic distribution but increasing the 

𝜎𝜎 widens the span over 𝑋𝑋 (Fig 5.1(b)). The value of 𝛼𝛼 determines the skewness of the distribution (Fig 

5.2). When 𝛼𝛼 < 1 the distribution is negatively skewed (Fig 5.2(a)) whilst the distribution is 

positively skewed (Fig 5.2(b)) when 𝛼𝛼 > 1. It can also be seen that when 𝛼𝛼 < 1 and increasing 𝛼𝛼 

values meeting this condition that the GLD tends to have a heavier and longer left tail (Figs 5.2(a) and 

5.3(a)). Conversely, it can also be seen that increasing the value of 𝛼𝛼 when 𝛼𝛼 > 1 that the right tail of 
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the GLD becomes heavier. The combination of changing the GLD 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼 parameters (Fig 5.3) 

demonstrate the flexibility of the GLD able to characterise a range of different complex shapes. 

 

  
(a) (b) 

Fig 5.1. The standard logistic distribution (a) with the following parameterisation: 𝜽𝜽 = 𝟎𝟎, 𝝈𝝈 =
𝜶𝜶 = 𝟏𝟏 and the generalised logistic distribution (b) with different values of 𝝈𝝈 with fixed location 
and shape parameters such that 𝜽𝜽 = 𝟎𝟎 and 𝜶𝜶 = 𝟏𝟏. 
 

  
(a)  (b) 

Fig 5.2. The GLD for different values of 𝜶𝜶 with 𝜽𝜽 = 𝟎𝟎 and 𝝈𝝈 = 𝟐𝟐. 

 

  
(a) (b)  
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(c) (d) 

Fig 5.3. The GLD for different values of 𝜽𝜽, 𝝈𝝈 and 𝜶𝜶. In panels (a)-(b) the GLD location parameter 
is fixed equal to 0. In panels (c)-(d) the GLD location parameter varies. 
 

In the study of COVID-19 cases and deaths (chapter 4), preference in the extended daily 

timeseries between the GLD and the normal distributions to model residuals switch several times. 

Thus, to understand whether the GLD was able to collapse to the normal distribution and to explore 

the behaviour under different conditions various simulations were performed. It is important that the 

proposed modelling framework captures universally both symmetrical and non-symmetrical data 

effectively. In this study 4 simulations were performed. In each, 10,000 randomly normally 

distributed data were obtained each with a mean of 0 and different standard deviation (𝜎𝜎 = 1, 3, 5, 7). 

The curves of the normal and GLD were fitted to each of the simulated datasets to observe the 

variations between the two fitted distributions. The resulting histograms and curves show that the 

fitted GLD curve compared to the normal curve has slightly heavier tails for simulated data with a low 

standard deviation (Fig 5.4(a)). Whereas the tails of the GLD and normal distributions become more 

similar in the case where the standard deviation is higher (Fig 5.4(b-d)). In addition, in each of the 

simulations (Fig 5.4 (a-d)) the peak of the distribution is slightly elevated in the GLD. This is 

prominent in the case with low standard deviation which is likely caused by the slightly heavier tails. 

Furthermore, as expected considering that the data are normally distributed, the GLD shape parameter 

in each of the simulations is consistent and almost equal to 1 indicating no skew. The GLD location 

parameter is also consistent and close to the mean of the normally distributed data (𝜇𝜇 = 0) whereas 

the scale parameter increases with increasing standard deviation. Overall, the GLD can model the 
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‘bell shape’ curve of the normal distribution with slight variations in the peak and tails depending on 

conditions of the simulated data. 

 

  
(a) (b) 

  
(c) (d) 

Fig 5.4. Histograms of 10,000 randomly normally distributed data with fitted normal (black 
line) and GLD (red line) curves. The simulated data all have a mean of 0 with standard deviation (a) 
𝜎𝜎 = 1, (b) 𝜎𝜎 = 3, (c) 𝜎𝜎 = 5 and (d) 𝜎𝜎 = 7. 
 

5.2 Introducing the Generalized Logistic Distribution Regression Model 
 
This section proposes the GLD regression model, beginning with linear models that have previously 

been shown to be extensively unsatisfactory such that the statistical assumptions are not always 

followed (e.g., chapter 4; Figs 4.9 and 4.15). An extension to the linear model is then introduced: 

GLM. These methods are more flexible and adaptable which have been an underpinning part of the 

proposed GLD regression model that will be introduced in section 5.2.3. 
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5.2.1 Linear Models 
 
Considering the modelling of a response 𝑌𝑌 in terms of some predictors 𝑋𝑋1, … ,𝑋𝑋𝑝𝑝. This can be 

modelled in the form of a linear regression model [203] given by: 

 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑝𝑝 = �𝑥𝑥𝑖𝑖𝑗𝑗𝛽𝛽𝑗𝑗

𝑝𝑝

𝑗𝑗=0

= 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷 = [𝑋𝑋𝜷𝜷]𝑖𝑖 
5.11 

 

for 𝑖𝑖 = 1, …𝑛𝑛 where: 

 

and 𝛽𝛽 = �𝛽𝛽0, … ,𝛽𝛽𝑝𝑝�
𝑇𝑇

 is a vector of fixed but unknown parameters describing the dependence of 𝑌𝑌𝑖𝑖 on 

𝑥𝑥𝑖𝑖. The four ways of defining the linear model in 5.11 are equivalent [204], but the most economical 

is the matrix form: 

 

𝐸𝐸(𝑌𝑌) = 𝑋𝑋𝜷𝜷 5.12 

 

The 𝑛𝑛 × 𝑝𝑝 matrix 𝑋𝑋 consists of a known (observed) constraint and is commonly referred to as the 

design matrix. The 𝑖𝑖𝑡𝑡ℎ row of 𝑋𝑋 is 𝑥𝑥𝑖𝑖𝑇𝑇, the explanatory data corresponding to the 𝑖𝑖𝑡𝑡ℎ observation of 

the response. The 𝑗𝑗𝑡𝑡ℎ column of 𝑋𝑋 contains the 𝑛𝑛 observations of the 𝑗𝑗𝑡𝑡ℎ explanatory variable [204]. 

 

Strictly the only requirement for a model to be linear is that the relationship between the response 

variables 𝑌𝑌 and any explanatory variables can be written in the form 5.12 [204]. There are various 

common forms of linear models including the null (Appendix C1), simple linear (Appendix C2), 

polynomial (Appendix C3) and multiple (Appendix C4) regression models. Despite the structure of 

the linear model, it is useful for statistical analysis if the three further assumptions [204] are valid: 

𝑋𝑋 =

⎝

⎛
𝑥𝑥1𝑇𝑇

𝑥𝑥2𝑇𝑇
⋮
𝑥𝑥𝑝𝑝𝑇𝑇⎠

⎞ =

⎝

⎛

1 𝑥𝑥1,1 ⋯ 𝑥𝑥1,𝑝𝑝
1 𝑥𝑥2,1 ⋯ 𝑥𝑥2,𝑝𝑝
⋮ ⋮ ⋮ ⋮
1 𝑥𝑥2,1 ⋯ 𝑥𝑥𝑝𝑝,𝑝𝑝⎠

⎞ 
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1. 𝑌𝑌1, … ,𝑌𝑌𝑝𝑝 are independent random variables, 

 

2. 𝑌𝑌1, … ,𝑌𝑌𝑝𝑝 are normally distributed and, 

 

3. 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌1) = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌2) = ⋯ = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌𝑝𝑝). Otherwise 𝑌𝑌1, … ,𝑌𝑌𝑝𝑝 are homoscedastic. This common 

variance is denoted by 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 . 

 

With these assumptions the linear model completely specifies the distribution of 𝑌𝑌, in that 

𝑌𝑌1, … ,𝑌𝑌𝑝𝑝 are independent and 𝑌𝑌𝑖𝑖~𝑁𝑁(𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷, 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 ) for 𝑖𝑖 = 1, … 𝑛𝑛. Otherwise, 𝑌𝑌 = 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷 + 𝜀𝜀𝑖𝑖, where 

𝜀𝜀𝑖𝑖 , … 𝜀𝜀𝑝𝑝 are IID and 𝑁𝑁(0,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 ) random variables [204]. The regression coefficients describe the 

pattern by which the response depends on the explanatory variable. Briefly, in the least squares 

estimation, the chosen 𝜷𝜷� the estimate of 𝜷𝜷 will make the estimated means 𝐸𝐸�(𝑌𝑌) = 𝑋𝑋𝜷𝜷� as close as 

possible to the observed values 𝑫𝑫 [204]. 

 

5.2.2 Generalised Linear Model 
 
The GLM [189,191,205] extends the linear model defined in equation 5.12 to allow a more flexible 

family of probability distributions. The linear regression model is restrictive in that the errors in the 

model are assumed to be normally distributed amongst other assumptions including independence and 

homoscedasticity. An extension to the standard linear model is the GLM. The GLM framework is less 

restrictive and can model more realistic world problems in different application areas. It allows for a 

wide range of distribution including the normal distribution but many others too. Thus, a degree of 

non-linearity in the model structure [189] is possible. It has been shown [191] that 𝑦𝑦1, … , 𝑦𝑦𝑝𝑝 are 

observations of the response variables 𝑌𝑌𝑖𝑖 , … ,𝑌𝑌𝑝𝑝 assumed to be independently generated by the same 

exponential distribution with means 𝜇𝜇𝑖𝑖 ≡ 𝐸𝐸(𝑌𝑌𝑖𝑖) linked to the explanatory variables 𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑝𝑝 through: 
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𝑟𝑟(𝜇𝜇𝑖𝑖) = 𝜂𝜂𝑖𝑖 ≡ 𝛽𝛽0 + �𝛽𝛽𝑛𝑛

𝑝𝑝

𝑛𝑛=1

𝑥𝑥𝑖𝑖𝑛𝑛 ≡ 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷 
5.13 

 

where 𝑟𝑟 is a smooth monotonic and differentiable function commonly referred to as the ‘link 

function’, 𝑥𝑥𝑖𝑖 is a 𝑝𝑝 × 1 vector of explanatory variables such that: 

 

𝑥𝑥𝑖𝑖 = �
𝑥𝑥𝑖𝑖1
⋮
𝑥𝑥𝑖𝑖𝑝𝑝

�  so 𝑥𝑥𝑖𝑖𝑇𝑇 = [𝑥𝑥𝑖𝑖1 ⋯ 𝑥𝑥𝑖𝑖𝑝𝑝] 
 

 

and 𝜷𝜷 is the 𝑝𝑝 × 1 vector of unknown parameters such that: 

 

𝛽𝛽 = �
𝛽𝛽1
⋮
𝛽𝛽𝑝𝑝
� 

 

 
5.2.2.1 The Exponential Family 
 
The nice statistical properties of the normal distribution are shared with a wider range of other 

distributions called the exponential family of distributions [191]. The exponential family of 

distributions, amongst many others, includes the Binominal, Gaussian and Poisson distributions 

(Table 5.1). A distribution can be shown that it belong to the exponential family if the distribution can 

be put into canonical form [189,205]. The distribution in the GLM framework is an important 

consideration and depends on the type of data. For a continuous skewed response, for example, the 

gamma or inverse gaussian would be suitable candidate distributions [205]. However, in some 

circumstances distributions in the exponential family may have 𝜇𝜇𝑖𝑖 that is restricted to certain values. 

To illustrate the Poisson distribution is restricted to 𝜇𝜇𝑖𝑖 ∈ ℝ+ and the Bernoulli distribution is restricted 

to 𝜇𝜇𝑖𝑖 ∈ (0,1). If this is not considered correctly there may be a problem with the model such that there 

may exist a possible 𝑥𝑥𝑖𝑖 and 𝜷𝜷 that does not satisfy 𝑟𝑟 such that  𝜂𝜂𝑖𝑖 ≠ 𝑟𝑟(𝜇𝜇𝑖𝑖). Therefore when choosing 

a link function it is important that the link function maps the set of allowed values for 𝜇𝜇𝑖𝑖 onto ℝ [204]. 
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After exploring a range of the common distributions (table 5.1) belonging to the exponential 

family there are few that are mapped to negative and positive continuous real data. The only 

distribution that does within table 5.1 is the normal distribution. Whilst the gamma and inverse 

Gaussian, for example, are intended for continuous skewed response, but neither are mapped to 

negative numbers [205]. That said, there is clearly a lack of representation in the exponential family 

that represents a continuous skewed response on −∞ < 𝑥𝑥 < ∞. Fortunately, it is not required that the 

distribution strictly belongs to the exponential family and sometimes context compels another choice. 

Thus, it is possible to fit distributions that are not in the exponential family using the GLM-style 

approach, but there are some additional complications [189,205]. 

 
5.2.3 Proposed GLD Regression Model 
 
Section 5.1.1 presented the flexibility and capabilities of the GLD which can model skewed 

continuous data mapped to  −∞ < 𝑥𝑥 < +∞. In this section, the GLD is developed in a GLM-style 

framework and proposes a duel GLM to model both the mean and the dispersion of the data with 

linear regression structure defined in equation 5.12. 

 

Let 𝑌𝑌1′, … ,𝑌𝑌𝑝𝑝′ be a sample of 𝑛𝑛 continuous independent random variables, where each 𝑌𝑌𝑖𝑖′ 

follows a GLD with location 𝜃𝜃𝑖𝑖, scale, 𝜎𝜎𝑖𝑖 and shape 𝛼𝛼𝑖𝑖, that is, 𝑌𝑌𝑖𝑖′~𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥;𝜃𝜃𝑖𝑖 , 𝜎𝜎𝑖𝑖 ,  𝛼𝛼𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑛𝑛. 

Thus, the duel GLM using a GLD to model the mean and dispersion is given by: 

 

𝐸𝐸(𝑌𝑌𝑖𝑖′) = 𝑟𝑟1′(𝑌𝑌𝑖𝑖′) = 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷 = 𝜂𝜂𝑖𝑖  
 

𝑙𝑙𝑜𝑜𝑟𝑟(𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌𝑖𝑖′)) = 𝑟𝑟2′ (𝑌𝑌𝑖𝑖′) = 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷′ = 𝜂𝜂𝑖𝑖′ 

 
 
5.14 

 
 

where 𝑥𝑥𝑖𝑖 are observations, 𝑟𝑟𝑘𝑘′ (𝑌𝑌𝑖𝑖′), for 𝑘𝑘 = 1, 2 are strictly monotone, differentiable functions called 

the link functions; that is, they are flat and at least twice differentiable. The functions 𝑟𝑟1′(𝑌𝑌𝑖𝑖′) and 

𝑟𝑟2′ (𝑌𝑌𝑖𝑖′) relate mean and dispersion regression functions to the linear predictor 𝜂𝜂𝑖𝑖 and 𝜂𝜂′𝑖𝑖, respectively, 

such that 𝜃𝜃𝑖𝑖 = (𝑟𝑟1′)−1(𝜂𝜂𝑖𝑖), with (𝑟𝑟1′)−1(⋅) being the inverse function of 𝑟𝑟1′(⋅) and 𝜎𝜎𝑖𝑖 = (𝑟𝑟2′ )−1(𝜂𝜂𝑖𝑖′), 



120 
 

with (𝑟𝑟2′ )−1(. ) being the inverse function of (𝑟𝑟2′ )(⋅). The set 𝜷𝜷 of mean regression coefficients 𝛽𝛽 =

{𝛽𝛽0, 𝛽𝛽1, ⋯ , 𝛽𝛽𝑝𝑝} and the set 𝜷𝜷′ of dispersion regression coefficients 𝛽𝛽′ = {𝛽𝛽′0, 𝛽𝛽′1, ⋯ , 𝛽𝛽′𝑝𝑝} 

are vectors of fixed but unknown model parameters describing the pattern by which the response 

depends on the explanatory variable. In this framework, the identity link function is considered for 

𝑟𝑟1′(⋅) and the logarithmic link function is considered for 𝑟𝑟2′ (⋅). 

 

This variation of the model in the above was chosen very carefully whilst other variations of 

the model were considered. In equation 5.14 the mean regression coefficients are retained in 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷 that 

are better fitted using the GLD regression model as opposed to other normality methods.  This 

approach also gains additional dispersion regression coefficient in 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷′ providing information about 

heteroscedasticity along with the GLD model parameters in 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼 which can create many 

different complex shapes (section 5.1.1.2) including positive and negative skew. In this form all the 

model parameters generally converge well, and it allows 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷′ to be used in the GLD second moment 

corresponding to variance. Overall, this proposed model is a flexible approach, is applicable to a 

wider range of applications and represents a significant contribution within GLM domain able to deal 

with continuous, non-normal data mapped to −∞ < 𝑥𝑥 < +∞. 

 

5.3 Bayesian Framework 
 
Here it is shown how the model proposed in section 5.2.3 will be conducted in a Bayesian framework. 

First, the prior and posterior distributions of the GLD regression model are introduced followed by the 

MCMC methods applied to the joint posterior distribution along with Gelman-Rubin convergence 

techniques to monitor the convergence of the chains. DIC, a Bayesian version of the AIC score [40] is 

used to observe goodness-of-fit and monitor whether the GLD regression model is a better model than 

a normal regression model. 
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5.3.1 Bayesian Inference: Prior Distribution 
 
The GLD regression model in equation 5.14 will be conducted in a Bayesian framework. In a 

Bayesian framework, prior distributions need to be specified. When no information is provided, 

assign non-informative priors to the GLD regression model parameters assuming that that the mean 

and variance parameters 𝛽𝛽 = {𝛽𝛽0, 𝛽𝛽1, ⋯ , 𝛽𝛽𝑝𝑝} and 𝛽𝛽′ = {𝛽𝛽′0, 𝛽𝛽′1, ⋯ , 𝛽𝛽′𝑝𝑝} respectively are 

normally distributed with mean zero and a large variance to express prior ignorance such that: 

 

𝛽𝛽0~𝑁𝑁(𝜇𝜇𝛽𝛽0 ,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽0
2 ) 𝛽𝛽0′~𝑁𝑁(𝜇𝜇𝛽𝛽0′ ,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽0′

2 ) 
 

𝛽𝛽1~𝑁𝑁(𝜇𝜇𝛽𝛽1 ,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽1
2 ) 𝛽𝛽1′~𝑁𝑁(𝜇𝜇𝛽𝛽1′ ,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽1′

2 ) 
 

⋮ ⋮ 
 

𝛽𝛽𝑝𝑝~𝑁𝑁(𝜇𝜇𝛽𝛽𝑝𝑝 ,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝
2 ) 𝛽𝛽𝑝𝑝′~𝑁𝑁(𝜇𝜇𝛽𝛽𝑝𝑝′ ,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝′

2 ) 
 

 

For 𝛼𝛼 a gamma distribution is assumed with shape and scale parameters equal to one. These priors are 

given by: 

 

𝛼𝛼~𝛤𝛤(𝑎𝑎1,𝑏𝑏1) 

 

All priors are independent. For the normal distribution the mean parameters are 𝜇𝜇𝛽𝛽𝑝𝑝  and 𝜇𝜇𝛽𝛽𝑝𝑝′  and the 

variance parameters are 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝
2  and 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝′

2  𝑓𝑓𝑜𝑜𝑟𝑟 𝑝𝑝 = 0, 1, … corresponding to the total number of 

model parameters. For the gamma distribution it has shape and scale parameters 𝑎𝑎1, 𝑏𝑏1 respectively. 

 

5.3.2 Bayesian Inference: Posterior Distribution 
 
Statistical inference is performed on the posterior distribution of the parameter vector given by: 

 

𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 = (𝑦𝑦𝑖𝑖′;𝜷𝜷,𝜷𝜷′,𝛼𝛼) 
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where 𝛽𝛽 = {𝛽𝛽0, 𝛽𝛽1, ⋯ , 𝛽𝛽𝑝𝑝} is the set of mean regression parameters linked to the linear predictor 

𝜂𝜂𝑖𝑖 and 𝛽𝛽′ = {𝛽𝛽′0, 𝛽𝛽′1, ⋯ , 𝛽𝛽′𝑝𝑝} is the set of variance regression parameters linked to the linear 

predictor 𝜂𝜂𝑖𝑖′. Given the priors and likelihood function, the joint posterior density function can be 

expressed as: 

 

𝑓𝑓𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐(𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛|𝑦𝑦′) ∝ 𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑝𝑝(𝑦𝑦′|𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛)𝑓𝑓𝑝𝑝𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛(𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛) 5.15 
 

where the likelihood is given by: 

 

𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑝𝑝�𝑦𝑦′�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛� = �𝐺𝐺𝐺𝐺𝐷𝐷(𝑦𝑦𝑖𝑖′;  𝜷𝜷,𝜷𝜷′,𝛼𝛼)
𝑝𝑝

𝑖𝑖=1

 

 

and 𝑓𝑓𝑝𝑝𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛(𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛) is completed with independent prior distributions, given by: 

 

𝑓𝑓𝑝𝑝𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛� = 𝑓𝑓(𝛽𝛽0) ∙ 𝑓𝑓(𝛽𝛽1) ∙ ⋯ ∙ 𝑓𝑓(𝛽𝛽𝑝𝑝) ∙ 𝑓𝑓(𝛽𝛽0′) ∙ 𝑓𝑓(𝛽𝛽1′) ∙ ⋯ ∙ 𝑓𝑓(𝛽𝛽′𝑝𝑝) ∙ 𝑓𝑓(𝛼𝛼) 

 

The joint posterior distribution was not found to be analytically tractable, thus, to generate 

samples, MCMC methods were used. Specifically, the random walk Metropolis-Hasting (MH) 

algorithm. The R code for the priors and join posterior described above are available in Appendix H1. 

It should be noted that the code was implemented using the simple linear form along with data 

obtained from the COVID-19 pandemic. Thus, this code will need adapting for other data sets and 

regression functions other than the simple linear form. 

 

5.3.3 Metropolis Hastings Algorithm 
 
In general, MCMC methods are a broad set of algorithms with application in mathematics and science 

[206–208], although more recently these methods have had impact in statistics and simulation. They 

are particularly useful in a Bayesian framework where these methods can be applied when sampling 

from Bayesian posterior distributions usually referred to as the target distribution [40]. The basic idea 
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of the MCMC algorithm is that it sequentially samples from a candidate distribution (usually from a 

well-defined and known distribution) and then in each iteration corrects the previous draw to better 

approximate the target distribution. Thus, each draw 𝜃𝜃𝑐𝑐 depends on previous draw 𝜃𝜃𝑐𝑐−1 and 

eventually converges to the target distribution. The sampling is done iteratively in a way that in each 

iteration the draws from a candidate distribution become closer to the target distribution [40,209]. 

 

In section 5.3.2 the posterior distribution is defined as 𝑓𝑓𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐(𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛|𝑦𝑦′) where 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 is the vector of 

parameters in the GLD regression model and 𝑦𝑦′ denotes the vector of observations. The posterior 

distribution 𝑓𝑓𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐(𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛|𝑦𝑦′) may not be analytically tractable making it difficult to draw sample and 

thus applying MCMC techniques can help to solve this problem. Suppose there exists a distribution 

𝑞𝑞(. |. ) such that [40,210,211]: 

 

1. state space of 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 is the same as in the target distribution; 

 

2. sample draws from 𝑞𝑞(. |. ) converge to the target distribution; 

 

3. random draws from the candidate distribution are easily available. 

 

If the criteria above are met, then, the distribution 𝑞𝑞(. |. ) is a good choice as the candidate 

distribution [40]. The random walk M-H algorithm proceeds as follows: 

 

1. Draw a starting point 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛0  from the candidate distribution based on some approximate 

estimate; 

 

2. Repeat for 𝑡𝑡 = 1, … ,𝑚𝑚′ where 𝑚𝑚′ is the number of MCMC chains and 

 
 

a. Draw candidate sample from the candidate distribution such that 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑~𝑞𝑞�. �𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐−1� 
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b. Obtain the acceptance ratio, 𝜆𝜆, which is given by: 

 

𝜆𝜆 =
𝑓𝑓𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑�𝑦𝑦′�𝑞𝑞�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐−1�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑�
𝑓𝑓𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐−1�𝑦𝑦′�𝑞𝑞�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐−1�

 
5.16 

 

c. Set 

𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐 = �
𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝𝑑𝑑                           𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑜𝑜𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑦𝑦 min (𝜆𝜆, 1)
𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐−1                                                            𝑜𝑜𝑡𝑡ℎ𝑆𝑆𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑆𝑆

 
5.17 

 
5.3.4 Implementation of the Metropolis Hasting Algorithm 
 

In the M-H algorithm, for regression coefficient parameters in 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷, and the dispersion regression 

coefficients in 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷′ ,the proposal distribution is chosen to be normal such that: 

 

𝜷𝜷𝑝𝑝~𝑁𝑁(𝜇𝜇𝛽𝛽𝑝𝑝
(𝑐𝑐−1), 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝

2 ) 

𝜷𝜷𝑝𝑝′ ~𝑁𝑁 �𝜇𝜇𝛽𝛽𝑝𝑝′
(𝑐𝑐−1),𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝′

2 � 

 

where 𝑝𝑝 = 0, 1, … is the number of parameters in each of the mean and dispersion vectors for some 

value of 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝
2  and 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 𝛽𝛽𝑝𝑝′

2 . For the parameters 𝛼𝛼, the proposal distribution is chosen to be a 

gamma distribution such that: 

 

𝛼𝛼~𝛤𝛤(𝑎𝑎1
(𝑐𝑐−1),𝑏𝑏1

(𝑐𝑐−1)) 

 

where 𝑎𝑎1
(𝑐𝑐−1) = �𝜎𝜎𝑐𝑐−1�

2

�𝜎𝜎𝜎𝜎2�
 and 𝑏𝑏1

(𝑐𝑐−1) = �𝜎𝜎𝑐𝑐−1�
2

�𝜎𝜎𝜎𝜎2�
. 

 

In the 𝑡𝑡𝑐𝑐ℎ iteration, for 𝑡𝑡 = 1, … ,𝑚𝑚′, where 𝑚𝑚′ is the number of MCMC iterations, the 

proposal distributions are centred at the value from the previous iteration for some suitable value for 
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the variance parameter [212]. An important consideration is the choice of the dispersion parameters 

for each of the proposal distributions. In summary, a consequence is that a large variance will produce 

large variation in iteration 𝑡𝑡 from the previous iteration 𝑡𝑡 − 1 and subsequently will lead to a small 

acceptance rate 𝜆𝜆. However, a small variance will produce small variation in iteration 𝑡𝑡 from the 

previous iteration 𝑡𝑡 − 1 and will lead to high acceptance rate 𝜆𝜆 [209]. It has been proposed [212,213] 

that the optimal choice for the variance in the circumstance that the proposal is normal to be 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 =

𝑐𝑐2𝛴𝛴 where 𝑐𝑐 ≈ 2.4/√𝑑𝑑 where 𝑑𝑑 is the dimension of the parameters vector 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 and 𝛴𝛴 is the variance-

covariance matrix based on the curvature of the posterior at the mode. 

 

5.3.5 Gelman Convergence Diagnostics 
 
It is important that the chains in the MCMC converge to the target distribution. This can be monitored 

using Gelman and Rubin’s convergence diagnostics [210,211]. The convergence in MCMC chains is 

diagnosed when the chains have bypassed the initial values set at the beginning of the algorithm and 

the output of all chains are indistinguishable. The number of chains can be increased until 

convergence occurs. In this analysis an R statistic is computed which indicates whether convergence 

has occurred. If the R statistic is less than 1.1, then, the chains are stationary whilst an R statistic 

greater than 1.1 indicates the chains are non-stationary. 

 

5.3.6 Deviance information criterion (DIC) 
 
To assess the performance of the Bayesian GLD regression model and to compare it to the existing 

normal linear regression model, DIC is used. The DIC is a Bayesian version of the AIC [40]. To 

recall, the AIC is given by: 

 

𝐴𝐴𝐶𝐶𝐶𝐶 = −2𝑙𝑙𝑜𝑜𝑟𝑟𝑓𝑓(𝑦𝑦′�𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑐𝑐𝑝𝑝) + 2𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 5.18 

 

where 𝑓𝑓(𝑦𝑦′�𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑐𝑐𝑝𝑝) is the MLE (rewarding goodness of fit) and 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 is penalty that is an increasing 

function of the number of estimated parameters. To obtain the DIC two changes are made to equation 
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5.18 such that the MLE 𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛 is replaced with the posterior mean 𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛 = 𝐸𝐸(𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛|𝑦𝑦′) and 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝 is 

replaced with a data-based bias correction. Therefore, the DIC is defined as: 

 

𝐷𝐷𝐶𝐶𝐶𝐶 = −2𝑙𝑙𝑜𝑜𝑟𝑟𝑓𝑓(𝑦𝑦′�𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛
𝐵𝐵𝑝𝑝𝐵𝐵𝑝𝑝𝑐𝑐) − 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷  5.19 

 

where 𝑓𝑓(𝑦𝑦′�𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛
𝐵𝐵𝑝𝑝𝐵𝐵𝑝𝑝𝑐𝑐) is the GLD likelihood function and 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 is the effective number of parameters 

defined as: 

 

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 = 2�(𝑙𝑙𝑜𝑜𝑟𝑟𝑓𝑓(𝑦𝑦′�𝜓𝜓�𝑝𝑝𝑝𝑝𝑛𝑛
𝐵𝐵𝑝𝑝𝐵𝐵𝑝𝑝𝑐𝑐) − 𝐸𝐸𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐(𝑙𝑙𝑜𝑜𝑟𝑟𝑓𝑓�𝑦𝑦′|𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛�)� 5.20 

 

where the expectation in the second term is an average of 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛over its posterior distribution which 

can also be computed using the simulations 𝜓𝜓𝑛𝑛′ , 𝑚𝑚′ = 1, …𝑀𝑀 where 𝑀𝑀′ is the number of MCMC 

iterations such that: 

 

 

where 𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑝𝑝�𝑦𝑦′�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛� is the GLD likelihood function and 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 is the parameter vector space. Like the 

AIC score, a lower DIC score corresponds to a better fit. 

 

5.4 Bayesian GLD Regression Model Remarks 
 

In this chapter, a Bayesian GLD regression model has been developed to model expectation and 

dispersion of continuous data in a regression setting. It is a flexible and variable proposed 

methodology capable to apply to a range of disciplines. It provides mean regression coefficient and 

gains additional dispersion regression coefficient relating to heteroscedasticity along with the GLD 

location, scale and shape parameters accounting for complex distributions such as positive and 

negative skewing. In previous normality methods applied in chapters 3 and 4, assuming a normally 

𝑐𝑐𝑜𝑜𝑚𝑚𝑝𝑝𝑃𝑃𝑡𝑡𝑆𝑆𝑑𝑑 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷 = 2�𝑙𝑙𝑜𝑜𝑟𝑟𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑝𝑝�𝑦𝑦′�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛� −
1
𝑀𝑀′

� 𝑙𝑙𝑜𝑜𝑟𝑟𝑓𝑓𝑐𝑐𝑖𝑖𝑘𝑘𝑝𝑝�𝑦𝑦′�𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛 �
𝑆𝑆′

𝑛𝑛′=1

� 
5.21 
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homoscedastic system produces large model bias, relative to the improved Bayesian GLD regression 

model. 

 

The GLD regression model developed in chapter 5 can model linear regression using a range 

of functions, amongst others, null (Appendix C1), simple linear (Appendix C2), polynomial 

(Appendix C3) and multiple (Appendix C4) linear regression. The only requirement is that the linear 

function can be written in the form of equation 5.12. The generalised form allows a wide range of 

applications without homoscedastic, linear and normality assumptions. Instead, in the developed dual 

GLD regression model (mean and dispersion) it is assumed that 𝑦𝑦𝑖𝑖′ is a GLD such that  

𝑦𝑦𝑖𝑖′~𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥;𝜃𝜃,𝜎𝜎,𝛼𝛼) to accommodate a wider range of shapes (Figs 5.1-5.3). This Bayesian GLD 

regression model will be demonstrated using PLs and COVID-19 data from the pandemic. This will 

be conducted in chapter 6, although it is worth emphasising that the application is much wider. 

 
 

5.5 Summary and Conclusions 
 
In a normal regression model, it is assumed that residuals are normal, homoscedastic and linear. 

Chapter 4 clearly showed that residuals sometimes fail to meet these assumptions and demonstrated a 

need for a more flexible approach. The GLM is an extension of the standard linear model that allows 

the response, usually from the exponential family, to be a distribution other than the normal 

distribution. However, other distributions outside the exponential family can be considered, where 

context compels a different choice. In chapter 4, the GLD was explored, which better characterized 

the full sweep of the COVID-19 pandemic allowing for positive and negative skew, otherwise, non-

normally distributed residuals. However, a limitation acknowledged within chapter 4 was that the 

GLD residual model (section 4.2.2) was applied after using normality methods. 

 

This chapter continued to provide an overview of the GLD: a simple, flexible, variable and 

widely applicable distribution. It is mathematically a simple distribution in that the form is a single 

expression. It is a well-studied distribution with MOM that can easily derive moments such as the 
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expectation, variance and skew. Considering the flexible nature of the GLD, in this chapter a dual 

Bayesian GLM-style GLD regression model was explored. 

 

In the proposed framework, expectation and dispersion is modeled through some linear 

regression function (e.g., null, simple linear, polynomial, multiple regression). Bayesian expectation 

and dispersion estimations of the parameters of interest are obtained using MCMC methods and it is 

no longer required to have linear, normality and homoscedastic assumptions. Thus, the developed 

Bayesian GLD regression model is a more flexible approach capable of looking at skewed or 

otherwise non-normally distributed continuous data. In this approach a complicated non-analytically 

tractable posterior distribution is obtained, thus, Bayesian model parameter estimates are fitted using 

MCMC methods. The DIC, a Bayesian version of Akaike information criterion, are computationally 

obtained using the MCMC chains. These methods are used to monitor goodness-of-fit and as a 

comparison tool to observe model preference. 

 

In the developed Bayesian GLD regression model, expectation regression coefficients are 

retained. However, Bayesian expectation estimates obtained through the mean regression coefficients 

are better fitted using the GLD regression model developed in this chapter. This is because the 

assumptions of standard linear regression are not met with skewed and heteroscedastic data, thus in 

this case, applied normality methods produce fundamental and systematic model bias. This occurs in 

many studies in a range of disciplines. Therefore, the methodology developed in this chapter will 

benefit many studies using linear regression that do not meet the requirements of standard linear 

regression. Nevertheless, in scenarios that do meet standard linear regression requirements the 

Bayesian GLD regression model, in general, is still a more flexible framework, able to model both the 

expectation and dispersion.  

 

The Bayesian dispersion estimates obtained through the regression coefficients are indicative 

of heteroscedasticity along with the GLD location, scale and shape parameters which can characterise 

a range of complex shapes including positive and negative skew. If the shape parameter, 𝛼𝛼 < 1 the 
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distribution is left-skewed and if it was 𝛼𝛼 > 1 the distribution is right-skewed.  The simulation in this 

study shows that the GLD can also model symmetrical data like the normal distribution, although the 

tails of the GLD distribution are slightly heavier. Overall, the additional information, obtained 

through the extra parameters will help further understand the data sets under examination. 

  

 The framework is flexible and applicable to a wide range of disciplines using regression. The 

developed framework models both the expectation and dispersion of continuous data. The modelling 

of dispersion is less common in the GLM-style framework and has never been attempted using the 

GLD. The intractable form of the posterior distribution has never been dealt with in a regression 

setting, thus, the overall framework developed in this chapter using MCMC techniques deals with the 

complex mathematical forms never seen before. The Gelman convergence diagnostics and DIC 

methods also deal with the intractable framework proposed in this chapter. 

 

In chapter 6, the developed methodology within this chapter will be tested and illustrated 

using PLs and data from the COVID-19 pandemic, running the developed model over an extended 

timeframe. This will allow convergence to be monitored over a complex and extended timeseries, and 

to compare the results with previous normality methods (chapter 4). 

 

5.5.1 Possible Extensions and Wider Application 
 
The GLD regression model is widely applicable since the only criteria is that the regression structure 

can be expressed as equation 5.12. To exemplify possible extensions, consider the dementia data from 

chapter 3. The data were modelled using a segmenting regression model in a PL setting (Fig 5.5(a)). 

Briefly, to account for segmenting behavior, expectation is fitted below and above a critical point. 

Future work on the GLD regression model must consider segmenting behavior to extend the systems 

that would benefit using the proposed framework. This extension would increase the parameter vector 

space to account for fitting below and above the critical point modelling both the expectations and 

dispersion separately. In the context of rural-urban scaling the reasoning behind a consistent and 
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persistent critical point for a host of indicators needs further work to be able to explain why rural-

urban regions are fundamentally different. Alternatively, using the same dementia data, a polynomial 

regression function (Fig 5.5(b)) could fit the data. For example, the cubic fitting in figure 5.5(b) 

would include additional expectation and dispersion regression coefficients in a PL setting with a 

quadratic or cubic fitting. Although scientifically a cubic is perhaps not required since the GLD model 

is capable of this fitting as well as more complex forms of heteroscedasticity. Although, for now, the 

purpose of figure 5.5(b) is to demonstrate the general application of the model with cubic structure. 

Overall, the generalization in the proposed GLD regression model allows for a range of systems with 

linear regression but would be enhanced with adaptation to the framework allowing for segmentation 

and other relationships. 
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 𝑙𝑙𝑜𝑜𝑟𝑟10(𝑃𝑃𝑜𝑜𝑝𝑝𝑃𝑃𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝐷𝐷𝑆𝑆𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦, 𝑝𝑝/ℎ𝑎𝑎)  𝑙𝑙𝑜𝑜𝑟𝑟10(𝑃𝑃𝑜𝑜𝑝𝑝𝑃𝑃𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝐷𝐷𝑆𝑆𝑛𝑛𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦,𝑝𝑝/ℎ𝑎𝑎) 
 (a)  (b) 

Fig 5.5. Log transformed dementia data with a segmented fit (a) and a cubic polynomial fit (b). 
The blue dots represent LTLA (residuals). The red and green lines in (a) are linear regression lines 
below and above the critical point respectively. The critical point is represented in the black circle. 
The red line in (b) represents a cubic fit of the form 𝑦𝑦′ = 𝛽𝛽0 + 𝛽𝛽1(𝑥𝑥) + 𝛽𝛽2(𝑥𝑥)2 + 𝛽𝛽3(𝑥𝑥)3. 
 
 

Other work should include a residual analysis, to continue to explore better defined residuals 

obtained from the Bayesian GLD regression model and compare them to previous normal regression 

models to investigate how they vary. This will also be useful in a goodness-to-fit analysis to continue 

to test the GLD regression model and to further establish its place in the statistics realm.  
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5.5.2 Limitations 
 
Overall, the GLD regression model is widely applicable to many different disciplines using linear 

regression. It is a significant improvement to normal regression models such that the model no longer 

requires assumptions of homoscedasticity and normality which have been fundamentally biased in a 

restricting framework. The many benefits and improvements using the developed GLD regression 

model, have been shown, but limitations must be acknowledged that need addressing, ideally placed 

as development opportunities and future work. 

 

In chapter 5, a GLM was developed, where the response 𝑌𝑌 is assumed to be a GLD in a 

Bayesian framework. The GLD is mapped to continuous data (i.e., −∞ < 𝑥𝑥 < ∞) and thus it 

inherently models expectation and dispersion in the case when 𝑋𝑋 is continuous. The model only 

considers continuous data and exhibited the key features using a real continuous data set (chapter 6). 

Thus, the proposed model would be considerably better exhibited for the case when 𝑋𝑋 is discrete. This 

is an opportunity for future work. This is a recommendation along with suggestions made in section 

5.5.1 to account for segmented and cubic behaviour. 
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Chapter 6: Application of the GLD Regression Model 

 

 

 

 

 

6.1 Introduction 

 

To illustrate the key features of the Bayesian GLD regression model developed in chapter 5 and to 

demonstrate the wide application, the model is run and tested using COVID-19 data. This data set is 

the same data previously analysed in chapter 4, where the statistical assumptions of standard linear 

regression were not met. It was shown that residual variance behaved in a complex way, expanding 

and contracting throughout the pandemic. Currently, the modelling of COVID-19 has been done using 

positively skewed distributions such as the Weibull [141], Poisson [142] and Gamma [214] 

distribution. It was shown that these distributions were unable to fully characterise the full sweep of 

the COVID-19 pandemic. Instead, it was found that in large timeframes of the pandemic the residuals 

were not normally distributed and negatively skewed. Residuals were better characterised by a GLD. 

They exhibited positive and negative skew corresponding to certain events and government 

intervention. Positive skew was indicative of ‘hotspots’ and ‘superspreading’ events whilst negative 

skew was indicative of ‘coldspots’ and ‘superisolating’ events: both important features of propagation 

with the latter underappreciated in the modelling of COVID-19. 

 

In this chapter, the Bayesian GLD regression model, developed in chapter 5, is applied to PL 

models and data from the COVID-19 pandemic to explore the additional information and how this 
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compares with previous methods. In a normal PL regression setting, the assumptions of 

homoscedasticity and normality are false, thus, using the GLD regression model, mean regression 

model parameters are adjusted to account for periods of heteroscedastic and non-normally distributed 

residuals. The additional dispersion parameters indicative of heteroscedasticity changes from 

increasing with magnitude to decreasing with magnitude depending on the day of the pandemic 

corresponding to positive and negative skew respectively. 

 

In previous chapters, it has been shown that conventional methods inherited within scaling using least 

squared methods are fundamentally bias due to the restrictive framework and following a set of 

limiting statistical assumptions. For example, inference on estimated parameters to test the reliability, 

are assessed based on the assumption that the variance in the error term 𝜀𝜀 is 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2  such that 

𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 ). Meanwhile, an initial solution to this problem has been proposed, highlighting the 

differences in reported exponents when assuming a fixed or free fluctuation [37].  In this work, 

authors show differences in estimated exponents depending on the model in consideration. Using 

Leitão methods, this has also been investigated in chapters 3 and 4, showing the limitations of 

restricting the variance. However, to date, the statistical modelling is built around the Gaussian 

distribution. Analysis of daily COVID-19 data have shown that this is insufficient. Consequently, 

chapters 5-6, continues to investigate a generalisation of fluctuations and proposes that modelling is 

built around the GLD. The GLD has been shown to be flexible allowing of positive and negative 

skew. Specifically, it is no longer a requirement that the error term in the model is 𝜀𝜀~𝑁𝑁(0, 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 ) and 

instead is now assumed 𝜀𝜀~𝐺𝐺𝐺𝐺𝐷𝐷(𝜃𝜃,𝜎𝜎,𝛼𝛼). This is built into a GLM-style framework using Bayesian 

methods and, in this form, includes a shape parameter 𝛼𝛼 allowing for complex shapes (positive and 

negative skew). As a result of the modelling developed in chapter 5 and discussions relating to 

variance throughout, there is reservations in the conclusions drawn in chapters 3 and 4. Thus, it will 

be worthwhile revisiting these datasets in future work, retrospect to the progress made in the 

modelling process. 
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6.2 Dataset and R Packages 
 

To explore the methodology developed in chapter 5, COVID-19 data was applied which has 

previously been explored using standard PL models in chapter 4 where it was found that the statistical 

assumptions of standard linear regression were not met. Section 4.3.1 describes the data and methods 

in more detail. To summarize, the data set includes COVID-19 case densities (i.e., COVID-19 

cases/Regional Area) and population densities (i.e., Population/Regional Area) in England and Wales 

using LTLAs (337) to define area boundaries. This dataset presents an ideal opportunity to run the 

proposed model over an extended time series under different conditions such as a varying number of 

observations to illustrate the key features of the model. It is also an opportunity to compare the GLD 

regression model results with previous results using standard normal linear regression techniques. 

There are in total 337 lower tier local authorities and 759 days of data beginning on the 01/03/2020 

and ending on the 29/03/2022. 

 

The data were analysed using the statistical software R version (3.6.2) [157] with the glogis 

(1.0-1) [170], rio (0.5.27) [215], xlsx (0.5.7) [162], matrixStats (0.61.0) [216], lubridate (1.7.9.2) 

[167], fitdistrplus (1.1-3) [168], fGarch (3042.83.2) [217] and coda (0.19-4) [218] packages. 

 

6.3 Application of the GLD Regression Model 
 

To recall, to obtain parameters estimates under a PL framework the data are log transformed and 

forms a simple linear regression model. To recall the standard population density PL model is given 

by: 

 

𝑌𝑌𝐷𝐷 = 𝑌𝑌0𝑃𝑃𝐷𝐷𝛽𝛽10𝜀𝜀  
 

6.1 

 

and the logarithmic version of 6.1 is: 
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log(𝑌𝑌𝐷𝐷) = log(𝑌𝑌0) + 𝛽𝛽 log(𝑃𝑃𝐷𝐷) + 𝜀𝜀 6.2 
 

where 𝑌𝑌𝐷𝐷 = 𝑌𝑌/𝐴𝐴 and 𝑃𝑃𝐷𝐷 = 𝑃𝑃/𝐴𝐴 is the population and indicator density where 𝐴𝐴 in the area of a given 

region and 𝜀𝜀 are residuals that are IID with common 𝑁𝑁(0,𝜎𝜎2). The structure in equation 6.2 forms a 

simple linear regression. Thus, rewriting this in standard regression form gives: 

 

𝑌𝑌𝑖𝑖′ = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖′ + 𝜀𝜀𝑖𝑖 
 

𝐸𝐸(𝑌𝑌𝑖𝑖′) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖′ 

6.3 

 

where 𝑌𝑌𝑖𝑖′ = log(𝑦𝑦𝑖𝑖), 𝛽𝛽0 = log(𝑦𝑦0), 𝛽𝛽1 = 𝛽𝛽,  𝑥𝑥𝑖𝑖′ = log(𝑁𝑁𝑖𝑖) and 𝜀𝜀𝑖𝑖′ =  log (𝜀𝜀𝑖𝑖). In this form, the 

exponent in 𝛽𝛽1 indicates the type of scaling relationship and whether it is sublinear (𝛽𝛽1 < 1), linear 

(𝛽𝛽1 = 1) or superliner (𝛽𝛽1 > 1). However, it has been shown that statistical assumptions, using 

normality methods, are false, and consequently this caused estimated model parameters to be 

fundamentally bias. 

 

In chapter 5, the GLD regression model was developed where it is assumed that the response 

𝑌𝑌𝑖𝑖′ is a GLD such that 𝑌𝑌𝑖𝑖′ ~𝐺𝐺𝐺𝐺𝐷𝐷(𝑥𝑥; 𝜃𝜃,𝜎𝜎,𝛼𝛼) to accommodate a wider range of distributions including 

positive and negative skew. Thus, using the model in chapter 5 and the data from the COVID-19 

pandemic equation 5.14 can be rewritten in simple liner regression form using the GLD regression 

model as follows: 

 

𝐸𝐸(𝑌𝑌𝑖𝑖′) = 𝑟𝑟1′(𝑌𝑌𝑖𝑖′) = 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 = 𝜂𝜂𝑖𝑖  
 

𝑙𝑙𝑜𝑜𝑟𝑟�𝑉𝑉𝑎𝑎𝑟𝑟(𝑌𝑌𝑖𝑖′)� = 𝑟𝑟2′ (𝑌𝑌𝑖𝑖′) = 𝑥𝑥𝑖𝑖𝑇𝑇𝜷𝜷′ = 𝛽𝛽2′ + 𝛽𝛽3′𝑥𝑥𝑖𝑖 = 𝜂𝜂𝑖𝑖′ 

 
 
6.4 

 

where the estimates of  �̂�𝛽0 and �̂�𝛽1  for 𝛽𝛽0 and 𝛽𝛽1 respectively, are the mean regression model 

parameters, and estimates of �̂�𝛽2′  and �̂�𝛽3′  for 𝛽𝛽2′  and 𝛽𝛽3′  respectively, are the dispersion regression model 

parameters along with 𝑥𝑥𝑖𝑖 log(population densities) and 𝑦𝑦𝑖𝑖′ log(COVID-19 Case) densities. In this 

model mean regression coefficients (𝛽𝛽0 and 𝛽𝛽1), previously obtained in chapter 4, known as the pre-

exponential factor and exponent are retained respectively. The exponent indicates the type of scaling 
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behavior and whether it is sublinear, linear or superliner. Additional dispersion regression parameters 

(𝛽𝛽2′  and 𝛽𝛽2′ ) indicative of heteroscedasticity along with the GLD model parameters: location 𝜃𝜃, scale 𝜎𝜎 

and shape 𝛼𝛼 were also obtained. 

 

6.4 Implementation 
 

In the M-H algorithm the first phase of the algorithm is often referred to as the warm-up (or burn-in) 

phase, thus, it is often that these draws are disregarded. The number of iterations is set to 𝑚𝑚′ =

20,000 and the first 10,000 draws are disregarded as burn-in, and convergence is monitored in the 

MCMC chains using Gelman and Rubin’s convergence statistics. Briefly, the statistic obtained is 

known as the R statistic indicating whether the chains in the MCMC are stationary. As, proposed in 

section 5.3.4, the optimal standard deviation for the normal distribution is 𝜎𝜎𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛2 = 𝑐𝑐2𝛴𝛴 where ≈

2.4/√𝑑𝑑 where 𝑑𝑑 is the dimension of the parameters vector 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 and 𝛴𝛴 is the variance-covariance 

matrix based on the curvature of the posterior at the mode. Considering that the parameter vector 

space is 𝜓𝜓𝑝𝑝𝑝𝑝𝑛𝑛 = (𝑦𝑦𝑖𝑖′;𝛽𝛽0,𝛽𝛽0,  𝛽𝛽0′ ,  𝛽𝛽0′ ,𝛼𝛼), thus, 𝑑𝑑 = 5, 𝑐𝑐 = 1.07 and 𝛴𝛴 = 0.01 it implies that the 

optimal standard deviation for the normal proposal is 0.12. 

 

Overall convergence was recognised for the mean regression coefficients 𝛽𝛽0 and 𝛽𝛽1 along 

with all GLD model parameters 𝜃𝜃, 𝜎𝜎, 𝛼𝛼. Although, dispersion regression coefficients 𝛽𝛽2′  and 𝛽𝛽3′  show 

some signs of convergence, they did so to a much lesser extent. The complete daily Gelman and 

Rubin’s diagnostics are available in Appendices E1 and E2 along with daily MCMC trace plots in 

Appendix E3 and distributions of the estimates of the posterior distributions for each parameter in 

appendix E4. The R code to implement the walking M-H algorithm as described above is available in 

Appendix H2. 
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6.5 Key Features 
 

In this specific COVID-19 application, the dual Bayesian GLD regression model (equation 6.4) has 

seven parameters (𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2′ , 𝛽𝛽3′ , 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼). Specifically, it has mean regression parameters 𝛽𝛽0 and  

𝛽𝛽1, dispersion regression parameters 𝛽𝛽2′  and 𝛽𝛽3′  along with the GLD location 𝜃𝜃, scale 𝜎𝜎 and shape 𝛼𝛼 

parameters. The daily model parameters (𝛽𝛽0 (Fig 6.1), 𝛽𝛽1 (Fig 6.1), 𝛽𝛽2′  (Fig 6.2), 𝛽𝛽3′  (Fig 6.2), 𝜃𝜃 (Fig 

6.3), 𝜎𝜎 (Fig 6.3) and 𝛼𝛼 (Fig 6.3) are presented as an extended timeseries to assess the trajectory and 

structure. The GLD regression model parameters (represented as red), when possible, are compared 

with the normal simple linear regression model with fixed variance (represented as blue) and the 

normal simple linear regression model with varying variance (represented as black) (see methods in 

Appendix D1). The mean posterior and standard deviation along with credible intervals are available 

in Appendix F1. 

 

The general tracking of the mean regression coefficients 𝛽𝛽0 and 𝛽𝛽1 presented in figures 6.1(a) 

and 6.1(b) are remarkably similar in both the normal (with fixed and varying variance) and the GLD 

regression models. The exception in 𝛽𝛽0 indicated in the grey shaded area (figure 6.1(a)) coincide with 

a lower number of regions reporting cases. The fitting of 𝛽𝛽0 and 𝛽𝛽1 using both normal methods with 

varying and fixed variance appear identical. Thus, to expose the differences between the normal and 

GLD regression model the differences were computed in 𝛽𝛽0 (Fig 6.1(c)) and 𝛽𝛽1 (Fig 6.1 (d)) between 

the standard normal (chapter 4) and the Bayesian GLD regression models. This presentation better 

highlighted the variations in 𝛽𝛽0 and 𝛽𝛽1 between the two models at different times during the 

pandemic. If differences are greater than 0 then the GLM has decreased the mean intercept (𝛽𝛽0) and 

mean slope (𝛽𝛽1) whilst values less than 0 indicates an increase. The magnitude of the difference in the 

parameter 𝛽𝛽0 between the model significantly alters in the summer 2020 and spring 2021 coinciding 

with fewer regions reporting cases whilst alteration in the 𝛽𝛽1 parameter is much less. Furthermore, 

these differences in model parameters reflect the reduced bias in estimated parameters when 

compared to standard linear regression. The flexibility in the error terms 𝜀𝜀 allows for features of skew 

by following the GLD. Furthermore, the generalisation in the assumed variance, allows for variation 
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from day-to-day, in comparison, to standard methods where it is strictly fixed throughout the 

pandemic. The corresponding linear regression plots using standard linear regression and GLD 

regression parameters are available in Appendix G1. 
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 (a) 

  
 (b) 
 

 
 (c) 
 

 
 (d) 

Fig 6.1. Daily time series of model parameters (panel (a) and (b)) and corresponding differences 
(panel (c) and (d)). Red represents GLD regression model; blue represents normal regression model 
with fixed variance and black represents normal regression model with varying variance. The grey 
shaded areas in (a) indicate time periods with fewer regions reporting cases. The horizonal grey 
dashed line in (c) and (d) represents no change in the estimated parameters. The studied timeframe is 
between 01/03/2020 to the 29/03/2022. 
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A key advantage given by the GLD regression model is the additional parameters accounting 

for heteroscedasticity in the data (Fig 6.2). The structure in the dispersion parameter 𝛽𝛽2′  between the 

normal and GLD regression models are almost identical, but significantly reduced in the latter. Whilst 

comparisons in the dispersion parameter 𝛽𝛽3′  between the two models are very different. The fitting of 

the 𝛽𝛽3′  in the normal regression model is almost 0 for the entire timeseries but considering that the 

normal methods assume a homoscedastic system this result was anticipated. Whilst the reported 𝛽𝛽3′  in 

the GLD regression model indicates periods of heteroscedasticity in the data. This result is a 

significant improvement to previous models using normality methods where homoscedastic 

assumptions do not hold all the time. The reported 𝛽𝛽3′  indicating heteroscedasticity is prominent for 

approximately 17 months of the timeseries reaching as high as 2.156 (05/03/2020). Generally, a 

positive 𝛽𝛽3′  indicates that residuals with a high 𝑥𝑥𝑖𝑖 deviate from the expectation 𝐸𝐸(𝑌𝑌′) whilst 

homogenising residuals with a low 𝑥𝑥𝑖𝑖 (Fig 6.2(c)). A negative 𝛽𝛽3′  has the opposite effect where low 

𝑥𝑥𝑖𝑖′𝑠𝑠 deviate from 𝐸𝐸(𝑌𝑌′) whilst residuals with high 𝑥𝑥𝑖𝑖′𝑠𝑠 homogenise (Fig 6.2(d)). 
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(c)  (d)  

  
(e) (f) 

Fig 6.2. Daily timeseries of the (panels (a) and (b)) dispersion parameters and examples of 
heteroscedasticity (panels (c) and (d)) corresponding to skewed residuals (panels () and (f)). The 
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daily reported (a) 𝛽𝛽2′  and (b) 𝛽𝛽3′  dispersion model parameters. Red represents the GLD regression 
model and black represents normal regression model with varying variance. Examples include (c) 
positive 𝛽𝛽3′   indicating heteroscedasticity affecting high value of 𝑥𝑥, mostly corresponding to (e) 
positively skewed residuals and (d) negative 𝛽𝛽3′  indicating heteroscedasticity affecting low value of 𝑥𝑥, 
corresponding to (f) negatively skewed residuals. The studied timeframe is between 01/03/2020 to the 
29/03/2022. 
 

In the context of COVID-19, the GLD model provides additional information about the 

pandemic and the propagation of cases throughout England and Wales. In time frames with positive 

heteroscedasticity (i.e., 𝛽𝛽3′ > 0), rural regions homogenised whilst urban regions deviate from the 

expectation 𝐸𝐸(𝑌𝑌′). This happens in March 2020, summer 2020, December 2020, spring 2021, October 

2021 and December 2021. Before the propagation of delta and omicron variants, a more transmissible 

version of the disease, these observations correspond to positively skewed residuals; a long right tail 

of ‘hotspots’ and ‘superspreading’ events mostly featuring urban regions (For example on day 140 in 

Fig 6.2(c, e)). Conversely in time frames with negative heteroscedasticity (i.e., 𝛽𝛽3′ < 0), urban regions 

tended to homogenise whilst rural regions deviate from the expectation 𝐸𝐸(𝑌𝑌′). This behaviour is 

observed in the periods: April 2020, November 2020, February 2021, July-August 2021, November 

2021 and January 2022. These timeframes correspond to negatively skewed residuals; a long-left tail 

of ‘cold spots’ and ‘super isolating’ events mostly featuring rural regions (For example on day 330 in 

Fig 6.2(d, f)). 

 

Another key advantage of the GLD regression model is the GLD location parameter 𝜃𝜃 (Fig 

6.3(a)), scale 𝜎𝜎 (Fig 6.3(b)) and the additional shape 𝛼𝛼 (Fig 6.3(c)) parameters which can 

accommodate a wide range of distributions in the data including positive and negative skew (Figs 5.1-

5.3). This is a significant improvement considering that residuals are not always normally distributed 

in a standard linear regression setting and can exhibit far more complexity (chapter 4; Figs 4.9, 4.12 

and 4.15). To draw upon the differences between normal and GLD regression, model parameters, 

where possible, were obtained for the mean 𝜇𝜇 (location) and variance 𝜎𝜎2 (scale) (model in Appendix 

D1) from the normal regression model with varying variance. 
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The discontinuity from day to day in 𝜃𝜃 (Fig 6.3(a)) are during periods of time when there are 

fewer regions reporting cases. This happens at the beginning of the pandemic, in the summer 2020 

and spring 2021 (Fig 4.6(a)). This is an example when scaling is not in equilibrium and is in a 

transition state. Overall, the location (Fig 6.3(a)) and scale (Fig 6.3(b)) parameters in both models are 

similar although slightly elevated in the case for scale. To account for skew in the model, the GLD 

regression model also has a shape (𝛼𝛼) parameter (Fig 6.3(c)). This is not comparable with the normal 

regression model since it is assumed that residuals are normally distributed, thus, a shape parameter is 

not needed and therefore does not exist in the normal regression model. To recall, the shape (𝛼𝛼) 

parameter in the GLD regression model indicates the type of distribution and whether there exhibits 

any positive or negative skew in the data. If 𝛼𝛼 < 1 then this indicates negative skew, whilst if 𝛼𝛼 > 1 

indicates positive skew. This varied considerably from very positive (Fig 6.3(d)) to very negative (Fig 

6.3(f)) and in the two cases the distributions are characterised with either a long left or right tail. This 

result is significant. It illustrates another key feature of the GLD regression model such that it can 

accommodate a wide range of shapes, no longer needing normality assumptions and consequently the 

model is extensively accessible to a wide range of systems. 
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(a) 

 
(b) 

 
 € 

   
(€(e) (f) 

Fig 6.3. Daily time series of (a) location (b) scale and (c) shape parameters and examples of 
residual distributions with (d) positive €w, (e) no skew and (f) negative skew. Red points in panels 
(a)-(c) represent the GLD regression model and black points represent the normal regression model 
with varying variance. The red curve in the panels (d)-(f) represents the normal distribution and the 
black curve represents the GL distribution. The horizontal black line in (c) indicates no skew. The 
studied timeframe is between 01/03/2020 to the 29/03/2022. 
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6.6. Model Checking 
 
The DIC score was used to measure the goodness of fit (section 5.3.6). When selecting a model, low 

DIC scores represent a better fit. The differences between the DIC scores obtained from fitting the 

two models (normal with varying variance and GLD) were obtained for each day in the 25-month 

period (Fig 6.4). A positive value corresponds to a GLD regression model as the preferred model 

whilst a negative value corresponds to a normal regression model as the preferred model. The daily 

histograms for cases can be found in Appendix B9. 

 

The near universal preference of the GLD regression model towards the end of the time series 

corresponds to a homogenised and negatively skewed presentation of residuals. This happens during 

the UK propagation of delta and omicron variants. These variants are known to be more transmissible 

versions of the disease compared to previous versions and caused a ‘surge’ in the number of cases. 

Whilst preference to a normal regression model occurs when 𝑛𝑛, the number of regions reporting cases, 

is not at full capacity (indicated in the grey shaded areas in Fig 6.4). Overwhelmingly, the GLD 

regression model is the preferred model when 𝑛𝑛 tended towards full capacity, such that all regions 

were reporting at least 1 case of COVID-19. 

 

 
Fig 6.4. DIC score over time. Positive DIC indicates GL regression is a better fit and a negative DIC 
indicates normal regression model is a better fit. The grey shaded periods correspond to fewer regions 
with reported cases. 
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6.7 Summary 
 

To demonstrate the capabilities and the key features, the developed Bayesian GLD regression model 

is applied using COVID-19 case density data previously employed to PL models using simple linear 

regression techniques in chapter 4. This dataset is ideal to run and test the model under different 

conditions (e.g., varying 𝑛𝑛), to illustrate the meaning of Bayesian parameter estimates and draw upon 

comparisons with earlier normality methods.  

 

Expectation and dispersion parameter regression coefficients were obtained along with GLD 

location, scale and shape parameters. The expectation regression coefficients are retained, although 

improved by fitting them using the Bayesian GLD regression model developed in chapter 5. Previous 

normality methods are fundamentally and systematically biased since the underlying assumptions of 

normal linear regression are violated throughout the pandemic. The fitted parameter differences are 

highlighted showing the corrections made by the improved Bayesian GLD regression model. An 

additional asset given by the Bayesian GLD regression model is the dispersion regression parameter 

estimates accounting for heteroscedasticity in the data, a feature of the model that varies significantly 

in magnitude in the extended timeseries. The comparison of the dispersion exponent between the 

normal regression model with varying variance and the GLD regression model was striking. The 

normal regression model exhibited almost constant homoscedasticity: a data characteristic that has 

been shown to be untrue. The Bayesian GLD regression model, however, exhibited complex 

heteroscedasticity throughout the pandemic. Generally, heteroscedasticity affects high values of 𝑥𝑥 

when 𝛽𝛽3′ > 0 whilst heteroscedasticity affects low values of 𝑥𝑥 when 𝛽𝛽3′ < 0. This additional 

information provided further information about the distribution of residuals (regions) around the PL. 

Timeframes when 𝛽𝛽3′ > 0 tended to homogenize low density regions whilst causing heterogeneity in 

highly dense regions and vice versa when 𝛽𝛽3′ < 0. 
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In addition, the Bayesian GLD regression model developed in chapter 5 also provided 

location, scale and shape parameters accounting for a wide range of complex shapes. This was an 

important advantage over previous normality methods. In standard linear regression it is assumed that 

residuals are normally distributed although, in chapter 4, it was shown to be untrue for large periods 

of the pandemic. Instead, residuals exhibited both positive and negative skew indicative of 

propagation. Positive skew featured a long tail of ‘hot spots’ and ‘super-spreading’ events whilst a 

negative skew featured a long tail of ‘cold spots’ and ‘super-isolators’. Specifically, negative skew 

was indicated when 𝛼𝛼 > 1, no skew was indicated when 𝛼𝛼 = 1 and positive skew was indicated when 

𝛼𝛼 > 1. This behavior was observed in chapter 4 (section 4.4.6) after applying normality methods. The 

advantage shown in this chapter is that the skewed behavior is developed within the Bayesian GLD 

regression framework itself, thus, correcting for any previous model bias produced by applying 

normality methods. 

 

The Bayesian GLD regression model parameters converged well over the 759 daily data, with 

some day-to-day discontinuity on days when 𝑛𝑛 was small corresponding to the number of regions 

reporting cases. Overwhelmingly, using COVID-19 data when 𝑛𝑛 is at either full or near full capacity 

(i.e., the number of regions reporting at least one case) it was found that the developed Bayesian GLD 

regression model is the preferred model. The fitted Bayesian GLD regression model, when possible, 

compared to previous normality methods gives systematically different parameter estimates. The 

assumptions of a normal linear regression model are often violated, thus, producing model bias when 

applying normal regression methods. All parameters have been shown to systematically improve 

when applying the Bayesian GLD regression model.  

 

The Bayesian GLD regression model is a significant improvement to previous normality 

methods. This is the first to apply PL models and data from the COVID-19 pandemic. The 

heteroscedasticity and skewed considerations are significant improvements to previous normality 

methods. It provides additional information and corrects the model bias produced when assuming a 
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homoscedastic and normal system. There are no heteroscedastic GLD regression models in the 

statistics literature capable of modelling negatively skew distribution. Thus, using the developed 

framework, it is the first study to apply it to the COVID-19 pandemic scaling. 

 

6.7.1 Further Limitations 
 

After running and testing the GLD regression model developed in chapter 5 some additional 

limitations are recognised. It was shown that model parameters 𝛽𝛽0, 𝛽𝛽1, 𝜃𝜃, 𝜎𝜎 and 𝛼𝛼 converge very well 

whilst dispersion regression model parameters 𝛽𝛽2′  and 𝛽𝛽3′  converge to a much lesser extent. 

Considering the extensively large dataset, the model parameters overall converge well, but possible 

improvements on the convergence rate for 𝛽𝛽2′  and 𝛽𝛽3′  could improve the overall fitting of the GLD 

regression model. Currently, non-informative priors are applied, and future applications of the model 

developed in chapter 5, may consider informative prior. In a timeseries dataset, like the COVID-19 

pandemic, this might correspond to incorporating previous day information into the prior, but priors 

for other datasets, not in the form of timeseries needs further consideration. 

 

In the application of COVID-19, case and population densities (continuous case) data was 

used in the GLD regression model developed in chapter 5. Conventional scaling studies, use discrete 

values such as raw indicators and population data. Thus, future work must consider modelling 

expectation and dispersion developed in chapter 5 for the case when 𝑋𝑋 is discrete and consider the 

implications of uncertainty and model parameters. 
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Chapter 7: Overall Conclusions 

 

 

 

 

 

7.1 Overall Summary 

 

The scaling literature has focused on urbanised systems whilst neglecting studying other types of 

environments such as low population dense regions. The study of cities is motivated by the economics 

[219] and locational [220,221] theories highlighting the importance of urban spaces. These relate from 

spatial influences to economic factors and ideas relating to cost and transport [18]. However, it is 

thought that the scaling behaviour of urban regions are self-similar underpinning the urban scaling 

hypothesis. Recent studies of crime and property using rural-urban parliamentary constituencies to 

define regional boundaries challenge this hypothesis showing that many of the studied metrics 

exhibited a segmented relationship with a change point positioned at a similar population density. The 

methodology applied in these studies are available in chapter 2. The inherited methodology in 

conventional scaling use normal linear regression and assumes a homoscedastic and normally 

distributed residuals. These have been shown to be fundamentally biased and it is often that these 

assumptions are violated. 

 

Chapter 3 extends this study by including non-transmissible mortality and age metrics. The 

population density framework was applied to this set of metrics. These were well approximated by 

PLs (chapter 2) and were used to investigate the scaling relationships of 67 metrics. The residuals 

obtained from the preferred single or segmented PL models were used to better understand regional 

variation and inter-correlation in both: between indicators and between regions. It is shown that 
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almost all mortality declined in urban regions which is achieved by the ability that urban regions are 

able to attract younger people (25-39) and repel older people (45+). Most critical population densities 

obtained from the diverse range of metrics (crime, property, mortality and age) forms a bimodal 

distribution with a median of 27 p/h. After fitting the preferred model, residual analysis using 

correlation and similarity heatmaps along with hierarchical clustering, revealed three clusters: crime 

and young people; mortality and older people; property and middle-aged people. The most striking 

result is the correlation between crime and property clusters. The inter-correlation between these 

clusters revealed that a subset of deaths, linked to life choices, are anti-correlated with property 

transaction value. This protective effect of the property transaction value above the scaling 

expectation results in below expectation in some preventable deaths (e.g., suicide) and vice versa. 

Transposing the indicator residuals provided us with the regional residuals which led us to the 

analysis of regional variation. Analysis of the regional residuals separated England and Wales into 

two main clusters mostly separating northern and southern regions exhibited almost universal anti-

correlation. If crime, mortality, property transaction values are above the scaling PL then they are 

below in the other. Further exploration of regional residuals, using self-organising maps provided a 

more definite picture of the variation presented in England and Wales and these were projected onto a 

geomap. In this analysis England and Wales clustered into four main groups. The green cluster (Fig 

3.14) mostly located on the coast is characterised by high mortality and an older population. The blue 

cluster, mostly northern regions are mainly characterised by a deflated property value transaction. The 

red cluster have an inflated property value transaction, low mortality and younger population. Lastly, 

the yellow cluster that only consists of the City of London and St. Edmundsbury are characterised 

with high crime. Overall, this study shows that per-capita models are fundamentally biased and that 

policy makers need to understand that these models are skewed toward highly dense regions. There is 

a need for better developed statistical models when considering health care resources and allocation to 

improve the general health care system. 

 

The study of property, crime, mortality and age was cumulative data over a relatively wide 

timeframe. COVID-19 (chapter 4) was a unique opportunity to study the scaling of a transmissible 
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disease at daily time points. This is the first study to analyse daily scaling at this granularity. The 

scaling exponents are thought to be slow changing or constant, but the analysis of COVID-19 cases 

showed that this was not true. They were extremely structured and complex. This was also observed 

in other statistical measures such as variance and skew. These statistical behaviours were all sensitive 

to the dynamics of propagation, government intervention, changing public behaviour and the different 

variants of the disease propagating at the time. Scaling exponents reversed six times where preference 

of spread in rural-urban regions switched. Regional heterogeneity timeframes coincided with 

restrictions while released restrictions tended to homogenise and reduce the distance of individual 

regions to the scaling law. An exceptional timeframe occurred during the delta-omicron era where the 

trajectory of variance significantly reduced and persisted low for the remaining studied period causing 

regions to homogenise. Skew also changed many times from being strongly negative to being strongly 

positive. The periods of positive skew characterise a long tail of ‘super-spreading’ regions and ‘hot 

spots’ events coinciding with timeframes with fewer restrictions. Whilst a negative skew characterises 

a long tail of ‘super-isolating’ regions and ‘cold-spots’ events which is a feature of propagation under-

appreciated in the modelling of COVID-19. This is an extremely important consideration of 

propagation since this feature dominated for 12 months out the possible 25-month studied timeframe. 

Conversely, scaling exponents for COVID-19 mortality were almost constant for the entire studied 

period. It showed sub-linear scaling indicating that rural regions were most effected by mortality 

throughout the pandemic. This behaviour was consistent with the previous mortality study (chapter 3) 

where it was documented that rural regions have a higher general mortality and more elderly 

population. From a policy point of view these observations and patterns are important. They provide 

insight into the expected effect following health policies and changing public behaviour allowing for 

better preparation and monitoring for future interventions. 

 

During the study of COVID-19, variance and skew were extremely variable and residuals 

were often not normally distributed and better characterised by a GLD. These observations led to the 

development of the GLM where the response 𝑌𝑌, is assumed to be a GLD.  
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The corresponding developed Bayesian GLD regression model, available in chapter 5, retains 

mean regression coefficients and gains additional dispersion regression coefficients along with GLD 

location, scale and shape parameters. The complexity of the variance and residual distributions 

observed in chapter 4 are better fitted with the additional heteroscedasticity and distribution variability 

considered by the GLD regression model. The normal regression model assumes a normal, linear and 

homoscedastic system, although it has been shown that these assumptions are often violated. The 

additional parameters along with considerations of skewed distributions and heteroscedasticity in the 

GLD regression model have shown to systematically improve the fitting of model parameters and 

consequently reduce model bias. 

 

In chapter 6, the key features of the model were tested and demonstrated using PLs and data 

from the COVID-19 pandemic. The data was applied using the developed Bayesian GLD regression 

model proposed in chapter 5. Within this framework a complicating, non-analytically tractable 

posterior distribution was obtained and therefore MCMC methods were applied. Specifically, the M-

H algorithm was applied over 20,000 iterations and disregarded the first 10,000 iterations as ‘burn-in’. 

Expectation and dispersion regression coefficient are obtained along with GLD location, scale and 

shape parameters. After applying Gelman-Rubin convergence diagnostics it was found that model 

parameters generally converge well over the course of 759 days. The additional dispersion regression 

coefficients provide information about the heteroscedasticity in the data. A positive 𝛽𝛽3′  (i.e., 𝛽𝛽3′ > 0) 

indicates heteroscedasticity affecting residuals with higher values of 𝑥𝑥 whilst negative 𝛽𝛽3′  (i.e., 𝛽𝛽3′ <

0) indicates heteroscedasticity affecting residuals with lower values of 𝑥𝑥. The magnitude of 𝛽𝛽3′  

indicates more severe levels of heteroscedasticity. In the context of COVID-19, using density data and 

PL models, periods where 𝛽𝛽3′ > 0 tended to homogenise rural regions whilst urban regions deviated 

from the PL mostly corresponding to positively skewed residuals. Whereas periods 𝛽𝛽2′ < 0 had the 

opposite effect such that urban regions homogenised whilst rural regions deviated from the PL 

corresponding to negatively skewed residuals. In addition, the shape parameter obtained from the 

GLD provided information about the types of skewness (positive or negative). Positive skew occurred 
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when 𝛼𝛼 > 1, negative skew occurred when 𝛼𝛼 < 1 and a symmetrical distribution was established 

when 𝛼𝛼 = 1. Conversely, periods of negative skew characterise a long tail of ‘super-isolators’ and 

‘cold spots’. 

 

7.2 Other Contributions 
 
The methods and discussions in this study has also benefited other work. At the earlier stages of the 

COVID-19 pandemic, initial discussions, started with the notion that population density is a proxy for 

interaction and meeting size. For example, regions with a highly dense population would have more 

opportunities for circulation of the infectious disease since there are higher proportions of people and 

a greater number of infectious interactions between them. Though during this research, it is found that 

the hypothesis of population density as a proxy for interaction is not entirely true and that propagation 

is far more complex. Here it is noted that the discussions encouraged by the topics in this thesis led to 

the work available in [222]. However, the analysis was primarily conducted by others, thus an in-

depth presentation of this work is not available within this thesis. This study was first published 

during the earlier stages of the pandemic and represents the first 170 days. This would now benefit 

from being updated to investigate whether the initial findings still hold or if they are fundamentally 

different as the pandemic evolved. Since the publication of this thesis, there have been different 

circulating variants, numerous government interventions and changes to public behaviour. 

 

Other contributions include making the daily COVID-19 data sets (cases and deaths) and 

corresponding code easily accessible on an open public website 

(https://github.com/jacksutton13/regional_COVID_geoplots). The idea was to allow the public to 

quickly obtain this daily data and generate maps of England and Wales (Fig 7.1). The data on the site 

and corresponding code views the data from a different perspective seen in chapters 4 and 5. Instead 

discrete COVID-19 cases and deaths counts are retained and maps of England and Wales are 

computed observing the number of days since the most recent case (Fig. 6.1(a)) or death (Fig. 6.1(b)). 

If a region is blue, then there has been at least 9 days since the last case or death caused by COVID-

19. The darker shade of blue indicates a greater number of days since the last case or death. The 

https://github.com/jacksutton13/regional_COVID_geoplots
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motivation of this site was to provide people quick access to COVID-19 data. The idea of this 

presentation was to help the public view the data in a comprehensible format and view the most up-to-

date data to make ‘safer’ and ‘better’ data informed decisions. 

 

  
(a) (b) 

Fig 7.1. Maps of England and Wales exhibiting the number of days since the last COVID-19 (a) 
case and (b) death. The red-blue colour spectrum indicates the number of days since the last case or 
death. Red indicates a case or death close to the specified day whilst blue indicates a case or death far 
away from the specified date. 
 

7.3 Final Remarks 
 
Currently, this study considers a wide range of indicators including crime, property, mortality, and 

age in chapter 3 along with COVID-19 in chapter 4. It would be interesting to extend the current 

datasets to include more health-related metrics and to explore other disciplines (e.g., climate change, 

GDP etc). In the initial period of study, normal PL models were applied whilst more recently it was 

found that these methods lead to model bias and sometimes violate the statistical assumptions. Thus, 

any future work would benefit from the developed and improved GLD regression model proposed in 

chapter 5. Having said that, the proposed framework in chapter 5 and the algorithms (e.g., M-H 

algorithm) within it are complicated, thus the work in chapter 5 would benefit with an established and 

universal R package. This would make the proposed model in chapter 5 more easily assessable for any 

future work in scaling and more general work using linear regression. 
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As aforementioned, it was found in chapter 3 that there is a consistent change point at a 

similar critical population density which almost forms a unimodal distribution. The reasons for a 

critical population density are unclear and the processes that cause rural-urban regions to be 

fundamentally different needs further consideration.  

 

A limitation of the methodologies imposed in this study is the dealing with missing data. In 

all studies within this thesis, regions with no reported data are considered missing due to the 

logarithmic transformation of the data not allowing for 0 values. This is inherited in the urban scaling 

field and there are currently few alternatives that would deal with missing data better. Incrementing 

the data has been suggested [156] but this is not a satisfying replacement to existing methods. This is 

because regions reporting 0 values are valid, but analysis ignoring this data are missing this important 

information. This will also impact the reporting of scaling exponents using least squared methods 

especially in case where there are zero-inflated values. A recent contribution [156] examines some 

possible solutions dealing with 0 values in urban scaling. This includes the weighted ordinary least 

squared method, where regions are positioned into bins with similar attributes in a way that 0 values 

do not exist. Another method proposed in this study is the Hurdle and Poisson model where 0 values 

are viewed as a binary outcome (presence/absence) rather than on a continuous scale and dealt with 

separately. There is also possible scope, that methods in ref [156] if found to be successful, to 

incorporate them into the proposed Bayesian GLD model. Furthermore, there are also issues related to 

what determines the boundaries of a city [223] as well as on going attempts to understand how the 

productivity of cities might relate to networks and related mathematics [224,225]. 
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