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Abstract—In this paper, the joint edge caching and content
recommendation problem for the case of inconsistent file sizes is
investigated for fog radio access networks (F-RANs). Firstly, we
transform the joint caching and recommendation policy into a
‘single’ caching policy. Then, a time-varying personalized user
request model is proposed to describe the fluctuant demands
of users. To maximize the long-term net profit of each fog
access point (F-AP), we formulate the caching optimization
problem and resort to a reinforcement learning (RL) framework.
To address the impact of file size inconsistency, a ‘pre-split’
mechanism with a dynamic upper limit is adopted to meet the
constraint of storage capacity, and a ‘lazy’ updating mechanism
is introduced into the training process. Finally, a double deep
Q-network (DDQN) based distributed edge caching algorithm is
proposed with content recommendation. Simulation results show
that compared with the existing methods, the average net profit
of our proposed algorithm can be increased up to 29.7% while
content recommendation can not only increase caching efficiency
but also accelerate convergence.

Index Terms—Fog radio access networks, deep reinforcement
learning, edge caching, content recommendation.

I. INTRODUCTION

The rapid popularization of intelligent devices brings a huge
traffic pressure to wireless networks in recent years [1]–[4].
A new network architecture called fog radio access networks
(F-RANs) has become a promising solution in industry and a-
cademia, because it puts popular contents from the cloud serv-
er to the network edge, which can bring better performance
[5]–[8]. In F-RANs, some nodes at the edge of networks are
designated as fog access points (F-APs), equipped with limited
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computing and caching resources. By considering dynamic
requests of users and the constraint of storage capacity, how,
when and what to cache strategically are three core require-
ments for each F-AP to obtain a higher caching efficiency [9]–
[11]. There are many traditional distributed caching methods
for optimal caching policy to improve retrieval robustness,
delivery latency and data availability [12]–[16], or to solve
caching fairness problem [4], such as belief propagation-
based method [12], effective graph-based method [13], [14],
alternating direction method of multipliers (ADMM) [15],
mean field game-based method [16] and connected facility
location approximation algorithm [4]. However, these existing
traditional caching schemes have all assumed that the content
popularity is known in advance and may remain constant for
a long period. This, of course, may not be true in practice.

How to obtain these content popularity information in
advance is indeed one of the critical issues in caching systems.
Recently, the learning-based methods have been utilized to
characterize the users’ preference and predict the content
popularity for the purpose of finding the optimal caching strat-
egy [17]–[19]. Reinforcement learning (RL) is one effective
solution to find the optimal caching policy for the case of
unknown content popularity in a model-free fashion [20]–
[25], which requires no prior knowledge on file popularity. RL
has the ability to maximize the expected cumulative reward
of resource consumption without the prior knowledge of the
considered network. The approach is self-adaptive in dynamic
environments. In [20], the hidden Markov decision process
was applied to characterize the user request model, and then a
Q-learning algorithm was used to establish a learning frame-
work which can optimize caching strategy in a distributed
manner. In [22], the authors optimized content caching at
base stations (BSs) with unknown prior knowledge of user
preference after personalized recommendation by an ε-greedy
algorithm. In [23], an asynchronous caching scheme with
adaptive parameters adjusted the caching policy to cope with
the spatiotemporal variation of file popularity by light-weight
updates. In [24], the authors designed a joint computing and
caching framework by integrating deep deterministic policy
gradient (DDPG) algorithm to minimize energy cost of mobile
network operators (MNOs). In [25], a deep reinforcement
learning-based resource allocation scheme was proposed to
improve content distribution in a layered F-RAN, and the
optimal resource allocation problem was formulated as a
minimal delay model. These above works [17], [18], [20],
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[22]–[25] are all based on machine learning scheme to predict
user request or file popularity without any prior knowledge.
Considering the specificity and randomness of user requests,
the difficulty of convergence and the volatility of the algorithm
are correspondingly high, and the prediction accuracy is
correspondingly low. In addition, most of the above studies
assume that the files to be cached have uniform sizes, which
is not consistent with the real caching scenario.

Since user requests are influenced by content recommen-
dation, the heterogeneity of user requests could be reduced
by appropriate content recommendation, and the difficulty of
user request prediction or file popularity prediction can then
be reduced accordingly [26]. As such, in recent years, content
recommendation has been widely combined with wireless
caching schemes. In [27], a joint pushing and recommendation
scheme of multi-user multi-input single-output system was
designed. The scheme pushes content items through multi-
user multi-input single-output downlink and adopts a multicast
beamforming method, which has the potential of significantly
improving hit ratio due to joint caching and recommendation.
In [28], an RL scheme was applied to the caching strategy
for BSs under the influence of recommendation. The policies
considered in [27] and [28], however, ignored the fact that user
mobility affects user requests, which may result in deviations.
In [29], a heuristic algorithm was employed to determine the
contents of the cache and the recommendations for each user
to maximize the cache hit ratio under the maximum tolerable
distortion of the recommendations. In [30], the authors decou-
pled the joint problem of personalized recommendation into
two RL sub-problems for the sake of circumventing the curse
of dimensionality. Similarly, in [31], [32], the authors focused
on the spatial-temporal recommendation, and a BS caching
policy based on deep reinforcement learning (DRL) was
considered to improve cache efficiency. However, in multi-
user scenarios, the joint optimization problems can incur high
resource consumption and the performance of the personalized
recommendation schemes is often not satisfactory [29]–[32].

Most research in file caching leverages historical user
request data to optimize the placement process of the cached
files [33]–[35]. These caching methods cache the files in-
dependently and are called uncoded caching. On the other
hand, the caching efficiency can be further improved by
multicasting a combination of the requested files during the
delivery process, which is called encoded caching [36]–[38].
However, some existing studies involving uncoded caching
have assumed that the files in the cloud server have uniform
size [23], [39], [40]. Although this assumption can greatly
simplify the caching policy optimization, it might not reflect
the real status of files, because files may well have non-
uniform sizes in the cloud server. In addition, for large files,
this assumption of uniform size may lead to other caching
problems. For example, the transfer time and caching cost are
obviously different between large files and small files.

The above discussions indicate that it is essential to deal
with the edge caching problem by considering content rec-
ommendation while there should be no limits on the file
sizes in the cloud server. In view of this, in this paper, we
investigate edge caching policy to cope with dynamic user

request with content recommendation in F-RANs to maximize
the long-term net profit of each F-AP. Here, the net profit is
the fee charged by a MNO for user requests minus the total
transmission cost incurred during the communication process.
The main contributions are summarized below.

1) We introduce content recommendations into the edge
caching policy. In order to reduce the excessive resource
consumption caused by joint optimization in multi-user
scenarios, the recommendation policy is incorporated
into the caching policy, where the ‘abstract’ parts of
its current cached files are recommended by each F-
AP to users. We formulate the caching optimization
problem firstly and then solve it via an RL framework.
And considering the accumulation property of action-
value function of the RL framework, we define the
optimization objective as maximizing the long-term net
profit of each F-AP.

2) Considering that existing datasets of user requests is
not compatible with the above content recommendation
policy, we propose a time-varying personalized user
request model to characterize the dynamic user requests
after content recommendation. This user request model
forms the external environment of the RL framework.

3) Different from some existing studies involving edge
caching which assumed that the files stored in the cloud
server have the uniform size, we impose no limits on
the sizes of files in the cloud server. And to solve the
problem caused by non-uniform file sizes, a ‘pre-split’
procedure with a dynamic upper limit is introduced to
the cached files to meet the constraint of F-AP’s limited
storage capacity. At the same time, in order to match the
dynamic ‘pre-split’ mechanism, a ‘lazy’ updating step
is added into the training of the relevant parameters in
the RL framework.

4) An edge caching algorithm based on DDQN with
content recommendation is proposed. Different from
some existing traditional caching schemes which need
to know the prior knowledge of content popularity in
advance, this algorithm, as an RL algorithm, requires no
prior knowledge on file popularity, but optimizes it by
interacting with the dynamic user requests constructed
by the proposed request model.

The rest of this paper is organized as follows. In Section II,
the system model is introduced. The proposed time-varying
personalized user request model is described in Section III
elaborately. In Section IV, the problem formulation and the
proposed DDQN-based caching algorithm are presented. Sim-
ulation results are shown in Section V. Final conclusion is
drawn in Section VI.

II. SYSTEM MODEL

The edge caching problem with dynamic content rec-
ommendation is considered in a given area served by F-
RANs, where H F-APs are covered by the cloud server,
as shown in Fig. 1. The caching updates can be made
according to the caching policy in discrete time slots denoted
by t = 0, 1, . . . , T . In our system model, there are files of
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Fig. 1. Illustration of caching scenario with content recom-
mendation in F-RANs.

different sizes in the cloud server. Let Smax,t denote the
maximum size of the cached files in each F-AP during time
slot t, which limits the maximum capacity occupied by each
cached file to keep the total capacity from exceeding the
storage capacity of the F-AP when the cached files need
to be updated. For large files such as videos, users tend to
enjoy them from the beginning. When the size of the file to
be cached is greater than Smax,t, the F-AP can only cache
the front portion of the file with the size Smax,t, i.e., the
large files need to be ‘pre-split’. This assumption can ensure
the maximum diversity of cached files in the current F-AP.
We assume that the caching capacity Cf of each F-AP is
uniform and can cache Ft = Cf/Smax,t files during time slot
t. Let C = {1, 2, . . . , c, . . . , C} denote the file library and
S = {S1, . . . , SC} denote the set of file sizes in the cloud
server. In addition, let Sct = {Sc

t,i1
, . . . , Sc

t,if
, . . . , Sc

t,iFt
}

denote the cache capacity set during time slot t, where Sc
t,if

is
the cache capacity occupied by the cached file (index if ∈ C).
If Sif ≤ Smax,t, Sc

t,f = Sif , otherwise, Sc
t,f = Smax,t.

Now, we explain the rationale of setting the maximum
size for the cached files Smax,t: Firstly, we need to limit the
maximum capacity occupied by each cached file to keep the
total capacity from exceeding the storage capacity Cf of the
F-AP when the cached files need to be updated. Secondly,
given the limited coverage of the F-AP and user mobility, the
F-AP may only need to provide some part of the requested
file to the user. For example, it takes time for a user to request
and use a large file (such as a video file), and in this process,
the user may have left the current F-AP coverage (especially
for those users in vehicles), i.e., the F-AP cannot continue
to serve the user. Finally, for some files, especially for larger
files, users may only need to request part of the content. For
example, for large files such as videos, users may only watch
the first part of the content, and may stop watching if they
find they are not interested in it after all. Besides, Smax,t can
be adjusted with the update of cached files to make sure most
files can be directly cached instead of being ‘pre-split’. The
corresponding adjustment mechanism will be described in Part
C of Section IV.

In terms of content recommendation, the recommendation

policy is incorporated into the cache policy, where the ‘ab-
stract’ parts (e.g., the thumbnail of an image or the title of an
article) of its current cached files are recommended by each
F-AP to users within its coverage by periodical broadcasting.
This recommendation policy is more suitable for multi-user
scenarios. Recommendation can help users find the files they
are interested in, thus increasing the number of user requests.

A time-varying user mobility pattern is adopted here. Dur-
ing time slot t, Ut = {1, 2, . . . , u, . . . , Ut} denotes the set
of the users within coverage of an F-AP in the F-RANs,
where Ut = Ua

t + U r
t , Ua

t is the number of the newly
arrived users in time slot t and users’ average arrival number
λ follows Poisson distribution, and U r

t is the number of
users who are already in coverage of the F-AP during time
slot t − 1 and have remained until the tth time slot. Let
P l
t =

{
plt,1, p

l
t,2, . . . , p

l
t,u, . . . , p

l
t,Ut

}
denote the set of the

probabilities of the Ut users leaving coverage of the F-AP.
Here, the P l

t has a superscript l to distinguish it from the
preference vector Pt in Part A of Section III.

Assume that multiple requests can be made
by each user in each time slot. Let reqt =
{reqt,1, reqt,2, . . . , reqt,u, . . . , reqt,Ut

} denote the
request set of Ut users during time slot t, where
reqt,u = {reqt,u,1, reqt,u,2, . . . , reqt,u,n, . . . , reqt,u,Nt,u

}
denotes the request set of the uth user during time slot
t, Nt,u ∈ [0, Nmax] is the number of the requests and
Nmax is the maximum number of requests per user
during time slot t. The request reqt,u,n is expressed as:
reqt,u,n = 〈ft,u,n, tu,n, Sp

ft,u,n
〉, where ft,u,n ∈ C denotes the

index of the file which is required by users, tu,n is the time
of user requesting, and Sp

ft,u,n
is the size of the requested

part of the corresponding file. Obviously, Sp
ft,u,n

is less than
or equal to the size of the current requested file.

During time slot t, for a request reqt,u,n, the corresponding
served F-AP needs to check the local caching state of the
requested part. That is, the F-AP needs to determine not only
whether the requested file with the index ft,u,n is cached, but
also whether the requested part is cached by comparing Sp

ft,u,n

to the current maximum size of the cached files Smax,t. Let
θt ∈ {0, 1} denote a caching status judging function. If the
requested part is cached locally, i.e., the file corresponding to
the requested part is cached in the local F-AP and Sp

ft,u,n
≤

Smax,t, θt(ft,u,n) = 1 and the part cached in the local F-
AP could meet the demand of the uth user. Otherwise, if
the F-AP has not cached the file corresponding to the index
ft,u,n or the cached part of the file does not meet the demand
of the user (Sp

ft,u,n
>Smax,t), θt(ft,u,n) = 0. Furthermore,

if θt(ft,u,n) = 1, the requested file (or the requested part)
corresponding to the index ft,u,n can be provided by the local
F-AP, which constitutes a ‘cache hit’. Otherwise, the requested
file needs to be fetched from the cloud server. In the proposed
caching architecture, only the case where users fetch files from
their closest F-AP or from the cloud server is considered, and
the case of multi-F-APs cooperative caching is not considered.
The key notations of the paper are summarized in Table I.
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TABLE I. Summary of Key Notations

Notation Definition/Description Notation Definition/Description
H The number of F-APs t Discrete time slots, t = 0, 1, . . . , T
C File index library, C = 1, . . . , c, . . . , C Cf Storage capacity of a single F-AP

Sc
t,if

The actual cache capacity occupied by
the cached file (index if ∈ C) Ft

The number of cached files,
Ft = Cf/Smax,t

Smax,t The maximum size of the cached files Sav,t The average of the cached files’ sizes
Ut Set of users, Ut = {1, . . . , u, . . . , Ut} Ut The number of users, Ut = Ua

t + Ur
t

Ua
t The number of newly arrived users λ Average arrival number of Poisson distribution
Ur
t The number of remaining users Nt,u The number of the requests, Nt,u ∈ [0, Nmax]

Nmax
The maximum number of requests per user

during time slot t P l
t

Leaving probabilities of Ut users,
P l
t =

{
plt,1, . . . , p

l
t,u, . . . , p

l
t,Ut

}
reqt

The request set of users,
reqt = {reqt,1, . . . , reqt,u, . . . , reqt,Ut

} reqt,u
The request set of the uth user,

reqt,u = {reqt,u,1, . . . , reqt,u,Nt,u
}

reqt,u,n

The nth request of the uth user,
reqt,u,n = 〈ft,u,n, tu,n, Sp

ft,u,n
〉 θt

A caching status judging function,
θt ∈ {0, 1}

ft,u,n
index of the requested file,

ft,u,n ∈ C tu,n accurate requesting time

Sp
ft,u,n

The size of the requested part π The caching policy

Pt
The preference vector set of Ut users,
Pt = {pt,1, . . . ,pt,u, . . . ,pt,Ut}

pt,u
A preference vector,

pt,u = [pt,u,1, . . . , pt,u,c, . . . , pt,u,C ]T

pt,u,ft,u,n The preference value of the file (index ft,u,n) P0 A candidate set, P0 = {p0
1, . . . ,p

0
g , . . . ,p

0
G}

p0
g

An initial preference vector,
p0
g = [p0g,1, . . . , p

0
g,c, . . . , p

0
g,C ]T

AC {Inactiveness} parameters of Ut users,
AC = {ac1, . . . , acu, . . . , acUt}

acu
{Inactiveness} parameter of the uth user,

acu ∈ {0, 1} rect
Recommendation status,

rect = [rect,1, . . . , rect,c, . . . , rect,C ]T

β Recommendation factor, β ≥ 1 µ A small user preference value

P i
t

Impulsive requesting probabilities of users,
P i
t = {P i

t,1, . . . ,P i
t,u, . . . ,P i

t,Ut
} pit,u

Impulsive request probabilities of the uth user
P i
t,u = {pit,u,1, . . . , pit,u,n, . . . , pit,u,Nt,u

}
pit,u,n Impulsive request probability pfre A parameter adjusting user request frequency

b
Unit transmission cost (b� s)

(from cloud server to users) η
A scaling parameter

(MNOs charges for each unit file)
s Unit transmission cost (from F-AP to users) c(t) The updating transmission cost
Ω The long-term net profit γ The discount factor of RL, γ ∈ (0, 1]
ε Greedy factor of ε-greedy method, ε ∈ (0, 1) D The replay {memory} with the capacity B

ξ
The threshold of cache hit rate

of the F-AP M The set of some requested files
that cannot be obtained from the F-AP

III. PROPOSED TIME-VARYING PERSONALIZED USER
REQUEST MODEL

In this section, considering user behavior, user mobility
pattern, user preferences affected by content recommendation
and some exceptive circumstances in reality, we propose a
time-varying personalized user request model to characterize
the dynamic user demands. Note here that the knowledge
of this user request model is unknown in advance for the
subsequent caching optimization.

A. User Preference and Influence Factors

Consider the personalized and time-varying characteristics
of the user preference. Let Pt = {pt,1, . . . ,pt,u, . . . ,pt,Ut

}
denote the preference vectors of the Ut users during time
slot t, where pt,u = [pt,u,1, pt,u,2, . . . , pt,u,C ]T represents the
preference vector with dimension C describing the preference
of the uth user, i.e., the probability distribution of the uth
user requesting each file in the file library C and the sum of
all the elements in the preference vector pt,u equals 1. The
Mandelbrot-Zipf (M-Zipf) distribution is usually utilized to
characterize the content popularity distribution [41], and to
match this content popularity distribution, the user preference
vector should also conform to the M-Zipf distribution. In
addition, different users may have similar preferences, i.e.,

preference vectors of different users may overlap to some
extent. Let P0 = {p0

1,p
0
2, . . . ,p

0
g, . . . ,p

0
G}, with a superscript

0 to distinguish it, denote a candidate set containing G initial
user preference vectors, where p0

g = [p0g,1, p
0
g,2, . . . , p

0
g,C ]T

represents an initial user preference vector following the M-
Zipf distribution as follows:

pg,c =
(ic + τ)−α∑
j∈C (ij + τ)−α

,∀c ∈ C, (1)

where ic represents the rank of content c in descending order
of global content popularity, α is the skewness factor and τ is
plateau factor. For a user who has newly arrived, its preference
vector is an initial user preference vector randomly selected
from P0.

The schematic of the formation and influence process of the
user preference vector is shown in Fig. 2, where the candidate
set P0 has G = 4 initial user preference vectors and the value
of the dimension C of each initial user preference vector is 6.
For convenience of representation and subsequent calculation,
the corresponding preference values of the preference vectors
are all reference values and may not exactly fit the Zipf
distribution. As illustrated in Fig. 2, the formation process
applies only to the newly arrived users. When a user arrives in
the F-AP coverage, the formation process of the corresponding
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Fig. 2. The schematic of the formation and influence process
of the user preference vector.

preference vector can be divided into two steps. Firstly, an
initial user preference vector is randomly selected from the
candidate set P0. Of course, the random selection is not
necessarily the best choice. For the objectivity of modeling
and simulation, we choose random selection here. In Fig. 2,
the first initial user preference vector is selected from the
candidate set P0. Secondly, some adjustment is made on the
selected vector. As shown in Fig. 2, the last two values of the
preference vector are switched.

In addition, according to [42], the request frequencies of
users are often heterogeneous, that is, less than 20% of users
(active users) generate 80% of daily network traffic, i.e., the
majority of user requests are generated by those most active
users. Therefore, we now introduce the inactiveness parameter
collection AC = {ac1, ac2, . . . , acu, . . . , acUt

} to represent

the active levels of Ut users in the F-AP coverage, where
acu ∈ {0, 1}, acu = 0 indicates that the uth user is an active
user who makes frequent file requests and acu = 1 indicates
the opposite case. This inactiveness parameter acu is set as
a fixed parameter of each user in this paper (it can also be
extended to a time-varying parameter). Therefore, we only
need to set the values of this inactiveness parameters for the
Ua
t newly arrived users at the beginning of current time slot

and the values of inactiveness parameters of the U r
t users have

already been set in some previous time slot. To match the
heterogeneity law of user request frequency, for each newly
arrived user, the value of its inactiveness parameter only has
probability of 20% that it is equal to 0, i.e., only 20% of
newly arrived users are active users.

Considering that user preference vectors may be affected
by some external factors, we take pt,u as an example to
describe their influence patterns. As shown in Fig. 2, in the
evolution process, there are three influence factors that may
affect user preference vectors. Note that the influence process
applies to the preference vectors of all users (Ua

t newly arrived
users and U r

t remaining users) in the current F-AP coverage.
In Fig. 2, the preference vector of a newly arrived user in
the formation process is used as an example to illustrate the
influence process.

(1) Content recommendation: According to the recommen-
dation policy, the ‘abstract’ parts (the thumbnail of an image
or the title of an article) of its current cached files are recom-
mended by the F-AP to the users within its service coverage
at the beginning of each time slot. When the cached files are
refreshed, the recommended contents are also modified. The
impact of recommendation is quantized by recommendation
factor β (β ≥ 1) . The recommendation status of the F-AP is
denoted by rect = [rect,1, rect,2, . . . , rect,c, . . . , rect,C ]T in
time slot t. For rect,c,∀c ∈ C, if the ‘abstract’ part of the cth
file is recommended, rect,c = β, and rect,c = 1 otherwise.
It is assumed that content recommendation influences the
user preference with an ‘interacting’ pattern, which can be
expressed as follows:

pt,u ← Φ(pt,u ◦ rect), (2)

where ◦ denotes the operator of Hadamard product and Φ
is a normalization function to ensure that all elements of
pt,u ◦ rect still add up to 1. This ‘interacting’ mode reflects
the mutual influence between content recommendation and
user preferences, i.e., a better recommendation effect can be
obtained by recommending content with larger user preference
value to users. We assume that the content preference vector
of users will be immediately updated once the recommended
content is broadcast.

For the content recommendation influence factor, as shown
in Fig. 2, the F-AP recommends the first two files in the
file library C. The preference values (0.1 and 0.4) of the
corresponding position in the current preference vector are
multiplied by the recommendation ratio (1.5) becoming the
new preference values (0.15 and 0.6). Then, the modified user
preference vector is normalized to ensure that all elements of
the vector still add up to 1.

(2) User behaviour: Note that users barely make repeated
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requests for the same file. During time slot t, for the nth
request reqt,u,n = 〈ft,u,n, tu,n, Sp

ft,u,n
〉 of the uth user, the

preference value of the requested file is set to a small value
µ, i.e., pt,u,ft,u,n

= µ, and the modified user preference is
normalized to ensure all its elements still add up to 1. Besides,
the above preference modification is also affected by the order
of requests (order by tu,n). That is, the modification caused
by the nth request reqt,u,n needs to be made according to
the user preference vector modified by the (n− 1)th request
reqt,u,n−1, and it can be expressed by a function An:

An(An−1, reqt,u,n, µ)→ pt,u, (3)

where An−1 represents the user preference vector modified by
the previous (n−1) requests. During time slot t, Nt,u requests
reqt,u = {reqt,u,1, reqt,u,2, . . . , reqt,u,n . . . , reqt,u,Nt,u

} will
in turn affect pt,u, and it can be expressed as follows:

pt,u ←ANt,u = ANt,u

(
ANt,u−1

(
. . . An(. . . A2(A1

(pt,u, reqt,u,1, µ), reqt,u,2, µ
)
, . . . , reqt,u,n, µ),

. . . , reqt,u,Nt,u−1, µ
)
, reqt,u,Nt,u

, µ
)
,

(4)

where Nt,u requests correspond to Nt,u modifications and
each modification should be made immediately after each
request. Otherwise, the same file can be requested repeatedly.

As illustrated in Fig. 2, the user only requests one file, i.e.,
the second file in the file index library C, during the current
time slot. The preference value (0.48) of the corresponding
position in the current preference vector is set to a small
value µ = 0.05. Then, the modified user preference vector
is normalized again to ensure that all elements of the vector
still add up to 1.

(3) User mobility pattern: Note that the influence of
recommendation can be delayed, and the user preference
modifications caused by avoiding repeated requests are con-
tinued before the user leaves coverage of the current F-AP.
All their preference modifications are retained before they
leave coverage of the current F-AP for U r

t remaining users,.
Once the user leaves the F-AP coverage, the corresponding
preference vector will be deleted (the user will not make any
file requests within the current F-AP coverage). This is also
the largest difference between the preferences of U r

t remaining
users and Ua

t newly arrived users. The former is ‘inherited’
and determined, whereas the latter is randomly selected from
the candidate set P0 with different adjustments.

As illustrated in Fig. 2, if the user leaves coverage of the F-
AP (both Ua

t newly arrived users and U r
t remaining users), the

corresponding preference vector will be deleted. Otherwise,
the user will be one of the U r

t+1 remaining users of the next
time slot t+1 and all preference modifications will be retained.
And the next round of the influence process will start in the
next time slot.

B. User Request Model

Our proposed time-varying personalized user request model
includes two parts: the user impulsive request and the user
preference based request, which is illustrated in Fig. 3. In ei-
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Fig. 3. The schematic of the proposed user request model.

ther case, once a request reqt,u,n occurs, it is a user behaviour
factor which will influence the current user preference pt,u.

(1) User impulsive request: Due to some special cases
in reality, a user may impulsively request a file or the
user has to request a particular file for some reason, and
most of these requests are not in accordance with their
user preferences. In this case, the common situation is that
when a file is needed, the file must be requested. Let
P i
t = {P i

t,1,P i
t,2, . . . ,P i

t,u, . . . ,P i
t,Ut
}, with a superscript

i to distinguish it, denote the impulsive requesting proba-
bility set of Ut users during time slot t, where P i

t,u =
{pit,u,1, pit,u,2, . . . , pit,u,n, . . . , pit,u,Nt,u

} denotes the impulsive
requesting probabilities of the uth user for its Nt,u requests
and Nt,u ∈ [0, Nmax]. That is, for a request reqt,u,n, the prob-
ability of impulsive requesting is pit,u,n, and the probability of
requesting a file according to the user preference is 1−pit,u,n.
In addition, by considering that the impulsive request is often
involuntary or directed, this type of user requests has little
to do with the inactiveness parameter collection AC of users.
Therefore, we assume that the status of user requests (or the
frequency of user requests) in this case is independent of the
inactiveness parameters.

(2) User preference based request: The user preference
based request, with probability 1− pit,u,n, is divided into two
steps: selecting the file and requesting the file. Next, we take
preference pt,u of the uth user as an illustration to elaborate
the forming process of its nth request reqt,u,n in time slot t.
The schematic is shown in Fig. 3.

Firstly, the user randomly selects a file according to the
current user preference pt,u, i.e., the probability of a file
being selected is proportional to its preference value. In Fig. 3,
ft,u,n = 2, i.e., the 2nd file in C is selected and its preference
value is pt,u,ft,u,n

= pt,u,2 (for description convenience, the
selected file is also represented by ft,u,n). Secondly, the user
requests the selected file. The Bernoulli distribution is utilized
to model the request process, which determines whether the
selected file will be requested or not, and it can be expressed
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as follows:

Nt+1,u =

{
Nt,u + 1, p = pt,u,ft,u,n(1− pfreacu),

Nt,u, p = 1− pt,u,ft,u,n
(1− pfreacu),

(5)

where pfre is a constant parameter used to adjust the user
request frequency in line with the user inactiveness parameter
acu. acu is a binary value to indicate whether a user is an
active user or not. When acu = 0, which indicates the user
is active, pfreacu = 0 and pfre loses its regulating effect. For
the uth user, p = pt,u,ft,u,n(1− pfreacu) is the probability of
requesting the selected file, so the probability of not requesting
the selected file is p = 1−pt,u,ft,u,n

(1−pfreacu). Obviously,
the user preference based request is related to pfre and the
inactiveness parameter acu. As shown in Fig. 3, the selected
file is requested and reqt,u,n = 〈2, tu,n, S2〉, which will
influence pt,u as the nth ‘user behaviour’ influence factor.
Note that once Nt,u = Nmax, the user no longer selects and
requests any file.

When acu = 0, i.e., the user is an active user, and the
formula (5) can be expressed as:

Nt+1,u =

{
Nt,u + 1, p = pt,u,ft,u,n

,

Nt,u, p = 1− pt,u,ft,u,n
,

(6)

where the user request is not adjusted by the parameter pfre.
On the contrary, when acu = 1, i.e., the user is not an active
user, and the formula (5) can be expressed as:

Nt+1,u =

{
Nt,u + 1, p = pt,u,ft,u,n

(1− pfre),
Nt,u, p = 1− pt,u,ft,u,n

(1− pfre),
(7)

where the user request is adjusted by the parameter pfre. In
(6) and (7), the larger the user preference value of a file, the
more likely it is to be selected and requested.

Given that majority of user requests (e.g. 80%) are gener-
ated by active users (e.g. 20%), we control the user request
distribution by setting a reasonable value for parameter pfre. A
reasonable value of pfre should satisfy the following condition:

20× 1

20× 1 + 80× pfre
= 0.8. (8)

Obviously, the value of pfre that can satisfy this condition is
approximately 0.06.

Based on the proposed user request model, during time
slot t, when the uth user attempts to make the nth request
reqt,u,n, the request situation can be divided into two cases.
The first case is that the request reqt,u,n is an impulsive
request with the probability pit,u,n, and the corresponding file
will be requested directly. The second case is that the nth
request reqt,u,n is a user preference based request with the
probability 1− pit,u,n, where the generation of a user request
involves two steps (select the file and execute the request).
Note that the selected file may not be finally requested in
the second case, i.e., the nth user request reqt,u,n may not
actually be made in the second case. Of course, when this
situation occurs, for the uth user, the identifier of the next
request during time slot t is still reqt,u,n, i.e., reqt,u,n is the
user request that is successfully made.

For each request reqt,u,n, the value of its parameter Sp
ft,u,n

is randomly generated, which is no larger than the size of
the current requested file. Once Nt,u = Nmax, the uth user
no longer requests any files in either case. As illustrated in
Fig. 3, in either case, once the request reqt,u,n occurs, the
preference vector pt,u of the uth user will be affected as the
nth ‘user behaviour’ influence factor.

IV. PROPOSED DDQN-BASED DISTRIBUTED EDGE
CACHING ALGORITHM WITH CONTENT

RECOMMENDATION

A. Problem Formulation

The objective of our paper is to find a caching policy π
(to consistent with the subsequent RL, π is used here) with
content recommendation by maximizing the long-term net
profit of each F-AP.

Take the nth request reqt,u,n = 〈ft,u,n, tu,n, Sp
ft,u,n

〉 of
the uth user as an example. The F-AP directly transmits the
cached file with the index ft,u,n to the user if the caching
status θt(ft,u,n) = 1, and the transmission consumption is
denoted by s × Sp

ft,u,n
, where s is the transmission cost

required to transmit a file with a unit size from the F-AP
to the user and Sp

ft,u,n
is the size of the requested content.

Otherwise, θt(ft,u,n) = 0, the consumption for the cloud
server transmitting the requested file to the user is denoted by
b×Sp

ft,u,n
(b� s), where b is the transmission cost required

to transmit a file with a unit size from the cloud server to the
user. Since the transmission distance from the cloud server to
the user is far greater than the distance from the F-AP to the
user, b� s.

Moreover, (b−s)×Sft,u,n
denotes the cost for transmitting

a file from the cloud server to the F-AP for caching update.
The reason why Sft,u,n is used here instead of S0

t,ft,u,n
is that

the entire updated file needs to be fetched before determining
whether the file needs to be split during the update process,
where S0

t,ft,u,n
is the actual cache capacity occupied by the

cached file with the index ft,u,n in the F-AP during time slot
t. In each time slot, the caching updates of the F-AP may
happen. The cost of the F-AP for files updating is set to c(t)
in time slot t, which is a multiple of (b − s) × Sft,u,n

. In
addition, the corresponding transmission cost could be ignored
since only the F-AP will recommend the ‘abstract’ parts from
the current cached files to users. Correspondingly, in time slot
t, the total transmission cost is written as follows:

Ut∑
u=1

Nt,u∑
n=1

{
θt(ft,u,n)× s× Sp

ft,u,n
+ [1− θt(ft,u,n)]

×(b× Sp
ft,u,n

)
}

+ c(t).

(9)

Then, the long-term net profit Ω of the F-AP is formulated as
follows:

Ω =

T∑
t=0

{ Ut∑
u=1

Nt,u∑
n=1

[
η × Sp

ft,u,n
− θt(ft,u,n)× s× Sp

ft,u,n

− (1− θt(ft,u,n))× (b× Sp
ft,u,n

)
]
− c(t)

}
,

(10)

where η denotes a scaling parameter indicating how much the
MNOs charge a user for each unit file [21], [30]. Therefore, we
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can express the edge caching optimization problem as follows:

max
π

Ω, (11)

s.t. 0 ≤ c(t)

(b− s)× Sft,u,n

≤ Ft, (11a)

0 ≤ Nt,u ≤ Nmax, (11b)

where (11a) denotes the cache capacity constraint of the F-AP
for the updating process of the cached files and (11b) denotes
the constraint for the number of requests. The caching policy
π here is used to determine which files need to be stored in
the current F-AP.

B. RL Framework
For problem (11), it is hard to acquire the optimal theo-

retical solution by using traditional optimization methods. By
considering the personalized and time-varying characteristics
of the proposed user request model, RL framework in machine
learning is utilized next to solve the problem.

First, the objective in problem (11) is the maximum of
net profit, which is the long term reward. Correspondingly,
the problem (11) is modeled as a Markov decision process
(MDP), which is the basic model of RL. Then in each time
slot t, the problem (11) can be solved with an RL framework,
where the agent continuously interacts with and learns from
the environment [43], which constitutes an episode. The agent
can select an action a(t) in the current environment state s(t)
during each time slot t. The environment feeds back a reward
r(t) to the agent after this action a(t) is executed which can
let the environment go into a next new state s(t + 1). The
state transition probability can be expressed as follows:

P (s′|s,a) = P [s(t+ 1) = s′|s(t) = s,a(t) = a], (12)

where
∑

s′∈S P (s′|s,a) = 1.
Let e(t) = [s(t),a(t), r(t), s(t+ 1)]

T denote an expe-
rience vector of the above interaction. In the current en-
vironment state, the policy π is exploited to decide which
actions will be selected for execution. According to the reward
function, RL can guide the agent to select experience vectors
from the experience pool, and optimize our caching strategy
by maximizing long-term reward expectations.

We model the problem (11) as an MDP in an F-AP. The
external environment of RL is the dynamic user request, which
has been constructed in part B of section III, and the learning
agent is the F-AP. The state space, action space and reward
function are described as follows.

(1) State Space S: The state space S mainly includes the
content cache state in the F-AP and content request state
from users. The request state from users has been modeled
by reqt,u,n and the cache state is s(t). The cache state s(t) is
the index collection of the files currently cached in the F-AP,
i.e., s(t) = [i1, i2, . . . , if , . . . , iFt

]T , ∀if ∈ [1, C]. However,
the types of states rapidly increase with C, which may lead
to the curse of dimensionality in RL. Therefore, we assume
that the index collection is based on reverse ordering of the
cumulative number of requests, where some infrequent states
will rarely appear, which is enlightened by the least frequently
used (LFU) method [44].

The initial value of s(t) is determined by the initial cached
files of the F-AP. Obviously, a direct and convenient way
is to randomly select Ft files from the cloud server as the
initial cached files in the F-AP. In [45] and [46], the authors
proposed a transfer learning method to improve popularity
profile estimation by using prior knowledge of information
provided from proxy sources, e.g., social networks. Similarly,
we can set the initial cached files in the F-AP by referring to
the popular files from an alternative domain with the transfer
learning approach, which is more efficient than the random ap-
proach and can increase the rate of subsequent initial training
process. However, the effectiveness of this approach depends
on how well the proxy source, e.g., Facebook, represents user
requests for the target domain. When file popularity varies
greatly between the target domain and the proxy source, the
caching decision can be misguided, while excess processing
overhead is imposed to the F-AP or the network operator. In
addition, when considering collaborative caching, the initial
cached files for the current F-AP can be determined by
referring to the nearby F-AP that is in the training process
or has already completed training.

(2) Action Space A: The action space A indicates whether
the cached files in the F-AP are to be updated during time slot
t, i.e., a(t) ∈ {0, 1}. Based on reqt, the current cached files in
the F-AP are reordered and the request frequency is updated.
Let parameter ξ denote the threshold of cache hit rate, which
can be adjusted during the training process. Let a binary
variable m(t) denote the cache miss condition during time slot
t. If the cache hit rate of the F-AP cannot reach ξ, m(t) = 1,
some requested files (which may be from different users)
cannot be fetched from the F-AP, and these files construct
a set M(M 6= ∅). And we restrict M so that it does not
contain the same files. Otherwise, m(t) = 0 and M = ∅.
Correspondingly, the next state s(t+1) is determined by a(t)
and m(t) jointly. If m(t) = 0 and a(t) = 1, or a(t) = 0,
s(t + 1) denotes the index collection of the newly sorted
cached files. Otherwise, if m(t) = 1 and a(t) = 1, the F-
AP replaces the cached file currently located at the end of the
storage space by a file randomly chosen fromM, and s(t+1)
denotes the index collection after the operation of sorting and
replacement. The updating policy can update at most one file
in one time slot, which reduces the inefficient update caused
by unusual user requests and satisfies the constraint of cache
capacity in (11a). Besides, in order not to affect the training
process of the next time slot, the previous set M is emptied
at the beginning of each time slot.

(3) Reward Function: By considering the objective func-
tion in (11), the reward function is designed as follows:

r(t) =

Ut∑
u=1

Nt,u∑
n=1

{
η × Sft,u,n − θt(ft,u,n)× s× S0

t,ft,u,n
−

[1− θt(ft,u,n)]× (b× Sft,u,n
)
}
− a(t)×m(t)×

(b− s)× Sft,u,n
.

(13)

Moreover, the action-value function Qπ(s,a) following the
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policy π is defined as follows [43]:

Qπ(s,a) = E
[ T∑
τ=t

γτ−tr(τ)
]
s(τ)=s,a(τ)=a.

= E
[
r(t) + γQπ(s′,a′)

]
s(τ)=s,a(τ)=a.

(14)

where s′ and a′ represent s(t+ 1) and a(t+ 1), respectively.
The discount factor γ ∈ (0, 1] implies the current strategy
π taking into account the impact of future rewards. Solving
reinforcement learning is equivalent to optimizing the Bellman
expectation equation for the second equality.

Let Q∗(s,a) = maxπ Qπ(s,a) denote the optimal action-
value function. Correspondingly, the optimal policy π∗ can be
obtained as follows [43]:

π∗ = arg max
a

Q∗(s,a). (15)

C. ‘Pre-Split’ Operation and ‘Lazy’ Update Process

According to the introduction of the ‘pre-split’ operation in
the system model, when the size of the file to be cached is
greater than Smax,t during time slot t, the F-AP needs to split
the file and only cache the corresponding content with the
size of Smax,t. Obviously, this ‘pre-split’ operation imposes
additional processing cost. To control the frequency of this
‘pre-split’ operation, we need to build a connection between
Smax,t and the cached files in the storage space of the F-AP.
In time slot t, let Sav,t denote the average size of current
cached files in the F-AP, i.e.,

Sav,t =

∑iFt

ft,u,n=i1
Sft,u,n

Ft
. (16)

Set the value of Smax,t to a multiple (for example, 2 times)
of Sav,t. At this point, the relationship between Smax,t and
current cached files in the F-AP is established with the
parameter Sav,t.

Ideally, the value of Smax,t should be updated dynamically
in real-time while the cached files are also being updated in the
local F-AP. However, the real-time dynamic update of Smax,t

will cause several problems. It can lead to the confusion in
updating the cached files. Based on the definition of Ft, i.e.,
Ft = Cf/Smax,t, the storage capacity Cf of the F-AP is a fixed
value and the real-time update of Smax,t will directly lead to
the real-time update of Ft. Each update of Smax,t and Ft will
lead to a large number of cached files being updated in the
F-AP, in which the corresponding cached files are required
to be fetched from the cloud server again and undergo the
‘pre-split’ operation with the updated Smax,t, thus resulting
in large transmission costs. On the other hand, the value of
Ft directly corresponds to the dimension of the state (s(t) =
[i1, i2, . . . , if , . . . , iFt

]T ). The real-time update of Smax,t and
Ft results in the real-time update of the dimension of the state
vector (s(t)). However, during a period of training process, the
agent needs to ensure that the dimension of state s(t) remains
constant. The reason is that the state transition with variable
dimensions (for example, the state s(t1) with dimension 10
changes to the state s(t2) with dimension 5) will bring great
challenges to the training process of reinforcement learning.

According to the above analysis, we take a ‘lazy’ approach
to update Sav,t, Smax,t and Ft. We set the update period of
Sav,t, Smax,t and Ft as one training period, such as 2000
time slots, which can be adjusted according to the training
situation.

The ‘lazy’ scheme means that the update process occurs
only at the last time slot t = T for each training period. This
period is defined by default but it can also be dynamically
modified in the training process. An entire ‘lazy’ update
process includes the following steps: (1) Obtain the file sizes
of current cached files in the F-AP and update the value of
Sav,t according to formula (16), and determine the updated
Smax,t and Ft in turn according to the updated Sav,t. (2)
Update all cached files in the F-AP. The update operation
here is different from the update operation of a(t) = 1 where
at most one cached file is updated. Firstly, all cached files
of the current F-AP are deleted. Then, Ft files (updated Ft)
are fetched from the cloud server based on the index order of
the current state s(T ) and are cached in the F-AP after the
‘pre-split’ operation with the updated Smax,t. For this update
process, if the value of the updated Ft is less than or equal to
its original value, we only need to carry out Ft file fetching
and ‘pre-split’ operations successively. Otherwise, additional
files are required to be fetched from the cloud server to meet
the updated value of Ft. Finally, set the cumulative number
of requests for all cached files to 0. (3) The state space S
is cleared, and the elements of initial state s(0) for the next
training period are indexes of the files currently cached in the
F-AP with the updated Ft as the dimension. Besides, when the
RL or DRL framework utilized involves the replay memory,
the replay memory also needs to be cleared. At this point, the
‘lazy’ update process ends, and the training process enters the
next training period.

Cache fragmentation issues are inevitable in every cache
scenario. The proposed ‘pre-split’ procedure with a dynamic
upper limit can dynamically find a better storage upper limit
size, so as to minimize the waste of cache resources caused
by storage fragmentation. Although the ‘lazy’ update process
still result in all cached files of the F-AP being updated, the
frequency of its occurrences is not high (e.g., one training
period includes 2000 time slots), and the total relevant trans-
mission costs of a ‘lazy’ update process can be considered as
a fixed value. As for whether the size limit of each cached
content will cause additional cache update costs, this situation
generally occurs when the current popular files are all large
files and the corresponding popular contents are frequently
changed. This scenario occurs infrequently, and additional
caching costs can be minimized by limiting the frequency of
changes to the dynamic file cache upper limit. Therefore, in
(10), the corresponding transmission costs are not included.

In the modeling of partial file storage, we consider a
generic modeling that only considers file size, the most
important parameter that does play a critical role in caching
performance. In fact, Some other important information can
also be introduced to refine the current modeling, such as
considering the storage characteristics of different file types,
i.e., the priority storage of thumbnails and other information
for image files. The requested portion of the file content starts
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from scratch by default. However, it is important to emphasize
that the cached file contents are filtered based on the content
popularity, not necessarily the head content of the large file,
but most likely the key content in the middle.

D. Proposed DDQN-Based Distributed Edge Caching Algo-
rithm with Content Recommendation

To speed up the convergence and reduce the impact of the
curse of dimensionality in RL, we now propose a DRL-based
distributed edge caching algorithm to find the optimal caching
policy π∗.

DRL utilizes a deep neural network Q(s,a; θ) with the
weight parameter θ to estimate Q∗(s,a) [32]. Due to the
advantages of DDQN, a variant of DRL architecture [47], we
propose a DDQN-based distributed edge caching algorithm
with content recommendation. The details are presented in
Algorithm 1. To optimize the caching policy π, the F-AP
continuously interacts with the environment to learn. The
environment is the user request dataset constructed by our
proposed user request model in part B of section III. In addi-
tion, the F-AP recommends contents with high user preference
to users within its coverage area, which can affect the user
request model in (2).

(1) ε-greedy method: The objective of our optimization
is the maximization of the reward in (13), where a trade-
off between exploitation and exploration is needed. The ε-
greedy method can achieve this goal [22]. As presented in
line 17 of Algorithm 1, the ε-greedy method is employed in
the training of action selection to avoid local optima in our
proposed algorithm, where the greedy factor ε ∈ (0, 1). It
is exploration if an action at is selected with probability ε.
Otherwise, it exploitation if at = arg maxat

Q(st,at; θ).
(2) Target Q-network: The DDQN architecture uses two

neural networks for learning [47]: the current Q-network (the
action-value function) Q and the target Q-network (the target
action-value function) Q̂. The current Q-network Q(s,a; θ) is
exploited to select actions and update the network parameter
θ. The target Q-network Q̂(s,a; θ−) is exploited to calculate
the target Q-value. After every K steps of training of the
current Q-network, its network parameters θ will be assigned
to the target Q-network to update the parameters θ− for the
target Q-network, which can accelerate the convergence and
reduce the correlation between the current Q-value and the
target Q-value.

(3) Experience Replay: In the DDQN architecture, the
experience vector [st,at, rt, s

′
t]
T is required to update and

train the current Q-network Q(s,a; θ). The experience vector
[st,at, rt, s

′
t]
T obtained by the agent interacting with the

environment is stored in the replay memory D each time
step. When the current Q-network needs to be trained, an
experience vector [sj ,aj , rj , s

′
j ]
T will be selected randomly,

and lines 21-28 of Algorithm 1 show the update process of two
network models. Random selection of experience vectors for
network training can not only cut off the correlation between
experience vectors, but also prevent the problem from falling
into a local optimum. Besides, in comparison with the DQN
algorithm [32], the calculation of the target Q-value and the

Algorithm 1 Proposed DDQN based Edge Caching Algorithm
with Content Recommendation

1: Initialize replay memory D to capacity B;
2: Initialize target action-value function Q̂ with weight θ−= θ,

action-value function Q with random weight θ;
3: Initialize P0, Nmax;
4: Initialize the number of cached files Ft in the storage space of

the F-AP;
5: Fetch Ft files from the cloud server with the transfer learning

method and record the file sizes;
6: Initialize Sav,t based on (16) and initialize Smax,t;
7: Split the Ft files with threshold Smax,t, cache these files in the

F-AP, and initialize initial state s0;
8: Set the cumulative number of requests for all cached files to 0,

and set U r
0 = 0;

9: for episode = 0, 1, . . . do
10: for time slot t = 0, 1, . . . , T do
11: Ua

t users newly arrive at the F-AP coverage, fetch each user
preference vector pt,u from P0 with some adjustments, and
set the inactiveness parameters;

12: F-AP recommends contents, obtain θt and rect;
13: rect affects Pt based on (2);
14: for user u = 1, 2, . . . , Ut do
15: Get plt,u, pit,u, reqt,u, Nt,u;
16: the uth user requests files, reqt,u affects pt,u;
17: end for
18: Obtain U r

t+1 remaining users according to P l
t, record their

current user preferences;
19: Obtain m(t) and M according to reqt,u, θt;
20: Record request frequencies of the cached files in the storage

space of the F-AP according to reqt,u, θt, save the cached
files in reverse order;

21: According to ε-greedy method, select a random ac-
tion at with probability ε, otherwise select at =
argmaxat Q(st,at; θ);

22: Execute action at, update the cached files according to
a(t), m(t), M, get s′t;

23: Calculate reward rt based on (13);
24: Save experience vector [st,at, rt, s

′
t]
T in D;

25: Set st = s′t;
26: Sample random experience vectors

[
sj ,aj , rj , s

′
j

]T from
D;

yj =


rj , if time slot terminates at step j + 1;

rj + γQ̂
(
s′j , argmax

a′
j

Q
(
s′j ,aj ; θ

)
; θ−

)
,

otherwise;

27: Execute a gradient descent step on(
yj−Q(sj ,aj ; θ)

)2 with respect to the network parameter
θ;

28: Reset Q̂ = Q every K steps;
29: end for
30: Update Sav,t, Smax,t and Ft;
31: Update the current cached files of the F-AP;
32: Clear the state space S and initialize the initial state s0;
33: Clear all experience vectors in the replay memeory D.
34: end for

action selection are decoupled in the updating process to avoid
any overestimate.

Computation Complexity: Regarding the complexity of the
proposed DDQN-based edge caching algorithm, two aspects
need to be examined, i.e., experience vectors and back prop-
agation. Assuming that there exist K experience vectors in
the experience pool, we have a complexity of O(K). Let x
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Fig. 4. Average reward for each request versus time slot for
different caching algorithms.

represent the number of layers and y represent the number
of experience vectors in a layer. It could take O(Lxyz)
time to train the parameters by using gradient descent and
back propagation. Here, L represents the number of randomly
selected experience vectors, and z represents the number of
iterations. Especially, K experience vectors are stored in the
experience pool, and the space complexity of O(Kxy) is
required to solve the parameter storage problem of the DDQN
algorithm. Similar to [48], the analysis of computational
complexity verifies that the proposed algorithm is lightweight
and can be deployed to the edge device F-AP easily.

In general, the proposed algorithm can better adapt to
dynamic user demands by learning from interactions with the
request dataset. Content recommendation reduces the hetero-
geneity of user requests, and the caching efficiency of the
original caching strategy has also been improved accordingly.
It is also possible for the proposed algorithm to utilise the
available prior knowledge to speed up training and reduce
computational costs.

V. SIMULATION RESULTS

The performance of our proposed edge caching algorith-
m is evaluated through simulations. The cloud server has
C = 50000 files of different sizes, whose indexes form the
file index library C. The storage capacity Cf of each F-AP
is set to 1000 unit size and the initial number of cached
files in the F-AP is set to Ft = 50. A training period has
2000 time slots. The mean values of the elements in P l

t and
P i
t are set to 0.5 and 0.1, respectively. In addition, we set:

G = 15, H = 5, λ = 30, Nmax = 3, µ = 0.05, s = 0.1,
η = 1.2, b = 1, and β = 1.5. The proposed DDQN model
adopts a three-layer fully connected network, in which the
number of hidden layer neurons is 128 and the learning rate
is 0.005. Some existing algorithms have been selected as
benchmarks, namely the least recently used (LRU) method
[49], the least frequently used(LFU) method, the Q-learning-
based algorithm, the DQN-based algorithm, and our proposed
algorithm without content recommendation (β = 1).

In Fig. 4, we plot the average rewards (net profits) over
three training periods for each user request of the proposed
algorithm (DDQN (β = 1.5)) and the three benchmark
algorithms (LFU, LRU, the proposed algorithm with β = 1
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Fig. 5. Average reward for each request versus time slot for
different RL caching algorithms.

(DDQN (β = 1)) , i.e., our proposed algorithm without
considering the content recommendation). We can observe
that, compared with LFU and LRU, our proposed algorithm
(β = 1.5) has a clear advantage in improving average reward
after three training cycles, and offers an increase of 29.7%.
The reason is that the proposed algorithm can discriminate
and reduce the ’redundant’ updates of the F-AP triggered by
infrequent user requests. Since a training period has 2000 time
slots, it can be observed that the simulation curves related
to deep reinforcement learning (DDQN (β = 1) and DDQN
(β = 1.5)) all have a relatively obvious process of restarting
training at every 2000 time slots. That is, the proposed
algorithm can adapt to the situation of inconsistent file sizes
in cloud servers, and the current cache capacity occupied by
each cached file in the F-AP can be dynamically adjusted
according to recent user requests. We can also observe that the
proposed algorithm has a faster convergence speed and a better
performance in comparison with DDQN (β = 1) which does
not consider content recommendation. Besides, our proposed
algorithm shows small fluctuations after convergence because
the F-AP constantly interacts with the environment to learn
and optimize the caching strategy to satisfy the fluctuant
demands of users.

In Fig. 5, we compare the average reward of each user
request between our proposed algorithm and two classic
reinforcement learning algorithms, i.e., DQN and Q-learning.
We can observe that all the simulation curves follow an
identical pattern in restarting training for every 2000 time
slots. We can also observe that in terms of convergence
speed and average reward, the two benchmark algorithms are
significantly worse than our proposed algorithm, which means
that the probability of local optima can be greatly reduced.
Moreover, the Q-learning-based algorithm is worse than the
other two algorithms based on deep neural networks (DQN
and DDQN) in terms of convergence speed. The reason is
that DRL employs the neural network Q(s,a; θ) to simulate
Q∗(s,a), which shortens the time for the algorithm to find
the optimal value.

In Fig. 6, we plot the average rewards of each user request
for the proposed algorithm and the three benchmark algo-
rithms (LFU, LRU, and DDQN (β = 1)) with different storage
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capacity Cf . In order to improve the reliability and fairness of
the experimental results, when each algorithm converges after
three training periods, we consider the mean of the average
reward for each request. The total cache size increases from
Cf = 600 unit size to Cf = 1400 unit size. We can see
that the average rewards increase as storage capacity increases
for four algorithms. We can also observe that our proposed
algorithm has a larger average reward compared with two
traditional algorithms, i.e., LRU and LFU, and in the case
of smaller storage capacity, our proposed algorithm also has
better performance.

VI. CONCLUSION

In this paper, we have studied the distributed edge caching
problem in F-RANs with dynamic content recommendation.
In particular, we have proposed a more realistic personalized
time-varying user request model to describe the fluctuant user
demands. To maximize the net profit of each F-AP, we have
proposed a DDQN-based distributed edge caching algorithm
with content recommendation to find the optimal caching
policy. Simulation results have shown that the proposed al-
gorithm offers a better caching performance in comparison
with the traditional methods. The proposed algorithm can
adapt to the situation of inconsistent file sizes in the cloud
server, and the storage space occupied by each cached file
in the F-AP can be dynamically adjusted according to user
requests. Finally, content recommendation can also enhance
the performance of the original caching policy to a certain
degree. In subsequent studies, we plan to consider introducing
more parameters to improve the current modeling, such as
storage characteristics of different file types, the wireless
channel and its impediments, and compare with more machine
learning based caching algorithms.
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