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An Explainable 3D Residual Self-Attention Deep
Neural Network For Joint Atrophy Localization and

Alzheimer’s Disease Diagnosis using Structural
MRI

Xin Zhang, Liangxiu Han, Wenyong Zhu, Liang Sun, Daoqiang Zhang

Abstract—Computer-aided early diagnosis of Alzheimer’s dis-
ease (AD) and its prodromal form mild cognitive impairment
(MCI) based on structure Magnetic Resonance Imaging (sMRI)
has provided a cost-effective and objective way for early preven-
tion and treatment of disease progression, leading to improved
patient care. In this work, we have proposed a novel computer-
aided approach for early diagnosis of AD by introducing an
explainable 3D Residual Attention Deep Neural Network (3D
ResAttNet) for end-to-end learning from sMRI scans. Different
from the existing approaches, the novelty of our approach is
three-fold: 1) A Residual Self-Attention Deep Neural Network
has been proposed to capture local, global and spatial infor-
mation of MR images to improve diagnostic performance; 2)
An explainable method using Gradient-based Localization Class
Activation mapping (Grad-CAM) has been introduced to improve
the interpretability of the proposed method; 3) This work
has provided a full end-to-end learning solution for automated
disease diagnosis. Our proposed 3D ResAttNet method has been
evaluated on a large cohort of subjects from real datasets for
two changeling classification tasks (i.e. Alzheimer’s disease (AD)
vs. Normal cohort (NC) and progressive MCI (pMCI) vs. stable
MCI (sMCI)). The experimental results show that the proposed
approach has a competitive advantage over the state-of-the-art
models in terms of accuracy performance and generalizability.
The explainable mechanism in our approach is able to identify
and highlight the contribution of the important brain parts (e.g.,
hippocampus, lateral ventricle and most parts of the cortex) for
transparent decisions.

Index Terms—Deep learning, 3D CNN, MRI brain scans,
Model Explanation/Explainable Artificial Intelligence

I. INTRODUCTION

ALZHEIMER’S disease (AD) is the most common cause
of dementia among the old people, which is irreversible

and progressive neurodegenerative brain disease. It contributes
to 60-70% of dementia cases and affects over 30 million
individuals[1]. With the exponentially growing aging pop-
ulation across the globe, the prevalent increased cases of
Alzheimer’s disease (AD) have presented unprecedented pres-
sures on public healthcare service. There is currently no cure
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for AD. However, the progress could be slowed through
medicine and optimized physical cognition and activity. There-
fore, accurate and timely diagnosis of Alzheimer’s disease
(AD) and its early form mild cognitive impairment (MCI)
is essential for optimal management and improved patient
care [2]. Clinically, Structural Magnetic Resonance Imaging
(sMRI) has been used for AD diagnosis. The structural MRI
measurement is considered as a marker of AD progression,
which can help detect the structural abnormalities and track
the evolution of brain atrophy[3], [4], [5]. However, the
disease identification process is mainly performed manually
by specialists, which is time-consuming and expensive.

To solve this problem, much effort has been devoted to
developing computer-aided diagnostic systems for automated
discrimination of progression of AD (e.g., mild cognitive
impairment (MCI) including progressive MCI (pMCI) and
stable MCI (sMCI) and normal cohort (NC)) from sMRI
scans based on voxel-wise global features, or predetermined
regional features or combination of both [6], [7], [8], [9]. The
volumetric or voxel-based approaches extract global features
for detecting the structure changes and identifying voxel-wise
disease associated microstructures for AD diagnosis [10], [11],
[12], [13]. The Tensor-based morphology (TBM) diagnostic
approach is a voxel-wise optimization approach, which can
recognize local structural changes through mapping orders of
local tissue volume loss or income over time to understand
the neurodegenerative or neurodevelopment processes for AD
diagnosis[14]. In [15], the gray matter voxels were selected as
features and used to trained a machine learning model for AD
vs. NC classification.

Since some specific brain regions such as hippocampal
region of interest (ROI) are strongly correlated to the disease,
several existing works focused on some predetermined ROIs
guided by prior biological knowledge and extracted regional
features for AD diagnosis [16], [17], [18], [19], [20]. For
instance, Magnin [17] and Zhang [21] applied Support Vector
Machine (SVM) to learn regional features for AD diagnosis
by splitting the brain into some non-overlapping areas.

Recently, deep neural networks have shown successful for
various computer vision tasks [22], [23]. A few deep learning
methods have been proposed for AD diagnosis with sMRI
scans and achieved better performance than the classical
machine learning-based methods. These methods focused on
learning either regional features from prior Knowledge regions
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(e.g., hippocampus [24], [19], cortical [25]), global features
[7] or combination of both [26]). Lian et al. proposed a
hybrid deep learning approach using convolutional neural
networks (CNNs) to learn combined features at multiscale
[26]. Hosseini-Asl et al. predicted AD with a 3D CNNs
based on the pretrained 3D convolutional autoencoder model
to capture anatomical shape variations from sMRI [7].

Despite the existing encouraging work, it suffers several
limitations. Firstly, extracting global features using voxel-
based approaches involve processing high-dimensional 3D
data, which is computationally intensive. Secondly, regional-
based features focusing on certain brain regions of interest
(e.g., the cortical thickness and hippocampus shape) may
neglect possible pathological locations in the brain and fail
to obtain global structural information for accurate AD di-
agnosis. Moreover, these methods require domain-specific
prior-knowledge and multi-stage training. Thus, it is hard to
provide an end-to-end solution for automatic disease diagnosis.
Thirdly, the existing methods [26], [7] used combined features
or global features to improve disease diagnostic performance
based on deep learning approaches. However, the use of hybrid
loss functions for each layer with the same shared weight may
lead to difficulty in training and reproduction. Finally, most of
existing deep learning-based approaches for AD diagnosis lack
transparency in terms of model explanation due to the nature
of black-box learning.

To overcome the aforementioned limitations, this work
proposes a novel computer-aided approach for early diag-
nosis of AD from sMRI by developing an explainable 3D
Residual Attention Deep Neural Network (3D ResAttNet) for
end-to-end learning from sMRI. Different from the existing
approaches, our contributions lie in:

1) A Residual Attention Deep Neural Network has been
designed and implemented, allowing for capturing local,
global and spatial information to improve diagnostic
performance;

2) An explainable Gradient-based Localization Class Acti-
vation mapping (Grad-CAM) has been introduced, en-
abling visual explanation and interpretation of model
predictions;

3) The proposed work has provided a full end-to-end
solution for automated disease diagnosis.

The rest of this paper is organized as follows: Section 2
presents related work; Section 3 details the proposed method;
In Section 4, the experimental evaluation is described; Section
5 concludes the proposed work and highlights the future work.

II. RELATED WORK

A. Computer-aided AD diagnosis

Computer-aided diagnosis of AD treatment has a long
history, with the aim of extracting useful features for au-
tomatic classification. According to the feature extracted
method, it can be broadly divided into three categories: 1)
Global feature-based approaches (Voxel-based approaches); 2)
Regional feature-based approaches; 3) Combination of both
global and regional based approaches.

The early works on AD diagnosis mainly focused on the
extracted global features from the whole MR image. The
volumetric-based approach using voxel intensity features has
been widely used for AD classification. Ashburner et al. [12]
introduced a voxel-based morphometry (VBM) method, which
used voxel-wise comparison on the smoothed gray-matter im-
ages. It showed the difference between white and gray voxels
in local concentrations compared with the normal cohort (NC)
brains. Based on the voxel-wise features, Klöppel et al. trained
a support vector machine (SVM) model to diagnosis AD
from sMRI [15]. Hinrichs et al. [27] also employed the gray-
matter density to extract voxel-wise features, then a linear
programming boosting method was trained to classify AD with
sMRI images. However, some limitations include 1) computa-
tionally intensive and over-fitting due to high dimensionality of
features with the relatively small number of images for model
training; 2) neglecting the regional information that has been
proven important to AD diagnosis.

The second category is regional feature-based methods.
The majority of the works in this category mainly relied on
prior knowledge to determine ROIs. Several existing works
in the literature extracted features from the predetermined
ROIs based on biological prior knowledge on the shrinkage
of cerebral cortices and hippocampi, the enlargement of ven-
tricles, and the change of regional glucose uptake [18], [19],
[20]. Magnin [17] and Zhang [21] extracted regional features
by splitting the whole brain into smaller regions to train the
machine learning classifiers for AD diagnosis. The work in
[16] used Gauss-Laguerre Harmonic Functions (GL-CHFs)
and SURF [28] descriptors to extract local features from sMRI
scans in hippocampus and posterior cingulate cortex (PCC)
structures of the brain. Fan [29] partitioned the sMRI images
into an adaptive set of brain areas based on the watershed
algorithm, and then extracted the regional volumetric features
to train a SVM-based AD classification model. However, these
aforementioned methods are based on empirical regions, which
might neglect possible pathological locations in the whole
brain. Moreover, the features extracted from ROIs may not be
able to reflect the subtle changes involved in the brain [30].

In order to address these limitations, a hierarchical method
was introduced by combination of global and regional features.
Lian et al. divided sMRI images into small 3D patches and
extracted features, and then combined the features hierarchi-
cally [26]. Suk et al. also proposed a systematic method for a
joint feature representation from the paired patches of sMRI
images using the patch-based approach[30]. These patch-based
methods have been proven to efficiently deal with the problem
of high dimensional features and also the sensitivity to slight
changes. However, these models always require multi-stage
training, which are not an end-to-end solution.

Recently, deep learning has achieved a remarkable success
in the field of Computer Vision, which has also become
a popular and useful method for medical image analysis
including Alzheimer’s disease (AD) diagnosis based on MRI
images. The convolutional neural network (CNN) [31] [32]
has been proven to be suitable for grid-like data such as
RGB images and MRI images. Billones et al. proposed a
modified 16-layered VGG network to AD classification with
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sMRI images [25]. The method selected 20 central slices of a
sMRI image and achieved high accuracy on classification tasks
using 900 sMRI images from the ADNI database. Residual
network is the most widely used CNNs architecture that
won the Imagenet classification competition [22]. It aims to
alleviate the issues with the vanishing/exploding gradients
when the network becomes deeper. In ResNet Block, a shortcut
connection is added to link the input with the output, thus the
Resnet learns the residual of input. Li et al.[33] proposed a
deep network with residual blocks for AD diagnosis using
1776 sMRI images from the ADNI database.

B. Explainable deep learning

Due to the nature of black box, one challenge facing in the
deep learning models is their explainable capability [34]. For
the AD diagnosis task, most of existing deep learning-based
approaches lack transparency with difficulty in explaining why
and how a model decision is reached. To explain the image
classification result by CNNs models, several explainable
methods for CNNs have recently been proposed.

Saliency map [32] was firstly used for interpreting CNNs
based models, which can highlight and explain which part of
image features that contribute the most to the activity of a
specific layer in a network or the decision of the network as a
whole. It computes the gradients of logits based on the back-
propagation algorithm and visualizes the feature contributions
based on the amount of gradient they receive. This Saliency
map is suitable for visualization but not good for localization
and segmentation due to the noisy results [35]. Some improved
methods based on saliency map [36], [37] have been proposed.
For instance, the most widely used method is the guided
backpropagation by preventing the backward flow of negative
gradients on ReLU activation from the higher layer in the
CNNs architecture [38]. Other optimized visualization meth-
ods also include PatternNet and PatternAttribution [39], Layer-
Wise Relevance Propagation (LRP) [40] and DeepTaylor [41].

Class Activation mapping (CAM) is another explainable
method for CNNs. In the CAM method, the top fully con-
nected layers was replaced by convolutional layer to maintain
the object positions and can find the spatial distribution of
distinguished regions for predict category [42].

The CAM requires retraining the model since it changes the
model architecture. However, to address this issue, Grad-CAM
has been proposed as a generalization of the CAM method
[43], which keeps the origin classification architecture and
calculates the weight by pooling the gradient. This method has
been widely used to explain the CNN classification models.
However, since the Grad-CAM extracts the spatial distribution
from the last layer of the feature map with low resolution,
this results in smaller size than the input image size. In order
to obtain more accurate location information at high resolu-
tion, some optimized CAM methods are proposed, such as
Adversarial Complementary Learning for Weakly Supervised
Object Localization (ACOL) [44], Self-produced Guidance for
Weakly-supervised Object Localization (SPG) [45] and guided
attention inference networks (GAIN) [46]. To the best of our
knowlege, only a few works presented the explainable methods

for deep learning based AD Diagnosis. Montavon et al. and
Yange et al. [41], [47] tried to explain 3D-CNNs by using
visual interpretation methods. These methods are able to show
how the CNNs made the classification decision. But there is
no attempt made yet to explain 3D data classification tasks for
diagnosis of MCI.

III. METHOD

The aim of this work is to develop an end-to-end deep
learning framework to automatically classify discriminative
atrophy localization on sMRI image for AD diagnosis, which
consists of two levels of classifications: Alzheimer’s disease
(AD) vs. Normal cohort (NC) and progressive MCI (pMCI)
vs. stable MCI (sMCI).

A. 3D Explainable Residual Self-Attention Convolutional Neu-
ral Network (3D ResAttNet)

We have proposed a 3D explainable residual attention
network (3D ResAttNet), a deep convolutional neural network
that adopts self-attention residual mechanism and explainable
gradient-based localization class activation mapping (Grad-
CAM) for AD diagnosis. The high-level conceptual framework
is shown in Fig. 1, which consists of several major build-
ing blocks including 3D Conv block, Residual Self-attention
block, and Explainable blocks. The rationale behind of this
architecture design includes:

1) The residual mechanism is designed to allow for more
efficient training with fewer parameters for performance
enhancement when increasing the depth of the network.
Existing methods [22] have shown that residual learning
can alleviate the issue of disappearance/exploding gra-
dients when the network becomes deeper. In addition,
the residual connection avoids losing global features to
ensure the integrity of the original information [48].

2) The self-attention mechanism is added to learn long-
range dependencies. Capturing long-range dependencies
is important in deep learning. Since the convolutional
operator has a local receptive field, the long-distance
dependencies can only be captured when repeatedly
applying convolutional operations [49], [50], [51], [52],
resulting in computational inefficiency. Hence, it is nec-
essary to add self-attention mechanism to address these
issues.

3) The gradient-based localization class activation mapping
(Grad-CAM) is introduced to provide visual explana-
tions of predictions of Alzheimer’s disease.

B. 3D CNNs

Deep convolutional neural networks provide an effective
way to learn multi-level features with multi-layers of convo-
lutional operations in an end-to-end fashion [23]. Essentially,
the high-level features are obtained by composing low-level
features and the levels of features can be enriched by the
number of stacked layers (i.e. depth). We have used 3D CNNs.
3D convolutions apply a 3D filter to the dataset and the filter
moves 3 directions x, y, z to calculate the low-level feature
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Fig. 1. The architecture of 3D residual attention deep Neural Network

representations of the output shape as a 3-dimensional volume
space. The stack of three 3×3×3 convolutional layer is used
to improve computing efficiency, compared to the widely used
7× 7× 7 convolutional layer.

C. Residual Self-attention block (ResAttNet)

In this work, for the first time, we have combined self-
attention with residual module to capture both global and local
information based on 3D images to avoid information loss.
Attention mechanism has been a popular and useful tool in
recent year [49], [50], which can learn and focus on the critical
areas and suppress non-essential information through a weight
matrix in whole image. On the other hand, this may cause
global information loss. Therefore, we have added residual
connection to address this issue. Residual network was orig-
inally designed to solve the issue of disappearance/exploding
gradients when a network becomes deeper [22]. A residual
connection is added between the origin input and the processed
layer, which allows gradients to propagate more easily through
the network.

1) Residual network layer:
A residual network can be formulated as follows:

y = x+ r(x) (1)

Where y is the output of the residual module, x is the input
and r(x) is the residual function. This module includes two
Conv3D blocks consisting of 3×3×3 3D convolution layers,
3D batch normalization and rectified-linear-unit nonlinearity
layer (ReLU).

2) Self-attention layer: described in Section III-A,
the convolutional operator has a local receptive field and only
performs local operations, while the self-attention mechanism
can perform non-local operation, capable of capturing long-
range dependencies/global information. Therefore, inspired by
the work in [52], [51], in our work, the self-attention layer
is introduced to the end of original residual module r(x) to

help the model efficiently capture the global information. A
self-attention function can be described as mapping a query,
a key, and a value to the input, where those are all vectors.
Key and value are the features of the whole sMRI extracted
by each convolution block and the query determines which
values to focus on for learning process. By using the 1×1×1
convolution filter, the key, query, and value are transformed to
vectors. The key, query and value are denoted by f(x), g(x),
h(x) as follows:

Key : f (x) =Wfx (2)

Query : g (x) =Wgx (3)

V alue : h (x) =Whx (4)

Here x ∈ RC×N is the features from the previous layer. C
is the number of channels and N is the number of locations
of features from the previous layer. Wf , Wg and Wh are all
1×1×1 convolution filters. The self-attention map (ai,j) can
be calculated as:

ai,j =
exp(f (xi)

T
g(xj))∑n

i=1 exp(f (xi)
T
g(xj))

(5)

where ai,j indicates the correlative degree of attention
between each region i and all other regions. j is the index
of an output position. The output of the attention layer is
o = (o1, o1 . . . oj , oN ) ∈ RC×N , where

oj =Wv(

N∑
i=1

ai,jh (xi)) (6)

In order to keep the same number of channels as the original
input and for memory efficiency, a 1×1×1 convolution filter
(Wv) is used to reduce the channel number of final outputs.

3) Residual Self-attention block (ResAttNet):
Therefore, the final output of the Residual Attention Block

is given by:
y = x+ r(x) + γo(r(x)) (7)

Where the o(r(x)) is the output of self-attention map, r(x)
is the output of original output of residual function and x is
input feature, the γ is a learnable parameter. We set γ as 0 as
default to allows the network to first rely on the cues in the
local neighborhood. When γ increased, the model gradually
learns to assign more weight to the non-local evidence.

D. The explainable 3D-CNNs

To understand inside the proposed deep model, the 3D Grad-
CAM have been applied to explain the model decision.

We first calculated the gradient of the probabilities of
disease areas with respect to the activation of unit k at location
x, y, z in the last convolutional layer of the network. Then,
the global average pooling of the gradients (ack) is used to
show the importance weights for unit k.

ack =
1

Z

∑
x

∑
y

∑
z

∂y(c)

∂Ak
x,y,z

(8)

where Z is the number of voxels in the corresponding
convolutional layer. Then, we combined the unit weights with
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the activations, Ak
x,y,z , to get the heatmap of 3D gradient-

weighted class activation mapping.

Lc
3D−Grad−CAM = ReLU

(∑
k

ackA
k
x,y,z

)
(9)

IV. EXPERIMENTAL EVALUATION

A. Dataset description
Data used in this study are from the ADNI

(http://adni.loni.usc.edu), consisting of baseline MRI scans
of 1407 subjects from ADNI-1, ADNI-2 and ADNI-3
datasets. These subjects are divided into three classes: AD
(Alzheimer’s disease), MCI (mild cognitive impairment) and
NC (normal control) based on the standard clinic criteria
(e.g., Mini-Mental State Examination (MMSE) scores and
Clinical Dementia Rating (CDR)). For MCI conversion
prediction, MCI subjects are further divided into two classes:
pMCI (progressive MCI subjects who had converted to AD
within 36 months after baseline visit) and sMCI (stable MCI
subjects who were continuously diagnosed as MCI). The
ADNI-1 consists of 1.5T T1-weighted MR images, which has
835 scans of four classes: 200 of Alzheimer’s Disease (AD)
patients and 231 of Normal Cohort (NC), 232 sMCI and 172
pMCI. The ADNI-2 dataset consists of 3T T1-weighted MR
images, which contains 258 scans of four classes: 108 of AD
patients and 150 of NC. The ADNI-3 dataset consists of 3T
T1-weighted MR images similar to ADNI-2, which has 314
scans of four classes: 45 of AD patients and 269 of NC. The
demographic information of subjects is presented in Table I.

In this work, we have used ADNI-1 for our model con-
struction. ADNI-2 and ADNI-3 dataset have been used for
independent cross-validation of model generalizability.

TABLE I
DEMOGRAPHIC INFORMATION IN THE USED DATASET.GENDER REPORTS

ARE MALE AND FEMALE. THE AGE, EDUCATION YEARS, AND
MINI-MENTAL STATE EXAMINATION (MMSE) VALUES ARE REPORTED.

Dataset Group Gender Age Edu MMSE
(Male/Female) (Mean ± Std) (Mean ± Std) (Mean ± Std)

ADNI-1

AD 200 ( 103 / 97 ) 75.62 ± 7.70 14.68 ± 3.20 23.29 ± 2.04
pMCI 172 ( 106 / 66 ) 76.34 ± 7.15 15.76 ± 2.84 26.61 ± 1.70
sMCI 232 ( 154 / 78 ) 76.47 ± 7.82 15.58 ± 3.17 27.31 ± 1.79
NC 231 ( 119 / 112 ) 75.99 ± 5.00 16.06 ± 2.84 29.12 ± 0.99

ADNI-2 AD 108 ( 60 / 48 ) 74.95 ± 7.80 15.88 ± 2.66 23.03 ± 2.14
NC 150 ( 73 / 77 ) 74.84 ± 6.60 16.63 ± 2.48 29.09 ± 1.19

ADNI-3 AD 45 ( 25 / 20 ) 74.87 ± 8.701 15.98 ± 2.22 22.76 ± 3.58
NC 269 ( 97 / 172 ) 70.72 ± 6.50 16.80 ± 2.25 29.09 ± 1.11

As the original dataset is in Neuroimaging Informatics
Technology Initiative (NIfTI) format, the preprocessing is
needed for spatial distortion correction caused by gradient
nonlinearity and B1 field inhomogeneity. This is a standard
pipeline process including anterior commissure (AC)-posterior
commissure (PC) correction, intensity correction [53] and skull
stripping [54]. We have used MIPAV(Medical Image Process-
ing, Analysis, and Visualization) application to complete AC-
PC correction and use FSL(FMRIB Software Library v6.0)
to complete skull stripping. A line align registration strategy
(flirt instruction in FSL) is also executed to align every sMRI
linearly with the Colin27 template [55] to delete global linear
differences (including global translation, scale, and rotation
differences), and also to re-sample all sMRIs to have identical
spatial resolution.

B. Evaluation metrics

We have evaluated two binary classification tasks of AD
classification (i.e., AD vs. NC) and MCI conversion prediction
(i.e., pMCI vs. sMCI). The classification performance has been
evaluated based on four commonly used standard metrics,
including classification accuracy (ACC), sensitivity (SEN),
specificity (SPE), and Area under the curve (AUC). These
metrics are defined as:

ACC =
TP + TN

TP + TN + FP + FN
(10)

SEN =
TP

TP + FN
(11)

SPE =
TN

TN + FP
(12)

where TP = TruePositive, TN = TrueNegative,
FP = FalsePositive and FN = FalseNegative. The
AUC is calculated based on all possible pairs of SEN and
1 − SPE obtained by changing the thresholds performed on
the classification scores yielded by the trained networks.

C. Experimental evaluation

To evaluate performance and generalizability of our pro-
posed model, we have conducted three types of experiments:
1) Comparison study with state-of-the-art 3D convolutional
neural networks; 2) Evaluation on generalizability of the
proposed model using two independent datasets (ADNI-2 and
ADNI-3); 3) Comparison study with other existing machine
learning/deep learning methods for AD diagnosis.

1) Evaluation 1: Comparison study with state-of-the-art 3D
convolutional neural networks:

We have performed comparison study with most com-
monly used 3D convolutional neural networks including 3D-
VGGNet, 3D-ResNet under two conditions: with and without
self-attention mechanism in 18 and 34 layers. The structures of
3D-VGG Block, 3D-ResNet Block and 3D-ResAttNet Block
are shown in Fig. 2.

Each Conv3D layer consists of 3 consistent operations: 3D
convolution, batch normalization 3D and RELU. The 14 layers
and 34 layers network contain 8 and 14 3D Resnet block and
3D-ResAttNet block, respectively. A 3×3×3 3D convolution
is 3 times more expensive than 2D version in terms of
computational cost. In order to reduce the computational cost,
we have replaced the 7 × 7 × 7 convolution in the 3D Conv
block with three conservative 3 × 3 × 3 convolutions. The
detailed configuration is shown in Fig. 3.

In this evaluation, we have trained our model using ADNI-1
dataset and performed a 5 fold cross-validation. The dataset
is randomly split into 5 groups where 4 groups (80% of
the dataset) are used for training and the rest are used for
testing each time. The experimental results for classification
performance are the average of the accuracies on the testing
set across all folds, along with Standard deviation (Std). p-
value are also used to evaluate the statistical significance. To
optimize model parameters, Adam, a stochastic optimization
algorithm, with a batch size of 8 samples, has been used for
optimization to train the proposed network [56]. We firstly
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Fig. 2. The structure of 3D-VGG Block, 3D-ResNet Block and 3D-ResAttNet
Block.

Fig. 3. Overall architecture of 3D CNNs models, including 3D-VGGNet,
3D-ResNet 18, 3D-ResAttNet 18, , 3D-ResNet 34 and , 3D-ResAttNet 34.

set the learning rate (LR) as 1 × 10−4. The LR is decreased
to 1× 10−6 with increased iterations. CrossEntropy has been
selected as the loss function for this task [57]).

All the experiments have been implemented based on Py-
Torch and executed on a server with an Intel(R) Xeon(R) CPU
E5-2650, NVIDIA 2080TI and 64 GB memory.

2) Evaluation 2: Evaluation on generalizability of the pro-
posed model using two independent datasets:

To investigate generalizability and reproducibility of our
proposed model, we have conducted two groups of experi-
mental evaluation as follows:

• We have first built our model based on ADNI-1 and
evaluated it using two independent datasets (ADNI-2 and
ADNI-3 respectively).

• Then we reversed the training and testing datasets where
we have trained the model using ADNI-2, and evaluated
it on ADNI-1 and ADNI3 respectively.

In this evaluation, we only performed AD vs. NC classification
task due to insufficient pMCI and sMCI samples obtained from
ADNI-2 and ADNI-3.

3) Evaluation 3: Comparison study with other existing
machine learning/deep learning methods for AD diagnosis:

For indirect evaluation, we have selected most recent and
state-of-the-art machine learning methods reported in the liter-
ature for indirect comparison using baseline sMRI data from
ADNI [10], [29], [15], [58], [59], [60], [61].

D. Result and discussion

1) Results from evaluation 1:
As introduced previously, we have added the attention

mechanism in the Resnet block. In this group of experiments,
we have compared the models including 3D-VGGNet and 3D-
ResNet models with and without attention layer. The results
are presented in Table II. The classification performance
of models with attention layer are significantly higher than
models without it, especially on pMCI vs. sMCI classifica-
tion. Our proposed model (3D-ResAttNet34) shows the best
performance in all experiments. Fig. 4 shows the examples
of classification results for two classification tasks: AD vs.
NC and pMCI vs. sMCI tasks. Fig. 4 a) shows an example
on AD vs. NC classification where the classification result
using our proposed model 3D-ResAttNet34 with attention
layer classifies the image into a normal category (i.e. NC)
while the result from 3D-ResNet34 classifies the image into
disease category (i.e. AD). Similarly, Fig. 4 b) shows an
example on pMCI vs. sMCI classification. It indicates that our
model correctly identifies the images into the right categories.

TABLE II
RESULTS OF CLASSIFICATION FOR AD VS. NC AND PMCI VS. SMCI

Model AD vs. NC classification
ACC ± Std SEN ± Std SPE ± Std AUC ± Std

3D-VGGNet 0.807 ± 0.046 0.798 ± 0.049 0.829 ± 0.036 0.890 ± 0.036
3D-ResNet18 0.851 ± 0.102 0.849 ± 0.103 0.855 ± 0.102 0.920 ± 0.076

3D-ResAttNet18 0.860 ± 0.088 0.829 ± 0.119 0.903 ± 0.052 0.975 ± 0.023
3D-ResNet34 0.882 ± 0.147 0.890 ± 0.141 0.883 ± 0.148 0.929 ± 0.089

3D-ResAttNet34 0.913 ± 0.012 0.910 ± 0.014 0.919 ± 0.009 0.984 ± 0.009

Model pMCI vs. sMCI classification
ACC ± Std SEN ± Std SPE ± Std AUC ± Std

3D-VGGNet 0.758 ± 0.059 0.751 ± 0.083 0.735 ± 0.060 0.856 ± 0.056
3D-ResNet18 0.777 ± 0.079 0.775 ± 0.092 0.753 ± 0.075 0.890 ± 0.034

3D-ResAttNet18 0.799 ± 0.071 0.810 ± 0.093 0.775 ± 0.071 0.926 ± 0.053
3D-ResNet34 0.807 ± 0.047 0.826 ± 0.054 0.798 ± 0.055 0.954 ± 0.033

3D-ResAttNet34 0.821 ± 0.092 0.812 ± 0.101 0.809 ± 0.097 0.920 ± 0.047

Fig. 4. Examples of classification results on a) the AD vs. ND classification
task. The result shows the proposed method classified the image into the right
category same as the ground truth (NC) while 3D ResNet34 classified into
a wrong catagory (AD); b) the sMCI VS. pMCI task. The result shows the
proposed method classified it into the right category same as the ground truth
while 3D ResNet34 classified into a wrong category (pMCI)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

For the explainable model evaluation, 3D Grad-CAM has
been used to explain the model for Alzheimer’s Disease
Diagnosis. We have only applied the 3D Grad-CAM to 3D-
ResAttNet34 with the best classification performance. The
heat-map is created to show how the network learns the
importance of the areas. As described earlier, the 3D Grad-
CAM can be used on an arbitrary layer. Fig. 5 shows feature
visualizations of each convolution block from our proposed
model (the top 64 activation maps are selected here). As
more convolutions are processed, the resolution of the feature
map also gradually decreases. In the first two convolution
layers, the results have higher resolutions, which provide more
details information. However, because they respond more to
the corners, edge, texture and color conjunctions, more edges
are highlighted. In the third and fourth convolution layers,
the feature maps look like binary patterns where global and
semantic information can be extracted. Some significant varia-
tion in lateral ventricle and hippocampus areas are highlighted.

The attention heatmap of the Grad-CAM on 3D-
ResAttNet34 result is presented in Fig. 6. For comparison,
the hippocampus, lateral ventricle and cerebral cortex areas
on the input sMRI image in the first row are labeled to show
the important areas for Alzheimer’s disease diagnosis. In the
second row, we have applied the activation mapping heat-map
to the last convolutional layer (i.e the fourth layer in this case).
The heatmap is blurry because the last convolutional layer of
3D-ResAttNet34 is only of size 6×7×6. The heat map tends
to show global information. To obtain a higher resolution and
more detailed 3D class activation mapping heat-map, we have
applied the 3D Grad-CAM to the lower convolutional layer
(the third layer), as shown in the third row of Fig. 6. It is of
size 46 × 55 × 46 heat-map and thus provides more detail
information. It identifies and highlights the hippocampus,
lateral ventricle and most parts of the cortex as important
areas, which matches the human expert’s approach [24], [62].
However, as mentioned in [63], the lower layer in deep CNN
models responds more to corners and edge/color conjunctions.
Therefore, edges are highlighted as well.

Fig. 5. Visualization results of selected convolutional layer feature maps.
From left to right: first, second, third and fourth convolutional block.

2) Results for evaluation 2:
The evaluation result for generalizability of the proposed

model are summarized in Table III.
For the first group of experiments, we have trained model

using ADNI-1 dataset and evaluated it on ADNI-2 and ADNI-
3 respectively. Comparing to our model based on ADNI-1 data,
the accuracy on ADNI-2 is slightly decreased by 0.004 and the
accuracy on ADNI-3 is slightly decreased by 0.021. The AUC
is slightly dropped by 0.032 and 0.095 respectively. However,
ACC, SEN, and SPE of our model remain high, which are

Fig. 6. Sagittal, Axial and coronal view of the brain MRI and the visual
explanation heatmaps. The first row shows the highlighted cerebral cortex,
lateral ventricle, and hippocampus areas in sMRI images. The second row
shows the visualization by applying the Grad-Cam to the fourth convolutional
layer. The third row shows the visualization by applying the Grad-Cam to the
third layer.

statistically significant (i.e., p-values <0.05). This shows the
good generalizabiity of our proposed model.

For the second group of experiments, we have reversed the
training and testing datasets to train the model using ADNI-
2 and evaluate it on ADNI-1 and ADNI-3 respectively. The
accuracy of our proposed model on ADNI-2 reaches 0.956.
When testing on ADNI-1 and ADNI-3, the accuracies are
0.933 and 0.917 respectively, with slight decreases by 0.23
on ADNI-1 and 0.39 on ADNI-3 respectively. The ACC,
SEN, and SPE of our proposed model based on ADNI-2 are
higher than the ones of the model using ADNI-1, which are
statistically significant (i.e., p-values <0.05). The main reason
is because ADNI-1 and ADNI-2 dataset are captured from
distinct phases of the ADNI project, which have different
signal to noise ratios (SNR). sMRI images from ADNI-1 are
scanned using 1.5T scanners, while MR images from ADNI-
2 are scanned using 3T scanners. The 3T scanner has twice
sensitive compared to 1.5T which can generate clearer and
higher quality image.

Based on these experiments, it has demonstrated that our
proposed approach has good generalizability and reproducibil-
ity for AD diagnosis.

3) Results for evaluation 3:
It is unfair to perform the direct comparison between differ-

ent methods due to the use of different datasets and also the
clinical definition of pMCI/sMCI. In this case, we have only
indirectly compared our model with six state-of-the-art ma-
chine learning based methods [64], [30], [65], [66], [67], [26].
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TABLE III
THE MODEL PERFORMANCE ON INDEPENDENT DATASETS (ADNI-2 AND

ADNI-3)

Model Train Evaluation AD vs. NC classification
ACC ± Std SEN ± Std SPE ± Std AUC ± Std

Proposed
3D-ResAttNet34

ADNI-1 ADNI-1 0.913 ± 0.012 0.910 ± 0.014 0.919 ± 0.009 0.984 ± 0.009
ADNI-1 ADNI-2 0.909 ± 0.019 0.895 ± 0.026 0.924 ± 0.014 0.952 ± 0.026
ADNI-1 ADNI-3 0.892 ± 0.034 0.788 ± 0.060 0.780 ± 0.076 0.889 ± 0.034
ADNI-2 ADNI-2 0.956 ± 0.089 0.950 ± 0.100 0.950 ± 0.100 0.978 ± 0.044
ADNI-2 ADNI-1 0.933 ± 0.133 0.933 ± 0.133 0.930 ± 0.140 0.967 ± 0.067
ADNI-2 ADNI-3 0.917 ± 0.019 0.885 ± 0.068 0.821 ± 0.046 0.930 ± 0.023

The results are shown in Table IV. There are several important
observations including: 1) for the challenging task of MCI con-
version prediction, the proposed 3D-ResAttNet outperforms
other existing approaches; 2) for AD vs, NC classification,
our proposed method has competitive performance, comparing
to those methods using MRI only; 3) In terms of data size,
our proposed method has been evaluated on a large number
of subjects and cross-validated on two independent datasets
from ADNI-2 and ADNI-3 respectively, which demonstrates a
fair and independent evaluation and a good generalizability of
our model. In addition, compared with the traditional region-
and voxel-level pattern analysis methods, our proposed method
takes the whole MRI image as input and automatically extracts
high dimensional and nonlinear features, which leads to better
classification performance for AD diagnosis.

TABLE IV
COMPARATIVE PERFORMANCE OF THE CLASSIFIER VS. SIX COMPETITORS

ON ADNI DATASET.

References Modality Subject Method AD vs. NC classification pMCI vs. sMCI classification
ACC SEN SPE ACC SEN SPE

(Liu et al., 2014) PET/MRI 65AD+169MCI+77NC Stacked auto-encoder 0.88 0.89 0.87 0.77 0.74 0.78
(Suk et al., 2014) PET/MRI 93AD+204MCI+101NC Deep Boltzmann machine 0.95 0.95 0.95 0.76 0.48 0.95
(Aderghal et al., 2017a) MRI 188AD+399MCI+228NC 2D-CNN 0.91 0.94 0.89 0.66 0.66 0.65
(Liu et al., 2018) MRI 199AD+393MCI+229NC Landmark detection + 3D CNN 0.91 0.88 0.94 0.77 0.42 0.82
(Shi et al., 2018) MRI 41AD+99MCI+52NC Deep polynomial network 0.95 0.94 0.96 0.75 0.63 0.85
(Lian et al., 2018) MRI 358AD+670MCI+429NC Hierarchical-CNN 0.90 0.82 0.97 0.81 0.53 0.85
Our 3D-ResAttNet on ADNI-1 MRI 200AD+404MCI+231NC 3D-CNN 0.91 0.91 0.92 0.82 0.81 0.81

V. CONCLUSION

Inspired by the attention mechanism and residual learning,
we have proposed an end-to-end framework based on 3D
Residual Self-Attention Network (3D ResAttNet) for early
efficient diagnosis of AD diseases at two levels (i.e., AD
vs. NC and pMCI vs. sMCI) from sMRI scans. The pro-
posed method combines residual learning with self-attention
mechanism, which can fully exploit both global and local
information and avoid the information loss. Meanwhile, to
understand inside our model and how our model reach de-
cisions, we have also applied the 3D Grad-CAM method to
identify and visualize those important areas contributing to
our model decisions. To evaluate our model performance, we
have compared the proposed model with most commonly used
3D convolutional neural networks including 3D-VGGNet, 3D-
ResNet. The results show that our proposed model with atten-
tion layer (3D ResAttNet) outperforms the existing models.
To evaluate generalization of the proposed model, we have
also conducted thorough experiments under different cross-
validation strategies using ADNI datasets (ADNI-1, ADNI-2
and ADNI-3): 1) building the proposed model based on ADNI-
1 and then validating it on ADNI-2 and ADNI-3 respectively;
2) building the model based on ADNI-2 and then validating

it on ADNI-1 and ADNI-3 respectively. The results show that
our proposed model has a good generalizability in all cases.
Moreover, the explainable mechanism in our approach is able
to identify and highlight the contribution of the important brain
parts (e.g., hippocampus, lateral ventricle and most parts of
the cortex) for transparent decisions. The future work will
focus on continuous improvement of model performance and
generalizability using more independent datasets.
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[15] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I.
Scahill, J. D. Rohrer, N. C. Fox, C. R. Jack, J. Ashburner,
and R. S. J. Frackowiak, “Automatic classification of MR scans
in Alzheimer’s disease,” Brain : a journal of neurology, vol.
131, no. Pt 3, pp. 681–689, Mar. 2008. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579744/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

[16] O. B. Ahmed, J. Benois-Pineau, M. Allard, C. B. Amar, G. Catheline,
and A. D. N. Initiative, “Classification of Alzheimer’s disease subjects
from MRI using hippocampal visual features,” Multimedia Tools and
Applications, vol. 74, no. 4, pp. 1249–1266, 2015.

[17] B. Magnin, L. Mesrob, S. Kinkingnéhun, M. Pélégrini-Issac, O. Colliot,
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[60] C. Möller, Y. A. L. Pijnenburg, W. M. van der Flier, A. Versteeg,
B. Tijms, J. C. de Munck, A. Hafkemeijer, S. A. R. B. Rombouts,
J. van der Grond, J. van Swieten, E. Dopper, P. Scheltens, F. Barkhof,
H. Vrenken, and A. M. Wink, “Alzheimer Disease and Behavioral
Variant Frontotemporal Dementia: Automatic Classification Based on
Cortical Atrophy for Single-Subject Diagnosis,” Radiology, vol. 279,
no. 3, pp. 838–848, Jun. 2016.

[61] C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone, I. Cas-
tiglioni, and Alzheimer’s Disease Neuroimaging Initiative, “Magnetic
resonance imaging biomarkers for the early diagnosis of Alzheimer’s
disease: a machine learning approach,” Frontiers in Neuroscience, vol. 9,
p. 307, 2015.

[62] B. R. Ott, R. A. Cohen, A. Gongvatana, O. C. Okonkwo, C. E. Johanson,
E. G. Stopa, J. E. Donahue, G. D. Silverberg, and Alzheimer’s Disease
Neuroimaging Initiative, “Brain ventricular volume and cerebrospinal
fluid biomarkers of Alzheimer’s disease,” Journal of Alzheimer’s dis-
ease: JAD, vol. 20, no. 2, pp. 647–657, 2010.

[63] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[64] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng, “Early
diagnosis of Alzheimer’s disease with deep learning,” in 2014 IEEE 11th
International Symposium on Biomedical Imaging (ISBI), Apr. 2014, pp.
1015–1018, iSSN: 1945-8452.

[65] K. Aderghal, M. Boissenin, J. Benois-Pineau, G. Catheline, and
K. Afdel, “Classification of sMRI for AD Diagnosis with Convolutional
Neuronal Networks: A Pilot 2-D+$$\epsilon $$Study on ADNI,” in
MultiMedia Modeling, ser. Lecture Notes in Computer Science, L. Am-
saleg, G. Gumundsson, C. Gurrin, B. Jónsson, and S. Satoh, Eds.
Cham: Springer International Publishing, 2017, pp. 690–701.

[66] M. Liu, J. Zhang, E. Adeli, and D. Shen, “Landmark-based deep multi-
instance learning for brain disease diagnosis,” Medical image analysis,
vol. 43, pp. 157–168, 2018.

[67] J. Shi, X. Zheng, Y. Li, Q. Zhang, and S. Ying, “Multimodal Neu-
roimaging Feature Learning With Multimodal Stacked Deep Polynomial
Networks for Diagnosis of Alzheimer’s Disease,” IEEE journal of
biomedical and health informatics, vol. 22, no. 1, pp. 173–183, 2018.

Xin Zhang Xin Zhang is associate researcher in
Manchester Metropolitan University (MMU), he re-
ceived the B.S degree from The PLA Academy of
Communication and Commanding, China, in 2009
and Ph.D. degree in Cartography and Geographic
Information System from Beijing Normal Univer-
sity(BNU), China, in 2014. His current research
interests include remote sensing image processing
and deep learning.

Liangxiu Han received the Ph.D. degree in com-
puter science from Fudan University, Shanghai,
China, in 2002. She is currently a Professor of
computer science with the School of Computing,
Mathematics, and Digital Technology, Manchester
Metropolitan University. Her research areas mainly
lie in the development of novel big data analytics
and development of novel intelligent architectures
that facilitates big data analytics (e.g., parallel and
distributed computing, Cloud/Service-oriented com-
puting/data intensive computing) as well as applica-

tions in different domains using various large datasets (biomedical images,
environmental sensor, network traffic data, web documents, etc.). She is
currently a Principal Investigator or Co-PI on a number of research projects
in the research areas mentioned above.

Wenyong Zhu Wenyong Zhu received the B.S de-
gree from Nanjing University of Aeronautics and
Astronautics (NUAA), China, in 2019. And he is
studying for a master’s degree in NUAA. His cur-
rent research interests include machine learning and
medical image classification.

Sun Liang Liang Sun received the B.S degree from
Shandong University of Science and Technology,
China, in 2014, and Ph.D. degree in Computer
Science and Technology from Nanjing University
of Aeronautics and Astronautics (NUAA), China, in
2020. His current research interests include machine
learning and medical image segmentation.

Daoqiang Zhang received the B.Sc. and Ph.D. de-
grees in computer science from Nanjing University
of Aeronautics and Astronautics, Nanjing, China,
in 1999 and 2004, respectively. He is currently a
Professor in the Department of Computer Science
and Engineering, Nanjing University of Aeronau-
tics and Astronautics. His current research interests
include machine learning, pattern recognition, and
biomedical image analysis. In these areas, he has
authored or coauthored more than 100 technical
papers in the refereed international journals and

conference proceedings.


