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Abstract

Causes require time to propagate their effects. We can see stars at night because of the
light they emitted hundreds of years ago. We can smell the fragrant aroma of baking bread
because heat gradually changed the structure of the food, emitting particles that traveled
on the breeze. In this thesis, I investigate how people use temporal information to make
causal inferences. I propose a rational framework for causal induction based on continuous-
time evidence, examine human performance in passive and active continuous-time causal
learning tasks, and develop bounded rational accounts that can offer explanations for
human causal judgments and intervention strategies.

Chapters 2 and 3 review previous theoretical frameworks on causal induction, and em-
pirical work on the role of time in causal induction, respectively. Chapter 4 develops a
rational framework for processing temporal evidence. It provides an explanation for how
delays shape human causal induction and accounts for human causal judgments across
seven different temporal causal learning tasks. Chapter 5 and Chapter 6 test how people
passively or actively learn causal structures based on events unfolding in real time. I found
people are capable temporal causal learners who successfully identify structures that in-
volve generative and preventative relationships, as well as acyclic and cyclic connections.
Nevertheless, the computational demands of normative learning could easily exceed human
capacity. People’s causal judgments align better with an algorithm that approximates the
normative solution via a simulation and local summary statistics scheme, suggesting the
reliance on structurally local computation and temporally local evidence. People’s inter-
vention decisions align better with a resource-rational model that emphasizes a balance
between expected information and expected inferential complexity when choosing inter-
ventions. Chapter 7 shows that when given a limited period of observation, people not
only focus on existing data, but also consider future possibilities, relying on extrapolated
data to make inferences. This demonstrates the unique “continuing” feature of time, and
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how generalization plays a role in the utilization of temporal information. Chapter 8 syn-
thesizes the findings of this thesis and proposes future research directions of causal learning
in temporal contexts.



Lay summary

Finding the causes of events could be very important in daily life. Imagine you are traveling
to a new place and your skin gets itchy sometimes. How would you figure out the reasons
behind that? Is it because of trying new food, new drinks, sleeping in a new bed, or
using new shower gels? You bought pills from the store, but the locals also recommend
a special herb paste. How would you test them on yourself to determine which one can
efficiently remove the itchiness? In everyday life, we face this reasoning problem, where,
like scientists, we need to analyze the evidence we have or conduct experiments to collect
evidence. However, scientists have large, independent samples to test, such as testing a
new medicine on hundreds of patients. In contrast, we have limited subjects: often the
only “patient” is ourselves, and we have to test on ourselves several times at different time
points to test our beliefs. This requires us to carefully think about the details of what
happens in the timeline and extract useful information to make judgments. This thesis
investigates how people use time information to learn the relationships between events.

By considering the orders and delays between events, people can identify the causes of
target events, just like the skin itchiness example above. This includes generative causes
that produce target events, as well as preventative causes that remove the target events.
When asking about the relationships between two types of target events, A and B, people
can identify whether A produces B, B produces A, or A and B can produce each other and
have a loop relationship. This suggests that causal relationships can be learned from events
unfolding in the timeline in daily life, rather than solely relying on data from scientific labs.

We can write computer algorithms to accomplish the same task of judging the rela-
tionships between events. To ensure finding the correct cause, these algorithms work like
detectives, examining all the details and laying out all the possibilities that could explain
what has happened. Consequently, this requires a huge amount of calculation. In contrast,
people tend to ignore some details and only focus on a few possible explanations. Although
the accuracy of human performance is slightly lower than that of computer algorithms, the
way they calculate is much easier and faster. In other words, they sacrifice some accuracy
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but save the energy. This suggests that people know how to use their limited time and
limited cognitive powers to arrive at more efficient solutions.

In summary, this thesis explores the mental processes of using time information to
reason about causal relationships. It contributes to our understanding of human cognition,
connects to the philosophy of science and scientific education, and sheds light on issues in
computer science in the quest for more human-like algorithms.
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Chapter 1

Introduction

“Time is the school in which we learn,
Time is the fire in which we burn.”

Delmore Schwartz

We all learn how to navigate the journey of life. Throughout our human existence, we have
embarked on a profound quest to uncover the secrets of hunting, farming, cooking, and

healing. In this pursuit, we have explored both the external world and our internal selves, discov-
ering ways to maintain physical well-being, attaining financial stability, and nurture our mental
health. The challenge lies in discovering what truly “works”, a challenge intricately intertwined
with our understanding of the objective world’s causal structures. We cultivate our understanding
of these causal models through passive observations of dynamic phenomena or active interventions
that yield observable changes.

Prior to the evolution of science or the advent of formal scientific education, humans pos-
sessed an inherent ability to absorb knowledge about the world. Each passing moment brings
forth a myriad of occurrences, and comprehending the causal mechanisms underlying these events
necessitates the assimilation of information derived from our experiences. Given that all things
unfold within the framework of time, understanding how individuals acquire knowledge of causal
structures from temporal events becomes not only a question of individual survival but also a
testament to the collective success of humanity.

Throughout the long history of causal learning studies, participants have often been presented
with evidence independently gathered from numerous entities, typically organized in tabular for-
mats or bounded by clearly defined trials, mirroring the controlled environments of scientific
laboratories. In contrast, ordinary individuals encounter events in their daily lives that occur
repeatedly within a limited sphere of entities, unfolding in a continuous temporal flow without
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distinct experimental trials or demarcations. Consequently, the process through which laypeo-
ple learn causal relationships within such a dynamic temporal environment remains relatively
unexplored.

In this thesis, I explore the computational theories and empirical knowledge of how people learn
causal structures from events unfolding in continuous time. It includes questions surrounding the
learning of different types of causal relationships when they intertwine over time, as well as how
individuals strategically intervene in time to enhance their understanding of causal structures.
To simulate real-world situations, I set up online causal learning tasks that allows participants to
observe evidence or actively intervene in real time, and subsequently making causal judgments.

To gain deeper insights into the empirical patterns observed, I build computational models
that serve as valuable tools for analysis. My research question is approached under the guideline
of rational analysis. I firstly build a computational-level model to describe the optimal solution
of the task and then contrast this with more computationally tractable and cognitive plausible
approximations. By comparing model predictions and human performance, I try to illustrate how
people efficiently abstract useful evidence from rich information that happens rapidly over time,
how they make trade-offs between evidence’s informativeness and complexity.

The structure of this thesis is as follows:
Chapters 2 and 3 review previous empirical work, highlighting factors that influence human

causal judgments, including the order of events, delay lengths, predictability, and invariance.
Chapter 4 develops a rational model framework for processing temporal evidence. It provides a
unified account of why short, expected, and unvaried delays shape human causal induction, but
also reveals the computational challenges of normative inference. I show the framework accounts
for human causal judgments across four previous datasets and three new datasets covering a
variety of causal relationships (generative, preventative, acyclic, cyclic) and scenarios (multiple
short observations, one extended observation).

The complexity of causal induction from temporal dynamics, demands that learners consider
their cognitive limitations and find more efficient and approximate induction strategies. In Chap-
ter 5, I test how people learn causal structures by observing events unfolding in continuous time.
I find that people are capable learners in this setting, successfully identifying the large majority
of generative, preventative, and non-causal relationships but making certain attribution errors. I
build a model that approximates normative inference via a simulation and local summary statis-
tics scheme and shows it better captures participants’ judgment patterns than the normative
account, indicating that people make continuous-time causal induction based on structurally local
computation using temporally local evidence.

Besides passive observations, real life also requires people to interact with causal systems,
choosing actions or “interventions” in order to gather information about how a system works. In
Chapter 6, I test how people actively learn about causal structure in continuous time, focusing
on when and where they intervene in a causal system, and how this shapes their learning. I find
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that people time and target their interventions to create simple yet informative causal dynamics.
I propose a resource-rational account to explain how people balance expected information and
inferential complexity when choosing interventions. I discuss how the continuous-time setting
challenges existing computational accounts of active causal learning, and argue that metacognitive
awareness of one’s inferential limitations plays a critical role for successful learning in the wild.

Genuine causal influences can take complex forms and our measurements of them are inevitably
incomplete: Some effects might occur instantly and dissipate rapidly, but others might peak later
grow or compound over days or years. As such, uncertainty exists as to when is a good moment
to end the observation. In Chapter 7, I test what people infer from a limited period of observation
after an intervention. I find that under certain conditions people extrapolate what might happen
in the future and rely on these extrapolations to make inferences, even drawing the opposite causal
conclusion to people who believe the causal influence is spent by the end of the observation. This
reveals how functional learning and generalization play a role in how people utilize temporal
information to both learn and apply causal models to augment their understanding of the world.

Finally, in Chapter 8, I pull together the empirical and theoretical insights learned and propose
a roadmap for future research on learning causality in time.



Chapter 2

Theoretical frameworks of causal
induction

“That the sun will not rise tomorrow
implies no more contradiction than
that it will rise.”

David Hume

People are intrinsically motivated to learn how our world works. However, as David Hume
says, the reality is inherently uncertain. We can often only learn by collecting limited and

noisy evidence and then inferring general rules to guide our prediction and control in the future.
Causal induction theories are concerned with how people infer the nature of the causal relationships
between entities or phenomena on the basis of information they have obtained. In this chapter, I
will review the theoretical evolution and important empirical findings in human causal induction,
by walking through several quantitative theories that have attempted to describe human causal
induction over the past five decades. Each theory builds on earlier approaches, with later theories
addressing empirical findings that remained unsolved by the preceding theories. As we trace
the historical trajectory of causal cognition theories, the significance of the ideas of theory-based
cognition and bounded rationality will become evident, which will serve as two pivotal theoretical
guidelines for this thesis.

Towards the end of this chapter, I will discuss the challenges confronted by previous mod-
els. These challenges include the inability to (1) predict causal direction, (2) determine the time
window for observation, (3) contend with evidence from repeated measures, and (4) learn cyclic
structures. All of these challenges converge upon a central theme: the important role of time in
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causal inference. Later chapters will test these challenges empirically, with each chapter strate-
gically highlighting different aspects, and develop novel causal learning models that can leverage
temporal information to effectively address these challenges.

2.1 Three atemporal causal learning rules

2.1.1 Rescorla-Wagner rule

Empirical research about the recognition of relationships between events can be traced back to
Behaviourism, one of the most influential approaches in 20th century psychology. Behaviouristic
scientists focus on how human and non-human animals would associate binary variables based on
the experience of statistical contingency as well as spatiotemporal contiguity (Pavlov, 1928; Skin-
ner, 1938). Their experimental paradigms often include training stages that display associated or
disassociated evidence and testing stages that examine associative strengths by measure subjects’
behaviour patterns (see Shanks, 1995; Pearce & Bouton, 2001, for review).

Rescorla & Wagner (1972) formalise experienced association strengths on the basis of co-
occurrence evidence (i.e. subjects experienced evidence trial by trial, and in each trial different
stimuli may be present or absent) with a simple mechanical rule – the RW rule. Intuitively, it
suggests that learning occurs to the extent that a learner feels “surprised” about a new observation.
For instance, if a learner believes there is no relationship between A and E but then observes A and
E’s co-occurrence (which is denoted as A = E = 1), they should slightly increase their association
between A and E. However, with repeated exposures to A = E = 1, the association starts to
asymptote because the evidence becomes less surprising to the learner. The RW rule can also be
applied to situations when multiple events are associated with a target event (Saavedra, 1975). If
the learner already believes A and E are associated, the later observation of A = B = E = 1 will
be not surprising and therefore cannot increase the association between B and E, which is called
the forward blocking phenomenon (Kamin, 1967; Le Pelley et al., 2017).

More specifically, the RW rule depicts how beliefs change dynamically as trial-based informa-
tion flows in:

V t
C1

= V t−1
C1

+∆V t
C1

(2.1)

∆V t
C1

= αβ(λ−
∑
C∈Ct

V t−1
C ) (2.2)

Equation 2.1 states that the associative strength at the current trial t depends on the original
strength plus the change due to trial t. Equation 2.2 specifies that in a given trial, the strength for
particular cause C1 is updated according to both whether the effect E co-occurs with C1 (λ = 1)
or not (λ = 0) and the existing association strength based on how many causes occur in the
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Table 2.1: The format of two by two causal tabular data.

Cause=1 Cause=0

Effect=1 a b
Effect=0 c d

current trial as well as their predictive strengths respectively. Two fixed learning rate parameters
α and β are added which depend on the salience of C1 or outcomes.

The RW rule assumes that subjects learn a network of associations rather than setting out
to learn a causal model of the world. Despite the fact that RW has proven a successful predictor
for many aspects of human and non-human animals’ behaviour (Allan, 1993), it fails to predict
several phenomena especially in human subjects. First, although forward blocking is often shown
in non-human animals, it is relatively weak or even fails to observe in the human learning process
(Kamin, 1967; Shanks, 1985; Cheng & Lu, 2017; Le Pelley et al., 2017). Second, as a contrast to
forward blocking, the phenomenon called backward blocking describes that when people experience
co-occurrences of Cause A, Cause B, and Effect E (i.e. A = 1, B = 1, E = 1), and are then
trained on co-occurrences of only A and E (i.e. A = 1, E = 1), their causal strength judgment
of B will decrease (Le Pelley & McLaren, 2001; Shanks, 1985; Wasserman & Berglan, 1998).
However, since there is no information about B at the second stage, the RW rule does not predict
this updating of B’s causal strength. Third, the ability to infer unobserved causes found in both
humans (e.g. Lipp & Vaitl, 1992) and non-human animals (e.g. Hall & Honey, 1989) are at odds
with the RW rule that only considers observed variables (see Gershman et al., 2010; Redish et
al., 2007, for review and computational explainations). All three phenomena suggest that causal
learning may not be simple reflections of associations but are additionally sensitive to one’s mental
representation of the underlying causal structure.

2.1.2 Delta-P

Historically, human cognition researchers focus on how humans make causal inferences from de-
scriptions such as whether a certain fertiliser will cause plants to bloom. In these studies, human
participants could be asked to experience event associations through trials, but also could just
read the summarised statistical information. The information of two binary variables is usually
presented as 2-by-2 tables (see Table 2.1). As shown in Equation 2.3, the Delta-P rule (Allan, 1980;
Jenkins & Ward, 1965) assumes that people infer causal strength by comparing cases that effect
occurs with the cause present, with cases that effect occurs with the cause absent. Generative
causal judgments equal to ∆P and preventative causal judgments equal to −∆P :

∆P = P (E = 1|C = 1)− P (E = 1|C = 0) =
a

a+ c
− b

b+ d
(2.3)
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As with the RW rule, Delta-P is also an associative quantity that does not address any mental
causal representation. It provides a solution for prevailing scenarios in human life and scientific
discovery. Indeed, since then, inferring from contingency tables has received a lot of attention in
the field of causal reasoning research. Delta-P performs better than many other calculations in
predicting causal strength judgments (Allan & Jenkins, 1983), but it is insensitive to the “density
bias” found in humans (Allan & Jenkins, 1983; Baker et al., 1989; Buehner et al., 2003; Shanks &
Dickinson, 1991): If a set of scenarios are constructed in which ∆P is fixed while other aspects of
the contingencies are varied, human generative causal strength judgments do not remain constant.
Specifically, they tend to increase as b/(b+ d) increases, and preventative judgments decrease as
b/(b+ d) increases. The causal power theory described below successfully addresses this problem.

2.1.3 Causal power

As Delta-P, the causal power theory (aka. Power PC, see Cheng, 1997; Cheng & Lu, 2017, for
review) also aims to extrapolate causal strength between binary variables with evidence that can
be formed as a 2-by-2 table (Table 2.1). Compared to associative theories, Power PC demonstrates
four assumptions about human causal reasoning:

• There is an unobserved cause B that can produce the effect E but not prevent it.

• The evaluated cause C and the unobserved cause B influence E independently.

• The power of a cause is independent of the frequency of occurrence of the cause.

• E does not occur unless it is caused.

The core feature of Power PC is assuming an unobserved hidden cause that accounts for the
effect’s presence when the observed cause is absent. Accordingly, when C is a generative cause,
the effect could be caused by either C or B, and therefore the probability of observing E follows
a noisy-OR function:

P (E = 1|wb, qc) = qc · c+ wb − qc · c · wb (2.4)

The c ∈ {0, 1} represents the absence or presence of C, qc represents the causal strength of c,
and wb represents qb · b. Given that P (E = 1|wb, qc) = qc + wb − qc · wb when C is present and
P (E = 1|wb, qc) = wb when C is absent, we can derive Equation 2.5 as the calculation of causal
strength qc:

qc =
P (E = 1|C = 1)− P (E = 1|C = 0)

1− P (E = 1|C = 0)
(2.5)

If C is a preventative cause, the effect could be caused by B but then possibly presented by C.
The probability of observing E follows a noisy-AND-NOT function in Equation 2.6. Accordingly,
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the preventative causal strength can be represented as Equation 2.7.

P (E = 1|wb, qc) = wb · (1− qc · c) (2.6)

qc =
P (E = 1|C = 0)− P (E = 1|C = 1)

P (E = 1|C = 0)
(2.7)

We could find that Power PC can be seen as Delta-P adjusted by the effect’s base rate (b/(b+d)

in Table 2.1). It considers the proportion of cases that E is already present or absent and therefore
C, as a generative or preventative cause, would have no chance to affect E. Power PC successfully
predicts the phenomenon that ratings of generative influences become higher when base rates are
high (which implies the cause would have succeeded a greater proportion if it had more space
to operate), and stronger preventative influences when base rates are low (Buehner et al., 2003;
Cheng, 1997). It also predicts that when the base rate equals to 1 in generative causal judgments
(or 0 in preventative causal judgments), people would consider evidence to be uninformative to
infer causal relationships (Wu & Cheng, 1999). However, there are still findings on human causal
judgments that Power PC fails to explain. For example the “frequency illusion” phenomenon
demonstrates that when ∆P = 0, people’s causal judgments would become stronger as the number
of observed data points increases (Griffiths & Tenenbaum, 2005), which is inconsistent with Power
PC that predicts a constant judgment at zero. The theory-based causal induction approach below
successfully addresses this problem.

2.2 Theory-based causal induction

From the development of three atemporal causal learning rules, we can see the significance of
mental model representation is gradually recognized. Incorporating reasoning about background
causes in Power PC implies that local causal judgments are not made in isolation, but rather take
surrounding structure into account. Indeed, the real life situations could also often include complex
structures. For example, it may be reasonable to presume that depression causes insomnia, and
insomnia causes anxiety (i.e. a chain structure, see Figure 2.1 for the illustration of structures
with different names), or alternatively that depression causes insomnia and anxiety independently
(i.e. a fork structure). People demonstrate the ability to incorporate different mantel models
when make inferences. In Waldmann & Holyoak (1992), participants first experienced the co-
occurrence of AB and AC to establish a perfect, deterministic connection between the two pairs.
They were later presented with situations where the status of A was masked, and they had to
predict B’s status given C. Participants who were told that A was a virus and B and C were
symptoms predicted the presence of B when C was present, given that they were common effects
of A. However, participants who were told that A was an emotion and B and C were appearance
features that could affect emotions did not predict B’s presence when C is present, as B and
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Chain

Fork

Collider Fully Connected

UnconnectedSingle Connected

Figure 2.1: Directed acyclic graphs (DAGs) on three variables. Red boxes indicate Markov equivalence
structures. Fork structures are also called common-cause structures. Collider structures are also called
common-effect structures.

C were seen as separate causes of A. This indicates that people form directional causal models
based on instructions and utilize them to predict outcomes, whereas association theory does not
distinguish between the two situations (see also Waldmann, 2000; Waldmann & Hagmayer, 2005).

2.2.1 Ontology, plausible relations, functional form

How do people make model-based causal judgments? Griffiths & Tenenbaum (2009) highlights
three critical components of the rational causal induction process: An ontology that outlines the
entities under investigation and their properties, a set of plausible relations that suggest how
entities may be connected, and the functional form that determines how causes influence their
effects under each type of relations.

Using the graphical illustrations and Bayes’ rule (Sloman, 2005; Pearl, 2000; Griffiths & Tenen-
baum, 2009), we can interpret this process as requiring the identification of nodes (i.e., entities)
within the causal structure of interest, the construction of a hypothesis space that includes links
(i.e., connections) between nodes, and the specification of likelihood functions to evaluate the
proposed structures (see Box 2.1 at the end of this chapter for more introduction of Bayes’ rule).
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The learner updates their prior belief over each structure s in the hypothesis space P (s) with
a likelihood function P (d|s;w) to get the posterior distribution P (s|d;w), given data d and a set
of parameters w:

P (s|d;w) ∝ P (d|s;w) · P (s) (2.8)

This rule applies to both atemporal and temporal datasets. I next introduce causal Bayesian
networks as a rational approach for the atemporal setting and formalize a rational approach for
processing temporal data in Chapter 4.

2.2.2 Causal Bayesian networks

Causal Bayesian Networks (CBNs; Pearl, 2000) provide a principled approach to formalize complex
causal relationships among multiple variables. It was developed for modeling large datasets in
computer science contexts, but subsequent research shows that laypeople have a commensurate
intuitive understanding of complex causal structures and both learn and make inferences that
broadly reflect the predictions of CBNs theory (Steyvers et al., 2003; Griffiths & Tenenbaum,
2005, 2009).

CBNs are kinds of probabilistic directed acyclic graphical models. They represent variables as
nodes and causal relationships as arrows and are defined by the “Markov assumption” that once all
the direct causes of a variable X are controlled for, X must be statistically independent of other
variables in the causal network that are not its direct or indirect effects. CBNs provide ideas for
causal structure learning from both qualitative and quantitative aspects. The qualitative aspect
is that causality is represented as a network of direct dependence between variables. For example,
if we want to confirm that depression causes insomnia and anxiety independently (insomnia ←
depression → anxiety), there should be statistical dependence between insomnia and depression,
and depression and anxiety, but insomnia and anxiety should be irrelevant once the state of
depression is known.

Quantitatively, it follows the Bayes’ rule that one can incorporate a prior belief with the
likelihood of newly observed data to form an updated “posterior” belief. In this case, this is a
posterior over all hypothetical causal structures and then choose the most likely causal structure.
The likelihood P (d|s;w) is calculated according to Equation 2.9, where d{e1, ..., ei} represents the
effect in each trial. The genPa(ei) and prePa(ei) are datasets of generative or preventative parent
nodes associated with ei. The calculation of P (ei|Pa(ei)) refers to noisy-OR and noisy-AND-
NOT functions (Equation 2.10), which is similar to Power PC despite that now one effect can be
influenced by multiple causes (and the base rate could be regarded as one cause in genPa(ei)). The
generative and preventative causal power parameters w{qg, qp} could be learned via instructions
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or jointly learned with causal structures (Griffiths & Tenenbaum, 2005, 2009).

P (d|s;w) =
∏
i

P (ei|genPa(ei), prePa(ei)) (2.9)

P (ei|genPa(ei), prePa(ei);w) = [1−
∏

g∈genPa(ei)

(1− qg · g)]
∏

p∈prePa(ei)

(1− qp · p) (2.10)

CBNs provide a comprehensive theoretical framework that can handle a wide range of human
causal reasoning questions across different domains (see Rottman, 2017, for review). Compared
to Power PC, CBNs not only can reflect the inner representation of unobserved hidden causes,
but also incorporate Bayesian priors to capture potential human inductive biases. Griffiths &
Tenenbaum (2005) encode two-variable causal strengths usually demonstrated under Power PC
into CBNs. Griffiths & Tenenbaum (2005) explain the frequency illusion by assuming that what
people actually do is to distinguish between two causal hypotheses: a Graph 1 where both unob-
served background causes and the target cause are linked to the effect, and Graph 0 where only
the unobserved background causes are linked to the effect. Under limited observed data, people
are uncertain about both graphs, and therefore the causal judgment – the normalized probability
of Graph 1 – is larger than that after people gather enough evidence to support Graph 0. Es-
sentially, they argue that what people infer in these settings is not the strength of association
between cause-effect pairs, but the probability that a causal link exists. Thus, they sometimes
replace the term “causal strength” with “causal support” to describe the belief about the link
between a putative cause and effect.

2.3 Bounded rationality

Marr’s three levels of analysis have been widely acknowledged in cognitive science research (Marr,
1982). He argues that an information processing system can be analyzed at three levels: (1) The
computational level (also called the normative level) that explains the problem that the system
is going to solve and how an ideal or rational agent would solve the problem; (2) the algorithmic
level (also called the process level) that explains how a system is solving the problem and what
algorithm is implementing that solution; and (3) the implementation level that explains how the
algorithm is physically implemented.

Now let us rethink classical causal theories under Marr’s framework. Both the RW rule
(Rescorla & Wagner, 1972) and Delta-P (Allan, 1980) aim to describe empirical behavior so they
are often classified as process-level models. Power PC (Cheng, 1997), as well as causal Bayesian
networks (Griffiths & Tenenbaum, 2005, 2009) can be regarded as both normative and process
accounts for atemporal causal learning given that the authors not only provide proofs of why their
solutions are optimal, but also show that people’s performances are best fitted by their models.
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Tauber et al. (2017) point out that Bayesian models have a broad interpretive power (i.e. the
ability to capture a wide range of phenomena) since there can be a large number of combinations
between priors and likelihood functions. By using the optimal combination, Bayesian models can
provide optimal solutions. But in other times, it can also serve as a language to describe learners’
mental representations, beliefs under these representations, and learning rules for belief revisions,
by specifying correspondent bounded hypothesis spaces, priors, and likelihoods, respectively.

Although aggregate results can often be in line with normative Bayesian models (Goodman et
al., 2011; Gopnik & Tenenbaum, 2007), any single individuals’ judgments are typically much noisier
and more idiosyncratic (Vul et al., 2014; Tauber et al., 2017). In order to utilize Bayesian models
as algorithmic-level models, researchers need to examine their predictions for individual results,
which is often understated in previous causal learning studies (Griffiths & Tenenbaum, 2005, 2009;
Pacer & Griffiths, 2012, 2015). Moreover, researchers sometimes consider a model could be both
normative and process by admitting that learning tasks are easy (i.e. less cognitive demanding)
and hence human can perform optimally under their cognitive capacity. However, it is also possible
that people are using approximations that are indistinguishable from optimal calculations because
both solutions can provide optimal answers to an easy problem. Accordingly, a more practical
way to study causal learning and find process models would be setting up moderately difficult
tasks that can potentially separate the prediction of normative- and process-level solutions and
examining both aggregate and individual results (Van Rooij et al., 2019) — that is the approach
adopted by this thesis.

2.3.1 Rational analysis

How can we find process-level models that can better explain human causal learning, especially
in terms of learning complex causal structures? Modeling human cognition, a black-box system
that is much more intelligent than anything we have ever created ourselves (Lieder & Griffiths,
2020), could be a challenging task. Given an observed behavior pattern, researchers can propose
an infinite number of models that are capable of explaining the data, but for many times at most
one of them is correct. Therefore, rather than “discovering” the human cognitive processes, it is
better to describe the job of cognitive researchers as “approximating” the truth of human cognition.
Rational Analysis (Anderson, 1990) provides guidance for this process. It requires researchers to
1) develop an optimal model formulated as a problem and its solution, with minimal assumptions
about computational limitations; 2) examine the empirical literature to see if the predictions
of the behavioral function are confirmed; 3) if the predictions are off, then refine the model to
incorporate more constraints and better capture the data.
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Table 2.2: The number of possible generative structures for 1-6 variables.

Variables Acyclic only Acyclic and Cyclic

1 1 1
2 3 4
3 25 64
4 543 4096
5 29281 1048576
6 3781503 1073741824

2.3.2 Three process-level causal learning models

Based on the rational analysis procedure, researchers have developed process-level algorithms to
enhance our understanding of how humans learn causal structures in comparison to normative
CBNs. In this context, I will introduce three such algorithms, all tailored to address problems
related to causal systems comprised of binary variables. Each of these algorithms demonstrates
the capacity to approximate the results obtained from CBNs over an extended period by either
observing a greater amount of data (win stay lose sample) or executing a more extensive sequence
of sampling (Neurath’s ship and mutation sampler). Additionally, these algorithms incorporate
constraints on computational resources to provide a more accurate representation of bounded
human cognition.

Win stay lose sample

Bonawitz et al. (2014) demonstrate that causal learners employ a particle-based approximation
called win-stay-lose-sample (WSLS) for reasoning. This approach involves learners maintaining
a single sample belief from a hypothesis space, which is subsequently resampled when it fails to
generate evidence consistent with the observed data. In other words, as the current hypothesis
becomes less capable of explaining the most recent data, the probability of resampling increases.
The advantage of WSLS lies in the fact that, when confronted with a new data point, the learner
only needs to evaluate its likelihood under the currently focused hypothesis, rather than examining
it under all possible hypotheses.

In comparison to an ideal Bayesian learner, the use of WSLS introduces a phenomenon known
as “stickiness” – a tendency for the learner to favor the currently held hypothesis over alternative
hypotheses. This preference aligns with the conservatism observed in broader human cognition
(Bramley et al., 2015; Edwards, 1968; Phillips & Edwards, 1966). WSLS has successfully explained
this sequential dependence in online causal judgments made by both adults and children.
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Neurath’s ship

Although WSLS suggests that humans may only evaluate each data point under a limited number
of hypotheses, it still requires the learner to maintain a belief distribution encompassing all possible
hypotheses for the resampling process. This requirement can be met in certain scenarios, such
as the one described by Bonawitz et al. (2014), where only 16 hypotheses are employed in the
deterministic setting and only three hypotheses in the probabilistic setting. For example, in their
deterministic task, participants were asked to determine which type of block could cause which
type of block to light up (e.g. red→yellow, yellow→yellow, yellow→red, red→red), where the 16
hypotheses can be further decomposed into four independent rules.

However, real-life causal learning problems could involve more intricate causal structures. For
instance, even when considering only acyclic structures, the number of possible generative causal
structures (excluding preventative structures) for just three variables would amount to 25. If
cyclic structures are also taken into account, this number increases to 64 (refer to Section 2.4.4
for a detailed explanation of the distinction between acyclic and cyclic structures). As illustrated
in Table 2.2, the number of structures grows quickly and becomes intractable as the number of
variables increases. Furthermore, the variables within these structures can be interconnected in
more complex ways, such as forming chains (e.g., A→ B → C → D). Interestingly, even though
people often cannot perfectly discover the underlying causal structures, they perform reasonably
well in tasks involving three or four variables, both in non-temporal settings (Bramley et al., 2015;
Bramley, Dayan, et al., 2017) and temporal settings, as will be demonstrated in the subsequent
chapters of this thesis.

Bramley, Dayan, et al. (2017) show that people’s online causal learning is similar to the
Neurath’s ship metaphor in philosophy of science, where learners only adjust their hypothesis
partially each time (i.e. local updating), and do so using limited recent evidence (i.e. local
information). Specifically, the Neurath’s ship model assumes that learners hold a single hypothesis
regarding the causal structure in their mind. When confronted with new evidence, they iteratively
search for local improvements to the currently focused causal structure by adding or subtracting
links step by step, or reorienting existing links. The direction of these adjustments is determined
using a Markov chain Monte Carlo sampling process (Goudie & Mukherjee, 2011).

Markov chain Monte Carlo (MCMC) is a sequential sampling technique employed to approx-
imate probability distributions in cases where exact calculations are computationally infeasible.
For the recent decades, MCMC has been adopted in cognitive studies as a tool to approximate
posterior distributions (Lieder, Griffiths, Huys, & Goodman, 2018; Lieder, Griffiths, & Hsu, 2018;
Dasgupta et al., 2017; Bramley, Dayan, et al., 2017; Davis & Rehder, 2020). It allows researchers to
investigate how individuals approximate the posterior distribution when analytical computations
are intractable or impossible.
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Metropolis–Hastings (MH) sampling and Gibbs sampling are two widely recognized types of
MCMC algorithms. MH sampling proposes a set of new parameter values, deciding whether to
move to the new set or stay with the original set based on the relative probabilities between the
new and old sets of values. On the other hand, Gibbs sampling, a special case of MH algorithms,
samples from conditional probability distributions and always accepts the samples. That is, it
samples a new value for one parameter while keeping the previous state unchanged. This process
continues iteratively for each parameter in the model until the value of each parameter converges.
In the context of the Neurath’s ship algorithm and its local changes to causal structure hypotheses,
it aligns with the principles of Gibbs sampling (Bramley, Dayan, et al., 2017). By sequentially
sampling for a large number of iterations, the values in MCMC algorithms often converge to the
true underlying values or states. However, to account for cognitive resource limitations, it is
common to assume that individuals can only sample a limited number of times. In the case of
the Neurath’s ship algorithm, it assumes that the local search will terminate after a fixed number
of steps (e.g. 50 in their experiments). After this point, the memory of evidence will be cleared
if the held structure has been updated to a different one. Subsequent updates will solely rely on
later pieces of new evidence, aligning with the notion of local (recent) evidence (Bramley, Dayan,
et al., 2017).

The algorithm is referred to as the “Neurath’s ship” due to its resemblance to the corresponding
philosophical metaphor (Quine, 1960), which suggests that, similar to sailing a ship, people rely
on their existing theories or hypotheses to navigate through uncertain waters. We continuously
improve and refine our theories while being unable to retreat to a dry-dock to contemplate all
possible alternatives and make significant changes. The Neurath’s ship model demonstrates a
better overall fit to human causal judgments compared to WSLS. This finding indicates that,
instead of completely resampling a new structure from the hypothesis space, individuals are more
inclined to refine their existing hypothesis through local adaptations and adjustments.

Mutation sampler

WSLS and Neurath’s ship models provide insights into human causal judgments by considering
how the hypothesis space can be narrowed down. However, they still assume that the reasoner
uses the normative Bayesian approach to calculate how likely it is to see the evidence given a
hypothesis (see Equation 2.9 and Equation 2.10). In contrast, the mutation sampler, as the third
algorithm, highlights another significant perspective: How the likelihood calculations could be
more computationally economical.

The mutation sampler algorithm (Davis & Rehder, 2020) proposes that causal inferences are
made based on a set of samples representing possible states of the causal system. Rather than
relying on exact probabilistic calculations, this approach assumes that the likelihood of seeing a
state (e.g. {A = 0, B = 1, C = 1}) originating from a causal structure (e.g. A→ C ← B) depends
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on the number of that state sampled from that particular causal structure. The sampling process
is sequential and follows the MH sampling approach: At each step, a new state is “mutated” from
the previous state by modifying the value of one variable in the structure. A key assumption of this
algorithm pertains to the initial state. It assumes that the initial state is one of two possibilities:
either all causes (variables without endogenous parents) are set to 0, or they are set to 1, and
the effects work by assuming all causal links in the system are deterministic. For example, in a
fork structure such as A → C ← B, the initial state would be either {A = 0, B = 0, C = 0} or
{A = 1, B = 1, C = 1}. Similar to the Neurath’s ship, the mutation sampler imposes constraints
on the number of samples to account for cognitive limitations. As a result, there may be a higher
number of initial states compared to other states in the final distribution, reflecting the limited
number of samples that individuals can generate.

The mutation sampler, through its departure from the normative causal Bayesian network
account, offers explanations for various classic fallacies observed in atemporal settings. These
deviations align with how humans often diverge from the normative account. To further investigate
how individuals simulate mental samples, Davis & Rehder (2020) conducted an experiment in
which participants were asked to distribute coins among the states they sequentially sampled.
The observed sampling distributions exhibited greater alignment with the mutation sampler rather
than the normative sampler. These findings suggest that individuals may possess a “prototype”
representation of causal structures and only briefly explore alternative possibilities before settling
on a particular hypothesis (Davis & Rehder, 2020).

2.3.3 Resource rationality

Lieder & Griffiths (2020) expanded the rational analysis framework by emphasizing the concept
of bounded rationality. They proposed that human behavior is not in opposition to rationality
but rather represents a bounded version of rationality, as initially described by Simon (1982).
According to this perspective, individuals rely on their limited cognitive capacity to solve problems
by making optimal trade-offs between the cost of computational resources and the utility of
achieving a more accurate approximation of the correct solution. In this framework, known
as “resource-rational analysis”, researchers develop process models that take into account the
cognitive constraints faced by individuals, including but not limited to elementary operations,
processing speed, and working memory capacity.

A crucial step in resource-rational analysis is to quantify the cognitive cost associated with
different actions or strategies. For example, when using the MCMC algorithm, researchers can
assume that each sample incurs a certain cost, which is a function of the number of samples taken.
The reward r of a decision is determined by the reward defined by the task at hand. Traditionally,
external rewards have been considered, but recent research has also explored the quantification
of internal rewards, such as curiosity or intrinsic motivation (Brändle et al., 2023). By making a
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bounded optimal action a∗, learners aim to maximize their overall reward r while minimizing the
cognitive costs c:

a∗ = argmax
a∈A

(ra − ca) (2.11)

Within the framework of resource-rational analysis, many human behaviors that were previ-
ously considered irrational have been reinterpreted as rational adaptations, taking into account
the constraints of human cognitive resources and the specific ecological context. This paradigm
shift has led to a better understanding of human decision-making processes across different do-
mains, including (1) choosing between machines with different reward distributions in decision
tasks (Binz et al., 2022; Lieder & Griffiths, 2017); (2) answering open-ended questions that may
involve anchoring-and-adjustment process, such as estimating the frozen degree of vodka (Das-
gupta et al., 2020; Lieder, Griffiths, Huys, & Goodman, 2018); and (3) planning sequential actions
(Callaway et al., 2022). In Chapter 6 of this thesis, the same resource-rational analysis framework
will be applied to explain another category of decision-making: intervention decisions aimed at
learning causal structures. By considering the limited cognitive resources people possess and the
specific challenges posed by causal learning, this framework promises to shed light on the rational
adaptations underlying intervention decision-making processes.

It is important to note that resource rationality does not provide a direct answer regarding
the specific algorithms implemented by individuals. For instance, in the context of planning and
causal intervention decisions, calculating the exact computational cost and normative rewards for
each available option may require more cognitive resources than simply computing the norma-
tive rewards and making a decision based on rewards alone (Callaway et al., 2022). Therefore,
compared to treating it directly as a process-level model, it is more reasonable to recognize that
resource rationality allows us to explore the extent to which individuals consider cognitive costs
in their decision-making.

2.4 Limitations of existing causal learning models

So far, I have presented an overview of classical causal theories (RW, Delta-P, Power PC, CBNs),
along with recent process-level models (WSLS, Neurath’s ship, mutation sampler). These frame-
works offer quantitative explanations for how humans make causal inferences. However, despite
their contributions, several challenges remain unresolved within these influential frameworks.
These challenges, which I will outline below, primarily stem from the neglect of temporal in-
formation.
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2.4.1 Causal direction

All causal models reviewed above focus on answering the question of whether, or to what extent,
variables are associated with one another, but they are not able to discern the direction: which
variable is the cause and which is the effect. Since the RW rule and Delta-P are cast as associative
learning theories, they do not aim to solve this causal direction problem. In studies of Power PC,
the causal direction is often indicated in cover stories that people can easily understand: e.g. that
drugs affect symptoms or chemical substances affect bacteria growths but not vice versa (Buehner
et al., 2003; Wu & Cheng, 1999), based on prior knowledge obtained in daily life rather than
mechanical thinking about the current evidence (Lagnado et al., 2007).

CBNs have more flexible hypothetical causal structures, while as shown in Figure 2.1, there
are many structure groups that cannot be distinguished from each other on the basis of observed
data because their dependencies are all equivalent. These are known as called Markov equivalent
structures. For example, in casual structures X → Y → Z, X ← Y ← Z, and X ← Y → Z,
the dependence patterns are all that X and Y are always correlated, Y and Z are always corre-
lated, and X and Z are unconditionally correlated but become uncorrelated once Y is controlled
for. Unlike with traditional Bayesian networks, for CBNs Markov equivalent structures can be
distinguished by introducing intervention data. Intervention means to manipulate one or more of
the variables in the model to one possible value, so that the value of these variables will be fixed
and no longer depend on its parents. If you intervene on Y , and find Y and Z are correlated,
but X and Y , X and Z are independent, then X → Y → Z is the correct structure (Pearl,
2000). Intervening opportunities are not always readily available, yet in our everyday lives, we
can easily distinguish causes from effects. How do we accomplish this? The answer may lie in the
consideration of temporal information, which none of the aforementioned theories have explicitly
incorporated or addressed. In Chapter 3, I will dig into the existing literature on the significance
of temporal information in the realm of causal reasoning.

2.4.2 The observation window

All of the models mentioned in this chapter deal with atemporal contingency data, where one
widely used paradigm involves presenting participants with pairs of events in independent sam-
ples. Cover stories in scientific fields such as biology (Buehner et al., 2003; Lu et al., 2008), physics
(Lagnado & Sloman, 2004; Coenen et al., 2015), and psychology (Rottman & Keil, 2012) are used,
since the data structure is similar to the data that scientists collect under laboratory experimenta-
tion: In order to obtain convincing and generalizable knowledge, scientists are required to collect
independent evidence of sufficient sample size (Hattori & Oaksford, 2007). A minimal example
might involve pairs of patient outcomes (e.g. sick or not) under different treatment assignments
(e.g. vaccinated or unvaccinated) and ask them to judge whether or to what extent the treatment
affected the outcome (Buehner et al., 2003; Stephan, Placì, & Waldmann, 2021).
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While these settings put timing considerations to one side, they do not eliminate them. Fun-
damental questions remains as to how to determine an appropriate time window to measure
outcomes, and how to ensure the observations are truly independent of one another. Without
supporting knowledge about the relevant causal mechanisms, waiting too short a time before
measuring an effect may not allow the influence to propagate or become apparent (e.g. the vac-
cine may not have taken effect yet), while waiting too long will tend to introduce confounds factors
(e.g. the infection running its course, or the patient dying from natural causes). Equally, we need
to determine the timing of interventions since some time-dependent factors (e.g. age) mediate
the relationships between variables (Rottman, 2016). It appears that, to construct these simple
contrasts, scientists are already using rich prior causal knowledge about the relevant mechanisms
and their temporal properties in order to create the experimental protocol that allows abstraction
to the level of contingency data. If so, it is important to understand how people acquire these
temporal expectations in the first place. In Chapter 4, I will build a rational framework to show
how the temporal expectations could be learned from causal learning process. In Chapter 7, I will
show how important the observation window is in influencing causal judgments, which questions
the previously simplified way to choose the observation window.

2.4.3 Independent vs. repeated-measure evidence

The other problem with atemporal contingency data is that, although it is common to see in the
scientific discovery, it may systematically deviate from everyday life situations. Scientific samples
typically consist of independent observations, a concept formally denoted as "independent and
identically distributed" (i.i.d.). In contrast, lay people often experience multiple events of the same
type occurring multiple times to a single individual. For example, if we want to learn how to use
the TV remote control, we will probably try pressing buttons repeatedly rather than observing
many independent televisions and controllers being used by others. If we want to know what
activities can improve working efficiency, we probably try them ourselves on different days rather
than asking hundreds of friends to change their schedules. What laypeople gather and infer upon
is generally “repeated-measures” evidence rather than independent and identically distributed
evidence.

On one hand, the amount of samples could be limited compared to scientific experiments,
leading people to rely on other cues (e.g. time, prior knowledge) rather than the contingency
principles (Lagnado et al., 2007). On the other hand, the temporal dimension can also complicate
the information in each data point, requiring sophisticated approaches to process it efficiently. Em-
pirical studies indicate that people are sensitive to time when inferring causal structures (Bramley,
Gerstenberg, Mayrhofer, & Lagnado, 2018; Hagmayer & Waldmann, 2002; Greville & Buehner,
2010; Buehner & McGregor, 2006; Shanks et al., 1989; Valentin et al., 2022), while it has not been
explained systematically how temporal information is integrated in the inference process. It is
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unclear whether we actively transform this rich real-time data into the tabular formats that clas-
sical theories assume. If any, what strategy do people use? If people do not convert real-time data
into tabular data, what theory could they rely on to make inferences? I argue that to improve our
understanding of everyday causal induction, research should focus on settings with finer-grained
repeated-measures evidence unfolding in continuous time. In Chapter 5 and 6, I will build causal
learning tasks that requires the learner to learn from events from the continuously and examine
their performance across different conditions.

2.4.4 Cyclic structures

Certain causal structures are only feasible when considering the time dimension, such as cyclic
structures. A causal mechanism is cyclic if it has at least one component whose descendants include
itself (Pearl, 2000). This means that the components that form part of the cycle, or outputs from
it, may occur in repeated alternating fashion (e.g. a bidirectional connection A ↔ B could
generate a sequence of events A,B,A,B,A, ...). Many causal processes in the natural world are
cyclic (Malthus, 1872), and people frequently report causal beliefs that include cyclic relationships
when allowed to do so in experiments (Kim & Ahn, 2002; Nikolic & Lagnado, 2015; Sloman et
al., 1998; Rehder, 2017). However, most influential causal learning models, such as CBNs, do
not account for cyclic structures, instead focusing on directed acyclic graphs (DAGs; Pearl, 2000;
Rottman & Hastie, 2014; Griffiths & Tenenbaum, 2009). Some adjustments have been made in
order to capture cyclic structures, such as the use of dynamic Bayesian networks (Rottman & Keil,
2012; Valentin et al., 2022; Dean & Kanazawa, 1989). However, these models impose significant
constraints on the data formats, limiting the expression of temporal information to discrete time
steps (i.e. t, t+1, t+2, ...), and allowing each type of event to occur only once at each time step.
These limitations do not reflect the true nature of events, which can happen at any moment in a
continuous timeline, with intervals of any length between them. In order to study the way in which
people reason about cyclic structures, appropriate tools are needed. In Chapter 6, I will conduct
behavioral experiments that requires the learner to learn cyclic structures, and demonstrate a
model that can capture cyclic structures.

Box 2.1: Probabilistic inference – Bayes’ rule. Bayes’ rule provides a solution to
how we can use evidence to revise our beliefs, i.e. the problem of induction. According to
the property of conditional probability that P (A,B) = P (A|B)P (B) = P (B|A)P (A), we
can get Equation 2.12, where h represents hypothesis and d represents data:

P (h|d) = P (d|h)P (h)

P (d)
(2.12)
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In many cases, we do not update a single hypothesis. For example, if there is a weighed
coin and we wish to know whether it is “biased towards heads” or “biased towards tails”,
we will update the degrees of these two hypotheses simultaneously, with one increase and
another decrease. We can form H = {h1, h2, h3, . . .} as the set to include all possible
hypothesis we consider, which is often called hypothesis space. Then we can revise Equa-
tion 2.12 as:

P (h|d) = P (d|h)P (h)∑
h′∈H P (d|h′)P (h′)

(2.13)

For most cases, we do not need to know the absolute probability of our hypotheses given
the data, but relatively which hypothesis wins, so we can ignore

∑
h′∈H P (d|h)P (h) since

it is constant:

P (h|d) ∝ P (d|h)P (h) (2.14)

Equation 2.14 is the most commonly used formula in induction problems. P (h) is called
prior (or inductive bias) that reflect people’s degrees of different beliefs before observing
data. P (d|h) is called likelihood where we calculate the probability of observing all data in
d if a hypothesis is true. P (h|d) is called posterior that combines the prior and likelihood
to know the revised degrees of each belief, where we can finally choose the most likely belief
to be the answer of the induction problem.

The likelihood function, i.e. how we get P (d|h), would be an important piece that
researchers need to illustrate in their works since it depends on the specific task. For
the prior distribution, researchers can simply define a uniform prior distribution that all
hypotheses are treated as equal possible before looking at the data, whereas if it is suspected
that learners have biased prior beliefs, researchers also need to carefully consider the prior
setting in their models. Finally, when the posterior calculation is intractable due to large
hypothesis spaces or complex likelihood functions, researchers need to use some algorithms
(e.g. Monte Carlo methods) to approximate the posterior distribution (see Griffiths et al.
(2010) for a short overview of probabilistic inference in human cognition and Oaksford &
Chater (2007) for a detailed one).



Chapter 3

Time, dynamics and causality

“Lives are lived day by day, one day at
a time, from day to day, day after day,
day in and day out.”

Kenneth Craik

Our lives are made up of the days we experience. In everyday experience, causal relationships
are inseparable from temporal information in that events happen at particular times. We

expect electronic equipment to turn on almost instantly after we push but that drugs will take
hours to kill pain and that what we learn today may even influence our decisions ten years later. In
this chapter, I will review empirical findings of the role of temporal information in causal learning
processes.

3.1 What is “time”

A fun fact about time is that everybody seems to know what time is, but nobody can easily
explain it to an organism who never experienced it before (Buonomano, 2017). The philosophy of
time is often discussed by physicists. The uniqueness of time can be better understood through
comparison with the spatial dimensions(S. M. Carroll, 2008, 2022):

1. We progress through time at a constant rate of one second per second, inevitably. Each
moment is dependent on the preceding one: In a continuous spatiotemporal system, we
can use information from one moment to make predictions about what will happen next.
Conversely, it is far less reliable to predict events in one location based on information from
another location.
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2. The past is fixed, while the future remains uncertain: We often feel a sense of control over
the future, but we understand that our present actions cannot alter the past. In contrast,
the properties of left and right in spatial dimensions are identical. For example, our ability
to see extends equally in both left and right directions.

3. Intuitively, we may doubt the existence of other points in time that we can travel to, but
we are certain that there is something happening in other places that we are not in.

These philosophical properties of time indicate many relations between time and causality.
The first property could be seen as the foundation of the Humean assumption that causes precede
and are temporally contiguous with their effects (Hume, 1740). This property is also the most
relevant one to this thesis, as I will show below. The second property indicates how people may
control the outside world: We make actions upon a system and expect that the future rather than
the past would change (Davis et al., 2018; Hagmayer et al., 2010). The third property conceives
the process of counterfactual thinking where we mentally ruminate what could have happened had
we acted differently in our past and then feel the emotions of luck or regret, and counterfactual
thinking is regarded as an essential process in actual causal attribution (Lagnado et al., 2013;
Gerstenberg et al., 2021).

Over several decades, cognitive researchers have investigated the relationship between time
and causality. This inquiry has sought to understand both how temporal information serves as
a cue towards causality and how causal beliefs shape one’s perception of time. In the following
sections, I illustrate different perspectives on time that researchers have diligently examined.
These perspectives can be effectively categorized into two primary dimensions: delay information
and order information.

3.2 Delay

3.2.1 Delay expectation

People tend to make stronger causal attributions when the delay between a putative cause and
effect is consistent with prior expectations or mechanistic understanding (Gong & Bramley, 2023a;
Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Buehner & McGregor, 2006; Hagmayer &
Waldmann, 2002; Stephan et al., 2020). For example, Buehner & McGregor (2006) found that
participants assigned higher causal judgments to the insertion of a ball that turned on a light on
a physical apparatus when the light came on after a few seconds, rather than instantly, if they
were aware that it took time for the ball to roll through the apparatus and reach the light switch
(see also Buehner & May, 2004). Similarly, Mendelson & Shultz (1976) test 4-7-year-old children
on a machine that can make a bell ring if a marble is dropped into one of two holes. When
children have little knowledge of the machine, they attribute it to the hole for which the bell rings
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immediately after dropping a marble into it. However, after they observe the inner mechanism
and realize marbles take time to go through a long tube, they choose the hole where the delay is
long between marble dropping and bell ringing (see also Schlottmann et al., 2013).

Hagmayer & Waldmann (2002) found participants judged whether an insecticide prevents
mosquitoes by comparing prevalence of mosquitoes in fields with and without the insecticide,
but judged whether planting flowers prevents mosquitoes based on whether the prevalence of
mosquitoes was affected the year after the flowers were planted, presumably expecting that flowers
would take longer to influence the insect population than insecticide. All these studies highlight
the role of expectation in relationships between causal latency and causal judgment: we select the
cause that consists of what we expect how long the delay should be in the current context.

3.2.2 Short delay

People tend to make stronger causal attributions for short temporal delays than long ones, when
mechanistic priors are not specifically conveyed (Shanks et al., 1989; Shanks & Dickinson, 1991;
Greville & Buehner, 2010; Lagnado & Sloman, 2006; Buehner & McGregor, 2006; Greville &
Buehner, 2007). Shanks et al. (1989) showed that people are more likely to learn a causal re-
lationship between the action and the outcome when the outcome follows the action within two
seconds. When the delay is longer, people are less likely to expect the action to bring about the
outcome (see also Shanks & Dickinson, 1991; Greville & Buehner, 2010). This is consistent with
the contiguity effect in humans’ and animals’ association learning, which shows that the associa-
tion formed between two events decreases as the delay increases (Tarpy & Sawabini, 1974; Garcia
et al., 1966).

At the same time, causal beliefs can, in turn, influence the duration perception. Research in
both adults and children find that knowing that two events are causally related can subjectively
compress the temporal delay perception between two events, which is called temporal binding
(Blakey et al., 2019; Buehner, 2012). Temporal binding happens in various situations, including
when people activate the causal system by themselves, observe the system activated by agents or
non-living mechanisms (see Hoerl et al., 2020; J. W. Moore & Obhi, 2012, for review). It reflects
the tight relationship between temporal contiguity and causal reasoning in human cognition.

Explanations for this “short-delay preference” consider the normative intuition that the longer
the delay, the more likely that alternative causes in between could be responsible for the effect
(Lagnado & Speekenbrink, 2010). Another theoretical assumption is that the longer delay between
cause and effect, the harder for the information to be sustained in working memory (Buehner et
al., 2003; Einhorn & Hogarth, 1986; Ahn et al., 1995).

However, the short-delay preference did not show up in all causal learning studies. In fact, it
has only been consistently observed in studies where delays were manipulated within participants.



3.3 Order 42

In contrast, when delays were manipulated between participants, there was no difference in learn-
ing performance between those exposed to short delays and those exposed to long delays (Zhang &
Rottman, 2021a). Even under the within-subject design, the short-delay preference disappeared
when the total duration of observations aligned with the causal delays (e.g. the observation du-
ration of the 6s-delay trials was twice as long as the observation duration of the 3s-delay trials;
Lagnado & Speekenbrink, 2010). Neither of the accounts presented above can fully explain this
deviation. In Chapter 4, I will propose a third parsimonious account within our Bayesian model
that can account for when it is preferable to have short delays in causal attribution.

3.2.3 Predictable delay

People tend to make stronger causal attributions when the temporal delays between a putative
cause and effect are less varied across repeating observations (Greville & Buehner, 2010; Bramley,
Gerstenberg, Mayrhofer, & Lagnado, 2018; Lagnado & Speekenbrink, 2010; Gong et al., 2023).
Greville & Buehner (2010, 2016) found that in addition to a main effect of short-delay, people
also tend to give higher causal ratings when the delays between cause and effect are drawn from
a wider range (e.g. 3-9 s), as opposed to a narrower range (e.g. 4.5-7.5 s) with the same average
delay. The unvaried-delay effect persists even when learning duration is increased, suggesting
that it is not simply a matter of insufficient learning information (Greville & Buehner, 2010).
Bramley, Gerstenberg, Mayrhofer, & Lagnado (2018) asked participants to choose between two
causal structures based on multiple clips with consistent activation orders (e.g. A − B − C) but
variable temporal delays. They found that people preferred the “Chain” structure (A→ B → C)
when the delay between A and C was relatively variable but the delay between B and C was
constant, and preferred the “Fork” structure (B ← A→ C) when the delay between A and C was
constant but the delay between B and C was variable.

To date, there is no clear explanation for the combined effect of short and unvaried delays
on causal attribution, as Greville & Buehner (2010) wrote: “Presumably, if a temporal interval is
highly predictable, and therefore provides good support for a causal structure model, the extent
of delay should not matter”. In Chapter 4, I will demonstrate that our Bayesian model can offer
a joint explanation for both preferences.

3.3 Order

We have seen how temporal delay plays a role in causal learning. Actually, there is more funda-
mental thinking of how temporal information help reveal causal relationships: since causes precede
their effects. This statement is so intuitive that it is even seen as a definition of causality (Hume,
1740) rather than an assumption that should be tested. Nevertheless, Lagnado & Sloman (2006)
design an ingenious task to examine its influence. Participants are asked to imagine a situation
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that computer virus can spread through the network and told that the time at which a computer
reveals its infection could occur after a variable delay, so later than the time at which the com-
puter became infected. Participants watch multiple clips showing the order of virus appearing in
each computer, and then judge the structure of the computer network. Since participants do not
know the actual infection time, the presumed solution under CBNs is to summarise contingency
information from real-time clips and update beliefs according to the observed contingencies. How-
ever, participants’ judgments are well-aligned with experienced temporal order rather than the
statistical contingency. This suggests that people primarily use temporal orders to make causal
inferences, or say, their reliance on order information is so strong that it could not, in this case,
be overcome by contingency information (see Chapter 4 for more description of this study).

One interesting question here is whether people think that cause and effect can happen simul-
taneously. Burns & McCormack (2009) find that 6-7-year-old children strongly favour a common
cause structure B ← A → C over a chain structure A → B → C when B and C happening
simultaneously and after A. It shows that children do not favour the answer that contains simul-
taneous assumptions, even though children are considered to be more open-minded than adults
in causal learning (Gopnik et al., 2015; Lucas et al., 2014). Bramley, Gerstenberg, Mayrhofer,
& Lagnado (2018) expand this study to include more causal structures and test them on adults.
Participants’ answers are better predicted by models that assume causes should be not late and
also not simultaneous to the occurrence of their effects. Hypotheses failing to satisfy this criterion
could be ruled out directly in causal inferences. Although there are situations in the real world
that timing differences between cause and effect are undetected by human sensations, such as
electronic transmissions, these studies show that people are reluctant to assume the simultaneity
when they observe real-time causal events. It could potentially support the assumption that peo-
ple represent causal events in a continuous timescale where causes and effects cannot happen at
exactly the same time.

Similar to temporal binding, there is also a cognitive illusion showing the inverse effect between
order and causal direction: causal reordering. People invert the order in which two events happen
if they believe the later event to be the cause of the earlier one, and it is better explained by the
essential assumption we hold for causality that causes precede their effects than pure attention or
memory deficits (Bechlivanidis & Lagnado, 2016). Both temporal binding and causal reordering
illustrate that human causal beliefs of temporal information are so strong and robust that they
can have top-down influences on the sensation.

3.4 Two other temporal data forms

The research discussed above primarily examines causal relations that manifest as unfolding events
in continuous time, which will also be the primary focus of this thesis. However, it is important
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to acknowledge that there are other forms of data that are relevant to capturing temporal infor-
mation. I introduce two of them below.

3.4.1 Time-series data

Besides causal learning through events occurring in continuous time, recently several studies have
investigated situations that involve continuous variables and continuous timelines, which are re-
ferred to as time-series data (Soo & Rottman, 2018, 2020; Zhang & Rottman, 2021b) produced
by continuous dynamic causal systems (Davis et al., 2020; Rehder et al., 2022; Bramley et al.,
2019; Btesh et al., 2023). Some of these studies have shown that people can leverage moment-
by-moment transitions (i.e. changes in the values of variables between successive observations)
to identify the presence and direction of causal relationships (Soo & Rottman, 2018). It has also
been shown that people can often identify the causal structure of dynamic systems that involves
three continuous variables (Davis et al., 2020; Rehder et al., 2022; Btesh et al., 2023) if they can
freely intervene on and control each variable in real time. Participants in these tasks appeared to
follow an intervention strategy of creating occasional dramatic and rapid changes in variables and
monitoring the behavior of other variables shortly afterward. They were able to learn better when
the variables changed rapidly and affected one another rigidly rather than slowly or gradually
(Rehder et al., 2022; Gong & Bramley, 2022), which is aligned with the short-delay preference
discussed above when people infer from events.

Granger causality (Granger, 1969) is an established statistical technique designed to identify
potential causality in time-series data, with a mechanism to accommodate causal lag. To assess
if one variable “Granger causes” another, one searches across a range of fixed lags deemed to be
mechanistically plausible, e.g. Xt−1 . . . Xt−m, and tests whether inclusion of any of these terms
statistically improve prediction of Yt over and above its own lagged autocorrelation (modeled
by including Yt−1 . . . Yt−m as a covariate). If a statistical relation is found for one or more of
these lags, the causal influence is deemed to be supported. As such, Granger causality does not
inherently privilege longer or shorter lags. This lag-indifference may be appropriate for minimizing
bias when modeling domains that are poorly understood but may not reflect human expectations.
Indeed, people more reliably identify a relationship when its causal lag is short than long (Gong
& Bramley, 2022), which is consistent with the context of event-based temporal causal learning I
introduced above.

3.4.2 Spatiotemporal data

Researchers examine spatiotemporal evidence when asking individuals to make causal inferences
for 2D physical scenes (Ullman et al., 2018; Bramley, Gerstenberg, Tenenbaum, & Gureckis,
2018; Gerstenberg et al., 2021). Due to the brevity of the clip, it is crucial to leverage the
mechanistic details to discover the underlying structure. This necessitates that learners consider
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the specific movements of objects that are causally related to one another. Ullman et al. (2018) use
a hierarchical Bayesian framework to demonstrate this normative process. Reasoners must hold
both higher-level, abstract principles and detailed mechanistic knowledge to effectively reason
about spatiotemporal evidence. The higher-level causal conclusions are finally draw from the
investigation of individual evidential details.

Nevertheless, the complexity of spatiotemporal dynamics can introduce the problem of in-
tractability (Griffiths, 2020). In reality, it is difficult for people to follow normative frameworks,
and hence they often rely on approximations by relying on simulations to extract heuristic cues
and examine cues in the evidence (Ullman et al., 2018; Bass et al., 2021). As a result, inferring
hidden causes in physical scenes can also be challenging. C. D. Carroll & Kemp (2015) presented
participants with only the effect and asked them to infer the hidden causes that influenced its
motion. They found that participants often failed to generate the location of hidden causes, even
though they could endorse it when it was presented to them. This reveals the difficulty of infer-
ring hidden causes when mechanistic information is complex and the hypothesis space is large. As
such, even with rich spatiotemporal data, it may be challenging for people to capture all the de-
tails of the information (Rehder et al., 2022; Ludwin-Peery et al., 2020, 2021). I will show in later
chapters that the similar computation issue exist in event-based temporal causal learning tasks
and it would be taken into account when I develop the models to describe human performance.



Chapter 4

Rational causal induction from time

In the previous chapters, we have seen the history of causal theories and the evidence of people’s
sensitivity to temporal information in causal reasoning. However, so far, we do not have a

quantitative theory about how temporal information should be employed systematically for the
purpose of learning causal structures. In this Chapter, I develop a rational framework that in-
corporates the role of time in guiding causal learning. I define a formal framework for expressing
continuous-time causal theories, particularly attending to the role of time in the construction of
these theories. I work within the Bayesian rational analysis tradition (Marr, 1982; Anderson,
1990), as this has proven successful in developing theories of atemporal causal induction (Griffiths
& Tenenbaum, 2005; Rottman & Hastie, 2014). However, I depart from past analyses of causal
inference by linking causal influence with dependence between events in continuous time (i.e. con-
tiguity) rather than co-incidence of variable states across independent trials (i.e. contingency). I
will show how this approach anticipates the ceteris paribus human preference for causal explana-
tions that posit shorter, more reliable and more predictable causal influences. Furthermore, I will
show this account provides a unified explanation for human judgments across seven experimental
datasets from the causal learning literature.

Content from this chapter is based on a project collaborated with M Pacer (co-leader), Thomas
L. Griffiths, and Neil R. Bramley.

4.1 The variety of temporal causal learning scenarios

Temporal evidence utilized for learning causal structures can manifest in various forms. For
instance, a rain shower can be perceived as a singular event or alternatively as a sequence of
numerous raindrops, which are essentially multiple events occurring one after the other. In terms
of causal relationships, we might think of an effect as a specific event, whereas in other cases, we
might be focused on the change in the number or rate of density of events of a particular class or
type.
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We further illustrate this idea using a simple example in Figure 4.1. We suppose a fictional
substance called 5-HTP is used to treat insomnia. Consuming a 5-HTP capsule can cause a person
to sleep, representing a one-cause–one-effect scenario. Here, temporal information is embedded
within the delay between the causative event of pill consumption and its effect event of falling
asleep.1 The causal delay can vary across different mechanisms and hence follow distributions
with different shapes (see Figure 4.1a), analogous to our anticipation of certain medications (e.g.,
Adrenaline) taking effect rapidly and precisely, while others (e.g., painkillers) exhibit a delayed on-
set with some degree of variability. However, we might also model the same effect more granularly
in terms of the pill’s production of Melatonin particles over time (Figure 4.1b). One-cause–many-
effect scenarios are prevalent in epidemiology. For example, a single water pollution event might
cause many individuals to fall ill at different points in time (Griffiths & Tenenbaum, 2007). In
this case, instead of focusing on the relationships between the cause and individual effect events,
it may be more practical to think at a macro-level about how the cause affects the rate of particle
production, or illness, how and whether this rate departs from (and later returns to) its base rate.
This requires reasoning about the functional form of the event’s causal influence in time, including
a potential incubation period, peak, and a decay process (see Figure 4.1b).

From a cognizer’s point of view, in either situation above, the delay between a specific cause
and its putative effect is liable to be variable and uncertain. This is an inevitable feature of any
model that abstracts away some of the detail, leaving unmodeled noise and complexity in the
generative or measurement processes. Therefore, a rational model of time-based causal induction
needs to capture how abstract subjective probability distributions encode causal-model-based
expectations about inter-event delays and rates, and how these distributions can be shaped and
sharpened with evidence.

The process of collecting temporal evidence can also vary depending on the context. All
evidence could be collected from a single causal system, where all events occur within a single
timeline, as depicted in Figure 4.2a. For instance, in Lagnado & Speekenbrink (2010), participants
observed a geological system for several minutes, tracking the occurrence of wave events (potential
causes) and earthquake events (the effect) unfolding over time. Alternatively, evidence can also be
gathered from multiple independent samples. For example, in the research conducted by Greville
& Buehner (2007), participants observed the timing of the death of each bacteria culture sample
(the effect) after receiving a particular treatment (the cause). As shown in Figure 4.2b, instead of
having multiple cause and effect events within a single timeline, there is one cause event and one
effect event in each timeline, with multiple timelines obtained from different independent samples.
In the rest of the paper, we refer to the former situation as “continuous evidence”, while the latter
is termed “episodic evidence”.

1We here have not delved into real scenarios that consider base rate events, such as individuals naturally
falling asleep. We will explore situations that encompass multiple causes and base rate effects in subsequent
sections.
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Figure 4.1: Examples of two types of function that could be used to model cause-effect delays and causal
influences, respectively. Illustrative example relates a drug “5-HTP” and sleep. a) Gamma probability
density function capturing delay between drug and sleep and b) scaled gamma density function capturing
the rate of melatonin production after drug is administered.

We can see that both continuous evidence and episodic evidence pose challenges when it comes
to encoding them in contingency tables and applying atemporal causal calculations (Cheng, 1997;
Griffiths & Tenenbaum, 2005; Perales & Shanks, 2007). Continuous evidence presents the difficulty
of making arbitrary decisions when combining events, resulting in a multitude of contingency tables
that could yield inconsistent causal judgments (see Figure 4.2a). On the other hand, episodic
evidence can be quantified by merely observing whether the cause and effect occur within a
timeline, but this fails to capture the significance of the temporal delay between cause and effect.

In addition to the distinction between continuous and episodic evidence, differences in tem-
poral causal learning tasks can also arise in other domains, such as whether the effect variables
are specified or not. In cases where the effect variables were specified, participants were asked
to identify the causes of a particular effect variable. In other cases, participants were tasked
with determining the existence of a connection between two variables and the causal direction
of that connection. We will model seven human datasets that were categorized into four groups
based on the nature of the evidence (continuous or episodic) and whether the effect variables were
specified, as shown in Table 4.1. Meanwhile, these datasets also have variations in other charac-
teristics, including: (1) base rate: whether the effect could occur without any endogenous causes;
(2) prevention: whether preventative causal relationships were considered; (3) cycle: whether
cyclic relationships were taken into account; and (4) delay expectation: whether participants were
informed or trained about causal delays prior to the task.
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Figure 4.2: a) Examples of the possible arbitrary decisions when segmenting continuous time evidence
into contingency evidence, along with the corresponding contingency tables. b) Examples of episodic
evidence adapted from Greville & Buehner (2007). In the experiment, participants assessed the impact of
a treatment (C) on the survival of bacterial cultures, considering culture death as the outcome (E).

We will demonstrate that our rational framework can deal with the aforementioned variations
in temporal causal learning tasks. Meanwhile, given that those tasks have been tested empirically,
we will demonstrate the degree of sensitivity people exhibit towards the rational framework.

4.2 Formal framework

Beginning this formalization effort, Griffiths & Tenenbaum (2009) highlight three critical com-
ponents of a rational causal induction account: (1) An ontology that outlines the entities under
investigation and their properties, (2) a set of plausible relations that suggest how entities may be
connected, and (3) the functional form that determines how causes influence their effects under
each type of relation. Working with causal Bayesian networks (Pearl, 2000; Rottman & Hastie,
2014), we can interpret this process as requiring decisions about what constitute the nodes (i.e.
entities) within the causal structure of interest, the hypothesis space that includes combinations
of directed edges (i.e. connections) between nodes, and the specification of functional forms used
to calculate the likelihood to evaluate the proposed structures. Despite differences in the data
they operate over, temporal and atemporal causal induction share a similar process of identifying
a hypothesis space of causal structures. The learner updates their prior belief over structures s in
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Table 4.1: Dataset features.

Name Reference Base
Rate

Prevention Cycle Delay
Prior

Continuous, effect specified:
Earthquake Lagnado & Speekenbrink (2010) ✔ ✗ ✗ ✗
Device: Prevention Gong & Bramley (2023a) ✔ ✔ ✗ ✔
Continuous, effect unspecified:
Device: Active Learning Gong et al. (2023) ✔ ✗ ✔ ✔
Episodic, effect specified:
Bacteria Greville & Buehner (2007) ✔ ✔ ✗ ✗
Future Bacteria Gong & Bramley (2023b) ✔ ✔ ✗ ✗
Episodic, effect unspecified:
Computer Virus Lagnado & Sloman (2006) ✗ ✗ ✔ ✗
Device: Chain or Fork Bramley, Gerstenberg, Mayrhofer,

& Lagnado (2018)
✗ ✗ ✗ ✗

Note: The human data were from Experiment 2 in Lagnado & Speekenbrink (2010), Experiment 1 in
Gong & Bramley (2023a), Experiment 1 in Gong et al. (2023), Experiment 1 in Greville & Buehner
(2007), Experiment 1 and 2 in Gong & Bramley (2023b), Experiment 1 in Lagnado & Sloman (2006), and
Experiment 3 and 4 in Bramley, Gerstenberg, Mayrhofer, & Lagnado (2018).

the hypothesis space P (s) with a likelihood function P (d|s;w) to get the posterior distribution
P (s|d;w), given data d and a set of parameters w 2:

P (s|d;w) ∝ P (d|s;w) · P (s) (4.1)

Here, we aim to address the critical question of determining the appropriate functional forms to
calculate the likelihood P (d|s,w).

We here employ Gamma distributions as the probabilistic distributions to model causal delays
(Figure 4.1a). Gamma(α, β) defines a density over (0,+∞) with two parameters, shape α and rate
β, which control the expectation and central tendency of the delay (mean µ = α/β and variance
σ2 = α/β2). The use of Gamma distributions offers several advantages over other probabilistic
distributions (e.g. normal or log-normal distributions), including (1) its range naturally aligns
with the definition that causal delays should be a positive real number; (2) the shape and rate
parameters can capture a wide range of possibilities. Box 4.1 at the end of this chapter also
summarizes several desirable mathematical properties.

How can gamma distributions be used to model different causal mechanism? In the one-
cause–one-effect cases, the duration of the causal delay may be uncertain, and the delay could
vary widely among repeated observations. This delay uncertainty Pd can be represented using a

2We here focus on the problem of structure selection rather than parameter estimation (Griffiths &
Tenenbaum, 2005). That is, we theoretically assume that for each structure the parameters are marginal-
ized from the entire range of possibilities if they are unknown.
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Gamma probabilistic density function (as shown in Figure 4.1a) :

Pd(t|α, β) =
βα

Γ(α)
tα−1e−βt (4.2)

Exponential distributions are special cases of Gamma distributions when the shape parameter
α = 1 (see Figure 4.1a). In this case, the delay between cause and effect events is “memoryless”
property, meaning that the probability of waiting another unit of time ∆t to see the effect is
constant, and therefore independent of how long one has already been waiting (see Box 4.2 at
the end of this chapter for the proof of the memoryless property). This property is useful for
modeling spontaneous effects (or say effect events caused by hidden causes) since they are often
unpredictable, and there is no privileged time at which to start measuring how long should expect
to wait, their occurrence is as likely at any moment as at any other.3

For the one-cause–many-effect cases, we can construct the function to capture causal influence
dynamics I by scaling the Gamma density function via dividing by its mode, i.e. the density at
(α− 1)/β:

I(t|α, β) = Pd(t|α, β)
Pd(

α−1
β |α, β)

(4.3)

After scaling, the predicted value ranges from 0 to 1, where 1 means the causal influence reaches
its maximum level (see Figure 4.1b). We adopt this form here as a mechanistically agnostic
default for simplicity but recognize that, in principle the influence of a cause on the rate of an
effect could have any functional form. For instance, the causal influence size may remain at its
peak level for an extended period before decaying. We will discuss this situation in one of the
datasets later on (Gong & Bramley, 2023a). However, we believe utilizing the function above is an
effective approach to capture many cases in previous experiments (Gong et al., 2023; Greville &
Buehner, 2007; Lagnado & Speekenbrink, 2010; Lagnado & Sloman, 2006), and in other contexts
the functional form could be derivable from mechanism knowledge.

4.2.1 Event–based and rate–based schemes

The two examples presented above suggest that there are at least two closely related approaches
for reasoning about temporal evidence. One approach involves inferring the causal relationship
by considering (1) the delay between the proposed cause-effect pair, while the other involves
examining (2) how the effect rate changes after the cause occurs. The former, event-based scheme
estimates the likelihood using the causal delay function Pd(t|α, β), while the latter, rate-based
scheme estimates the likelihood using the causal influence function I(t|α, β).

3Note that another special case of the gamma distribution occurs when the shape parameter α < 1,
resulting in the expectation that the effect will happen very soon or very late, a little like an inverted
Gaussian with all its mass at the tails, and none at the mean. While this case may be appropriate for
some scenarios, we do not include them here.
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In contrast to the 5-HTP examples, real-life continuous-time evidence can be much more
complicated: Events can occur at any time point, and different causes can interweave over time to
influence the outcome. For instance, imagine that you are taking a pill for medical purposes but
frequently experience stomach discomfort afterward. You might wonder whether this discomfort is
a side effect of the pill. We illustrate this evidence in Figure 4.3a. The timing of the pill ingestion
could be arbitrary, and the effect could occur multiple times during the observation period. If
the causal relationship exists and the causal delay is long, the stomach discomfort produced by
one pill could happen after the ingestion of another pill. Therefore, it is impossible to divide the
evidence into independent trials. In this example we focus on two hypothetical structures S0 and
S1 in Figure 4.3b. In S0, only the base rate B causes the discomfort, while in S1, both the base
rate B and the pill taking C cause the discomfort. In other situations, if the learner suspects
that other factors, such as diets, may also contribute to the stomach discomfort, they may need
to include additional diet events in the timeline, which can further complicate the evidence. It
is necessary to preprocess the data to calculate the likelihood under the causal delay or influence
function.

Event-based scheme

The event-based scheme uses the concept of token-level “actual causation” to map each event to its
possible causes (Halpern, 2016), identifying which of several candidate events actually caused the
observed outcome (Stephan et al., 2020; Gerstenberg et al., 2021). While we may have knowledge
and expectations about the delay between a cause and its effect (i.e. the mean and variance), to
utilize these directly we have to also commit to a particular causal story about which cause event
actually produced which effect event in order to apply those expectations. Under this scheme one
can consider various possible causal pathways that could produce the observed events, depending
on the underlying causal mechanisms (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Gong
& Bramley, 2020; Valentin et al., 2020). For example, in a causal structure S that includes an
endogenous cause C, an hidden background cause B, and an effect E, each effect event could be
caused by either C or B, resulting in a total of 2k possible pathways in the set (Zs), where k is
the number of effects. The event-based scheme allows for specific mechanistic constraints to be
integrated into pathway construction. For instance, if we observe a sequence of events, such as
{C1, E1, E2}, and also believe that this is the kind of system within which one C event can only
cause one E event, we can rule out the pathway that assumes both E1 and E2 were caused by C1.

Given that conditional on a structural hypothesis, the potential actual causal pathways are
mutually exclusive and exhaustive, it follows that the overall likelihood of each structure hypoth-
esis is the sum of the individual likelihood of these pathways:

P (d|s;w) =
∑
z∈Zs

P (z|s;w) (4.4)
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Figure 4.3: Causal inferences based on continuous-time causal evidence. a) Evidence as Events of stomach
discomfort and pill taking unfolded in the timeline. b) There are two causal structures in the hypothesis
space. c) The event-based scheme lays out all possible pathways (branches) that explain all effects under
each hypothetical structure. d) The rate-based scheme model in what way the rate of effects are expected
to change under each hypothetical structure. e) Episodic type of evidence where the cause and effect only
happen once in each individual observation. Cases illustrated the situation in (Greville & Buehner, 2007)
where the effect events across samples are assumed to follow exponential delays if the evaluated cause does
not work. Under this situation, the evidence can be collapsed under the rate-based scheme.

To determine the likelihood of each pathway P (z|s;w), we analyze both existing effect events
e and hidden effect events h. For each existing effect e, we evaluate the probability that (1) it was
caused by the presumed generative cause event g as well as that (2) it was not prevented by a set
of presumed preventative cause events p. Hidden effect events occur when we cannot identify the
effect event of a generative cause. This could be due to (1) the generative cause failing to produce
the effect, (2) the effect being prevented, or (3) the effect not having occurred yet:

P (z|s;w) =
∏

g→e∈z
wg · Pd(te − tg|α, β) · (1− Pp(e))·︸ ︷︷ ︸

Observed effects should be generated and not prevented∏
g→h∈z

(1− wg) + wg · Pd(th > tend|α, β) + wg · Pp(h)︸ ︷︷ ︸
Unobserved effects should be not existing, not unrevealed yet, or prevented

(4.5)
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The event-based scheme provides flexibility in dealing with preventative causation Pp(e) (the
probability that e should have been prevented) based on different rules. For instance, the pre-
ventative cause can block effects for a specific time window or block the nearest effect. It can
also block all effects equally or selectively block effects from a particular cause (C. D. Carroll
& Cheng, 2009; Gerstenberg & Stephan, 2021). We will demonstrate these different possibilities
using a dataset (Gong & Bramley, 2023a) later on.

In Figure 4.3c, the event-based scheme generates pathways for explaining stomach discomfort
under different structure hypotheses. For S0, all effect events are attributed to the base rate.
For S1, any effect event can be attributed to the base rate or any cause events that occurred
previously. We put the constraint that each cause event causes only one effect event. We illustrate
two pathways z1 and z2 as examples. The base rate event is represented as being caused by the
previous base rate effect (making its process independent from the evaluated cause). We usually
model the base rate delay using memoryless exponential distributions if it is unpredictable. The
unobserved events, represented by dashed arrows, occur when we cannot find the corresponding
effects of a cause in the timeline. This can happen when the evaluated cause fails to work or when
its effect has not yet occurred. For the base rate cause, this can occur when the next base rate
has not yet happened. This is due to that we do not need to assume a failure rate of the base
rate when the timing of it is already unpredictable.

Rate-based scheme

The rate-based scheme does not account for a one-to-one mapping between individual cause and
effect events. In contrast, it is concerned with the change in the rate of effects following the
occurrence of a cause event. When the cause is generative, the rate of effects typically increases,
whereas preventative causes tend to decrease the rate of effects. As such, the scheme shifts the
focus from delay to rate, making the Gamma probability distribution unsuitable for modeling.
Instead, the Poisson process can be used to capture the probability of observing a particular rate
Pr(k) (the number of events at a time unit) given a rate assumption:

Pr(k|λ) =
λke−λ

k!
(4.6)

We assume a base rate of an effect as a constant λ0 given that no information is available
to suggest how it could change across time. For any generative cause, the causal influence after
the cause occurrence can be modeled as an incubation-decay process as shown in Figure 4.1b,
captured by the influence function I(t|α, β). The generative rate can be represented by another
function of time f(λ1, t) = λ1 · I(t|α, β), where λ1 denotes the maximum level of causal inference.
Preventative causes, on the other hand, are presumed to decrease the effect rate by a proportion
ranging from 0 to a maximum level of ξ (0 < ξ < 1). The preventative influence can also follow
an incubation-decay process and be represented by a function of time f(ξ, t) = ξ · I ′(t|α, β).
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Poisson processes have a desirable property known as “superposition”, where the union of two
independent Poisson processes with rates λ and λ′ is still a Poisson process with rate λ + λ′.
Conversely, preventative causation can be viewed as “thinning” processes that selectively filter
out some effect events with a probability of ξ′. Combining multiple causes with a base rate of
λ0, the expected effect rate f(λ, t) at the time unit t can be represented using the noisy-OR and
noisy-AND-NOT principles by accounting for superposition and thinning as follows:

f(λ, t) = (λ0 +
∑
i∈g

f(λi, t))
∏
j∈p

(1− f(ξj , t)) (4.7)

The superposition and thinning properties not only give us a simple answer to the combination
of a base rate and a (constant) causal influence, but also how a non constant causal influence
implies a fluctuating rate. When the rate of the Poisson process can changes across time, it is
called the non-homogeneous Poisson process. The likelihood depends on how the observed rates
at each time bin are aligned with the expected rates:

P (d|s;w) =
∏
t

Pr(dt|f(λ, t)) (4.8)

Figure 4.3d illustrates how the rate-based scheme generates expected rate changes to explain
stomach discomfort. In S0, the model assigns a constant base rate to account for the number of
effect events per unit of time. In S1, the model incorporates the assumption that the effect rate
dynamically changes following the occurrence of a cause event.

Summary and comparisons of two schemes

Event-based and rate-based schemes differ in the granularity of their focus, leaning in one case
more token-level and in the other case more towards type-level causal reasoning. Type-level
thinking involves considering the causal structure relating event types (i.e. which type of class
causal event influences which type of effect events). Token-level thinking involves considering
the actual causal relationships between particular events (i.e. which particular cause event truly
caused which particular effect event). We present this dual view because, depending on the
inference setting, one or other mode is more appropriate. However, we will show how in most cases,
both modes make similar predictions and perform similarly well in capturing human judgments,
and highlight cases where computational and representational costs differ dramatically making
one algorithm more suitable than the other.

Each scheme has its own set of strengths and limitations when dealing with specific scenarios.
For instance, the event-based scheme is capable of incorporating periodic base rate knowledge by
designating certain events as base rate events and employing predictable delays (gamma distri-
butions) to model the intervals between them. Additionally, it can effectively handle mechanistic
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knowledge, such as cases where a single cause produces (or prevents) a single effect. In contrast,
the rate-based scheme does not distinguish the source of each effect event, rendering it incapable
of tracking base rate events or determining when to stop expecting a specific effect event from a
given cause.

However, the requirement for actual causation is not always preferable. One obvious reason
is that when a single cause can lead to multiple indistinguishable events, attempting to deter-
mine which specific events were caused by which factors can significantly amplify computational
complexity without providing substantial benefits. From a computational cost perspective, the
event-based model proves to be highly demanding due to the necessity of considering all possible
combinations of cause and effect events. This results in a greater than polynomial increase in
computational cost as the number of events grows. Conversely, the computational cost of the
rate-based model exhibits linear growth with the observation duration, once the time unit gran-
ularity is chosen. Additional reasons become apparent when examining a case study (Greville &
Buehner, 2007) later on.

4.3 Human generic delay principles: short, predictable,

and expected

Humans show preferences for short, predictable, or expected delays as a suggestion for stronger
causal attributions (see Chapter 3). We here demonstrate that these preferences could be explained
from a rational Bayesian perspective. We first provide intuitive explanations for these phenomena
and then provide simulation results to confirm. Each generic principle found in humans can
be manifested in two types of tasks: structure induction and diagnostic causal reasoning. For
example, the principle of short delay can refer to learners’ (1) higher causal ratings for an evaluated
cause in trials where the delays are short, as compared to when they are long, or (2) preference for
Cause X over Cause Y as an explanation for the effect in a single learning trial. We focus primarily
on the first scenario but demonstrate how the same principles apply readily to the second task.

Even in the absence of delay expectations, a Bayesian preference for short delays can be
understood from two perspectives. The first perspective arises from the fact that, given causal
delays can range from zero to infinity (with a limit on the lower side but not the upper side), delay
distributions tend to be more or less right-skewed. As such, it can often assign more probability
to a smaller number than a larger number when they have the same distance from the central
tendency (the mean value) of the distribution. As shown in Figure 4.4, under distributions with
an expected delay of 4 seconds, a delay of 2 seconds often receive more likelihood than the delay
of 6 seconds, unless the variance become small. In other words, short delays often exhibit higher
probability density than long delays, and these advantages can accumulate across different prior
beliefs sampled from the prior distribution. The second reason stems from the absence of delay
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Figure 4.4: Illustration of how Gamma distributions favor short delays (a higher density for the 2-second
delay than the 6-second delay) when the uncertainty (variance) is high due to the right-skewed property.

expectations, resulting in a bigger range of larger variances for long delay expectations compared
to short delay expectations, making long delays harder to predict accurately.

The variability principle can also be explained by the likelihood calculation. When delays
exhibit greater variability, it becomes less probable for a cause to receive a high likelihood under
any specific gamma distribution, leading to a lower posterior probability compared to situations
with less variable delays.

The expected-delay principle can be understood as the influence of mechanistic knowledge
or prior experience on people’s prior distribution regarding the causal delay. For instance, if
individuals strongly believe that a genuine switch should take approximately 4 seconds to turn on
a device, a switch that takes 2 or 6 seconds would have a lower prior probability and consequently
a lower posterior probability compared to a switch that takes 4 seconds. That is, the device
activation after 2 or 6 seconds would be more likely to be accounted by the base rate rather than
the switch (Buehner & McGregor, 2006).

4.3.1 Simulation

We here simulate data via the following procedure. In order to demonstrate how our model can
handle data that is not exclusively generated from gamma distributions (just like humans, Greville
& Buehner, 2010), we utilize uniform distributions, denoted as U(l, u), with a lower bound l and
an upper bound u:

1. Assuming evidence lasts for 300 time units. Cause events C occur kc times sampled from
U(0, 300).
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Figure 4.5: How the log-likelihood ratio changes with the amount of cause events.

2. Each cause event has a probability wc of producing one effect event E with the delay between
them sampled from U(mu − iu,mu + iu).

3. Another kb base rate effect events are sampled from U(0, 300).

The learner is asked to judge how possible that there is a generative link between C and E,
i.e. judging S0 and S1 in Figure 4.3b. The evidence that data d provide in favor of S1 over S0

can be calculated as log-likelihood ratio, assuming both structures have equal prior probabilities
(Griffiths & Tenenbaum, 2005):

log
P (d|S1;w)

P (d|S0;w)
(4.9)

We assume that all parameters used for simulating data are unknown to the model and hence
the model need to marginalize over the parameter set w to estimate the likelihood of a causal
structure. We use Monte Carlo simulations with sample size m = 10, 000 to approximate the
Bayesian inference. For event-based scheme, it assumes the cause succeeds to produce the effect
with a probability of wc ∼ U(0, 1) and the causal delay between C and its effect E follow a gamma
distribution with mean µ ∼ U(0, 300) and variance σ2 ∼ U(0, µ2). This ensures that the prior
around the mean is weak (0-300 is a very large range given that each observation only lasts for
300 time units) and that the shape parameter will be larger than 1 (α = µ

σ2 ). 4 Similarly, the
delay between two base rate events follows an exponential distribution with mean µb ∼ U(0, 300).
For the rate-based model, we specify the base rate λ0 ∼ 1/U(0, 300), the max causal influence
λ1 ∼ U(0, 1). The causal influence changes dynamically given a gamma distribution with mean
µ ∼ U(0, 300) and variance σ2 ∼ U(0, µ2). We summarize the meaning of symbols used in
Table 4.2.

4One alternative approach is to sample the mean (µ) and shape (α) parameters from very flat expo-
nential distribution (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018). This returns similar results.
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Table 4.2: Symbols used and their meanings under three contexts in this chapter.

Simulation process event-based scheme rate-based scheme

mu Mean of causal delays. – –
iu Half interval of causal delays. – –
kb Number of base rate events. – –
kc Number of cause events. – –
wc Cause’s success probability. Cause’s success probability. –
µ – Mean of causal delays. Mean of causal influence function.
σ2 – Variance of causal delays. Variance of causal influence function.
µb – Mean of base rate delays. –
σ2
b – Variance of base rate delays. –

λ0 – – Effect’s base rate.
λ1 – – Max generative causal influence.
ξ – – Max preventative causal influence.

Note: σ2
b only appeared when modeling Gong & Bramley (2023a) which included periodic

base rates. In other cases, the base rate delay was modeled using exponential distributions,
which only included one parameter.

Data points

We first examine the number of data points required for the model to favor S1 over S0. We here use
wc = 1, mu = 15, iu = 5, and consider different values for kb (kb = {1, 3, 5}). For the rate-based
model, we search for values of kc ranging from 1 to 20 (with a step of 1), while for the event-based
model, we limit the search to values from 1 to 5 due to computational constraints. Results are
shown in Figure 4.5. The event-based model starts favoring S1 even with just one cause event.
The rate-based model starts favoring S1 with five cause events, indicating a higher requirement
for data points to support S1 due to the more relaxed constraints of the model. In both cases,
the log-likelihood ratio increases as the number of cause events increases. Both models perform
better when the base rate is low, which is aligned with atemporal learning setting that learners
can better learn a generative relationship when the base rate is low (Cheng, 1997; Griffiths &
Tenenbaum, 2005; Wu & Cheng, 1999).

Delay duration and variance

To illustrate the short-delay principle found in humans, we simulate stimuli arranged in a grid
with wc = {0.6, 0.8, 1}, mu = {10, 15, 20, 25, 30}, iu = 1, and kb = 3. Based on the simulation
results above, we use kc = 5 for the event-based model and kc = 10 for the rate-based model.
Figure 4.6a demonstrates that the event-based model’s preference for S1 over S0 diminishes as
the duration of the delay increases. This observation supports the notion that causal attribution
is stronger when the delay is shorter. Additionally, the log-likelihood of S1 itself decreases as the
delay duration increases. This indicates that when faced with multiple potential cause candidates,
the learner tends to attribute the effect to the cause with the shortest delay. Similar patterns are
replicated in the rate-based scheme (Figure 4.6b).
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Figure 4.6: How the log-likelihood ratio changes with the causal delay duration and variance.
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Figure 4.7: How the log-likelihood ratio changes under different delay prior.

To investigate the predictable-delay principle, we simulate stimuli arranged in a grid with
mu = {10, 20, 30}, iu = {1, 3, 5, 7, 9}, wc = 1, kb = 3. Similarly, we use kc = 5 in the event
based model and kc = 10 in the rate based model. As shown in Figure 4.6c, the event-based
model’s preference for S1 over S0 diminishes as the range of delays increases. It explains why
causal attribution is stronger when the delays are unvaried. Additionally, the log-likelihood of
S1 decreases as the delay range expands, which suggests that when faced with multiple potential
cause candidates, the learner tends to attribute the effect to the cause with the most consistent
or unvaried delays. Similar results are observed in the rate-based scheme (Figure 4.6d).
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Delay expectation

To investigate the influence of prior beliefs on causal judgments, we introduced two different
delay prior conditions instead of using the above uniform delay priors. For the “short prior”, we
set µ to be sampled from a Gamma distribution with a mean of 10 and a standard deviation
of 1, resulting in an assumed delay expectation of 10±1. Conversely, for the “long prior”, we
assume µ is sampled from a Gamma distribution with a mean of 20 and a standard deviation of
1, representing an assumed delay expectation of around 20±1. Other model parameterizations
remains the same as previous. For stimuli, we constructed scenarios in which a long cause always
produced an effect with a delay sampled from mu = 20, iu = 1, while a short cause always
produced an effect with a delay sampled from mu = 10, iu = 1. We set wc = 1 and kb = 3 when
simulating stimuli. Figure 4.7 demonstrates that both models favored the short cause under the
short prior, as indicated by a positive log-likelihood ratio of the short cause over the long cause.
Conversely, under the long prior, both models favored the long cause. This tendency becomes
more pronounced as the number of data points increases. However, it is worth noting that the
tendency to favor the long cause under the long prior is not as strong as the tendency to favor
the short cause under the short prior, highlighting the natural advantage of shorter delays.

4.4 Learning from continuous-time evidence

4.4.1 Continuous, effect specified

Lagnado & Speekenbrink (2010) Our first case study revisits the “earthquake” experi-
ment conducted by Lagnado & Speekenbrink (2010). The experiment aimed to investigate the
effects of three types of seismic waves (red, yellow, and green) on the occurrence of earthquakes.
Unbeknownst to the participants, only one of the three types of waves (referred to as the cause)
actually raised the occurrence of earthquakes, while the other two types (referred to as lures) had
no effect. This setup allows for the consideration of three structures in the hypothesis space, as
shown in Figure 4.8. In each trial, the cause wave occurred 10 times and had a probability of
80% of resulting in an earthquake. The delays between a cause event and its effect event could
either be short (3±0.1 s) or long (6±0.1 s), varying across different trials. Meanwhile, the two
other lure causes could occur in between with a low probability (35%) or a high probability (65%).
Additionally, four earthquake events were sampled at random time points to serve as the base
rate. The trials lasted for an average duration of 169±84 s for the short-delay condition and
318±157 s for the long-delay condition. None of these parameters were explicitly disclosed to the
participants in the experiment instructions.

Participants were asked to provide both “absolute” and “comparative” ratings for the causal
properties of each wave. The “absolute” rating allowed participants to independently rate each
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wave, while the “comparative” rating required participants to allocate ratings for the three waves
such that their ratings summed up to 100. Both types of ratings revealed the same pattern:
Participants assigned higher ratings to the genuine cause wave compared to the two lures; the
rating was influenced by the probability of intervening events but not the delays (see Figure 4.9a).
We here model the “comparative” rating. It can be interpreted as a comparison of the probabilities
associated with the three causal structures shown in Figure 4.8. In our simulation, we assume
the following parameter distributions: wc ∼ U(0, 1) for the cause probability (i.e. λ1 ∼ U(0, 1)

for the rate-based model), µb ∼ U(0, 100) for the base rate mean (i.e. λ0 ∼ 1/U(0, 100) for the
rate-based model), µ ∼ U(0, 100) for the cause delay (or influence) mean, and σ2 ∼ U(0, µ2) for
the cause delay (or influence) variance. We generate a Monte Carlo sample of size m = 10, 000

to approximate the Bayesian inference process. This number will be used for all datasets later on
unless parameters are assumed known to the model. 5

Both event-based and rate-based schemes successfully identified the genuine cause in each
condition of the “earthquake” experiment. Moreover, similar to the participants’ responses, the

5One parameter that could be considered under the rate-based scheme is the time bin configuration.
That is, we need to decide the duration considered to constitute one time unit. A cause is presumed to
happen in a time bin before the time bins of its effects. We here used 1 second for Lagnado & Speekenbrink
(2010); Gong & Bramley (2023a); Gong et al. (2023); Lagnado & Sloman (2006) and 1 day for Greville
& Buehner (2007); Gong & Bramley (2023b). Both choices can be regarded as natural. We used 300
milliseconds for Bramley, Gerstenberg, Mayrhofer, & Lagnado (2018) given that more coarse choices would
compromise the accuracy.
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Figure 4.9: Qualitative results of five datasets. A softmax parameter of 10 was applied to Lagnado &
Speekenbrink (2010) for visualization. Ratings in Greville & Buehner (2007) are reversed so that they are
aligned with Gong & Bramley (2023b) where positive numbers indicated harmful influence and negative
numbers indicated beneficial influence.

models were more influenced by the intervention probability than the delay length. This finding
addresses the question raised in Chapter 3 that people do not always exhibit a preference for
short delays, even based on the uninformative prior. The absence of the short-delay principle in
this particular experiment can be attributed to the relationship between the delay lengths and
the duration of observations. The long delay was twice as long as the short delay, while the total
duration of observations was also twice as long in the long-delay condition. Consequently, the
base rate expectation differed between the two conditions, effectively canceling out the effect of
delay. We can interpret this as participants mentally defining different durations as one time unit
in the two conditions, leading them to arrive at similar conclusions. A similar observation was
made in an ecological experiment by Zhang & Rottman (2021a), where no effect of causal delays
was found for delays lasting 1 to 9 hours. This lack of effect could similarly be attributed to
different participants defining their observation windows differently.
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Gong & Bramley (2023a) A similar dataset was collected in Gong & Bramley (2023a, see
also Chapter 5). Participants were presented with a causal device consisting of one target compo-
nent (Effect E) and two control components (Cause A and B). The relationships between each
control component and the target component could be generative, non-causal, and preventative,
resulting in nine possible causal structures (see Figure 4.8). A generative cause event would al-
ways produce an effect event after 1.5±0.5 s. A preventative cause event will cancel any upcoming
effect events in the subsequent 3±0.5 s. The effect component can also activate spontaneously.
Participants were randomly assigned to the regular base rate or the irregular base rate condition.
Each base rate event occurred 5±0.5 s after the previous one in the regular condition, or 5±5
s (according to a memoryless exponential distribution) in the irregular condition. Participants
watched the device being intervened on by someone (simulation) for a total duration of 20 s with
three interventions on A and three on B.

Given that participants in the study were provided with information about the delay param-
eters, we make the assumption that our model are also aware of these parameters. Specifically,
for generative causes, we set wc = 1 (i.e. λ1 = 1 for the rate-based model), the generative delay
µ = 1.5 and σ2 = 0.25. Regarding the base rate, we assume a mean of µb = 5 (i.e. λ0 = 1/5 for
the rate-based model).

In the case of preventative causes, the event-based scheme assumes the duration of preventative
windows follows a gamma distribution Gamma(µp = 3, σ2

p = 0.25) (Figure 4.10a). All events
occurring within the window are assumed to be canceled. The rate-based scheme models the
dynamics of preventative influence. It should be noted that the preventative rule employed here
does not involve an incubation process for prevention. Instead, the preventative window persists at
the maximum level, effectively canceling all effects, for a certain duration. As such, the rate-based
scheme captures the preventative causal influence using the gamma cumulative density function,
as illustrated in Figure 4.10b, and assumes a maximum level denoted as ξ = 1.

The given instructions imply three mechanical rules that can be implemented by the event-
based model but not by the rate-based model. Firstly, a single generative cause event only
leads to one additional event in the effect component, which is consistent with the setup of the
earthquake experiment described earlier. Secondly, in the regular condition, the base rate events
occur periodically. Therefore, instead of utilizing a memoryless exponential distribution, the
event-based model can employ a gamma distribution Gamma(µb = 5, σ2

b = 0.25), to model the
delay between two consecutive base rate events. In contrast, since the rate-based model does not
differentiate between effects generated by base rate events or generative causes, it is unable to
leverage the regularity of the base rate and thus treats the regular and irregular conditions in
the same manner. The third rule pertains to the preventative window. In the generative process,
it is assumed that within a fixed preventative window, all expected effects that are supposed
to occur will be canceled, while any expected effects after the window will remain unaffected.
Consequently, the size of the preventative window should be inherently smaller than the interval
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between a preventative cause event and its nearest effect event E′. The absence of an effect
expected to occur after E′ can no longer be attributed to prevention. On the other hand, the
rate-based model represents prevention as a probabilistic influence, defining a soft window rather
than a strict, deterministic window.

As shown in Figure 4.9b, qualitatively, the event-based scheme has higher accuracy compared
to the rate-based scheme. It also displays a similar pattern of performing better in the regular
condition compared to the irregular condition, which aligns with human performance. In contrast,
the rate-based scheme demonstrates a slight tendency to perform better in the irregular condition,
potentially attributed to the alignment of the base rate mechanism.

For this dataset and the subsequent datasets, we analyzed two types of correlations between
the model and human judgments. The first type is the Pearson correlation, for which we incorpo-
rate a softmax parameter to account for the stochastic nature of judgments (Luce, 1959). 6 We
utilized a single parameter that was fitted across all conditions for each dataset. The second type
is the Spearman correlation, which assesses the ranking agreement between human and model
judgments. This provides insight into how well the model captures the human dataset without
introducing an additional free parameter. The results are depicted in Figure 4.11a and 4.12a.
Both the event-based and rate-based schemes successfully captured human judgments, regard-
less of whether the conditions were regular or irregular. The event-based model demonstrated
slightly superior correlations compared to the rate-based schemes, suggesting that participants
may have taken into account at least one of the three mechanistic rules discussed earlier during
their reasoning process.

4.4.2 Continuous, effect unspecified

Gong et al. (2023) When the effect variables are left unspecified, the number of potential
structures increases quickly. Even when considering only generative relationships, there are four
possible relationships between two variables: one-directional, reverse one-directional, bidirectional,
and unconnected. Consequently, for three variables, there are 64 potential structures, and for
four variables, there are 4096 potential structures (see Figure 4.8). Gong et al. (2023, see also
Chapter 6) investigated how individuals navigate and learn from a vast hypothesis space by
actively intervening in a causal system. In each causal system, for causally related components, an
activated component would probabilistically trigger the activation of each of its effect components
once after a delay of 1.5±0.1 s in the regular condition, or 1.5±0.7 s in the irregular condition.

6The softmax parameter θ was used to maximize the log-likelihood between models’ and participants’
choices in Gong & Bramley (2023a); Gong et al. (2023); Lagnado & Sloman (2006), where participants
were asked to choose whether each causal connection existed or not. The parameter was used to maximize
the linear correlation based on a non-linear transformation y = sign(x)|x|θ in Bramley, Gerstenberg,
Mayrhofer, & Lagnado (2018); Greville & Buehner (2007); Gong & Bramley (2023b) where participants
provided ratings for how likely each connection existed or how strong each causal strength was.
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Figure 4.10: The preventive windows and preventative influences. a) The event-based scheme assumes
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Figure 4.11: The Pearson correlation between model and human judgments. Error bars indicate 95%
confidence intervals of human judgments in the dataset whenever the raw data are available.
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All causal connections were operational 90% of the time, and none of the components activated
spontaneously (i.e. there were no base rate activations). Participants were provided with six
opportunities to activate a component in the system during a 45-second interval. Considering the
numerous possible connections and the cyclic structures, the number of events recorded in this
dataset was significantly higher compared to the aforementioned Gong & Bramley (2023a).

Given that participants in the study were provided with information about the parameters, we
assume that models also know the parameters: wc = 0.9 (i.e. λ1 = 0.9 for the rate-based model),
µ = 1.5, and σ2 = 0.01 or σ2 = 0.49 depending on the specific regular or irregular condition. No
base rate was assumed by both models.

Human results showed a main effect of the structure cyclicity but no main effect of the delay
regularity, probably due to that the difference between regular and irregular settings was not
pronounced enough (Gong et al., 2023). Therefore, we here focus on the results based on the
cyclicity factor alone. In contrast to humans who performed better in the acyclic condition
than the cyclic condition, the event-based model demonstrates better performance in the cyclic
condition compared to the acyclic condition (Figure 4.9c). It reflects the event-based model is
able to leverage the large amount of event information in the cyclic structure (Gong et al., 2023).
Conversely, the rate-based model does not demonstrate the same tendency. Due to its limitations
in differentiating actual causation, this model fails to leverage the abundance of cyclic events as
effectively as the event-based model does.

In terms of both correlation measurements, the event-based model demonstrates better perfor-
mance in capturing human judgments in acyclic structures, while the rate-based model performs
better in capturing human judgments in cyclic structures (see Figure 4.11b and 4.12b). This
may suggest that as the number of events increases, the exact computation becomes impractical,
necessitating the relaxation of certain constraints within the event scheme to enable more efficient
approximations. The event-based model’s ability to handle acyclic structures more effectively
indicates its advantage in situations where precise computations are feasible. On the other hand,
the rate-based model’s capability to capture cyclic judgments highlights its ability to approximate
across a larger number of events, providing a more efficient approach in such scenarios.

4.4.3 Episodic, effect specified

Greville & Buehner (2007) The episodic evidence could be seen as a combination of con-
tingency and temporal information (Greville & Buehner, 2007). It involves the observation of
multiple individuals over a specific time period (Figure 4.2b). So far, research on episodic evi-
dence often focuses on cases each type of event occurs at most once within the observed period.
This means that the evidence within each individual’s experience may not be very informative.
However, by considering multiple cases, the reasoner can compensate for the limited information
within each instance and make more informed conclusions about the causal structures.
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Figure 4.12: The Spearman correlation between model and human judgments.

In Greville & Buehner (2007), participants examined the influence of a ray treatment on the
survival of bacterial cultures. Bacterial cultures were randomly assigned to the experimental
group, which received a ray treatment at Day 0, or the control group, which did not receive any
treatment. Each group consisted of 40 samples. Bacterial cultures were observed from Day 1 to
Day 5. The number of new deaths occurring each day was recorded. Participants were asked
to rate whether they perceived the treatment as harmful or beneficial based on the observed
outcomes in both the experimental and control conditions. Results found, after controlling for
the total number of deaths over the 5-day period, participants judged the treatment as more
harmful if there were more deaths at the beginning of the observation period (a decreasing trend)
which implied that the treatment accelerated the occurrence of deaths. Participants judged the
treatment as more beneficial if there were more deaths towards the end of the observation period
(an increasing trend) which implied that the treatment delayed the onset of deaths.
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Figure 4.13: The short-delay and long-delay priors regarding the timing of when the cause will take
effect on average (Greville & Buehner, 2007; Gong & Bramley, 2023b). The parameter µ is sampled from
different prior distributions to form different causal influence functions.

Gong & Bramley (2023b) In contrast to the traditional interpretation based on contiguity
(Greville & Buehner, 2007), Gong & Bramley (2023b, see also Chapter 7) proposed an alternative
way to interpret the data from the bacterial cultures study. They suggested that if learners rely
on the concept of “trend” rather than “contiguity” when making judgments, they may suspect the
treatment will ultimately prove harmful if the experimental condition has a worryingly increasing
trend. Gong & Bramley (2023b) presented participants with more ambiguous data, where a
majority of the forty samples were still alive on Day 5. Participants in the “Unfinished” condition
were informed that the observation had not yet concluded, while participants in the “Finished”
condition were told that the observation had finished (as Greville & Buehner, 2007). Results
in the Finished condition replicated Greville & Buehner (2007). However, in the Unfinished
condition, participants interpreted an increasing trend in deaths as indicative of harm caused
by the treatment, and a decreasing trend as indicative of benefit (see Figure 4.9e). In a follow-
up experiment, Gong & Bramley (2023b) asked the participants to click a button to reveal the
data sequentially day-by-day. Under this dynamic display, participants relied on trend rather
than contiguity to make causal judgments regardless of the Finished vs. Unfinished instruction
framing.

These findings highlight the influence of instructional cues on participants’ prior beliefs and
the way they interpret the observed data. To model the human judgments, we here assume
that instructions tend to influence the learner’s prior expectation about causal delays as well the
use of data, while visual formats tend to influence the use of data. As shown in Figure 4.13,
if participants are informed that the experiment ends at Day 5, they may tend to form a prior
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belief that the relevant causal influences would likely to occur within 5 days. When participants
were led to believe that the observation had not finished, they anticipated the possibility of longer
causal delays. We here assume that, for the Finished instruction (Greville & Buehner, 2007; Gong
& Bramley, 2023b), the causal delay (or the expected time of the influential function in the rate-
based context) µ is sampled from a gamma distribution with mean of 3 (days) and a variance of 6.
For the Unfinished instruction (Gong & Bramley, 2023b), µ is sampled from a gamma distribution
with mean of 5 (days) and a variance of 6. The choices here are to make sure that a range of 0
to 5 would cover most of the sampled µ under the Finished instruction (83%) while cover only
half of the sampled µ under the Unfinished instruction (57%, Figure 4.13). We assume that under
the Unfinished instruction or the dynamic display, participants also used the current trend to
extrapolate what would happen in the future, thus treating it as additional evidence. We used a
linear regression model to generate data from Day 6 to Day 9 to capture this notion.

The observed death of bacteria cultures in Greville & Buehner (2007) and Gong & Bramley
(2023b) could result from either the treatment or the natural death (i.e. the base rate), and it could
only happen once for each individual. This situation presents two challenges for the event-based
scheme. Firstly, since only one effect event was recorded for each sample, it became difficult for the
event-based scheme to track the delays between base rate events without additional assumptions
or data reconstructions. In contrast, as shown in Figure 4.3e, the rate-based scheme could simply
aggregate samples and assume a constant base rate. Secondly, in this case, multiple underlying
mechanisms could be at play. If the treatment was harmful, it could indifferent kill cultures that
preempted natural death, or it could hasten the death, the timing of which depended on the
expected lifespan (age) of different cultures. A mechanistic approach would require exhaustive
consideration of these different mechanisms. Conversely, the rate-based model could bypass the
need for detailed mechanistic knowledge, presuming that various mechanisms could result in a
similar rate pattern: a rate increase over a certain time period. This higher-level pattern could
then be used for making judgments. Consequently, in certain cases, embracing ignorance of the
specific mechanisms and relying on rate-based models may show advantageous for reasoning about
causation.

Consequently, we focused on the rate-based scheme here and consolidated the data as shown
in figure 4.3e. Since the data were collapsed, the rate of how many events happened per day would
depend on the total sample size (i.e. forty in both studies). We assume that participants made the
judgment by comparing the likelihood between a generative structure and a preventative structure
(see Figure 4.8). To model the data, we set λ0 ∼ U(0, 40), λ1 ∼ U(0, 40) since there were at most
forty cases in each group. We set ξ ∼ U(0, 1) as the max level of preventative influence (i.e. the
beneficial influence). Similar to previous datasets, we set the variance σ2 ∼ U(0, µ2).

The qualitative results are shown in Figure 4.9d and 4.9e. Participants’ inclination in Greville
& Buehner (2007) and Gong & Bramley (2023b) was captured by the model. Under the Finished
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Figure 4.14: The Pearson (r) and Spearman (ρ) correlations between model and human jugdments in
Greville & Buehner (2007) and Gong & Bramley (2023b). Error bars indicate 95% confidence intervals of
human judgments in Gong & Bramley (2023b).

instruction and the static display (Greville & Buehner, 2007; Gong & Bramley, 2023b), partic-
ipants and the model both treated decreasing trends as more harmful than increasing trends,
showing a contiguity consideration. Under the Unfinished instruction (Gong & Bramley, 2023b),
participants and the model both treated increasing trends as more harmful than decreasing trends,
showing a trend consideration. Under the Finished instruction and the dynamic display (Gong
& Bramley, 2023b), participants and the model demonstrated a trend consideration as well, in-
dicating that with the extrapolated data, the reliance on trends can also show up even under
short-delay priors.

Nevertheless, humans demonstrated a general tendency to favor harmful judgments than the
model. It can be due to that with a generative (harmful) cause, the ideal learner would expect
the experimental condition to consistently exhibit a higher death rate compared to the control
group. In Gong & Bramley (2023b), there were cases where the experimental condition had a
higher death rate than the control condition during the initial days, but then a lower death rate in
the later days even the majority of samples were still alive (e.g. “3, 4, 2, 1, 0” for Day 1 to Day 5
in the experimental condition and “2, 2, 1, 2, 3” in the control condition). In contrast, in Greville
& Buehner (2007), the lower number of deaths observed in the experimental condition during the
later days (e.g. “16, 12, 8, 4, 0” for Day 1 to Day 5) could be explained as most of the samples
may have already died out. Although we accounted for this information in our model and ensured
that the expected rate at Day t did not surpass the remaining surviving samples, this inherent
sample-size constraint could potentially introduce a bias towards favoring preventive causation.

The quantitative results were shown in Figure 4.14. The rate-based model achieved a good
fit with human judgments in the case of Greville & Buehner (2007) and a moderate fit with the
judgments in Gong & Bramley (2023b), indicating that participants’ causal judgments based on
episodic temporal observation are also predictable from a rational perspective. The slightly lower
fit in the latter study could be attributed to the more ambiguous nature of the stimuli used in
that study.
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4.4.4 Episodic, effect unspecified

The final category we consider here is episodic evidence where the effect variable is unspecified.
The two datasets both contain evidence that each kind of event can only happen once in each
episode. Given that both datasets happen to have no base rate effect, we can model them using
both event-based and rate-based schemes.

Lagnado & Sloman (2006) In Lagnado & Sloman (2006), participants were asked to imag-
ine a situation that computer virus can spread through the network and told that the time at
which a computer revealed its infection could occur after a variable delay, so later than the time
at which the computer became infected. Participants were told that each connection, if existed,
worked 80% of the time, and the virus could not reach a computer unless they had been sent from
another equipment (e.g. no base rate). Participants watched 100 clips showing the event sequence
of when virus appeared in different computers, and were asked to judge the existence of causal
links in the system. (see Figure 4.8).

The experiment included four different conditions, but the underlying ground truth structure
was consistently: A was the cause of B, and B was the common cause of C and D. This means
that in each trial, computers C or D would never become infected without computer B being
infected. Since the actual infection time was varied and unknown, the presumed solution is to
rely on the conditional probability. However, the timing of virus appearance in each computer
could be misleading. For example, in Condition 3 where 50% of trials followed the order of
A −D − C − B, participants judged the links A → D, D → C, and C → B were more likely to
exist than other links. Their answers cannot explain other trials when only AB, ABC or ABD

happened. This suggests that people’s reliance on temporal information is so strong that it could
not, in this case, be overshadowed by contingency information.

There was a one-second delay between events in subsequent time steps (t1, t2, t3, t4; see Table 2
in Lagnado & Sloman, 2006). As such, each trial lasted 4 s. We model the dataset using the
parameters wc = 0.8 (i.e. λ1 = 0.8 for the rate-based model), µ ∼ U(0, 10), σ2 ∼ U(0, µ2).
The base rate is assumed to be zero. In this dataset, the main difference between the event-
based and rate-based schemes is that the former address the rule that an event can only occur
once for a specific equipment. Consequently, the event-based scheme outperforms the rate-based
scheme in accurately capturing human judgments, as shown in Figure 4.11c and Figure 4.12c. Our
model successfully explain the phenomenon that temporal information can outweigh contingency
information in human causal judgments.

Bramley, Gerstenberg, Mayrhofer, & Lagnado (2018) Bramley, Gerstenberg, Mayrhofer,
& Lagnado (2018) tested whether people can differentiate between two causal structures, chain
and fork (see Figure 4.8), using solely delay information. Each trial consisted of 12 episodes,
wherein events always occurred in the order of A−B −C. However, there were variations in the
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delay variances between the structures. In the chain structure (A→ B → C), the delay variance
between B and C was small, whereas the variance between A and C was large, as it encompassed
the variability between two stages. Conversely, in the fork structure (B ← A → C), the delay
variance between A and C was small, while the variance between B and C was large, as there was
no direct causal link between the two variables. Participants were asked to judge by distributing
100 percentage points across the two structures.

In contrast to previous datasets, we utilized the “independent delay” parameterization, as de-
scribed in the original paper (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018), which allowed
for distinct delays between different links in the causal structure. It means that to choose between
chain and fork, we only need to model the delays between B and C in the chain hypothesis and
the delays between A and C in the fork hypothesis. Each episode lasted no more than 3 s. We
assume wc = 1 (i.e. λ1 = 1 for the rate-based model), µ ∼ U(0, 10), σ2 ∼ U(0, µ2), and no base
rate.

Results are shown in Figure 4.11d and 4.12d. The rate-based model demonstrated a better fit
to human judgment compared to the event-based model. The event-based model showed a overall
bias towards chains (judging all chain devices as chains and also judging some forks structures as
chains). This could be due to that A−C delays (calculated under the fork structure) were always
longer than the B − C delays (calculated under the chain structure) in the stimuli. As a result,
the preference for the chain structure can be interpreted as an alternative form of favoring the
fork structure. In contrast, under the same number of data points, the rate-based model, which
assumes macro causal dynamic changes, would have greater tolerance for variations of causal
influence more than the event-based model.

We note here that the computational cost of the rate-based model is not always lower than
that of the event-based model. In the case of this dataset, the rate-based model may actually be
more computationally demanding depending on the chosen time bin configurations. Conversely,
the event-based model benefits from the fact that each type of event occurs only once in each
episode, resulting in a limited number of causal pathways to consider within each hypothesis.

4.5 General discussion

We develop a rational framework that utilizes the temporal information to make causal inferences,
and test people’s sensitivity to this rational perspective under different empirical datasets. Our
framework expands upon the causal graphical model by incorporating a likelihood function for the
calculation of temporal information. This rational framework successfully accounts for three key
phenomena discovered in literature: People tend to attribute stronger causality when the delays
between cause and effect (1) are short rather than long if expectations are weak; (2) are unvaried
from case to case; (3) align with their expectations.
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Apart from elucidating people’s general rules for thinking about causal delays, a bigger ques-
tion is how to utilize temporal information in more complex, continuous-time evidence to uncover
the underlying causal structure. Our framework can handle with a range of temporal causal learn-
ing tasks spanning from 2006 to the present. These tasks encompass various scenarios, such as
continuous evidence revealed on a single timeline or episodic evidence with independent shorter
timelines. They also vary in the hypothesis space size, the inclusion of background, preventative,
or cyclic causes, as well as the instruction details regarding delay expectations. We show a level of
consistency between judgments from the rational framework and judgments from people. Thus,
people not only are capable of utilizing temporal information in diverse causal learning situations
but also reveal a systematic, predictable, and to some extent, rational pattern in their judgments.

4.5.1 A pluralistic view

We have presented two schemes (event-based and rate-based) under a unified Poisson-Gamma
framework. The existence of a pluralistic view is not a new concept in the field of causal cogni-
tion. In the realm of causal attribution, where individuals are asked to make judgments regarding
specific events, researchers have debated the relative importance of covariation versus process (Ger-
stenberg et al., 2021; Sloman, 2005; Wolff, 2007; Lombrozo, 2010). The question arises whether
people prioritize imagining how the outcome would have changed if the cause had been different
(Sloman, 2005; Icard et al., 2017), or if they focus more on determining if there was physical
contact between the cause and effect (Wolff, 2007; Talmy, 1988). Instead of exclusively relying
on a single level of abstraction, individuals demonstrate a pluralistic view by considering both
the occurrence of the outcome and the manner in which it occurred given the state of the cause
(Gerstenberg et al., 2021). We next demonstrate two reasons why a pluralistic perspective is
also important in the domain of temporal causal learning, from the concerns of mechanisms and
computational costs, respectively.

For a concern of mechanisms

Learning a causal system could be based on different type of evidence: atemporal, temporal, and
spatiotemporal. As we move from atemporal to spatiotemporal evidence, the richness of informa-
tion increases. Atemporal evidence contains a limited number of categories. Samples from the
same category (e.g. a category where the evaluated cause is present while the outcome effect is
absent) are often treated as identical, as there is no additional information to distinguish them (Al-
lan, 1980; Cheng, 1997; Perales & Shanks, 2007; Griffiths & Tenenbaum, 2005). Researchers also
examine spatiotemporal evidence when asking individuals to make causal inferences for 2D physi-
cal scenes (Ullman et al., 2018; Bramley, Gerstenberg, Tenenbaum, & Gureckis, 2018; Gerstenberg
et al., 2021). Due to the brevity of the clips used in these studies, it is crucial to leverage the
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mechanistic theory to discover the underlying structure. This necessitates that learners consider
the specific movements of objects that are causally related to one another.

We argue that temporal evidence shares characteristics with both atemporal and spatiotem-
poral evidence. Like atemporal data, temporal evidence can provide multiple samples, as effect
events may occur multiple times without the necessity of having individual identifications (e.g.
the Melatonin example before; see also Pacer & Griffiths, 2012; Griffiths & Tenenbaum, 2005).
It allows for type-level reasoning, where we can reason about how the rate of effect occurrence
changes after a putative cause occurs. At the same time, temporal information can also enable
token-level thinking. When one cause produces a very limited number of effect events (e.g. one on
an effect entity), by taking into account delays between cause and effect, and the prior knowledge
of causal delays, we might infer which specific occurrence of the cause was responsible for this
specific occurrence of the effect. As such, our framework allows us to deal with different situations
accordingly to what the mechanistic or ontological commitments match with.

For a concern of computational costs

Continuous time allows for precise temporal information, with each event having its unique time
point and relationship with all other events. Events of different entities are often intermingled,
and events on the same entity may happen multiple times within the same observing episode.
However, this precision and combinatorial credit assignment issue poses challenges as considering
process would result in an infinite number of possibilities. Moreover, when observing a causal sys-
tem in continuous time, any event occurring in the present moment could theoretically be a result
of any event that happened in the past. For instance, an event happening to a person in their
forties may be greatly influenced by a decision they made in their twenties, a decision they may
not have regarded as significant. Given this richness of potential relationships, how can human
beings manage such complexity without considering every single possibility? We propose that a
way to manage complexity is by focusing on the macro level of how the rate of effect changes.
This approach proves useful especially when dealing with a large number of effects. However,
determining the appropriate granularity for rate calculation introduces another perspective that
needs to be explored. Nonetheless, it is important to note that reasoning from temporal evi-
dence introduces a more significant computational challenge compared to the previously studied
atemporal learning setting. Therefore, it could serve as a good learning setting to study bounded
rationality (Simon, 1982; Lieder & Griffiths, 2020).

4.6 Conclusion

We inevitably live in a world where events unfold in a continuous temporal manner. In order
to learn causal structures from this dynamic world, it is essential to effectively and efficiently
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process temporal information. Despite fruitful empirical findings regarding how individuals pro-
cess temporal information in various causal learning tasks, there is a lack of a unified theoretical
framework to integrate these findings. We present a rational framework for causal induction in
the temporal domain. This framework can provide predictions of causal judgments for a variety
of temporal causal learning task. We show that human performance is sensitive to the rational
perspective. Qualitatively, the model demonstrates the phenomena governing causal delays that
have been observed in empirical studies. Quantitatively, human judgments exhibit strong corre-
lations with model judgments across different datasets. By establishing a rational framework, we
take the initial step towards investigating the underlying mental processes involved in temporal
causal learning. This framework serves as a benchmark for further exploration of how humans
learn causal structures when faced with limited cognitive resources.

Box 4.1: The desirable properties of gamma distributions for studying contin-
uous time causal learning.

To begin with, gamma distributions have a convenient summing property. If X,Y ∼
Gamma(α, β) then X + Y ∼ Gamma(2α, β). As an example, suppose Bus #176 arrives
every 12 ± 2 min. If you arrive at the bus stop just as it leaves you might expect to wait
Gamma(α : 36, β : 3, [µ : 12, σ : 2]) minutes. However, if you then are told the next bus is
canceled, the expected waiting time will double: Gamma(α : 36, β : 3)+Gamma(α : 36, β :

3) is equal to Gamma(α : 72, β : 3, [µ : 24, σ : 2.8]). This neat transition among gamma
distributions will facilitate the calculation of preventative causation.

The second desirable property is the memoryless property of exponential distribution, a
special kind of gamma distributions when α = 1. The memoryless property means that the
expected delay is constant, no matter how long you have already waited for. The detailed
mathematical proof is provided in Box 4.2. In causal learning, we not only encounter regular
causal-effect delays, but also irregular delays such as delays between agents’ interventions.
Gamma distribution family enables us to represent both memory and memoryless time
intervals under the same probability distribution group.

The final theoretical consideration comes from the relationship between Gamma distri-
butions and Poisson processes (Pacer, 2016). Event generations follow Poisson processes
if the waiting time follows exponential distributions. More importantly, according to the
property of Gamma distributions, if we count every 10 events, the waiting time will shift
from unreliable Gamma(1, β) to reliable Gamma(10, β). If we count every 1000 events,
the waiting time would follow Gamma(1000, β) which is very reliable. Indeed, that is the
exact working mechanism of atomic clocks, where we count every 9 × 109 caesium hyper-
fine transition events as 1 second. Although it is not clear whether biological clocks work
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similarly (Buonomano, 2017), representing temporal dynamics as Gamma distribution and
Poisson process may help build a bridge between micro and macro perspectives of causal
learning in time.

Box 4.2: The memoryless property of exponential distributions. The exponential
distribution is one kind of probability distributions with random variables valued in [0,∞).
It includes one rate parameter λ ∈ [0,∞) to illustrate how many events are expected to
happen per united time. It could be seen as a special case of gamma distribution when the
shape parameter α = 1. Accordingly, its probability density function is:

P (T = t) = λe−λt (4.10)

The cumulative distribution function is:

P (T ⩽ t) = 1− e−λt (4.11)

Therefore, we know that: Exponential distributions are memoryless, which means that if
we want to see an event t minutes later, but we already wait for s minutes and no event
have not happened yet, the probability of waiting for at least another t minutes would be
the same as when we just begin to wait, which means P (T > s + t|T > s) = P (T > t).
This can be proved as follow:

P (T > s+ t|T > s) =
P (T > s+ t, T > s)

P (T > s)
=

P (T > s+ t)

P (T > s)
=

e−λ(s+t)

e−λs
= e−λt (4.12)

P (T > t) = 1− P (T ⩽ t) = e−λt (4.13)



Chapter 5

Learning generative and preventative
structures in continuous time

Causal cognition studies have largely focused on learning and reasoning about contingency
data, but this could just represent the tip of the causal cognition iceberg. A more general

problem lurking beneath is that of learning the latent causal structure that connects events as
they unfold in continuous time. In Chapter 4, I have shown a normative model for how time
information should be utilized. In this chapter, I will collect empirical data and investigate how
people can utilize time information to learn causal structures.

Fewer studies have examined learning and reasoning about systems exhibiting events that
unfold in continuous time. Of these, none have yet explored learning about preventative causal
influences. How do people use temporal information to infer which components of a causal system
are generating or preventing activity of other components? In what ways do generative and
preventative causes interact in shaping the behavior of causal mechanisms and their learnability? I
explore human causal structure learning within a space of hypotheses that combine generative and
preventative causal relationships. Participants observe the behavior of causal devices as they are
perturbed by fixed interventions and subject to either regular or irregular spontaneous activations.
Participants are capable learners in this setting, successfully identifying the large majority of
generative, preventative and non-causal relationships but making certain attribution errors. I
propose a family of more cognitively plausible algorithmic approximations. Participants’ judgment
patterns can be both qualitatively and quantitatively captured by a model that approximates
normative inference via a simulation and summary statistics scheme based on structurally local
computation using temporally local evidence.

Content from this chapter is a reprint of the material as it appears in Gong & Bramley (2023a).
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5.1 Introduction

We naturally think about the world in terms of a progression of events that cause and affect one
another. When successful, causal reasoning helps us abstract from our real-time experience to
recognize stable causal mechanisms that we can use to explain, predict and sometimes control
our environment (Sloman, 2005). However, inferring causal structure in real environments is
notoriously challenging, involving a complex interplay between incoming evidence, action, and
intuitive theories of how causal influences manifest and link elements of experience like events,
objects and variables (Lagnado, 2011; Goodman et al., 2011; Griffiths & Tenenbaum, 2009).

Two of the basic and well-studied notions of causality are generative and preventative rela-
tionships. In a generative relationship, we think of the occurrence of one event as bringing about
the occurrence of another. A generative causal claim implies the counterfactual that, had the
cause not occurred, the effect would not have occurred either. In probabilistic accounts of causal
reasoning, generative causality is typically linked with an expectation of positive contingency:
The presence of a generative causal variable is associated with an increase in the probability of
its effect(s) being present compared to cases where the cause is absent or inactive. The reverse
of this is the notion of a preventative causal relationship, where we think the occurrence of a
causal event as blocking another event from occurring. A preventative causal claim implies the
counterfactual that, had the cause not occurred, the effect would have occurred. Probabilistically,
we thus expect the presence of a preventative cause to decrease the probability of its effect(s)
occurring, compared with cases where the cause is absent or inactive (Cheng, 1997; Sloman, 2005;
Griffiths & Tenenbaum, 2005).

The majority of causal learning research has focused on inferences from atemporal evidence,
which can be represented in tables of co-occurance or contingency that reflect the statistical
dependencies among a set of variables (Cheng, 1997; Buehner et al., 2003; Griffiths & Tenenbaum,
2005; Rottman & Hastie, 2014; Lagnado & Sloman, 2004). This kind of data is central in scientific
experimentation, in that it depends on the collection of multiple independent samples (Pearl,
2000; Pearl & Mackenzie, 2018; Zimmerman, 2007). However, an intriguing question regarding
human cognition is about how people learn causal relationships from temporal data, given that
we experience the world as one continuous timeline, and that real world causal mechanisms often
take time to produce their effects. The temporal setting also allows that multiple events of the
same type may occur multiple times to a single individual. This more closely resembles repeated-
measure data from a single individual than reasoning from large independent samples. In this
setting, people might rely more on “soft” cues (e.g. time, prior knowledge) than the contingency
principle (Lagnado et al., 2007). Understanding how people learn from temporal data is crucial
because it not only improves our understanding of the basic mechanisms of human learning, but
also clarifies the differences between scientific practices and intuitive causal inference.
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Besides this, studies of atemporal causal learning (Cheng, 1997; Buehner et al., 2003; Griffiths
& Tenenbaum, 2005; Rottman & Hastie, 2014; Lagnado & Sloman, 2004) as well as recent studies
of temporal causal learning (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Buehner &
McGregor, 2006) typically focus on one type of causal relationship at a time. In contrast, this
paper aims to investigate how one can learn preventative and generative relationships where
both are in play at once. Can people identify what is causing and what is preventing an effect
despite, and perhaps even because of the ways that such causal influences intertwine and interact
in time. Although this may sound like a “niche” scenario, it is actually very common. To illustrate
such an everyday situation: Suppose you adopt a cat that, while adorable, frequently urinates
outside its litter. You would like to understand why and learn to prevent this behavior before
she completely ruins your soft furnishings.1 Identifying the causes of the problem peeing, not to
mention an effective pee-prevention strategy is nontrivial and might require considerable thought
and experimentation. Perhaps you notice the cat rarely pees inappropriately when playing with
its teaser. However it is unclear if teaser is an effective preventer, because the times of day she
is encouraged to play with it may be different from those when she pees. Intuitively, diagnosis
becomes easier if you can exploit the moments when you know she tends to urinate to test whether
the teaser is an effective preventer. For instance, if she often urinates around 7 a.m, you could
try introducing her teaser around this time. Alternatively, you might consider encouraging her to
drink water to stimulate additional need to urinate a little before the time she more habitually
plays with her teaser. In this way you might leverage either an established baseline expectation
or an established generative cause (extra water) to facilitate your preventative investigation.

The example above shows, firstly, that temporal expectations are necessary to make sensible
causal inferences (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Buehner & McGregor,
2006; Greville & Buehner, 2010; Lagnado & Sloman, 2006). In this case we need some sense
of when the cat usually pees inappropriately, as well as an expectation of how long it takes for
water to pass through its body. Secondly, it is likely that generative and preventative influences
interact in terms of how they reveal or obscure one another (Rottman, 2016; Lombrozo, 2010).
The existence of either a regular base rate occurrence of an effect, or of effects generated by a
known generative cause with regular delays, makes it possible to form a strong expectation against
which we can test preventative causes.

In this paper we distill these reasoning patterns into a task and a rational analysis that aim
to examine: (1) whether people can use temporal knowledge to learn causal systems that include
both generative and preventative causes, (2) how the regularity or predictability of the base
rate occurrence of an effect of inference affects the learning process, and (3) whether there are
interactions between learning different types of causes.

Apart from establishing what factors influence temporal causal learning, we also want to
know how people learn, i.e. what kind of inference process can capture human judgments. Causal

1This is a real life example for one of the authors of this paper.
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Bayesian Networks (CBNs) are an established mathematical framework representing and reasoning
about causal structure giving rise to observations (Pearl, 2000; Rottman & Hastie, 2014; Allan,
1980). In the psychology of causal reasoning, they have served as a computational-level norm
(Marr, 1982) allowing researchers to investigate how the cognitive processes of causal induction
approximate or deviate from ideally reverse engineering the generative causal mechanism most
likely to be responsible for one’s observations. Accordingly, a number of process-level models have
been proposed (Bramley, Dayan, et al., 2017; Davis & Rehder, 2020) that each capture some of the
ways human performance departs from this kind of Bayesian ideal. However, CBNs and extant
process-level models do not describe the role of continuous-time information in human causal
structure induction. This is surprising, since as argued, time is a ubiquitous feature of human
interactions with their environment, and the need to process rich temporal information in real time
is a practical constraint on most of our basic causal inferences. In this paper we take a rational
analysis approach (Anderson, 1990; Simon, 1982), starting with a normative account of inference
from observations of real-time events to their underlying causal structure and developing a process-
level approximation family that can capture human deviations from this. For our normative
account, we expand the CBNs framework so that it incorporates representing and learning via
causal delay information. Alongside this, we propose a process-level framework that exploits
several tricks for approximating intractable probabilistic inference: mental simulation (Ullman et
al., 2018; Battaglia et al., 2013), local computations (Bramley, Dayan, et al., 2017; Fernbach &
Sloman, 2009), and temporally local evidence (Bramley et al., 2015; Bramley, Dayan, et al., 2017;
Bonawitz et al., 2014).

5.2 Question 1: How do beliefs about causal orders and

delays shape causal structure learning?

One of our main goals is to test whether people can use their knowledge about time and causality
to learn causal structure. Previous studies have demonstrated the temporal knowledge from three
perspectives: order, delay expectation, and delay variation.

Foundational to the notion of causation, is the principle that causes must precede their effects
(Hume, 1740). Accordingly, people use the order of occurrence to constrain and sometimes fully
attribute causal structure among components of a system (Bramley et al., 2014). Indeed, event
order appears to be a strong heuristic cue to causal order, having been shown to override contin-
gency patterns even in settings where participants are instructed that order is an unreliable guide
(Lagnado & Sloman, 2006) or even completely irrelevant to causal structure (Rottman & Keil,
2012).
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As well as order, causal inferences are sensitive to delays between events. People make stronger
or more confident (generative) causal attributions connecting events separated by short tempo-
ral delays than by long temporal delays (Shanks et al., 1989; Tarpy & Sawabini, 1974; Shanks
& Dickinson, 1991). This reflects one of the most basic forms of learning, in which animals
associate stimuli at a learning rate inversely related to their separation in time (Grice, 1948).
However, going beyond automatic associations in time, human causal attributions are moderated
by domain-specific delay expectations, with shorter-than-expected delays also reducing the causal
judgment strength (Buehner & May, 2002; Mendelson & Shultz, 1976; Hagmayer & Waldmann,
2002; Lagnado & Speekenbrink, 2010; Buehner & McGregor, 2006). For example, Hagmayer &
Waldmann (2002) found participants judged whether an insecticide prevents mosquitoes by com-
paring prevalence of mosquitoes in fields with and without the insecticide, but judged whether
planting flowers prevents mosquitoes based on whether the prevalence of mosquitoes was affected
the year after the flowers were planted, presumably expecting that flowers would take longer to
influence the insect population than insecticide. Besides the length of inter-event delays, people
are also sensitive to delay variability when they are repeatedly exposed to putative cause–effect
pairs. That is, people rate one kind of event as less of a strong cause of another to the extent
that the delay varies a lot across instances (Lagnado & Speekenbrink, 2010; Greville & Buehner,
2010).

Recently several studies proposed models to capture human’s expectations for delay length
and variation, including scenarios of pairwise causal learning (Pacer & Griffiths, 2012), structure
learning (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Pacer & Griffiths, 2015), imputing
hidden causes (Valentin et al., 2022), or making judgments of actual causation given a known
causal structure (Stephan et al., 2020). Nevertheless, these studies have predominantly focused
on cases of generative causal influence. Additionally, they have focused on inference from sets
of independent clips, in which root components are usually activated at the start and effects
follow from this. However, a more naturalistic and challenging setting is one where causes and
effects intermingle and components can exhibit multiple activations, and both generative and
preventative influences can occur within a single learning episode. This is the setting we will
explore.

5.3 Question 2: How do generation, prevention, and

background causes interact in affecting causal learn-

ing?

Early studies of causal cognition focused on elemental pairwise causal judgments based on con-
tingency data. While not directly related to the current temporal setting, these studies reveal
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general principles of causal inference. For instance, the ∆P principle captures the change in
the probability of an effect occurrence with vs. without a putative cause (P (E|C) − P (E|¬C)),
forming a basic metric for the strength and direction of a potential causal effect (Allan, 1980).
However, researchers later found people are sensitive to the base rate of the effect P (E|¬C). That
is, how frequently the effect occurs in the absence of the cause. For a fixed ∆P , people infer
stronger generative influences when base rates are high (because this implies the cause would
have succeeded a greater proportion of the time if it had the chance to operate), and stronger
preventative influences when base rates are low (Buehner et al., 2003; Cheng, 1997; Wu & Cheng,
1999).

In addition to the size of the base rate, the regularity of the base rate also influences causal
inference. In Rottman (2016), participants were asked to evaluate the effectiveness of two medi-
cations. In one context, the baseline pain level was random from case to case, whereas in another
setting, it was autocorrelated (i.e. it tended to increase or decrease smoothly over time). Partici-
pants were found to focus more on the raw effect values in the random condition, while focusing
more on the change of effect values in the autocorrelated condition. This indicates that people
are sensitive to environmental stability, adapting how they accumulate and represent causal effect
evidence when receiving information in different environments (Biele et al., 2009; Whittle, 1988).
We will explore whether people are sensitive to temporal regularity (periodic vs. unpredictable)
and, if so, whether or not they adjust their inference strategy accordingly.

Finally, humans show some ability to condition on other variables when inferring the role of
a target variable (Rescorla & Wagner, 1972; Gopnik et al., 2001; Beckers et al., 2005; Shanks,
1985). People can use information regarding known causes to better understand unknown causes,
particularly preventative causes. The classic paradigm in prevention learning is to let learners
build a generative impression of a cause (A+), and then expose them to negative results under
the combination of a generative cause and a preventative cause (AB−). People learn the preventive
cause better in this case than when the preventative cause is paired with the negative result alone
(B−, Melchers et al., 2006; Rescorla & Wagner, 1972; Lovibond & Lee, 2021; Lee & Lovibond,
2021). However, the existence of temporal information may actually increase the difficulty of
thinking about causal interactions: To utilize the generative causes to learn about prevention, the
learner must have ensured that generative causes would have produced effects in a particular time
period when preventative causes are active.

Recent studies also demonstrate human limitations in dealing globally with joint probability,
i.e. reasoning probabilistically about multiple interacting variables (Bonawitz et al., 2014; Fern-
bach & Sloman, 2009; Markant et al., 2016; Griffiths et al., 2015; Davis et al., 2020). Outside of
very simple learning problems, they may rather focus on local components of the system rather
than maintain a global perspective. For example, people often infer an erroneous A → C link
when reasoning about a generative system with two links A → B → C, apparently failing to
notice that B can explain C’s dependence on A (Fernbach & Sloman, 2009; Davis et al., 2020).
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Figure 5.1: Causal devices tested in this paper. a-d) Experimental interfaces. Participants were in-
structed to the control components and target components in the causal devices and observed how the
system reacted to pre-set interventions. They marked their answers of the role of each connection during
or after the observation. e) The response hypothesis space (all possible pairwise combinations of generative
(G), non-causal (N), and preventative (P) connections). f) The illustrations shown to participants in the
regular (periodic) vs. irregular (exogenous) base rate condition.

Through model comparison, we will explore to what extent people can reason globally or locally
about causal structure on the basis of real time evidence, e.g. whether they can account for and
potentially bootstrap their inferences by considering interactions between causal mechanisms, or
if they rather fail to make these accommodations.

5.4 Question 3: How do people process temporal dy-

namics to make causal inferences?

We build two models for describing how the temporal information could be processed in order
to make causal inferences. We will explain the models at a theoretical level in this section and
refer the readers to Appendix A.1 and A.2 for technical details. To do this, we first introduce the
learning task before describing our model so that readers can get a concrete understanding of how
it works.

5.4.1 The learning task

In this study, participants must guess the structure of abstract causal “devices” (Bramley, Dayan,
et al., 2017; Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Gong et al., 2023) composed of
three components (Figure 5.1a–5.1d): two “control components” (i.e. Cause A, B) and one “target
component” (i.e. Effect E) on the basis of observations of those structures being perturbed by
interventions. To control the impact of interventions, our experiments focus on a learning setting



5.4 Question 3: How do people process temporal dynamics to make causal
inferences? 85

wherein the interventions are part of the stimuli, meaning participants observe them taking place
rather than selecting and performing them themselves.

For each device, the connection between each control component and the target component
could be generative, preventative, or they might be unconnected (non-causal). Thus, we focus on
learning in a nominal hypothesis space of 9 possible structures including all combinations of gen-
erative, preventative and non-causal connections from A and B to E (Figure 5.1e). As a first foray
into preventative causation in real-time causal structure induction, we focus on this restricted hy-
pothesis space of causal structures which only contains the common effect topology. However, the
experimental paradigm and computational models we introduce can generalize directly to learning
in arbitrarily broader causal hypothesis spaces, as well as under different prior expectations about
plausible delays and relations.

We focus on relationships between point events (i.e. activations) occurring at a device’s
components at particular moments in time. We assume an activation of a generative component
will always produce an “extra” activation of the target component (i.e. causal strength = 1,
Cheng, 1997, see Figure 5.2a). We use the gamma distribution to model and generate the delays
between causes and effects (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Stephan et al.,
2020; Valentin et al., 2022).

We assume an activation of a preventative component blocks any activations of the target
component for a short stochastic time window (Figure 5.2b). We assume that prevention occurs
irrespective of whether activations would have been caused by a generative causal influence or
would have occurred spontaneously. Preventative influences are thus conceived as having a broad
preventative scope (C. D. Carroll & Cheng, 2009).2 By definition, activations of non-causal
components have no impact on the behavior of the target component.

Two forms of background activation are considered. In the Regular base rate condition, the
target component activates quasi-periodically (Figure 5.2c). In the Irregular base rate condition
it occurs exactly as often overall but is completely unpredictable when the next occurance will be
(Figure 5.2d).

5.4.2 Bayesian inference

We now lay out an ideal Bayesian model as a normative model for this task. The ideal reasoner
is presumed to take all activation events within the observation interval as the basis of their
inference and use the relative likelihood of these under different structural hypotheses to update
a distribution over causal structures. The calculation of likelihood here depends on an expensive
enumerative actual causal attribution step (Halpern, 2016). The basic idea is that accurate
judgments about type-level causal relationships (i.e. about the underlying causal structure) depend

2We recognize that there are other ways in which one might operationalize prevention and we consider
several alternatives in the General Discussion.
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Figure 5.2: Using gamma density distributions to generate the delays between cause and effect and the
blocking windows of preventative causes. Circles indicate cause events and diamonds indicate effect events.
Each vertical line shows an actual sampled situation. (a) The distribution of delays between cause and
effect. When a generative cause event occurs, it will produce an effect event after 1.5 ± 0.5 s. (b) The
distribution for preventative window length. When a preventative cause event occurs, all effect events
supposed to occur within 3 ± 0.5 s will be canceled, while effects outside the preventative window (the
red box) would not be affected. (c) The distribution of delays between base rate events in the regular
condition. When a base rate effect occurs, the next base rate effect will occur after 5 ± 0.5 s. (d) The
distribution of delays between base rate events in the irregular condition. When a base rate effect occurs,
the next base rate effect will occur after 5± 5 s.

on detailed considerations about the token-level causation giving rise to the observable evidence
(i.e. which particular event actually caused which particular effect). There are often a very large
number of possible ways that even a single causal hypothesis could have produced a particular
pattern of observed events. For instance, if A activates at 0.1 s and B activates at 1.2 s (i{i(1)A =

0.1s, i
(1)
B = 1.2s}), and the learner observes two subsequent effects (d{d(1) = 1.5s, d(2) = 2.8s}),

even under the hypothesis that A and B are both generative causes, the data could be produced in
multiple ways: A could have caused the first effect and B the later one (i(1)A → d(1), i(1)B → d(2)) or
A could have caused the later effect and B the earlier one (i(1)A → d(2),i(1)B → d(1)). Alternatively
one or both connections could have not revealed their effects yet and meaning either or both
observed effects could simply be base rate activations. Therefore, in order to maintain rational
beliefs about causal structure, the ideal reasoner considers all possible causal paths that could
describe what actually happened given each possible structural hypothesis.

Figure 5.3a shows two examples of the tree of possible causal paths under two of the possible
structural hypotheses. Since one must consider possible causal paths exhaustively, the complexity
of this inference scheme scales in a worse-than-polynomial manner as the number of events a
learner observes increases.

5.4.3 Simulation-and-summary-statistic approximation

While the enumerative approach achieves benchmark performance by inverting the generative
model, exhaustively considering pathways linking all observed events, it makes unrealistic demands
on memory storage and computing power compared to what could plausibly be involved in human
cognition. Therefore, we propose a process-level model that is more consistent with cognitive
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Figure 5.3: Illustrations of model algorithms. a) Causal path construction under fully normative infer-
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observer sums over all possible pathways (branches) that explain all events evidence under each hypo-
thetical structure. ii. e.g. Under the structure where A and B are both generative causes, there are 13
ways to explain Evidence d: one candidate cause for E0 (base rate), four candidate causes for E1, and
3–4 candidate causes for E2 depending on how E1 is explained. iii. Possible pathways under a different
structure. b) Summary-statistic approach: i. Intervention-window or fixed-window evidence segmenta-
tion. ii. Distributions for summary-statistics given different connection types based on pre-simulated data.
The model uses likelihood of observed statistics under these distributions as a proxy for generative model
likelihood. Distributions slightly differ given different base rate conditions. c) Example where posterior
over structures differs among models (assuming a regular base rate). Curved arrows indicate the true
underlying generative process unknown to the models.

constraints. It is based on the simulation-and-summary-statistic idea (also written as “summary-
statistic” for short), which is as an important approach in Approximate Bayesian Computation in
statistics (Blum et al., 2013; Lintusaari et al., 2017; Sunnåker et al., 2013; Y. Zhao et al., 2023).
We explore this idea’s cognitive plausibility as an explanation for human judgments in our setting.
Our model incorporates three features of bounded inference that are often highlighted in cognitive
psychology: mental simulation, local computation, and temporally local evidence.

Mental simulation

The tendency to rely on simulation-based approximation to exact inference has been hypothesized
to play an important role in model-based reasoning in many scenarios, including physical scene
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understanding (Battaglia et al., 2013; Ullman et al., 2018; Hamrick et al., 2016), mechanical
reasoning (Hegarty, 2004), and causal judgment (Gerstenberg et al., 2021, 2017). The idea is
that instead of computing the likelihood of a potential generative model producing observed data
exactly, people instead compare their observations to mental simulations of what kind of pattern
they expect to happen under different generative models.

Critical to this process is the identification of a useful set of easily tracked abstract cues or
features with which to compare such simulations to observations. When a scenario of interest
involves complex dynamics, direct surface-level (i.e. “pixel-level”) comparison between simulated
and observed evidence is generally inappropriate for measuring the likelihood of a hypothesis.
Ullman et al. (2018) combined the ideas of simulation and abstraction to model inferences about
the latent properties of physical objects (such as masses and forces) from observed dynamics. As a
simple example, if imagined heavy objects tend to move more slowly than imagined light objects,
this licenses the use of speed as a (fallible) cue to mass.

Concretely, we explore whether simple salient local features of event sequences that are diag-
nostic (if fallible) guides to local causal relationships can explain human judgments better than a
fully Bayesian treatment. The implied cognitive process is that learners draw on (imagined) evi-
dence under different causal ground truth structures in order to develop statistical cues that can
be directly applied to pairwise causal judgments. Here we simply investigate two straightforward
and salient cues that people might be sensitive to in the current task:

1. Delay: The interval between a cause component’s activation and the next subsequent effect
activation.

2. Count: The number of activations of the effect after the cause activation within some time
window.

These cues are hand-engineered, and far from exhaustive. However, they are simple to track
and turn out to discriminate reasonably well between different types of causal connections. As
shown in Figure 5.3b, for the delay cue, we generally expect to see shorter intervals between a
control component’s activation and the target component’s next activation if the control compo-
nent is a generative cause, a medium and more variable interval if there is no connection or a
longer interval if it is preventative. For the count cue, more effect activations are likely to follow
the activation of the generative component on average because of the existence of base rate acti-
vations as well as generation. In contrast, fewer activations are likely to follow the activation of
preventative components. The former cue considers concrete delay information but ignores the
possibility of different causal pathways, while the latter cue ignores the exact temporal interval
between events (cf. Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018).
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(Structurally) local computation

Both the count and delay cues introduced above ignore surrounding structure and context leading
to the potential for interference. For example, in the presence of a known preventative cause that
has just occurred, an ideal learner should reduce their expectation that a generative cause would
produce a short delay to the next event, or a high subsequent effect count. Thus, this approach
also captures a principle of local computation (Bramley, Dayan, et al., 2017; Bonawitz et al., 2014;
Fernbach & Sloman, 2009; Markant et al., 2016; Griffiths et al., 2015; Davis et al., 2020), predicting
that learners will make causal attributions at the level of individual links without accommodating
the global context and the full space of global causal models.

The other reason why we apply local computation to this process-level model is that it can
greatly reduce the computational cost compared to the global computation approach. In the
current continuous-time setting, interventions could happen at any time making every context
unique. This means that conditioning one’s inference on even a single previous intervention re-
quires learners to simulate a much larger number of one-off context-specific situations. Introducing
more of this context sensitivity (i.e. constructing separate summary statistics for each possible
combination of causes) would allow a summary-statistic approach to perform closer to normative
inference but at the cost of increasing computational demands and reducing generality beyond
the set of contexts considered.

(Temporally) local evidence

The final cognitive feature we consider is related to how people parse and segment the evidence
encountered across an extended observation of a causal system. Ullman et al. (2018) applied a
summary-statistic approach to short observations (5 seconds) and allowed participants unlimited
replay opportunities, so assumed people could use cues based on the entire observation. In the
scenario considered here, the learner observes causal dynamics for considerably longer (20 seconds,
containing dozens of events) without recourse to replays. In general, we experience the world in
a single ongoing timeline. Thus, with finite short-term memory storage and attention, it seems
plausible that people abstract cues more locally than from full observation. In other studies,
people are found to often use temporally local (i.e. recent) information to drive causal model
learning (Bramley, Dayan, et al., 2017; Davis et al., 2020; Rehder et al., 2022). Furthermore,
people are often unable to recall older evidence exactly (Harman, 1986; Bramley et al., 2015),
rather remember whatever conclusions they have drawn on the basis of it.

In line with these ideas, we hypothesize that people segment their observations as they unfold,
using recent events to update their beliefs and then discarding their memory of them. We consider
two ways to segment continuous-time evidence. As shown in Figure 5.3b, a unit of evidence under
both approaches begins with an intervention (i.e. the activation of a control component), capturing
the basic principle that causes can only influence what happens later. An Intervention-window
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segmentation approach treats one unit of observation as the interval between one intervention and
the next. This removes the distraction of other interventions that might also influence the effect,
but ignores the fact that these interventions might be performed irregularly or reactively, and also
that actual effects may not have been revealed before the occurrence of the next intervention.
A Fixed-window approach ends one unit of observation after a fixed amount of time. This has
the advantage of stability in its odds of including all relevant effects’ but instead opens the door
to confounding influences when subsequent interventions occur within the preceding observation
window. A fixed window approach also implies some degree of parallel processing since fixed-length
attentional windows may easily overlap in a single timeline.

5.4.4 Summary of modeling frameworks

In sum, we have laid out two approaches to solving the current learning problem. The normative
model utilizes the exact timing information of each event, considering all possible observation-
consistent ways in which the effects might have been generated or prevented. The summary-
statistic model compresses the information by abstracting useful cues and comparing the similarity
between cues summarized from observation with mental simulation. We do not see the two
accounts as fundamentally in tension. Rather, the summary-statistic approach embodies a set of
algorithmically plausible steps to approximate the normative solution.

Given the information compression and the local focus of the summary-statistic approach,
its predictions diverge from the normative one in some situations. One example is shown in
Figure 5.3c. When B activates and then A activates followed closely by two effects, the normative
learner finds this most consistent with the structure where B is a generative cause because the
delay between B and the first effect is consistent with its delay expectation, while the other effect
could easily be due to the base rate. For the summary-statistic models, the intervention-window
approach suffers from a blocking effect, where the occurrence of A masks any potential link
between B and the effects. The fixed-window approach suffers from a local computations error,
where each effect is potentially attributed to both A and B leading to a marginal preference for
the model with both A and B as generative causes. We will show more similarities and differences
between the two modeling approaches alongside human behavior in Results sections.

5.5 Overview of experiments

We now report on three experiments that investigate how people infer preventative and generative
causal structures in continuous time. Each experiment includes stimuli generated from each of the
nine underlying structures we consider (Figure 5.1e). Experiment 1a and 1b aimed at exploring
how overall structure and regular and irregular base rates influence causal judgments. Exper-
iment 2 additionally includes stimuli designed to probe whether people make specific mistakes
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predicted by the summary-statistics model. All pre-registrations, materials, data, and analy-
sis code are available at https://osf.io/q8n72/. Stimuli for all experiments can be viewed at
https://github.com/tianweigong/causal_diamond.

5.6 Experiment 1

5.6.1 Methods

Participants

One hundred and eighty-seven participants from Amazon Mechanical Turk were recruited and
reported for Experiment 1a (81 female, 105 male, 1 non-binary, aged 37±11, regular vs. irregular
condition: 93 vs. 94) and another 123 participants were recruited and reported for Experiment 1b
(45 female, 78 male, aged 39 ± 11, regular vs. irregular: 63 vs. 60). The sample size of Experi-
ment 1a was determined by a power analysis comparing two between-subject groups anticipating
a medium sized effect (d = 0.5) with a goal of .90 power at the standard .05 alpha. The sample
size for Experiment 1b followed a pilot study (Gong & Bramley, 2020) given that both of them
aimed to compare participants’ performance with normative and heuristic models. Nine additional
participants in Experiment 1a were recruited but excluded prior to analysis because they clicked
(to respond) more than 300 times during the task (as average participants acted 113±26 times).
Hence, we suspected these respondees were either inattentive or non-human. Four additional
participants in Experiment 1b were excluded prior to analysis because they clicked more than
300 times during the task (n=2), or failed to pass at least one of two attention questions (n=2).3

Participants were paid between $1.00 and $2.08 depending on their performance (see below) and
experiments lasted around 20 minutes.

Design & Procedure

Overview In both Experiment 1a and 1b, participants judged the causal structure of 18 causal
devices (Figure 5.1e). When a generative cause event occurred, it would produce an effect event
after 1.5± 0.5 s (see Figure 5.2a). Whenever a preventative cause event occurred, any upcoming
effect events in the subsequent 3 ± 0.5 s were canceled (see Figure 5.2b). Each base rate event
occurred 5±0.5 s after the previous one in the regular base rate condition, or 5±5 s in the irregular
base rate condition. The choice of generative delay was based on past studies that suggest people
only reliably attribute causal relations to delays of up to around 2 seconds in the absence of
context information shaping delay expectations (Shanks et al., 1989; Shanks & Dickinson, 1991).

3We also pre-registered to exclude participants who took more than six attempts to pass all instruction
comprehension check questions. However, with the benefit of hindsight, we recognized that even attentive
participants often required several attempts to pass our stringent comprehension checks. Thus, we opted
to relax this exclusion criteria.
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We chose the size of the true preventative windows and base rates such that base rates are generally
lower than casual influences (i.e. activity is relatively sparse without any generative events) and
preventive influences last long enough to have a reasonable chance of preventing something. The
true sampled causal delays are unknown to the learner (human or model), but for simplicity we
pre-trained (Experiment 1a) or told (Experiment 1b) participants about typical patterns of base
rate activations and about typical generative delays and preventative durations in an instruction
phase, and so also assumed these parameters were available to all models.

For each device, participants clicked a “Start” button to watch the clip. Each clip started
with a base rate activation of the target component and included three pre-set interventions on
A and three on B randomly spaced and intermingled over 20 seconds. After that, the clip would
end and no further activations could be observed. Components’ activations were displayed as the
component “lighting up” by changing from gray to yellow for 350 ms. The activation of the control
component was accompanied by a hand symbol (Figure 5.1b) and participants were told that this
showed that control components were being intervened on by someone or something external to
the system, meaning that the interventions happened at random moments rather than following
any informative pattern. Clips were selected to make sure that no activation was masked by
another on the same component in the clips, and participants were also told about this rule.

Participants were invited to mark their guesses about the two connections during or after the
clip by clicking the space between the components (Figure 5.1d). Each clip could only be played
once. The order of 18 trials, as well as the click pattern (whether they would have to click once,
twice, or tree times to select generative, preventative or non-causal), and the vertical position of
A and B components (above or below) were randomized independently between participants.

Participants were informed of the timing of three types of connections as well as the target
component’s self-activation prior to the inference task. For the base rate specifically, participants
in the regular condition were told that the target component would activate regularly about
every five seconds and they saw an illustration with a circular arrow to create the impression of
periodic activation (Figure 5.1f). Participants in the irregular condition were told that the target
component can activate by itself at completely random times and they saw an illustration with an
exogenous link intended to imply that someone sometimes activates the target component directly
but one cannot anticipate when it will happen (Figure 5.1f). In order to similarly provide timing
information, participants were told the base rate activation happens about 2-7 times per clip.
Participants had to pass introduction check questions before starting the experiment. To properly
incentivize accurate judgments, a 3-cent bonus was paid for each correctly identified connection
and non-connection during the main task in addition to the basic $1 payment.

Experiment 1a In Experiment 1a, to generate stimuli from different structures (e.g. both
generative, one generative and one non-causal) and different conditions (i.e. regular vs. irregular)
comparable, we used a Latin-square design. We first created 18 causal delay seeds independently.
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Each of these included a set of timings for interventions, base rate activations, which depended
also on whether the base rate was regular or irregular, and what generative delays (or blocking
windows) A and B would have if they were generative (or preventative) components. Under each
seed, 18 stimuli (9 causal structures × 2 base rate settings) were generated by implementing
generative or preventative influences according to the ground-truth structure (see Figure 5.4a for
an example of a single seed manifesting under each structure and base rate condition). Across
different seeds, the timing and order of interventions were randomly generated to capture the
diversity of ways in which the interventions could be interleaved ranging from perfectly interleaved
(e.g. ABABAB) to perfectly clustered (e.g. AAABBB, see Figure 5.4b for an example of a single
structure under different seeds and base rate conditions). All stimuli were finally divided into 18
sets (9 sets for each base rate setting) according to a Latin-square design that ensured participants
would only see one structure under each seed (see https://osf.io/sqv6c for the counterbalancing
matrix). Participants were randomly assigned to one of these 18 sets.

In the instructions, participants saw training videos that showed the patterns of the target
component’s base rate activations (corresponding to their condition) and also what happens after
intervening on a causal system with a single (generative, non-causal, or preventative) connection.
They completed a single practice trial in which the true causal device included one generative
connection and one non-causal connection. Feedback was provided in the practice trial but not
in the test trials.

Experiment 1b Experiment 1b differed from Experiment 1a from two perspectives. Firstly,
although we assume the provenance of the summary-statistic approximation to be mental simula-
tion, cues might also be derived from experience with the “labeled data” included in the instruc-
tions or practice trials. Therefore, Experiment 1b only kept the text instructions and removed the
training videos and practice trials, to show that labeled data were not necessary for participants
to complete the task.

Additionally, given that the stimuli in Experiment 1a were generated by one of the ground
truth structures, the normative model and summary-statistic approximations often made similar
predictions. To probe how participants react to situations with stronger discrepancies between the
normative and summary-statistic predictions, we created some stimuli that were not generated by
any particular causal device. We created two blocks of stimuli in Experiment 1b. Block 1 included
nine stimuli for each participant, which replicated the procedure of Experiment 1a, and served
to ensure participants were habituated to reacting to “normal” stimuli. In Block 2, we generated
potential test stimuli by randomly distributing six interventions and between 1 and 9 effects across
a 20 second trial. We selected sequences for which the structure predictions of the normative and
summary-statistic models were strongly dissimilar, while ensuring that these stimuli were not
too normatively improbable (i.e. that they could conceivably have been generated by one of the
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Figure 5.4: a) Examples of a single seed under different structures and base rate conditions (from one
stimulus seed used in Experiment 1a). Y-axis refers to the roles of Component A and B (e.g. GP: A is
a generative cause and B is a preventative cause). b) Examples of a single structure manifesting under
different seeds and base rate conditions.

causal structures). 4 There were 27 stimuli for each condition and each participant observed
nine of them. Block 1 always preceded Block 2 so that the first half task would be identical to
Experiment 1a. Participants completed 18 trials in sequence without any delineation between the
blocks. All other experimental settings remained identical to Experiment 2. The bonuses were,
in reality, determined by doubling the bonuses participants gained in Block 1.

5.6.2 Results

We focus on analyzing participants’ accuracy by comparing their judgments against the ground
truth. We investigate whether participants’ performance was influenced by the nature of the
underlying causal mechanism, base rate regularity, or the observed intervention sequence (i.e.
whether this involves interleaved interventions on the two components or clusters of interventions
on one component then the other). Since these analyses require there to be a correct answer, for
Experiment 1b we only include Block 1.

To compare our models’ behavior qualitatively with participants’, we simulate judgments of
each model type after observing the same stimuli as the participants. We used a fitted softmax
parameter for each model and repeated each simulation 200 times per participant to obtain stable
and consistent distributions of simulated judgments (see Appendix A.3 for model fitting details).
For summary-statistic models, we average predictions under the two proposed features with equal
weights to form a combined prediction (cf. Ullman et al., 2018). Results of intervention-window vs.

4Specifically, we picked the stimuli where at least one (intervention-window) summary-statistic cue
(Delay or Count) had a different dominant answer compared to the normative model and rejected any
for which the likelihood of the most probable structure producing the data was extremely low (< 10−40).
The squared error between normative and summary-statistic predictions in Block 1 (trials with the ground
truth) and Block 2 (trials without the ground truth) was 0.22 vs. 0.53 on average. The likelihood of the
most probable structure according to the normative model in Block 1 and Block 2 was 0.07 vs. 0.004 on
average.
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Figure 5.5: a) Accuracy of different causal connections in Experiment 1. b) Accuracy in judging a
connection (averaged across generative, preventative, or non-causal target connections) when paired with
different types of connections in Experiment 1. Lines indicate the performance of simulated normative
and summary-statistic learners each with a fitted softmax parameter based on all participants’ data in
Experiment 1 (see Appendix A.3). Error bars indicate 95% confidence intervals.

fixed-window summary-statistics were similar at the aggregated level, and hence we only visualize
the intervention-window results in the figures.

Overall performance

In Experiment 1a, participants in both regular and irregular conditions performed above chance
at the connection level (chance = 33%, regular: 66%±22%, t(92) = 14.75, p < .001, d = 1.53,
95%CI of d = [1.23, 1.84]; irregular: 61%±18%, t(93) = 14.67, p < .001, d = 1.52, 95%CI of
d = [1.22, 1.82]) as well as the structure level (1 = correct in both connections; 0 = otherwise,
chance = 11%, regular: 49%±27%, t(92) = 13.83, p < .001, d = 1.43, 95%CI of d = [1.15, 1.73];
irregular: 41%±22%, t(93) = 13.27, p < .001, d = 1.37, 95%CI of d = [1.09, 1.66]). These
patterns were replicated in Experiment 1b, where participants also performed above chance at
both connection (regular: 67%±22%, t(62) = 11.93, p < .001, d = 1.50, 95%CI of d = [1.15, 1.88];
irregular: 59%±19%, t(59) = 10.11, p < .001, d = 1.30, 95%CI of d = [0.96, 1.66]) and structure
levels (regular: 49%±29%, t(62) = 10.64, p < .001, d = 1.34, 95%CI of d = [1.00, 1.69]; irregular:
39%±23%, t(59) = 9.21, p < .001, d = 1.19, 95%CI of d = [0.86, 1.53]). Indeed, accuracy
did not differ between Experiment 1a and 1b at the connection level (regular: t(154) = 0.09,
p = .926; irregular: t(152) = 0.81, p = .418) or the structure level (regular: t(154) = 0.004,
p = .997; irregular: t(152) = 0.56, p = .578). This means that labeled data in the form of video
training and practice trials were not a necessary condition for participants’ success in this task.
We therefore combine stimuli from two experiments in later analyses to obtain a larger sample
size.
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Focal and neighboring causes

To investigate participants’ ability to identify generative, non-causal, and preventative connec-
tions, as well as whether the base rate regularity or the neighboring connections would influence
performance, we performed a 3 (focal cause: generative, non-causal, preventative) × 3 (neigh-
boring cause: generative, non-causal, preventative) × 2 (base rate regularity: regular, irregular)
mixed ANOVA. Each trial provided two data points here, one regarding A as the focal cause and
B as the neighboring cause and the other regarding B as the focal cause and A as the neighboring
cause.

There was a main effect of focal cause (F (2, 616) = 101.24, p < .001, η2p = .247, 95%CI of
η2p = [.200, .293]). Participants performed best at identifying generative connections (77%±24%),
then preventative connections (63%±31%), and finally non-causal connections (51%±29%, Fig-
ure 5.5a). The differences were all pairwise-significant (Bonferroni adjusted p < .001). 5

There was a main effect of base rate regularity (F (1, 308) = 7.07, p = .008, η2p = .022, 95%CI
of η2p = [.003, .057]). Participants tended to perform better in the regular (66%± 22%) than the
irregular (60%± 19%) condition. However, there was an interaction between focal cause and base
rate regularity (F (2, 616) = 3.69, p = .026, η2p = 0.012, 95%CI of η2p = [.001, .028]). Analysis
of the simple effects showed that the regularity difference was only significant for preventative
causes (Figure 5.5a). This is consistent with the principle that identifying preventative causes
relies heavily on having a good counterfactual expectation of what would have happened in the
causal system in the absence of the focal cause.

The main effect of neighboring cause was non-significant (F (2, 616) = 2.76, p = .064) while
there was a interaction between neighboring cause and base rate regularity (F (2, 616) = 6.66,
p = .001, η2p = .021, 95%CI of η2p = [.005, .042]). The neighboring connections made a difference
in the irregular condition (F (2, 308) = 8.56, p < .001, η2p = .053, 95%CI of η2p = [.017, .095]),
but not in the regular condition (F (2, 308) = 0.41, p = .662, Figure 5.5b). Participants in
the irregular condition performed better when the neighboring connection was generative than
non-causal (t(308) = 2.48, p = .041, d = 0.099, 95%CI of d = [0.003, 0.195]) or preventative
(t(308) = 4.13, p < .001, d = 0.165, 95%CI of d = [0.069, 0.261]). This means that when the base
rate was uncertain, a generative cause could stand in by setting up strong expectations. Other
two-way or three-way interactions were non-significant (ps > .05).

For simulated model-based learners, the summary-statistic learner exhibited a similar ten-
dency as participants, performing worse in identifying non-causal connections (Figure 5.5a). The
accuracy of both normative and summary-statistic learners was partly dependent on the neighbor-
ing cause. As shown in Figure 5.3b, the summary-statistic distributions of the non-causal type,

5To rule out that this main effect was merely due to people generally selecting more answers as
generative and preventative than non-causal, we calculated the F1-score for each cause (Powers, 2011).
The patterns were the same when using the F1-score as the index (F (2, 540) = 181.89, p < .001, η2p = .403,
95%CI of η2p = [.352, .448]).
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Figure 5.6: Confusion matrices for participants’ and models’ choices under different ground truths in
Experiment 1. The normative and summary-statistic learners were simulated with a fitted softmax pa-
rameter based on participants’ data in Experiment 1.

particularly the Delay distributions, frequently exhibit overlaps with both other distributions,
and furthermore, the other types (generative or preventative) typically have higher density in the
overlapping region.

Confusion matrices

Figure 5.6 shows the proportion of participants’ choices under different ground truths. We explored
the frequency of choices when people made inconsistent judgments with the ground truth. Under
the regular base rate, people were equally likely to judge a generative connection as a non-causal
one or a preventative one (12% vs. 10%, chi-square goodness of fit: χ2(1) = 3.01, p = .082).
They were equally likely to judge a non-causal connection as a generative or preventative one
(22% vs. 25%, χ2(1) = 2.65, p = .103) while they more often judged a preventative connection
as a non-causal one than a generative one (22% vs. 9%, χ2(1) = 83.41, p < .001). The results of
irregular base rate were similar (non-causal ground truth: 25% vs. 26%, χ2(1) = 0.70, p = .404;
preventative ground truth: 30% vs. 12%, χ2(1) = 107.96, p < .001) except now participants
also more often judged a generative connection as non-causal than preventative (18% vs. 9%,
χ2(1) = 29.55, p < .001). The summary-statistic learner exhibited a similar tendency to human
participants, tending to mistake preventative or generative connections more often as non-causal,
rather than mistaking one for the other.

Intervention order

We examined the influence of the intervention sequence. The intervention patterns in the exper-
imental stimuli were randomly generated (albeit balanced to include 3 interventions per control
component) and hence varied in terms of the sequence. In some trials, participants observed data
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Figure 5.7: Accuracy separated by intervention order in Experiment 1. Lines indicate the performance
of simulated normative and summary-statistic learners each with a fitted softmax parameter based on
participants’ data in Experiment 1. Error bars indicate 95% confidence intervals.

in which interventions on one component were “interleaved” (e.g. A in ABABAB or ABBABA),
in others they were fully “clustered” (e.g. A in AAABBB or BAAABB), and in others they were
partially clustered (e.g. A in AABABB or ABBBAA) which we called a “medium” level. We
performed a 3 (focal cause: generative, non-causal, preventative) × 3 (intervention order: inter-
leaved, medium, clustered) × 2 (base rate regularity: regular, irregular) mixed ANOVA. Each
trial provided two data points, one regarding A as the focal cause and the other regarding B as
the focal cause. The effects regarding focal cause and base rate regularity were similar to previous
analyses and hence we only focus on the effects related to intervention order here.

There was a main effect of intervention order (F (2, 538) = 9.39, p < .001,
eta2p = .034, 95%CI of η2p = [.012, .061]) and an interaction effect between intervention order
and focal cause (F (4, 1076) = 3.22, p = .012, η2p = .012, 95%CI of η2p = [.001, .022]). As
shown in Figure 5.7, the clustering intervention mainly benefited the identification of gener-
ative (F (2, 269) = 11.40, p < .001, η2p = .078, 95%CI of η2p = [.031, .131]) and non-causal
(F (2, 269) = 3.76, p = .025, η2p = .027, 95%CI of η2p = [.002, .063]) connections, while the effect
was insignificant for preventative connections (F (2, 269) = 0.07, p = .935). The summary-statistic
learner demonstrated a similar influence of the intervention order as humans, while the normative
learner performed indifferently across different intervention orders (Figure 5.7).

Trials optimized for model discrimination

Block 2 in Experiment 1b contained stimuli that were not generated from a particular ground truth
structures, but rather generated so as to distinguish strongly between normative and summary-
statistic models. Figure 5.8 shows the choice proportion of human learners vs. simulated learners
on each stimulus. The choices simulated from the summary-statistic model were better correlated



5.6 Experiment 1 99

Normative Summary−statistic

0.2 0.3 0.4 0.5 0.6 0.2 0.4 0.6
0.00

0.25

0.50

0.75

1.00

Model−based Learner

H
um

an

Generative Non−causal Preventative 

R = 0.48 *** 
R = 0.08 
R = 0.74 ***

R = 0.85 *** 
R = 0.56 *** 
R = 0.83 ***

Figure 5.8: Scatterplots of simulated model-based learners predictions and human judgments on the
proportion of choosing different causal types in stimuli with no ground truth in Experiment 1b. Each
connection in a stimulus is represented by three data points in the figure corresponding to the participant’s
and models’ average probability assigned to that possibility. The normative and summary-statistic learners
were simulated with a fitted softmax parameter based on participants’ data in Experiment 1. Error bars
indicate 95% confidence intervals.

with human judgments across generative, non-causal, and preventative answers. In particular,
the summary-statistic model captured when people tended to judge a variable as non-causal (gray
points and line) which often diverged from the normative prediction.

Model fitting

To check quantitatively how well the models we have considered capture participants’ causal
judgments, we fit all participant judgments with our normative and summary-statistic models at
both aggregate and individual levels. The details of the model fitting procedure can be found in
Appendix A.3.

Participants choices were best captured by the summary-statistic approach, specifically by the
variant that segments evidence according to the intervals between interventions (Table 5.1). This
is corroborated by the individual level fits, where the largest proportion of participants were fit by
summary-statistic (intervention based) in both regular and irregular conditions across experiments
(model fits separated by conditions are shown in Table A.1).

We provide additional model fitting results in Appendix A.4. In Table A.2 we fit answers
from Experiment 1b separated by blocks. The difference in cross-validation log-likelihood or BIC
between normative and summary-statistic models was more pronounced in the no-ground-truth
block than in the ground-truth block, which reflected that people’s judgments were indeed more
similar to the summary-statistic model. In Table A.3 we fit participants’ answers with each cue
separately to see whether they were dominated by Delay or Count rather than their combination.
Results indicate that models with one or another cue did not fit participants’ judgments better
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Table 5.1: Model fits.

CV BIC τ N (Regular) N (Irregular)

Experiment 1a
Normative -6054 12110 0.44 17%(14%) 19%(13%)
SS (intervention-window) -5857 11718 0.23 53%(47%) 46%(45%)
SS (fixed-window) -5998 12002 0.30 19%(17%) 26%(21%)
Random -7430 14859 11%(22%) 10%(21%)

Experiment 1b
Normative -4426 8833 0.58 14%(11%) 10%(7%)
SS (intervention-window) -4054 8113 0.23 60%(51%) 58%(52%)
SS (fixed-window) -4167 8338 0.33 21%(17%) 25%(25%)
Random -4887 9774 5%(21%) 7%(17%)

Experiment 2
Normative -1058 2113 4.43 2%(0%)
SS (intervention-window) -948 1835 0.19 50%(50%)
SS (fixed-window) -955 1915 0.34 43%(40%)
Random -1059 2119 5%(10%)

Note: SS refers to summary-statistic models. The “N (Regular)” and “N (Irregular)” columns display the
proportion of individuals best-fit by each model according to CV, with BIC results in the brackets.

than models that mixed two cues. In Figure A.1, we performed a grid search in [1, 7] seconds
with a step of 0.5 s to test whether the fixed-window model fits were sensitive to our choice of
a 4 second window. Models with different fixed-window lengths always had substantially larger
BICs than the model with the inter-intervention window approach, meaning that, even had we fit
window length as an additional parameter it would not outperform by-intervention segmentation
in describing participants. This was true despite the fact that the models’ accuracy in causal
identification is quite sensitive to the window length.

5.6.3 Discussion

In Experiment 1, we showed that people are capable of using temporal information to learn
causal structures that involve generative and preventative relationships. It also showcases several
interesting differences between generative and preventative causation, which we return to in the
General Discussion. Human judgments were better aligned with the summary-statistic models’
predictions in both quantitative results and aggregate qualitative results. Nevertheless, the data
in Experiment 1 was complicated, meaning we can do more to distill simpler, more intelligible
examples of how the normative and summary-statistic models diverge in their judgments. In
Experiment 2, we examine judgments about minimal event sequences for which the summary-
statistic and normative learners differ in their dominant answers.
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5.7 Experiment 2

We designed two types of stimuli for which two models have different dominant answers. They are
based on the two locality principles driving the summary-statistic model: (1) Local computation;
meaning summary statistic learners fail to account for the influence of the other connections in
the system, and (2) Local evidence; meaning summary statistic learners fail to take into account
whatever happened before their current observation window. For the first type of stimuli we
use scenarios where a learner needs to identify a generative target cause that is paired with a
preventative cause. This presents a challenge for local computation because the preventative cause
can block the generative causes’ influence and mislead a local learner into believing the target
connection is a non-causal connection, because it is statistically associated with fewer events per
window or longer delays than generative causes have on average across the task. The second case
type is scenarios where a non-causal target is paired with a generative neighboring component.
For a local learner who only focuses on a small time window after each intervention, the generative
influences can easily spill over to the observation window during which the learner is focused on
the target non-causal component and leading to statistics more typical of generative causation,
because it is associated with more events and shorter delays than non-causal components exhibit
on average across the task. Experiment 2 focused on the regular base rate condition, since this
yields the larger predicted difference between normative and summary-statistic based judgments,
though we also checked that the dominant answer for each model was the same under the irregular
base rate.

5.7.1 Methods

Participants

60 participants from Prolific were recruited and reported (32 female, 28 male, aged 41 ± 12).
The sample size was determined by a power analysis assuming a medium sized effect (d = 0.5)
in comparing within-subject judgments on the target cause and the goal of .90 power at the
standard .05 alpha. No participants were excluded from this experiment based on the criteria we
pre-registered.

Design & Procedure

Participants’ task was very similar to the regular condition in Experiment 1b, where they needed to
judge the roles of two connections given a 20-second clip of evidence. No video training or feedback
was provided. The hand-crafted stimuli are shown in Figure 5.9. For each stimulus, we call one
component the “target”, and the other the “lure”, which could affect participants’ judgments about
the target. Each clip contained two segments of evidence where the two components activated
close together, so their influences on the system (if any) were misleading to the summary statistic
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Figure 5.9: Stimuli and model predictions in Experiment 2. a) Stimuli. Curved arrows indicate the
true underlying generative process. b) Judgment predictions from different models. The normative and
summary-statistic models particularly differ in their judgments about the target components, with opaque
bars used to highlight where the modal response shifts between normative and summary statistic models.

model (gray shadows in Figure 5.9), but also contained evidence where the components occurred
far enough apart to make the true structure recoverable by the normative model.

We constructed four exemplars of the two stimulus types (Figure 5.9). For the PG type (pre-
ventative lure and generative target), the lure often cancels the influence of the target, and hence
the summary statistics of the target are more aligned with the non-causal summary statistics.
For the GN type (generative lure and non-causal target), the lure’s influence spills over into the
observation window of the target, leading to summary statistics more consistent with a generative
target component. Therefore, the summary-statistic approach predicts systematic errors in these
cases that are not predicted by the normative model (Figure 5.9).
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Figure 5.10: Judgments of two types of stimuli in Experiment 2. Each type included four stimuli.
Participants’ dominant answers for the target component are consistent with the dominant answers from
the summary-statistic model (the green dots) rather than the dominant answers from the normative model
(the purple stars). Error bars indicate 95% confidence intervals.

Participants went through 6 practice trials sampled from Experiment 1 (with structures GG,
NG, GP , NN , PN , PP ) before 8 testing trials, to ensure that they had some experience with
different structures and edge types under more normal conditions. The vertical positions of two
control components (above or below) were randomized across trials. The order of trials was
randomized within the practice and testing phases. Participants completed 14 trials in sequence
without any delineation between the practice and critical trials. The bonuses were, in reality,
administered proportional to the bonuses participants gained in the practice phase (given that we
predicted participants would make systematic errors in the test phase).

5.7.2 Results & Discussion

For the PG stimuli, participants judged the targets as non-causal 1.8±1.1 times on average out of
4 trials (above the 33% change level, t(59) = 3.15, p = .003, d = 0.41, 95%CI of d = [0.14, 0.67]).
More importantly, participants judged them more often as non-causal than generative (t(59) =

3.62, p < .001, d = 0.82, 95%CI of d = [0.44, 1.19]) or preventative (t(59) = 2.11, p = .04,
d = 0.49, 95%CI of d = [0.12, 0.85]). For the GN stimuli, participants judged the targets as the
generative one 3.1±1.0 times on average out of 4 trials (above the 33% change level, t(59) = 6.03,
p < .001, d = 0.78, 95%CI of d = [0.49, 1.07]). Meanwhile, participants judged them more often
as generative than non-causal (t(59) = 10.64, p < .001, d = 2.63, 95%CI of d = [2.13, 3.11]) or
preventative (t(59) = 16.50, p < .001, d = 3.58, 95%CI of d = [3.00, 4.16]). This means that for
both kinds of stimuli, participants’ dominant answers lined up with the summary-statistic models
and diverged from those of the normative model.
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The model fitting results are shown Table 5.1. Similar to Experiment 1, participants’ answers
were better fit by the summary-statistic models than the normative model. In general, they were
also better aligned with the intervention-window segmentation than the fixed-window segmenta-
tion. This is also supported by a qualitative result that for GN stimuli, both the intervention-
window model (Figure 5.9) and participants (Figure 5.10) regarded the lure as less likely to be
a generative cause than the target component (t(59) = 5.56, p < .001, d = 1.04, 95%CI of
d = [0.65, 1.41]), while the fixed-window model regarded the probabilities as more even (Fig-
ure 5.9). When it comes to the individual difference, participants split more evenly across the
intervention-window and fixed-window models than Experiment 1, which may imply that some
participants do consider longer windows in situations when interventions interleaved heavily and
hence evidence of intervention-based windows was sometimes too short to rely on.

5.8 General discussion

This paper examined how people infer causal structure on the basis of observing events in continu-
ous time. The project was motivated by the fact that classical causal structure induction research
has largely focused on inferences from atemporal statistical information, essentially sidestepping
the role of event timing and delay, or else reducing it to a simple sequence of equally spaced
measurements. Meanwhile, empirical research (not to mention common sense) suggests people
rely strongly on event timing for causal reasoning, using temporal information to guide causal
attributions even when it is inappropriate to do so. It seems likely, therefore, that time is integral
to our representation of causality and hence deserves careful formal and empirical treatment.

While the space of causal structures we explored was relatively restricted, our task was chal-
lenging due to the spontaneous activations of the effect component and potential interactions
between generative and preventative cause components. There were always multiple competing
explanations for any effect occurrence or surprising non-occurrence, and as such, normative rea-
soning about the structure behind the evidence required entertaining and marginalizing over many
hypothetical mappings between events. Nevertheless, participants’ were able to correctly iden-
tify the majority of causal components well above chance even when base rate activations of the
effect were unpredictable (Experiment 1a and 1b) and even without pretraining about the true
causal delays (Experiment 1b). Our experiments thus provide an initial empirical demonstration
that people can use real-time temporal information to detangle the influences of generative and
preventative causes and identify causal structures involving combinations thereof.
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5.8.1 Empirical findings

By including both preventative and generative relationships in our task, we have empirical results
showing how the identification of these two types of relationships differ from each other in a
continuous-time setting.

First, base rate regularity has a larger impact on identifying preventative relationships than
generative relationships. Participants can better identify preventative connections when the effect
otherwise activates regularly. This is aligned with the principle that detecting preventative cau-
sation relies heavily on one’s expectation of what would otherwise have happened in the causal
system (Cheng, 1997; Buehner et al., 2003; Griffiths & Tenenbaum, 2005).

Second, when judging a causal connection in the system, the type of neighboring connections
matters. Experiment 1 showed that when the base rate is irregular, participants could better
identify a connection when it was paired with a generative neighbor rather than a non-causal or
preventative neighbor. This can be explained by the fact that a generative connection can increase
the predictability of the effect, which is helpful in general but particularly when the base rate is
unpredictable. Experiment 2 showed that a preventative neighbor can cancel out a generative
influence and mislead people to judge a generative connection as non-causal.

Third, the timing and sequence of interventions matter when making causal judgments, and it
affects the identification of generative and preventative connections in different ways. Participants
identified generative and non-causal relationships better when the interventions were clustered,
rather than interleaved. This makes sense given that the evidence under clustered interventions
involves less interference from neighboring connections. We confirmed this in Experiment 2 where
we show that deliberately interleaved evidence leads participants to systematically mistake the
roles of generative and non-causal connections. In contrast, the advantage of clustered interven-
tions disappeared when it came to prevention. To identify preventative relationships, it makes
sense to spread out interventions so their influence covers more of the timeline, and in particular
to perform them ahead of whenever one has a strong expectation of the effect occurring (Melchers
et al., 2006; Lovibond & Lee, 2021). To our knowledge, these findings represent the first system-
atic investigation of how human causal judgments engage with a setting where generative and
preventative causal influences intertwine and interact in time.

5.8.2 Normative vs. summary-statistics

To better understand how participants made their judgments, we contrasted two learning models:
An exhaustive normative account and a summary–statistic-based local approximation. Both ac-
counts were able to identify generative and preventative influences well in our task, but only the
summary statistic account could capture cases in which participants were worse at identifying the
non-causal connections (Experiment 1) and misled by interleaved interventions (Experiment 1 and
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2). Quantitatively, the summary-statistic account also fits participants’ judgments across both
experiments better.

Our normative model demonstrates that near perfect inversion of the generative causal model
is possible for a learner with exactly the correct delay assumptions and unlimited processing power.
It works via reasoning at the token level of actual attribution (Halpern, 2016), suggesting this kind
of reasoning is key for achieving benchmark performance in this small data setting. The summary-
statistics account takes a different approach that is computationally much more frugal and scalable
to more complex causal models, but has the cost of being less sensitive to precise event timing,
and being more susceptible to interference between components. The approach combines several
core principles of bounded cognitive processing: Use of simulation from generative mental models
and comparison via summary statistics in place of an exact or intractable likelihood calculation
(Battaglia et al., 2013; Ullman et al., 2018; Blum et al., 2013; Lintusaari et al., 2017; Sunnåker et
al., 2013). It combines this with local (Fernbach & Sloman, 2009; Bramley, Dayan, et al., 2017;
Davis et al., 2020) and incremental (Bramley, Dayan, et al., 2017; Davis et al., 2020; Rehder et al.,
2022) processing to break up the global inference problem into a series of spatially and temporally
local subproblems. The departures from the ideal of the global normative thinker allow it to
explain several error patterns exhibited by participants. In general the normative model serves to
showcase the rapidly compounding challenge of maintaining a global perspective when processing
evidence that includes multiple causal influences that intertwine and interact in real time (Gong
et al., 2023; Bramley, Mayrhofer, et al., 2017).

Imagined experiences are a core feature of our conscious experience and as such, mental
simulation has been implicated by a number of theories of cognition as playing key roles in both
model-based inference and planning (Battaglia et al., 2013; Hamrick et al., 2016; Ullman et al.,
2018; Ludwin-Peery et al., 2020; Gerstenberg et al., 2021; Bramley, Gerstenberg, Tenenbaum,
& Gureckis, 2018). Mental simulation is thought to be key to offline (Hinton et al., 1995), and
simulation phases are now a common part of the training regimen for large Reinforcement Learning
Models (Mnih et al., 2015; Ellis et al., 2020). Our experiments add one small piece to this research
line, showing how an inference mechanism grounded in simulation and the extraction of summary
statistics may explain how people mitigate the computational costs involved in reverse engineering
the causal mechanisms that explain the events we observe in real time.

The idea of combining sampling from a generative model with summary statistics stems from
Approximate Bayesian Computation (Blum et al., 2013; Lintusaari et al., 2017; Sunnåker et al.,
2013). The approach makes it possible to approximate an intractable Bayesian inference by
using the similarity between data simulated from a hypothesized model or parameter setting and
observed data as a proxy for the likelihood of that model or parameter setting. Choosing the best
summary statistics or loss function for a domain is a research area in itself in machine learning
(Csilléry et al., 2010), while identifying what summary statistics might be used in cognition is
another challenging and unsolved problem. We do not solve this problem here, but simply hand
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selected two basic summary statistics (cf. Ullman et al., 2018) on the grounds that they reflect
the most basic and easily reported timing measurements people can make in online settings. We
showed that the delay and count cues were reasonably diagnostic in our task (Experiment 1) but
also unpacked the circumstances under which they can be misleading (Experiment 2).

Within the summary-statistic framework, we considered two ways participants might segment
the trials into counting windows. We proposed they might either track events within fixed-
length windows after each intervention or use the gaps between each intervention directly as a
count window. The inter-intervention segmentation variant captured participants’ behavior better
despite the fact that the windows were of markedly different lengths detracting from the reliability
of the metric. A potential explanation for this is that people may be fundamentally unable to
track events from multiple causal perspectives in parallel, thus being forced to rely on the uneven
inter-event windows (Davis et al., 2020; Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018). Of
course, in an active learning context, the learner is free to perform interventions at their own pace.
This research suggests that what learners are able to attend to and measure is likely to shape
their approach to interventions in time. For instance, one way to make inter-intervention count
statistics as powerful as possible is to intervene on a regular schedule, eliminating the confound of
episode length, while leaving as large as possible gaps between interventions additionally minimizes
spillover effects. Interestingly, these are cognitive rather than normative considerations since the
ideal observer is practically indifferent to the regularity of the intervention spacing.

5.8.3 Alternative accounts

One popular recent idea in the causal cognition literature is that people form and adjust causal
theories locally and incrementally (Bramley, Dayan, et al., 2017; Bramley, Mayrhofer, et al., 2017;
Davis et al., 2020; Markant et al., 2016; Fernbach & Sloman, 2009). For instance, Bramley, Dayan,
et al. (2017) model causal structure learning (in discrete trial contexts) as a process of incremental
adaptation of a single global hypothesis driven by the need to accommodate new evidence as it
arrives. They argue that causal learners do focus locally when grappling with complex structures,
but that many are able to condition on their current beliefs about neighboring connections rather
than ignoring them altogether, leading to patterns of sequential local focus and anchoring that still
tend to favor the correct global structure in the limit. We did not collect the interim judgments
we would need to probe this account directly, but we think it is entirely plausible that people
focused on the roles of the components not just separately but also serially, perhaps flipping their
attention back and forth several times throughout a trial. For example, if participants focused on
a generative component first and a preventative component second, they might have been able to
take advantage of their expectation of events produced by the apparently generative component
to supercharge their inferences about prevention.
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The other idea is based on the “smart initialization and short search” algorithm in Ullman
et al. (2018). Analogous to our findings, they showed that although human physical learning
was better captured by a summary-statistic account than a noisily normative Bayesian model,
responses could be even better fit by a mechanism that combines the two. Their best-fit model
used the prediction of a summary-statistic approach as a starting hypothesis, and then made
local adjustments to this by running a short Markov Chain Monte Carlo search chain. Such a
smart initialization could play an important role here too. It is plausible that some participants
may have performed similar steps, i.e. forming an impression of the role of a component due
to the delays and counts but adjusting this when accommodating a belief about the neighboring
connection or an understanding of the regularity of the base rate.

5.8.4 Future directions

To date, causal learning in continuous time has received little attention, meaning there are nu-
merous basic research questions still to be addressed. In the current paper, we focus on just one
of these, providing a close examination of the interplay between inference about generative and
preventative causal relationships. However, for this we make specific assumptions about the scope
with which preventative influences work. Concretely, we conceive of preventative influences as
eliminating all expected effects for a short time no matter their cause. However, there are several
alternatives that seem at least as salient and may be more appropriate depending on knowledge of
the context and mechanisms involved. For example, prevention could work by blocking the next
one event (or perhaps the next N events) rather than blocking everything for a fixed window.
Prevention could also operate on “links” rather than “nodes” within the causal graph, for example
blocking the action of a generative cause on an effect, but leaving the spontaneous activations
of that effect intact, or visa versa (Fraser & Holland, 2019; Chow et al., 2023; C. D. Carroll &
Cheng, 2009).

In the current learning task, causal influences were represented as operating between point
events. This is a major simplification from many real scenarios in which variables involved in
causal interactions are often able to take multiple, or even a continuum of, values. The cat in our
motivating example might drink more or less water or hold different teaser toys in higher or lower
regard leading to faster, slower, more or less intense effects. Even though events are abstractions
of continuous inputs, and many, such as state changes, are readily thought of as punctate, many
everyday event concepts clearly have non-zero duration and often have internal structure such as
a gradual or sudden onset or offset. For example, given enough time, many of the states referred
to in causal learning scenarios are not permanent. “Wet ground” dries. “Tanned skin” fades.
Many disequilibria will either dissipate or recover without external intervention. Other states,
such as a turned-on light bulb may tend to persist until cancelled, i.e. by switching the switch
a second time. These could be seen as events with an infinitely long duration (i.e. permanent



5.8 General discussion 109

state-changes). As event duration reduces, it becomes less likely that events will overshadow one
another. Point events are a limiting-case abstraction of this where the duration is reduced to
zero, resulting in a setting where there is no true causal overshadowing (Paul & Hall, 2013). That
is, generative cause will always produce an observable effect even if it occurs close to another
event. However, in settings with longer events it becomes increasingly important to consider the
super-secession situations and perhaps to apply the noisy-or or noisy-and-not frameworks (Cheng,
1997; Griffiths & Tenenbaum, 2009) that capture how in contingency settings, effects can easily
be hidden due to an already-occurring, or already-prevented target. Future research could study
how people represent the duration of causal events as well as their influences and thus begin to
form a richer theory of causal concepts in time that captures a wider range of relata, variables,
influences, and events.

Finally, we focused on online causal learning here, where information flowed in rapidly and
learners had no opportunity to replay and revise. However, it is possible that people are capable
of reasoning more normatively in offline learning tasks when they are provided with information
summarized in a timeline and can take as long as they like to consider the fit between the data and
different causal hypotheses (Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018). Furthermore, to
the extent that summary-statistic based inference and normative inference deviate, it seems likely
that people’s judgments after additional thinking time could differ from their more instinctive or
gut responses (Ludwin-Peery et al., 2020). Reflective thinking has been studied for decades in
human reasoning and decision making (Kahneman, 2011; Sloman, 1996), while it is less studied in
causal inference. The normative vs. summary-statistic contrast in this paper provides a potential
paradigm for operationalizing the role of reflective thinking in causal inference.

5.8.5 Conclusions

In this paper, we showed that people can use information in continuous real time to learn about
causal systems that potentially contain generative and preventative causal relationships. Their
performance was influenced by multiple factors, including the nature of the causal influences (gen-
erative, non-causal, preventative), interactions with neighboring connections, base rate regularity,
and intervention patterns. We laid out both a normative framework and a process-level model.
Both qualitatively and quantitatively, human judgments were better captured by the process-level
summary-statistic account, capturing the idea that people may infer causal structure via statis-
tical cues such as average delays and counts that are much easier to track in real time than the
exact generative model likelihoods. This work thus provides a quantitative account of how people
manage to learn causal structure, in particular preventative influences, on the basis of continuous
temporal dynamics. This contributes to our understanding of natural cognition and sheds light
on the challenging question of how any cognitive agent can succeed in forming an internal causal
model of a complex and continuous environment.



Chapter 6

Active causal structure learning in
continuous time

“The ability to know one’s limitations,
to recognize the bounds of one’s own
comprehension — this is a kind of
knowing that approaches wisdom.”

Leah Hager Cohen

In Chapter 5 we have seen how people passively learn causal structures by observing prede-
termined temporal evidence. In this chapter, I will investigate how people actively learn in

continuous time. That is, how they intervene in causal systems to collect evidence by themselves,
and use this evidence to learn causal structures. I will focus on when and where they intervene
and how this shapes their learning. Across two experiments, it is found that participants’ accuracy
depends on both the informativeness and evidential complexity of the data they generate. More-
over, participants’ intervention choices strike a balance between maximizing expected information
and minimizing inferential complexity. People time and target their interventions to create simple
yet informative causal dynamics. I discuss how the continuous-time setting challenges existing
computational accounts of active causal learning, and argue that metacognitive awareness of one’s
inferential limitations plays a critical role for successful learning in the wild.

Content from this chapter is a reprint of the material as it appears in Gong et al. (2023).

6.1 Introduction

The ability to predict, plan, and control events in the world demands a sophisticated represen-
tation of the world’s causal structure. Learning such a causal model requires gathering causal
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evidence through interventions (Pearl, 2000) — actions that manipulate the environment in ways
that reveal what causes what and distinguish spurious correlations from genuine causal relation-
ships. However, learning causal structure in general, and selecting interventions in particular, are
computationally challenging problems even under idealized conditions (Bramley, Dayan, et al.,
2017). In everyday life, this challenge is compounded by the need to interact with the causal
environment in real time, bringing computational constraints to the fore (Griffiths et al., 2015;
Simon, 1982). In this paper, we explore how people actively learn about causal structure in real
time. To do this, we introduce a causal learning task in which participants interact with causal
devices in real time, deciding when and where to intervene in order to gather information about
how the device works. To motivate our novel experiments and modeling, we first summarize prior
empirical work on active causal learning and point out some of its limitations. We then introduce
notions of resource-rational behavior (Lieder & Griffiths, 2020; Simon, 1982) that serve as a guide-
line for our computational modeling framework. We then investigate human active learning about
a range of acyclic and cyclic causal devices in two experiments. We analyze participants’ causal
judgments and intervention patterns both descriptively and through comparison with a range of
models. We contrast an unbounded computational account that optimizes expected information
density of its interactions with the devices with bounded models that balance information and
inferential complexity. Finally, we discuss the broader implications of this perspective on accounts
of human learning.

6.1.1 Prior work on active causal learning

Everyday cognition is rich with causal beliefs that explain the progression of events, shape our
predictions about what is to come, and allow us to choose actions to realize our goals. For example,
you might recognize a squeaking sound as caused by the opening of your garden gate, predict the
doorbell will ring with your food delivery and get up to answer the door in anticipation. Many
researchers have used a causal Bayesian network framework to study how people build up and
represent networks of beliefs about causal mechanisms and affordances (Lagnado & Sloman, 2002;
Sobel & Kushnir, 2006; Steyvers et al., 2003; Griffiths & Tenenbaum, 2009; L. E. Schulz et al.,
2007; Bramley, Dayan, et al., 2017; Meder et al., 2010; Rehder, 2014; Lucas & Griffiths, 2010;
Stephan, Tentori, et al., 2021; Rottman & Hastie, 2016). While the particulars of these studies
are diverse, many share a core set of properties illustrated in Figure 6.1a. Participants are typically
asked to distinguish between a set of candidate causal structures on the basis of evidence. Often
this evidence takes the form of “snapshot” samples of discrete variables’ states. Most often, the
variables of interest are binary with one value construed as a variable being “present” or “active”,
and the other state as “absent”, or “inactive”.

However, when only covariation data of a set of variables is available, observational samples
are insufficient to uniquely reveal structure (Pearl, 2000; Spirtes et al., 2000). For example, if a
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learner observes two variables co-occurring, such that when one is active (or inactive) the other
one tends to be active (or inactive) too, they cannot tell if one is causing the other or if they
share an unobserved common cause. One solution is to intervene (Pearl, 2000) — manipulating
one or more variables in the system by fixing them to particular values and observing how this
affects the rest of the system. A number of experiments have allowed participants to perform
such interventions in order to support their learning (Bramley, Dayan, et al., 2017; Bramley et
al., 2015; Steyvers et al., 2003; Lagnado & Sloman, 2002; Coenen et al., 2015).

Studies have shown that well chosen interventions can speed up learning, allowing learners
to target their uncertainty and quickly narrow in on the true model. However, poorly chosen
interventions can be worse than random actions or passive observations (Settles, 2009). In the
covariation-data setting, adults and children have been found to be able to select informative
interventions and learn successfully from them about probabilistic systems involving a handful
of variables (Bramley et al., 2015; Coenen et al., 2015; Steyvers et al., 2003; McCormack et
al., 2016; Meng et al., 2018). At a normative level, informative interventions are those whose
consequences are expected to strongly distinguish among the potential hypotheses, maximally
decreasing global uncertainty in expectation (Tong & Koller, 2001), or maximizing the chances
of inferring the true causal structure that gave rise to the data (Nelson, 2005). A number of
experiments have demonstrated broad alignment with these norms in both adults and children,
but also departures from the normative predictions which suggest that process-level considerations
are important for fully characterizing people’s inferences (Bramley, Dayan, et al., 2017; Bramley
et al., 2015). For example, people often chose an intervention that is expected to confirm or
refute a currently-favored hypothesis rather than one that provides more information about the
full hypothesis space (Coenen et al., 2015; Meng et al., 2018; Steyvers et al., 2003; Klayman &
Ha, 1989). People sometimes also rely on generic strategies such as systematically fixing the
values of some variables while varying others in order to isolate one potential relationship at a
time (Bramley et al., 2015; McCormack et al., 2016; L. E. Schulz et al., 2007). One manifestation
of this is the so-called control of variables strategy in which a set of candidate causal variables
are fixed and one variable is changed in each experiment (Zimmerman, 2007; Kuhn & Brannock,
1977; Chen & Klahr, 1999). Following such a strategy has been emphasized in developmental
psychology as a marker of mature scientific experimentation, but this strategy turns out to be
suboptimal in certain environments (Coenen, Ruggeri, et al., 2019; Bramley et al., 2022). Finally,
adults choose interventions adaptively, taking into account environmental factors, such as time
pressure, as well as whether a strategy was informative in the past (Coenen et al., 2015).

6.1.2 What prior work has neglected

Previous work on causal learning has largely focused on situations that mimic idealized laboratory
conditions. In these studies, participants perform interventions in a discrete trial-by-trial manner,
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Figure 6.1: Illustration of causal systems and sample types. a) Three components with causal connec-
tions unknown to the learner. b) Atemporal samples under three trials, and its possible corresponding
continuous-time samples. Yellow indicates a component activated. In the continuous-time setting, inter-
ventions activate components in real time and effects may occur intermingled on the timeline. Arrows
indicate the underlying generative process unbeknownst to the learner. c) Gamma density distributions
under reliable vs. unreliable causal delays in the current experiments. Both probability distributions have
a mean of 1.5 s with different standard deviations (0.1 s for reliable and 0.7 s for unreliable delays).

and the values of all variables are revealed all at once. In this way, participants are invited to
generate and reason from a series of independent observations. Figure 6.1b illustrates a example of
this atemporal evidence, generated from interventions and subsequent observations of the variables
in a stochastic system (see Coenen et al., 2015; Bramley et al., 2015, for example). Information
arrives in three independent trials in the form of variable states (yellow = present or active; gray
= absent or inactive) conditional on interventions (i.e. variables fixed on or blocked off by the
learner).

At a computational level, the problem is one of identifying the true generative causal Bayesian
network — the parameterized graph that captures the patterns of covariation between the variables
under both observations and any hypothetical intervention (Pearl, 2000). For example, in Trial 1
in Figure 6.1b we see that, conditional on an intervention that activates C, A activated and B did
not. This can be written as {A = 1, B = 0|Do[C = 1]}, where 1 indicates a variable was active, 0
indicates it was inactive and Do[.] indicates a variable was fixed through intervention and thereby
disconnected from its normal causes on this trial. Interventions can target multiple variables. For
example, in Trial 3, both B and C are manipulated as B is activated and C is blocked (fixed to
be inactivate). In this kind of task, ideal inference and intervention selection are well-understood
computationally, facilitating comparison between behavior and rational norms (e.g. Rottman &
Hastie, 2014). However, this task setup differs in several respects from the causal learning and
reasoning problems people face in daily life when they (1) take into account temporal information,
(2) deal with evidence that is interdependent, and (3) encounter causal learning problems when
the underlying causal mechanism may be cyclic.
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Time

Most previous studies removed temporal information, including the order of events and the delays
between them. For example, Coenen et al. (2015) described a cover story of computer-chip systems
where the causal relationships are the passage of electrical current from the energy source to the
components, occurring too fast to distinguish order of activation. Other studies only allowed
participants to view the final outcome (Bramley et al., 2015; Rottman & Keil, 2012). In contrast,
many everyday causal relationships take time to propagate, meaning that the temporal order
and delay between events is relevant for inferring causal relationships. The notion that causes
must precede their effects is foundational to the concept of causation (Burns & McCormack, 2009;
Lagnado et al., 2007; White, 2006). Indeed, people have been shown to rely on temporal order
to guide causal inference even when it conflicts with covariation information (Lagnado & Sloman,
2006), and to assign low probabilities to mechanistic explanations for event sequences that would
require an effect to have occurred at the same time as its cause (Bramley, Gerstenberg, Mayrhofer,
& Lagnado, 2018).

People not only have expectations about the order of events but also about the delays between
them, giving higher causal strength ratings when delays between a putative cause and effect are
short and reliable (Greville & Buehner, 2010) as well as when they conform to prior or mechanistic
expectations (Hagmayer & Waldmann, 2002; Buehner & McGregor, 2006; Buehner & May, 2004).
For example, Buehner & McGregor (2006) found that participants gave higher causal judgments
about the insertion of a ball turning on a light on a physical apparatus when the light came
on after a few seconds rather than instantly, if they were aware it took time for the ball to roll
through the apparatus and reach the light switch. A separate line of work has studied inference
and representation of continuous variables in continuous time (Davis et al., 2020; Soo & Rottman,
2018). However, temporal information is yet to be examined in the context of active causal
learning.

Interdependence

Under the laboratory conditions created in prior experiments, evidence is taken to come from
multiple “independent, identically distributed” (i.i.d.) observations or interventions. For example,
trials may pertain to different test subjects drawn from the same population (e.g. pairs of patients
and treatments; Buehner et al., 2003), or might involve repeated interactions with the same causal
mechanism, but collected via a protocol that ensures variables “reset” from one trial to the next
(e.g. the “blicket detector”; Gopnik et al., 2001; Lucas et al., 2014). However, it is rare for
everyday experience to exhibit these properties. In life, there is no magic reset button. It is hard
to be sure whether and when a causal system has been reset without understanding its underlying
mechanism (defeating the goal of the exercise).
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To illustrate this, imagine wondering why your puppy is unusually excited one evening. You
consider two candidate hypotheses: Perhaps his elevated mood is due to a new variety of dog food
you fed him at 5pm, or perhaps it is because of a new floral scent on the road where you walked
him at 6pm. The puppy might still be happy about his dinner even after having smelt the flowers.
A poor approach to resolving the question would be to always feed him beside the flower bed. It
would be better to vary the relative time of walking and feeding him while keeping a close eye on
the time intervals implied by different causal explanations.

This example illustrates that active learning in everyday life is better understood as a rolling
sequence of interventions, with cause and effect events unfolding on a single continuous timeline.
In fact, Rottman & Keil (2012) found that when presented with a sequence of experimental
results, even paired with a cover story that implied these experiments were independent, many
participants judged causal relationships by how values changed relative to their state on the
preceding observation, rather than treating the samples as independent (see also Derringer &
Rottman, 2018). This suggests that when evidence arrives over time, people strongly assume
temporal dependence. Thus, it seems that temporal dependence not only reflects genuine causal
phenomena but that it may also better match laypeople’s intuitive causal theories than time-
agnostic Bayesian networks do.

Causal cycles

Causal learning studies have largely focused on acyclic causal systems where causal influences flow
only in one direction, never revisiting the same components. This is partly due to the conceptual
and mathematical convenience afforded by the formalism of acyclic causal Bayesian networks (see
Rottman & Hastie, 2014, for a review). The continuous-time setting enables us to investigate
cyclic causal relationships. A causal mechanism is cyclic if it has at least one component whose
descendants include itself (Pearl, 2000). This means that the components that form part of
the cycle, or outputs from it, may occur in repeated alternating fashion (e.g. a bidirectional
connection A↔ B could generate a sequence of events A,B,A,B,A, ...). Many causal processes
in the natural world are cyclic (Malthus, 1872), and people frequently report causal beliefs that
include cyclic relationships when allowed to do so in experiments (Kim & Ahn, 2002; Nikolic &
Lagnado, 2015; Sloman et al., 1998; Rehder, 2017), making this an important aspect of causal
cognition to study.

6.1.3 The current paradigm

The learning problem Departing from the atemporal setting, we focus on what people can
learn from interventions and observations of events within a single continuous timeline. We study
a setting in which effect events follow their causes with some stochastic but predictable delay.
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This causally-connected-point-event setting has been used in a number of recent studies of
temporal causal reasoning. It rests on a firm mathematical foundation that supports normative
inferences from temporal information to causal structure. Griffiths & Tenenbaum (2009); Greville
& Buehner (2010) first demonstrated that people can infer how pairs of variables affect one another
from observing sequences of point events. Pacer & Griffiths (2012, 2015) developed a model that
infers causal relationships based on the occurrence of putative cause events that influence the
rate at which the relevant effect events occur over time. Bramley, Gerstenberg, Mayrhofer, &
Lagnado (2018) built models that combined hard order constraints with soft delay expectations
to best capture structure judgments: Even when order information was fixed, participants were
still sensitive to the variation in inter-activation delays between events and used it to distinguish
between certain causal structures.

More recently, research has focused on so-called “actual causation” (Halpern, 2016): The
question of which out of multiple candidate events actually brought about the outcome (Stephan
et al., 2020; Gerstenberg et al., 2021). Using key ideas from the “actual causation” literature,
recent work has looked at how causal structures can be identified from temporal information
by considering the different possible causal pathways that could have produced the observed
events conditional on different underlying causal mechanisms (Bramley, Gerstenberg, Mayrhofer,
& Lagnado, 2018; Gong & Bramley, 2020; Valentin et al., 2020). We follow this approach, using
Gamma distributions to model the distribution of causal delays exhibited by a particular causal
component of a device across instances (see Figure 6.1b). Gamma distributions define a probability
density over (0,+∞) via a shape parameter α, and rate parameter β allowing for a variety of causal
delay distributions with differing means and more or less variability (see Figure 6.1c).

While temporal information was key to how the evidence was presented in the studies above,
the data was not fully continuous in the sense in participants experiences were still broken into
separate independent episodes. For example, in order to set things in motion in Bramley, Ger-
stenberg, Mayrhofer, & Lagnado (2018), each clip began with the system at rest perturbed by
an exogenously caused root-component activation, with effects following from there. Since com-
ponents could only activate once in these tasks, the system would quickly reach a steady state.
This still departs from a fully continuous-time setting in which interventions and effects are in-
termingled and components may exhibit multiple activations within the same episode. A fully
continuous setting makes it more difficult to figure out what caused what because any given event
might be attributed to an earlier-occurring event and might have its own effects that are still to
occur.

Activating and blocking interventions in time In our experiments we will allow learners
to intervene on the causal system in two ways:

1. By activating components, thus potentially setting in motion a new sequence of events.
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2. By blocking components, thus preventing that component both from being activated and
from activating any other components until it is unblocked again.

Activating and blocking are superficially analogous to fixing variables to be on Do[X = 1]

or off Do[X = 0] in the atemporal setting. However, they also differ in important ways. In the
continuous-time setting, activating does not disconnect a component from its normal causes. The
intervened-on component can be activated again an arbitrary number of times during the same
episode either by the intervener or when caused by other variables in the system. For instance,
if the activated component is part of a cycle, we would expect it to be re-activated repeatedly
following its initial activation until one of the causal connections fails. Thus, activation is better
thought of as a shock to the system than as a form of graph surgery.

On the other hand, blocking actions do exemplify the “graph surgery” property in the sense of
Pearl (2000). They disconnect the blocked component from its normal causes until it is unblocked
again (Figure 6.1b). In the atemporal setting, blocking is essential for discriminating between
certain structures (Bramley et al., 2015; McCormack et al., 2016; L. E. Schulz et al., 2007). For
example, turning on a single component (i.e. Do[A = 1], Do[B = 1] or Do[C = 1]) generates a
similar pattern of dependence under a A→ B → C chain and a C ← A→ B → C fully connected
structure — activating A affects B and C, activating B affects C but not A, activating C neither
affects A nor B. This makes it difficult and inefficient to distinguish these structures based on
activating interventions alone and impossible in deterministic settings. To identify whether there
is direct link between A and C, one must turn on A while simultaneously blocking or disabling B

(i.e. Do[A = 1, B = 0]).
The current continuous-time setting endows blocking with different implications. Since causes

generate effects individually, blocking is not strictly required to distinguish direct and indirect
paths. Going back to the chain vs. fully connected example above, a fully connected system
would normally produce two staggered activations of C following an intervention on A while the
chain would produce only one, making them distinguishable in principle. Nevertheless, blocking
may be useful for reducing computational complexity and ambiguity of parsing the consequent
event sequences. The learner can use blocking to reduce the event numbers, or remove a component
from consideration, while still making remaining events informative (see the section below for two
examples).

6.1.4 Cognitive resource limitations

In the atemporal setting, causal reasoning is a little like crafting an essay: Evidence can be
collected, organized and put together carefully with room for reorganizing and backtracking in
searching for an effective structure. However, real-time learning more closely resembles the prob-
lem of writing under exam conditions: One must react immediately to the prompts, bringing ones
inferential tools to bear quickly and efficiently without the luxury of time to backtrack.
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2
C conditional on the structure C ← A → B → C (a(index)component: activating

interventions; d(index)component: effect events, see Appendix B.1 for a full description of notation). Two paths
z1s and z2s were further displayed in a timeline format with arrows showing the hypothesized generative
process and red arrows in particular highlighting the different delay implications. b) Three examples of
interventional strategies that help reduce the inferential cost of processing generated evidence. Sequences
(2), (4), (5), (7) are less complex to process than Evidence (1), (3), (6).

We lay out the how an ideal Bayesian observer learns the causal structure with temporal
evidence in Appendix B.1. This shows that the amount of computation needed to process the
evidence compounds rapidly as more events occur. An ideal learner needs to consider all the
plausible pathways through which a particular causal structure might have produced an observed
pattern of events (Halpern, 2016). For example, consider intervening once each on A and B

and then observing two subsequent activations of C. To calculate the overall likelihood that a
“collider” structure A → C ← B could have produced this pattern, we would need to take into
account two possibilities (1) that A produced the first activation of C and B the second one, or
(2) that B caused the first one, and A the second one. However, there will generally be far more
than two such possibilities. Figure 6.2a shows a more complex example in which twelve possible
causal paths could link six events for a single causal structure. For a handful more events the
number of paths can easily grow into the millions.
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Challenging such a naive idealized account of causal inference is the basic fact that human
minds are bounded in their capacity to compute and store information. Human reasoning and
decision-making necessarily deviates from such intractable, computational-level ideals (Anderson,
1990; Simon, 1982). Given the computational complexity and conceptual centrality of structure
learning in cognition, we expect computational costs to play a large role when structure inference
must take place in real time (Christiansen & Chater, 2016). Several process-level proposals have
been explored in the literature as candidates for how people approximate normative structure
inference. People may only consider a few sampled hypotheses (Bonawitz et al., 2014), incremen-
tally adjust a focal hypothesis to accommodate new evidence (Bramley, Dayan, et al., 2017; Davis
et al., 2020; Fernbach & Sloman, 2009), rely on recent evidence (Bramley et al., 2015; Bramley,
Dayan, et al., 2017), rely on summary statistics (Gong & Bramley, 2020, 2023a; Ullman et al.,
2018), or on simple heuristics such as equating temporal order with causal order (Burns & Mc-
Cormack, 2009; Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Bramley, Mayrhofer, et al.,
2017).

While we expect some combination of the above ideas to be in play in how participants solve
our task, we here explore a complementary facet of causal learning, the active gathering of evidence
through interventions to support the inference process. We ask whether people time and target
their interventions so as to manage the inferential complexity of parsing resultant evidence, while
still producing informative evidence overall. Figure 6.2b illustrates this idea by displaying three
potential intervention strategies for managing evidential complexity. In the first example, the
ground truth is B ← A→ C. An unbounded ideal learner learns about as much from Evidence 1
as from Evidence 2. However, if we assume that the ability to process evidence is a function of
its complexity and that this is related to the density of the events being reasoned about, then
it is clear that Evidence 2 is the more useful for a bounded learner. Here, the events are better
separated, and so there is much less ambiguity about the plausible causes of each token event,
therefore less need to engage in costly averaging over many potential causal pathways under each
structure hypothesis.

Bounded learners may also choose to block components of a system to make the event stream
manageable for reasoning. As shown in Evidence 3 of Figure 6.2b, having performed two activating
interventions in a cyclic system, a learner may experience a confusing pattern of parallel excitation.
Evidence 4 shows how this can be avoided using a “controlled” testing strategy that blocks a
component before activating another. This approach allows a learner to isolate a subsystem
of a larger system. This controlled test means fewer interpretations of the evidence need be
considered. For instance, in Evidence 3 remaining events are straightforwardly indicative of the
substructure linking the unblocked components A and B. Well-timed blocks might also be used to
impose pseudo-independence and trial-like structure within a continuous interaction. For example,
as shown in Evidence 5, one might block, wait, then unblock components to “reset” a system,
preventing any ongoing activity from complicating the inference process going forward.
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Finally, although activating a suspected root component (here A) tends to produce more ev-
idence about a causal structure than activating its suspected tail nodes (Evidence 6), bounded
learners might sometimes avoid root components. For instance, if primarily interested in under-
standing a presumed downstream subpart of a complicated causal mechanism, one might intervene
locally to avoid extraneous events and activity (Evidence 7). Note that those considerations are
not independent. Spreading out interventions in time, for example, requires the learner to wait
for the system to calm down. The same could be accomplished by blocking-and-unblocking a
component to reset the system.

Finding ways to balance informativeness and complexity in generating evidence is conceptually
related to the notion of bounded rationality (Simon, 1982; Anderson, 1990). The basic idea is
that human minds have evolved or discovered solutions that trade off efficiently between the
costs of computation and its rewards in greater accuracy or performance. In particular, one
can incorporate computational costs into a solution space formally with a resource rationality
analysis (see Lieder & Griffiths, 2020; Griffiths et al., 2015; Shenhav et al., 2017, for review).
This has suggested that a number of decision making phenomena classically seen as irrational —
including as anchoring and probability matching — may instead represent efficient solutions to
a computation–value trade-off under some sensible approximation scheme (Callaway et al., 2022;
Lieder, Griffiths, Huys, & Goodman, 2018; Hawkins et al., 2021; Dasgupta et al., 2017; Lai &
Gershman, 2021). We similarly use a resource-rationality framework to analyze adults intervention
choices and judgments in our tasks. This involves first considering the impact of both information
and complexity on inferential success, and second, modeling intervention selection as driven by a
goal of maximizing the expected informativeness of the evidence while minimizing the expected
inferential cost of processing the evidence.

6.1.5 Overview of experiments

We conducted two experiments to test how people actively learn causal structures in a continuous-
time setting. In both experiments, we manipulated the reliability of the cause-effect delays and
included a range of acyclic and cyclic causal structures. In Experiment 1, we only allowed partic-
ipants to activate components while in Experiment 2, we also allowed them to block components.

In line with our normative account of causal inference in this setting, we hypothesized that
performance would be lower in the irregular delay condition given that evidence about what caused
what is more ambiguous. In line with our bounded inference account, we also hypothesized that
performance would be worse in cyclic systems given the likely increase in event density, interde-
pendence and concomitant complexity. However, we further expected accuracy to depend on the
quality and reactivity of participants’ intervention choices. Thus, we also examine whether and
how participants’ intervention selection differs across devices and delay conditions, asking to what
extent intervention choice is reactive to the behavior of the device being explored, and whether
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this reactivity reflects rational anticipation and active management of expected information gain
and evidential complexity.

6.2 Experiment 1: Causal structure induction in con-

tinuous time

6.2.1 Methods

Participants

Seventy-four participants (40 female, 34 male, aged 30±11) were recruited from Prolific Academic
and were randomly assigned to either the reliable-delay (N = 36) or unreliable-delay (N = 38)
condition. Participants received a basic payment of £1 and a bonus depending on performance
(see Incentives section). Nine additional participants were tested but removed from the analysis
because they left the default “unconnected” connection judgment for all causal component pairs
for all trials (N = 6) or had at least one trial in which they performed no interventions at all
(N = 3). The sample size was chosen to be in line with related work on causal learning (Bramley,
Gerstenberg, Mayrhofer, & Lagnado, 2018; Coenen, Ruggeri, et al., 2019).1

1The experimental procedure, data, and analysis code are available at: https://github.com/
tianweigong/time_and_intervention.
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Design

Participants were randomly assigned to one of two delay conditions: (1) reliable delays (M±SD =

1.5±0.1 s, i.e. α = 200, β = α/1500 in the Gamma distribution) or (2) unreliable delays (1.5±0.7

s, i.e. α = 5, β = α/1500, see Figure 6.1c).
Participants were asked to investigate abstract causal “devices” connected by hidden causal

links (Figure 6.3a). The causal links produce point events in the form of activations of the device’s
components over time. For causally related components, an activated component will probabilis-
tically activate each of its effect components once after some delay. All causal connections worked
90% of the time and no events occurred without being caused by an intervention or other event
(i.e. none of the components activated spontaneously). Participants were informed and tested on
this in the instructions.

Each participant learned about 12 test devices with either 3 or 4 components, including 6
acyclic structures and 6 cyclic structures (Figure 6.4). The acyclic structures were chosen to
exemplify a variety of causal relationships including common effects, i.e. “colliders” (Acyclic1
and Acyclic4), chains (Acyclic2 and Acyclic5), “forks” (Acyclic3 and Acyclic6). The cyclic
devices were chosen so as to approximately match the number of edges in the acyclic systems
while investigating a variety of arrangements. These included full loops (Cyclic1 and Cyclic4)
and short loops with incoming connections (Cyclic2 and Cyclic5) and outgoing connections
(Cyclic3 and Cyclic6).

Interface Figure 6.3 shows the task interface. For each device, participants saw the 3- or 4-
components visualized as gray circles evenly spaced on a white background. Participants had 45
seconds to learn about how the components were connected. During this time, they could intervene
and activate components by left-clicking on them up to 6 times. Intervened-on components were
marked by a “+” symbol (Figure 6.3a). All activated components turned yellow for 200 ms and
then returned to gray (Figure 6.3b). At the beginning, all components were inactive, and no
connecting links were marked between them.

Participants were able to indicate their current belief about the causal structure as often as
they liked during each learning problem. To do so, participants clicked on the gray area between
components to toggle between a causal connection in either direction, both directions, or no
connection. Each click cycled through the options (A → B, B ← A, A ↔ B, no relationship)
in a random order varied between participants. Participants confirmed their choices by clicking
a confirm button that appeared in the middle (Figure 6.3c). Links did not disappear after being
confirmed, so participants were still able to update earlier judgments. What participants had
marked at the end of 45s was automatically registered as the final judgment for that trial. At
the end of the trial, participants received feedback about which connections they had marked
correctly or incorrectly (Figure 6.3d). Since any pair of components might be unconnected, have
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Figure 6.4: Causal link identification and activating intervention choices in Experiment 1. Color edge
shading indicates accuracy. Node shading indicates activating intervention choice prevalence by component.
Bar plots show the proportion of different choices on each link (e.g. for AB, “∅” means “no connection
between A and B”; “→” means “A → B”; “←” means “A ← B”; “↔” means “A ↔ B”) with orange used
to highlight the ground truth. Note: Act = average number of activating interventions performed; Acc =
mean accuracy; Str = proportion of participants who detected the whole structure correctly.

a directed (A → B or B → A), or bidirectional (A ↔ B) causal connection, the response space
includes 64 possible structures for 3-variable devices and 4096 possible structures for 4-variable
devices of which exactly one truly reflects the hidden causal structure.

Incentives We incentivized participants to mark the correct causal links as early as possible
within the trial by rewarding them based on their accuracy at a random time point during each
problem. This bonus scheme means it is in participants’ interest to register their best guess
accurately and early, and to update it whenever their conclusions change during a learning episode
(cf. Bramley, Dayan, et al., 2017). The scheme also shapes the nature of an ideal intervention
strategy, meaning one should balance the benefits for intervention selection of waiting until one
knows more, against the opportunity cost of waiting too long and missing out on what could have
been learned from an earlier intervention. In order to perform well in our task, learners need not
only consider how and where to intervene next, but also when to do so.
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Table 6.1: Accuracy separated by conditions.

Delay Reliability Structure Cyclicity Structure Nodes
Reliable Unreliable Unlinked Acyclic Cyclic 3-node 4-node

Experiment 1 62%±33% 55%±32% – 67%±33% 51%±31% 59%±33% 59%±30%
Experiment 2 61%±35% 61%±34% 77%±39% 65%±33% 52%±32% 60%±37% 61%±31%

Procedure

In the main task, each participant faced 12 test devices in random order with randomly positioned
and unlabeled components. Prior to the inference task, participants completed instructions, a
practice trial and comprehension checks. Participants were told that they would be investigating
the causal structure of a number of abstract “devices”. In the instructions, participants were
trained on the true cause–effect delays in their condition and shown a video example of a device
with its causal links revealed. They were then trained on how to provide structure judgments.
Participants learned that they would receive a £0.03 bonus for each connection correctly marked
at a randomly chosen and unmarked point during each trial (for a theoretical maximum total
bonus of £1.62). This was emphasized in the instructions to encourage participants to mark
connections as quickly as possible. Participants had to correctly answer 5 comprehension check
questions before proceeding to the main task. Finally, participants completed a practice trial on
a device with a collider structure (Acyclic1 in Figure 6.4).

6.2.2 Results

We first report participants’ judgment accuracy (i.e. what proportion of connections participants
correctly identify at the end of each trial) by delay condition (reliable vs. unreliable), device type
(acyclic vs. cyclic), and number of components (3 vs. 4). We then discuss characteristic error
patterns under specific causal structures. Our accuracy analyses use linear mixed-effect models
(LMMs) including random slopes and intercepts for subject ID and structure type (Brauer &
Curtin, 2018). For all LMMs we report standard coefficient estimates βs (that show how many
units of standard deviations the outcome variable changes when the independent variable changes
from one condition to the other), t values, significance, and 95% confidence intervals (CI). We
then compare participants’ trial-by-trial accuracy against the predictions of a normative inference
model. We explore whether deviations from normative responding are related to the density of
events in that trial as a basic index of complexity. We will then focus on participants’ intervention
choices and explore whether interventions are driven by a trade-off between the expected evidence
strength and complexity.
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Figure 6.5: Participants vs. the ideal observer’s accuracy and event density upon human generated
evidence. Error bars indicate 95% confidence intervals.

Accuracy Participants confirmed their causal judgments 2.45 ± 1.31 times per trial. Final
judgments — i.e. what participants had marked at the end of the trial — identified the majority of
the causal connections correctly (62%±34%) but with marked variation across and within devices.
Participants’ final judgments generally improved on the accuracy of their initial judgments — i.e.
what participants had marked as their first answers — in the 79% of trials in which participants
made more than one judgment (initial accuracy: 58% ± 30%, β = 0.11, t = 2.36, p = .024,
CI = [0.02, 0.20]). In the following, we focus on participants’ final structure judgments.

Participants performed significantly above chance in both delay groups (chance: 25%, reliable:
t(35) = 10.83, p < .001, Cohen’s d = 1.80; unreliable: t(37) = 11.44, p < .001, Cohen’s d = 1.86)
and were above chance for all 12 structures taken individually in both the reliable (ts(35) > 4.15,
ps < .001) and the unreliable condition (ts(37) > 3.49, ps < .01) with the exception of Cyclic1
(unreliable: t(37) = 1.94, p = .06, Figure 6.4). Table 6.1 shows accuracy separated by condition.
There was a main effect of structure cyclicity (β = 0.50, t = 2.69, p = .026, CI = [0.14, 0.86])
such that the accuracy was higher for acyclic than cyclic structures. There was no main effect of
delay reliability (β = 0.21, t = 1.47, p = .15, CI = [−0.07, 0.49]), or of number of components
(β = 0.02, t = 0.09, p = .93, CI = [−0.34, 0.37]). Nor were there any two- or three-way
interactions (ps > .10).

Error patterns Participants were best at inferring the structure of colliders (Acyclic1 and
Acyclic4, see Figure 6.4). These structures were naturally simple in their evidence since no
intervention would cause more than one effect. For the three-component chain (Acyclic2), 15%
of participants added an erroneous additional direct connection A → C. Similarly, for the four
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component chain (Acyclic5), participants frequently also added one or more “short cut” links from
A → C (12%), A → D (8%) or B → D (13%) in addition to the true connections. These errors
cohere with previous findings suggesting that people rely on local computations when inferring
causal structure, resulting in the addition of extraneous connections in chain structures (Davis
et al., 2020; Fernbach & Sloman, 2009). No one mistook the chain Acyclic2 for a fork with the
same root component (i.e. Acyclic3), however 18% mistook the fork Acyclic3 for a chain with
the same root component (A → B → C or A → C → B). This lines up with the idea that
people tend to fall-back on temporal order as a cue to causal order (McCormack et al., 2016;
Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018), tending to link the effect components of a
fork in whatever order they happened to activate. These error patterns did not differ significantly
between reliable vs. reliable groups (χ2 tests, ps > .10).

For the cyclic structures, participants’ judgments varied considerably so we focus on the
individual-connection-level errors as shown in Figure 6.4. In the full loops (Cyclic1 and Cyclic4),
participants frequently judged directed or disconnected links as bidirectionally connected (Fig-
ure 6.4, black bars). This was more prevalent in the unreliable group than in the reliable group
(Cyclic1: 37% vs. 23%, χ2(1) = 4.31, p = .04; Cyclic4: 22% vs. 10%, χ2(1) = 11.41, p < .001),
suggesting that reliable delays make it easier to detect full loop structures. This makes sense
since regular delays produce much more sequentially reliable and predictable patterns of reacti-
vation. Participants had relatively little trouble at identifying loops with incoming connections
(Cyclic2). However, performance was very poor for structures comprised of feedback loops with
outgoing connections (Cyclic3, Cyclic5, and Cyclic6). The outgoing component (C in Cyclic3,
D in Cyclic5 and Cyclic6) was frequently taken to be a constituent of the feedback loop, often
being assigned a bidirectional connection with one of the loop constituents. This is reasonable
since, for these structures, recurrent and close-in-time events occurred not only at the components
forming the loop themselves but also for the output components, making it difficult to tell which
components were involved in actively sustaining the looping pattern of activations. Participants
often connected an output component to the loop element that typically activated in close tempo-
ral proximity. For example, many participants marked a C ↔ A connection in Cyclic3, D ↔ B

in Cyclic5, and D ↔ A in Cyclic6, in spite of the fact that this temporal proximity is really due
to them sharing a common cause.

Participants were normally correct about whether the structure was cyclic or acyclic. Partic-
ipants’ structure judgments belonged to the correct class 82%±38% of time for the acyclic class
and 77%±42% of time for the cyclic class. There was no difference in the frequency of mistaking
cyclic for acyclic vs. acyclic for cyclic (t(73) = 1.15, p = 0.25), and the rate did not differ between
reliable and unreliable delay conditions (ps > .10).

Informativeness and event density We calculated the accuracy of an ideal observer (IO)
based on the 45-seconds of evidence generated by each participant on each trial. This acts as
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Figure 6.6: Scatterplots of evidence informativeness (IO accuracy) and event density and participants’
accuracy. Each data point shows an individual’s average performance for acyclic or cyclic causal struc-
tures. One data point (4.96, 0.28) under the cyclic condition was removed from the upper left panel for
visualization.

a measure of how informative the evidence generated by the participants was (cf. Bramley et
al., 2015). The IO was more accurate in the reliable (97%±7%) than the unreliable (94%±12%)
condition (β = 0.23, t = 2.61, p = .011, CI = [0.06, 0.40]). In contrast to human learners,
the IO was more accurate in identifying the structure of cyclic structures (98%±8%) compared
to acyclic (93%±11%) structures (β = 0.45, t = 3.16, p = .010, CI = [0.17, 0.73]), showing
the reverse pattern to human learners. 2 This suggests that, in principle, the cyclic devices
produced more information about their underlying causal structure than the acyclic devices. IO
accuracy in general does not predict human trial-by-trial accuracy (β = 0.05, t = 1.40, p = .178,
CI = [−0.02, 0.12]). As Figure 6.6 shows, the relationship between IO and participant accuracy
was moderated by cyclicity with a positive association across acyclic structures (β = 0.16, t = 3.61,

2For 5% of trials in Experiment 1 and 3% in Experiment 2, participants generated such a high event
density that we were not able to calculate the posterior due to there being too many possible causal paths
to evaluate (> 1015). This tended to happen if a participant intervened very rapidly, particularly on cyclic
structures where each event tended to spawn many subsequent events. We simply omit these trials from
current analyses.
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Figure 6.7: Scatterplots of average final IO accuracy (indexing evidence informativeness) and event
density (indexing evidence complexity) for each participant with color and size indicating that participants’
judgment accuracy. Participants with higher accuracy generated evidence that was both more informative
and less complex (the upper left area).

p = .002, CI = [0.07, 0.24]) but none for cyclic structures (β = −0.04, t = 0.84, p = .407,
CI = [−0.13, 0.05]).

We use event density (number of events per second) as a basic index for how complex the
generated evidence was. Event density differed dramatically between acyclic (0.22±0.06) and
cyclic (0.79±0.41) devices (β = 1.39, t = 11.80, p < .001, CI = [1.16, 1.63]) and participants’
accuracy was generally negatively related to density of events (β = −0.27, t = 3.71, p < .001,
CI = [−0.41,−0.14]). However, as shown in Figure 6.6, event density was negatively associated
with accuracy on cyclic (β = −0.31, t = 3.30, p = .02, CI = [−0.49,−0.12]), but not acyclic
(β = −0.01, t = 0.25, p = .810, CI = [−0.11, 0.08]) devices.

These results suggest that evidence complexity is critical in this task. For the IO, complexity is
generally positively correlated with success. The more activations there are, the more information
an ideal observer can use to reduce its uncertainty. However, non-ideal human learners clearly
struggled to deal with complex evidence. As shown in Figure 6.7, the best-performing participants
were generally those who were able to generate evidence that would have enabled the IO to
be highly accurate, but that was also low in event density. We later compare computational
models that model the influence of complexity on human judgments and intervention selection,
capturing the qualitative differences between cyclic and acyclic cases (see the section on Modeling
the judgments).

When to intervene We now assess whether participants’ intervention choices are qualita-
tively consistent with the idea that they choose interventions that generate strong evidence while
minimizing evidential complexity. For example, participants may choose to perform fewer inter-
ventions when experiencing a large numbers of events, as tends to occur in cyclic structures and,
to a lesser extent with structures with four components (Figure 6.8). As shown in Figure 6.9,
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Figure 6.9: The average numbers of activating interventions used and average time intervals between
activating interventions under different structures. Error bars indicate 95% confidence intervals. Each
data point shows an individual’s average intervals for acyclic or cyclic causal structures.

on average, participants performed 4.68 ± 1.46 out of the maximum of 6 interventions on each
trial, performing about the same number in the unreliable (4.76 ± 1.41) and reliable condition
(4.58 ± 1.51, β = 0.12, t = 0.93, p = .36, CI = [−0.14, 0.39]). However, participants performed
fewer interventions on cyclic (4.10 ± 1.50) than acyclic devices (5.25 ± 1.16, β = 0.79, t = 6.24,
p < .001, CI = [0.54, 1.04]) and fewer on three-component (4.47 ± 1.54) than four-component
devices (4.88 ± 1.35, β = 0.28, t = 2.27, p = .045, CI = [0.04, 0.53]). These results correspond
to the simulation results in Figure 6.8: In cyclic structures, even a few interventions allowed
for ceiling level accuracy in principle, while the event density compounded dramatically with
each additional intervention. This means that, in cyclic structures, the computational cost of
additional interventions quickly outweights the value of the new information. Event density also
increased going from three- to four-component devices (at least for the structures we tested), but
this increase comes alongside an increase in the amount of structure to be learned. This means
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as a function of whether an intervention is performed in that window. Windows for which participants
performed more than one intervention were excluded. The densities are scaled for each experiment to have
equal maximum width. 0.6% and 1.3% of the data, from Experiment 1 and 2 respectively fall outside of
the visualized area (i.e. have expected unrevealed events larger than 20).

that the evidence-strength gap between three- and four-component devices could be narrowed by
intervening more frequently in four-component devices compared to three-component devices.

The average interval between each intervention depended on cyclicity (β = 0.67, t = 7.22,
p < .001, CI = [0.49, 0.86]), with participants waiting longer before the next intervention when
the structure being learned was cyclic (9.38±5.94s) rather than acyclic (5.49±2.64s, Figure 6.9).
There was no evidence for a difference in this measure between the unreliable and reliable delay
conditions (7.55± 5.10s vs. 7.26± 4.83s) or between three- and four-node problems (7.19± 4.92s
vs. 7.63 ± 5.01s). As shown in the example in Figure 6.2b, even if the total number of events is
identical, learning is easier when the events are more spread out across the trial. Intervention-
spreading may be particularly important for cyclic structures where the event density is higher.

We test whether participants’ tendency to wait longer under cyclic structures is driven by
an anticipation of complexity. As a first pass, we calculated a moment-by-moment expectation
of the level of computational cost of the upcoming evidence assuming no further intervention is
performed. For this, we calculated the number of events expected to occur in the near future
as a result of earlier activity (see Modeling the interventions for more details). We can compare
the moments in which participants did nothing with those in which participants performed an
intervention. As shown in Figure 6.10, people waited — i.e. did not perform any intervention
— for 88% of the 1-second windows in which they could have acted (i.e. had not run out of
activating interventions yet). Yet in the 12% of time windows where they did intervene, the
number of already-expected events (Median = 0, Mean = 1.86) was lower than those where they
did nothing (Median = 1.25, Mean = 2.96, Mood’s median test: χ2(1) = 854.35, p < 0.001).
This result suggests that participants tended to wait to perform their next intervention once there
was not too much expected activity.
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Figure 6.11: Participants’ tendency to activate a node they have not intervened on previously as a
function of intervention index. Black frames indicate the proportion of trials in which the participant
performed at least this many interventions. Error bars indicate 95% confidence intervals. Yellow lines
indicate performance under random selection (Nnode − 1)(X−1)/(Nnode)

(X−1) where Nnode represents the
number of nodes in the system. Green lines indicate the level based on the idealized information maximizing
intervener who made choices at the same moments as participants and conditional on the same prior
evidence. Vertical dashed lines indicate the boundary after which the learner has performed enough
interventions to have tried every component once.

Where to intervene An efficient sequence of interventions involves both a healthy dose of
early exploration — trying each component to learn its effects — but also an exploitative reac-
tive focus — meaning a later tendency to repeat activating components that showed promise in
producing effects. This repetition allows a learner to gather evidence about the order and the
delay with which effects propagate through the system. This information is crucal for distin-
guishing between devices with overlapping causal structure. We see clear qualitative evidence of
such exploration and exploitation in participants’ choices. Figure 6.4’s node shading shows the
aggregate proportion of interventions on each node in each structure. Participants’ interventions
were relatively evenly distributed across components for most devices. They had a slight tendency
to activate more causally “central” nodes (i.e. nodes that have many descendant edges; Coenen et
al., 2015) in devices that have these such as on A in the two common cause structures (Acyclic3
and Acyclic6).

A marker of early exploration is a tendency to initially sample components to test without
replacement. That is, choosing something different to activate on one’s second test than one’s
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first, and so on. Figure 6.11 shows how frequently participants selected a novel component to
intervene on as a function of serial intervention position within the trial. This is shown in Fig-
ure 6.11, and we compared participants’ performance against chance (i.e. the random intervener)
as well as against the choices of an idealized expected-information-gain maximizing intervener
(i.e. the EIG intervener, see the section on Modeling the interventions for more details) taking
actions at the same moments as participants and conditional on the same prior evidence. For
both three- and four-node structures, participants were more likely than chance to intervene on
untested components until the number of interventions exceeded the number of components in the
system (ts(73) > 10.91, p < .001). This shows that participants were not intervening randomly
and suggests that they typically began by exploring system components they had not activated
yet. The simulated informationally efficient intervener shows a similar pattern the first several
interventions (Figure 6.11). The efficient intervener’s decisions, along with those of participants
become reactive to the past evidence in complex ways that do not submit to a straightforward
aggregate measure. As such we will examine these choices closely through modeling in a section
after the experiments.

6.2.3 Discussion

In Experiment 1, we showed that people are able to infer causal structure through active interven-
tion in a challenging continuous-time learning setting. We found that participants, had different
error patterns to an ideal observer model, in particular making more accurate judgments about
acyclic structures than cyclic structures while the ideal observer had the reverse pattern. We
also found that differences in accuracy across conditions were associated with differences in the
character of the evidence. The informativeness of evidence predicted participants’ performance
in acyclic structures, but the complexity of evidence appeared to dominate participants’ perfor-
mance in cyclic structures where it was generally higher. Participants who were able to generate
evidence that was both informative but not overly complex tended to perform best overall. We
take this to support our central idea that managing computational cost plays an important role
in interventional decisions and success in the real-time causal learning setting.

Intervention choices were partly shaped by a drive to control computational demands. In
terms of when to intervene, participants performed fewer interventions and waited longer between
them on cyclic structures that tended to produce more events. They also tended to perform
more interventions on four-node structures yielding a similar number of events as for three-node
structures but presumably responding to the greater initial uncertainty (larger space of structure
possibilities). When the expected upcoming evidential complexity was already high, participants
were more likely to wait rather than activate another component to produce more events.

In terms of which components participants would target, we found they used their interventions
to systematically explore the devices, tending to select a hitherto untested component for their first
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few interventions, qualitatively in line with the behavior of an efficient information maximizing
agent. Participants also showed a tendency to repeat-intervene on causally “central” components
once these were discovered. Note that the role of a root component activation differs in this
setting to the atemporal settings studied in the past literature. Interventions on known-to-be
causally central components has previously been framed as a heuristic Positive Testing Strategy
(Coenen et al., 2015; Steyvers et al., 2003) on the grounds that it is often correlated with expected
information yet much easier to calculate. Positive testing can be very poor in the atemporal
setting because multiple causal influences from the root component overshadow one another since
all effects are revealed at once. However, in the continuous-time point-event case, intervening
on a suspected root will often generate rich and diagnostic evidence through the delays and
order variability in the propagation of the activity through the system(Bramley, Gerstenberg,
Mayrhofer, & Lagnado, 2018). We will test the extent to which participants’ specific where-to-
intervene choices reflect an information gain norm in our model fitting to follow (see the section
on Modeling the interventions).

6.3 Experiment 2: Activating and blocking

Experiment 2 aims to replicate and extend the results of Experiment 1. This time, participants
were not only able to activate components but they could also choose to block components,
temporarily preventing them from activating until unblocked again. Intuitively, blocking permits
the learner a greater degree of control over interactions with and observations of the system, as they
can now isolate components to focus on, and also take control of ongoing activity in the system. On
the other hand, a larger action space increases the complexity of the intervention decision-making
problem. We will examine whether the relationship between ideal observer accuracy, human
accuracy and event density is similar to the activation-only setting, and explore how participants
use the blocking function. In particular, we will assess whether participants spontaneously use
blocks to reduce the complexity of evidence without substantially reducing its diagnosticity about
the causal relationships.

6.3.1 Methods

Participants

95 participants (54 female, 40 male, 1 nonbinary, aged 36 ± 12) were recruited from Prolific
Academic and were randomly assigned to reliable-delay (N = 48) or unreliable-delay (N = 47)
condition. They received a basic payment of £1 and a bonus depending on performance as
in Experiment 1. Fourteen additional participants were tested but removed from the analysis
because they reported for all the trials that the structure was completely unconnected, which was
the initial default (N = 7), or did not perform any interventions in at least one trial (N = 7).
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Design & Procedure

The interface was similar to Experiment 1 with a few changes. In addition to activating compo-
nents, participants were also able to block components by right clicking on them and to unblock
them again with an additional right click. Blocked components were marked visually by turning
gray and by showing a stop sign on them (Figure 6.3b). Blocked components did not activate
when they otherwise would have been caused to do so by another event or by a left click activation
intervention. While participants were limited to 6 activations (as in Experiment 1), we did not
limit how many times components could be blocked and unblocked.

We also extended the test set of causal devices. We added two densely connected acyclic struc-
tures (Acyclic7 and Acyclic8, Figure 6.12), two densely connected cyclic structures (Cyclic7
and Cyclic8), as well as two devices with no causal connections between the components (i.e.
Unlinked1 and Unlinked2). The inclusion of unconnected structures served to explore how people
intervene under one extreme setting where no effects are ever experienced. While unconnected
devices are technically acyclic, they are also qualitatively unique and as such, we treated them
as a separate device type in our analyses. The new densely connected structures, by comparison,
might produce particularly complex evidence and would so be particularly amenable to the use
of blocks. Given the larger set of test stimuli, we did not not include a practice trial in Exper-
iment 2. In other respects, the instructions, incentive structure, and randomization procedure
were identical to that of Experiment 1.

We improved the interface in two ways. First, we were concerned that occasionally two activa-
tions of a component would overlap making them hard to distinguish visually. In Experiment 1,
each activation caused the component to turn yellow for 200 ms, if two activations overlapped
this would result in the component appearing yellow for longer but without a clear declination
between events. In Experiment 2, we had each component turn yellow and then fade back to gray
over 200 ms, this made it easier to detect distinct activation events even if their onset times were
very close together. Second, to make providing judgments more seamless, participants were not
required to click a “confirm” button to register when they had finished making a change to their
structure judgment as they had had to in Experiment 1. One second after they stopped clicking
on the edges, the state of their currently-marked structure was automatically registered as their
latest judgment.

6.3.2 Results

As in Experiment 1, we first look at judgment accuracy and error patterns, and then at intervention
strategies. We first focus on use of activations and then explore when and where participants use
the novel blocking function.
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Figure 6.12: Causal link identification and activating intervention choices in Experiment 2. Color edge
shading indicates accuracy. Node shading indicates activating intervention choice prevalence by component.
Bar plots show the proportion of different choices on each link (e.g. for AB, “∅” means “no connection
between A and B”; “→” means “A → B”; “←” means “A ← B”; “↔” means “A ↔ B”) with orange used
to highlight the ground truth. Note: Act = average number of activating interventions performed; Blc =
proportion of participants who used blocking; Acc = mean accuracy; Str = proportion of participants who
detected the whole structure correctly.

Accuracy Participants registered judgments 4.39±2.43 times per trial. Within trials for which
the answer was registered more than once (86% of all trials), final judgments were more accurate
than initial judgments with 60%±34% compared to 48%±24% of connections correctly identified,
β = 0.41, t = 14.09, p < .001, CI = [0.35, 0.47]. Participants’ judgments became more accurate
as they approached the end of the trial (β = 0.11, t = 10.92, p < .001, CI = [0.09, 0.12]). As in
Experiment 1, we focus on the final answers as our primary measure of task performance.
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Table 6.1 shows participants’ accuracy separated by conditions. Performance in both reliability
conditions was significantly above chance (random: 25%, reliable: t(47) = 11.58, p < .001, Cohen’s
d = 1.67; unreliable: t(46) = 13.63, p < .001, Cohen’s d = 1.99). The average accuracy for all 18
structures were above chance in the reliable condition (ts(47) > 4.01, ps < .001) and the unreliable
condition (ts(46) > 3.39, ps < .01) with the exception of Cyclic7 (reliable: t(47) = 2.01, p = .05;
unreliable: t(46) = 0.56, p = .58, Figure 6.12).

Unlike in Experiment 1, participants’ performance only differed between unlinked and cyclic
structures (β = 0.72, t = 2.26, p = .04, CI = [0.10, 1.35], Figure 6.5), with a marginally significant
difference between acyclic and cyclic structures (β = 0.37, t = 1.85, p = .09, CI = [−0.02, 0.75]).
There was no main effect of delay reliability (β = 0.03, t = 0.20, p = .84, CI = [−0.24, 0.30]) or
the number of components (β = 0.08, t = 0.34, p = .74, CI = [−0.37, 0.53]), nor were there any
two- or three-way interactions (ps > .10).

Error patterns Figure 6.12 shows the types of errors people made in inferring causal struc-
tures. For chain structures (Acyclic2, Acyclic5), there were no systematic errors in mistaking
them as fully-connected structures, or fork structures (less than 5%). Similar to Experiment 1,
15% of participants mistook the fork structure Acyclic3 as a chain structure (A → B → C or
A→ C → B), while 12% mistook it for a fully-connected structure by adding a directed link be-
tween two child nodes. In the case of the fully-connected structure Acyclic7, 15% of participants
disregarded the link between A → C, while 10% confused it for a cyclic structure A → B ↔ C.
For Acyclic8, 13% of participants confused B → C with A→ C, or C → D as B → D. The er-
ror patterns did not significantly differ between unreliable and reliable delay conditions (χ2 tests,
ps > .10). Similar to Experiment 1, these error pattern results seem consistent with the idea that
reliance on local computation and simple event order played a role in some participants’ judg-
ments (Burns & McCormack, 2009; McCormack et al., 2016; Bramley, Gerstenberg, Mayrhofer,
& Lagnado, 2018).

For cyclic structures, participants in Experiment 2 also performed poorly for structures that
contained one or more output components. The output components were frequently judged to be
constituents of the feedback loop. Participants tended to connect components whose activations
often occurred close in time. This pattern was replicated in the two new structures Cyclic7,
Cyclic8. For instance, participants frequently marked erroneous bidirectional A↔ C and B ↔ C

connections in Cyclic7 and A↔ C and B ↔ D in Cyclic8.
As with Experiment 1, participants could generally tell whether a structure was cyclic or

acyclic regardless of whether they got all causal connections correct. They choose the correct
class 70%±46% of time for acyclic structures (excluding the unlinked structures) and 80%±40%
of time for cyclic structures. Participants more often mistook acyclic structures for cyclic than
the reverse (t(94) = 2.46, p = 0.02).
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Informativeness and event density Based on observing participants’ interventions, the
ideal observer performed significantly better at identifying the structure of cyclic (97% ± 9%)
than unlinked (89% ± 11%) devices (β = 0.74, t = 3.59, p = .004, CI = [0.33, 1.14], Figure 6.5),
but not acyclic (93% ± 12%) devices (β = 0.37, t = 1.85, p = .09, CI = [−0.02, 0.75]). It also
performed better for three-node (96% ± 10%) than four-node (93% ± 11%) devices (β = 0.40,
t = 2.62, p = .02, CI = [0.10, 0.69]). Unlike in Experiment 1, IO accuracy positively predicted
participant judgment accuracy overall (β = 0.07, t = 3.11, p = .002, CI = [0.02, 0.11]). Similarly
to Experiment 1, the degree of correlation differed depending on cyclicity (β = 0.10, t = 3.28,
p = .003, CI = [0.04, 0.16]), with a positive relationship in acyclic devices (β = 0.15, t = 3.27,
p = .008, CI = [0.06, 0.24]) but no relationship for cyclic devices (β = 0.04, t = 0.12, p = .22,
CI = [−0.03, 0.11], Figure 6.6).

Event density differed between acyclic (0.23±0.08) and cyclic (0.71±0.39) trials (β = 1.31,
t = 11.86, p < .001, CI = [1.09, 1.58]), and between unlinked (0.12±0.02) and cyclic trials
(β = 1.61, t = 9.71, p < .001, CI = [1.28, 1.93]). Participants’ accuracy was generally negatively
associated with event density (β = −0.20, t = −6.15, p < .001, CI = [−0.26,−0.14]). However,
this also depended on cyclicity. Event density was negatively correlated with human accuracy in
cyclic trials (β = −0.21, t = 3.88, p = .006, CI = [−0.32,−0.11]), but there was no significant
relationship for acyclic trials (β = 0.10, t = 1.73, p = .12, CI = [−0.01, 0.22], Figure 6.6). As
shown in Figure 6.7, participants who generated evidence with both high informativeness and low
complexity performed better in general.

When to activate Participants performed 4.75 ± 1.46 activations on average on each trial.
This did not differ across reliable (4.75 ± 1.42) and unreliable (4.74 ± 1.49) conditions or across
three-node (4.70± 1.51) and four-node (4.79± 1.40) structures. However, participants performed
fewer activations on cyclic (4.12 ± 1.52) compared to acyclic devices (5.18 ± 1.23, β = 0.72,
t = 6.97, p < .001, CI = [0.52, 0.93]), or compared to unlinked devices (5.53 ± 0.96, β = 0.97,
t = 6.16, p < .001, CI = [0.66, 1.27], Figure 6.9). Participants also waited longer to perform
activations in cyclic than acyclic structures (9.26 ± 5.57s vs. 6.15 ± 2.54s, β = 0.53, t = 7.63,
p < .001, CI = [0.39, 0.66]) or unlinked structures (4.91 ± 2.33s, β = 0.79, t = 7.57, p < .001,
CI = [0.58, 0.99]), and longer in acyclic than unlinked structures (β = 0.26, t = 2.74, p = .02,
CI = [0.07, 0.44], Figure 6.9). There were, again, more expected unrevealed events on seconds
where participants waited (Median= 0.44, Mean= 2.58) than those where they chose to activate
a component (Median= 0, Mean= 1.29, Mood’s median test: χ2(1) = 2423.60, p < 0.001,
Figure 6.10).

When to block Participants performed blocks on 27% of trials (949 times in 1710 trials,
0.55 ± 1.17 per trial). 75 of 95 participants (79%) used blocking at least once. Given that the
frequency of blocking was much sparser than activations, we coded trials as 1 (used blocks) or
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Figure 6.13: Percentages of blocking behaviors. Error bars indicate 95% confidence intervals.

0 (no blocks) in our statistical analyses and fitted logistic regression models to explore when
blocking was used.

We found that the propensity to block differed neither between the reliable (28%) and unre-
liable (26%) delay conditions (β = 0.12, z = 0.87, p = .386, CI = [−0.15, 0.38]), nor between
three-node (29%) and four-node (25%) devices (β = 0.07, z = 0.50, p = .620, CI = [−0.20, 0.33]).
However, participants were more likely to use blocks in cyclic (33%) than acyclic (21%) struc-
tures (β = 0.61, z = 5.16, p < .001, CI = [0.37, 0.84]). Surprisingly, propensity to use blocks
when facing unlinked (26%) structures did not differ significantly from cyclic or acyclic structures
(ps > .05). We had anticipated participants would be less likely to block in unlinked structures
since a key function of blocks in this setting is to manage evidential complexity, and in the unlinked
structures this is always minimal. We speculated that some uses of blocks might be spurious since
we did not limit their use. For example, sometimes participants may have blocked and unblocked
components simply to kill time until the end of the trial, especially after they have used up the
activating chances and the system has been silent for a while. To further explore how participants
used blocking, we focused on categorizing blocking actions, focusing on two plausible goals of
blocking that have distinct empirical signatures: (1) Blocking in combination with activating to
control for confounding causal paths and (2) blocking to reset the device.

For both of these uses, we derived simple operationalizations. We take “Controlling” blocks
to be those that appear to be used as a way to perform a controlled test, essentially isolating a
sub-network made up of all the components except the blocked one(s). This way, sub-networks
can be investigated through an activation without the possibility of interference from any path-
ways through the blocked component. In contrast, the “Resetting” category includes those where
the learner blocks and then unblocks a component before performing another activation, without
activating any other component in the interval while the component is blocked. In the current
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setting, Resetting blocks serve to short-circuit ongoing chains of causal effects of previous inter-
ventions, essentially resetting the mechanism so that subsequent tests can be performed without
interference. Both forms of blocking reduce density of events experienced during the trial but do
so in conceptually different ways (See examples in Figure 6.2b). “Resetting” blocks — where the
next action is to unblock the same component — made up 55%, “Controlling blocks” — those
followed by an activation of a different component — made up 24%, and the remaining 21%

were classified as “Other”. This nuisance category includes cases where a block is performed by a
participant who has no activations remaining or performs no subsequent activation or unblocking
action before the end of the trial.

Participants performed more Resetting blocks in cyclic (23%) than acyclic (12%, β = 0.79,
z = 5.53, p < .001, CI = [0.51, 1.07]) or unlinked (13%, β = 0.69, z = 2.96, p = .003, CI =

[0.25, 1.17]) devices. There was no difference between acyclic and unlinked structures (β = 0.09,
z = 0.38, p = .704, CI = [−0.41, 0.56]). Similarly, participants performed more Controlling
blocks in cyclic (13%) than acyclic (8%, β = 0.47, z = 2.72, p = .007, CI = [0.13, 0.82])
devices, but unlinked structures were not significantly different than either (10%). Participants
performed slightly more Other-type blocks in unlinked structures (11%) than acyclic structures
(6%, β = 0.64, z = 2.24, p = .025, CI = [0.06, 1.19]) but not cyclic structures (7%). In sum, both
Resetting and Controlling were used more on cyclic devices.

We checked whether participants used Resetting and Controlling blocks in ways that make
sense from a bounded rationality perspective. We assume that Resetting is useful at moments
where expected future complexity is high, while Controlling blocks should be used when people
expected low complexity (i.e. when they were ready for the next activating intervention). In line
with this, the number of expected unrevealed events was higher for seconds in which Resetting
blocks were performed (Median = 0.21, Mean = 2.62) than those where Controlling blocks were
performed (Median = 0, Mean = 2.12, Moodâ€™s median test: χ2(1) = 14.69, p < 0.001,
Figure 6.10).

We asked whether performing blocks is related to participants’ accuracy. We compared accu-
racy of different structures in Experiment 1 and 2 (Figure 6.4 vs. Figure 6.12) and found that the
accuracy of full loops Cyclic1 (t(167) = 3.62, p < .001) and Cyclic4 (t(167) = 2.53, p = .012) sig-
nificantly differed between two experiments. We checked whether the blocking function accounted
for the difference. For Cyclic1, participants in Experiment 2 performed at least one Resetting
(26%) were more accurate than those who did not make this kind of block (t(93) = 2.42, p = .018,
Cohen’s d = 0.56). However, Controlling blocks (17%) did not make a significant difference
(t(93) = 1.48, p = .141). This finding was replicated in Cyclic4 that accuracy was positively
associated with the use of Resetting blocks (16%, t(93) = 3.58, p < .001, Cohen’s d = 1.01), but
not with Controlling blocks (6%, t(93) = 1.87, p = .06). This indicated that Resetting blocks
may be more helpful than Controlling blocks. Given that the performance was better for several
cyclic structures, there was some benefit to having the blocking ability.
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Where to activate Similar to Experiment 1, participants tended to explore the devices ini-
tially by activating untested components. Participants were more likely than chance to activate
an untested component with their second and third activating interventions (and their fourth for
four node devices, ps < .001), which is in line with how the informationally efficient intervener
behaves (Figure 6.11).

Discussion In Experiment 2, we allowed participants to use blocking as a tool for causal
learning. The addition of blocking made the action space larger but also gave participants more
fine-grained control over the learning input, allowing them to not just inject excitation into the
system but also to selectively inhibit it. As found in Experiment 1, evidence informativeness
positively predicted participants’ performance in acyclic structures while evidenctial complexity
negatively predicted performance in cyclic structures. Accuracy was less strongly associated with
structure cyclicity than in Experiment 1, which may in part be due to the fact that blocking
helped participants to accommodate and counteract the differences in excitability and ambiguity
characteristic of interactions with the different causal devices. We also replicated the finding that
people performed fewer activations and waited longer to perform their next activation in cyclic
structures where expected computational cost was generally higher.

Participants used blocking in only a quarter of trials. However, when blocking was employed
it was used in sensible ways that primarily managed inferential complexity. Participants blocked
more often in cyclic than acyclic devices and did so when many events could be expected to occur
in the near future. This is consistent with the assumption that learners take management of
computational cost into consideration when choosing how to intervene in real time. We categorized
blocks according to two potential goals: Resetting the system and Controlled testing — combining
a block with an activation to test a subsystem in isolation. Both of these strategies were more
likely to employed after moments of high expected complexity.

6.4 Modeling the judgments

The following two sections detail our quantitative analysis of the role of complexity in shaping
participants’ causal judgments and intervention choices. We compare a set of computational
models to demonstrate that: (1) Participants’ causal judgments were affected by evidential in-
formativeness and complexity and (2) participants’ interventions strike a balance between the
informativeness and complexity of future evidence. Readers less interested in technical detail can
safely skip ahead to the General Discussion.

To quantitatively test the idea that evidence complexity is not just positively related to infor-
mativeness, but also impacts human performance directly, we built a computational-level model
that assumes human causal judgments q ∈ Q{X → Y,X ← Y,X ↔ Y,X∅Y } are a noisy ver-
sion of the ideal observer’s posterior marginalized across connections IOq, where the noise degree
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Table 6.2: Judgment model fits.

CV BIC τ1 τ2 Best

Experiment 1
Random -5215 10430 9 (16)
IO -4151 8259 0.62 28 (26)
IO/N -4045 8057 0.78 0.32 37 (32)

Experiment 2
Random -10310 20620 13 (16)
IO -8030 15983 0.59 26 (2)
IO/N -7894 15644 0.67 0.34 56 (77)

Note: The “best” column displayed the number of individuals best-fit by each model according to CV,
with BIC results in the brackets.

depends on the density, and hence complexity, of the evidence. We capture this with a dynamic
softmax function (Luce, 1959):

P (judgment =q) =
exp

(
IOq /(τ1N + τ2)

)∑
q′∈Q

exp
(
IOq′ /(τ1N + τ2)

) (6.1)

where N denotes a trial’s event density (average number of events per second). The judgment
temperature component is thus a linear function of events f(N) = τ1N + τ2 with two parameters
τ1, τ2 ∈ (0,+∞) that are constant across trials, while N varies across trials depending on what
interventions are performed and how the system reacts to them.

We fit this model with participants’ choices across two experiments and compare it to a baseline
model that made random judgments, and a informativeness-based model that only considers IO
judgments by omitting τ1N from Equation 6.1. We used hold-one-device-out cross-validated
log-likelihood as our primary measure of model fit but also include BIC for completeness and
comparison with past work (Tauber et al., 2017). Our cross-validation scheme is conservative,
since it requires a unified explanation for human data despite different causal devices exhibiting
markedly different characteristic dynamics.

Table 6.2 shows the results. In both Experiment 1 and 2, the model that combines infor-
mativeness and complexity outperforms the informativeness-only model. Individual results are
relatively similar between the two models in Experiment 1, but more-strongly favor the combi-
nation model in Experiment 2 where there were more data points for a single person (12 vs. 18
data points in Experiment 1 vs. Experiment 2). These results suggest that, while more complex
evidence carries more information on average, its complexity takes a toll on human performance,
presumably due to our cognitive limitations.
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6.5 Modeling the interventions

The final part of our analysis describes a computational account of complexity-sensitive interven-
tion selection and compares it to participants’ intervention choices in both experiments. Inter-
vention selection is the problem of choosing what to do now, in order to support future learning.
Normatively, this depends on the learner’s prior over causal structures P (S) at the point of the
decision, which in turn depends on the already-observed data dt and earlier interventions it. In our
first experiment, where participants can activate but not block, each participant must choose, at
each moment in time, between intervening on one of the components or doing nothing, leading to
the intervention space I = {aA, aB, aC ,∅} for three node systems. If the learner has used all their
activation chances, this reduces to just the option of doing nothing ∅. In our second experiment,
where participants and models could also block components, the action space is larger, includ-
ing actions that toggle the block status of each node such that it becomes blocked if currently
unblocked or unblocked if currently blocked (e.g. I = {aA, aB, aC , bA, bB, bC ,∅}).

While in principle this intervention decision needs to be made constantly, at every instant
throughout the trial. In practice we simplified our analyses by assuming that learners make
exactly one intervention selection decision per second.3

6.5.1 Expected information gain

Information gain (IG) is a common currency for measuring the value of evidence for an ideal
learner (Shannon, 1948; Nelson, 2005; Coenen, Nelson, & Gureckis, 2019). The goal is to select
the intervention (or sequence of interventions) that is expected to have high information gain or,
in other words, that best reduces the learner’s uncertainty. To do this exactly, one must quantify
how much every possible intervention decision i∗t is expected to reduce future uncertainty about
the structure of the causal system given the current beliefs and marginalizing over consideration
of possible future evidence. We take a greedy approach in favoring actions expected to maximally
reduce future uncertainty at this point but without considering potential subsequent actions.4

The learner’s uncertainty at time tx can be measured by calculating the Shannon entropy H(S)tx

of the current prior P (S)tx based on all the evidence experienced so far:

H(S)tx =
∑
s∈S

P (s)tx log2
1

P (s)tx
(6.2)

3Thus, we do not attempt to predict when, within a specific 1-second window, any action would be
taken but just what action, if any, is performed in each window. Occasionally participants performed more
than one action within a 1-second window. This was very rare though, occurring in only 0.41% of windows
in Experiment 1 and 0.36% in Experiment 2. For simplicity, we simply treated these multi-action windows
as missing data and modeled the other >99% of trials.

4This is a common choice due to submodularity results about the diminishing utility of planning ahead
in active learning problems (Guillory, 2012).
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Figure 6.14: Example of expected information gain (EIG) and expected computational cost (ECC). The
learner activated C at t0 and is now deciding what to do at t1. The notions of aX , bX , and ∅ stand for
choices to activate X, block X, or do nothing, respectively. Both EIG and ECC are temporally discounted.
ECC was calculated based on expected local events with a polynomial function.

The ideal calculation of future information should consider all possible future evidence o up
to some future time point ty, given the hypothetical action i∗. However, unlike the atemporal
setting, the outcome space here is continuous, meaning we must approximate this integral by
sampling a subset of possible futures. We achieve this by simulating a set of possible outcome
sequences õ under different structures. We further assume the number of samples simulated under
each structure is based on the structure’s (current) prior probability (Nelson, 2005). 5 For each
simulated future õ ∈ õ we compute the information gain as:

IG(i∗, õ)
ty
tx = H(S)tx −H(S, i∗, õ)ty (6.3)

and expected information gain as:

EIG[i∗]
ty
tx =

∑
õ∈õ

IG(i∗, õ)
ty
tx . (6.4)

Note that in this setting, the anticipated information results not only from the focal action choice
i∗, but also from other recent actions and effects that may still be expected to produce further
effects and evidence. This means that one can often expect substantial information to be forth-
coming even when choosing not to act (i∗ = ∅).

Figure 6.14 shows an example where the learner has already intervened, activating C at t = 0.
Even though no effects have occurred yet, they are considering what to do one second later,
at t = 1. The value of doing nothing (∅) is relatively low at this point as it only includes
expected information resulting from the previous intervention. The learner expects less value
from activating C a second time than for activating something else, since they expect to learn
about the consequences of C from their first intervention. The blocking actions ({bA, ..., bC}) also

5All results are based on sampling 512 event sequences from each window. We selected this number
for computational practicability and it is a multiple of 64 which is the cardinality of three-component
structures and square root of the cardinality of four-node structures. We checked that this sample size
resulted in stable and consistent results by replicating the simulation process with different seeds.
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Figure 6.15: An illustrative example of historical and expected Information Gain (IG), alongside historical
and expected global events and local events. a) Pink portion (left of tx) = Window-by-window IG about
true structure; Global events (since start of observation); and Local events (within the last 4 seconds).
Gray portion (right of tx) Expected upcoming information, global and local events. b) Three possible
computational cost functions of event number. c) A demo of how different complexity functions react to
the number expected unrevealed events under the softmax function. Expected evidence was generated
from a A→ B → C chain.

have low expected information since, at this stage, they would only serve to block potentially
informative dynamics produced by the previous intervention.

6.5.2 Expected cost of inference

There are various ways to measure the computational costs of integrating causal structure evi-
dence. Our inference framework works by considering the various pathways connecting the inter-
ventions and effects under each considered structure. The number of paths scales rapidly with the
number of plausibly-related effects (Figure 6.2a), meaning a naïve realization of our ideal observer
performs an amount of computation that scales super-exponentially in the total number of events
observed so far. Nevertheless, considering all past events back to the beginning of time, which
we call the global event set, is clearly infeasible outside of very simplified toy settings. Inevitably,
practical constraints come into play such as excluding from consideration events that occurred
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long enough ago to have a negligible chance of having caused the most recent effect. For simplic-
ity, in our primary analyses we simply assume learners are focused on a 4-second “backtracking
window” (see Figure 6.15a; c.f. Gerstenberg et al., 2013). That is, we assume learners enumerate
and consider causal pathways involving events or interventions from up to several seconds prior
to the moment at which the inference is taking place. We chose 4 seconds as the window size as
this is long enough to include all plausible causes for any newly occurring event under our delay
regime. We refer to these as the local event set and assume the learner reasons over a rolling
window of local events throughout the trial. This results in a measure of inferential cost that
shifts throughout a trial as a function of the number of recent events (see Figure 6.15a). We will
also examine other choices of the window size in Table B.1.

While idealized Bayesian inference also requires estimation of the evidence in parallel under
all possible hypotheses, in practice it is implausible that a bounded learner would consider the
entire hypothesis space at the same time since this quickly becomes intractable as the number
of components increases. For instance, there are 4,064 possible structures linking 4 components
together and this would increase to 1,048,576 if there were 5 components in the system. A recent
proposal for how learners mitigate the complexity of structure inference in the natural world is
that they consider hypotheses sequentially. For example, in the atemporal dataset setting, it
has been argued that participants consider evidence under a single favored hypothesis at a time,
regenerating or adapting this hypothesis only to the extent that it fails to explain the most recent
evidence (Bramley, Dayan, et al., 2017; Bonawitz et al., 2014).

Since humans must, by necessity, find a more scalable approach to causal inference than our
normative algorithm in order to to succeed in the wild, we think of the idealized Bayesian inference
as an upper bound on the computational cost of inference. We explore intervention behavior under
several plausible inference-complexity-scaling functions based on either the global or local number
of events n and some base parameter c. These functions, including linear O(n), polynomial O(nc),
exponential O(cn) scaling, differ at how fast the cost grows with the increase of event numbers
(Figure 6.15b).

Similar to expected information gain, we can also anticipate computational cost (CC) of
integrating future evidence. This involves counting the events occurring in simulated outcomes
õ ∈ õ. For each hypothetical future time point considered, we count the recent events n(t) and
compute the consequent complexity of performing inference about how these events could relate:

CC(i∗, õ)
ty
tx = fcomplexity(n

ty
tx , c). (6.5)

where we will later allow fcomplexity to be of linear, polynomial or exponential form with some
parameter c, in either the anticipated local or global events (see Figure 6.15).
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We can then compute the Expected Computational Cost (ECC) by summing over õ ∈ õ

ECC[i∗]
ty
tx =

∑
õ∈õ

CC(i∗, õ)
ty
tx (6.6)

6.5.3 Resource-rational intervention utility

According to the resource-rational framework (Lieder & Griffiths, 2020), the expected utility of
an action E[U(i∗)] to a bounded learner balances expected reward and cost of computation. In
our case, this results in the following equation:

E[U(i∗)] =

ty−1∑
t=tx

R(t) ·
[
EIG[i∗]t+1

t − ω · ECC[i∗]t+1
t

]
(6.7)

where we assume a 1 second granularity for measurement, and where ω scales the cost component
to align it with the epistemic reward scale of bits, the sum aggregates the expected future gains
and costs over future seconds up until ty, with R(t) as a discount function which diminishes the
utility of information and the dis-utility of computational costs the further into the future they
occur. In our case this is simply done according to how long the trial remains to end (i.e. chance
to affect the bonus):

R(t) = 1− t

tend
(6.8)

The ideal ty horizon should be the end of the learning episode tend (i.e. 45 s in our experiments),
but we found no substantial impact upon our choice predictions beyond tx+6.6 Finally, a resource
rational learner should behave according to:

argmax
i∗∈I

[
E[U(i∗)]

]
(6.9)

Figure 6.15 visualizes the various elements of a trial that combine into our resource rational
algorithm and Figure 6.14 shows an example in which information gain and inferential complex-
ity differ in the choices they favor and hence trade off. In sum, our framework captures how a
resource rational agent should decide when and where to intervene to support their causal struc-
ture learning. We will compare human interventions against the predictions of this modeling
framework.

6Intuitively, this horizon is reasonable here for several reasons: (1) The rational temporal discount fac-
tor makes the distant future less important. (2) Expected information gain under the “greedy” assumption
of no future activations approaches zero after a handful of seconds, by which time even the most complex
causal systems have had enough time to loop through all their causal relationships at least once. (3)
The inherently stochastic delays combined with the complicated causal interactions and compounded by
the learner’s uncertainty thereof leads to complicated simulated dynamics whose predictive power rapidly
drops toward chance beyond a few seconds (cf. Bramley, Gerstenberg, Tenenbaum, & Gureckis, 2018).
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Table 6.3: Intervention model fits.

CV BIC τ ω θ Best

Experiment 1
Baseline -17033 34027 0.31 7 (14)
EIG -16588 33109 3.01 10.80 10 (7)
EIG-ECCGlobal -16456 32880 2.67 4.89× 10−3 8.99 11 (4)
EIG-ECCLocal -16415 32792 2.27 8.82× 10−3 7.91 46 (49)

Experiment 2
Baseline -43042 85997 0.27 2 (3)
EIG -40507 80887 1.98 8.13 19 (51)
EIG-ECCGlobal -40507 80898 1.98 1.69× 10−6 8.13 14 (2)
EIG-ECCLocal -40462 80804 1.86 1.59× 10−3 7.63 60 (39)

Note: The “best” column displayed the number of individuals best-fit by each model according to CV, with
BIC results in the brackets. BIC for the fully random baseline was 97210 in Experiment 1 and 262515 in
Experiment 2. Parameters reported were based on BIC results.

6.5.4 Model fitting

Our primary class of models is based on the utility function specified in Equation 6.7. That is,
one that is sensitive to both expected information and computational cost. The measurement
of this cost is formed as (linear, polynomial, or exponential) complexity functions of (global
or local) real-time expected event numbers. The complexity function controls how quickly the
model expects computational costs to increase as the event number increases. For intervention
decisions, this affects how sensitive the model predicts people will be in favoring choices less likely
to result in large numbers of events in the future. Note that only polynomial or exponential scaling
can capture the phenomenon that the more the expected unrevealed events caused by previous
interventions, the greater the likelihood of avoiding future activating interventions (Figure 6.15c).
We used polynomial scaling with a generic exponent of 2 as the primary form here while the
results of other complexity functions with different exponents or bases can be found in Table B.2.

To investigate whether participants are sensitive to both expected information gain and ex-
pected computational cost, we also examined a purely information-driven model that removes
ECC from Equation 6.10. However, a model that considers computational costs could easily beat
such a purely information-driven model given the fact that greedy-EIG underestimates the value
of waiting when opportunities to intervene are finite.7 In contrast, the vast majority of time
windows in the human data did not contain an action.8 Therefore, we included a constant bias
against action that increased the probability of not acting: B(i) = 1 if i = ∅ and B(i) = 0

7Conceptually, this is because it does not incorporate the expected utility of saving an action for later
use.

8This is also owing to the fact that time spent on activities that were not directly connected to the
learning process, such as marking their answers and moving the mouse, was taken into account.
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Figure 6.16: Example of real-time model prediction for a participant in reliable condition of Experiment
1 facing A→ B → C structure. Lines and points show instantaneous value for each potential intervention
(colours) or non-intervention (black). Dashed vertical lines show participants interventions. Model takes
earlier interventions and observations into consideration and predicts value of intervention choices for each
1-second window (marked by vertical white/gray shading). Parameters of the combined model based on
EIG + local polynomial cost model fit to this individual. Model fit is the product of likelihoods of the
chosen action or non-action in each window.

otherwise. This allows for a fairer comparison between dynamic-cost-dependent and cost-free
models. If our EIG-ECC model outperforms the EIG model, this means that participants timed
their interventions in a reactive way to cope with the expectation of computational cost rather
than simply avoiding action with a constant probability across time.

We assumed stochasticity in participants’ intervention choices captured by a softmax function
(Luce, 1959) over the resultant values. The resource-rational prediction is:

P (intervention =i) =
exp

(
(E[U(i)] + θB)/τ

)∑
i′∈I

exp
(
(E[U(i′)] + θB)/τ

) (6.10)

The model fitting procedure is similar to what we used for the judgment models. We provide
hold-one-device-out cross-validation results and BIC results at both the aggregate and individual
levels. As shown in Table 6.3, across both experiments, models that considered both expected
information gain and inference cost outperformed pure information driven models. The best
variant for both experiments was one that anticipated costs on the basis of a polynomial function
of the expected local events. Models including both information and costs also better fit more
individuals in both experiments than the other models we considered (78% of participants were fit
best by one of the cost-dependent models, 63% people were fit by the local cost model specifically).
Figure 6.16 gives an example from Experiment 1 in which the combination of expected information
and cost give a better account of participants’ intervention choices than either does alone. In
Appendix B.2, we used the fitted parameters to simulate interventions and judgments and showed
that these align qualitatively with the human patterns.
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The fact that the boundedly rational models outperformed pure information seeking models
corroborates our central idea that participants’ interventions were shaped both by how much in-
formation they expected to gain and by how hard they would have to work to process potential
future information. Note that while we did not present them for space reasons, model variants
sensitive to only cost but not information, perform worse than all the models we present irre-
spective of how the cost is calculated. These models invariably favor waiting or blocking over
activating components.

More individuals in Experiment 2 were best fit by the cost-free model according to BIC. This
suggests that cost-free and cost-dependent models did not differ as much as in Experiment 1
when explaining human interventions. This might be due to the fact that the computational
cost component of the model predicted learners should block fairly frequently, while participants
blocked less often than predicted in general. We suspect that this is partly due to a preference
for simplicity but in terms of strategy choice rather than evidence, with blocking strategies being
intuitively more involved. Furthermore, our models so far only consider information gain and
computational cost of the current intervention, while as discussed, people are likely to plan ahead
when using blocking, for instance combining a block with a subsequent activation, which goes
beyond the capability of this greedy model.

6.5.5 Prospective vs. retrospective complexity

We explored whether expected computational cost — which depended on both recent events
but also how many events are anticipated to happen in the near future — can be substituted
with a simpler retrospective computational cost consideration — based only on how many events
have occurred recently. To test this, we ran retrospective variants of each model in Table B.3
finding that these were always a slightly worse fit than their prospective versions. This could be
because, while the retrospective approach captures a sensible and simple heuristic of waiting until
the system is quiet, this behavior can also be accounted for by expected complexity. Moreover,
retrospective complexity is insensitive to earlier learning about the structure within a trial. For
instance, one might have learned that the current system is highly excitatory (captured by the
evolving prior shaping expected complexity) but that activity might have died down by the time
of the next intervention.

Retrospective complexity also only accounts for when to intervene but not where. In contrast,
expected complexity serves as a guide for both when and where to intervene. For example, if
a learner has already discovered a component that seems to generate a large number of events,
they may decide not to activate it again. To test whether cost-dependent choice of where to
intervene is a significant feature of our participants’ intervention selections, we also fit resource-
rational models to only the time windows where participants made activations. At the aggregate
level, the EIG-ECC model (cross-validated log-likelihood: -4788 in Experiment 1 and -9054 in
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Experiment 2) only had minor advantages over a pure EIG model in predicting these windows
(cross-validated log-likelihood: -4789 in Experiment 1 and -9054 in Experiment 2). However, it did
also better capture 31% of individuals. The individuals best-fit by the EIG-ECC model in terms
of the windows in which they acted had better performance than 55% people who were best-fit
by an EIG only model (accuracy: 67% vs. 59%, t(144) = 2.22, p = .028, Cohen’s d = 0.38), and
better performance than the 14% people best-fit as selecting components to intervene on randomly
(accuracy: 67% vs. 49%, t(74) = 3.97, p < .001, Cohen’s d = 0.99).

6.6 General discussion

In a dynamically unfolding world, uncovering causal relationships requires online control and
processing of continuous sensory information. To learn about how the world works, one must
choose where to act, how to act, and when to do so while also tracking what happens before,
during, and after one’s actions. In this paper, we investigated human learning in a setting where
learners use freely timed interventions to investigate the underlying causal structure responsible
for devices’ patterns of real-time component activations. We investigated what factors affected the
quality of their inferences, and what strategies they used to choose and time their interventions.
We hypothesized that computational limitations, and a rational anticipation thereof, would play
a key role in shaping real time active learning. Thus, we endeavored to quantify the actual and
anticipated computational cost of the evidence stream in our task and used model fitting to show
that this could help explain both human judgments and intervention patterns.

6.6.1 What we found

Our empirical findings fall into two classes: (1) Insights about features of real time causal sys-
tems that determine how easily people can learn them and (2) insights about how people choose
interventions to support their learning.

What experimental factors affected participants’ learning? Across both our ex-
periments, participants had more success identifying acyclic than cyclic structures while an ideal
observer model showed the reverse pattern, highlighting a fundamental divergence between ideal
and bounded learning. The ideal observer benefits from the higher density of events produced by
feedback loops, essentially because it is able to enumerate and marginalize over the many possible
causal explanations for the data, and make ideal use of the rich timing information. Meanwhile,
participants’ ability to do this was presumably limited by their information processing capacity,
leading to a kind of “less is more” phenomenon (cf. Gigerenzer & Todd, 1999) in which simpler ev-
idence was often more valuable to them even when less normatively informative. In line with this,
we showed that human accuracy patterns can be accounted for through a corruption of the ideal
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observer that assumed bandwidth limitations on the processing of evidence, such that inferential
noise and probability of error increase with the compounding effect of event density, potentially
more than counteracting the value of the additional information.

While past work has demonstrated that people are sensitive to delay reliability, and use de-
lay information in addition to order to shape causal structure judgments (Bramley, Gerstenberg,
Mayrhofer, & Lagnado, 2018; Greville & Buehner, 2010), reliability had little impact on perfor-
mance here. Delay condition did not make a statistically significant difference to accuracy in
either experiment suggesting reliable delays may be less critical in the active learning setting,
where interventions can be dynamically adjusted to accommodate experienced variability. An-
other possibility is that our delay manipulation was too subtle. However, our unreliable condition
had a sevenfold wider standard deviation which is both salient in visualizations of the trials and
commensurate with past work (Bramley, Mayrhofer, et al., 2017). We note also that the top
10% of performers were almost all in the reliable condition (100% in Experiment 1 and 90% in
Experiment 2). We take this to suggest that delay reliability is important for achieving high
accuracy. Additionally, reliable condition participants were better at identifying that full-loop
cyclic structures than unreliable condition participants which might suggest that reliable delays
allowed extended temporal patterns like periodicity of cyclic activations to contribute to structure
identification.

We found several other systematic judgment errors. Some participants mistook chain struc-
tures as fully-connected, marking extraneous indirect links from the root components to distal
child components. This lines up with the findings of a number of atemporal causal learning
studies (Fernbach & Sloman, 2009; Lagnado & Sloman, 2004) as well as studies that have used
continuous valued variables (Davis et al., 2020). This pattern may reflect the “local computations”
idea that people often focus on subparts of the larger system, such as on pairs of variables, and
so experience an appearance of direct causation when observing indirectly connected components.
Participants were also quite likely to mistake fork structures as chain structures. Since the outputs
of a fork would invariably occur in some staggered pattern, this seems straightforwardly consistent
with occasional fallback on a heuristic of taking temporal order to directly reflect causal order (cf.
McCormack et al., 2016; Bramley, Gerstenberg, Mayrhofer, & Lagnado, 2018).

Among the cyclic structures, participants frequently mistook output components as con-
stituent elements of their upstream feedback loops (e.g. in Cyclic3, Cyclic5 and Cyclic6).
This is not unreasonable because these output components tended to activate almost in lockstep
with components of the feedback loop that produced them. While informative to an ideal ob-
server, the subtle differences in inter-event delays between components that formed part of the
loop, and components that formed the loop’s outputs were presumably difficult to process for
bounded human learners.
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How do people choose what interventions to perform? Participants generally per-
formed fewer activations in cyclic structures. Multiple activating interventions in cyclic structures
could quickly compound the complexity of the subsequent evidence, presumably overwhelming
bounded learners and motivating learners to avoid this. For four-node structures, more activa-
tions were required to achieve an equivalent level of certainty as in three-node structures, and
participants performed more activations on these problems especially in Experiment 1. More
generally, participants appeared to adjust their interventions depending on the current and an-
ticipated event density. They tended to perform more activating interventions at moments when
the number of expected unrevealed events was low, and were more likely to wait or use blocks to
reset the system when the number of expected unrevealed events was high. Strikingly, in both
experiments, the participants who performed well were those who managed to generate evidence
that was relatively more informative and less complex (Figure 6.7).

In Experiment 2, participants did not use blocks nearly as often as activations, but most
participants did use them and did so particularly in excitable structures and at moments of high
anticipated complexity. Participants performed better on the full-loop structures when allowed to
block, compared to Experiment 1 (Cyclic1 and Cyclic4). Full-loop structures are intuitively far
easier to understand when exhibiting a single oscillating cycle of activity. If participants performed
a second activation intervention before such a cycle died out, they would face confusing evidence
patterns with two excitations traveling around the system in tandem, potentially overtaking one
another and going in and out of sync. Resetting blocks in particular seemed to help learners
control such complicated scenarios.

6.6.2 Resource-rational active structure learning

The bounded nature of cognitive computation has long been discussed in relation to models of
human learning (Anderson, 1990; Simon, 1982). While early research conceptualized the role
of cognitive resources qualitatively, more recent studies have aimed to quantify cognitive costs
and estimate boundedly rational norms (Griffiths et al., 2015; Lieder & Griffiths, 2020; Vul et
al., 2014). Utility functions that combine both expected rewards and computational costs have
been shown to better capture a variety of human behaviors including estimation (anchoring-and-
adjustment, Dasgupta et al., 2017; Lieder, Griffiths, Huys, & Goodman, 2018), planning (Callaway
et al., 2022), information sampling (Petitet et al., 2021), decision making (Gershman, 2020), and
communication (Hawkins et al., 2021). The current paper extends this line of research to the
problem of real-time active causal learning. By building and comparing computational models,
we firstly showed that participants’ causal judgments depended on both the informativeness and
the complexity of the generated evidence. More importantly, we then showed that in addition to
the standardly-considered exogenous costs of interventions (Coenen et al., 2015; Coenen, Ruggeri,
et al., 2019), people also care about the internal costs that arise from integrating different forms



6.6 General discussion 153

of causal interaction data. That is, learners were sensitive to the fact that information following
an intervention has to be processable to be useful.

Specifically, out of the measures of complexity we examined, a polynomial function of inference-
relevant events (those in the recent past and expected in the near future) best captured the
influence of complexity on intervention choice, and we found that prospective complexity as well
as retrospective complexity contributed to participants’ choices. While it would be premature
to take this functional form as final, or to make a judgment about whether participants under-
or over-anticipated the actual effect of complexity on their inferences, we feel this reflects an
intuitively sensible and plausible sensitivity to local events capturing the fact that inferential
complexity compounds as the number of actual causal relata increase (Van Rooij et al., 2019;
Bramley, Dayan, et al., 2017; Fernbach & Sloman, 2009).

The issue of just how complexity scales raises a question as to what inference process learners
actually used in this task. Although many papers, including this one, have laid out computational-
level mechanisms of causal structure induction (Rottman & Hastie, 2014; Pearl, 2000; Griffiths &
Tenenbaum, 2009), these are typically intractable, requiring a run time that scales often far worse
than exponentially in the number of relata. As has been argued forcefully elsewhere (Van Rooij
et al., 2019), this makes most computational-level models “non-starters” as process accounts of
human inference in natural settings, since any plausible account will have to deal with more
than a handful of components or events without requiring a time to compute that is beyond the
lifespan of the organism (or even the universe). We note that the resource-rational framework
adds another layer of computation, which is itself intractable. We use it here to establish that
people are sensitive to information and computational cost but we do not provide a recipe for how
learners anticipate these costs, given that this depends critically on their inferential processing.
Human learning is necessarily more piecemeal and approximate and indeed, human responses are
much noisier than our ideal observers’. There are some promising avenues for process accounts
that can model aspects of this variability and noise. Simulation-based (Gerstenberg et al., 2021),
summary statistics (Gong & Bramley, 2020, 2023a), and incremental search (Bramley, Dayan, et
al., 2017) algorithms have all been proposed in recent years as aspects of how learners simplify
and approximate solutions to structure learning.

When considering complexity, it is perhaps surprising that there was not more difference in
performance between 3- and 4-variable problems since the latter involve an order of magnitude
more hypotheses. However, this is in line with recent incrementalist accounts. It has been argued
that learners form one or a few hypotheses at a time (Bonawitz et al., 2014), or focus on subparts
of the larger system (Fernbach & Sloman, 2009; Davis et al., 2020). These accounts are better able
to scale up to inferences among more relata (Bramley, Dayan, et al., 2017). Bramley, Dayan, et
al. (2017) show that in inference from interventions in the atemporal covariation setting, people
rely on sequential local changes to gradually update their beliefs to incorporate new evidence.
Compared to maintaining a global prior, this localist approach may help people to deal with
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situations involving more than a handful of variables without invoking an exponential increase
in computation or catastrophic loss of performance. Thus we conclude from this pattern, that
however people manage the complexity of real time causal structure inference, they do so in such
a way that they are affected by the number of events, but less by the total number of components.
Indeed, the run time of our our ideal observer was far more sensitive to the number of paths it
had to evaluate per possible hypothesis than the number of hypotheses it evaluated.

6.6.3 Insights for a process-level model of real time active causal

learning

Causal structure induction We have shown how complexity effects human judgments from
a computational level perspective, essentially shaping the nature of the optimization problem faced
by active causal learners in real time (Marr, 1982). Recent work on observational causal learning
has generally found simple event order to be a strong driver of structure judgments, with de-
lay expectations tending to have smaller and subtler effects on inferences (Bramley, Gerstenberg,
Mayrhofer, & Lagnado, 2018; Valentin et al., 2020). As such, some form of a simpler endorser
heuristic (Bramley et al., 2015; Fernbach & Sloman, 2009) which assumes that people attribute
an effect to the most recent event may do a reasonable job of describing some participants judg-
ments. Such a heuristic, however, does not explain participants’ good performance in identifying
acyclic and cyclic classes. Taking fork structures for example (Acyclic3 and Acyclic6), the or-
der of child node activations would often reverse following repeated activations of the root node,
but participants rarely reported bidirectional connections between these child components. More
fundamentally, a learner that relies on a temporal order heuristic would lack the necessary rep-
resentation of the hypothesis space and uncertainty needed to guide intervention selection. We
would need a separate account for how people make intervention choices, and a linking model for
how the inferences and activation choices are connected with one another.

One other finding that a comprehensive process account would need to accomodate, is that in
cyclic structures, participants frequently drew a bidirectional link between the output component
and the component in the loop that tended to activate closest in time (Cyclic3, 5-7, and 8),
despite the fact that participants were trained to expect longer delays than this between truly
causally related events. One interpretation is that repeated spontaneous activations are a proto-
typical signal of cyclic relationships (Valentin et al., 2020). Our participants may have reasoned
in terms of this abstract feature, and applied it without thinking more carefully about the exact
timing at which the events happened (Goodman et al., 2011). Alternatively it could be that
our pre-training on delays was not sufficient to overrule a prior expectation of causal contiguity,
that is, that cause and effect events happen close in time (Hume, 1740). Indeed, past studies
have required strong manipulations to override this preference (Buehner & May, 2004; Buehner
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& McGregor, 2006). More work is needed to better understand how temporal delays affect causal
judgments.

Intervention One long-standing debate centers on the question of whether human active learn-
ing and intervention choice involves anticipation of information at all, or whether it relies on
heuristics such as simple endorsement (Bramley et al., 2015), positive or confirmatory testing
(Coenen et al., 2015; Steyvers et al., 2003). In the current setting, one reasonable heuristic might
be to explore components until effects are discovered. If a component appears to produce multiple
effects, a learner might repeat-test it, or probe the components at which the effects occured. In
this way, learners might follow a kind of extended positive testing strategy in which they focus
their energies on components deemed to be to produce effects so as to gather evidence “by mak-
ing the machine go”. This reflects the rationale behind positive testing that has featured in the
literature on atemporal active causal learning (Coenen et al., 2015; Steyvers et al., 2003; Auster-
weil & Griffiths, 2011; Bramley, Dayan, et al., 2017; Klayman & Ha, 1989). However, distinct
from the atemporal setting, there is lots that can be learned by repeatedly testing suspected root
components in our experiments, meaning it is hard to distinguish whether the repeat selection of
root components was driven by explicitly computing expected information gain or by following a
simpler strategy such as combining random exploration with positive testing.

Additionally, it is possible that people choose when to intervene separately to where to in-
tervene, for instance using current complexity as a way to decide when to perform one’s next
intervention and then selecting this without regard to anticipated complexity. To resolve these
questions about psychological processing, future studies could set up continuous-time active causal
learning scenarios that pit the predictions of heuristics against those of computational norms.
However, the current work shows that whatever heuristic or adaptive toolbox is proposed, to fully
capture intervention choice, it must include strategies that are at least be somewhat responsive
to experienced and anticipated complexity.

6.6.4 Future questions

Some questions related to continuous-time causal learning remain for future research. One open
question is where cyclic structures fit into the overall landscape of causal cognition. A full repre-
sentation of a cyclic system seems to demand a temporal dimension and predictions are generally
sensitive to the system’s current state. In our experiments, participants performed well above
chance for most connections in most cyclic structures without extra training, and were able to
reliably determine if a structure contained a cycle even though they were less accurate in iden-
tifying the exact structure. This suggests that they can understand cyclic relationship relatively
intuitively. Nevertheless, some cyclic structures may be particularly challenging for people to
understand, and the reasons for this may go beyond what is captured by our general computation
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cost account. For example, participants performed relatively poorly in identifying the internal
structure of cyclic structures with an output of a loop as mentioned in the paragraph above. An
analogous ambiguity in reality could arise wherever it is unclear which events are pure effects
(with no potential to control the system dynamics, such as symptoms of a disease) and which
are constituent parts of the system’s feedback loop (such as the pathogen). If one is interested in
controlling a cyclic system, it is important to identify and act on components that are inputs to,
or constituent parts of the feedback loop, rather than pure effects, since only by doing so can one
nudge the system toward whatever state one wants it to take. This makes it valuable to explore
more factors that affect learning and control in cyclic systems.

Another open question concerns the relationship between temporal and covariation-based
causal learning. One possibility is that these depend on separate learning processes, but it also
seems likely that there are points of overlap. For example, people may extract covariation in-
formation from continuous-time evidence through some process of abduction and discretization.
Furthermore, interventions might help to create data that is more amenable to these forms of sum-
marization. Better understanding of human causal induction requires us to go beyond covariation-
based causal Bayesian networks (Pearl, 2000), but this should not involve discarding the insights
they have provided in the search for a unified account for causal learning. Our current paradigm
simplifies causes and effects to point events with no measurable duration. However, actual events
are often extended in time in complex ways and many require reset or refractory period between
occurrences. Therefore, it might be informative to also consider a setting in which causes must
be reset or take time to recover to make this paradigm more comparable to the statistical-based
causal learning.

6.6.5 Conclusions

Everyday experience is rich with events that reoccur and can be causally related in ways that allow
us to predict, control, and make sense of what has happened and what is likely to happen next.
While previous research on active causal learning has often sidestepped the temporal dimension,
in this paper we show that human learners are sensitive to time, not just in terms of how it
impinges on what can be learned from evidence in principle, but also in terms of how it shapes
the practicalities of gathering and interpreting that evidence. Our experiments and modeling show
that participants’ causal judgments depend on not just the informativeness but also the complexity
of evidence they gather, and that they adapt their actions to the ongoing event dynamics during
learning so as to strike a balance between expected information gain and anticipated inferential
complexity. These results contribute to our understanding of causal inference in continuous time,
incorporate a new dimension to the study of human active learning and offer new directions for
research into human learning.



Chapter 7

Evidence from the future

“On principle, it is quite wrong to try
founding a theory on observable
magnitudes alone. In reality the very
opposite happens. It is the theory
which decides what we can observe.”

Albert Einstein

Outcomes of any scientific experiment or intervention will naturally unfold over time. In
Chapter 5 and Chapter 6, we have seen how people process observed evidence, while we

know little about how people consider the “unobserved evidence” — evidence that is on its way to
come. In this chapter, I investigate how people make causal inferences from measurements over
time, focusing on how they may extrapolate potential future evidence based on present trends
and incorporate it when making causal judgments.

Across three experiments, I had participants observe experimental and control groups over
several days post-treatment in a fictional biological research setting. I identify competing per-
spectives in the literature: Contingency-driven accounts predict no effect of outcome timing while
the contiguity principle suggests people will view a treatment as more harmful to the extent that
bad treatment outcomes occur earlier rather than later. In contrast, inference to the functional
form of a treatment effect can license extrapolation beyond the measurements and lead to dif-
ferent causal inferences. I find participants’ causal strength and direction judgments in temporal
settings vary with minimal manipulations of instruction framing. When it is implied that the
observations are made over a pre-planned number of days, causal judgments depend strongly on
contiguity. When it is implied that the observation may be ongoing, participants extrapolate
current trends into the future and adapt their causal judgments accordingly. When data are
revealed sequentially, participants rely on extrapolation regardless of instruction framing. The
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results demonstrate human flexibility in interpreting temporal evidence for causal reasoning and
emphasize human tendency to generalize from evidence in ways that are acutely sensitive to task
framing.

Content from this chapter is a reprint of the material as it appears in Gong & Bramley (2023b).

7.1 Introduction

In both individual cognition and scientific practice, discovering and measuring causal effects is
of central interest. Unfortunately, even with good quality experimental data and a well matched
control group this can still be challenging, because genuine causal influences can take complex
forms and our measurements of them are inevitably incomplete. Some effects might occur instantly
and dissipate rapidly (such as from electric shocks or adrenaline injections), but others might peak
later (parecetmol) grow or compound over minutes, days or years (perhaps lockdowns on covid
rates, or European membership decisions on GDP). This highlights a central challenge for causal
induction: To estimate the strength and direction of a novel cause, we need to decide when best to
measure it. But to the extent that a treatment is truly novel, we are likely to lack the necessary
mechanistic understanding to make this choice and so be forced into guesswork based on our
inductive biases and whatever measurements we have.

Popular causal learning models, such as delta-P (Allan, 1980), Power PC (Buehner et al., 2003;
Cheng, 1997), and Causal Support (Griffiths & Tenenbaum, 2005) contain no mention of temporal
dynamics, often restricting their applicability to settings where we can assume the measurements
were made at the appropriate moment to capture genuine effects. A classic scenario involves
randomly assigning samples to two groups, one of which is exposed to the cause (e.g. a medical
treatment) and the other of which is not. Causal judgments are assumed to be calculated based on
the resulting treatment-control contingency, that is based on how the samples from experimental
vs. control groups differ in the prevalence of the effect.

A separate line of research shows that people are sensitive to temporal information (Bram-
ley, Gerstenberg, Mayrhofer, & Lagnado, 2018; Stephan et al., 2020; Greville & Buehner, 2010;
Lagnado & Sloman, 2006; Bechlivanidis et al., 2022; Gong & Bramley, 2023a; Greville et al.,
2020; Buehner & May, 2003; Buehner & McGregor, 2006). Event order appears to be a powerful
heuristic cue to causal order which that can even override contingency information (Lagnado &
Sloman, 2006). Event delays influence causal judgments (Shanks et al., 1989; Greville & Buehner,
2010; Lagnado & Speekenbrink, 2010). The temporal proximity principle, also known as conti-
guity, captures that ceteris paribus people make stronger causal attributions for short temporal
delays than for long temporal delays (Grice, 1948; Anderson & Sheu, 1995). This applies to not
only type-level judgments that reflect beliefs about which causal events cause which type of effect
events (Greville & Buehner, 2007, 2010; Buehner & May, 2003; Buehner & McGregor, 2006), but
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Figure 7.1: An example stimulus material of the current study (a) and the corresponding extrapolation
results of how the new case will be in the future given different regression models (b). The Poisson
regression would predict the experimental case as 0 at Day 9 due to the cumulative cases have exceeded
the max sample size. The Gaussian process regression was based on RBF kernel (E. Schulz et al., 2017).

also token-level judgments that reflect beliefs about which particular cause event actually caused
which particular effect event (Henne et al., 2021; Ziano & Pandelaere, 2022).

Greville & Buehner (2007) built a bridge between contingency and contiguity by asking par-
ticipants to evaluate the effect of treatments on bacteria survival in a day-by-day context. In
contrast to contingency studies that displayed summarized outcomes, they provided participants
with a sequence of numbers showing how many of the bacteria cultures died per day over several
days. Replicating basic contingency findings, participants judged a treatment to be harmful if the
experimental group had a greater total number of deaths than the control group and beneficial
if the reverse was true. Meanwhile, the timing of the deaths in the experimental condition also
made a difference. For the same total number of deaths, participants judged the harming effect
to be greater when more of the deaths occurred on the earlier observation days and less harmful
when more bacteria died on later days.

However, as aforementioned, causal dynamics could have different forms and they are unnec-
essary to be fully explained by the contiguity principle. In this paper, we extend on the work of
Greville & Buehner (2007), showing that people not only consider temporal information, but that
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they can also interpret this information flexibly and adaptively. In particular, we demonstrate
that instructional cues or the display format, can lead to different patterns of causal inference for
the same set of observations. We demonstrate this idea with the following scenario adopted from
Greville & Buehner (2007): Imagine a biotechnology lab examines the effect of several types of
radiation treatment on the survival of bacterial cultures. Bacterial cultures die naturally after a
number of days, but the treatment might promote the survival of bacterial cultures (be beneficial)
or kill them prematurely (be harmful). In the example shown in Figure 7.1a, are Sigma-Rays
harmful or beneficial to the survival of AB-loop bacteria? Contingency provides no straightfor-
ward answer here since both groups have experienced the same total number of deaths by the
end of the observation. According to the contiguity principle (Greville & Buehner, 2007), the
treatment seems to be beneficial, potentially postponing the death of bacteria, as there are fewer
deaths in the observations on days 1–3. However, one might rather suspect the treatment will
ultimately prove harmful since the experimental condition has a worryingly increasing trend and
most of the forty samples are still alive on Day 5. Almost any reasonable statistical model based
on days 1–5 would tend to predict more death cases on days 6–9 in the experimental condition
than the control condition (see Figure 7.1b for examples) .1

As demonstrated in the above example, recognizing differing trends across a set of measure-
ments is another way of parsing the temporal information contained in a set of post-experimental
measurements. It is possible that when making causal inferences, people consider not only the
contingency and contiguity they have observed, but also whether the rates are rising or falling
across the observations (and having allowed for the control condition baseline behavior) and what
these suggest about the time course of the causal influence. Prediction and imagination are a
key components of human cognition. Indeed, people automatically imagine possible states even if
they are irrelevant to the task they have been given (Guan & Firestone, 2020). More importantly,
our imagination is grounded in reality, generalizing from known circumstances to hypothetical
futures and nearby counterfactual possibilities (Shtulman & Morgan, 2017; McCoy & Ullman,
2019; Lucas & Kemp, 2015). With regard to the dimension of time, people have been found to
extrapolate future events by relying on the event history, even in settings set up such that each
event is sampled independently (e.g. the gambler’s and hot-hand fallacies; Ayton & Fischer, 2004;
Hahn & Warren, 2009; Szollosi et al., 2019). There is an entire research field that investigates
how individuals make generalizations across contexts (Lucas et al., 2015; E. Schulz et al., 2017;
B. Zhao et al., 2022; Hahn & Warren, 2009). We examine whether people further apply their
generalizations from evidence to their causal judgments (Johnson et al., 2016).

1Of course, how many more deaths one predicts and when they will occur depends on one’s specific
choice of model and what inductive biases one brings to bear. In particular, the parameters of a causal
generative model will depend on the the functional forms assumed for the base rate and causal effect. We
do not attempt to resolve this here. The current paper mainly rely on the linear predictions, which is the
common form of human generalization (Lucas et al., 2015).
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Table 7.1: Experimental stimuli.

Increasing Decreasing
Delta-P(40) Delta-P(15) Total Data Slope Data Slope

A 0 0 Exp 10 0,1,1,3,5 1.2 3,4,2,1,0 -0.9
Ctr 10 1,3,2,2,2 0.1 2,2,1,2,3 0.2

B 0 0 Exp 14 1,2,2,4,5 1.0 3,5,3,2,1 -0.7
Ctr 14 3,3,3,3,2 -0.2 2,3,3,3,3 0.2

C -.05 -.13 Exp 3 0,0,0,0,3 0.6 3,0,0,0,0 -0.6
Ctr 5 2,1,1,1,0 -0.4 1,0,1,1,2 0.3

D -.08 -.20 Exp 5 0,0,0,1,4 0.9 1,4,0,0,0 -0.6
Ctr 8 2,2,2,1,1 -0.3 2,2,1,1,2 -0.1

E -.10 -.27 Exp 6 1,1,0,1,3 0.4 2,3,1,0,0 -0.7
Ctr 10 3,2,2,2,1 -0.4 1,2,2,2,3 0.4

F .05 .13 Exp 7 0,0,2,2,3 0.8 3,2,2,0,0 -0.8
Ctr 5 1,1,2,1,0 -0.2 1,1,0,1,2 0.2

G .08 .20 Exp 11 0,2,2,3,4 0.9 2,4,3,1,1 -0.5
Ctr 8 1,2,2,2,1 0 1,2,2,1,2 0.1

H .10 .27 Exp 14 1,2,2,4,5 1.0 2,4,3,3,2 -0.1
Ctr 10 2,2,1,3,2 0.1 1,2,2,2,3 0.4

Note: Delta-P was calculated using the sample size of 40 and 15 separately. Participants were randomly
assigned to one of two stimulus lists. List 1 included the increasing version of A, C, E, G and the decreasing
version of other items. List 2 included the decreasing version of A, C, E, G and the increasing version of
other items.

To test whether people simply rely on contiguity, or also infer more complex or delayed causal
influences from trends, we manipulate in three experiments what participants are told about the
experimenter’s stopping rule (Experiment 1), the display format (Experiment 2), and the sample
size (Experiment 3). We anticipate people will rely more on the trends when they focus on the
possibility that more measurements are to come or that there are many more samples that have
not yet been affected.

7.2 Experiment 1

In Experiment 1, we investigated the impact of instructions on people’s use of temporal informa-
tion in causal judgments. Participants in one group were informed that there was an intended
observation period that has the same length as the existing records. This was similar to Greville
& Buehner (2007), thus we predicted that participants would be influenced by contiguity in the
same manner as the previous study. In contrast, participants in another group were told that
the observations would continue beyond the current records. This manipulation was intended to
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highlight the open future and as a result, we anticipated that participants would rely more on any
trends in the daily case rates when making judgments.

7.2.1 Method

Participants Two-hundred participants (102 female, 96 male, 1 non-binary, 1 undisclosed,
aged 46 ± 13) were recruited from Prolific Academic and were randomly assigned to either the
Finished (N=100) or Unfinished (N=100) conditions (see Design & Materials below). In all three
experiments, participants were self-declared native English speakers located in the UK or the
US and had finished at least 500 task submissions with approval rate equal or above 99%. The
sample size was determined by a power analysis assuming a medium size effect of a within–between
interaction and the goal of .80 power at the standard .05 alpha. Participants in all experiments
received a payment of £0.50 for finishing the task. The task took around 5 minutes. 2

Design & Materials We used the biotechnology cover story shown in the Introduction and
manipulated three factors. Contingency (zero, beneficial, harmful) and Trend (increasing, decreas-
ing) were manipulated within participants. As shown in Table 7.1, the contingency depended on
the contrast of total death cases between the experimental and control groups during the obser-
vation: P (E|C) − P (E|¬C). The positive contingency is regarded as harmful and the negative
contingency is regarded as beneficial. Stimuli with the same contingency could differ in their
temporary trends. Increasing trends disclosed daily death cases under the experiment group with
positive slopes while decreasing trends disclosed daily death cases with negative slopes. Partic-
ipants were randomly assigned to one of two stimulus lists to ensure they were only exposed to
either increasing or decreasing versions of the same contingency (see Table 7.1).

The instruction was manipulated between participants. In the Finished condition, participants
were told that: “Bacterial cultures will be observed over a five-day period”, while in the Unfinished
group, participants were told that: “Bacterial cultures will be observed over days. The observation
hasn’t ended yet and the records now include Day 1 to Day 5”. We predicted people would react
differently to the same data given different instructions. The instructions in the Finished condition
were similar to Greville & Buehner (2007), thus we predicted that participants would rely on
contiguity, i.e. a decreasing daily trend with more death cases on the early days would reflect
a more harmful relationship while the reverse sequence (but same overall count) suggests a less
harmful relationship. In contrast, the Unfinished condition highlights the open future, and hence
we predicted that participants would rely on the trend. That is, a decreasing trend should imply
that in the long run there is a less harmful relationship than when there is increasing trend (which
implies the cause’s influence is yet to peak). Two instructions were paired with corresponding
formats as shown in Figure 7.2.

2Material, data, analysis code of all experiments are available at https://osf.io/h2y3g/.
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Experiment 1 Experiment 3

(Finished)

(Unfinished)

(Small Sample)

(Large Sample)

Day 1, Day 2, Day 3, Day 4, Day 5

0, 1, 1, 3, 5

1, 3, 2, 2, 2

Day 1, Day 2, Day 3, Day 4, Day 5,   …

0, 1, 1, 3, 5,   …

1, 3, 2, 2, 2,   …

Day 1, Day 2, Day 3, Day 4, Day 5

0, 1, 1, 3, 5 (of 15)

1, 3, 2, 2, 2 (of 15)

Day 1, Day 2, Day 3, Day 4, Day 5

0, 1, 1, 3, 5 (of 40)

1, 3, 2, 2, 2 (of 40)

Experiment 2

(Finished)

(Unfinished)

Day 1, Day 2, Day 3, Day 4, Day 5

0 1 1

1 3 2

Day 1, Day 2, Day 3, Day 4, Day 5,   …

0 1 1

1 3 2

Figure 7.2: Stimuli displays under different conditions. Participants observed the number over days
in a similar format shown in the Introduction with specific modifications illustrated in this figure. In
Experiment 1 and 2, the sample size was disclosed to participants in text.

Procedure Participants in both groups were given the biotechnology lab cover story and in-
formed that 40 bacteria cultures were tested in each experimental or control group, the same
number used in Greville & Buehner (2007). Following instruction on how to read tabular data,
they were exposed to the key sentence manipulations for at least five seconds to ensure they had
read them. Participants then went through 8 different pairs of treatments and bacteria. For
each pair, they judge the influence of a treatment on a new kind of bacteria on a 7-point scale
(-3=definitely beneficial;-2=probably beneficial; -1= perhaps beneficial; 0=not sure; 1=perhaps
harmful; 2=probably harmful; 3= definitely harmful).

7.2.2 Results

A three-way mixed ANOVA Analysis was performed. As shown in Figure 7.3, there was a main
effect of contingency (F (2, 198) = 293.73, p < .001, η2p = .60). Pairwise comparison showed that
the difference between each pair of contingency levels was significant (zero–beneficial: t(198) =

14.72, p < .001, d = 0.69; zero–harmful: t(198) = 11.43, p < .001, d = 0.44; harmful–beneficial:
t(198) = 20.79, p < .001, d = 1.13 after Bonferroni adjustment). There was no main effect of
Trend (F (1, 198) = 0.32, p = .57) or Instruction (F (1, 198) = 0.02, p = .89).

Importantly, there was a interaction between Trend and Instruction (F (1, 198) = 14.42, p <

.001, η2p = .07). As shown in Figure 7.4, decreasing trends were judged as more harmful than
increasing trends in the Finished condition (simple effect: t(198) = 3.09, p = .002, d = 0.27),
replicating the contiguity effect (Greville & Buehner, 2007). In contrast, increasing trends were
judged as more harmful than decreasing trends in the Unfinished condition (t(198) = 2.29, p = .02,
d = 0.20), indicating a trend effect. The other two-way or three-way interactions non-significant
(ps > .05).

To check whether the interaction effect originates from the instruction manipulation or the
visual format difference (the dots in the Unfinished condition), we conducted a supplementary
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Figure 7.3: Means of causal judgments under different contingency and experimental conditions. Partic-
ipants judged the influence of treatment on a scale from -3 (definitely beneficial) to 3 (definitely harmful).
Dashed lines indicates the middle level when it is not sure whether the treatment was harmful or beneficial
to the survival of the bacteria cultures. Error bars indicate 95% confidence intervals.

experiment (N=200) by only keeping the visual format differences between two groups (see Ap-
pendix C for more details). Both groups were exposed to an instruction that was relatively neutral
“The observation has happened for five days so far. The records now include Day 1 to Day 5”. In
contrast to Experiment 1, there were no any interaction effects (ps > .05). This suggests that the
effect of the manipulation in Experiment 1 resulted from the instruction text itself.

7.3 Experiment 2

Experiment 1 showed that people not only consider contiguity when processing temporal infor-
mation, but can also be sensitive to the trend, with this seemingly depending on how the choice
of when the observations are made is framed. Experiment 2 investigated whether the tendency to
rely on trends rather than contiguity can occur in other situations. Instead of the static display
in Experiment 1, we used the dynamic display where participants click a button to reveal the
data sequentially day-by-day (Soo & Rottman, 2020). This dynamic display not only reflects the
reality that temporal data really are collected over time, but also reflects a setting often used in
the previous research that has found people anticipate the future data based on what they have
seen so far (Ayton & Fischer, 2004; Hahn & Warren, 2009; Szollosi et al., 2019). Therefore, we
predicted that this real-time mode would trigger participants to anticipate the future, and so will
likely rely more on the trends than contiguity when making causal judgments.

7.3.1 Method

Participants Two-hundred participants (93 female, 104 male, 1 non-binary, 2 unenclosed, aged
43±13) were recruited from Prolific Academic and were randomly assigned to either the Finished
(N=100) or Unfinished (N=100) conditions (see Design & Materials below).
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Figure 7.4: Means of causal judgments under Decreasing vs. Increasing trends across experimental
conditions. Participants judged the influence of treatment on a scale from -3 (definitely beneficial) to 3
(definitely harmful). Error bars indicate 95% confidence intervals.

Design & Materials The experimental design and materials were similar Experiment 1. We
retained the instruction manipulation but differing from Experiment 1, both groups experienced
the evidence sequentially (Figure 7.2). Each time participants clicked on the “show the next day”
button, the the next observation was revealed. Once all data had been revealed, participants in
the Finished condition were prompted that “the bacterial experiment is now completed” while
participants in the Unfinished condition were prompted that “the bacterial experiment continues,
and you have seen the existing records”.

7.3.2 Results

Similar to Experiment 1, there was a main effect of contingency (F (2, 198) = 184.65, p < .001,
η2p = .48; pairwise comparison: zero–beneficial: t(198) = 12.61, p < .001, d = 0.63; zero–harmful:
t(198) = 7.26, p < .001, d = 0.28; harmful–beneficial: t(198) = 16.48, p < .001, d = 0.91 under
Bonferroni’s adjustment). There was a main effect of Trend (F (1, 198) = 9.97, p = .002, η2p = .05),
but no main effect of Instruction (F (1, 198) = 0.95, p = .33) or any two or three-way interaction
effect (ps > .05). In contrast to Experiment 1, participants under both Finished or Unfinished
instructions tended to rely on trend to make judgments. That is, they judged increasing trends
as more harmful than decreasing trends in spite of their lower contiguity.

7.4 Experiment 3

Experiment 1 and 2 investigated the contextual factors that could influence how people utilize the
temporal information. We found that participants exhibited a tendency to rely on the contiguity
of deaths in the treatment condition when they experienced the data under a static display with
an instruction indicating that the observation had ended. In contrast, when the uncertain future
was emphasized, through either the instructions or by use of a dynamic display, participants
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Figure 7.5: The Cohen’s d effect size pooled out from Increasing-Decreasing simple effect tests in different
conditions across experiments. Negative values mean participants prioritized contiguity over trend, while
positive values mean participants prioritized trend over contiguity. Error bars indicate 95% confidence
intervals of Cohen’s d estimates.

tended to rely on the trend. Experiment 3 investigates a more fundamental feature of how people
contextualize count data: the total sample size. A small total sample size means that participants
have observed the majority of the outcomes (so there is little left to extrapolate about). A large
sample leaves many cases unresolved (in our setting, many bacterial cultures that are still alive)
and thus leaves more room for participants to speculate about the future.

7.4.1 Method

Participants Two-hundred participants (121 female, 79 male, aged 45 ± 12) were recruited
from Prolific Academic and were randomly assigned to either the small-sample (N=100) or large-
sample (N=100) conditions (see Design & Materials below).

Design & Materials The experimental design and materials were similar Experiment 1,
except that instead of manipulating the instructions, we now manipulated the information of
sample sizes. Participants in the Small-sample condition were told that both experimental and
control groups tested 15 bacteria cultures, while participants in the Large-sample condition were
informed that both groups tested 40 bacteria cultures, the same as Experiment 1 and 2 (see
Figure 7.2). We did not include any instruction on how long the observation has lasted or whether
the observation had ended at Day 5 (i.e. “Finished”or “Unfinished”) in this experiment.

7.4.2 Results

As Experiment 1 and 2, there was a main effect of contingency (F (2, 198) = 201.25, p < .001, η2p =

.67; zero–beneficial: t(198) = 15.71, p < .001, d = 0.74; zero–harmful: t(198) = 9.53, p < .001,
d = 0.35; harmful–beneficial: t(198) = 20.03, p < .001, d = 1.09 after Bonferroni’s adjustment,
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Figure 7.3). There was no main effect of Trend (F (1, 198) = 0.92, p = .34) or Sample (F (1, 198) =

0.09, p = .76). Most importantly, as in Experiment 1, there was an interaction between Trend
and Sample (F (1, 198) = 5.19, p = .02, η2p = .03). As shown in Figure 7.4, decreasing trends
were judged as more harmful than increasing trends in the Small-sample condition (simple effect:
t(198) = 2.29, p = .02, d = 0.20). The Large-sample condition showed the reverse pattern
although the simple effect test was insignificant (t(198) = 0.93, p = .35, d = 0.08).

We can better understand the influence of temporal information in three experiments by
summarizing the effect of Increasing-Decreasing simple effect tests in Figure 7.5. Here, a nega-
tive effect size means participants prioritized contiguity over trends, while the positive effect size
means participants prioritized trends over contiguity. Participants’ consideration differed across
conditions. They tended to follow contiguity when the instructions indicated that the observa-
tion had ended (Experiment 1) or the data revealed the state of the majority of the samples
(Experiment 3). In contrast, they showed a tendency to extrapolate the trend when they were
told that the observation has not finished yet (Experiment 1) or experienced the data sequentially
(Experiment 2).

7.5 General discussion

Decades of work has studied how people learn causal relationships but it is still not clear how
temporal information shapes causal inferences. Rather than exposing people to prepackaged
atemporal tabular data, we here provided sequences of daily observations of an experimental and
control condition. These are both more ambiguous but more informative than a simple snapshot
of outcomes, since they contain information about the time profile of the causal influence (and
hence whether the effect has been adequately captured by the available measurements). The
mortality scenario we used here showcases this since, with a long enough time window, all the
bacterial samples will naturally die meaning that there is no truly neutral time at which to compare
experimental and control groups. This equifinality is a common feature of real world questions
about causal effects but one that is rarely highlighted in causal cognition research.

We constructed trajectories in which new death cases after treatments increased or decreased
over time. We found that participants robustly used the contingency information (Cheng, 1997;
Buehner et al., 2003; Griffiths & Tenenbaum, 2005). Beyond this, they used the temporal infor-
mation and used it in a malleable way. Participants judged a treatment to be more harmful if
more samples died in the early days in the experimental condition, consistent with the contiguity
principle found in previous studies (Greville & Buehner, 2007; Pacer & Griffiths, 2012; Buehner,
2006). However, this only happened when participants saw the data in a static format and were
either told that the observation had finished (Experiment 1) or that the total sample size was so
small that they had seen the most of the potential data by day 5 (Experiment 3). On the other
hand, more deaths on the later days could indicate a increasing trend that would seem to herald
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more experimental-condition deaths in the near future. To the extent that people “play out” these
possible futures in their mind, we thus expected them to draw a quite different conclusions in these
situations. If people rely on the trend rather than the contiguity to make judgments, they would
conversely think of high numbers of early deaths and concomitantly lower later deaths as evidence
of a beneficial effect. Indeed, we found that people relied on the trend when they were informed
that the observation had not ended (Experiment 1) or experienced a dynamic format where the
data were revealed sequentially (Experiment 2). They showed a similar, albeit non-significant,
tendency when it was emphasized that the time of death for most samples was unknown at the
time of the final measurement (Experiment 3). These effects consistently occurred regardless of
whether the contingency information suggested the cause to be harmful, beneficial, or non-causal.
As such, this report is the first to show the boundary conditions of contiguity in case-based causal
learning.

We here showed that, when utilizing temporal information, people are sensitive to the wider
context (here cued by the cover story, presentation format and sample size). Whether strength
judgments reflected generalization beyond the data depended on the extent that the context
and the available measurements implied that all the relevant causality had been captured in the
provided observations. However, it remains unclear how each factor influences the underlying cog-
nitive process. For example, the instruction and visual format may influence different aspects. It
is possible that instructions tend to influence the learner’s prior expectation about causal delays,
while visual formats tend to influence their use of the data: When participants are informed that
the experiment ends on Day 5, they may tend to interpret this as signaling that the relevant causal
influences will tend to dissipate within 5 days (else the experiment has been poorly constructed),
resulting in a strong expectation for that any causal effects will be captured in the observation
window. On the other hand, when participants experience the evidence in a dynamic format, they
may spontaneously anticipate the future irrespective of instruction, and utilize this anticipated
data to make judgments. In cases where participants are informed that the experiment continues
after Day 5, they may additionally form a prior belief that the causal influence could take more
than 5 days to fully manifest, and thus deliberately try to anticipate the future and summarize
this with their causal judgment. Moving forward, research could employ Bayesian computational
models to analyze the influence of these factors on different components of inference, i.e. in identi-
fying the true context (tapping into priors about the relevant causal mechanisms) and interpreting
the evidence (calculating appropriate likelihoods). Future work could also attempt to delineate
between the more automatic component processes like involuntary extrapolation of sequences from
more deliberative processing like a context-driven choice of how to interpret evidence.

One practical implication of this study is its demonstration that instructional framing influ-
ences how people interpret the data they are shown. Participants in Experiment 1 drew different
causal conclusions from the same evidence depending on only a very minimal instruction manip-
ulation. This means that providing accurate context as well as data is vital for accurate scientific
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communication (Soyer & Hogarth, 2012). Another key question for the future work is how people
make stopping decisions when actively monitoring the outcome of their own or others’ interven-
tions or experiments. Efficient information sampling is of practical importance to cognition, since
learners must balance the rewards and costs by making sensible stopping and task switching deci-
sions (Callaway et al., 2022; Yu et al., 2014; Gong et al., 2023). This becomes even more critical
in the kinds of dynamic contexts and complex causal effects that are ubiquitous in everyday life
(Coenen, Nelson, & Gureckis, 2019; Anvari et al., 2022).

7.6 Conclusion

Across three experiments, we examined the boundary conditions of contiguity in causal inference.
We found that people treated early post-intervention case levels as more important than later
ones only if the majority of outcomes were subsequently observed or if they had been informed
that the observations had been deliberately terminated. If told the observations would continue,
or if experiencing the data sequentially, they instead focused on the trends and anticipated future
evidence and concomitantly different and even reversed causal effects. Our work shows that human
causal learning is not only generically sensitive to temporal information around measurements of
causal effects but also to the generalizations licensed by the context in which they are measured.



Chapter 8

General discussion

Causal reasoning plays a critical role in modern scientific inquiry. Researchers have developed for-
mal theories for experimentation and data analysis, enabling the discovery of causal relationships
from empirical evidence. However, the scope of causal reasoning extends far beyond the confines
of the scientists’ laboratory. Its origins can be traced back to ancient times when our survival as a
group hinged on our understanding of cause and effect. Today, it remains an integral part of our
pursuit of a better life, permeating every moment. We learn over time, updating our beliefs every
day as we encounter new experiences. We learn from time, entangling the relationships among
events based on how they unfold chronologically. Learning becomes an inherent part of our lives,
as we obtain knowledge from the events that affect us directly or those that affect those we care
about.

In this thesis, I investigate how people learn causal structures from events unfolding in contin-
uous time. It is surprising that despite decades of developing causal learning theories, none have
effectively addressed the challenges posed by continuous-time data. Equally surprising is the fact
that despite decades of empirical studies on temporal causal learning, a systematic exploration
of diverse causal structures — encompassing generative vs. preventative and acyclic vs. cyclic
relationships — remains absent. These intriguing gaps persist because empirical and theoretical
advancements are interdependent, each helping the progress of the other (Guest & Martin, 2021).
Therefore, to investigate this specific subject, this thesis embraces a computational cognitive psy-
chology approach. It constructs new quantitative theories that describe the process of inferring
causal structures through the timing of events; it also tests humans on causal learning tasks that
encompass a range of causal structures. This iterative interplay between modeling and empirical
data seeks to deepen our comprehension of human causal learning, particularly within the context
of learning from events in continuous time.
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8.1 Summary of the main findings

In Chapter 4, I develop a rational framework of temporal causal learning, and demonstrate the
extent of sensitivity people exhibit towards this framework. This is an important first step,
as it establishes the benchmark performance against which human behavior will be compared.
The rational model developed in this chapter encompasses a wide range of tasks that have been
collected from previous studies, as well as three novel tasks designed in this thesis.

While the rational framework can partially accounts for individuals’ performance, human
behavior may not always align with normative expectations. Temporal causal learning poses
a unique “double trouble”. Firstly, temporal information inherently entails greater complexity
compared to atemporal information, as the observations within a sample are not independent.
Multiple possibilities arise concerning how an event is generated and its potential connections
to other events. Secondly, learning in a temporal context necessitates learners to simultaneously
observe ongoing events and contemplate their interrelationships. A successful learner may need to
simultaneously summarize past occurrences, pay attention to the present, and imagine potential
future. Both of these issues might present difficulties for human intellect. Consequently, in order to
better elucidate human behavior, I expand upon the rational framework by developing additional
cognitively plausible models:

In Chapter 5, I investigate how people learn causal structures that involve generative and
preventative relationships. People demonstrate the capability to identify the correct structure;
however, they also exhibit susceptibility to the influence of intertwined evidence from different
variables. It suggests that people may not engage in precise inferences for each event but rather
segment the evidence and compress information. To better account for participants’ choices in
the task, I develop a summary-statistic model. This model incorporates three cognitive features,
namely mental simulation, local evidence, and local computation, providing a more comprehensive
explanation of participants’ causal judgments in the task.

In Chapter 6, I investigate how people actively learn causal structures, by implementing in-
terventions over time. Participants strategically time their interventions to ensure digestible evi-
dence, balancing the desire for informative evidence while avoiding inferential complexity. I use
the resource-rational framework to provide a comprehensive explanation of participants’ inter-
vention decisions, quantifying the informativeness and complexity of the evidence. The results
indicate that participants’ decisions regarding where and when to intervene align more closely
with the predictions of the resource-rational model, which achieves a balance between information
gain and computational cost.

One foundational question regarding temporal causal learning is how temporal information is
mentally represented. Time has a distinctive feature of continuous unfolding, where each passing
moment transitions the present into the past and the future into the present. This dynamic nature
of time potentially influences how we perceive and process temporal information. In Chapter 7,
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I show that when people observe evidence, their attention extends beyond the present moment.
They imagine what may occur in the future and incorporate imagined evidence into their causal
inferences. This finding may challenge the conventional understanding of temporal evidence and
how it is used in human causal reasoning.

8.2 Theoretical implications

Model-based cognition Although the temporal and atemporal data may appear markedly
dissimilar, this thesis demonstrates their compatibility within the Bayesian modeling framework.
The rational model of temporal causal learning, as shown in Chapter 4, expands upon the Bayesian
probabilistic model to effectively capture temporal information. This extension indicates that,
akin to atemporal causal learning, temporal causal learning can be conceptualized as a model-
based Bayesian belief updating process.

To study the mental process of temporal causal learning, I direct my focus not solely towards
the literature of causal learning, but also a broader range of model-based cognition, such as
physical reasoning (Battaglia et al., 2013; Ullman et al., 2018; Ludwin-Peery et al., 2021), planning
(Callaway et al., 2022), and decision making (Lieder & Griffiths, 2017; Hahn & Warren, 2009). The
ideas emphasized in the thesis, such as mental simulation (Chapter 5), resource rational decision
making (Chapter 6), and generalization (Chapter 7), are not limited to the current setting. They
resonate throughout various inquiries under the domain of model-based cognition. Temporal
causal learning is promising research topic, as it has the potential to shed light on and improve
our understanding of the complexities of model-based cognition in the human mind.

Evidence processing For decades, cognitive researchers wonder how people learn so much
from so little, i.e. how one acquire substantial knowledge from limited information. Multiple
perspectives have contributed valuable insights to this inquiry. These perspectives underscore the
presence of cognitive mechanisms enabling the integration of prior beliefs (Griffiths & Tenenbaum,
2009) and engagement in hierarchical and compositional structures (Ullman et al., 2018; Lake et
al., 2017). Nevertheless, this thesis presents one additional explanation: Perhaps the information
encapsulated within the data is not inherently sparse, but rather rich when considering the tempo-
ral dimension, especially under the fact that we have cognitive means to effectively utilize it. By
emphasizing the significance of temporal information, this thesis contributes to the understanding
of how individuals extract and leverage valuable information from seemingly limited data. In
reality, people frequently learn from direct perception. It will become more and more important
for us to study and understand how information is extracted from these perceptual experiences.

Natural cognition One motivation behind this thesis is to gain insights into natural cognition
as it unfolds in everyday contexts (Loftus, 1981). Incorporating the element of time brings the
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causal learning task a step closer to mirroring real-world scenarios. The empirical studies in
Chapter 5 and Chapter 6 underscore the resonance between many of these findings and those
observed in previous atemporal studies, especially regarding how people are sensitive to the base
rate, how generative and preventative causes can intertwine in influencing people’s judgments,
and what kind of local errors people tended to make when learn causal structures. The empirical
studies in Chapter 5 and Chapter 6 underscore the resonance between many of these findings
and those observed in previous atemporal studies, particularly concerning people’s sensitivity to
the base rate (Rottman, 2016), the interplay of generative and preventative causes in influencing
people’s judgments (Buehner et al., 2003; Cheng, 1997), and the types of local errors individuals
tended to make when learning causal structures (Fernbach & Sloman, 2009; Davis et al., 2020).
However, they also can offer some insights into puzzles that cannot be fully resolved through
atemporal causal learning studies. For instance, in Chapter 6, I demonstrate that with temporal
information considered, intervening on the root node could yield more informative results than
intervening on the non-root node, as long as the agent can process the abundant information
provided.

This is very different from the atemporal setting where intervening on the root node can often
introduce confounding due to the spontaneous activation of all direct or indirect effects stemming
from the root node (Steyvers et al., 2003; Coenen et al., 2015). Researchers find it difficult to
explain the root-node preference (i.e. postive testing Coenen et al., 2015) observed when people
tend to intervene on the root node in the atemporal setting, while the temporal context introduced
in this thesis presents one potential explanation: People who possess familiarity with temporal
causal learning might hold the belief that root node interventions encompass more comprehensive
information. Such a belief may carry over to the atemporal context, which is less familiar in their
daily lives. 1 Thus, by studying causal reasoning within more natural settings, we can anticipate
uncovering explanations for specific behavioral tendencies exhibited by individuals.

Interdisciplinary contributions Studying the mental process of causal learning is impor-
tant, as causal discovery stands not only as an essential cognitive process but also as the very
foundation of science itself. The scientific community has exerted collective effort to develop
methodologies for causal discovery. Meanwhile, this topic is of great significance for computer
scientists who strive to create intelligent tools or facilitate scientific breakthroughs. Thus, causal
cognition occupies a central position within the triad of individual, artificial, and collective intel-
ligence. This thesis is anchored in the domain of individual intelligence, yet it casts illumination
on other dimensions as well. For instance, in Chapter 5 and Chapter 6, I describe the aspects
that individuals harness to enhance the efficiency and computational economy of causal learning.
These insights could prove invaluable in shaping the development of human-like artificial intelli-
gence. Furthermore, Chapter 7 demonstrates that even when presented with the same empirical

1I am grateful to Dave Lagnado for raising this point.
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data, laypeople’s causal judgments can be influenced by instructions detailing the decision-making
processes scientists employed during data collection. This underscores the importance of context
in scientific communication.

8.3 A roadmap of future topics

Time and causality, is a field that is still in its infancy, awaiting further exploration. I have
discussed various future directions at the end of Chapter 5-7, each tailored to harmonize with the
empirical inquiries in their respective chapters. However, moving beyond the specific empirical
inquiries tackled within this thesis, there are broader horizons to consider within the domain of
time and causality. I will here discuss topics that may not be intrinsically linked to the empirical
questions presented herein. Instead, they serve to underscore a broader and more comprehensive
interest.

8.3.1 More forms of causation

So far, causal learning studies, including this thesis, have focused on learning about generative
and preventative relationships. It is noted that there are many other forms of causal relationships,
especially after considering time.

Hasten and delay Hasten and delay are two kinds of causal relationships that merely alter
the timing of effects without affecting their frequency (Bennett, 1987). In other words, they do
not generate or prevent events but instead modify when they occur.

When we have the means to track individual effects, it is not hard to distinguish between
generation/prevention and hastening/delaying. For instance, if we assign a unique identifier to
each bus sharing the same number, we can determine whether a bus is generated (new) or hastened
when it arrives unexpectedly early in a morning. In contrast, when we have no access to the
individual identifications, hasten and delay share similarities with generation and prevention:
They both lead to an increase or decrease in the number of outcomes over the short term. The
bacteria task from Greville & Buehner (2007), introduced in Chapter 4 and 7, can arguably be
viewed through the lens of hasten and delay. This is because the outcome, “death”, is inevitable
for each sample. However, given that the records only provided a macro-level information about
daily death numbers, we can still employ the rate-based model, without explicitly categorizing it
as generative/preventative or hastening/delaying.

People may also prefer to use the word “generation” and “hasten” in different situations. Taking
the bacteria task as an example again, if the treatment has an age-dependent effect that causes
each sample to die two days earlier than its originally expected time of death, we might consider
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it a hastening effect. Conversely, if the treatment indifferently causes a large sample to die
simultaneously, we might say it generates death or “kills” the samples.

Regularization Regularization is another potentially intriguing form of causation. In this
case, the cause does not necessarily generate or prevent the effect but rather maintains it at a
specific level. Under point event circumstances, we can describe this maintenance as occurring
at a particular rate. This particular nonlinear situation may involve complex causal mechanisms.
Similar to preventative causation, which necessitates base rate activations, regularization requires
the system to undergo dynamic changes for us to discern the influence of the regularization
cause or causes. Confirming the role of regularization can be challenging since the cause often
appears to have no discernible effect. Many biological systems, including the human body, operate
as complex regularization systems. Consequently, understanding the function of regularization
becomes crucial. It frequently demands careful observation of system dynamics (Ross, 2015).

8.3.2 Causality and temporal perceptions

This thesis explores the impact of perceived temporal information on the assessment of relation-
ships between variables. Additionally, in Chapter 3, I review studies that highlight how knowledge
of causal relationships can influence the perception of temporal delay and temporal order (Hoerl
et al., 2020; Bechlivanidis & Lagnado, 2013; Bechlivanidis et al., 2022).

Prior The perception of causality and the perception of time can influence each other. This
bidirectional influence stems from the inherent uncertainty associated with both domains. Causal
induction, being an inductive problem, is inherently uncertain. Recent research has shown that
individuals can provide systematic and predictable ratings about the confidence of the causal
judgment alongside the causal judgment itself (O’Neill, Henne, Bello, et al., 2022; O’Neill, Henne,
Pearson, & De Brigard, 2022). Concurrently, human perceptions are inherently noisy, and the
input can vary in ambiguity, which could further depend on the modality (e.g. auditory vs. visual
B. C. Moore, 2012; Kanabus et al., 2002). Following a Bayesian framework, when evidence is
uncertain, individuals tend to rely on their prior knowledge to make judgments (De Lange et
al., 2018; Seriès & Seitz, 2013). In this thesis, a uniform prior assumption for different causal
structures is often employed. However, in more realistic settings, individuals are likely to apply
their prior knowledge when learning causal relationships, particularly in continuous time scenarios
where evidence could be more extensive and harder to process than in atemporal settings (see
Btesh et al., 2023).

Temporal perceptions as causal events How people perceive and measure time remains
an unsolved question (Buonomano, 2017). One hypothesis suggests that individuals gauge time
based on the number of events they experience. For instance, your may feel that time appears
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to fly by when exploring a new place during a vacation. However, a month later, you may have
a contrasting feeling that a single day of tourism was longer compared to a typical working day
(Buonomano, 2017). This discrepancy can be attributed to differences between predictive and
retrospective temporal estimation. When estimating time retrospectively, people often consider
the number of events experienced (Jones, 2019). Thus, events serve as important cues for temporal
duration estimation.

Meanwhile, imagining the causal chain of events could help estimate the temporal duration
between two events. For example, when waiting for an online order, one might imagine the process
of the order being sent to the store, packaged, and dispatched (Buchanan et al., 2010). Similarly,
when anticipating the effects of medication, one might imagine the pill dissolving in the stomach,
entering the bloodstream, and reaching the intended target area. Stephan, Tentori, et al. (2021)
discovered that having more knowledge about the detailed mechanism reduces the perception of
a causal relationship between two variables. One possible explanation is that individuals confuse
a preexisting yet unknown mechanism with a newly discovered mechanism that could serve as a
probabilistic mediation. Building upon this thesis, we can propose another possibility: By consid-
ering the details of intermediate mechanisms, reasoners may inadvertently extend the perceived
delays between cause and effect, subsequently reducing the perceived causal relationship between
the two variables.

8.3.3 Continuous values vs. point events

This thesis primarily focuses on how individuals infer causal relationships from point events in
continuous time, whereas other studies have examined how people infer from continuous values
in continuous time (Davis et al., 2020; Rehder et al., 2022; Soo & Rottman, 2018; Zhang &
Rottman, 2021b; Btesh et al., 2023). However, rather than viewing these approaches as separate
mechanisms, they are likely to form a hierarchical structure to explain causal phenomena. To
illustrate this, consider the predator-prey relationship between fish and weed. At the lower level,
we can examine individual events such as a fish consuming a plant. Moving to a higher level, we
can analyze how the populations of fish and weed change over time, based on continuous values.
Finally, at an even higher level, we can investigate how each species experiences cyclic patterns of
bloom and die out, which pertains to the event level again. By moving between these hierarchical
levels, we can switch between continuous values and events.

Importantly, it is not necessary to limit our thinking to the level provided by the data. For
example, in Chapter 4, the rate-based model outperformed the event-based model in capturing
human performance in identifying cyclic structures. This suggests that when the number of events
is large, individuals may employ a relatively continuous representation (i.e. the rate). Similarly,
in Chapter 5, I demonstrate that summary statistics, such as counting the occurrences of effects
following the interventions, can be valuable when direct inference from raw events is challenging.
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Additionally, Rehder et al. (2022) showed that in a setting involving continuous values, individuals
may abstract “events” from trends by focusing on obvious moments of increase or decrease while
overlooking micro-dynamics. These findings indicate that people have the ability to use cognitively
plausible representations and abstract higher-level features from the data.

8.3.4 Laypeople’s theories of causal learning

Research on causal induction has predominantly focused on controlled scientific settings, but in
this thesis, I emphasize the importance of considering the data people encounter in their every-
day lives, which may differ from laboratory conditions. Real-world data often involves temporal
information and interventions that occur over time, introducing interdependencies between data
points. To gain a comprehensive understanding of laypeople’s theories of causal learning, it is cru-
cial to study causal learning in more ecological situations that reflect the complexity and dynamics
of real-life scenarios.

Beyond randomized experiments In the early stages of causal discovery, before the devel-
opment of formal tools and technological advancements, humans did not have access to scientific
methods such as randomized experiments (Athey & Imbens, 2017), causal graphical models (Pearl,
2000), instrumental variables (Imbens, 2014), etc. How did people navigate the realm of causal
discovery without these tools? For instance, people from different cultures independently invented
calendars that align with the rules governing the Earth’s orbit around the sun and the moon’s
orbit around the Earth (Duncan, 1999). People can use herbal remedies to treat illnesses, even
in the absence of randomized medical trials. 2 Their methods may often involved small samples,
repeated measurements, and temporal information (Carlisle & Eldar, 2005; Sternberg et al., 2001).
This thesis focuses on individual causal discovery within a short time scale. However, it is equally
important, if not more so, to explore causal beliefs on a larger scale, i.e. conventions related to
causal beliefs that are not solely confirmed by well-acknowledged scientific methods (Dubova &
Goldstone, 2023). By comparing the so-called “scientific approach” with the approaches adopted
by laypeople, we can gain insights into how different cultures and conventions have emerged over
generations in the domain of causal discovery.

Time travel and causality Time travel has become an increasingly popular topic in science
fiction (Dubourg & Baumard, 2022). These stories often feature characters who can traverse time,
make changes, and then return to the present. However, readers, myself included, sometimes find
these narratives challenging to grasp, especially when authors introduce changes at the beginning
of the story, before the time travel occurs, creating what is known as a closed loop (Suddendorf
& Corballis, 1997; Smith, 2018).

2Thanks to my roommate Elva Peng for inspiring me to think about it.
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Two classic philosophical views on time exist: presentism and eternalism. Presentism regards
the present as the sole reality of time, with the past having already transpired and the future
yet to unfold. In contrast, eternalism does not differentiate between the past, present, and fu-
ture (Buonomano, 2017). The difficulty in comprehending time travel may reflect a presentist
perspective. Moreover, the challenge often lies in understanding the causal order of events within
the closed loop, as cause and effect can become intertwined. This suggests a profound connection
between causality and our understanding of time, which could be investigated in the future.

Causal predictions and actions Learning causal structures with temporal information is
not the final step in the cognitive process. We must also utilize the causal structures we have
learned to predict future outcomes and take timely actions. This applies not only to daily life but
also to various forms of art. For instance, in music, skilled composers strive to create dynamic
melodies that are both unfamiliar and yet conform to conventional patterns, striking a balance
between expectation and surprise (Levitin, 2006). In stand-up comedy, the timing of delivering
a punchline is crucial. Comedians wait for the audience to anticipate what comes next and then
deliver a punchline that subverts their expectations to some degree (Buonomano, 2017; Martin &
Ford, 2018). In photography and filmmaking, the arrangement and sequencing of photos or scenes
can profoundly alter the impact of the narrative, even when using the same materials. Future
research could explore how people employ causal models to guide their actions, particularly in
situations where performers must consider the causal models of their audience or receptors.

8.4 Conclusion

This thesis explores the process of human causal structure induction from events in continuous
time. It builds a bridge between the computational and algorithmic levels in causal reasoning, and
provide quantitative predictions about human judgments in various situations. By understanding
the mechanisms behind people’s rapid and efficient learning with limited resources, this thesis
contributes to our understanding of natural cognition while also offering insights into the quest for
more human-like algorithms. In our daily lives, we encounter not only expected or surprising events
but also ponder their connections to the past and future. Therefore, it is crucial to incorporate a
formal framework for temporal causal inference into the theory of human causal reasoning.
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Appendix A

Appendices for Chapter 5

A.1 Normative calculations

The normative learner updates the prior over structures P (S) (here assumed to be uniform), with
a likelihood function to obtain a posterior distribution, given the set of gamma parameters w

which indicates the belief about delays:

P (S|d,w; i) ∝ p(d|S,w; i) · P (S) (A.1)

Here d refers to effect data (E’s activations), which is conditioned upon a set of interventions i

on the causes (A or B).
In order to maintain rational beliefs about causal structure, the ideal reasoner considers all

possible causal paths Zs that could describe what actually happened given each possible structural
hypothesis s ∈ S, summing up the individual likelihood of these mutually exclusive and exhaustive
possibilities to assess the overall likelihood of each structure hypothesis:

P (d|s,w; i) =
∑
z′∈Zs

P (z′|s,w; i) (A.2)

Normative causal attribution involves three steps: 1) attributing causes to effects that have
occurred; 2) explaining away effects that should or might have occurred but were not observed;
3) examining the temporal distance between presumed preventative events and the subsequent
effect event. Step 1 and 2 correspond to path construction. We use {αg, βg},{αp, βp}, {αb, βb}
to denote parameters of gamma distributions for generative delays, preventative windows, and
base rate delays. In the current experiments: {αg = 9, βg = 6}, {αp = 36, βp = 12}, and
{αb = 100, βb = 20} (regular base rate) or {αb = 1, βb = 0.2} (irregular base rate).

Step 1 is to form g′ → e′ pairs where 1) the effect event e′ is not over-determined (i.e. has
a single actual cause), 2) the cause event g′ does not produce its effect twice, and 3) g′ precedes
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e′. The likelihood of each pair is then determined by mapping the delay between g′ and e′ to the
gamma density function:

P (g′ → e′|αg, βg) = P (tg′→e′ = tg′e′ |αg, βg) (A.3)

Step 2 involves forming g′ → h pairs where h is a hidden effect event assumed to happen
sometime after the observable period or at some point during a preventative window. The likeli-
hood calculation depends on the gamma cumulative density falling beyond the end of the clip or
within the window:

P (g′ → h|αg, βg, αp, βp) = P (tg′→h > tend|αg, βg)+

P (tg′→h ⩽ tend|αg, βg)(1−
∏
p′

(1− P (tg′→h < tg′ + tp′→h|αg, βg, αp, βp)))
(A.4)

Base rate activations of the effect event are represented as having been caused by the previous
base rate activation, which can also be represented as g′ → e′ pairs where g′ is actually the target
component’s (i.e. E) activation. When there are presumed preventative cause events, the base rate
activation could be prevented but then subsequently “recover”. Therefore, for base rate activation
we could jointly consider Step 1 and Step 2 as g′ → h(1) → . . . → h(n) → e′, where h(1) . . . h(n)

happens within the preventative windows. Meanwhile, according to the transition property of the
gamma distribution, if X,Y ∼ Gamma(α, β) then X + Y ∼ Gamma(2α, β). The probability
P (g′ → h(1) → . . . → h(n) → e′) can thus be represented as Eq. A.5, where the calculation of
P (g′ → e′) is similar to Eq. A.3, and the calculation of P (g′ → h(n

′)) is similar to Eq. A.4 except
that tend is substituted with te′ and only the second item of prevention is considered.

P (g′ → h(1) → . . .→ h(n) → e′|αb, βb, αp, βp) =

P (g′ → e′|(n+ 1)αb, βb)
∏
n′∈n

P (g′ → h(n
′)|nαb, βb, αp, βp)

(A.5)

Finally, the prevention examination in Step 3 extracts all presumed preventative events and their
nearest effect events to form p′ → e′ pairs (there is no need for examination if no effect events
happen after p′), and then applies the gamma cumulative density function of prevention:

P (p′ → e′|αp, βp) = P (tp′→e′ < tp′e′ |αp, βp) (A.6)



A.2 Implementation of simulation-and-summary-statistic models 196

A.2 Implementation of simulation-and-summary-statistic

models

A.2.1 Cue distributions

We constructed the cue distributions (see Figure 5.3b) for each type of connection (generative, non-
causal, preventative) under two base rates (regular, irregular) by simulating 90,000 interactions
with imagined causal devices. These included 10,000 simulations of each of the 9 causal structures
considered here. In each simulation the structure is perturbed by interventions performed in
random orders with random timings.1 In this way we establish a marginal distribution for each
summary statistic under each type of connection. Note that we used a large number of simulations
to produce smooth distributions for our later model fitting, however similar distributions can
be achieved with a much smaller number of simulations (Ullman et al., 2018). As shown in
Figure 5.3b, the delay cue is independent of questions of segmentation by definition since it always
relates to the earliest subsequent effect event after each intervention. The count cue, however,
is sensitive to the choice of segmentation, meaning we consider intervention-window and fixed-
window assumptions separately. For delay distributions, we use a probability density function
smoothed with Gaussian kernels, while for count distributions we can use the discrete probability
mass functions directly.

A.2.2 Likelihood calculation

We assume each connection is estimated independently as either generative, non-causal, or pre-
ventative, and then combined to yield an overall probability for each candidate causal structure.
For example, an intervention on A with the nearest effect occurring 2.5 seconds later has a like-
lihood of [.2, .7, .1] of having been produced by a generative, non-causal or preventative A → E

connection respectively under the regular base rate and [.3, .6, .2] under the irregular base rate.
When the next intervention on A happens, the posterior is updated by taking the product of this
new likelihood with the preceding ones.

A.2.3 Boundary situations

We consider boundary situations when observing evidence as follows: If no effect occurs within
the observation window, in both segmentation approaches, the delay cue will be marked as larger
than the observation window and the probability is estimated according to the cumulative density
function falling after this. If the observation window is less than the fixed window length for

1Similar to generating the experimental stimuli, each simulation included three interventions on A and
three interventions on B. Distinct from the experimental stimuli, simulated sequences here were not cut
at twenty seconds so as to avoid the complex boundary effects in distribution construction.
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the fixed-window approach (which often happens near the end of the clip), or there is no next
intervention in the intervention-window approach, the count cue will be marked as greater than
or equal to the observed count of effects and the probability is also estimated on the basis of its
cumulative mass function.

A.3 Model fitting procedure

We considered four models in total:

1. Fully normative inference based on marginalizing over all possible causal pathways.

2. Summary-statistic (SS) based inference, using a fixed 4 second window to count events
following each intervention.

3. Summary-statistic based inference, using the interval until the next intervention to count
events.

4. A parameter free baseline that predicts all structure judgments to be selected with equal
probability.

As in our comparison to simulations, we simply assume the delay and count cues are equally
weighted and merged. We assume learners begin each problem with a uniform prior over causal
structures. We feel this is a reasonable choice here since the relatively small hypothesis space,a
balanced set of trials, and the abstract setting leave little for inductive biases to attach to. Nev-
ertheless, we accept that we cannot rule out the possibility that some of the findings we attribute
to evidence processing enter through prior preferences. To map models’ posterior probabilities to
judgments, we assumed participants’ responses result from a softmax over a posterior probability
vector v:

P (n) =
exp(vn/τ)∑

n′∈N
exp(vn′/τ)

(A.7)

The “temperature” parameter τ ∈ (0,+∞] controls how reliably the participant selects the most
probable answer (i.e. that with the largest vn in choice n). Smaller τ connotes higher choice
reliability with τ = 0 corresponding to hard maximization and τ → ∞ approaching random
responding.

We evaluate model fit using cross-validation. At the aggregate level, we fit parameters to the
judgments from K − 1 subsets of the complete dataset, and evaluate model performance in terms
of its log-likelihood of predicting the left-out subset. K was defined via the stimulus seeds in each
experiment (i.e. K = 18 in Experiment 1a and K = 12 in Experiment 1b including stimuli with
and without a ground truth). This provides a rigorous and generalizable test of the models, since
the actual sampled values of the stimuli (e.g. intervention timing, base rate activating timing,
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etc.) are always outside of the training sample for all test sets. On the individual level, we
similarly applied hold-one-stimulus-out as our cross-validation scheme for all experiments. For
easy familiarity and comparability with other model based analyses of causal learning data, we
also report Bayesian Information Criterion (BIC) penalized fits to the full dataset.

A.4 Alternative model fitting results

Table A.1: Model fits separated by conditions.

Regular Irregular
CV BIC τ CV BIC τ

Experiment 1a
Normative -2894 5789 0.45 -3162 6327 0.43
SS (intervention-window) -2822 5648 0.23 -3036 6076 0.22
SS (fixed-window) -2924 5853 0.31 -3074 6153 0.29
Random -3695 7390 -3735 7469

Experiment 1b
Normative -2256 4497 0.62 -2167 4332 0.51
SS (intervention-window) -2041 4086 0.23 -2014 4032 0.24
SS (fixed-window) -2114 4232 0.35 -2052 4106 0.31
Random -2503 5006 -2384 4768

Table A.2: Model fits separated by blocks in Experiment 1b.

Ground Truth No Ground Truth
CV BIC τ CV BIC τ

Normative -2009 4022 0.46 -2361 4725 0.88
SS (intervention-window) -1917 3840 0.24 -2141 4279 0.23
SS (fixed-window) -1982 3969 0.32 -2188 4373 0.35
Random -2443 4887 -2443 4887
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Table A.3: Model fits with one cue in summary-statistic models.

Delay Count
CV BIC τ CV BIC τ

Experiment 1a
SS (intervention-window) -5994 11990 0.31 -6065 12134 0.20
SS (fixed-window) -6040 12084 0.35 -6228 12460 0.33

Experiment 1b
SS (intervention-window) -4136 8277 0.33 -4173 8343 0.20
SS (fixed-window) -4196 8393 0.39 -4292 8585 0.36
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Figure A.1: Cross validation results and model accuracy under different fixed-window lengths for
summary-statistic models. Horizontal dashed lines indicate cases of intervention-window segmentation.
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Appendices for Chapter 6

B.1 Ideal observational (IO) learning

We formulate how a learner should ideally update their beliefs after seeing evidence produced by
interventions. The ideal observer infers a posterior distribution P (S|d; i) over causal structures
s ∈ S based on evidence d conditional on interventions i using the Bayes rule:

P (S|d; i) ∝ p(d|S; i) · P (S). (B.1)

Here, P (S) denotes the prior probability distribution over causal structures, and p(d|S; i) denotes
the likelihood of the observed data conditional on the interventions under each possible causal
structure.

We assume that data d consists of all non-interventional activation events and their tim-
ings indexed by their chronological order and subscripted by the component at which they oc-
cur d

(index)
component and that this is conditioned on the set of interventions i including all activations

a
(index)
component and blocks b

(index)
component performed by the learner during the learning episode.

As mentioned in the main text, when calculating the likelihood of the data given a candidate
structure, there are likely to be multiple potential paths of actual causation. Each of these
has its own likelihood. To construct the total likelihood of a hypothesized causal structure and
interventions producing a set of events, we must consider all possible causal paths Zs that could
describe what actually happened given structure s and then repeat this for every s ∈ S. Since the
path set is exclusive and exhaustive conditional on the structure under consideration s, we can
sum the path likelihoods to calculate the total likelihood of that structure producing the data:

p(d|s; i) =
∑
z′∈Zs

p(d|z′; i). (B.2)
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To construct the possible paths, each effect event must be attributed to exactly one preceding
event occurring at a component with a causal link to that effect in structure s. Assessing the
likelihood of each valid path includes two parts: (1) Explaining all actual effects; (2) explaining
away any expected effects that did not occur. The first part is just the product of the gamma
densities for all the causal delays between observed effects and their putative causes. Each delay
is given by

γpdf (teffect − tcause, α, β). (B.3)

For the latter part, we need to check that each cause event assumed by the hypothetical structure
has its corresponding effect(s) in the path. Each one that is missing must have failed (with
probability 1 − w), or (with probability w) be either yet to occur or have been blocked from
occurring. Combining these possibilities we get the following expression:1

w
[
γcdf (max(0, tblockonset − tcause),min(tblockoffset − tcause, tnow − tcause), α, β)︸ ︷︷ ︸

activation was blocked

+ (B.4)

(1− γcdf (tnow − tcause, α, β)︸ ︷︷ ︸
activation has not occurred yet

]
+ (1− w)︸ ︷︷ ︸

activation failed

(B.5)

Thus, the likelihood for a particular causal path given a particular causal structure can be calcu-
lated exactly via a combination of diagnostic reasoning — attributing exactly one cause for each
observed effect — and predictive reasoning — attributing exactly one effect or failure to each
causal link coming out of each activated component.

B.2 Comparing simulated resource-rational interventions

and judgments

To test whether our intervention and judgment models can replicate participants’ qualitative
behavior patterns, we use the parameters fit by human data to simulate resource-rational agents
that intervene on the same devices examined in Experiments 1 and 2. In both the reliable
and unreliable delay conditions, we generated 30 simulated learners. The intervention patterns
are shown in Figure B.1. This shows that for both experiments, simulated resource-rational
learners activated components in acyclic structures more than cyclic structures, and four-node
structures more than three-node structures. They waited longer to perform their next intervention
when the structures were cyclic then when they were acyclic. For Experiment 2, they performed
more blocking actions in cyclic devices than acyclic devices. These results demonstrate that our
intervention model is capable of replicating a wide range of human intervention patterns.

1γcdf (x, y, α, β) in Equation B.5 denotes the cumulative probability of a delay being between x and y
in length.



B.2 Comparing simulated resource-rational interventions and judgments 202

We also provided simulated evidence to the judgment model, which was based on parameters
fitted with human data. For both experiments, the noisy-IO judgment model replicated the human
result that acyclic structures had higher accuracy than cyclic structures. Unlike participants, these
simulations were not more accurate on unlinked structures in Experiment 2. This could be due to
some extra assumptions that we did not include in our models, such as the possibility that rather
than beginning each trial with a uniform prior over structures, participants may have expected
causal models to be sparse (Lu et al., 2008).

3.5

4.0

4.5

5.0

Acyclic Cyclic
Cyclicity

Ac
tiv
at
in
g

3.5

4.0

4.5

5.0

Unlinked Acyclic Cyclic
Cyclicity

Ac
tiv
at
in
g

3.0

3.5

4.0

4.5

5.0

5.5

Three−node Four−node
Structure Nodes

Ac
tiv

at
in

g

3.0

3.5

4.0

4.5

5.0

5.5

Three−node Four−node
Structure Nodes

Ac
tiv

at
in

g

8

9

10

11

12

Acyclic Cyclic
Cyclicity

In
te

rv
al

 (s
)

8

9

10

11

12

Unlinked Acyclic Cyclic
Cyclicity

In
te

rv
al

 (s
)

1.40

1.45

1.50

1.55

1.60

Unlinked Acyclic Cyclic
Cyclicity

Bl
oc
ki
ng

0.4

0.5

0.6

0.7

Acyclic Cyclic
Cyclicity

N
oi

sy
−I

O
 A

cc
ur

ac
y

0.4

0.5

0.6

0.7

Unlinked Acyclic Cyclic
Cyclicity

N
oi

sy
−I

O
 A

cc
ur

ac
y

E
xp

er
im

en
t 1

E
xp

er
im

en
t 2

Figure B.1: Results from simulated evidence according to the parameters fit in the intervention and
judgment models.
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B.3 Supplementary tables

Table B.1: Intervention model fits of back tracking window size in polynomial local cost models with a
generic exponent of 2.

Window CV BIC τ ω θ

Experiment 1
1 s -16426 32810 2.21 5.38× 10−2 7.77
2 s -16430 32797 2.23 1.94× 10−2 7.82
3 s -16414 32789 2.24 1.17× 10−2 7.82
5 s -16418 32798 2.30 7.30× 10−3 7.99
6 s -16421 32805 2.34 6.46× 10−3 8.09
7 s -16425 32814 2.38 6.12× 10−3 8.21

Experiment 2
1 s -40466 80811 1.86 8.81× 10−3 7.66
2 s -40459 80798 1.86 3.42× 10−3 7.63
3 s -40457 80794 1.85 2.17× 10−3 7.60
5 s -40467 80813 1.86 1.29× 10−3 7.65
6 s -40471 80821 1.87 1.11× 10−3 7.67
7 s -40477 80833 1.88 9.74× 10−4 7.72
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Table B.2: Intervention model fits of exponents or base parameters in polynomial- or exponential-costs.

Experiment 1

CV BIC cCV/BIC τ ω θ

Global cost
EIG-ECCLinear -16550 33040 2.00 1.00× 10−1 6.80
EIG-ECCPolynomial -16451 32882 1.8 2.55 1.03× 10−2 8.52
EIG-ECCExponential -16550 33067 2.4/1.8 2.79 1.44× 10−10 10.00
Local cost
EIG-ECCLinear -16524 32994 1.82 1.32× 10−1 6.13
EIG-ECCPolynomial -16378 32743 1.6/1.4 1.80 6.22× 10−2 6.04
EIG-ECCExponential -16556 33083 1.8 2.79 1.39× 10−10 10.02

Experiment 2

CV BIC cCV/BIC τ ω θ

Global cost
EIG-ECCLinear -40507 80898 1.98 3.33× 10−6 8.13
EIG-ECCPolynomial -40504 80901 3 1.96 4.40× 10−6 8.06
EIG-ECCExponential -40503 80895 1.2/1.18 1.97 7.31× 10−11 8.09
Local cost
EIG-ECCLinear -40507 80898 1.98 3.76× 10−6 8.13
EIG-ECCPolynomial -40462 80815 2 1.86 1.59× 10−3 7.63
EIG-ECCExponential -40500 80896 1.18/3.2 1.97 8.65× 10−11 8.10

Note: The base and exponent parameter c was fit by grid search. We searched in (1,4), using a step of
0.002 for the range [1.002,1.018], a step of 0.02 for the range [1.02,1.18] and a step size of 0.2 thereafter.
These steps approximate log-uniform intervals so are suitable for fitting a parameter bounded at the lower
end but not at the higher end. Other parameters were fitted given a fixed c. We reported two c with CV
and BIC deviated in their results.

Table B.3: Retrospective local complexity model fits.

CV BIC τ ω θ

Experiment 1
EIG-ECCLinear -16566 33077 3.11 3.30× 10−1 10.83
EIG-ECCPolynomial -16588 32120 3.01 1.67× 10−5 10.80
EIG-ECCExponential -16620 33120 3.00 1.57× 10−7 10.80

Experiment 2
EIG-ECCLinear -40507 80898 1.98 4.61× 10−5 8.13
EIG-ECCPolynomial -40506 80898 1.98 4.74× 10−6 8.12
EIG-ECCExponential -40507 80898 1.98 3.01× 10−11 8.13

Note: To fit retrospective models, we replaced the complexity component in Equation 6.7 with a retro-
spective recent event count. This assigned a cost according to the number of events in previous 4 seconds
for activation interventions {aA, aB , aC , aD}, while assigned a cost of zero for doing nothing or blocking
interventions.
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A supplementary experiment for
Chapter 7

The Trend × Instruction interaction in Experiment 1 in chapter 7 showed that people reacted to
instructions to use different perspectives of temporal information to make causal inferences. The
supplementary experiment aimed to investigate whether or not the effect came from the instruction
manipulation or the simple format difference. In this experiment, we simply manipulated the
display format to either imply a complete or an ongoing set of measurements, without the different
text prompts.

C.1 Method

Participants Two-hundred participants (120 female, 78 male, 1 non-binary, 1 unenclosed, aged
44± 13) were recruited from Prolific Academic and were randomly assigned to either the Closed
(N=100) or Open (N=100) conditions (see Design & Materials below).

Design & Materials The experimental design and materials were very similar Experiment 1,
except that now both groups were exposed to a neutral instruction “The observation has happened
for five days so far. The records now include Day 1 to Day 5”. We hence here renamed the between-
subject manipulation as a pure “Format” (Closed vs. Open) manipulation.

C.2 Results

Similar to Experiment 1, there is a main effect of contingency (F (2, 198) = 170.86, p < .001,
partial η2 = .46; pairwise comparison: zero–beneficial: t(198) = 12.11, p < .001, d = 0.58; zero–
harmful: t(198) = 8.58, p < .001, d = 0.36; harmful–beneficial: t(198) = 15.13, p < .001, d = 0.94
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under Bonferroni’s adjustment, Figure C.1). There was no main effect of Trend (F (1, 198) = 0.08,
p = .77) or Instruction (F (1, 198) = 0.19, p = .66). In contrast to Experiment 1, there were no
any two or three-way interaction effects (ps > .05, Figure C.2). This shows that the influence of
Instruction in Experiment 1 cannot be simply replaced with format differences.
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Figure C.1: Causal judgments under different contingency and experimental conditions. Participants
judged the influence of treatment on a scale from -3 (definitely beneficial) to 3 (definitely harmful). Higher
scores mean people are more sure the treatment is harmful to the bacteria survival while lower scores mean
people are more sure the treatment is beneficial. Dashed lines indicates the middle level when it is not
sure whether the treatment was harmful or beneficial to the survival of the bacteria cultures. Error bars
indicate 95% confidence intervals.
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Figure C.2: Causal judgments under Decreasing vs. Increasing trends across experimental conditions.
Participants judged the influence of treatment on a scale from -3 (definitely beneficial) to 3 (definitely
harmful). Error bars indicate 95% confidence intervals.


