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ABSTRACT
The revolution of Artificial Intelligence (AI) has brought about a
significant evolution in the landscape of cyberattacks. In particular,
with the increasing power and capabilities of AI, cyberattackers
can automate tasks, analyze vast amounts of data, and identify
vulnerabilities with greater precision. On the other hand, despite
the multiple benefits of the Internet of Things (IoT), it raises se-
vere security issues. Therefore, it is evident that the presence of
efficient intrusion detection mechanisms is critical. Although Ma-
chine Learning (ML) and Deep Learning (DL)-based IDS have al-
ready demonstrated their detection efficiency, they still suffer from
false alarms and explainability issues that do not allow security
administrators to trust them completely compared to conventional
signature/specification-based IDS. In light of the aforementioned
remarks, in this paper, we introduce an AI-powered IDS with ex-
plainability functions for the IoT. The proposed IDS relies on ML
and DL methods, while the SHapley Additive exPlanations (SHAP)
method is used to explain decision-making. The evaluation results
demonstrate the efficiency of the proposed IDS in terms of detection
performance and explainable AI (XAI).
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1 INTRODUCTION
The evolution of cyberthreats has been driven by advancements
in technology and the increasing interconnectedness of our digital
world. Initially, cyberthreats focused on individual systems and
networks, characterised by viruses, worms, and basic forms of mal-
ware. However, with the rapid evolution of the Internet of Things
(IoT) [3] and the proliferation of connected devices, cyberthreats
have grown in sophistication and scope. Today, we face a range
of evolving threats, including ransomware, Advanced Persistent
Threats (APTs), social engineering, phishing, and zero-day exploits.
These threats are propelled by organised cybercriminal groups,
state-sponsored actors, and non-state actors seeking financial gain,
political influence, or the disruption of critical infrastructures. At-
tacks have scaled up and become more complex, targeting individ-
uals, businesses, governments, and Critical Infrastructure (CIs). As
technology advances further, cyberthreats will continue to evolve,
necessitating ongoing vigilance and proactive cybersecurity mea-
sures to safeguard the digital ecosystems.

Therefore, the role of Intrusion Detection Systems (IDS) is nec-
essary in order to detect potential cyberattacks and anomalies in a
timely manner. Based on the detection techniques, IDS can be clas-
sified into two main categories: (a) signature/specification-based
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detection and (b) anomaly-based detection. In the first category,
pre-defined patterns are used to recognise particular cyberattacks.
On the other hand, statistical analysis and Artificial Intelligence (AI)
methods are used to detect cyberattacks and anomaly behaviours.
Despite the fact that AI-powered IDS have already demonstrated
their efficiency, they suffer from false alarms and explainability is-
sues that do not allow security administrators to trust them [4, 10].
Therefore, in light of the aforementioned remarks, in this paper, we
focus our attention on the development of an AI-powered IDS for
the IoT, including explainable AI (XAI) functions. Therefore, the
contributions of this paper are summarised as follows.

• Implementation of an AI-powered IDS for the
IoT: An AI-powered IDS is implemented, using
CIC-IoT-Dataset-2022 [2] and IEC 69870-5-104
Intrusion Detection Dataset [9]. The first dataset
refers to IoT environments, while the second one refers to
Industrial IoT (IIoT) environments, where IEC 60870-5-104
is used. For both datasets, various Machine Learning
(ML)/Deep Learning (DL) methods are evaluated.

• Investigating and development of explainability func-
tions: An explainability mechanism about the decisions of
the proposed AI-powered IDS is provided. For this purpose,
the SHapley Additive exPlanations (SHAP) XAI method is
investigated and utilised.

The rest of this paper is organised as follows. Section 2 discusses
similar works in this field. In section 3, the architecture of the pro-
posed IDS is provided, including technical implementation details.
Next, section 4 focuses on the evaluation analysis of the proposed
AI-powered IDS with explainability functions. Finally, section 5
concludes this paper.

2 RELATEDWORK
Several works investigate and combine cybersecurity mechanisms
with XAI. Some of them are listed in [1, 6–8, 11, 12]. In particular,
in [12], the authors present an explainable AI solution for the de-
tection of Domain Name System (DNS) over Hypertext Transfer
Protocol Secure (HTTPS) (DoH) attacks. They propose a balanced
and stacked Random Forest classifier for classification based on
DNS over HTTPS intrusion features. For this task, they utilise the
publicly available CIRA-CIC-DoHBrw-2020 dataset. Their solution
can accurately recognise DoH traffic from normal HTTPS traffic
and also detect malicious DNS traffic with more than 99% accuracy.
Lastly, the authors explain the results of the model utilising the
SHAP method to highlight the feature contributions. They also cre-
ate an interactive explainer dashboard where the users can examine
the feature contribution of any data sample.

In [11], the authors propose a framework that uses ML and
XAI for IDS. A one-vs-all and a multiclass classifier based on fully
connected networks are trained and evaluated on the NSL-KDD
dataset. Both classifiers achieve more than 80% accuracy on the
test dataset, outperforming similar benchmark methods. The pro-
posed framework includes the application of the SHAP method
to provide local and global explanations. Another work focussing
on the use of XAI for intrusion detection is [8]. The authors use a
voting classifier that utilises an ensemble of several models. They
apply their classifier on normal and malicious network traffic sam-
ples from the CICIDS2017 dataset and achieve around 96% accuracy.

For the explanations of individual predictions, they use the Local
Interpretable Model-Agnostic Explanations (LIME) method on each
of the mentioned ML models.

Similarly, Mane and Rao [6] propose a method that utilises ex-
plainable AI for the creation of a Network Intrusion Detection
System (NIDS). They use a fully connected network with three hid-
den layers to classify samples from the NSL-KDD dataset as normal
or attack and achieve approximately 82% accuracy and F1-score.
They also apply several XAI techniques to explain the effect of
input features on the detection of attacks. More specifically, they
utilise the SHAP method to provide both global and local explana-
tions of the model, the LIME method for a local explanation and
the Contrastive Explanation Method (CEM) method to identify the
least number of features and their values that would produce the
same prediction.

In [1], the authors introduce a framework for network intru-
sion detection using XAI. It involves the utilisation of a Gradient
Boosting (XGboost) model for supervised learning, followed by the
use of the SHAP method to explain the predictions. The authors
also propose the use of a deep autoencoder as an unsupervised
method which is trained on the explanations produced from the
application of SHAP. Lastly, they evaluate the proposed method
using the NSL-KDD dataset and achieve an accuracy of 93%.

Finally, in [7], Marino et al. introduce an adversarial approach
to applying XAI in IDS. The proposed method can be employed
on models with established gradients to determine the minimum
modifications necessary for correctly classifying a set of previously
misclassified examples. By altering the input features, visualisations
are generated to highlight the features that significantly influenced
the incorrect classifications. The study utilises the NSL-KDD dataset,
partitioned into 124,926 training samples and 16,557 testing samples.
Two models, a Linear classifier and a Multi-Layer Perceptron (MLP)
classifier, achieve accuracy rates of 93.6% and 95.5%, respectively,
on the test dataset. The authors calculate the minimal adjustments
required to rectify the classifier’s output and present the resulting
explanations to the user through easily interpretable plots. Notably,
the proposed adversarial approach can be applied to models with
defined gradients without necessitating any modifications to the
model structure.

Undoubtedly, the previous works provide useful solutions and
methodologies. However, it is worth mentioning that none of them
considers the unique characteristics of IoT and IIoT network envi-
ronments of CIs, such as the smart electrical grid. In this paper, we
plan to cover this gap by combining ML/DL methods and SHAP
in order to detect cyberattacks against IoT and IEC 60870-5-104
IIoT environments, considering (a) Transmission Control Proto-
col/Internet Protocol (TCP/IP) flow statistics and application-layer
flow statistics related to IEC 60870-5-104. IEC 60870-5-104 is an
industrial protocol widely used in CIs, especially in the energy
domain. Therefore, on the one hand, we show how SHAP behaves
with respect to TCP/IP flow statistics and on the other hand, we
investigate its applicability with IEC 60870-5-104 flow statistics.

3 ARCHITECTURAL DESIGN
As illustrated in Fig. 1, the architecture of the proposed IDS consists
of six modules: (a) Network Traffic Data Capturing Module, (b)
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Network Flow Generation Module, (c) Data Pre-processing Module,
(d) Detection Module, (e) Explainability Module and (f) Notification
Module. This first module is responsible for capturing the network
traffic data (i.e., pcap files). For this purpose, a Switched Port
Analyser (SAPN) (i.e., port mirroring) and tcpdump are used. Once
the raw network traffic data is captured, the next module is respon-
sible for generating the flow statistics. This step reduces the volume
of data and provides a more meaningful representation of the net-
work traffic data. Given that we have two kinds of environments:
(a) IoT and (b) IEC 60870-5-104 IIoT, two kinds of flow statistics are
generated: (a) TCP/IP network flow statistics and (b) IEC 60870-5-
104 payload flow statistics. The first kind refers to bidirectional flow
statistics related to TCP/IP attributes. These statistics are gener-
ated through CICFlowMeter and NFStream. On the other side, the
second refers to bidirectional flow statistics related to the payload
of the IEC 60870-5-104 packets. To this end, a custom Python flow
generator is used.

The flow statistics are often noisy and contain redundant in-
formation. Therefore, the Data Pre-Processing module is utilised
for cleaning the data, removing noise, and reducing the feature
dimensionality. The Data Pre-Processing Module performs tasks
such as feature scaling, feature selection, and feature extraction.
More specifically, this module includes the handling of missing val-
ues where the records/rows with missing values are removed, the
handling of label/target where the categorical values are encoded
with numerical ones and the handling of categorical features where
any categorical features remaining are also removed. Regarding
the selection of features, some of the steps that are followed are
the removal of features with only one unique value, low variance
(0.1) or Pearson correlation (0.9). Recursive feature elimination and
sequential feature selection (forward and backward) are also per-
formed. Finally, the data are scaled to the range [0, 1] except from
the case of the DL methods, where the features were standardised
by removing the mean and scaling to unit variance.

The core of the proposed IDS is the DetectionModule, which uses
pre-trained ML/DL models to discriminate potential attacks. Based
on the pre-processing step, two complement ML/DL models are
used: (a) ML/DL model based on TCP/IP network flow statistics and
(b) ML/DL model based on IEC 60870-5-104 payload flow statistics.

The explainability module is responsible for providing consistent
and reliable explanations for the predictions of the detectionmodule.
Explainability is important to build trust in the system, to better
understand the detected threats and identify the root cause of a
detected intrusion.

This module focuses on the use of model-agnostic post-hoc ex-
plainability techniques to explain the results of any pre-trained
ML/DL model that is adopted in the Detection Module regardless
of the type and architecture of the ML model. More specifically, it
leverages the SHAP method [5]. SHAP is based on the concept of
Shapley values from cooperative game theory and assigns a value
(importance value) to each feature in a prediction, indicating its
contribution to the final outcome. This is done by computing the av-
erage contribution of each feature across all possible combinations
of features. The explanation can be defined as:

𝑔(𝑧′) = 𝜙0 +
𝑀∑︁
𝑖=1

𝜙𝑖𝑧
′
𝑖 (1)

where 𝑧′ ∈ 0, 1, 𝑀 : the number of simplified input features, and
𝜙𝑖 ∈ R. 𝜙0 is the null (average) output of the model, 𝑧′ is the
simplified binary input vector, and 𝜙𝑖 is the explained effect of
feature 𝑖 . The formula for calculating the Shapley values that are
used as feature attributions is as follows:

𝜙𝑖 (𝑥) =
∑︁

𝑆⊆𝐹\{𝑖 }

|𝑆 |!( |𝐹 | − |𝑆 | − 1)!
|𝐹 |! [𝑓𝑆∪{𝑖 } (𝑥𝑆∪{𝑖 } )− 𝑓𝑆 (𝑥𝑆 )]] (2)

where 𝜙𝑖 (𝑥) represents the Shapley value for feature 𝑖 and instance
𝑥 , 𝐹 is the set of all features, 𝑆 is a coalition, which is a subset of 𝐹
that does not contain feature 𝑖 , 𝑓𝑆 (𝑥𝑆 ) represents the model’s predic-
tion for instance 𝑥 using the features in coalition 𝑆 , 𝑓𝑆∪{𝑖 } (𝑥𝑆∪{𝑖 } )
represents themodel’s prediction for instance𝑥 using the features in
coalition 𝑆 along with feature 𝑖 , |𝑆 | denotes the number of elements
of the coalition 𝑆 and |𝑁 | denotes the total number of features.

The formula 2 calculates the average contribution of feature 𝑖
across all possible coalitions 𝑆 by comparing the predictions with
and without the feature. It considers all possible ways of including
feature 𝑖 in different coalitions and computes the difference in pre-
dictions when 𝑖 is added. The sum of these differences is weighted
based on the number of coalitions of different sizes to determine
the Shapley value for feature 𝑖 and instance 𝑥 .

SHAP provides both local and global explanations. Local expla-
nations focus on explaining individual predictions by assigning
importance values to each feature for a specific instance. This helps
understand the contribution of each feature to a particular predic-
tion. On the other hand, global explanations, on the other hand,
provide an overview of feature importance across the entire dataset
by aggregating the local explanations. They help identify the con-
sistent and overall impact of features on model predictions.

It is worth mentioning that the explainability module provides
explanations through a dashboard that offers visualizations that
illustrate the importance of different features. Feature importance
plots highlight the most influential features in the decision-making
process. These visualisations provide a clear and intuitive repre-
sentation of the model’s behaviour, allowing cybersecurity ana-
lysts to identify patterns, anomalies, and potential vulnerabilities
in the network traffic data. Finally, once an intrusion is detected,
the Notification Module is responsible for alerting the security ad-
ministrator. The notification can be in the form of an email, Short
Message/Messaging Service (SMS), push notifications or a dash-
board that displays the intrusion details and explanations.

4 EVALUATION ANALYSIS
In this section, we focus on the evaluation of the proposed explain-
able AI-based IDS to determine its detection performance. For the
detection of an attack/intrusion, we perform multi-class classifi-
cation with the attacks as classes/labels. Regarding the evaluation
metrics, the following are considered: (a) Accuracy (Equation 3), (b)
True Positive Rate (TPR) (Equation 4), (c) False Positive Rate (FPR)
(Equation 5) and (d) F1-score (Equation 6).

The accuracy metric (Equation 3) quantifies the ratio of correct
classifications to the total number of instances. It is a suitable evalu-
ationmeasure when the training dataset is well-balanced, indicating
an equal distribution of instances across all classes.
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Figure 1: IDS architecture showing the included modules

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3)

where:

𝑇𝑃 → True Positives
𝑇𝑁 → True Negatives
𝐹𝑃 → False Positives
𝐹𝑁 → False Negatives

TPR, as defined by Equation 4, quantifies the proportion of actual
intrusion instances that were accurately detected and classified as
intrusions.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

FPR, as described by Equation 5, signifies the ratio of normal
instances that were mistakenly classified as cyberattacks. It high-
lights the trade-off between correctly identifying normal instances
and the occurrence of false alarms.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑁
(5)

F1 score (Equation 6) is a metric that combines the true positive
rate (TPR) and precision to provide a balanced assessment. Precision
represents the proportion of true positives out of the sum of true
positives and false positives.

𝐹1 =
2 ×𝑇𝑃

2 ×𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(6)

For the performance evaluation, a detailed ML/DL compar-
ative analysis is performed. The ML/DL methods used in this
analysis are Naive Bayes, Support Vector Machines (SVM)
with both linear and Radial Basis Function (RBF) ker-
nel, Decision Trees (DT), Random Forest (RF), Gragient
Boosting (XGBoost), Adaboost, Logistic Regression,
Quadradic Discriminant Analysis (QDA) and a Dense Deep

Neural Network (DNN). The numpy, pandas, scikit-learn
(sklearn), tensorflow/keras and shap Python libraries are
utilised for the experimental results. Finally, it is noteworthy that
the evaluation process includes the models’ explainability to ensure
that the system is transparent and understandable to the end-users.

4.1 Datasets
For the experiments and the evaluation of detection perfor-
mance, two balanced datasets are utilised. The first one is the
IEC 60870-5-104 Intrusion Detection Dataset [9], which
can be used to investigate and assess the severity of cyber-
attacks against the IEC 60870-5-104 protocol. It includes la-
belled TCP/IP network flow statistics (generated through CI-
CFlowMeter) and IEC 60870-5-104 payload flow statistics (gen-
erated through a custom Python flow generator). More specifi-
cally it contains the following cyberattacks: Man In the Middle
(MITM), traffic sniffing, C_RD_NA_1, C_CI_NA_1, C_RP_NA_1,
C_SC_NA_1, C_SE_NA_1, M_SP_NA_1_DOS, C_CI_NA_1_DOS,
C_SE_NA_1_DOS, C_RD_NA_1_DOS, C_RP_NA_1_DOS. Cyberat-
tacks 3-6 refer to IEC 60870-5-104 unauthorised access, while cyber-
attacks 6-12 are related to Denial of Service (DoS) IEC 60870-5-104
cyberattacks. The second dataset is the CIC-IoT-Dataset-2022
[2]. It can be used for profiling, behavioural analysis, and vulner-
ability testing of different IoT devices. The dataset contains the
network traffic of various IoT devices, including WiFi, ZigBee, and
Z-Wave devices, where 1) a flood denial-of-service attack and 2)
an RTSP brute-force attack were performed. Two separate data
files are used, one that refers to CICFlowMeter and one related to
NFStream.

4.2 Experimental Results
Our experiments begin with an Exploratory Data Analysis (EDA),
which is a required step to obtain useful insights into the data
before training the ML/DL models. Then, we proceed with the
pre-processing of the data, where we follow the steps described
in the Pre-processing Module. After making sure that they are in
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Table 1: Evaluation results of the proposed IDPS - IEC 60 870-5-104 - CICFlow

AI Models Accuracy TPR FPR F1-Score
Naive Bayes 0.4196 0.4196 0.0512 0.3554
SVM Linear 0.4944 0.4944 0.0453 0.4727
SVM RBF 0.4940 0.4940 0.0448 0.4538
Decision Trees 0.6007 0.6009 0.0363 0.5994
Random Forest 0.6632 0.6634 0.0306 0.6601
XGBoost 0.6358 0.6360 0.0330 0.6324
Adaboost 0.3532 0.3532 0.0574 0.3014
Logistic Regression 0.4841 0.4841 0.0463 0.4628
Quadradic Discriminant Analysis 0.5572 0.5572 0.0395 0.5236
DNN 0.5811 0.5811 0.0381 0.5586

Table 2: Evaluation results of the proposed IDPS - IEC 60 870-5-104 - Custom

AI Models Accuracy TPR FPR F1-Score
Naive Bayes 0.5582 0.5582 0.0402 0.4749
SVM Linear 0.6514 0.6514 0.0317 0.6384
SVM RBF 0.5942 0.5942 0.0369 0.5588
Decision Trees 0.8333 0.8333 0.0152 0.8281
Random Forest 0.8521 0.8521 0.0134 0.8473
XGBoost 0.8348 0.8348 0.0150 0.8280
Adaboost 0.2826 0.2826 0.0652 0.2121
Logistic Regression 0.6223 0.6223 0.0343 0.6053
Quadradic Discriminant Analysis 0.6233 0.6233 0.0342 0.5594
DNN 0.6958 0.6958 0.0277 0.6851

Table 3: Evaluation results of the proposed IDPS - CIC IoT dataset 2022 - CICFlow

AI Models Accuracy TPR FPR F1-Score
Naive Bayes 0.7428 0.7427 0.1287 0.7409
SVM Linear 0.9312 0.9311 0.0344 0.9314
SVM RBF 0.9583 0.9583 0.0209 0.9585
Decision Trees 0.9985 0.9985 0.0007 0.9985
Random Forest 0.9983 0.9983 0.0008 0.9983
XGBoost 0.9992 0.9992 0.0004 0.9992
Adaboost 0.9583 0.9583 0.0208 0.9582
Logistic Regression 0.9308 0.9308 0.0346 0.9311
Quadradic Discriminant Analysis 0.9363 0.9363 0.0319 0.9364
DNN 0.9888 0.9888 0.0056 0.9888

a suitable format, we train our models. The default values for the
hyper-parameters are used for all of the models except for the
case of DT, RF and XGBoost, where we perform hyper-parameter
tuning. Regarding the dense DNN, it consists of 4 layers where the
activation function for the input and hidden layers is ReLu and
for the output layer is Softmax. The output layer has a number of
units equal to the number of classes in the target feature and, more
specifically, 12 units in the case of the IEC 60870-5104 Intrusion
Detection Dataset and three units for the CIC IoT Dataset
2022. The chosen optimiser is Adam, and categorical cross-entropy
is used as the loss function. The DNN is trained for 100 epochs with
a batch size of 32. Early stopping is utilised to reduce overfitting

without compromising the model’s accuracy. Lastly, the model
weights from the epoch with the smaller validation loss are chosen.
A different model is created for each dataset and each ML method.
Lastly, the accuracy and the macro-averaged scores of the rest
evaluation metrics are computed by calculating the per-class values
of TPR, FPR and the F1 score for each class and then averaging
them to get the overall performance.

Tables 1 and 2 show the performance of the ML methods us-
ing the IEC 60870-5-104 dataset and, more specifically, the TCP/IP
network flow statistics and the IEC 60 870-5-104 payload flow sta-
tistics, respectively. Six different flow timeouts (15, 30, 60, 90, 120,
and 180 s) are evaluated for both statistics, and those that provide
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Table 4: Evaluation results of the proposed IDPS - CIC IoT dataset 2022 - NFStream

AI Models Accuracy TPR FPR F1-Score
Naive Bayes 0.9700 0.9700 0.0150 0.9701
SVM Linear 0.9581 0.9581 0.0209 0.9583
SVM RBF 0.9879 0.9879 0.0060 0.9879
Decision Trees 0.9988 0.9988 0.0006 0.9988
Random Forest 0.9999 0.9999 0.0000 0.9999
XGBoost 0.9998 0.9998 0.0001 0.9998
Adaboost 0.9106 0.9106 0.0447 0.9112
Logistic Regression 0.9620 0.9620 0.0190 0.9621
Quadradic Discriminant Analysis 0.5530 0.5530 0.2235 0.5051
DNN 0.9985 0.9985 0.0007 0.9985

Table 5: Datasets details

Dataset Parser Timeframe # Columns # Rows (train) # Rows (test)
IEC 60870-5-104 cicflow 15 84 10968 4692
IEC 60870-5-104 cicflow 30 84 7980 3420
IEC 60870-5-104 cicflow 60 84 5904 2520
IEC 60870-5-104 cicflow 90 84 5088 2172
IEC 60870-5-104 cicflow 120 84 4800 2028
IEC 60870-5-104 cicflow 180 84 3588 1536
IEC 60870-5-104 custom 15 112 10968 4692
IEC 60870-5-104 custom 30 112 7980 3420
IEC 60870-5-104 custom 60 112 5904 2520
IEC 60870-5-104 custom 90 112 5088 2172
IEC 60870-5-104 custom 120 112 4800 2028
IEC 60870-5-104 custom 180 112 3588 1536
CIC-IoT-Dataset-2022 cicflow - 84 29814 12999
CIC-IoT-Dataset-2022 nfstream - 40 25533 10845

Figure 2: IEC 60 870-5-104 - CICFlow - SHAP Summary Plot

the optimal detection performance are chosen. In the first case, the
best performance is achieved when the flow timeout is 180s, while
in the second case, the best performance is achieved when the flow

timeout is equal to 120s. In both cases, the best-performing method
is Random Forest, with XGBoost and DT following closely.

Figure 3: IEC 60 870-5-104 - CICFlow - SHAPWaterfall Plot

Tables 3 and 4 summarise the evaluation results using the CIC
IoT Dataset 2022 for both CiCFlowMeter and NFStream. In the
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Figure 4: IEC 60 870-5-104 - Custom - SHAP Summary Plot

Figure 5: IEC 60 870-5-104 - Custom - SHAPWaterfall Plot

first case, XGBoost achieves the highest F1-score, while RF, DT,
and DNN are very close. In the second case, RF performs the best
detection performance, while XGBoost, DNN, and DT have similar
performance.

Regarding the explainability functions through the SHAP
method, we generate summary and waterfall plots for the best-
performing model for each dataset with respect to the intrusion
detection task. Figures 2, 4, 6, and 8 show the SHAP summary which
depicts the feature importance based on the SHAP values. The top
10 features are listed top-down with decreasing importance. Each
bar’s length shows the mean absolute SHAP value that represents
the average absolute impact of the feature on the final prediction.
In this multi-class classification task, the bars are stacked and show
the values for each one of the output classes separately.

Figures 3, 5, 7, and 9 show the explanation of a single prediction
given a specific class as a waterfall plot. These plots contain the

feature values on the y-axis and arrows, which show the feature
contribution (positive or negative) to the prediction. More specifi-
cally, they show how this contribution moves the value from the
expected output (based on the background data distribution) to
the final model output for this prediction. The features appear in
descending order based on the magnitude of their SHAP values.
𝑓 (𝑥) is the model predicted probability value and 𝐸 [𝑓 (𝑥)] is the
base (expected) value. The sum of all SHAP values will be equal to
𝐸 [𝑓 (𝑥)] − 𝑓 (𝑥).

5 CONCLUSIONS
The evolution of cyberthreats has witnessed a relentless progression
over time. As technology enablers have advanced, cyberattackers
have adapted their strategies and techniques to exploit vulnerabili-
ties and compromise systems. Hence, the role of IDS is crucial. It is
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Figure 6: CIC IoT dataset 2022 - CICFlow - SHAP Summary Plot

Figure 7: CIC IoT dataset 2022 - CICFlow - SHAPWaterfall Plot

evident that AI can be used to detect potential cyber-attacks and
unknown anomalies; nevertheless, AI-powered IDS are still charac-
terised by false alarms and explainability issues. Therefore, their
continuous improvement is necessary. In this paper, we introduce

an AI-powered IDS for the IoT, including XAI functions. According
to the evaluation results, the proposed IDPS can effectively detect
malicious activities against IoT and IEC 60870-5-104 IIoT environ-
ments. Finally, the SHAP-based XAI functions show the feature
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Figure 8: CIC IoT dataset 2022 - NFStream - SHAP Summary Plot

Figure 9: CIC IoT dataset 2022 - NFStream - SHAPWaterfall Plot

importance for each decision, thus allowing the security adminis-
trator and cybersecurity analysts to understand decision-making
better and trust the proposed AI-powered IDS.
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